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Abstract. We consider quasicomplexes of Boutet de Monvel operators in
Sobolev spaces on a smooth compact manifold with boundary. To each qua-

sicomplex we associate two complexes of symbols. One complex is defined on

the cotangent bundle of the manifold and the other on that of the boundary.
The quasicomplex is elliptic if these symbol complexes are exact away from

the zero sections. We prove that elliptic quasicomplexes are Fredholm. As

a consequence of this result we deduce that a compatibility complex for an
overdetermined elliptic boundary problem operator is also Fredholm. More-

over, we introduce the Euler characteristic for elliptic quasicomplexes of Boutet
de Monvel operators.
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Introduction

When studying the well-posedness of elliptic boundary value problems on a
smooth compact manifold with boundary it is reasonable to relax the requirement of
existence and uniqueness, and allow boundary problem operators to be Fredholm.
The ellipticity of a boundary problem operator consists of both ellipticity of the
given differential operator on the manifold and ellipticity of the boundary condi-
tions. The latter is called the Shapiro-Lopatinskii condition. It is known [Agr97]
that in the case of square systems (as many equations as unknowns) the ellipticity of
a boundary problem is equivalent to the Fredholm property of them in appropriate
Sobolev spaces.

To study the solvability of boundary problems for overdetermined systems one
has to consider compatibility complexes for them. The formal theory of overdeter-
mined boundary value problems is analogous to that for overdetermined systems of
differential equations, as was shown by Samborski in the 1980s, see [DS96]. For any
regular boundary problem operator, the compatibility complex may be constructed
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in finitely many steps (within the framework of differentiation of equations and
Gröbner bases computations). Then a boundary problem for an overdetermined
system is said to be well posed if the cohomology of the compatibility complex is
finite dimensional. Such complexes are called Fredholm. The natural question arises
under which condition the compatibility complex is Fredholm.

The differentials of compatibility complexes for overdetermined boundary value
problems are given by triangle (2×2) -matrices, with zero at the upper right corner,
cf. [DS96]. They belong to the algebra of pseudodifferential boundary value prob-
lems due to [dM71]. The advantage of this algebra lies in the fact that it survives
under taking adjoint operators and contains parametrices of elliptic boundary prob-
lems. Hence we may as well consider a more general problem, i.e., to find conditions
under which a complex of Boutet de Monvel operators is Fredholm in appropriate
Sobolev spaces.

Complexes of operators in Boutet de Monvel’s algebra were studied in [PS80].
This paper raised the question whether any exact sequence of principal symbols
can be extended to a complex of boundary value problems. This latter is then
automatically elliptic.

We go further and we observe that from the point of view of analysis, instead of
complexes, it is much more natural to consider sequences of operators such that the
composition of two consecutive operators is small in some reasonable sense, e.g., a
compact operator. Such sequences are called quasicomplexes. Indeed, perturbation
of a single Fredholm operator by a compact operator leads to a Fredholm operator.
However, most perturbations of complexes lead out of the class of complexes, but it
turns out that Fredholm quasicomplexes are stable under compact perturbations.
In Section 2 we briefly sketch the concept of a quasicomplex.

Our paper deals with elliptic quasicomplexes of boundary value problems in
appropriate Sobolev spaces. To this end, in Section 1 we have compiled some basic
facts on Boutet de Monvel’s algebra [dM71].

In Section 4 we prove that ellipticity of quasicomplexes of boundary problems
(i.e., the exactness of both interior and boundary symbol sequences) implies Fred-
holm property. As but one consequence, we show in Section 7 that a compatibility
complex for an overdetermined boundary value problem is Fredholm in suitable
function spaces.

In Section 5 we construct a special parametrix for elliptic quasicomplexes on a
manifold with boundary. In the case of complexes we derive in this way a complete
Hodge theory for elliptic complexes of boundary value problems.

Boundary value problems for complexes of pseudodifferential operators were first
considered by Dynin [Dyn72]. To introduce them he invoked the construction of
the cone of a cochain mapping from homological algebra, which was very natural
in this context. In Section 6 we specify our main results for cones of quasicochain
mappings.

For elliptic quasicomplexes of boundary value problems, the topological index
is well defined while the analytical index is not, for no cohomology is available.
One thus arrives at the question whether, given an elliptic quasicomplex, there is a
complex whose sequence of principal symbols coincides with that of the quasicom-
plex. The answer is by no means obvious because the problem has been open even
for quasicomplexes of pseudodifferential operators on compact closed manifolds. In
Section 8 we answer affirmatively to this question. This allows us to define the
Euler characteristic for elliptic quasicomplexes, thus giving rise to the index theory
of such quasicomplexes.

A standard example of an elliptic complex on a compact manifold with boundary
is the de Rham complex without any boundary conditions. Any compact pertur-
bation of this within Boutet de Monvel’s algebra yields an elliptic quasicomplex of
boundary value problems. A less banal example is given by the connection sequence
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associated with some smooth vector bundle, cf. Section 9. The connection square
yields a curvature of the bundle which is a smooth bundle homomorphism and thus
a compact operator. Once again this quasicomplex requires no boundary conditions
to be elliptic in Boutet de Monvel’s algebra.

1. Boutet de Monvel calculus

Let X be a smooth compact manifold with boundary Y . In this section we briefly
present a calculus of operators

A =
(

P 0
0 0

)
+ G :

C∞(X, V )
⊕

C∞(Y,W )
→

C∞(X, Ṽ )
⊕

C∞(Y, W̃ )
, (1.1)

in the spaces of smooth sections of V, Ṽ ∈ Vect(X) and W, W̃ ∈ Vect(Y ) introduced
by Boutet de Monvel [dM71], cf. also books [RS82] and [Gru96]. Here Vect(X) is
the collection of all smooth complex vector bundles on X and we will denote by k,
k̃ and `, ˜̀ the fibre dimensions of vector bundles V , Ṽ and W , W̃ .

To define operators (1.1), we have to introduce pseudodifferential operators with
operator-valued symbols. Let us denote by L(F, F̃ ) the space of all continuous
linear maps between Banach spaces F and F̃ . We first discuss spaces of operator-
valued symbols. A strongly continuous group action on a Banach space F is a
family κ = {κλ : λ ∈ R+} of isomorphisms in L(F, F̃ ), such that κλκµ = κλµ and
the map λ → κλf is continuous for every f ∈ F . We will need only two group
actions. If F is a space of functions on R+ or R+, we use the group action defined
by (κλu)(x) = λ1/2u(λx). And if F = C`, the group action is trivial, i.e. κλ = Id
for any λ.

Let F , F̃ be Banach spaces with strongly continuous group actions κ and κ̃,
respectively. Suppose a ∈ C∞(Rn × Rn,L(F, F̃ )) and µ ∈ R. We write a ∈
Sµ(Rn × Rn,L(F, F̃ )) provided that for all multi-indices α, β there is a constant
c = c(α, β) with

‖κ̃〈ξ〉−1Dα
ξ Dβ

xa(x, ξ)κ〈ξ〉‖L(F,F̃ ) ≤ c 〈ξ〉µ−|α|,

where 〈ξ〉 = (1 + |ξ|2)1/2. For F = F̃ = C we recover the definition of the symbol
class Sµ1,0(R× R). The definition of symbol spaces may be extended to the case of
a Fréchet space F = S(R+) which is the restriction of the Schwartz space S(R) to
the half-axis R+.

A symbol a ∈ Sµ(Rn×Rn,L(F, F̃ )) is said to be classical, if it has an asymptotic
expansion

a ∼
∞∑
j=0

aj (1.2)

with aj ∈ Sµ−j(Rn × Rn,L(F, F̃ )) satisfying the homogeneity relation

aj(x, λξ) = λµ−j κ̃λaj(x, ξ)κλ−1

for all λ ≥ 1 and |ξ| ≥ R with a suitable constant R. The equivalence relation ∼ is
defined by requiring

a−
N∑
j=0

aj ∈ Sµ−N−1(Rn × Rn,L(F, F̃ ))

for every N . We write a ∈ Sµcl(Rn×Rn,L(F, F̃ )). For F = C and F̃ = C we recover
the standard notation.

Let us now define the operator P in (1.1). We first require P to be a classical
pseudodifferential operators of order µ on a larger smooth manifold containing X.
We introduce local coordinates x = (x′, xn) ∈ Ω × R+, with Ω an open subset of
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Rn−1, such that Y is represented by xn = 0. Next we need e+ which is the operator
extending functions on Ω × R+ by zero to Ω × R, and r+ which is the restriction
operator from Ω×R to Ω×R+. Finally, let p ∈ Sµcl((Ω×R+)×Rn,L(Ck, Ck̃)) and
set opx(p) = F−1

ξ 7→xp(x, ξ)Fx7→ξ, where F is the Fourier transform. Then in these
coordinates we can write P = r+opx(p)e+. In general, the function e+u fails to be
C∞ in Ω×R for u ∈ C∞

comp(Ω×R+), since it may have a discontinuity along xn = 0.
The symbol p is said to have transmission property with respect to xn = 0 when
r+opx(p)e+ preserves the smoothness up to xn = 0, i.e., it maps C∞

comp(Ω×R+) to
C∞(Ω× R+).

Lemma 1.1. Let p ∈ Sµcl(Rn × Rn,L(Ck, Ck̃)) be a symbol with asymptotic expan-
sion (1.2). Then p has the transmission property with respect to xn = 0 if and only
if any pj in (1.2) satisfies the symmetry condition

Dβ
xDα

ξ pj(x′, 0, 0, ξn) = eıπ(j−|α|)Dβ
xDα

ξ pj(x′, 0, 0,−ξn), (1.3)

for |ξn| ≥ 1 and all indices α, β, j.

See [Gru96] for the proof. Note that the transmission property is a local property
and it is invariant with respect to coordinate changes. Globally, P has transmission
property with respect to Y when P maps functions which are smooth up to the
boundary to functions with the same property. As examples of pseudodifferential
operators with transmission property one may consider pseudodifferential operators
whose symbols are rational functions in ξ. In particular, all differential operators
have the transmission property. If a pseudodifferential operator is elliptic and has
transmission property, then every its parametrix is known to have the transmission
property.

For V, Ṽ ∈ Vect(X), let us write Ψµ
tp(X;V, Ṽ ) for the space of all classical pseudo-

differential operators of order µ and any type V → Ṽ on X having the transmission
property with respect to Y .

To describe G in (1.1) we need some preliminary notions. As usual, we denote
by Diffm(X;V, Ṽ ) the space of all linear differential operators of order m on X with
coefficients smooth up to the boundary Y , acting in the corresponding spaces of
sections.

The integral operators C∞(X, V )⊕C∞(Y,W ) → C∞(X, Ṽ )⊕C∞(Y, W̃ ) whose
kernels are smooth up to the boundary are called smoothing operators of type 0.
The space of such operators is denoted by B−∞,0(X; v), with vector space data
v = (V, Ṽ ;W, W̃ ).

Next let us consider operators of the form

S = S0 +
d∑
j=1

Sj
(

Dj 0
0 0

)

where Dj ∈ Diffj(X;V ) and Sj ∈ B−∞,0(X; v). They are called smoothing opera-
tors of type d and the space of such operators is denoted by B−∞,d(X; v).

We now introduce operators Gν which are smoothing in x ∈
◦

X and y ∈ Y and
have in local coordinates (x′, xn) ∈ Ω × R+ near Y the form of pseudodifferential
operators

opx′(g) : C∞
comp

(
Ω,

S(R+)⊗ Ck
⊕
C`

)
−→ C∞

(
Ω,

S(R+)⊗ Ck̃
⊕
C˜̀

)
(1.4)
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along Ω with operator-valued symbols

g(x′, ξ′) ∈ Sνcl
(
Ω× Rn−1,L

( L2(R+)⊗ Ck
⊕
C`

,
S(R+)⊗ Ck̃

⊕
C˜̀

))
,

g∗(x′, ξ′) ∈ Sνcl
(
Ω× Rn−1,L

( L2(R+)⊗ Ck̃
⊕
C˜̀

,
S(R+)⊗ Ck

⊕
C`

))
.

Further we denote by Bν,0G (X; v) the set of all Gν + S, where Gν is locally given by
(1.4) and S ∈ B−∞,0(X; v). Then the space Bµ,dG (X; v) is defined to consist of all
operators

G = Gµ +
d∑
j=1

Gµ−j
( Dj 0

0 0

)
+ S, (1.5)

with ingredients Gµ−j ∈ Bµ−j,0G (X; v) for all 0 ≤ j ≤ d, Dj ∈ Diffj(X;V ), and
S ∈ B−∞,d(X; v).

Finally, Bµ,d(X; v) stands for the space of all operators (1.1) where µ is an inte-
ger, d = 0, 1, . . ., and P ∈ Ψµ

tp(X;V, Ṽ ), G ∈ Bµ,dG (X; v). We also write B−∞(X; v)
for the union of B−∞,d(X; v) over all d = 0, 1, . . ., and denote by B(X) the col-
lection of all spaces Bµ,d(X; v). The entries G11, G12 and G21 of G are usually
called (singular) Green, Poisson and trace operators, respectively, while G22 is a
standard pseudodifferential operator on the boundary. Note that only Green and
trace operators have types. The following mapping properties of operators (1.1) are
important for us.

Lemma 1.2. An operator A ∈ Bµ,d(X; v) extends to a continuous map

A :
Hs(X, V )

⊕
Hs(Y, W )

−→
Hs−µ(X, Ṽ )

⊕
Hs−µ(Y, W̃ )

(1.6)

for all s ∈ R satisfying s− d > −1/2.

Each operator P ∈ Ψµ
tp(X;V, Ṽ ) has a principal homogeneous interior symbol

σψ(P ). Locally, for each (x, ξ) ∈ T ∗X, this is a map σψ(P )(x, ξ) : Ck → Ck̃ actually
given by the first term in the expansion (1.2). Globally, the principal homogeneous
symbol is specified as a map σψ(P ) : π∗XV → π∗X Ṽ where πX : T ∗X → X is the
canonical projection of the cotangent bundle of X, and π∗XV is the pull-back bundle
of V under πX .

Further, there is a principal homogeneous boundary symbol of P which is locally
for (x′, ξ′) ∈ T ∗Ω of the form

σ∂(P )(x′, ξ′) = r+σψ(P )(x′, 0, ξ′, Dxn)e+ : S(R+)⊗ Ck → S(R+)⊗ Ck̃, (1.7)

with σψ(P )(x′, 0, ξ′, Dxn)u(xn) = F−1
ξn 7→xn

σψ(P )(x′, 0, ξ′, ξn)Fxn 7→ξnu. Globally on
Y (1.7) represents a homomorphism σ∂(P ) : π∗Y S(R+)⊗V ′ → π∗Y S(R+)⊗Ṽ ′, where
V ′ and Ṽ ′ are the restrictions of V and Ṽ ′ to Y , respectively, and πY : T ∗Y → Y
the canonical projection.

We next go to define the principal boundary symbol for operators G ∈ Bµ,dG (X; v).
Each G is given by (1.5), with Gµ−j ∈ Bµ−j,0G (X; v) possessing asymptotic expansions
which determine their principal homogeneous symbols. It is worth pointing out that
the homogeneity always refers to relevant group actions. These principal symbols
are denoted by σ∂(Gµ−j). Then we can define the boundary symbol of arbitrary
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G ∈ Bµ,dG (X; v) by the formula

σ∂(G)(x′, ξ′) = σ∂(Gµ)(x′, ξ′) +
d∑
j=1

σ∂(Gµ−j)(x′, ξ′)
( σψ(Dj)(x′, 0, ξ′, Dxn) 0

0 0

)
.

Definition 1.1. For an operator A as in (1.1), we set

σψ(A) = σψ(P ),

σ∂(A) =
( σ∂(P ) 0

0 0

)
+ σ∂(G),

σψ(A) being the principal interior symbol and σ∂(A) the principal boundary symbol
of A.

The pair σ(A) = (σψ(A), σ∂(A)) is said to be the whole principal symbol of the
operator A.

Globally, the principal boundary symbol σ∂(A) of A is a bundle map

σ∂(A) : π∗Y

S(R+)⊗ V ′

⊕
W

−→ π∗Y

S(R+)⊗ Ṽ ′

⊕
W̃

(1.8)

away from the zero section of T ∗Y . For sufficiently large s, the principal boundary
symbol is also well defined as a bundle map

σ∂(A) : π∗Y

Hs(R+)⊗ V ′

⊕
W

−→ π∗Y

Hs−µ(R+)⊗ Ṽ ′

⊕
W̃

, (1.9)

the fibres now being Hilbert spaces.
Let us now formulate the basic properties of Bµ,d(X; v). For the details and

proofs, see [dM71], [RS82] and [Gru96]. The following theorem gives a multiplica-
tive property of the principal symbols of operators in Bµ,d(X; v). As is clear, the
composition of two operators BA in the calculus is defined if and only if the vector
space data of the operators agree. More precisely, if vA = (VA, ṼA;WA, W̃A) and
vB = (VB, ṼB;WB, W̃B) then VB = ṼA and WB = W̃A should hold. In this case we
set vB ◦ vA = (VA, ṼB;WA, W̃B).

Theorem 1.3. Let A ∈ BµA,dA(X; vA) and B ∈ BµB,dB(X; vB), the composition
vB ◦vA being defined. Then, BA ∈ BµA+µB,d(X; vB ◦vA) for d = max{dA, dB+µA},
and

σ(BA) = σ(B)σ(A)
is formed by componentwise multiplication. In particular, B0,0(X; v) is an algebra,
where v = (V, V ;W,W ).

Hence, the space of operators B0,0(X; v) is the “best” from the theoretical point
of view. However, the operators that one wants to study are rarely in this class.
Fortunately we can reduce many problems to this class because of the following
result, cf. [Gru84].

Theorem 1.4. Suppose V ∈ Vect(X) and W ∈ Vect(Y ). Then, for every integer
µ, there exists an element Rµ

V,W = diag (Rµ
V , Rµ

W ) in Bµ,0(X; v), which induces
isomorphisms

Rµ
V,W :

Hs(X, V )
⊕

Hs(Y, W )
−→

Hs−µ(X, V )
⊕

Hs−µ(Y, W )
for all s ∈ R, where (Rµ

V,W )−1 ∈ B−µ,0(X; v).

The following theorem states in particular that smoothing operators form an
ideal in B0,0(X; v).



ELLIPTIC QUASICOMPLEXES IN BOUTET DE MONVEL ALGEBRA 7

Theorem 1.5. Suppose that A ∈ BµA,dA(X; vA), S ∈ B∞,dS (X; vS) and the
composition vS ◦ vA is defined. Then, SA ∈ B−∞,d(X; vS ◦ vA). Analogously, if
A ∈ BµA,dA(X; vA), S ∈ B∞,dS (X; vS) and the composition vA ◦ vS is defined, then
AS ∈ B−∞,dS (X; vA ◦ vS).

The calculus of [dM71] allows one to control the formal adjoint operator in most
cases. This is especially important for combining the explicit algebra approach with
abstract methods of functional analysis.

Theorem 1.6. Assume that A ∈ Bµ,0(X; v), where µ ≤ 0. Then the formal adjoint
A∗ of A belongs to the space Bµ,0(X; v−1) for v−1 = (Ṽ , V ; W̃ , W ), and it fulfills
σ(A∗) = σ(A)∗, the adjoints are understood to be taken in the corresponding symbol
spaces.

The principal symbol of a pseudodifferential operator on a compact closed mani-
fold actually specifies its order relative to the scale of Sobolev spaces. If the principal
symbol of an operator vanish, then the operator is compact in the relevant Sobolev
spaces, which is due to Rellich’s theorem. Hence, the principal symbol map is an
explicit substitute for the quotient map in the Calkin algebra. In fact this prop-
erty of principal symbols is of general character and extends to Boutet de Monvel’s
calculus.

Theorem 1.7. Suppose that A1,A2 ∈ Bµ,d(X; v) satisfy σ(A1) = σ(A1). Then
C = A1 −A2 is compact as operator

C :
Hs(X, V )

⊕
Hs(Y,W )

−→
Hs−µ(X, Ṽ )

⊕
Hs−µ(Y, W̃ )

for every s > d− 1/2.

Corollary 1.8. Each operator C ∈ B−∞,d(X; v) is compact in appropriate Sobolev
spaces for all s > d− 1/2, since σ(C) = 0.

Theorem 1.7 gives rise to a purely algebraic description of Fredholm boundary
value problems in the calculus B(X). The Fredholm property proves to be equiv-
alent to the pointwise invertibility of principal symbols away from zero sections of
the corresponding cotangent bundles. The boundary value problems bearing this
property are said to be elliptic.

Definition 1.2. An operator A ∈ Bµ,d(X; v), for µ ∈ Z and d = 0, 1, . . ., is called
elliptic if the principal interior symbol map σψ(A) : π∗XV → π∗X Ṽ is an isomorphism
away from the zero section of T ∗X, and the principal boundary symbol σ∂(A)
induces an isomorphism in (1.8) away from the zero section of T ∗Y .

Note that for an operatorA ∈ Bµ,d(X; v) with invertible principal interior symbol
the mapping (1.8) is an isomorphism away from the zero section of T ∗Y if and only
if so is the mapping (1.9) for any s > max{µ, d} − 1/2.

Definition 1.3. Let A ∈ Bµ,dA(X; v). An operator P ∈ B−µ,dP (X; v−1), with
dP = 0, 1, . . ., is called a parametrix for A if

PA− I ∈ B−∞,dl(X, v−1 ◦ v),
AP − I ∈ B−∞,dr (X, v ◦ v−1) (1.10)

for certain dl, dr ∈ {0} ∪ N.

From this it follows that if P is a parametrix for A then σ(P) = σ(A)−1 where
the inverse is taken componentwise.

Theorem 1.9. Suppose that A ∈ Bµ,d(X; v). Then the following statements are
equivalent:
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1) A is elliptic.
2) The mapping (1.6) is Fredholm for all s− d > −1/2.
3) A has a parametrix P ∈ B−µ,dP (X; v−1), for dP = max{0, d−µ}, such that

(1.10) is fulfilled with dl = max{µ, d} and dr = max{0, d− µ}.

The following theorem was first proved by Schulze [Sch89] in the general context
of operator algebras with symbolic structures. When reasonably organised, such al-
gebras prove to be spectral invariant, i.e., the inverse operator always belongs to the
algebra. For boundary value problems on non-compact manifolds the Fréchet alge-
bra techniques is further developed by Schrohe [Sch99], cf. in particular Theorem
3.1 there.

Theorem 1.10. If the operator A ∈ Bµ,d(X, v) in (1.6) is bijective, then its inverse
in the Hilbert spaces is an element of B−µ,max{0,d−µ}(X; v−1).

2. Quasicomplexes

In this section we recall some basic facts about complexes and quasicomplexes in
Hilbert spaces. In subsequent sections we discuss quasicomplexes where the relevant
operators are in B(X). For the theory of quasicomplexes of Banach spaces we refer
to [AV95].1

Let us consider the sequence

(H ·, d) : 0 // H0 d0 // H1 d1 // . . . dN−1
// HN // 0

where Hi are Hilbert spaces and di are continuous linear maps. The sequence (H ·, d)
is called a complex if didi−1 = 0 for all i = 1, . . . , N . The elements of the spaces
Zi(H ·, d) = ker di and Bi(H ·, d) = im di−1 are called cocycles and coboundaries,
respectively. The quotient space Hi(H ·, d) = ker di/ im di−1 is the cohomology of
the complex (H ·, d) at step i. The complex (H ·, d) is said to be Fredholm if its
cohomology is finite dimensional at each step i = 0, . . . , N .

It is well known that “small” perturbations of Fredholm operators do not affect
the Fredholm property. For example, perturbing a single Fredholm operator by
a compact operator gives us a Fredholm operator. It would be natural to have
the same property for Fredholm complexes. However, a “small” perturbation of
a Fredholm complex need not be even a complex anymore, i.e., the operators no
longer satisfy didi−1 = 0.

Note that perturbing an elliptic complex by lower order terms does not change
the complex of principal symbols which remains to be exact. Hence, instead of
complexes it is natural to consider sequences (H ·, d) with the property that the
compositions didi−1 are “small” in some sense. By “small” operators one usually
means compact operators. Let us denote by K(H, H̃) the subspace of L(H, H̃)
consisting of compact operators.

Definition 2.1. A sequence (H ·, d) of Hilbert spaces Hi and continuous linear
maps di is a quasicomplex if didi−1 ∈ K(Hi−1,Hi+1) for all i = 1, . . . , N .

For d1, d2 ∈ L(H, H̃), we write d1 ∼ d2 if d1 − d2 ∈ K(H, H̃). It is known that
an operator d ∈ L(H, H̃) is Fredholm if and only if its image in the Calkin algebra
L(H, H̃)/K(H, H̃) is invertible. Hence, the idea of Fredholm quasicomplexes is to
pass in a given quasicomplex to quotients modulo spaces of compact operators and
require exactness. To make the definition precise we introduce a functor φΣ studied
by Putinar [Put82] (see also [ST98]).

Taking an arbitrary Hilbert space Σ , we set φΣ (Hi) = L(Σ ,Hi)/K(Σ ,Hi) for
each Hilbert space Hi. Then, for any map di ∈ L(Hi,Hi+1), we introduce a map

1In [AV95] quasicomplexes are called essential complexes.
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φΣ (di) ∈ L(φΣ (Hi), φΣ (Hi+1)) by

φΣ (di)(A +K(Σ ,Hi)) = diA +K(Σ ,Hi+1)

for all A ∈ L(Σ ,Hi). Obviously, this operator is well defined. It is easily seen
that φΣ (didi−1) = φΣ (di)φΣ (di−1) and that φΣ vanishes on compact operators for
every Hilbert space Σ . Hence, if (H ·, d) is a quasicomplex then (φΣ (H ·), φΣ (d)) is
a complex for each Hilbert space Σ .

Definition 2.2. A quasicomplex (H ·, d) is Fredholm if the complex (φΣ (H ·), φΣ (d))
is exact for each Hilbert space Σ .

Let (H ·, d) and (H ·, d̃) be two quasicomplexes of Hilbert spaces, such that di ∼ d̃i

for any i = 0, 1, . . . , N . Then the complexes (φΣ (H ·), φΣ (d)) and (φΣ (H ·), φΣ (d̃))
coincide. Hence, the quasicomplexes (H ·, d) and (H ·, d̃) are Fredholm simultane-
ously. Thus, any compact perturbation of a Fredholm quasicomplex is a Fredholm
quasicomplex.

Definition 2.3. A sequence

(H ·, π) : 0 H0oo H1π1
oo . . .π2

oo HN
πNoo 0oo

with πi ∈ L(Hi,Hi−1) is called a parametrix of the quasicomplex (H ·, d), if

di−1πi + πi+1di = IHi − κi

for all i = 0, 1, . . . , N , where κi ∈ K(Hi).

It is well known that a complex of Hilbert spaces is Fredholm if and only if it
has a parametrix. The same property is also true for quasicomplexes, see [ST98].

Theorem 2.1. A quasicomplex (H ·, d) is Fredholm if and only if it possesses a
parametrix.

Obviously, if a parametrix (H ·, π) of a quasicomplex (H ·, d) is a quasicomplex
itself, then (H ·, d) is in turn a parametrix of (H ·, π).

As it is proved in [Tar06], every quasicomplex can actually be transformed into
a complex.

Theorem 2.2. For any quasicomplex (H ·, d) there are operators Di ∈ L(Hi,Hi+1)
satisfying Di ∼ di and DiDi−1 = 0 for all i.

3. Elliptic quasicomplexes

In Section 1 we assumed for simplicity that the orders and types of all components
of operators in B(X) are the same, which causes inconvenience in applications. In
this section we consider operators

A =
( P + G11 G12

G21 G22

)
∈ Bµ,d(X; v) (3.1)

where µ is a (2 × 2) -matrix which gives the orders of the corresponding entries of
A. For given α ∈ Z and λ, γ ∈ R we set

µ =
( α β

γ β − α + γ

)
Anyway we assume that the types d = 0, 1, . . . of all entries of A are the same. The
following is easily verified, cf. [Gru96].

Lemma 3.1. Any operator (3.1) extends to a continuous map

A :
Hs(X, V )

⊕
Hs−α+β(Y, W )

−→
Hs−α(X, Ṽ )

⊕
Hs−γ(Y, W̃ )

for s > d− 1/2.
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We want to define a composition of two operators of the above type. So let us
consider Ai and Ai+1 and assume that their types are the same. The orders are
given by matrices

µi =
( αi βi

γi βi − αi + γi

)
,

the left upper corner being integer. Now in order that the composition Ai+1Ai be
well defined we have to require that

βi+1 = αi+1 + αi − γi. (3.2)

Supposing this condition to be satisfied for all i we consider the sequence of bound-
ary value problems

0 //
C∞(X, V 0)

⊕
C∞(Y, W 0)

A0
// . . . A

N−1
//

C∞(X, V N )
⊕

C∞(Y,WN )
// 0.

Then we pick
si+1 = si − αi,
ti+1 = si − γi

for i = 0, 1, . . . , N − 1. If we choose s ∈ N sufficiently large and set s0 = s,
t0 = s−α0+β0, then we arrive at the sequence of Hilbert spaces and their continuous
maps

(H ·,A) : 0 //
Hs0(X, V 0)

⊕
Ht0(Y,W 0)

A0
// . . . A

N−1
//

HsN (X, V N )
⊕

HtN (Y,WN )
// 0. (3.3)

Recall that the operators of B−∞(X) are regarded to be “small” operators in the
calculus B(X).

The sequence (H ·,A) is actually a quasicomplex, for the composition AiAi−1 is
“small” for all i = 1, . . . , N , i.e.,

AiAi−1 ∈ B−∞(X; vi ◦ vi−1), (3.4)

where vi = (V i, V i+1;W i,W i+1). Since s0 is sufficiently large, the operators
AiAi−1 are compact by Corollary 1.8.

The calculus of [dM71] yields two principal symbol sequences for the quasicom-
plex (H ·,A), namely, the sequence of principal interior symbols

σψ(H ·,A) : . . . // π∗XV i−1
σψ(Ai−1)// π∗XV i

σψ(Ai)// . . . , (3.5)

and the sequence of boundary symbols σ∂(H ·,A) :

. . . // π∗Y

Hsi−1(R+)⊗ V i−1′

⊕
W i−1

σ∂(Ai−1)// π∗Y

Hsi(R+)⊗ V i′

⊕
W i

σ∂(Ai)// . . . . (3.6)

The fact that both (3.5) and (3.6) are complexes is a consequence of (3.4) and
Theorem 1.3.

Definition 3.1. A quasicomplex (H ·,A) is called elliptic if the complex σψ(H ·,A)
is exact away from the zero section of T ∗X and the complex σ∂(H ·,A) is exact
away from the zero section of T ∗Y , for any one (and hence for all) sufficiently large
s0.
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Let us now apply the order reduction procedure to reduce the orders of operators
in the quasicomplex (H ·,A). A slight modification of Theorem 1.4 shows that for
every V i ∈ Vect(X), W i ∈ Vect(Y ) and si ∈ {0}∪N, ti ∈ R there exists a boundary
value problem

Ri = diag
(
Rsi
V i , R

ti
W i

)
∈ Bdiag(si,ti),0(X;V i;W i)

which induces isomorphisms

Ri :
Hsi(X, V i)

⊕
Hti(Y,W i)

−→
H0(X, V i)

⊕
H0(Y, W i)

,

the inverse R−1
i = diag

(
(Rsi

V i)
−1, (Rti

W i)−1
)

being in Bdiag(−si,−ti),0(X;V i;W i). As
usual, diag (a, b) stands for diagonal (block) matrix whose diagonal elements are a
and b.

Set Bi = Ri+1AiR−1
i . Since we start with sufficiently large s0, it follows that

Bi ∈ B0,0(X; vi). Thus, we arrive at the following commutative diagram

(H ·,A) :

R

��

. . . //
Hsi−1(V i−1)

⊕
Hti−1(W i−1)

Ai−1
//

Ri−1

��

Hsi(V i)
⊕

Hti(W i)

Ai //

Ri
��

. . .

(H̃ ·,B) :

R−1

OO

. . . //
H0(V i−1)

⊕
H0(W i−1)

Bi−1
//

R−1
i−1

OO

H0(V i)
⊕

H0(W i)

Bi //

R−1
i

OO

. . .

(3.7)

whose maps are continuous because the types of Bi are zero. From this it follows
that (H̃ ·,B) is a quasicomplex, for

BiBi−1 = Ri+1AiAi−1R−1
i−1 = 0

modulo B−∞,0(X;V i−1, V i+1;W i−1,W i+1).

Theorem 3.2. The quasicomplex (H̃ ·,B) is elliptic if and only if so is the quasi-
complex (H ·,A).

Proof. The diagram (3.7) induces a commutative diagram for the principal symbols.
This readily yields our claim. �

4. Fredholm property

In order to define the parametrix in the context of Boutet de Monvel operators
we must modify our previous Definition 2.3 a little.

Let (H ·,A) be a quasicomplex of Boutet de Monvel operators. A sequence of
operators

0
Hs0(X, V 0)

⊕
Ht0(Y,W 0)

oo . . .P1
oo

HsN (X, V N )
⊕

HtN (Y, WN )

PNoo 0oo

is said to be a parametrix for (H ·,A) if Ai−1Pi + Pi+1Ai = I − Si is fulfilled for
all i = 0, 1, . . . , N , where Si ∈ B−∞(X;V i;W i).

The next result gives a connection between the parametrices of the first and
second rows in (3.7).
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Lemma 4.1. Let Qi = Ri−1PiR−1
i . Then {Pi}Ni=1 is a parametrix of (H ·,A) if

and only if {Qi}Ni=1 is a parametrix of (H̃ ·,B).

Proof. Indeed,

Bi−1Qi +Qi+1Bi = RiAi−1R−1
i−1Ri−1PiR−1

i +RiPi+1R−1
i+1Ri+1AiR−1

i

= Ri

(
Ai−1Pi + Pi+1Ai

)
R−1
i .

Then Theorem 1.5 implies the desired statement. �

We are thus left with the problem of constructing parametrices for elliptic quasi-
complexes whose operators are in B0,0(X). The advantage of using such a reduction
is that B0,0(X) is an algebra. Hence, the adjoints are available within the algebra
and we can reduce the matter to single elliptic operators, namely, the Laplacians of
quasicomplexes.

Lemma 4.2. A quasicomplex (H̃ ·,B) of order zero is elliptic if and only if all the
Laplacians

∆i = Bi−1Bi−1∗ + Bi∗Bi ∈ B0,0(X;V i;W i) (4.1)

are elliptic.

Proof. First we have

σ(∆i) = σ(Bi−1)(σ(Bi−1))∗ + (σ(Bi))∗σ(Bi).

Since, for elliptic quasicomplexes, the principal interior and boundary symbol se-
quences are exact complexes of Hilbert spaces, the statement of the lemma is a
consequence of a familiar construction of homological algebra. Namely, a complex
of Hilbert spaces

. . . // Hi−1
di−1

// Hi
di // . . .

is exact at step i if and only if the Laplacian ∆i = di−1di−1∗ + di
∗
di is an isomor-

phism of Hi. �

The following theorem is a key result on elliptic complexes of operators in Boutet
de Monvel’s algebra. For brevity we writeA ≈ B if the operators differ by an element
of B−∞,0(X).

Theorem 4.3. Each elliptic quasicomplex (H ·,A) with operators in B(X) has a
parametrix.

Proof. By Theorem 3.2, we can reduce the quasicomplex (H ·,A) to an elliptic
quasicomplex (H̃ ·,B) whose operators are in B0,0(X). Then we conclude by Lemma
4.2 that all the Laplacians (4.1) are elliptic. Thus, by Theorem 1.9 we can find a
parametrix Gi ∈ B0,0(X;V i;W i) for ∆i, such that

Gi∆i ≈ I,
∆iGi ≈ I.

Since BiBi−1 ≈ 0, we conclude that

Bi∆i ≈ ∆i+1Bi. (4.2)

Multiplying (4.2) from left by Gi+1 and from right by Gi, we get

Gi+1Bi ≈ BiGi. (4.3)
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Now we claim that Qi = Gi−1Bi−1∗ is a parametrix for the quasicomplex (H̃ ·,B).
Indeed, using (4.3) yields

Bi−1Qi +Qi+1Bi = Bi−1Gi−1Bi−1∗ + GiBi∗Bi

≈ Gi
(
Bi−1Bi−1∗ + Bi∗Bi

)
= Gi∆i

≈ I.

To complete the proof it suffices to make use of Lemma 4.1 according to which
Pi = R−1

i−1QiRi is a parametrix of the quasicomplex (H ·,A). �

Thus, elliptic quasicomplexes of boundary value problems possess parametrices
not only in the sense of Hilbert spaces but also in the sense of operator calculus
B(X).

Corollary 4.4. The parametrix of an elliptic quasicomplex (H ·,A) constructed in
Theorem 4.3 is a quasicomplex.

Proof. From BiBi−1 ≈ 0 it follows that Bi−1∗Bi∗ = (BiBi−1)∗ ≈ 0. Hence in the
same way as in the proof of Theorem 4.3 we get Bi−1∗∆i ≈ ∆i−1Bi−1∗. Multiplying
this from left by Gi−1 and from right by Gi, we deduce readily that

Gi−1Bi−1∗ ≈ Bi−1∗Gi. (4.4)

Using (4.4) we get

PiPi+1 = R−1
i−1

(
Gi−1Bi−1∗

) (
GiBi∗

)
Ri+1

≈ R−1
i−1G

i−1
(
Gi−1Bi−1∗

)
Bi∗Ri+1

= R−1
i−1G

i−1Gi−1
(
Bi−1∗Bi∗

)
Ri+1

≈ 0.

Hence, (H ·,P) is a quasicomplex. �

Let us now formulate the main result.

Theorem 4.5. Let (H ·,A) be an elliptic quasicomplex of operators in B(X). Then
(H ·,A) is Fredholm for a sufficiently large s0.

Proof. Theorem 4.3 provides us with an explicit parametrix {Pi}Nj=1, such that
Ai−1Pi + Pi+1Ai = I − Si with Si ∈ B−∞(X;V i;W i). Since s0 is assumed to
be large enough, Corollary 1.8 implies that Si ∈ K(Hsi(X, V i) ⊕ Hti(Y, W i)) for
i = 0, 1, . . . , N . Hence, by Theorem 2.1 the quasicomplex (H ·,A) is Fredholm, as
desired. �

More generally, by a quasicomplex of operators in Boutet de Monvel’s algebra
one might mean any sequence (3.3) with the property that the principal symbols of
the composition AiAi−1 are zero for all i. The definition of an elliptic quasicomplex
applies to such quasicomplexes as well. The proof of Theorem 4.3 still goes through
in this case and we construct a parametrix for any elliptic quasicomplex modulo
remainders Si whose principal symbols are zero. By Theorem 1.7, such operators
Si are compact in the corresponding Sobolev spaces, i.e., we obtain in this way a
proper parametrix for (3.3).

Remark 4.1. This proves that any elliptic quasicomplex (with respect to zero princi-
pal symbol compositions) is Fredholm in appropriate Sobolev spaces for sufficiently
large s.
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5. Hodge theory for elliptic quasicomplexes

The Hodge theory for elliptic complexes on compact manifolds with smooth edges
is developed in [ST98]. While smooth compact manifolds with boundary constitute
a subclass of compact manifolds with smooth edges, the known pseudodifferential
calculi on them are different from each other. Here we construct the Hodge theory
first for elliptic quasicomplexes of Hilbert spaces and then for elliptic quasicomplexes
of Boutet de Monvel operators.

Let

(H ·, d) : . . . // Hi−1
di−1

// Hi
di // . . .

be a quasicomplex of Hilbert spaces, i.e., didi−1 ∈ K(Hi−1,Hi+1). Along with this
we consider the adjoint quasicomplex

(H ·, d∗) : . . . Hi−1oo Hi
di−1∗
oo . . . .di

∗
oo

Lemma 5.1. A quasicomplex (H ·, d) of Hilbert spaces is Fredholm if and only if
all Laplacians ∆i = di−1di−1∗ + di

∗
di are Fredholm.

Proof. By Theorem 2.2 there exists a complex of operators Di ∈ L(Hi,Hi+1), such
that Di ∼ di. The quasicomplex (H ·, d) is Fredholm if and only if the complex
(H ·, D) is Fredholm. The complex (H ·, D) is in turn Fredholm if and only if all
Laplacians of this complex are Fredholm. Since the Laplacians of the complex
(H ·, D) and the quasicomplex (H ·, d) actually differ by compact operators, the
lemma follows. �

Note that each Laplacian ∆i : Hi → Hi is a selfadjoint operator. So it is both
injective and surjective or possesses neither of these properties.

Theorem 5.2. Let (H ·, d) be a Fredholm quasicomplex. Then, for i = 0, 1, . . . , N ,
the null-space of ∆i is finite dimensional and there is an operator gi ∈ L(Hi), such
that the decomposition

IHi = hi + di−1di−1∗gi + di
∗
digi (5.1)

holds with an orthogonal projection hi : Hi → ker ∆i.

Proof. Fix some i = 0, 1, . . . , N . By Lemma 5.1, the Laplacian ∆i is Fredholm, and
hence its null-space ker∆i is finite dimensional. Denote by (ker∆i)⊥ the orthogonal
complement of ker∆i in Hi. Since ∆i : Hi → Hi is a selfadjoint Fredholm operator,
the restriction ∆i : (ker∆i)⊥ → (ker ∆i)⊥ is a topological isomorphism. Then we
set

gi = (∆i|(ker ∆i)⊥)−1(IHi − hi).

This is a bounded operator in Hi satisfying ∆igi = IHi −hi. The latter is precisely
(5.1). �

In the case of complexes the decomposition (5.1) is orthogonal, as is easily
checked. In the case of quasicomplexes hiu is orthogonal to ∆igiu for any u ∈ Hi.
However, di−1di−1∗giu and di

∗
digiu may be not orthogonal.

Lemma 5.3. The operators gi constructed above satisfy digi ∼ gi+1di. Moreover,
the operators pi = di−1∗gi define a parametrix for the quasicomplex (H ·, d).

Proof. We first observe that di∆i ∼ ∆i+1di. Multiplying this from left and from
right by gi+1 and gi, respectively, we get gi+1di∆igi ∼ gi+1∆i+1digi. Then (5.1)
implies gi+1di − gi+1dihi ∼ digi − hi+1digi. Since the operator hi is of finite rank
and, therefore, compact, we get digi ∼ gi+1di, as desired. Then (5.1) yields

di−1
(
di−1∗gi

)
+

(
di
∗
gi+1

)
di = IHi − hi − di

∗
ci
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where ci = digi − gi+1di is compact. The operator ri = hi + di
∗
ci is compact, too,

and we get
di−1pi + pi+1di = IHi − ri,

as desired. �

Let us now construct a special parametrix for an elliptic quasicomplex of opera-
tors in the calculus B(X)

(H ·,A) : 0 //
Hs0(X, V 0)

⊕
Ht0(Y, W 0)

A0
// . . . A

N−1
//

HsN (X, V N )
⊕

HtN (Y, WN )
// 0,

cf. (3.3). This parametrix is analogous to the parametrix used in Hodge theory for
elliptic complexes.

Suppose s0 is sufficiently large. First we reduce the quasicomplex (H ·,A) to a
quasicomplex (H̃ ·,B) with differentials Bi = Ri+1AiR−1

i ∈ B0,0(X; vi). This allows
us to use the Laplacians ∆i.

Theorem 5.4. Let (H ·,A) be an elliptic quasicomplex with differential in B(X).
Then there are operators Gi ∈ B0,0(X;V i;W i), such that

Pi = R−1
i−1

(
RiAi−1R−1

i−1

)∗ GiRi,

i = 1, . . . , N , is a parametrix of (H ·,A).

The operators R−1
i GiRi obtained by conjugating Gi through order reduction are

sometimes called Green operators.

Proof. From Theorem 3.2 and the ellipticity of (H ·,A) it follows that the quasicom-
plex (H̃ ·,B) is elliptic. By Lemma 4.2, all Laplacians ∆i = Bi−1Bi−1∗ + Bi∗Bi are
elliptic operators in B0,0(X;V i;W i). Then Theorem 1.9 implies that ∆i induces
a Fredholm operator on H0(V i) ⊕ H0(W i). Hence, its null-space ker ∆i is finite
dimensional.

Note that ∆i is a selfadjoint operator. Let us write (ker∆i)⊥ for the orthogo-
nal complement of ker∆i in H0(V i) ⊕ H0(W i). The operator ∆i restricts to an
isomorphism (ker∆i)⊥ → (ker ∆i)⊥. Denote by Hi the orthogonal projection of
H0(V i) ⊕ H0(W i) onto ker∆i. A familiar argument of functional analysis shows
that

Gi = (∆i|(ker ∆i)⊥)−1(I −Hi) (5.2)

is a bounded operator on H0(V i) ⊕ H0(W i). It is clear from the very definition
that

I −Hi = ∆iGi
= Gi∆i (5.3)

on H0(V i)⊕H0(W i).
We claim that operator Gi defined by (5.2) belongs to the calculus B(X). To

show this, choose an orthogonal basis {u(i)
ν } in ker ∆i. Then Hi is an integral

operator with the kernel
∑
ν u

(i)
ν ⊗∗u(i)

ν , where ∗ is a Hodge star operator naturally
associated with the scalar product in H0(V i)⊕H0(W i). Thus, the kernel of Hi is
smooth whence

Hi ∈ B−∞,0(X;V i;W i). (5.4)
Let us consider an operator Li ∈ L(H0(V i)⊕H0(W i)) defined by

Liu = Hiu + ∆i
(
I −Hi

)
u.

It is easily seen that Li ∈ B0,0(X;V i;W i). The inverse of the operator Li is given
by

(Li)−1f = Hif + (∆i|(ker ∆i)⊥)−1
(
I −Hi

)
f.
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The spectral invariance of B(X) yields (Li)−1 ∈ B0,0(X;V i;W i), cf. Theorem 1.10.
Since Gi = (Li)−1

(
I −Hi

)
, we conclude immediately that Gi ∈ B0,0(X;V i;W i),

as desired.
By Theorem 4.5, the quasicomplex (H̃ ·,B) is Fredholm. Hence, Theorem 5.2

specifies to
I = Hi + Bi−1Bi−1∗Gi + Bi∗BiGi, (5.5)

cf. (5.3). We claim that BiGi ≈ Gi+1Bi. Indeed, since (H̃ ·,B) is a quasicomplex,
we have Bi∆i ≈ ∆i+1Bi. Multiplying this from left by Gi+1 and from right by Gi
and applying (5.3), we get Gi+1Bi(I − Hi) ≈ (I − Hi+1)BiGi. Hence, (5.4) yields
the claim. Thus, (5.5) implies Bi−1Qi +Qi+1Bi ≈ I −Hi, where Qi = Bi−1∗Gi, or
Bi−1Qi +Qi+1Bi ≈ I.

Multiplying this equality from left and from right by R−1
i and Ri, respectively,

and substituting Bi = Ri+1AiR−1
i , we readily get Ai−1Pi + Pi+1Ai ≈ I where

Pi = R−1
i−1B

i−1∗GiRi

= R−1
i−1

(
RiAi−1R−1

i−1

)∗ GiRi,

as desired. �

6. Cone of quasicochain mappings

We may construct examples of elliptic quasicomplexes of pseudodifferential oper-
ators on a manifold with boundary by realising elliptic quasicomplexes as cones of
quasicochain mappings. Let us first discuss the construction of a cone for arbitrary
Hilbert spaces.

Definition 6.1. Let (L·, a) and (M ·, b) be two quasicomplexes. By a quasicochain
mapping of these quasicomplexes is meant a collection of operators ti ∈ L(Li,M i),
such that the diagram

0 // L0 a0
//

t0

��

L1 a1
//

t1

��

. . . aN−1
// LN //

tN

��

0

0 // M0 b0 // M1 b1 // . . . bN−1
// MN // 0

(6.1)

commutes modulo compact operators, i.e., ti+1ai − biti ∈ K(Li,M i+1) holds for all
i = 0, 1, . . . , N .

To any quasicochain mapping t = {ti} we may associate a new quasicomplex

0 //
L0

⊕
0

d0 //
L1

⊕
M0

d1 // . . . dN−1
//

LN

⊕
MN−1

dN //
0
⊕

MN

// 0

where

di =
(
−ai 0

ti bq−1

)
.

Indeed, all compositions

didi−1 =
(

aiai−1 0
−tiai−1 + bi−1ti bi−1bi−2

)
are compact.

It is called the cone of the quasicochain mapping t and denoted by C(t), cf.
[Spa66] and elsewhere.

We now turn to quasicomplexes of pseudodifferential operators. Consider a qua-
sicomplex of pseudodifferential operators P i of type V i → V i+1 with the trans-
mission property on X, such that P iP i−1 is a smoothing operator in Boutet de
Monvel’s calculus on X, and a quasicomplex of pseudodifferential operators Qi of
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type W i → W i+1 on Y , such that QiQi−1 is a smoothing operator in the standard
calculus on Y .

Choose a quasicochain mapping T i : C∞(X, V i) → C∞(X, W i) between these
quasicomplexes, each T i being a singular trace operator in Boutet de Monvel’s
calculus on X. We require the types of T i to be the same and T i+1P i−QiT i to be
smoothing singular trace operators for all i. Fix a sufficiently large s ∈ N and set
s0 = s, t0 = s− ordT 0, and

si = s0 − ordP 0 − . . .− ordP i−1,
ti = t0 − ordQ0 − . . .− ordQi−1

for i = 1, . . . , N . The diagram

. . . // Hsi−1(X, V i−1)

T i−1

��

P i−1
// Hsi(X, V i)

T i

��

P i // . . .

. . . // Hti−1(Y, W i−1)
Qi−1

// Hti(X, W i)
Qi // . . .

(6.2)

commutes modulo compact operators, and the cone of the quasicochain mapping
(6.2) is

(H ·,A) : . . . //
Hsi−1(X, V i−1)

⊕
Hti−2(Y, W i−2)

Ai−1
//

Hsi(X, V i)
⊕

Hti−1(Y, W i−1)

Ai // . . . , (6.3)

where

Ai =
( −P i 0

T i Qi−1

)
for i = 0, 1, . . . , N .

Suppose that the quasicomplex (H ·,A) is elliptic. The exactness of the principal
interior symbol sequence σψ(H ·,A) away from the zero section of T ∗X is equivalent
to the ellipticity of the first quasicomplex in (6.2) in the usual sense. Further, the
principal boundary symbol sequence σ∂(H ·,A) is the cone of the cochain mapping
σ∂(T ). Hence, it is exact away from the zero section of T ∗Y if and only if both
complexes

ker σ∂(T ) : 0 // ker σ∂(T 0)
σ∂(P 0)// ker σ∂(T 1)

σ∂(P 1)// . . . ,

cokerσ∂(T ) : 0 // cokerσ∂(T 0)
σ∂(Q0)// cokerσ∂(T 1)

σ∂(Q1)// . . .

are exact away from the zero section of T ∗Y . Hence, as but one consequence of
Theorem 4.5 we obtain

Corollary 6.1. The quasicomplex (6.3) is Fredholm for a sufficiently large s0, if the
first quasicomplex in (6.2) is elliptic and both complexes ker σ∂(T ) and cokerσ∂(T )
are exact away from zero section of T ∗Y .

It was Dynin [Dyn72] who first studied cones of cochain mappings of the form
(6.3). He called them boundary problems for elliptic complexes of pseudodifferential
operators on X. To the best of our knowledge, no proofs of these results have ever
been published.

Note that any quasicomplex (H ·,A) of the form (3.3) whose differential is given
by lower triangle block operator matrices is actually the cone of a quasicochain map
between two quasicomplexes, the first of the two being over X and the second being
over Y .
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7. Compatibility complexes of overdetermined boundary problems

Let X be a compact C∞ manifold with boundary Y . Consider an elliptic dif-
ferential operator A : C∞(X, V ) → C∞(X, Ṽ ) where V and Ṽ are smooth vector
bundles over X. A boundary value problem for A is classically regarded as an
operator

A0 =
(

A
T

)
: C∞(X, V ) →

C∞(X, Ṽ )
⊕

C∞(Y, W ),
(7.1)

where W is a smooth vector bundle over W and T : C∞(X, V ) → C∞(Y, W ) is a
trace operator which is a differential operator on X followed by restriction to the
boundary Y . In general, the solvability of a boundary problem Au = f , Tu = g
requires compatibility conditions of the form A1(f, g) = 0, where A1 is a lower
triangle block matrix whose diagonal entries are differential operators on X and
Y , respectively, and the lower left entry is a trace operator. More precisely, such
an operator A1 is called a compatibility operator for A0, if A1A0 = 0 and for any
operator Ã1 satisfying the condition Ã1A0 = 0 there is an operator B, such that
Ã1 = BA1. A complex of classical boundary problems is said to be a compatibility
complex for an operator A0, if every operator Ai is a compatibility operator for
Ai−1, i ≥ 1.

For any boundary problem operator A0 satisfying the condition of “non-degener-
acy of the coefficients,” there exists a compatibility complex. When evaluated at
Sobolev spaces, it is given by

0 → Hs0(X, V 0) A0
//

Hs1(X, V 1)
⊕

Ht1(Y, W 1)

A1
// . . . A

N−1
//

HsN (X, V N )
⊕

HtN (Y, WN )
→ 0 (7.2)

with

Ai =
(

Ai 0
T i Qi

)
for i = 0, 1, . . . , N − 1, cf. [DS96]. Here, A0 = A, T 0 = T , Q0 = 0, and Ai,
Qi are differential operators on X and on Y , respectively, T i are trace operators.
Furthermore, s0 = s is sufficiently large, and αi is the order of Ai, γi is the order
of T i, δi is the order of Qi. We set

si+1 = si − αi,
ti+1 = max{si − γi, ti − δi},

with t0 = 0. By the very construction, the complex

0 // Hs0(X, V 0) A0
// . . . A

N−1
// HsN (X, V N ) // 0 (7.3)

is a compatibility complex for the operator A itself.
Theorem 4.5 applies to give us conditions for a compatibility complex for a

boundary problem operator to be Fredholm.

Corollary 7.1. The compatibility complex (7.2) for a boundary problem operator
A = (A, T )T is Fredholm for a sufficiently large s0, if the compatibility complex
(7.3) for A is elliptic and the principal boundary symbol complex σ∂(H ·,A) is exact
away from the zero section of T ∗Y .

It is interesting to mention that if a differential operator A is of “normal” form
then the ellipticity of A implies the ellipticity of the compatibility complex (7.3) for
A, cf. [Tar95].
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Let us now show that the compatibility complex (7.2) for a boundary problem
operator A is the cone of the cochain mapping

. . . // Hsi−1(X, V i−1)

T i−1

��

−Ai−1
// Hsi(X, V i)

T i

��

−Ai // . . .

. . . // Hti(Y, W i)
Qi // Hti+1(X, W i+1)

Qi+1
// . . .

Indeed, since (7.2) is a complex, we get

0 = AiAi−1

=
(

AiAi−1 0
T iAi−1 + QiT i−1 QiQi−1

)
,

proving our claim.
Thus, Corollary 6.1 yields the following condition for a compatibility complex to

be Fredholm.

Corollary 7.2. The compatibility complex (7.2) for the boundary problem operator
A = (A, T )T is Fredholm for a sufficiently large s0, if the compatibility complex
(7.3) for A is elliptic and both complexes ker σ∂(T ) and cokerσ∂(AT ) are exact
away from the zero section of T ∗Y .

8. Euler characteristic of elliptic quasicomplexes

In order to show how to introduce the Euler characteristic for elliptic quasicom-
plexes we will first discuss an auxiliary problem. Namely, take two exact symbol
sequences

0 // π∗XV 0
σ0
ψ // π∗XV 1

σ1
ψ // . . .

σN−1
ψ // π∗XV N // 0 ,

0 // π∗Y F 0
σ0
∂ // π∗Y F 1

σ1
∂ // . . .

σN−1
∂ // π∗Y FN // 0

over the cotangent bundles of X and Y , respectively, where

F i =
Hsi(R+)⊗ V i′

⊕
W i

,

such that σiψ and σi∂ have the structure of principal interior and boundary symbols
of operators in the calculus B(X). Here, s0 ∈ Z+ is sufficiently large, and we assume
that

ordσi∂ =
( αi βi

γi βi − αi + γi

)
with αi ∈ Z, λi, γi ∈ R, and si+1 = si − αi.

We suppose that the orders of symbols σi∂ are well defined with respect to the
compositions σi+1

∂ σi∂ . This means that βi+1 = αi+1 + αi − γi is fulfilled for all
i = 0, 1, . . . , N − 1.

Define
ti = si+1 + βi

= si−1 − γi−1,

for i = 0, 1, . . . , N , and set σi = (σiψ, σi∂). Then the question arises whether there is
a complex of operators Di ∈ Bµi(X; vi)

0 //
Hs0(X, V 0)

⊕
Ht0(Y,W 0)

D0
// . . . D

N−1
//

HsN (X, V N )
⊕

HtN (Y,WN )
// 0 , (8.1)
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cf. (3.3), such that σ(Di) = σi for all i = 0, 1, . . . , N − 1.
This problem goes back at least as far as [PS80]. The study given in [PS80] falls

short of providing complete arguments. The proof given there for pseudodifferential
operators on a compact closed manifold is wrong. To the best of our knowledge, this
question has been far from being solved. The following theorem gives the affirmative
solution.

Theorem 8.1. Given any exact sequence of symbols {σi}N−1
i=0 which are of the

form of principal symbols of operators in B(X), there is a complex of operators
Di ∈ Bµi(X; vi) satisfying σ(Di) = σi for all i = 0, 1, . . . , N − 1.

Proof. By the surjectivity of the principal symbol map, there is a sequence of op-
erators Ai ∈ Bµi,di(X; vi), such that σ(Ai) = σi for all i = 0, 1, . . . , N − 1. Using
order reduction operators one can assume without loss of generality that the order
of each Ai is zero. We thus get

0 //
H0(X, V 0)

⊕
H0(Y,W 0)

A0
//

H0(X, V 1)
⊕

H0(Y,W 1)

A1
// . . . A

N−1
//

H0(X, V N )
⊕

H0(Y,WN )
// 0.

Since σi forms a complex, the principal symbol σ(AiAi−1) = σ(Ai)σ(Ai−1)
vanishes, and hence AiAi−1 is a compact operator for all i. We are going to modify
the quasicomplex into a complex with the same principal symbol complexes by
starting from the end of the quasicomplex.

First set DN−1 = AN−1. Since σ(AN−1) is surjective, it follows that the Lapla-
cian ∆N = DN−1DN−1∗ is elliptic. By the Hodge theory for complexes, cf. (5.5),
there is an operator GN ∈ B0,0(X;V N ;WN ) satisfying

I = HN + ∆NGN = HN +DN−1ΦN ,

where HN stands for the orthogonal projection onto the finite-dimensional space
ker ∆N = kerDN−1∗ and ΦN = DN−1∗GN . We set ΠN−1 = I − ΦNDN−1 and
we claim that ΠN−1 is a projection onto kerDN−1. Indeed, ΠN−1 = I is valid on
kerDN−1 and

ΠN−1ΠN−1 = (I − ΦNDN−1)(I − ΦNDN−1)

= I − 2ΦNDN−1 +DN−1∗GNDN−1DN−1∗GNDN−1

= I − 2ΦNDN−1 +DN−1∗GN (I −HN )DN−1

= ΠN−1,

since HNDN−1 = (DN−1∗HN )∗ = 0.
Next we set DN−2 = ΠN−1AN−2. Then DN−1DN−2 = 0, for ΠN−1 is a projec-

tion onto kerDN−1. For symbols, we get

σ(DN−2) = σ(AN−2)− σ(ΦN )σ(DN−1)σ(AN−2)

= σN−2

because σ(DN−1)σ(AN−2) vanishes.
Consider now a slightly modified quasicomplex

0 →
H0(X, V 0)

⊕
H0(Y, W 0)

A0
// . . . D

N−2
//

H0(X, V N−1)
⊕

H0(Y, WN−1)

DN−1
//

H0(X, V N )
⊕

H0(Y, WN )
→ 0.

Since the principal symbol complex of the above quasicomplex is exact, the Lapla-
cian ∆N−1 = DN−2DN−2∗ + DN−1∗DN−1 is elliptic. Using the Hodge theory for



ELLIPTIC QUASICOMPLEXES IN BOUTET DE MONVEL ALGEBRA 21

complexes, we deduce that there is an operator GN−1 ∈ B0,0(X;V N−1;WN−1),
such that

I = HN−1 +DN−2DN−2∗GN−1 +DN−1∗GNDN−1

= HN−1 +DN−2ΦN−1 + ΦNDN−1

where HN−1 is the orthogonal projection onto the null-space of ker∆N−1 which is
kerDN−2∗ ∩ kerDN−1, and ΦN−1 = DN−2∗GN−1. Then, we claim that

ΠN−2 = I − ΦN−1DN−2

is the orthogonal projection onto kerDN−2. Indeed, PN−2 is the identity operator
on kerDN−2. Moreover,

(ΠN−2)2 = ΠN−2 − ΦN−1DN−2 + ΦN−1(DN−2ΦN−1)DN−2

= ΠN−2 − ΦN−1DN−2 + ΦN−1(I −HN−1 − ΦNDN−1)DN−2

= ΠN−2 − ΦN−1HN−1DN−2

= ΠN−2,

since HN−1DN−2 = (DN−2∗HN−1)∗ vanishes. Introducing DN−3 = ΠN−2AN−3

we thus obtain DN−2DN−3 = 0 and

σ(DN−3) = σ(AN−3)− σ(ΦN−1)σ(DN−2)σ(AN−3)

= σN−3,

for σ(DN−2)σ(AN−3) vanishes.
Continuing in this fashion, in a finite number of steps we obtain a complex of

operators Di ∈ B0,0(X; vi), such that σ(Di) = σi for all i = 0, 1, . . . , N − 1. �

It is worth pointing out that the desired complex (8.1) is constructed within the
pseudodifferential calculus B(X). I.e., Di are pseudodifferential operators even in
the case if the initial sequences of symbols stem from differential boundary value
problems.

Let us now consider an elliptic quasicomplex with differential in Boutet de Mon-
vel’s calculus,

(H ·,A) : 0 //
Hs0(X, V 0)

⊕
Ht0(Y,W 0)

A0
// . . . A

N−1
//

HsN (X, V N )
⊕

HtN (Y, WN )
// 0 ,

cf. (3.3). By Theorem 8.1, there is a complex (H ·,D), such that σ(Di) = σ(Ai) for
all i = 0, 1, . . . , N − 1. Hence, the complex (H ·,D) is elliptic as well, and thus, by
Theorem 4.5, it is Fredholm. Note that the difference Ai−Di is a compact operator
for all i, since σ(Di) = σ(Ai).

For the Fredholm complex (H ·,D), the Euler characteristic χ(H ·,D) (index) is
defined by

χ(H ·,D) =
N∑
i=0

(−1)i dim Hi(H ·,D),

where Hi(H ·,D) is the cohomology of the complex at step i.

Definition 8.1. By the Euler characteristic of elliptic quasicomplex (3.3) is meant
the Euler characteristic of the corresponding Fredholm complex (H ·,D).

Next we have to prove that this definition is independent of the particular choice
of complex (H ·,D).

Theorem 8.2. Suppose that (H ·,D1) and (H ·,D2) are two complexes with the
property that σ(Di1) = σ(Di2) = σ(Ai). Then χ(H ·,D1) = χ(H ·,D2).
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Proof. To prove this theorem we recall a familiar construction from the theory of
abstract Fredholm complexes, cf. [RS82] and elsewhere. Let (H ·, d) be a Fredholm
complex of Hilbert spaces

0 // H0 d0 // H1 d1 // . . . dN−1
// HN // 0 ,

and let (H ·, π) be a parametrix of (H ·, d). Then the block operator

(d + π)e =


d0 p2 0 . . . 0
0 d2 p4 . . . 0
0 0 d4 . . . 0
...

...
...

. . .
...

0 0 0 . . . dN−1

 : ⊕H2i → ⊕H2i+1

is Fredholm, and for the Euler characteristic of the complex (H ·, d) and operator
(d + π)e we have χ(H ·, d) = ind(d + π)e. Without loss of generality we can assume
here that N is odd, otherwise the length of (H ·, d) can be modified by adding a
segment → 0 to the complex.

Now note that the operators Di1 and Di2 differ from each other by compact op-
erators. Hence it follows that if (H ·,P) is a parametrix for the complex (H ·,D1),
then it is also a parametrix for the complex (H ·,D2). Using the same parametrix,
we construct Fredholm operators (D1 + P)e and (D2 + P)e which differ from each
other by a compact operator. Hence, their indices coincide. �

9. Connection quasicomplex

Let V be a vector bundle over a compact manifold X with boundary, both X and
V being C∞. Choose a connection ∂ for V , i.e., a first order differential operator
of type V → V ⊗ ΛT ∗X on X satisfying the Leibniz rule ∂(fu) = df u + f ∂u for
all u ∈ C∞(X, V ) and f ∈ C∞(X). It is just the Leibniz rule that allows one
to naturally extend any connection ∂ for V to differential forms of degree i with
coefficients in V on X. We write ∂i : C∞(X, V i) → C∞(X, V i+1) for it, where
V i = V ⊗ ΛiT ∗X for i = 0, 1, . . . , n = dim X, so that V 0 = V and ∂0 = ∂. The
composition ∂i∂i−1 is known to be a smooth bundle homomorphism V i−1 → V i+1

called the curvature of V . In fact, this is a (k×k) -matrix whose entries are smooth
differential forms of degree 2 on X, k being the rank of V . We thus arrive at a
quasicomplex of Hilbert spaces

0 // Hs0(X, V 0) ∂0
// . . . ∂n−1

// Hsn(X, V n) // 0 , (9.1)

with s0 = s ≥ n and si = s0 − i for i ≥ 1. We specify sequence (9.1) within the
calculus B(X) by identifying ∂i with a (2× 2) -matrix whose upper left corner is ∂i

and the other entries are zero.
The principal symbol complexes for (9.1) are

0 // π∗XV 0
σψ(∂0)// π∗XV 1

σψ(∂1)// . . .
σψ(∂N−1)// π∗XV N // 0 ,

0 // π∗Y F 0
σ∂(∂0)// π∗Y F 1

σ∂(∂1)// . . .σ∂(∂N−1)// π∗Y Fn // 0

over the cotangent bundles of X and Y , respectively, where F i = S(R+)⊗V i′. The
first of the two is locally on X the direct sum of k copies of the principal interior
symbol sequence for the de Rham complex on X. Analogously, the second sequence
is locally on Y the direct sum of k copies of the principal boundary symbol sequence
for the de Rham complex on X. Hence, the calculations of [BS91] actually show
that both symbol sequences are exact away from the zero sections of T ∗X and T ∗Y ,
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respectively. It follows that the quasicomplex (9.1) is elliptic in Boutet de Monvel’s
calculus.

By Remark 4.1, the quasicomplex (9.1) is Fredholm and it possesses a parametrix
within the calculus.

Suppose S is a smooth submanifold of codimension γ > 0 in X, and ι : S ↪→ X
the embedding map. The vector bundle V restricts naturally to S, the restriction
being the induced bundle V ′ = ι∗V . Fix an arbitrary connection ∂′ for V ′. Setting
W i = V ′⊗ΛiT ∗S for i = 0, 1, . . . , n− γ, we get similarly a quasicomplex of Hilbert
spaces

0 // Ht0(S, W 0) ∂0
// . . .∂

n−γ−1
// Htn−γ (S, Wn−γ) // 0 , (9.2)

with t0 = s0 − γ/2 and ti = t0 − i for i ≥ 1.
By the Sobolev embedding theorem, there is a map T of (9.1) to (9.2) given by

T iu = ι∗u for u ∈ Hsi(X, V i). Here, ι∗ stands for the pull-back operator under the
embedding ι.

Since any two connections for the vector bundle V ′ differ by a global smooth one-
form on S with coefficients in Hom(V ′), it follows that ι∗∂i−1 = ∂′i−1ι∗ modulo
compact operators from Hsi−1(X, V i−1) to Hti(S, W i). This just amounts to saying
that T = {T i} is a quasicochain mapping of quasicomplexes. The cone of this
mapping is

(H ·,A) : . . . //
Hsi−1(X, V i−1)

⊕
Hti−2(S, W i−2)

Ai−1
//

Hsi(X, V i)
⊕

Hti−1(S, W i−1)

Ai // . . . , (9.3)

where

Ai =
( −∂i 0

T i ∂′i−1

)
for i = 0, 1, . . . , n.

In this general setting we have no calculus structure but the ellipticity of both
quasicomplexes (9.1) and (9.2) in Boutet de Monvel’s calculus on smooth mani-
folds with boundary. When combined with an easy computation, Theorem 4.5 still
implies the following result.

Corollary 9.1. For any s ≥ 0, quasicomplex (9.3) is Fredholm. If {πi} and {π′i}
are parametrices for (9.1) and (9.2), respectively, then a parametrix for (9.3) is
given by

Pi =
( −πi 0

π′i−1T i−1πi π′i−1

)
.

One may conjecture that the Euler characteristic of (9.3) is equal to k χ(X, S),
where χ(X, S) is the Euler characteristic of the pair (X, S). However, this topic
exceeds the scope of this paper.
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