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Abstract. By quasicomplexes are usually meant perturbations of complexes
small in some sense. Of interest are not only perturbations within the cat-

egory of complexes but also those going beyond this category. A sequence

perturbed in this way is no longer a complex, and so it bears no cohomol-
ogy. We show how to introduce Euler characteristic for small perturbations of

Fredholm complexes. The paper is to appear in Funct. Anal. and its Appl.,
2006.
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1. Introduction

In the category of Hilbert spaces, a complex (L, d) is given by a sequence of
Hilbert spaces Li, i ∈ Z, and continuous linear mappings di : Li → Li+1, such that
di ◦ di−1 = 0.

We will write it simply L when no confusion can arise. When considering
bounded complexes we can certainly assume that Li = 0 for i different from
0, 1, . . . , N , for if not, we shift the indexing.

Let Zi(L) and Bi(L) stand for the spaces of cocycles and coboundaries of a
complex L at step i. Obviously, Bi(L) is a vector subspace of Zi(L). A complex L
is said to be Fredholm if its cohomology Hi(L) = Zi(L)/Bi(L) is finite dimensional
at each step i. For any Fredholm complex L, the Euler characteristic χ(L) is defined
by

χ(L) =
N∑

i=0

(−1)i dim Hi(L).

Assume that d+V is a perturbation of the differential d, with V “small” enough.
By “small” are meant appropriate ideals of compact operators. Then the square
(d + V )2 = dV + V d + V 2 need not be zero but merely “small” along with V . The
sequence (L, d+V ) is no longer a complex, and so it bears no cohomology. While a
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topological index might still be defined for (L, d + V ), the Euler characteristic can
not.

As but one example of this we show the sequence of covariant differentiations
related to a connection of a vector bundle F over a C∞ compact manifold. In this
case the compositions di ◦ di−1 are identified with the curvature of the connection,
which is a smooth differential form of degree 2 with values in the endomorphisms
of F .

In contrast to the Euler characteristic, the signature invariants of Fredholm
quasicomplexes are easier to define, cf. [Mis00].

2. Fredholm quasicomplexes

From the point of view of analysis, quasicomplexes seem to be much more nat-
ural objects than complexes. Indeed, “small” perturbations of Fredholm operators
do not affect the Fredholm property. In particular, perturbing a single Fredholm
operator by compact operators leads to a Fredholm operator. It would be desirable
to have the same property for Fredholm complexes but most of the perturbations
lead out the class of ‘complexes’. For example, perturbing an elliptic complex by
lower order terms does not change the sequence of principal symbols which remains
to be exact away from the zero section of the cotangent bundle. However, the op-
erators no longer satisfy di ◦ di−1 = 0, and so the standard theory does not apply
to the deformed complex. We are thus lead to a class of sequences L =

(
Li, di

)
i∈Z

bearing the property that the compositions di ◦ di−1 are small in some reasonable
sense.

Definition 2.1. By a (cochain) quasicomplex (L, d) is meant any sequence of Fré-
chet spaces Li, i ∈ Z, and operators di ∈ L(Li, Li+1) satisfying di◦di−1 = 0 modulo
compact operators.

Denote by K(L, L̃) the subspace of L(L, L̃) consisting of compact operators. For
m1,m2 ∈ L(L, L̃), we write m1 ∼ m2 if m1 −m2 ∈ K(L, L̃).

Suppose (L, d) and (L̃, d̃) are two quasicomplexes. By a cochain mapping of
(L, d) into (L̃, d̃) is meant any collection of operators mi ∈ L(Li, L̃i), i ∈ Z, such
that d̃imi ∼ mi+1di for all i ∈ Z. In particular, the families 0 = (0Li)i∈Z and
1 = (1Li)i∈Z are cochain mappings of (L, d) into itself, and so are all their compact
perturbations.

Cochain mappings (mi
0)i∈Z and (mi

1)i∈Z of (L, d) into (L̃, d̃) are said to be ho-
motopic if there is a collection hi ∈ L(Li, L̃i−1), i ∈ Z, with the property that
mi

1 −mi
0 ∼ d̃i−1hi + hi+1di for all i ∈ Z.

The task is now to introduce the concept of a Fredholm quasicomplex. Recall
that an operator d ∈ L(L, L̃) in Fréchet spaces is Fredholm if and only if its image
in the Calkin algebra L(L, L̃)/K(L, L̃) is invertible. Thus, the idea is to pass in a
given quasicomplex to quotients modulo spaces of compact operators and require
exactness. To this end, we make use of a functor φΣ studied by Putinar [Put82]. For
complexes of pseudodifferential operators it specifies to what is known as complex
of symbols.

For Fréchet spaces L and Σ , set φΣ (L) = L(Σ , L)/K(Σ , L). Moreover, given
any d ∈ L(L, L̃), we define φΣ (d) ∈ L(φΣ (L), φΣ (L̃)) by the formula

φΣ (d) (m +K(Σ , L)) = dm +K(Σ , L̃)
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for m ∈ L(Σ , L). Clearly, this operator is well defined. It is easily seen that
φΣ (d2d1) = φΣ (d2)φΣ (d1) for all d1 ∈ L(L1, L2) and d2 ∈ L(L2, L3). If 1L is
the identity operator on L, then φΣ (1L) is the identity operator on φΣ (L). These
remarks show that φΣ is actually a covariant functor in the category of Fréchet
spaces.

The crucial fact is that φΣ vanishes on compact operators, for every Fréchet
space Σ . Conversely, if d ∈ L(L, L̃) and φΣ (d) = 0 for any Fréchet space Σ , then
d ∈ K(L, L̃). Indeed, taking Σ = L, we deduce from

φL(d) (1L +K(L,L)) = d +K(L, L̃)

= K(L, L̃)

that d ∈ K(L, L̃).
Note that if (L, d) is an arbitrary quasicomplex, then (φΣ (L), φΣ (d)) is a com-

plex, for each Fréchet space Σ . Thus, the functor φΣ transforms quasicomplexes
into ordinary complexes. Furthermore, cochain mappings of quasicomplexes trans-
form under φΣ into cochain mappings of complexes, and φΣ preserves the homotopy
classes of cochain mappings.

Definition 2.2. A quasicomplex (L, d) is called Fredholm if the associated complex
(φΣ (L), φΣ (d)) is exact, for each Fréchet space Σ .

Let (L, d) and (L, d̃) be two quasicomplexes, such that di ∼ d̃i for all i ∈ Z. Then
the complexes (φΣ (L), φΣ (d)) and (φΣ (L), φΣ (d̃)) obviously coincide, for every
Fréchet space Σ . Therefore, (L, d) and (L, d̃) are simultaneously Fredholm. In
other words, any compact perturbation of a Fredholm quasicomplex is a Fredholm
quasicomplex.

Theorem 2.3. A bounded above quasicomplex (L, d) is Fredholm if and only if the
identity mapping of (L, d) is homotopic to the zero one.

This theorem goes back at least as far as [Put82] wherein the designation ‘essen-
tial complexes’ is used for what we call ‘quasicomplexes’ here.

Proof. Necessity. Let (L, d) be Fredholm and bounded above, i.e., Li = 0 for all
but i ≤ N . Our goal is to show that there are operators πi ∈ L(Li, Li−1), i ∈ Z,
such that

di−1πi + πi+1di = 1Li − ci (2.1)

for all i ∈ Z, where ci ∈ K(Li).
Set πi = 0 for all integers i > N . If i = N , then from the exactness of the

complex (φΣ (L), φΣ (d)), Σ = LN , at step N if follows that there is an operator
πN ∈ L(LN , LN−1) such that dN−1πN ∼ 1LN . Denoting by cN the difference
1LN − dN−1πN , we thus get cN ∈ K(LN ).

We now proceed by induction. Suppose we have already found mappings

πi, πi+1, . . . ;
ci, ci+1, . . . ,
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such that the equality (2.1) is satisfied at steps i, i + 1, . . ., for some i ≤ N . Note
that

di−1
(
1Li−1 − πidi−1

)
= di−1 −

(
1Li − ci − πi+1di

)
di−1

= cidi−1 + πi+1didi−1

∼ 0

by (2.1). From the exactness of (φΣ (L), φΣ (d)), with Σ = Li−1, at step i − 1 it
follows that there is πi−1 ∈ L(Li−1, Li−2) such that di−2πi−1 ∼ 1Li−1 − πidi−1.
Setting ci−1 = 1Li−1 − πidi−1 − di−2πi−1, we obtain ci−1 ∈ K(Li−1) and (2.1)
fulfilled at step i− 1. This establishes the existence of solutions πi, ci to (2.1) for
each i ∈ Z, i.e., the homotopy between the identity and zero cochain mappings of
(L, d).

Sufficiency. If the identity mapping 1 = (1Li)i∈Z is homotopic to the zero
mapping 0 = (0Li)i∈Z on (L, d), then the identity mapping on the cohomology
Hi(φΣ (L), φΣ (d)) vanishes for all i ∈ Z. Hence, the complex (φΣ (L), φΣ (d)) is
exact for each Fréchet space Σ , as required. �

Any solution πi ∈ L(Li, Li−1), i ∈ Z, to (2.1) is called a parametrix of quasi-
complex (L, d). Thus, Theorem 2.3 just amounts to saying that a bounded above
quasicomplex is Fredholm if and only if it possesses a parametrix. Given any Fred-
holm quasicomplex (L, d), if f ∈ Li satisfies dif = 0, then f = cif + di−1πif ,
where (L, π) is a parametrix for (L, d) as in (2.1). In other words the operator
di−1 has a right inverse πi on Zi(L) modulo compact operators. However, since
the compositions didi−1 need not vanish for a quasicomplex L, the range of di−1

no longer lies in Zi(L). It follows that the usual cohomology does not make sense
for L. The question on a proper substitute of the cohomology for quasicomplexes
seems to be very subtle, cf. [ST99].

3. Reduction to a complex

Let (L, d) be a Fredholm quasicomplex consisting of Hilbert spaces Li which are
zero for all i but i = 0, 1, . . . , N , and operators di ∈ L(Li, Li+1) with di+1 ◦ di

compact.
These spaces and operators are fit together to form a sequence of Hilbert spaces

of compact curvature, namely,

0 → L0 d0

→ L1 d1

→ . . .
dN−1

→ LN → 0. (3.1)

Theorem 3.1. For every Fredholm quasicomplex (3.1) there exist bounded opera-
tors Di ∈ L(Li, Li+1) satisfying Di = di modulo compact operators of K(Li, Li+1)
and Di+1Di = 0 for all i.

Proof. Set DN−1 = dN−1. The Laplacian

∆N = DN−1DN−1∗

is a selfadjoint operator on HN , and its kernel just amounts to the kernel of DN−1∗.
By Theorem 2.3, the latter operator DN−1∗ has a left parametrix. In fact, the
equality

πN ∗DN−1∗ = 1LN − cN ∗

holds on LN . Hence, the identity operator on kerDN−1∗ is compact. It follows
that the kernel of DN−1∗ is finite dimensional, and so ∆N is Fredholm.
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By the abstract Hodge theory, there is a selfadjoint operator GN ∈ L(LN )
mapping into the orthogonal complement of ker∆N , such that 1LN = HN +∆NGN

on LN , where HN is the orthogonal projection onto the finite-dimensional space
ker∆N = kerDN−1∗.

The space ker DN−1∗ is thus an obstruction to the existence of a right fundamen-
tal solution for DN−1. The operator ΦN = DN−1∗GN is a special right parametrix
for DN−1 in L(LN , LN−1).

We now show that PN−1 = 1LN−1 − ΦNDN−1 is an orthogonal projection onto
the kernel of DN−1. To this end, we note that PN−1 is the identity operator on
the kernel of DN−1, and

DN−1PN−1 = DN−1 −∆NGNDN−1

= DN−1 − (1LN −HN )DN−1

= 0,

for HNDN−1 = (DN−1∗HN )∗ = 0. From this the desired conclusion follows.
In order to construct DN−2 we consider the last fragment of sequence (3.1),

namely

LN−2 dN−2

→ LN−1 DN−1

→ LN .

Set
DN−2 = PN−1dN−2,

then DN−2 ∈ L(LN−2, LN−1) satisfies

DN−1DN−2 = DN−1PN−1dN−2

= 0

and

DN−2 =
(
1LN−1 − ΦNdN−1

)
dN−2

= dN−2,

modulo compact operators in K(LN−2, LN−1), as desired.
We now restrict ourselves to the suitably modified preceding fragment of the

sequence (3.1), i.e.,

LN−3 dN−3

→ LN−2 DN−2

→ LN−1.

The Laplacian ∆N−1 = DN−1∗DN−1 + DN−2DN−2∗ is a selfadjoint operator
in L(LN−1), whose kernel is obviously kerDN−1 ∩ ker DN−2∗. Our next goal is
to prove that this kernel is of finite dimension. To this end, we observe that the
equality

DN−2πN−1 + πNDN−1 = 1LN−1 − CN−1

holds for some compact operator CN−1 ∈ K(LN−1), since both DN−1 − dN−1

and DN−2 − dN−2 are compact. Hence, the identity operator on the cohomology
HN−1(L,D) is compact, and so the dimension of HN−1(L,D) is finite. Since the
natural embedding ker∆N−1 ↪→ HN−1(L,D) is injective, we immediately deduce
that the kernel of ∆N−1 is finite dimensional, too. This shows that the Laplacian
∆N−1 is Fredholm.

By the abstract Hodge theory, there is a selfadjoint operator GN−1 ∈ L(LN−1)
which maps into the orthogonal complement of ker∆N−1 and fulfills

1LN−1 = HN−1 + ∆N−1GN−1
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on LN−1, where HN−1 is the orthogonal projection onto the finite-dimensional
space ker∆N−1.

We claim that DN−1GN−1 = GNDN−1. To prove this, pick an arbitrary element
u ∈ LN−1. Then

DN−1u = DN−1DN−1∗DN−1GN−1u

on the one hand, and

DN−1u = DN−1DN−1∗GNDN−1u

on the other hand. Hence it follows that ∆N
(
DN−1GN−1u−GNDN−1u

)
= 0,

and since DN−1GN−1u − GNDN−1u is orthogonal to ker∆N we conclude that
DN−1GN−1u−GNDN−1u = 0, as desired.

The composition ΦN−1 = DN−2∗GN−1 is thus an operator in L(LN−1, LN−2)
satisfying the homotopy equation

ΦNDN−1 + DN−2ΦN−1 = 1LN−1 −HN−1.

In other words, the pair {ΦN−1,ΦN} is a special parametrix at steps N − 1 and N
for the sequence (3.1).

To construct DN−3 we can now argue in the same way as in the construction
of DN−2. Namely, let us show that PN−2 = 1LN−2 −ΦN−1DN−2 is an orthogonal
projection onto the kernel of DN−2. To this end, we note that PN−2 is the identity
operator on the kernel of DN−2, and

DN−2PN−2 = DN−2 −DN−2ΦN−1DN−2

= DN−2 − (1LN−1 −HN−1 − ΦNDN−1)DN−2

= 0,

for HN−1DN−2 = (DN−2∗HN−1)∗ = 0. From this the desired conclusion readily
follows.

Set
DN−3 = PN−2dN−3,

then DN−3 ∈ L(LN−3, LN−2) satisfies

DN−2DN−3 = DN−2PN−2dN−3

= 0

and

DN−3 =
(
1LN−2 − ΦN−1DN−2

)
dN−3

=
(
1LN−2 − ΦN−1dN−2

)
dN−3

= dN−3

modulo compact operators in K(LN−3, LN−2), as desired.
We now proceed by induction, thus completing the proof, for the sequence (3.1)

terminates. �

4. Euler characteristic

Consider a Fredholm quasicomplex (3.1), with Li being Hilbert spaces. By
Theorem 3.1, there are operators Di ∈ L(Li, Li+1), such that Di = di modulo
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compact operators of K(Li, Li+1) and Di+1Di = 0 for all i. We thus arrive at a
Fredholm complex

0 → L0 D0

→ L1 D1

→ . . .
DN−1

→ LN → 0, (4.1)

the latter being a consequence of the fact that Fredholm quasicomplexes are stable
under compact perturbations.

Definition 4.1. By the Euler characteristic of Fredholm quasicomplex (3.1) is
meant χ(L, d) := χ(L, D).

The question arises whether this definition is correct, i.e., independent of the
particular choice of complex (4.1).

Theorem 4.2. Suppose that (L, D1) and (L,D2) be two complexes with the prop-
erty that Di

1 = di and Di
2 = di modulo compact operators of K(Li, Li+1). Then

χ(L,D1) = χ(L, D2).

Proof. We split L into the sum

L = Leven ⊕ Lodd,

with Leven = ⊕L2i and Lodd = ⊕L2i+1. Let now
(D1 + D∗

1)e : Leven → Lodd,
(D2 + D∗

2)e : Leven → Lodd

denote the restrictions of D1 + D∗
1 and D2 + D∗

2 to Leven, respectively. The ab-
stract Hodge theory allows one to conclude that the index of (D1 + D∗

1)e is equal
to χ(L,D1) and the index of (D2 + D∗

2)e is equal to χ(L,D2). Since the Fredholm
operators (D1 + D∗

1)e and (D2 + D∗
2)e differ from each other by a compact oper-

ator, their indices actually coincide. It follows that χ(L,D1) = χ(L,D2), which
completes the proof. �

Thus, the Fredholm quasicomplexes of operators in Hilbert spaces bear well-
defined Euler characteristics.

Note that the Euler characteristic of a Fredholm quasicomplex can be evaluated
by a crude formula

χ(L, d) =
N∑

i=0

(−1)i tr(1Li − di−1πi − πi+1di)

where {πi} is a parametrix of (L, d) modulo trace class operators. This follows by
arguments in [Fed91, p. 203].
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