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Abstract

We give a construction of an eigenstate for a non-critical level of the
Hamiltonian function, and investigate the contribution of Morse critical
points to the spectral decomposition. We compare the rigorous result
with the series obtained by a perturbation theory. As an example the
relation to the spectral asymptotics is discussed.
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Introduction

Let us first remind the spectral theorem for a self-adjoint operator H on a
Hilbert space. It reads that there exists a spectral family Eλ of increasing
projectors commuting with H which gives a partition of unity

∫ ∞

−∞
dEλ = 1

and a spectral decomposition of H:

∫ ∞

−∞
λdEλ = H.

Applying both sides of the first equality to an arbitrary trace class operator A
and taking traces, we obtain

∫ ∞

−∞
d(Tr EλA) = Tr A.

Assuming that the derivative exists let us denote

〈A〉λ =
d

dλ
(Tr EλA). (0.1)
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It follows from the spectral decomposition that the functional 〈A〉λ on the
space of trace-class operators posesses an eigenstate property:

〈HA〉λ = 〈AH〉λ = λ〈A〉λ (0.2)

and the spectral theorem may be rewritten in the form
∫ ∞

−∞
〈A〉λdλ = Tr A. (0.3)

Relations (0.2), (0.3) serve as a motivation for a spectral theorem for defor-
mation quantization.

Let (M, ω) be a symplectic manifold of dimension 2n. It admits the so-
called star-product ∗, that is an associative product on formal functions

a(x, h) =
∞∑

k=0

hkak(x), (0.4)

the series is treated as a formal power series in h, ak(x) ∈ C∞(M). The star-
product is given by

a(x) ∗ b(x) =
∞∑

k=0

hkCk(a, b)

where Ck(a, b) are bidifferential operators C0(a, b) = a(x)b(x); C1(a, b) −
C1(b, a) = −ih{a, b}. Here {·, ·} denotes the Poisson bracket.

Of course, Laurent formal series with finite number of negative degrees are
also admissible in (0.4). The algebra of formal functions with a star-product
will be denoted (Ah, ∗). More detail about star-products and their classification
one can find in [1, 2].

Locally any star-product is equivalent to the Weyl product on a standard
symplectic space (R2n, ω0). It is given by

a(x) ∗ b(x) = exp

(
−ih

2
ωij ∂

∂xi

∂

∂yj

)
a(x)b(y)

∣∣∣∣
y=x

. (0.5)

There is a unique (up to normalization) trace functional on (Ah, ∗) defined
on the ideal (Ac

h, ∗) consisting of functions with compact support. For the
Weyl algebra it is simply the integral

Tr a(x) =
1

(2πh)n

∫

Rn

a(x)dx.

Note, that for the Weyl product we have

Tr a ∗ b = Tr ab. (0.6)

After these preliminaries we introduce our main definition. We use the
name Hamiltonian for a real function H(x) considered as an element of the
algebra (Ah, ∗).
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Definition 0.1 An eigenstate 〈 〉λ with an eigenvalue λ ∈ R for a Hamil-
tonian H(x) is a functional on (Ac

h, ∗)

〈a〉λ =
∞∑

k>>−∞
hkck(λ) (0.7)

such that
〈H ∗ a〉λ = 〈a ∗H〉λ = λ〈a〉λ. (0.8)

We say that the spectral theorem holds for H(x) if for any a ∈ Ac
h

∫ ∞

−∞
〈a〉λdλ = Tr a. (0.9)

It is clear that the eigenstate may be multiplied by any number, and (0.9)
gives a proper normalization.

Let us briefly describe the content of the paper. We begin with the sim-
plest case when H(x) has no critical point on the support of a. In this case
the Hamiltonian may be reduced locally to the simplest form for which the
eigenstate functional may be constructed explicitly so that (0.9) holds (Theo-
rem 1.2). But this reduction is rather difficult in practice, so we give another
construction based on the WKB method (Section 2).

In the next sections we study the spectral theorem in the presens of a
critical point of the Morse type, that is an isolated critical point with a non-
degenerate second differential. There arise non-trivial contributions of critical
points which should be added to the left-hand side of (0.9) to get Tr a and our
aim is to compute these contributions as explicit as possible.

We begin with the case when H(x) is a non-degenerate quadratic form
(Section 3). In this case the WKB construction gives an explicit formula for
eigenstates in terms of delta functions δ(k)(H(x)− λ).

Further, we investigate the limits

lim

∫ −ε

−∞
〈a〉λdλ, lim

∫ ∞

ε

〈a〉λdλ (0.10)

for quadratic Hamiltonians. The explicit formula for the eigenstate allows us
to calculate them, using the theory of generalized functions Hλ

+, Hλ
−, (H ± i0)

developed in [4].
In Section 4 we extend this result to an arbitrary Morse critical point. Here

the Morse lemma allows us to calculate the limits (0.10) reducing them to the
case of quadratic form. The result is quite similar to the case of quadratic
Hamiltonians except that the contributions of critical points are not so explicit.

We also discuss briefly the perturbation theory for our problem. It gives
a reasonable formula for the contribution of the Morse critical point, but the
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procedure is by no means rigorous from mathematical point of view. The
question arises if the two formulas are the same.

Finally, in the last section we discuss very briefly the relation to spectral
asymptotics [5]. This is done on an example of harmonic oscillator where
everything may be calculated explicitly. This example illustrates also relations
of egenstates to the index theory in deformation quantization.

I would like to express my profound gratitude to N. Tarkhanov for his
interest and helpful assistance.

1 Non-critical case

We deal mostly with a local picture, so the algebra (Ah, ∗) will be the Weyl
algebra with the product (0.5). Let H(x) be a real function and x0 be its
non-critical point, that is the differential dH(x0) does not vanish.

Lemma 1.1 In a neighborhood of a non-critical point there exists an iso-
morphism of the algebra (Ah, ∗) which sends the function H(x) to a linear
function (say x1).

Proof. It is well known that there exist Darboux local coordinates for
which H(x) = x1. The corresponding isomorphism of (Ah, ∗) (see e.g. [2])
gives a function which differs from x1 by higher-order terms, so that

H(x, h) = x1 + hH1(x) + h2H2(x) + . . . .

But the higher-order terms may be killed by a conjugation isomorphism

U−1 ∗ x1 ∗ U = x1 + hH1 + h2H2(x) + . . . .

For the Weyl ∗-product we get

−ihU−1 ∗ ω1i ∂U

∂xi
= hH1 + h2H2 + . . . ,

or

−iω1i ∂U

∂xi
= U ∗ (H1 + hH2 + . . .).

This equation may be easily solved by integration along trajectories of the
vector field ω1i∂/∂xi.

¤
Theorem 1.2 For H(x) = x1 ∈ (Ah, ∗) the eigenstate functional is given

by

〈a(x)〉λ = (2πh)−n(δ(x1 − λ), a(x))

= (2πh)−n

∫

R2n−1

a(λ, x2, . . . , x2n)dx2 . . . dx2n.

This is a unique functional with the properties (0.8), (0.9).
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Proof. The eigenstate property follows from

(x1 − λ) ∗ a(x) = (x1 − λ)a(x)− ih

2
ω1i ∂a

∂xi

a(x) ∗ (x1 − λ) = (x1 − λ)a(x) +
ih

2
ω1j ∂a

∂xj
.

The leading term of 〈(H − λ) ∗ a〉λ is zero because (x1 − λ)δ(x1 − λ) = 0, and
the second term vanishes under integration over xi(i 6= 1).

Further,

1

(2πh)n

∫ ∞

−∞
(δ(x1 − λ), a(x))dλ =

1

(2πh)n

∫

R2n

a(λ, x2, . . . , x2n)dλdx2 . . . dx2n

which is actually the trace of a.
To prove uniqueness, observe that the eigenstate properties (0.8), (0.9)

imply

Tr p(x1) ∗ a(x) =

∫

R
p(λ)〈a〉λdλ,

for any polynomial p(λ). Thus 〈a〉λ is unique since the trace is unique and
polynomials are dense.

¤
The construction of 〈a〉λ does not depend on the choices of local Darboux

coordinates and isomorphisms. This may be proved in a standard way simi-
larly to the trace construction (see [2]). Now, using partition of unity in the
algebra (Ah, ∗), one can construct an eigenstate for a function with an arbi-
trary compact support not containing critical points of H. We will not consider
such a global construction here, though it is, of course, very important and
interesting.

2 WKB eigenstate construction

Theorem 1.2 gives a construction of an eigenstate, but it is quite impossible
to use it in practice. Now we give a more convenient formula. It is based on
the Schrödinger evolution equation

dU

dt
− i

h
H ∗ U = 0, U |t=0 = 1. (2.1)

There exist certain difficulties for giving a rigorous meaning to the solution
U . A special name for it (star-exponential) and the notation U = exp∗

(
i
h
Ht

)
does not clarify its meaning since the series for the exponential function is
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meaningless even as a formal series. We will consider U as a formal solution
of a special form

U = e
i
h

S(x,t)V (x, t, h) = e
i
h

S(V0 + hV1 + h2V2 + . . .). (2.2)

The word ”formal” means that if we take the N -th truncation

U |N := e
i
h

S(V0 + hV1 + . . . + hNVN)

and substitute it into (2.1) the result will be of the form

hN+1e
i
h

S(W0 + hW1 + . . .)

with a formal power series W in positive powers of h.
But first we need to extend the Weyl star-product ∗ to the functions con-

taining factors eiS/h, taking care of the associativity. This may be done with
the help of the following trick which is often used in deformation quantization.
First we treat h as a positive number and smooth functions a(x), b(x) as Weyl
symbols of pseudo-differential operators. Then there is an integral composition
formula for symbols [2]

(a ∗ b)(z, h) = (πh)−2n

∫

R4n

exp

(
2i

h
ω(u, v)

)
a(z + u)b(z + v)dudv. (2.3)

Its stationary phase expansion at h → +0 gives an asymptotic series in pow-
ers of h which, when treated as a formal one, gives the star-product (0.5).
The integral formula (2.3) remains meaningful for the functions of the type
eiS(x)/hV (x), since for fixed h ∈ (0, 1] such an exponent is a usual smooth
function. But now stationary phase expansion of the integral

H(z) ∗
(
e

i
h

S(z)V (z)
)

(2.4)

= (πh)−2n

∫

R4n

exp

(
i

h
(2ω(u, v) + S(z + v))

)
H(z + u)V (z + v)dudv

takes the form slightly different from (0.5).
Let us calculate a few first terms. The stationary point of the phase function

2ω(u, v) + S(z + v)

is u = 1/2∇S, v = 0 where ∇S is the symplectic gradient

∇iS = ωij ∂S

∂zj
.

Now,

S(z + v) = S(z) +
∂S(z)

∂zi
vj +

1

2

∂2S(z)

∂zi∂zj
vivj + R3(z, v)
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where the remainder R3 has a third-order zero at v = 0. Thus, the phase
function may be rewritten in the form

S(z) + 2ω

((
u− 1

2
∇S(z)− 1

4

∂∇S(z)

∂zk
vk

)
, v

)
+ R3(z, v).

Taking the expression in parentheses as a new variable ũ, we reduce the integral
(2.4) to the form

e
i
h

S(z)(πh)−2n

∫

R4n

exp

(
2i

h
ω(ũ, v)

)
e

i
h

R3(z,v)

H

(
z +

1

2
∇S + ũ +

1

4

∂∇S

∂zk
vk

)
V (z + v)dũdv.

To obtain the stationary phase expansion, we need to expand the integrand
into the formal Taylor series in ũ, v (except the factor exp(2i/hω(ũ, v)) and
integrate termwise. The result may be written as follows

e
i
h

S(z)

∞∑

|α|=0

1

α!
H(α)(y + u) ∗

((
1

4

∂∇S(z)

∂zk
uk

)α

e
i
h

R3(z,u)V (z + u)

)∣∣∣∣
u=0

(2.5)

where ∗ means the star-product (0.5) with respect to the variable u ∈ R2n and
we use the notation

y = z +
1

2
∇S(z).

Now we return to the formal series and treat (2.5) as a formal expansion
of (2.3) obtaining the desired extension of the Weyl star-product. We will
call this trick a formal stationary phase expansion. The extended product ∗
is associative since it comes from the associative operator product. Moreover,
the property (0.6) is still fulfilled since it holds for the integral formula (2.3).
Indeed, denoting inessential normalizing factors by c, we obtain

Tr a ∗ b = c

∫

R6n

exp

(
2i

h
ω(u, v)

)
a(z + u)b(z + v)dudvdz

= c

∫

R6n

exp

(
2i

h
ω(u,w − z)

)
a(z + u)b(w)dudzdw.

Integration in u and z gives a(w), so the result will be the integral over w of
a(w)b(w).

Now we construct a formal solution of (2.1) using a well-known WKB
method adopted to the Weyl calculus.

Theorem 2.1 There exists a unique formal solution of the Schrödinger
equation defined on a small neighborhood of (x0, 0) ∈ R2n+1.
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Proof. Consider the Hamiltonian flow y = f(x, t) defined by the Hamil-
tonian function H(x) in a neighborhood of a point x0 ∈ R2n. It is a sym-
plectomorphism, provided t is sufficiently small (|t| < ε). For a trajectory
y(τ), τ ∈ [0, t] we denote by x = y(0) its initial point, y = y(t) = f(x, t)
its end point and by z = z(t) = (x + y)/2 its middle point (not necessarily
belonging to the trajectory). The trajectory 0 ≤ τ ≤ t is uniquely defined by
its middle point z and t ∈ [0, ε]. Introduce the function

S(z, t) =

∫ t

0

(
1

2
ω(ẏ(τ), y(τ)− x) + H(y(τ))

)
dτ,

that is, the action along the trajectory with the middle point z. It is a gen-
erating function of the symplectomorphism y = f(x, t) (see e. g. [3]), that
is

∇S(z, t) = y − x

or

x = z − 1

2
∇S(z, t), y = z +

1

2
∇S(z, t).

Finally, it satisfies the Hamilton - Jacobi equation in the form

∂S(z, t)

∂t
= H

(
z +

1

2
∇S(z, t)

)
≡ H(y), S(z, 0) = 0 (2.6)

(note, that the function S(z, t) introduced here differs from that in [3] by the
factor −2).

Let us look for a solution in the form (2.2). Substituting it into the
Schrödinger equation (2.1) and using composition formula (2.5), we obtain

(
i

h

∂S

∂t
V +

∂V

∂t

)
(2.7)

=
i

h

∞∑

|α|=0

H(α)(y + u) ∗
((

1

4

∂∇S

∂zk
uk

)α

e
i
h

R3(z,u)V (z + u)

)∣∣∣∣
u=0

.

Now, for V = V0 + V1 + . . . the leading term in (2.7) gives the Hamil-
ton - Jacobi equation (2.6), so that S(z, t) is the generating function of the
Hamiltonian flow. The next term of degree 0 in h gives an equation for V0:

∂V0(z, t)

∂t
+

1

2
∇iH(y)

∂V0(z, t)

∂zi

=
1

8
ωikωjl ∂2H

∂yi∂yj
(y)

∂2S(z, t)

∂zk∂zl
V0,

which may be rewritten as

d

dt
V0(z(t), t) = a(t)V0(z(t), t), V0|t=0 = 1 (2.8)
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where

a(t) =
1

8
ωijωkl ∂2H

∂yi∂yk
(y(t))

∂2S

∂zj∂zl
(z(t), t)

is a known function since S(z, t) was found previously.
Further equations for V1, V2, . . . are similar to (2.8), namely,

d

dt
Vk(z(t), t) = a(t)Vk(z(t), t) + bk(t), Vk|t=0 = 0 (2.9)

with the same coefficient a(t) and known functions bk(t) which may be ex-
pressed from (2.7) in terms of H, S, V0, V1, . . . , Vk−1 found previously.

¤
To construct an eigenstate functional 〈a〉λ on functions a(x) supported in

a small neighborhood of a non-critical point x0 of the Hamiltonian H(x), we
take a cut-off function f(t) vanishing outside the interval |t| < ε and equal
identically to 1 in a smaller neighborhood of t = 0.

Theorem 2.2 The eigenstate functional is given by a formal stationary
phase expansion of the integral

〈a〉λ =
1

(2πh)n+1

∫

R2n+1

f(t) exp

(
i

h
(S(z, t)− λt)

)
V (z, t, h)a(z)dzdt. (2.10)

It has the form

〈a〉λ =
1

(2πh)n

∞∑

k=0

(ih)k ∂k

∂λk
(δ(H(z)− λ), ak(z))

=
1

(2πh)n

∞∑

k=0

(−ih)k(δ(k)(H(z)− λ), ak(z)) (2.11)

where

ak(z) =
1

k!

∂k

∂tk
e

i
h

R3(z,t) V (z, t, h) a(z)

∣∣∣∣
t=0

. (2.12)

Note, that only positive degrees of h occur in (2.11) since R3 has a third-
order zero at t=0.

Proof. Let us calculate the formal stationary phase expansion. Stationary
points of the phase function S(z, t)− λt should satisfy the equation

∇S(z, y) ≡ f(x, t)− x = 0

which is possible only for t = 0. The derivative in t also should vanish, so in
virtue of (2.6)

∂S

∂t
= H(y)− λ = 0.
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The second derivative ∂2S
∂t2

also vanishes at t = 0. Indeed,

∂2S

∂t2
=

∂

∂t
H(z +

1

2
∇S(z, t)) =

1

2

∂H(y)

∂yi
∇i ∂S

∂t
.

Thus at t = 0 we have

∂2S

∂t2

∣∣∣∣
t=0

=
1

2

∂H(z)

∂zi
ωij ∂H(z)

∂zj
= 0,

so, that the Taylor formula at t = 0 gives

S(z, t)− λt = (H(z)− λ)t + R3(z, t) (2.13)

where R3(z, t) has a third-order zero at t = 0.
Using (2.13), the integral (2.10) may be rewritten in the form

〈a〉λ =
1

(2πh)n+1

∫ ∞

−∞
dt

∫ ∞

−∞
dH f(t) e

i
h
(H−λ)t

(δ(H(z)−H), e
i
h

R3(z,t) V (z, t, h) a(z))

where δ(H(z)−H) is the δ-function on a smooth surface H(z) = H, as defined
in [4]. To get the stationary phase expansion, we take the formal Taylor series
of the function

e
i
h

R3(z,t) V (z, t, h) a(z) =
∞∑

k=0

ak(z) tk

and integrate it termwise. Using that

tke
i
h
(H−λ)t =

(
ih

∂

∂λ

)k

e
i
h
(H−λ)t

and ∫ ∞

−∞
f(t)e

i
h
(H−λ)tdt = 2πh δ(H − λ) + O(h∞),

we come to (2.11).
It remains to show that 〈a〉λ actually is an eigenstate. To prove (0.9),

observe that the terms with k 6= 0 vanish under integration over λ since they
are derivatives in λ of functions with compact support. So,

∫ ∞

−∞
〈a〉λ =

1

(2πh)n

∫ ∞

−∞
(δ(H(z)− λ), a(z))dλ

=
1

(2πh)n

∫

R2n

a(z)dz = Tr a.
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To prove (0.8), rewrite (2.10) in the form

1

2πh

∫ ∞

−∞
dt f(t)Tr

(
U(z, t, h)e−

i
h

λta(z)
)

. (2.14)

Now, substituting (H − λ) ∗ a instead of a into (2.14), we would have

Tr
(
Ue−

i
h

λt((H − λ) ∗ a)
)

= Tr
(
Ue−

i
h

λt ∗ (H − λ) ∗ a
)

= −ih
d

dt
Tr

(
Ue−

i
h

λt ∗ a
)

= −ih
d

dt
Tr

(
Ue−

i
h

λta
)

.

Here we have used the property (0.6) and the Schrödinger equation (2.1). So,
after integration by parts in t the integral (2.14) becomes

i

2π

∫ ∞

−∞
f ′(t)Tr

(
Ue−

i
h

λta
)

dt.

This integral is O(h∞) since there are no stationary points of the phase function
on the support of f ′(t)a(z). So, treated as a formal power series in h, it is equal
to 0.

¤

3 Quadratic Hamiltonians

Let H(x) be a non-degenerate quadratic form which we will write as

H(x) =
1

2
gijx

ixj =
1

2
ωika

k
j x

ixj =
1

2
ω(x,Ax)

where A is an infinitesimally symplectic matrix. The corresponding Hamilto-
nian flow is a linear transformation of R2n given by the matrix eAt.

The WKB method for quadratic Hamiltonians gives a precise solution of
the Schrödinger equation. The action has the form

S(z, t) = ω(z, tanh(At/2)z) (3.1)

and the amplitude V0 depends only on t

V0(t) = det−1/2(cosh(At/2)).

As to V1, V2, . . ., they all vanish since the functions b1, b2, . . . in (2.9) turn out
to be identically 0.

The expressions (2.11), (2.12) for the eigenstate take more convenient form
due to the special structure of the action. Indeed, introducing a matrix-valued
function

d(t) =

(
tanh(At/2)

At/2

)−1/2

, (3.2)
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rewrite (3.1) in the form

S(z, t) =
1

2
ω(d−1(t)z, A(d−1(t)z))t = H(d−1(t)z)t.

Thus, changing variables z = d(t)u, we obtain

Tr
(
Ue−

i
h

λta
)

=
1

(2πh)n

∫

R2n

e
i
h
(H(u)−λ)t V0(t) det d(t) a(d(t)u) du.

Now, similarly to Theorem 2.2, we come to a modified formula for eigen-
states.

Theorem 3.1 The functional 〈a〉λ for λ 6= 0 is given by the formula (2.11)
where

ak(z) =
1

k!

∂k

∂tk

(
V0(t)det−1/2d(t)

)
a(d(t)z)

∣∣∣∣
t=0

. (3.3)

Remark 3.2 The functions

det d(t) = det−1/2

(
tanh At/2

At/2

)

and

k(t) = V0(t) det d(t) = det−1/2

(
sinh At/2

At/2

)
(3.4)

are known in the theory of characteristic classes. The first one generates the
so-called Hirzebruch L-genus and the second the Atiyah-Hirzsbruch Â-class.
To our mind, this curious fact should be investigated deeper.

Our next goal is to calculate the contribution B(0) of the critical point
z = 0 to the left-hand side of (0.9).

Theorem 3.3 The spectral theorem for quadratic Hamiltonians has the
form

Tr a = v.p.

∫ ∞

−∞
〈a〉λdλ + (B(0), a)

where

(B(0), a) = (3.5)

cos
πq

2

∞∑

k=n

hk−n

(k − n)!
√
| det g|

((
1

2
gij ∂2

∂xi∂xj

)k−n

δ(x), ak(x, h)

)
.

Here q is the number of negative squares in the canonical form of H(x) (inertia
index) and ak are given by (3.3). In particular, for q odd the contribution of
the critical point at the origin is equal to 0.
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Proof. We have

(B(0), a) = lim
ε→+0

(
Tr a−

∫ ∞

ε

〈a〉λdλ−
∫ −ε

−∞
〈a〉λdλ

)
(3.6)

where all the operations over formal series such as integration or passing to
the limit are understood as termwise. The leading term up to a factor (2πh)−n

gives

lim
ε→+0

∫ ∞

ε

(δ(H(x)− λ), a(x))dλ =

∫

H(x)>0

a(x)dx

and similarly

lim
ε→+0

∫ −ε

−∞
(δ(H(x)− λ), a(x))dλ =

∫

H(x)<0

a(x)dx.

Their sum (multiplied by (2πh)−n) coincides with the trace, so (3.6) may be
rewritten in the form

(B(0), a) = (2πh)−n

∞∑

k=1

(ih)k lim
ε→+0

∂k−1

∂λk−1
(δ(H(x)− λ), ak(x))

∣∣∣∣
λ=ε

λ=−ε

= (2πh)−n

∞∑

k=1

(ih)k lim
ε→+0

(
∂k−1

∂εk−1
(δ(H(x)− ε), ak(x))

+ (−1)k ∂k−1

∂εk−1
(δ(−H(x)− ε), ak(x))

)
. (3.7)

Here we have used the identity

δ(H(x) + ε) = δ(−H(x)− ε).

To calculate the limit, we pass over to the Mellin transform

M±
k (ζ) =

∫ ∞

0

εζ−1 ∂k−1

∂εk−1
(δ(±H(x)− ε), ak(x))dε

= (−1)k−1(ζ − 1)(ζ − 2) . . . (ζ − k + 1)

∫ ∞

0

εζ−k(δ(±H(x)− ε), ak(x))dε

= (−1)k−1(ζ − 1)(ζ − 2) . . . (ζ − k + 1)

∫

±H(x)>0

(±H(x))ζ−kak(x)dx

= (−1)k−1(ζ − 1)(ζ − 2) . . . (ζ − k + 1)(Hζ−k
± (x), ak(x)).

These functions are meromorphic with the poles at most of the second order
[4]. If inertia index q is odd, then M±

k have the second-order pole at ζ = 0,
so the limits (0.10) do not exist. For q even ζ = 0 is a simple pole, thus, the
limits exist and are equal to the residues of M±

k at ζ = 0.
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Fortunately, the functions

M+
k (ζ) + (−1)kM−

k (ζ)

needed for the contribution (3.7) behave better. Namely, the functions

(H ± i0)ζ = Hζ
+ + e±iπζHζ

−

turn out to have only simple poles at ζ = −n,−n− 1,−n− 2, . . . . Thus,

Hζ−k
+ + (−1)kHζ−k

− =
e−

iπζ
2 (H + i0)ζ−k + e

iπζ
2 (H − i0)ζ−k

2 cos πζ
2

has a simple pole at ζ = 0 for k = n, n + 1, . . . with the residue [4]

res(Hζ−k
+ + (−1)kHζ−k

− ) =
1

2
res((H + i0)ζ−k + (H − i0)ζ−k)

=
(2π)n cos πq

2

(k − n)!(k − 1)!
√
| det g|

(
1

2
gij ∂2

∂xi∂xj

)k−n

δ(x).

This completes the proof.

¤

4 Morse critical points

We are ready now to discuss a general case of the Morse critical point. This is
an isolated critical point with a non-degenerate second differential (Hessian)

d2H
∣∣
x0

=
1

2
gijdxidxj. (4.1)

The Morse lemma reads that there are local coordinates for which the Hamil-
tonian H(x) becomes precisely the quadratic form (4.1):

H(f(y)) =
1

2
gijy

iyj (4.2)

where f is a local diffeomorphism. Unfortunately, f is not a symplecto-
morphism in general, so we cannot automatically reduce the general case to
quadratic Hamiltonians considered in Section 3. Nevertheless, Theorem 3.3
admits a generalization to the case of an arbitrary Morse critical point.
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Theorem 4.1 The spectral theorem in the presence of the Morse critical
point has the form

Tr a = v.p.

∫ ∞

−∞
〈a〉λdλ + cos

πq

2

∞∑

k=n

hk−n

(k − n)!
√
| det g|((

1

2
gij ∂2

∂yi∂yj

)k−n

δ(y), ak(f(y)) det
∂f

∂y

)

where ak(z) are given by (2.12) and f is the diffeomorphism (4.2).

Proof. We start with the relations (2.11), (2.12) valid for any Hamiltonian
H(x) and a non-critical value λ and proceed similarly to the proof of Theorem
3.3. The relation (3.7) holds true no matter whether H(x) is a quadratic form
or not. Thus, the limit of the k-th summand in (3.7) is equal to

(ih)k res(M+
k (ζ) + (−1)kM−

k (ζ))

= (ih)k(k − 1)! res((Hζ−k
+ , ak) + (−1)k(Hζ−k

− , ak))

precisely as in the case of quadratic Hamiltonians. Now, the generalized func-
tion Hζ

± is defined by the integral

(Hζ
±, ϕ) =

∫

±H(x)>0

(±H)ζ(x)ϕ(x)dx

and its analytic extension. At this step the reduction to the quadratic form is
possible: we simply change variables in the integral, obtaining

(Hζ
±, ϕ) =

∫

±H(f(y))>0

(±H)ζ(f(y))ϕ(f(y)) det
∂f

∂y
dy.

The rest of the proof goes as in Theorem 3.3, but the test function ϕ(x) should
be replaced by ϕ(f(y)) det ∂f

∂y
.

¤
In the rest of this section we consider another approach to compute the

contribution of the Morse critical point. It is known in physics literature as
perturbation theory. Mathematically it is not quite rigorous, but it also gives
a reasonable answer which is interesting to compare with the rigorous result.
On the other hand, the calculations here seem to be more transparent than in
the approach based on WKB-method and Morse lemma.

We represent the Hamiltonian in the form

H = H0(x) + H1(x)

where H0(x) = ω(x, Ax)/2 is a non-degenerate quadratic form and H1(x) is a
“perturbation”, that is a function with the third-order zero at the origin.
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Now, we try to solve the Schrödinger equation

dU

dt
=

(
i

h
H0 +

i

h
H1

)
∗ U, U(0) = 1 (4.3)

using the explicit solution

U0 = det−1/2(cosh(At/2)x) exp

(
i

h
ω(x, tanh(At/2)x)

)

for quadratic Hamiltonian H0.
To this end we introduce a new grading assigning degree 2 to h and degree

k to a function ϕ(x) which has zero of order k at the origin. Thus the term
hkxαϕ(x) where α is a multiindex and ϕ(0) 6= 0 has a new degree 2k + |α|.
Moreover, we shall admit negative powers k, provided the total degree is pos-
itive. Thus, the degree of i

h
H0 in (4.3) is equal to 0, while that of i

h
H1 is 1. It

is easy to see that the ∗-multiplication respects the grading:

deg(a ∗ b) ≤ deg a + deg b.

We look for the solution of (4.3) in the form

U0 ∗ V = U0 ∗ (1 + V1 + V2 + . . .)

where Vk has degree k. The equation for V looks like

dV

dt
=

i

h
(U−1

0 ∗H1 ∗ U0) ∗ V ; V |t=0 = 1 (4.4)

where
i

h
U−1

0 ∗H1 ∗ U0 =
i

h
H1(e

Atx, h) := F1(x, t, h)).

Here eAt is the Hamiltonian flow defined by the quadratic Hamiltonian H0(x).
Note that the degree of F1 is 1.

The equation (4.4) may be rewritten as

V = 1 +

∫ t

0

F1 ∗ V dt1

and may be solved by iterations, the k-th iteration being of degree k.
After that we formally get an eigenstate 〈a〉λ in the form (2.11)

〈a〉λ =
1

(2πh)n

∞∑

k=0

(−ih)k(δ(k)(H0(x)− λ), ak)

with ak equal to Taylor coefficients at t = 0 of the function

a(t) = k(t) (V (x, h, t) ∗ a(x))|x→d(t)x
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where k(t) and d(t) are given by (3.2), (3.4) for the Hamiltonian H0. Reasoning
as in Section 3, we obtain the contribution of the origin in the form

cos
πq

2

∞∑

k=n

hk−n

(k − n)!
√
| det g|

((
1

2
gij ∂2

∂xi∂xj

)k−n

δ(x), ak(x, h)

)

with ak defined above.
Observe, that the final result makes sense as a formal series in h only

though intermediate steps make no sense in deformation quantization setting,
they become meaningful due to the new grading. So, a question arises whether
the two formulas for the contribution of the Morse critical point coincide.

5 Example: spectral asymptotics

Having eigenstates at his disposal, one may introduce further important spec-
tral notions purely in deformation quantization framework. Let H(x) be a
Hamiltonian with a discrete set {xc} of Morse critical points and let B(xc)
denote the contribution of the critical point xc.

Definition 5.1 Let ∆ be an interval of the real λ-axis whose ends are non-
critical points of the Hamiltonian.

A formal spectral projector E(∆) is a distribution on a(x) ∈ Ac
h with values

in C[h−1, h]]

(E(∆), a(x)) = v.p.

∫

∆

〈a(x)〉λdλ +
∑

H(xc)∈∆

(B(xc), a(x)).

In case when E(∆) is a distribution with compact support, the expression

(E(∆), 1) =
∞∑

k>>−∞
cch

k ∈ C[h−1, h]] (5.1)

will be called a formal spectral asymptotics and denoted by Tr E(∆) or N(∆).
These definitions are motivated by analogy with the operator formulas

(0.1), (0.2), (0.3) but in fact they have nothing to do with the spectral theory.
However, it is instructive to compare these formal spectral objects with genuine
ones defined for h-pseudo-differential operators [5].

The simplest example for which all the quantities in question may be cal-
culated explicitly is harmonic oscillator

H(x) =
n∑

k=1

gk

x2
2k−1 + x2k

2
.
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Using (2.11), (3.3), we get

〈1〉λ = (2πh)−n

∞∑

k=0

(ih)k

k!

∂2

∂λ∂t
(δ(H(x)− λ), k(t))

∣∣∣∣
t=0

= (2πh)−nk

(
ih

∂

∂λ

)
∂

∂λ
(θ(λ−H(x)), 1)

=
∂

∂λ

1

g1g2 . . . gn

n∏
i=1

(
gih
2

∂
∂λ

sinh gih
2

∂
∂λ

)
1

n!

(
λ

h

)n

. (5.2)

This formula is valid for λ > 0, for λ < 0 we have clearly 〈a〉 = 0. Integrating
this expression, we see that up to an additive constant the formal spectral
asymptotics is given by

N(λ) =
1

g1g2 . . . gn

n∏
i=1

gih
2

∂
∂λ

sinh gih
2

∂
∂λ

1

n!

(
λ

h

)n

(5.3)

for λ > 0. The constant is determined by the condition

N(λ) =

∫ λ

0

〈1〉µdµ + (B(0), 1)

where B(0) is the contribution of the critical point 0. It follows from (3.5) that
the expression (5.3) precisely satisfies this condition. The leading term of (5.3)
is vol{H < λ}/(2πh)n which coincides with the leading term of the genuine
spectral asymptotics. Note however, that the formal N(λ) is a polynomial in
λ/h while the genuine N(λ) is certainly not.

If g1 = g2 = . . . = gn = 1, further simplification is possible. Indeed, (5.2)
may be rewritten in the form

(
h
2

∂
∂λ

sinh h
2

∂
∂λ

)n
1

(n− 1)!

(
λ

h

)n−1

=
n−1∑

k=0

ck

(
λ

h

)n−1−k
1

(n− 1− k)!
(5.4)

where ck are Taylor coefficients of the function (t/2/ sinh t/2)n. Thus, (5.4)
may be represented as the Taylor coefficient at tn−1 of the function

(
t/2

sinh t/2

)n

e
λ
h

t =
e(

λ
h
+n

2 )t

(et − 1)n
tn,

that is

1

2πi

∫

|t|=ε

e(
λ
h
+n

2 )t

(et − 1)n
dt.
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Changing variables ζ = et − 1, we obtain

〈1〉λ =
1

2πi

∫

|ζ|=ε

(1 + ζ)
λ
h
+n

2
−1

ζn
dζ = Cn−1

λ
h
+n

2
−1

. (5.5)

The binomial coefficient (5.5) is known to be the index of CPn−1 with the
symplectic form equal to the standard Fubini-Study form times λ/h. This
observation allows us to hope that the quantity 〈1〉λ may be expressed in terms
of characteristic classes similarly to the index in deformation quantization [2].
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