The Structure of Operators on Manifolds with
Polyhedral Singularities

B.-W. Schulze

Abstract

We discuss intuitive ideas and historical background of concepts in the analysis
on configurations with singularities, here in connection with our iterative approach
for higher singularities.
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Introduction

The analysis on configurations with singularities (e.g., conical ones, edges, corners, etc.)
is a classical area of mathematics, motivated by models of physics and the applied sciences
and also by structures of geometry and topology. The development goes back to (at least)
the 19th century.

This paper is a survey on some aspects of the recent development and, at the same
time, an introduction. Moreover, it is aimed at discussing new phenomena around the
solvability of partial differential equations near singularities and the interaction of analytic,
geometric and topological aspects. The crucial point will be the concept of ellipticity of
operators with respect to their symbolic structure. After recalling the standard notion on
a smooth manifold, based on the homogeneous principal symbol, we discuss the way of how
a geometric singularity may contribute to other symbolic levels with associated notions of
ellipticity. Observations of that kind are basic for the construction of pseudo-differential
algebras with symbolic hierarchies on manifolds with singularities. The corresponding
theories are voluminous; they may be found in several monographs and articles of the
author, see [121], [127], [131]. The complexity of structures makes it desirable to explain
the intuitive ideas in a separate exposition; this is just our motivation here. Clearly this
cannot be exhaustive. On the one hand there is a vast variety of papers of different
orientation, from concrete models of the applied sciences to operator algebra aspects and
index theory. On the other hand there are different believes on priorities and adequate
approaches in the singular analysis. We hope to illustrate the fascination of the structure
insight connected with understanding and solving problems in this field. Our conclusion
will be that, despite of the enormous experience through the work of the authors of
the ‘singular community’ (and also of the ‘regular’ one), many important problems are
unsolved and that the new challenges open a bright future of the analysis on manifolds
with singularities.

What concerns the literature we cannot give a complete review here. We therefore
content ourselves with a list of references that have from different point of view connec-
tions with this exposition. In particular, we want to mention Gelfand [39], Agmon [1],
Agranovich and Vishik [3], Kohn and Nirenberg [61], Vishik and Eskin [154], Atiyah and



Singer [9], Eskin [32], Vishik and Grushin [156], Sternin [148], [150], Kondratyev [63],
Plamenevskij [98], [99], [100], Rabinovich [101], Bolley and Camus [11], Gramsch [46],
[47], Gohberg and Sigal [45], Fedosov [33], Seeley [140], Grushin [52], Boutet de Monvel
[13], Atiyah, Patodi, and Singer [7], Maz’ja and Paneah [79], Shubin [144], Parenti [95],
Cordes [22], Fichera [38], Teleman [152], Cheeger [18], Melrose [82], [83], Melrose and
Mendoza [84], Rempel and Schulze [103], [102], Grubb [51], [50], Kondratyev and Oleynik
[64], Grisvard [49], Maz’ja and Rossmann [80], Dauge [26], Chkadua and Duduchava [19],
[20], Costabel and Dauge [25], Shaw [143], Mazzeo [81], Roe [110], Rozenblum [111],
Egorov and Schulze [31], Booss-Bavnbek and Wojciechowski [12], Mantlik [77], Fedosov
and Schulze [34], Lesch [71], Nistor [93], Nistor, Weinstein, and Xu [94], Witt [157], Fe-
dosov, Schulze, and Tarkhanov [35], [36], [37], Nazaikinskij and Sternin [90], [87], Savin
and Sternin [113], [114], Grieser and Lesch [48], Krainer [68], [65], Seiler [141], [142], Gil,
Krainer, and Mendoza [40], [41], Ammann, Lauter, and Nistor [5], Tarkhanov [151].

1 Simple questions, unexpected answers

We start from naive questions such as ‘what are the basic questions or the right notions’ around simple objects who
everybody knows, e.g., on differential operators, their symbols, or the right function spaces. Other questions concern
classical objects from complex analysis who suddenly become obscure if we ask too much ...

1.1 What is ellipticity?
The ‘standard’ ellipticity of a differential operator
A= au(x)DS (1)
el <p

in an open set 2 C R"™ with coefficients a, € C*(Q) refers to its homogeneous principal
symbol

ou(A)(2,€) = Y aalz)€”, (2)

lol=p

(x,€) € Qx (R"\{0}). More generally, if M is a C* manifold, an operator A € Diff*(M)
has an invariantly defined homogeneous principal symbol

o4(A) € C=(T*M \ 0). (3)

(Diff#(.) denotes the space of all differential operators of order p with smooth coefficients
on the manifold in parentheses.)

Definition 1.1. The operator A is called elliptic if oy, (A) # 0 on T*M \ 0.
Remark 1.2. Since oy(A) is (positively) homogeneous of order p, i.e.,
oy (A) (2, A§) = Moy (A)(x,§) (4)

for all (z,§) € T*M \ 0, A € Ry, we may equivalently require oy (A)|.,, # 0, where S*M
is the unit cosphere bundle of M (with respect to some fized Riemannian metric on M).




Clearly we can also talk about the complete symbol

o (A)(,€) = a(z,€) = ) aa(2)E" ()

la|<p

of an operator A, first on an open set 2 C R™ and then on a C*° manifold M. In the
latter case by a complete symbol we understand a system of local complete symbols (5)
with respect to charts x : U — 2 when U runs over an atlas on M.

The invariance of symbols refers to transition maps k := x o x~! for different charts

X:U—Q, x:U — Q which induce isomorphisms «, : Diff*(Q2) — Diff*(Q2) (subscript
“+” denotes the push forward of an operator under the corresponding diffeomorphism) and
associated symbol push forwards a(z,&) — a(Z, 5) between the local complete symbols
a(x,§) and a(z, é) of A and A = Y. A, respectively. As is known we have a(z, f)’jzﬁ(x) ~
Y é(@?a)(x,tdm(x)é)cba(x,é) for 9g = 95! - ... - Ogr, Doz, €) = Djei‘s(”ﬁ’z)qzm where
Iz, z) == k(z) — k(z) — dr(x)(z — ), with dr(x) being the Jacobi matrix of x, and
the function ®4(z, &) is a polynomial in & of degree < |a|/2, o € N, &y = 1. In the
asymptotic expression for a(z, 3 ) we have equality for differential operators (since the sum
is finite) and an asymptotic sum of symbols in the pseudo-differential case. (Well known
material on spaces S& 1)(9 x R™) of pseudo-differential symbols of order 11 € R (classical or
non-classical) will be given in connection with Definition 1.27 below; associated pseudo-
differential operators are discussed in Section 2.2).

In particular, for A=k, A it follows that

od,(;{)(i,f) =o0y(A)(x,&) for T =r(x), £= (*dr(z)) 1€,

which shows that o,,(A4) € C®°(T*M \ 0).

The ellipticity on the level of complete symbols (5) in local coordinates is the condition
that for every chart y : U — Q there is a p(z,&) € S7#(Q x R"), n = dim M, such that
p(z,&a(r,&) —1 € S7HQ x R).

Recall that principal symbols and complete symbols have natural properties with
respect to various operations, for instance,

op(l) =1, 0y(AB) = 0y (A)oy(B)

(with I being the identity operator), and o(I) = 1,6(AB) = o(A)#0(B), with the
Leibniz product # between the local complete symbols a(x, §) and b(x, £) of the operators
A and B, respectively, (a#b)(z,&) ~ > 2 ((9?@(:E,§))D§‘b(x,f) (the sum on the right

a al
hand side is finite in the case of a differential operator B).
A crucial (and entirely classical) observation is the following result:

Theorem 1.3. Let M be a closed compact C> manifold and A € Diff*(M). Then the
following properties are equivalent:

(i) The operator A is elliptic with respect to oy.
(ii) A is Fredholm as an operator
A H (M) — H*(M) (6)

for some fixed s € R.



The property (ii) entails that (6) is a Fredholm operator for every s € R.

Parametrices of elliptic differential operators are known to be (classical) pseudo-
differential operators of opposite order. Let L’(lcl)(M ) denote the space of all pseudo-
differential operators on M of order p € R; the manifold M is not necessarily compact
(in this notation subscript ‘(cl)’ indicates the classical or the non-classical case). More

generally, there are the spaces Lé‘cl) (M; RY) of parameter-dependent pseudo-differential op-

erators on M of order 1 € R with the parameter A € R'. In this case the local amplitude
functions (in Hormander’s classes) contain (£, \) € R™ x R! as covariables, the operator
action (locally based on the Fourier transform) refers to (z,¢), and the operators contain
A as a parameter.

Every A € L (M) has a homogeneous principal symbol o,(A) € C*®°(T*M \ 0) and a
system of local complete symbols o (A)(x, ). More generally, for A € L (M;R') there is
a corresponding principal symbol

op(A) (7,6, 0) € C(T*M x R\ 0), (7)

homogeneous of order x in (£, \) # 0, and for A € L*(M;R!) we have complete parameter-
dependent symbols.
The ellipticity of an operator A(X) € L, (M; R!) is defined in an analogous manner
as before (for [ > 0 the parameter is treated as a component of the ‘covariable’ (£, A)).
Let L=°°(M) denote the space of all operators C' on M with kernel ¢(z, ') € C*(M x
M), ie., Cu(z) = [, c(z, 2" )u(z')dz’ (da’ refers to a Riemannian metric on M). Moreover,
set L=°(M;RY) := S(R!, L=>°(M)).

Theorem 1.4. Let M be a closed compact C*° manifold. An elliptic operator A €
L’{Cl)(M;Rl), iweR, €N, has a parametriz P € L(_C{L)(M;Rl) in the sense

PA=1-C), AP=1-C, (8)

for operators Cy,C, € L=°(M;R!).

If M is not compact we have an analogous result; in order to have well defined com-
positions in (8) we may choose P in a suitable way, namely, ‘properly supported’, which
15 always possible.

Remark 1.5. Theorems 1.3 and 1.4 are true in analogous form for pseudo-differential
operators acting between Sobolev spaces of distributional sections of (smooth complez)
vector bundles E, F on M,

A:H*(M,E)— H*"(M,F); 9)

the principal symbol is then a bundle morphism oy(A) : 7 E — 7*F form : T*M \ 0 —
M, and ellipticity means in this case that o4(A) is an isomorphism. There are then
corresponding extensions of Theorems 1.3 and 1.4. In addition the Fredholm property of
(9) for a special s = sy € R entails the Fredholm property for all s € R.

Remark 1.6. We do not repeat all elements of the classical calculus around pseudo-
differential operators and ellipticity on a smooth manifold. Let us only mention that the



index ind A := dimker A — dim coker A of the Fredholm operator (6) is independent of s.
In fact, there are finite-dimensional subspaces

VCcC®ME), WcCC>®MF)
such that V =ker A, W Nim A = {0} and W +im A = H*(M, F) for all s € R.

It is a general idea to reduce interesting questions on the nature of an operator A (as
a map between spaces of distributions on M or on the solvability of the equation Au = f)
to the level of symbols which are much easier objects than operators. This is, of course,
a general program, not only for elliptic operators, but also for other types of operators,
e.g., parabolic or hyperbolic ones.

The aspect of connecting symbols with operators and vice versa plays a role in wide
areas of mathematics. Key words in this connection are ‘index theory’, ‘microlocal anal-
ysis’, or ‘quantisation’. The symbolic structure of operators is basic for many areas, e.g.,
in pseudo-differential and Fourier integral operators, symplectic geometry, Hamiltonian
mechanics, spectral theory, operator algebras, or K-theory.

It is not the intention of our remarks to persuade the reader that all this is relevant and
useful. We want to focus here on the analysis of operators on manifolds with singularities
with questions on the nature of symbols, ellipticity, homotopies, index, and other natural
objects. In the singular case those questions arise once again from the very beginning,
similarly as in the early days of the microlocal analysis on smooth manifolds. Nevertheless,
the analysis on non-smooth and non-compact configurations has a long history, and there
is much experience of different generality with the solvability of concrete elliptic (and also
non-elliptic) problems with singularities. The notions and inventions from the smooth
case might be a guideline, at least as a special case. However, such an approach has a
difficulty in principle: There is, of course, no universal ‘true analysis’ of (linear) partial
differential equations on a smooth manifold, and hence we cannot expect anything like
that in the singular case.

As noted at the beginning there exist different confessions in the fields ‘ellipticity’, or
‘index theory’ on manifolds with singularities. Our choice of aspects is motivated by an
iterative approach for manifolds with higher (regular) singularities.

If we know nothing and want to see the smooth situation as a special case we can start
from an operator A € Diff*(R"*!) (the dimension n + 1 is taken here for convenience)
and interpret the origin of R"™! as a conical point. Introducing polar coordinates (r, ¢) €
R, x S™ we obtain A|Rn+1\{0} (briefly denoted again by A) as

A=r Y () (r oy (10)

=0
with coefficients a; € C=(R, Diff*"7(S")). Note that the operator A = Z;lill Tj5% in
J

0
polar coordinates takes the form ra—. Another example is the Laplace operator A =
r

n+1 82
E +~5 in polar coordinates:
p ox;,

A= r_2<(r—)2 + (n — 1)1"% + Asn)



for the Laplace operator Ag» on S™. Setting
M .

oo(A)(w) = a;(0)u,

=0

J

w € C, we just obtain the so-called conormal symbol of A of order p (with respect to
the origin). In this way the operator A suddenly has a second (operator-valued) principal
symbolic component, namely,

oc(A)(w) - H>(S") — H*"(5"),
s € R. This can be regarded as a component of a ‘principal symbolic hierarchy’
o(A) := (o5(A), 0c(A)) (11)

(with a natural compatibility property between o, (A) and o.(A)).
For the identity operator I we obtain the constant family o.(/)(w) of identity maps
in Sobolev spaces, and the multiplicative rule including conormal symbols has the form

0(AB) = (0y(A)ay(B), (T"0c(A))oe(B)) (12)

if A and B are differential operators of order p and v, respectively; (T" f)(w) = f(w+v).
In order to recognise o.(A) as a symbol of A in a new context we have to be aware of the
following aspects:

(i) the origin is singled out as a fictitious conical singularity (we could have taken any
other point), and o.(A) also depends on the lower order terms of the operator A (in
any neighbourhood of 0);

ii) o.(A) refers to a chosen conical structure in R"*!, i.e., to a splitting of variables
g
(r,¢) € Ry x X for X = 8™ in which we express the operator A;

(iii) o.(A) is operator-valued, with values in operators on a smooth configuration which
is of less singularity order than the conical case.

We can pass to other splittings (f,qz;) € R, x X of variables when the transition
diffecomorphism Ry x X — R, x X, (r,¢) — (&, ), is smooth up to = 0. There is then
a transformation rule of conormal symbols which just expresses the invariance, cf. [60].
Specific changes R, x X — R, x X which are smooth up to zero are generated by different
diffeomorphisms R — R"*! who preserve the origin. A Taylor expansion argument
then shows that in such a case the transformation of conormal symbols is induced by a
linear isomorphism of R"™. However, in the context of interpreting a point v (here v = 0)
as a conical singularity, we admit arbitrary changes (7, ¢) — (T, 5) which are smooth up
to r = 0; then, in general, the transformed operator cannot be reduced to an operator
with smooth coefficients across v in the original Euclidean coordinates.

If A € Diff*(M) is a differential operator on a smooth compact manifold M we can fix
any v € M as a fictitious conical singularity and express o.(A) in local coordinates under
a chart y : U — R"™! v € U, such that x(v) = 0. This gives us a conormal symbolic
structure o.(A) of operators A € Diff*(M). Together with the interior principal symbol

7



we obtain a two-component symbolic hierarchy (11). The same can be done for finitely
many points {vq,...,vxy} C M; this gives us N independent conormal symbols. Let us
restrict the discussion to the simplest case N = 1.

What is now ellipticity of A?

We could refer to any classical exposition, and employ the technical background from
there. However, we want to develop the idea here from the point of view of a child who
looks conciously for the first time to the sky and realises all the different stars, each of
them representing another ellipticity and another index theory.

For the definition we have to foresee a kind of natural analogues of Sobolev spaces
in which the elliptic operators should act as Fredholm operators. Considering M as a
manifold with conical singularity {v} we have the associated stretched manifold M. By
definition M is obtained from M \ {v} by (invariantly) attaching a sphere S™. This
produces a C'*° manifold with boundary OM = S™. For instance, if M is locally near
v identified with R™"! (via a chart) and v with the origin, then M is locally near M
identified with R, x S™ where (r,¢) € Ry x S™ correspond to polar coordinates in
R™™ \ {0}. There is now a scale of weighted Sobolev spaces H*?(M) of smoothness
s € R and weight v € R, contained in H (M \ {v}). Locally near v our operator (in the
chosen splitting of variables (r, ¢)) is a polynomial in vector fields

2009
o' 961" D

(for n 4+ 1 = dim M), up to the weight factor r—*.

By definition the stretched manifold M is a C'** manifold with boundary, and we can
talk about all vector fields that are tangent to OM. This is a motivation for a definition
of the spaces H*7(int M) for s € N as

HEY (M) :={u € H*'(M) : D € H*"(M) for all |a| < s,
for any tuple D = (Dy,..., Dy41) of vector fields tangent to OM },

where D* := (D, -...- Dyit), and H%7(int M) is a weighted L%-space, locally near
the boundary defined as r7~% L? (R, x OM). This definition immediately extends to an
arbitrary (compact) manifold M with boundary OM = X for any closed compact C'*
manifold X, first for s € N and then, by duality and interpolation for all s € R.

In particular, for M = R**! and M = R, x S™ we also set
(R {0}) = H(M).

The role of the weight v € R may appear somehow mysterious at the first glance. To give
a motivation we observe that the conormal symbol

oe(A)(w) : H*(X) — H*M(X) (13)

represents a holomorphic family of Fredholm operators, cf. Theorem 1.3. The ellipticity
of A with respect to o.(A) should have the meaning of some invertibility of the maps (13),
because a parametrix in the pseudo-differential sense is expected to be associated with
the inverse symbol. However, in general, there exists a non-trivial set D, C C of points
such that (13) is not invertible. What we know is that

Dan{weC:c<Rew <} (14)

8



is finite for every ¢ < ¢’. This is a consequence of the parameter-dependent ellipticity of
of O'C(A)‘FB as a family of operators on X with parameter Imw, for every 8 € R; here

I's :={w € C:Rew = (}. In our definition of ellipticity we should exclude the set (14)
and feed in an extra weight information:

Definition 1.7. An operator A € Dift"(M) is called elliptic with respect to the symbol
7(4) = ((ou(A), oA, )
o =7

for some given weight v € R, if A is elliptic with respect to o,(A), cf. Definition 1.1, and

if
o(A)(w) : H*(X) — H"(X) (15)

1s a family of isomorphisms for all w € FnTH_,y and some s € R.

The justification lies in the following result.

Theorem 1.8. For an operator A € Dift"(M) on M (regarded as a manifold with conical
singularity v € M) the following properties are equivalent:

(i) The operator A is elliptic with respect to (o, UC}FLHﬂ)-
2

(ii) A is Fredholm as an operator
A HY (M) — HT#TTH(M)
for some fized s € R.

The property (ii) for a specific s entails the same for all s € R.

Theorem 1.8 extends to the case of a general stretched manifold M belonging to a
manifold M with conical singularity {v}. As noted before M is to be replaced in this
case by an arbitrary compact C°° manifold with boundary OM = X (where X is not
necessarily a sphere). Then M := M/0OM (the quotient space in which OM is collapsed
to a point v) is a manifold with conical singularity, cf. Section 3 below. The operators A
in this case are assumed to belong to Diffy (M) which is defined to be the subspace of

all A € Diff*(M \ OM) that are of the form
H a ;
A = T_'u‘ JEO aj (7”) (—7’5) (].6)

in a collar neighbourhood 2 [0, 1) x X of the boundary, with a; € C>([0, 1), Diff*7(X)).
Operators of that kind will also be called of Fuchs type. For this situation there exists a
pseudo-differential algebra in analogy to the algebra of pseudo-differential operators on a
C* manifold, here with a principal symbolic hierarchy

a(A) = (04(A), 0.(4)),

ellipticity, parametrices, etc., cf. also Section 3 below.

9



Let us now return to differential operators in the Euclidean space and ask whether there
are other natural notions of ellipticity. First, under suitable conditions on the coefficients
of an operator A € Diff*(R™), m := n + 1, we have continuity A : H*(R™) — H* #(R™)
between Sobolev spaces globally in R™ for every s € R. For instance, if an operator

A= Z a(x) DY

la]<p

has coefficients a,(z) € SG(R™) we are in the situation of the calculus of operators globally
in R™, cf. Parenti [95], Cordes [22], with the principal symbols

o(A) = (04(A), 0e(A), Ty e(A)),

see also the notation in Section 3.3 below, or [127, Section 1.4]. More generally, there is
an analogous notion of ellipticity on an arbitrary manifold with conical exits to infinity.
We do not repeat once again the elements of that theory. Let us only recall that when we
introduce the origin of R™ as a conical singularity we have a combination of the principal
symbolic structure near 0 from the cone calculus and of the exit symbolic structure near
0o, with a principal symbolic hierarchy

0(A) = (0y(A),0.(A),06(A), 0y (A)). (17)

The adequate scale of weighted Sobolev spaces in this case is 7 (R™ \ {0}), s,v € R,
defined by

K (R™N\ A{0}) :=={wu+ (1 —w)v:u e HT(R™\{0}), ve H(R™)} (18)

for any w € C§°(R™) such that w = 1 in a neighbourhood of zero. In the behaviour with
respect to ellipticity there is, of course, no kind of symmetry under the transformation
(r,¢) — (r~',¢) when (r, ¢) are polar coordinates in R™ \ {0}. Similarly, if X is a closed
compact C* manifold, we have a class of natural operators A on the infinite stretched
cone X" :=Ry; x X 5 (r,z) and the principal symbolic structure (17), see [127, Section
1.4].

Definition 1.9. Let A € Diff*(X") be an operator of the form
n N
rH Z a;(r) (—TE) ) (19)

with coefficients a; € C°(R,, Dift* /(X)) such that the coefficients locally in (r,x) in a
conical subset of R™ for r — oo (n = m — 1 = dim X)) admit the pair of exit symbols
0e(A), oy o(A) (this is the case, for instance, when the coefficients are independent of r
for large r, cf. also Section 3.3 below, or [127, Section 1.4.5]). Then A is called elliptic
with respect to

05(A) = (0y(A), 0c(A) | 0e(A), 0ye(A)) (20)

if all components are elliptic. For o,(A) that means oy(A) # 0 on T* X"\ 0 and, in local
coordinates x on X with covariables &, and oy (A)(r,z,p, &) := r*o,(A)(r,x, 7 0,&) # 0
for (0,€) # 0, up tor = 0. For o.(A) the condition is that (13) is bijective for all
w € F%—v and any s € R. The ellipticity condition for the exit symbols 0.(A) and
op.e(A) will be explained in detail in Section 3.3.
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For an arbitrary closed compact C*° manifold X there is an analogue of the spaces
(18), namely,

KX ={wu+ (1 —w)v:ue H (XN, ve H (X"} (21)

for an arbitrary cut-off function w. The space HZ (X") is locally modelled on the
standard Sobolev spaces for r — oo.
More generally, it may be reasonable to consider the spaces

K39 (XN 1= (r) I (X (22)

with an extra weight g € R at infinity.
Recall that for s € N, v € R, we set

H(XN) = {u € P LARxX) : (r0,)* D € I LA(R.x X) forall k+l|a| < s},

(23)
where D% runs over the space of all differential operators of order |a| on X; n = dim X.
The definition of the spaces H*?(X") for arbitrary real s follows by duality with respect
to the r—2 L?(R,. x X)-scalar product and interpolation, and then we set H*?(X") =
rHO(X") for v € R.

Remark 1.10. The spaces K*7(X") are Hilbert spaces with suitable scalar products; in
particular, we have natural identifications K*°(X") = HO(X") = r=3 L2(R, x X) for
n = dim X. Setting

rau(r,z) = )\nTHu(Ar, x), A€ Ry,

forw € K&Y(X") we obtain a strongly continuous group of isomorphisms
Ky L COV(XN) — KX,

A € Ry. More generally, on KC*7V9(X") we can consider

ntl

> u(Ar,z), AeR,. (24)

ku(r,x) = A9+

Theorem 1.11. For an A € Dift*(X") as in Definition 1.9 the following properties are
equivalent:

(i) The operator A is elliptic with respect to (20).
(ii) A is Fredholm as an operator A : K*7(X") — K77 H(X") for some fized s € R.

Similarly as in Theorem 1.8 the property (ii) for a specific s entails the same for all
s € R. Let us now consider operators A € Diff“(Rg;q), g > 0, from the point of view

of polar coordinates R\ {0} 37 — (r,¢) € Ry x 8" in A‘(Rm\{O})qu (briefly denoted
again by A). Similarly as at the beginning we obtain A in the form

A=r7# Z @jo (T, y)(—r%)j(rDy)o‘, (25)

Jtlal<p
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now with coefficients aj, € C*°(R, x R¢ Diff”’(ﬂ'a')(S”)) for n = m — 1. For instance,

n+1 q
82
for the Laplace operator A = E 8N2 E 8_ we obtain
Y2
k=1

A:r_2<(r%)2—l—(n—1)r—+Asn Z 0yl)

=1

This case generates a new operator-valued principal symbol, namely,
_ 0\, \a
on(A)(y,m) =" Y aja(0,y) (=) ()", (26)
Jtlel<p

(y,m) € R? x (R?\ {0}), which is called the principal edge symbol of the operator A with
RY being interpreted as an edge. (26) represents a family of continuous operators

on(A)(y,m) : K27(XD) — K#I1H (X7,

X = 8", for every s,v € R.
Our new principal symbolic hierarchy here has two components

o(A) = (o4(A), on(A)). (27)
The second component is homogeneous in the sense
an(A)(y, M) = Neraa(A)(y, k3" (28)

for all A € Ry, (y,n) € R x (R?\ {0}). For the identity operator I we have o,(I) = id
and for the composition

on(AB) = or(A)on(B)

when A and B are differential operators of order p and v, respectively.

Operators of the form (25) including their symbols (27) are meaningful on Ry x X xR?
for an arbitrary closed compact C'* manifold X. In this connection R? is regarded as
the edge of the (open stretched) wedge X" x R? with the (open stretched) model cone
X" =R, x X. Such operators are called edge-degenerate. This notation comes from the
connection with ‘geometric’ wedges

W= X% xRY,

with non-trivial cones

X4 = (R, x X)/({0} x X)
(in the quotient space {0} x X is identified with a point, the tip of the cone).

Remark 1.12. The Laplace-Beltrami operator on Ry x X x R 3 (r,x,y) belonging to a
Riemannian metric of the form

dr® +rigx(r) + dy?

for a family of Riemannian metrics gx(r) on a C™ manifold X (smooth in r € Ry up to
0) is edge-degenerate. In particular, for ¢ =0 we obtain an operator of Fuchs type.

12



Remark 1.13. As we see from the preceding discussion, differential operators A in R+
(with their standard principal symbolic structure oy,) secretly belong to several distinguished
societies, namely,

(i) the class of Fuchs type operators with respect to any (fictitious) conical singularty;

(i) the class of edge-degenerate operators with respect to any (fictitious) edge (when
n>2).

The ellipticity with respect to o, in the edge-degenerate case is a longer story, and we
return later on to this point, cf. Section 2.1.

The question is now whether our operators have other hidden qualities that we did
not notice so far.

The answer is ‘yes’ (when the dimension is not too small).

The operator (1) (in the dimension n + 1 rather than n) written in the form (10) for
X = 5™ or (25) (when the original dimension is equal to m + ¢) for X = S™! allows us
to repeat the game, namely, to introduce once again fictitious conical points or edges on
the sphere and to represent the coefficients a;(r) or a;o(r,y) in Fuchs or edge-degenerate
form. In order to make the effects more visible we slightly change the transformation of
(1) to operators of the form (10) or (25) by

(x1,. .. ) — (2')7) (29)

for #' := (21,...,Tm_1),7 = T,,. The orthogonal projection of S™ ' := {z € ™! :
Ty > 0} to

B:={r cR™": || <1}
is one-to-one; thus 2/ € B can be taken as local coordinates on ST~ '. Clearly for local
representations it suffices to consider the hemisphere ST_I (up to a rotation). The sub-
stitution of (29) into (1) (when the original dimension is equal to m + ¢) gives us the
operator A in the form (25) with coefficients

ajo(r,y) € C=(R, x Q,Diff*~Utlel(B)) (30)
(here we assume ¢ > 0; the case ¢ = 0 is simpler and corresponds to the Fuchs type case).
Now, splitting up the variables in B into 2’ = (2”,t, 2) for 2" := (x1,...,25_1), t = x4,
2= (Tgs41, ..., Tm—1), the substitution =’ — (z”,t) turns (30) into
) O\l
(1, y) = LAl bia / (—t—) tD,)? 31
a] (T, y) Z J 71/3(T7y7 72) at ( ) ( )

I+18l<p—(G+lal)

with Difft~HeD=CHB) () _valued coefficients bjnyg, smooth in (r,t,y,2) (up to r = 0
and t = 0) for C' := {2 € R¥' : [2”| < 1} and (¢, y) varying in a neighbourhood of
(t,y) = 0. Inserting (31) into (25) we obtain a differential operator of the form

A=r M rA (32)
where A is a polynomial of degree 1 in the vector fields

Pty Oy - Oy s POy 7HDy 1D, HD., . 10, (33)

q)
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for g1 :== m — k — 1 with smooth coefficients in (r,t,2”,y,z) up to r = 0, t = 0. The
operator (32) is degenerate in a specific way. There are two axial variables ¢ and r, and
the principal symbolic hierarchy of A in this case consists of 3 components

U<A) = (0-#)("4) (ZE, 5)7 Ony (A) (Tv Y, =, 0,1, C)a Ong (A) (y’ 77))

with the standard principal symbol o,,(A), the edge symbol o, (A) of first generation and
the edge symbol o4,(A) of second generation.

The ellipticity of A with respect to (oy,04,,04,) cannot be explained in a few words.
What we mainly need as a new ingredient is an analogue of the K®7-spaces on infinite
cones whose base spaces are manifolds with edges. This will be discussed later on in
Section 6.2. Another important point are extra edge conditions which are necessary both
for o5, and o,,; they also require separate constructions, cf. Section 2.1 for a very simple
model situation.

Remark 1.14. The Laplace-Beltrami operator on Ry x {Ry x X xR®} xR? > (r,t,z, 2, y)
belonging to a Riemannian metric of the kind

dr? + 7"2{d752 + thX(T, t,z,y) + sz} + dy2

for a family of Riemannian metrics gx(r,t,z,y) on a C* manifold X (smooth in the
variables up to r =0, t = 0) has the form

S bjaas(n gt 2) (—t%) (tD.)’? (-maﬁ)j(rwy)a (34)

A T
JHlal+H+H8|<u

(for p = 2) with Diffr~UHeH B (XY _yalued coefficients which are smooth up to r = 0
and t = 0. Operators of the kind (34) are called corner-degenerate of second generation.

It is now clear that the constructions which lead from (1) to (25) and then to (32)
can be iterated as often as we want (only limited by the total dimension). Every time
we produce new types of degenerate operators with higher principal symbolic structures.
As the Remarks 1.12 and 1.14 show, operators with such degeneracies are connected with
higher corner geometries, not merely with fictitious edges and corners.

Other variants of degenerate operators appear when we introduce in (25) polar coordi-
nates in different hypersurfaces not only with respect to the z-variables on S™~! but also
with respect to the y-variables in R?. This leads again to new principal symbolic structures
and new ellipticities (provided that the concepts of ellipticity for such higher-degenerate
operators are developed far enough).

Summing up we see that the process of iteratively blowing up singularities produces
a large variety of degenerate operators, the ellipticity of which (including their Fredholm
property, in which Sobolev spaces?) was never studied before.

Operators with analogous degeneracies are natural on manifolds with edge and corner
geometries in general. In the following sections we develop step by step more ideas,
motivation and technicalities around operators on corner manifolds.

The surprising answer to the question ‘what is ellipticity’ is that there are many
ellipticities, according to the chosen symbolic structures, most of them being unknown in

14



detail, including all the consequences for the analysis of the corresponding operators and
their index theory.

In the above examples we saw that the additional principal symbolic components, apart
from the standard homogeneous principal symbol on the ‘main stratum’, are contributed
by lower-dimensional (here fictitious) strata. Since the latter ones are special cases of
‘real’ strata we see that the already derived minimal information has to be a part of the
elliptic story also in cases with general polyhedral singularities.

1.2 Meromorphic symbolic structures

As we saw in the preceding section differential operators may have many kinds of symbols,
not only the standard homogeneous symbol. Each of those symbols controls another kind
of ellipticity, the Fredholm property in different scales of (weighted) Sobolev spaces, and
parametrices. One of the most substantial novelties are the conormal symbols who consist
of parameter-dependent operators, in simplest cases on a closed manifold X, the base of
the local model cone (a sphere when the conical point is fictitious).

As Definition 1.9 shows the conormal symbol o.(A)(w) of an operator A of the form
(19) refers to a chosen weight v € R which is admissible in the sense of the bijectivity
of (15) for all w € FnTJrl _,- Nevertheless, the conormal symbol may be of interest in
the whole complex plane as a (for differential operators) holomorphic operator family.
The inverse (in the elliptic case) exists as a meromorphic family of Fredholm operators
between the corresponding Sobolev spaces on X.

There are now several interesting questions.

(i) Which is the role of the poles (including Laurent expansions) of o.(A)~! for the
operator A or for the nature of solutions u of Au = f7?

(ii) Can we control spaces of meromorphic operator functions as spaces of conormal
symbols in analogy to the scalar symbol spaces?

Concerning (i), as we shall illustrate below, there are many properties of solvability
that depend on poles and zeros (i.e., non-bijectivity points) of the conormal symbols. The
main aspects are asymptotics of solutions and the Fredholm index (especially, the relative
index when we change weights).

For (ii) we have to specify the meaning of ‘control’. The point is that every operator A
generates a pattern of poles and zeros of its conormal symbol o.(A) which is individually
determined by A. Spaces of such meromorphic symbols contain all possible patterns of
that kind, i.e., such symbol spaces encode the asymptotic behaviour of solutions, the
relative index behaviour and other effects, influenced by the conormal symbols for all
possible operators A at the same time.

This is far from being a purely ‘administrative’ discussion on the structure of the
calculus. In fact, if we pass to edge singularities and edge-degenerate operators A we
have subordinate conormal symbols

H .
0con(A)(y, w) =D a;0(0, y)uw’
=0

J



which are families varying with the edge variable y, and, of course, all data connected
with meromorphy (including the position and multiplicities of poles and zeros) depend on
the variable y.

Let us have a look at a very simple example which shows how the operator determines
individual asymptotics of solutions near r = 0.

Let

Au = Zaj(—ra)ju(r) =f (35)

be an equation of Fuchs type on R, with constant coefficients (any weight factor as in
(16) in front the operator is not really essential in the conical case). Then, for

m

h(w) := Z a;w’ (36)

J=0

the equation (35) takes the form op,,(h)u = f. Here opy(h)u = M~'hM is the
pseudo-differential operator based on the Mellin transform M in L*(R,), Mu(w) =
Sy r“~ u(r)dr. Under the ellipticity condition

o.(A)(w) = h(w) #0 on I (37)

we can realise op,,(h™!) as a continuous operator L*(R,) — L*(R,), and we find the
solution in the form

u(r) = opy (W) () (r) = M2, (B~ (w)M(f)(w)). (38)

The Mellin transform M is operating not only on L?*(R,) but on subspaces L%(R,) of
functions with asymptotics of type

P = {(pj,m;) }jen- (39)

Here p; € C, m; € N, Rep; < %, Rep; — —o0 as j — oo. The space LH(R,) is defined
to be the subspace of all u € L?*(R,) such that for every 8 € R there is an N = N(3)

with
N my

w(r){u(r) — Z Z cipr P loghry € rPLA(Ry)

with coefficients ¢;; € C depending on u, for any cut-off function w (i.e., an element of
C°(Ry) that is equal to 1 near r = 0).

Theorem 1.15. Let A satisfy the conditions a, # 0 and (37), and let f € L*(R). Then
the equation Au = f has a unique solution u € L*(Ry). Moreover, [ € LQQ(RQ for some
asymptotic type Q entails u € L%5(R,) for some resulting asymptotic type P.

We have, of course, more regularity of solutions than in L? (cf. Remark 4.4 below).

The meromorphic function 2~!(w) belongs to a category of spaces that are defined as
follows.

Let

R={(rj,n;)}jez (40)
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be a sequence of pairs € Cx N, such that [Rer;[ — oo as [j| — oco. Set mcR := U,z {r;}-
A mecR—excision function is any xg € C*(C) such that xg(w) = 0 for dist(w, mc¢R) < co,
xr(w) =1 for dist(w, mcR) > ¢; for certain 0 < ¢y < ¢1.

Definition 1.16. Let MY, denote the space of all meromorphic functions f in the complex
plane with poles at r; of multiplicity nj + 1 such that xp(w)f(w)|r, € S§(I'p) for every
6 € R uniformly in compact (B-intervals; here xr is any mcR-excision function, and
S¥(Tg) is the space of all classical symbols of order v in the covariable Imw for w € I'y
with constant coefficients, cf. Definition 1.27 below. For mcR = () the corresponding space
will be denoted by Mp,.

In our example, if a, # 0, we have
hH(w) € MG (41)

for some R of the kind (40) determined by the zeros of h(w) in the complex plane.
In order to obtain the regularity result of Theorem 1.15 with asymptotics we consider
the solutions (38) and observe that the space

MerLg) (R+)

for an asymptotic type @ = {(¢;,!;) }jen, mc@ C {w : Rew < %}, can be characterised
as the space .AOQ of those meromorphic functions m(w) in the half-plane Rew < % with
poles at ¢; of multiplicity j + 1, such that for every mcQ-excision function xg we have

Xq(w)m(w)lr, € L*(I's) (42)

for all § < 5 (the meaning for 3 = 1 is that xq(6 + i0)m(3 + io) has an L?(R,)-limit for
6/ %), and (42) holds uniformly in compact S-intervals C (—oo, %]
In other words, M : L*(R,) — L*(T 1 ) restricts to an isomorphism

M : LH(Ry) — A for every Q.

Now Mf € Aj) entails h™"(w)M f(w) € A} for some asymptotic type (39). Then the
relation (38) gives us immediately u € L%(R,).

This consideration shows by a very simple example how the regularity of solutions
near r = 0 is influenced by the operator A. Namely, the resulting asymptotic type is
determined (apart from @) on the right hand side) by

R|Rew<% for h™ e MR".
Here R{Rew<6 :={(g,n) € R:Req < 0}. The same questions can be asked for r — oo,
or both for r — 0 and r — oo. Let

PP = {0}, m))} P = A5, m5) }jen (43)

be asymptotic types, Py responsible for r — 0 as before and P, for r — oo (where
Repf® > %, Rep?® — oo as j — 00). Let LfDO’P(X, (R4) be the subspace of all u € L%, (R;)
such that for every 8 € R there is an N = N(/3) such that

(1- w(r)){u(r) 3> dur logkr} e rPL(R,)



for some coefficients d;, depending on u, and a cut-off function w(r).
Then a simple generalisation of the regularity result of Theorem 1.15 with asymptotics
is that
Au=f € L}y g (Ry) = u € Lo po(Ry)

for every pair (Q°, Q>) of asymptotic types with some resulting (P°, P>).
The correspondence

0 0 00 00
Q" — P comes from R|Rew<% and Q% — P> from R’Rew>% (44)

by a simple multiplication of meromorphic functions in the complex Mellin w-plane.

In other words, the asymptotic type R of the Mellin symbol h~!(w) is subdivided into
parts in different half-planes, responsible for the asymptotics of solutions for r — 0 and
r — 00.

Let us now slightly change the point of view and ask solutions of the equation (35) for
ferL*(Ry) := L*7(R,) rather than L?(R,), for some weight v € R.

To this end we first recall that the Mellin transform Mu = fooo rw_lu(r)dr‘rl ,

1o

,
u € C°(R4), extends to an isomorphism

M3 L(Ry) = ATy ,)

for every 4 € R (which is equal to M for v = 0). Then, having a Mellin symbol (36), we
can form the associated operator

u— Myu— Bl My — M (h\r%_ )M,yu = opl, (h)u. (45)

~

We also write
opar(-) = op (). (46)
Observe that
opp(R)u =17 0pp (T7h)r Tu

for (T~7h)(w) := h(w — 7), for arbitrary v € R, and u € C§°(R;). Considering the
equation (35) for f := 17 fy, u := r7ug, for a given element f, € L?(R,) it follows that

a O\ a o) j
Z a; <—TE> (rTug) =17 fo =17 Z a; <_TE - ’Y) Uo- (47)
j=0 Jj=0
Thus the equation
m .
O N\J
j;aj (—TE) (rug) =17 fo, fo€ L*(Ry)

is equivalent to
opy (T h)ug = fo, (48)

and solutions u = g of (47) follow from solutions ug of (48).
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Analogously as before we form spaces of the kind

Lfgj (Ry) or L?:’g, Pge (R+)

for asymptotic types P, or (P;), P:°) defined in a similar manner (and with a similar
meaning) as before. More precisely, we have

Py():{(pg_%mg}jew Pﬂfo:{(p?o_%m?o)}jel\l

for sequences as in (43); then u(r) € L}, po (Ry) has asymptotics of type P for 7 — 0
vy
and of type PJ° for r — oo.

As a corollary of Theorem 1.15 we now obtain the following result:
Theorem 1.17. Let A satisfy the conditions a, # 0 and
oc(A)(w) = h(w) #0 on T'1_

.
Then the equation Au = f € L*7(R,) has a unique solution uw € L*Y(R,). Moreover,
fe Lég Qz (Ry) for some asymptotic types ( 2, Q) entails u € L?D’; P (R,) for resulting
asymptotic types (PWO,P;O). Analogously, we can ignore asymptotics at oo and conclude
from f € LéZ(RJF) solutions u € L?;j(]RJF) for every Q. with some resulting P, .

This is immediate from the reformulation of (47) as (48).
What we also see in analogy of (44) in the weighted case is that the transformation

and Q7 — PJ° from R‘Rew>%7. (49)

0 0 ‘
—
@, — P, comes from R Rew<l— ,

~

Remark 1.18. In principle, the generalisation of Theorem 1.15 from ~y = 0 to arbitrary
v € R is completely trivial. Nevertheless, something very strange happed during the change
to the new weight. Comparing (44) and (49) we see that some part of the ‘meromorphic
information’ of the inverted conormal symbol o.(A)™t, encoded by R, which is responsible
for the asymptotics of solutions in L*>°(R,) for r — oo may suddenly be responsible for
the asymptotics of solutions in L*7(R,) forr — 0, and vice versa, according to the specific
position of R relative to the weight lines F%_% and F%—w respectively. In the extremal
case, since e R (in the case of a differential operator) is finite for our differential operator
A, we may have

1
mcR C{w:Rew < 5 Yo} (50)

or .
mcR C {w:Rew > 5—7}. (51)

In the case (50) there is no influence of R to the asymptotics of solutions in L*>7(R,)
for r — oo but ‘very much’ for r — 0, in the case (51) for solutions in L*7(R,) it is
exactly the opposite.

The situation becomes even more mysterious if we pass from the operator A to its
formal adjoint A* with respect to the scalar product of L?(R,). Writing A in the form
A = op,,(h) it follows that

A* = opy,(h*) for R*(w) = h(1 —w).
Similarly as (40) there is then an R* = {(r},n})};ez such that (h*)~!(w) € MZ¥, and it

is obvious in this case that w € mcR is equivalent to 1 —w € mcR*, cf. the relation (41).
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Remark 1.19. The influence of R to the asymptotics of solutions of Au = f € L*(R,)
for r — oo (r — 0) is translated to an influence of to the asymptotics of solutions of
A*v = g € L*(Ry) forr — 0 (r — o). In fact, there is a natural bijection R — R*
induced by w — 1—w under which rc RN{Rew < 3} is transformed to Tc R*N{Rew = 1},
cf. the relation (44).

Let us now pass to operators of the form
A 9 \j 9
= § a; ( r %) (52)

with coefficients a; € Diff*/(X) for an arbitrary closed compact C* manifold X of
dimension 7 (it also makes sense to admit a; € C*°(R,, Diff* 7(X)), together with some
control of the r-dependence for r — oo, cf. also Remark 4.4 below).

As noted in Section 1.1 we have the pair of symbols (1), especially, the conormal
symbol o.(A)(w) = Y, ajw’ which represents a family of continuous operators

oe(A)(w) : H*(X) — H*M(X) (53)

for every s € R, holomorphic in w € C. The generalisation of the discussion before to the
case n = dim X > 0 gives rise to some substantial new aspects.

Assuming oy-ellipticity of A in the sense that the standard homogeneous principal
symbol oy, (A)(r, z, p, ) does not vanish on 7% X" \ 0 and that

Gu(A)(@, 0.€) = oy(A)(r,z,r7 0, €)

satisfies the condition

p(A)(x,0,§) #0 forall (0,6)#0, upto r=0,

the operators (53) are parameter-dependent elliptic on X with the parameter Im w for
w el ={we C:Rew = B} for every § € R. The operator function (53) belongs to
a space M4, (X) which is defined as follows. First let L (X;R") denote the space of all
parameter-dependent classical pseudo-differential operators on X of order 1 € R with the
parameter A\ € R!, that is, the local amplitude functions a(x, &, \) are classical symbols in
the covariables (£, \) € R™" while L=°(X;R!) := S(R!, L=>°(X)) with L=>°(X) being
the space of smoothing operators on X i.e., with kernels in C*°(X x X) (and identified
with L7°°(X), including the Fréchet space structure from C*(X x X)). For [ = 0 we
simply write L (X).

Then M/ (X) is the space of all h(w) € A(C,, L{(X)) (i.e., holomorphic L’ (X)-
valued functions) such that f(8 +ip) € LY (X;R,) for every 3 € R, uniformly in finite
[-intervals.

For an operator (52) we then have o.(A) € M} (X). In addition, the oy-ellipticity of
A has the consequence that (53) is invertible for all w € C\ D for a certain discrete set
D. In order to describe o, '(A)(w) we define sequences

R = {(rj,n;, Nj)}jez, (54)

20



where mcR := {r;}jen C C is a subset such that |Rer;| — oo as |j| — oo, n; € N, and
N; C L™°°(X) are finite-dimensional subspaces of operators of finite rank.

If E is a Fréchet space and U C C an open set, by A(U, E) we denote the space of all
holomorphic functions in U with values in F.

Definition 1.20. (i) Let M ;> (X) denote the space of all f(w) € A(C\mcR, L*(X))
that are meromorphic with poles at r; of multiplicity n; +1 and Laurent coefficients
at (w— 7’]) (*k+1) belonging to N; forall0 <k < nj, such that for any mc R-excision
function xg(w) we have (XRf)(ﬁ +ip) € L™(X;R,) for every B € R, uniformly
i compact B-intervals;

(i) for p € R we define
ME(X) = MKH(X) + ME=(X). (55)

In order to describe regularity and asymptotics of solutions to elliptic equations Au = f
we can introduce subspaces Hyj poo (X") of H¥7(X") of elements with asymptotics of
types

P? = {(p},mj, Lj)}jen, P> = {05, m}", L) }jen, (56)
where the meaning is quite similar as before for the case dim X = 0. In (56) we assume
P, p° € C, md,m® e N, Rep) < 2 —~, Repy® > 2 —~ for all j, and Rep) — —oo,
Repj® — +o0 for j — 00; Imoreover LO L C O=(X ) are subspaces of finite dimension.
Then u(r,z) € HypJ POO(X ") means that there are coefficients ¢, € LY and ¢35, € L3 for
all 0 < k < mj and 0 < k < mj°, resprectively, j € N, such that for every § € R there
exists an N = N(/3) such that

m

N
o) ulrx) = 305 dayr B loghr} € wlryHer (X7 (57)

=0 k=0

<o

<.

and

3

Mz

(1— w(r)){u(r, ) — 2 (z)r P logkr} e (1—w(r)H " A(X").  (58)

J

I
o

k=

O

J

Here w(r) is any cut-off function.

We can also consider subspaces of elements v € H*7(X") of the kind H3)(X") (or
H3L (X)) where we observe asymptotics of type P? (or P>) only for r — 0 by requiring
(57) or (r — oo by (58)). Now a general theorem which summarises several features on
operators of the kind (52) is the following. First, let us write

op‘;w(h)u = 70 opM(T_‘sh)r_‘s (59)

for any h(w) € M}(X) and 6 € R such that icRNT1_5 = () (observe that the notation

(59) is not a contradiction to (46), because for h € M, (X) we have op,,(h)u = op},(h)u
for u € Cg°(X7")).

Theorem 1.21. Let (52) be oy-elliptic and write h(w) = Y1 aw’. Then we have
h=t(w) € MZ'(X) for some R as in (54). For every v € R such that mcR N L 0
the operator A induces an isomorphism

AT HS(XM) = HPY (X (60)
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for every s € R, and the inverse has the form A™! = opX/;%(h*I). Moreover, for every
pair of asymptotic types Q°, Q> as in (56) there is an analogous pair P°, P> such that

Au € H G (X) = u € Hp) poe (X7) (61)

for every s € R.

Remark 1.22. For the asymptotics of solution of the equation Au = f for a oy-elliptic
operator (52) we have a simple analogue of the Remarks 1.18 and 1.19, now referring to
the spaces H57(X") and subspaces with asymptotics, with R being as in Theorem 1.21
(this is a more precise information also for dim X = 0 compared with the discussion in
L? spaces on the half-azis).

The latter results have natural analogues for the case of oy-elliptic operators (52)
when the coefficients a; depend on r in a controlled manner (e.g., smooth up to r = 0).
Instead of unique solvability we then have a Fredholm operator (60) (under an analogous
condition on the weight «), and the relation (61) can be interpreted as a result on elliptic
regularity in spaces with asymptotics. Results of that kind exist in many variants, e.g.,
for finite asymptotic types, or so-called continuous asymptotic types, cf. [120]. In the
framework of pseudo-differential parametrices which exist in the cone algebra, acting as
continuous operators in weighted Sobolev spaces and subspaces with asymptotics, it is
important to stress the conormal symbolic structure, i.e., the spaces of meromorphic
operator function in (55). The Mellin asymptotic types (54) in those spaces of symbols
vary over all possible configurations of that kind which is an enormous input of a priori
information in the corresponding cone calculus with asymptotics. Starting from a specific
asymptotic type R, known by the inverse of the conormal symbol of the operator A, the
correspondence

(Q", Q%) — (P, P)
in the sense of (61) is completely determined. However, to really compute R may be
a difficult task in concrete cases. For every individual operator A we have to solve a
corresponding non-linear eigenvalue problem, and the asymptotic information (P°, P>)
on the solution is not merely defined by the homogeneous principal symbol o, (A) of the
elliptic operator A but by the global spectral behaviour of operators on the base X of the
cone which is also influenced by the lower order terms.

Similar observations are true when we are only interested in the asymptotics for r — 0
(or r — o0) alone. In this connection later on we shall employ K*7-spaces and weighted
Schwartz spaces with asymptotics. Set

KE(X") i={wu+ (1 —w)v:ue H(X"),v e K5 (XM},

cf. the formula (21). Here P = {(p;, m;, L;)}jen is an asymptotic type as the first one in
the formula (56), i.e., responsible for r — 0. Moreover, we define

SHXM) = {wu+ (1 —w)v:u € HPT(X"),v € S(Ry,C™(X))}. (62)

The spaces Hp' (X"), K3'(X"), etc., are Fréchet in a natural way.
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1.3 Naive and edge definitions of Sobolev spaces

Sobolev spaces certainly belong to the prominent institutions in the field of partial dif-
ferential equations. The present modest remarks do not reveal anything new as far as
they concern the ‘classical’ context. In fact, we content ourselves with spaces based on
L? norms and Fourier transforms. However, things suddenly become much more uncer-
tain if we ask the nature of analogous spaces on manifolds with geometric singularities
(cf. also the considerations in Section 6.2 below). As is known the ‘standard’ role of
Sobolev spaces in elliptic PDE is to encode the elliptic regularity of solutions. For in-
stance, if B is the unit ball in R?, solutions u to the Dirichlet problem Au = f € H*%(B),
u‘aB —ge H*2(0B) for s > 2 belong to H*(B).

Now let S C B be the hypersurface S = {(z1, 2, 23) € R® : 23 = 0, |x1] + |z2| < 5}
What can we say about the ‘Sobglev’ regularity of solutions of Au = f in B\ S with

U

0_x3 ‘int S_
from z3 > 0 and z3 < 0, respectively)? The question includes the choice of ‘natural’
spaces for the boundary values on int S+ as well as of the right notion of ellipticity in this
case. The critical zone is, of course, a neighbourhood of dS. Problems of that kind occur,
for instance, in crack theory.

Another question is the regularity of solutions to the Zaremba problem

Si =0+, 5 52 =g-,

ulpp € H*"2(0B), Ulint s, = G+ = g_ (with |imSi denoting the limits at int S

Au=fin B, u

0
S% := dBN{z3 = 0}, where — denotes the derivative in direction of the inner normal to
v

the sphere. Also here the right notion of ellipticity and the choice of analogues of Sobolev
spaces (with respect to their behaviour near the interface S? N {z3 = 0}) is far from being
evident.

Problems with singularities are meaningful also in the pseudo-differential context.
Parametrices of elliptic problems for differential operators are pseudo-differential, and
questions then do not only concern the spaces but also (hopefully manageable) quantisa-
tions, cf. also Section 2.2 below.

For instance, we can ask the nature of solvability of the equation

rtAetu = f (63)

in a (say, bounded) domain 2 C R", when A = Op(a) is an elliptic pseudo-differential
operator in R™ with homogeneous principal symbol

oy(A)(&) = [§]"

for some p € R. In (63) by e™ we mean the extension of distributions on 2 to zero outside
2, and by rt the operator of restriction to Q. Even if 9§ is smooth and u ¢ 2Z the
answer is not trivial. For u € 2Z we are in the frame of operators with the transmission
property at the boundary, cf. Section 2.1 below.

Another category of problems is the solvability of equations Au = f, say, in R, x R™,
when A is a polynomial in vector fields of some specific behaviour. In Section 10.1.1 we
already saw examples, such as vector fields of the form

10y, Oy -+, O, (64)
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for m = n when (r, z) are the coordinates in R, x R™ or, for the case m = n + ¢ with the
coordinates (r,z,y) in Ry x R" x R?

70p, Opso.yOpyy TOy, ..., 70y, (65)

Polynomials in vector fields (64) and (65) just produce Fuchs type and edge-degenerate
operators, respectively (without weight factors in front of the operators which we found
natural in Section 10.1.1).

In the case (64) for s € N,y € R, we can form the spaces

H Ry x RY) := {u(r,z) € r 2L Ry x R") : (r0,)* DCu(r, z) € (66)
r 3L (Ry x R") forall k€N, a e N, k+|a| <s}.

In the case (65) for s € N;v € R we might take

HY (Ry x R™) = {u(r,z,y) € r 2T L3 (R, x R™9) : (67)
(r9,)*D(rD,) u(r, z,y) € r 2 T L*(R, x R"™4)
forall keNaeN' geN k+|af+ 6] <s}

Corresponding spaces for arbitrary real s can be obtained by duality and interpolation.
The spaces (66) have natural invariance properties and can be defined also on an open
stretched cone R, x X =: X" for a (say, closed compact) C*° manifold X. The resulting
spaces are denoted by H*7(X"), cf. the formula (23).

Also the spaces (67) have analogues in the manifold case, namely, on int W, where
W is a (say, compact) C'* manifold with boundary OW, such that OW is an X-bundle
over another C* manifold Y. The corresponding spaces are denoted by H*7(int W). In
particular, for W =R, x X x R?, we have the spaces

H (XN x RY). (68)

Note that H*7 (X" xRY) = r"H5 (X" xRY) for all 5,7 € R. The spaces H*7(X") or their
analogues H*?(int B) on a (compact) stretched manifold B with conical singularities (that
is, a compact C'*° manifold with boundary 0B = X) are common in the investigation of
elliptic operators on a manifold with conical singularities. Also the spaces H*7(int W) for
q > 0 are taken in many investigations in the literature when the operators are generated
by the vector fields (65).

However, for nearly all purposes that we have in mind here, for instance, the problems
mentioned at the beginning of this section, or also for geometric (edge-degenerate) opera-
tors with the typical weight factor, we find the above mentioned definition of H*" (int W)-
spaces for dimY > 0 not really convenient (which says nothing on whether the spaces
themselves are adequate). That is why we talk in this connection about a ‘naive’ definition
of Sobolev spaces, in contrast to other ones which are more efficient for establishing calculi
on manifolds with (regular) geometric singularities. Also to express ‘canonical’ singular
functions of edge asymptotics another choice of Sobolev spaces seems to be indispensable.

‘Naive’ and ‘non-naive’ definitions of corner Sobolev spaces are also possible for more
than one axial variable. Higher generations of Sobolev spaces in that sense will be con-
sidered in Section 10.6.2 below.
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In order to give some motivation for an alternative choice of Sobolev scales we look
at what happens when we formulate a boundary value problem for an elliptic differential
operator with smooth coefficients in R™ in a smooth domain 2 C R™ with boundary.

A priori a Sobolev space, given in R", has no relation to possible boundaries of a
domain. A boundary contributes some anisotropy into the consideration, and tangential
and normal directions play a different role. More generally, smooth (or non smooth) hy-
persurfaces of arbitrary codimension should interact with isotropic Sobolev distributions
in a specific manner. We want to discuss this point in terms of a representation of the
Euclidean space as a ‘wedge’ R" = R™ x R? 3 (z,y) with edge R? and model cone R™
(with the origin as a fictitious conical singularity).

Recall that the standard L?-spaces have the property

L*(R™ x RY) = L*(RY, L2(R™)). (69)

More generally, we might try to employ Sobolev spaces taking values in another Sobolev
space.
Let E be a Hilbert space, and let H*(R?, E') denote the completion of S(RY, E') (the

Schwartz space of functions with value in E) with respect to the norm ||u|gsme,p =
1

(o= lamzan}, s € R, () == (1+ )2, with @(5) = (F,-qu)(n) being the
Fourier transform in R? 3> y.
Clearly we have
H*(R™ x R?) # H*(RY, H*(R™))
unless s = 0. The question is how to find the ‘right’ anisotropic reformulation of H*(R™).
The answer comes from the notion of ‘abstract’ edge Sobolev spaces.

Definition 1.23. Let E be a Hilbert space, equipped with a strongly continuous group of
isomorphisms k) : E — FE, X\ € Ry, such that ks = kys for all \,0 € Ry (strongly
continuous means {kreprer, € C(Ry, E) for every e € E). In that case we will speak
about a group action on E. The abstract edge Sobolev space W*(R%, E) of smoothness
s € R, modelled on a Hilbert space E with group action {kx}ier,, is defined to be the
completion of S(RY, E) with respect to the norm

1
by = { [ @l amifdn} " (70)

If E is a Fréchet space with group action {ky}ier,, i.e., E = lir_njeN E’ for a chain
of Hilbert spaces with continuous embeddings ... — BTt «— EJ <« . < EY where
{katrer, on E° restricts to a group action on every E7, j € N, then we set W*(R?, E) :=
lim . W?(RY, EY).
<—jeN

For ' = C with the trivial group action we recover the scalar Sobolev spaces H*(RY),
ie., H*(R?) = W*(R?,C).

Remark 1.24. For E = H*(R™) and kyu(z) := A2 u(\z), A € R, we have a canonical
1somorphism

H*(R™ x R?) = W*(R?, H*(R™)) (71)
for every s € R. The group {kr}rer, is unitary on L*(R™) = H*(R™); thus (71) is
compatible with the relation (69).
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2

Remark 1.25. Writing [ullw:zo,m) = { [ ()| F(F 5 F)ullbdn}, F = Fyy, we

see that the operator T = F*1/£<_77§F induces an isomorphism

FR F o W(R? E) — H*(RY, E)
for every s € R. Given a closed subspace L C E, not necessarily invariant under the

group action {ky}rer,, we can form H*(R?, L) and then
VI(RY, L) := T H*(RY, L). (72)

In the case that {kx}rer, induces a group action in L (by restriction) we have, of course,
VR, L) = W*(RY, L); in any case V*(R?, L) is a closed subspace of W* (R, E). If we
have a direct decomposition E = L& M into closed subspaces, we get a direct decomposition

Wi (R, E) = V¥(RY, L) @ V*(R?, M). (73)
Recall that the space KL*7(R™ \ {0}) has the property
(1 = W) (R™\{0}) = (1 - w)H*(R™)

for every w € C§°(R™) which is equal to 1 in a neighbourhood of 0. For £ := K*7(R™\{0})
with the group action kyu(z) = A2u(\z), A € R;, we can form the corresponding edge
Sobolev space and observe that

(1 — W)W (R, L (R™\ {0})) = (1 — w)H*(R™™)
for any such w. This implies

Homp (R™ A\ {0}) x RY) C W2 (R, KC*7(R™\ {0})) C Hio(R™\ {0}) x RT). (74)

comp

Remark 1.26. We can also form the spaces
WH(R?, K79 (X)) (75)

based on the group action (24). Those satisfy an analogue of the relation (74) for all
s,7v,g9 € R. For g :== s — ~ the spaces have particularly natural properties.

The relation (71) shows that classical Sobolev spaces are special examples of edge
spaces in the sense of Definition 1.23, where a hypersurface R? of arbitrary codimension
> 1 can be interpreted as an edge. Such an anisotropic description of ‘isotropic’ Sobolev
spaces also makes sense with respect to any other (smooth) hypersurface of a C* manifold,
cf. the articles [30], [29]. The anisotropic interpretation is particularly reasonable on a C*
manifold with boundary; in this case the boundary is locally identified with R?, and R,
(the inner normal with respect to a chosen Riemannian metric in product form near the
boundary) is the substitute of R™. This gives us the possibility to encode various properties
of regularity of distributions up to the boundary, not only C* in terms of W*>°(R?, S(R,))
but other asymptotics, e.g., W*(R?, SL(R,)) for an asymptotic type P = {(p;, m;)}jen

1

as in Section 1.2, with m¢R C {Rew < 5 — v}. More generally, asymptotics of type

P = {(pj,mj, L;)}jen, cf. the first sequence of (56), with 7¢cP C {Rew < % — 4}
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for n = dim X, gives rise to edge asymptotics of distributions u(r, z,y) on the stretched
wedge X" x R? 3> (r,z,y), modelled on

W2 (R, KB (X)),

when (which can be done) K£37(X") is written as a projective limit of Hilbert subspaces
of K*7(X"), endowed with the group action (kau)(r,z) = A" u(\r, z), A € R,.
Sobolev spaces H*(R?) described in terms of the Fourier transform are perfectly

adapted to pseudo-differential symbols in Hérmander’s classes SE‘C y(U x RY) > a(y,n),

cf. Definition 1.27 below. In particular, (n)* = (14 [|?)*/? is a classical symbol of order
s, and we have

ms ey = [[{m)°@(n)]| 22 (o).

This relation can be seen as a continuity result for the pseudo-differential operator A =

Op({(n)*),

|

Op(a)u(y) = / / e Y Ma(y, ' n)uly')dy'dn,

dn = (2m)"%n. A simplest version tells us that for a(y,y',n) € S”(Ri?y, x RY) under
suitable conditions on the dependence on (y,%’) for |(y,y')| — oo, we have continuity of

the associated operator
Op(a) : H*(R?) — H*7*(RY) (76)

for all s € R. (The conditions are satisfied, for instance, when a(y,y’,n) is independent
of (y,y') for large |(y,4')|, and, of course, in much more general cases.)

Analogously, the abstract edge Sobolev spaces of Definition 1.23 have a counterpart
in terms of operator-valued symbols.

Definition 1.27. (i) The space S*(U xR%; E, E) for open U C RP and Hilbert spaces E
and E, endowed with group actions {rx}rer, and {K)}xer, , respectively, is defined
to be the set of all a(y,n) € C*(U xR, L(E, E)) such that

Sg}g ()17 ||"~‘f<_,}> {DSDﬁa(% 1)}ty ||L(E,E) < 00
y
neR9

foralla e NP, B €N, and K € U; (n) = (1+ |n|*)V?;

(ii) the subspace of classical symbols SL(U x RY; E, E) 3 aly,n) is defined by the con-
dition that there are elements aq,—j(y,n) € C°(U x (R?\ {0}),L(E,E)), j € N,
satisfying the homogeneity condition

a(#*j) (yv )‘77) = Aukka(ufj) (ya 77)/{;1 (77)
for all A € R, such that
N ~
a(y,n) = x(m)>_ ag—y(y,n) € S W(U xR% E, E) (78)
=0

for all N € N (here x(n) is any excision function in n). The relation (77) is also
referred to as twisted homogeneity (of order p— j).
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For E=E = C and ky = &, = id for all \ € R, we obtain the scalar symbol spaces
Sty (U xR7) (subscript ‘(cl)’ means that we are speaking about the classical or the general

case). By S( 1)( B, E) we denote the subspaces of Sﬁ:l)(U x R E, E) of y-independent
elements (i.e., symbols with constant coefficients).

Remark 1.28. Let a(y,n) € C=(U x R%, L(E, E)) satisfy the relation
a(y, M) = N&xaly, n)ky

for all X >'1, (y,n) € U R?, |n| > C for a constant C > 0. Then we have a(y,n) €
SH(U x RY%; B, E).

Remark 1.29. Definition 1.27 has a straightforward generalisation to the case of Fréchet
spaces E, (and/or) E, equipped with group actions in the sense that the spaces are pro-
jective limits of Hilbert spaces with corresponding group actions, cf. the corresponding
notation in the second part of Definition 1.23.

There are many beautiful and unexpected examples of operator-valued symbols.

Example 1.30. An important category of examples are the Green, potential and trace
symbols in the calculus of boundary value problems with the transmission property.
Consider functions

fat,t;y,m) € SRy x Ry, SHTH(Q x RY)),
Fe(t:y.n) € S(Ry, ST (2 x RY)),
Fo(ty.m) € S(R,, ST (2 x RY)),

and form the operator families

gy mult) = / ) fc<t[n],t'[n]; put)dt, e IAR,),
k(y,mec = yn) ceC,
by n)u = / Fo iy, mu®)de,  ue LA(R,).

Here n — [n] is any C™ function in n € R, strictly positive, and [n] = |n| for |n| > C
for some C' > 0. We then obtain operator-valued symbols

9(.%77) € Sgl(Q X qu LQ(R-F)’S(K-F)%
k(y,m) € Sh(Q x R%C,S(Ry)),
b(y,n) € Sh(Q x R% L*(Ry), C),

called Green, potential, and trace symbols, respectively, of order i € R and type 0. Green
and trace symbols of type d € N are defined as linear combinations

2 ‘ o
9y Zgg yin) g and  bly,m) = ij(y,n)@

3=0 3=0

with g; and b; being of order p — j and type 0 (with argument functions belonging to
H*(Ry) for s >d—1).
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The associated pseudo-differential operators Op(g), Op(k) and Op(b) are called Green,
potential, and trace operators (of the respective types in the Green and trace case).

Example 1.31. Let X be a closed compact C*° manifold, 0 C R? an open set, and
consider an operator A of the form (25) on X" x Q, X" =R, x X, with coefficients

aja(r,y) € CF(R, x O, Dift*~ 0+ (x)) (79)

that are independent of r for r > R for some R > 0. Then we have

alyn) =1 Y aulry) (—ro) (ra)® € SHQXRS KR (XM), K#7H(X7) (80)

Jt+lal<p

for every s,y € R (the group action is as in Remark 1.10). If the coefficients (79) are
independent of v, then a(y,n) is classical, and we have ag,y(y,n) = oa(A)(y,n), cf. the
expression (26).

In analogy to (76) every a(y,y’,n) € S"(Rz?y, x R F, E) (again under suitable con-
ditions on the dependence on (y,y’) for |(y,y')| — oo) induces continuous operators

Op(a) : W3R, E) — W (R, E) (81)

for all s € R.

Applying that to the symbol (80) (for Q2 = RY, under a corresponding condition on
the coefficients for |y| — oo, say, to be constant with respect to y for large |y|) we see
that the associated edge-degenerate operator A = Op(a) (cf. the formula (25)) induces a
continuous operator

A WHRT,KS(X7)) — WH(RY, K471 (X))

for every s,7 € R. Recall that we also have an alternative scale of spaces, namely,
H (XM x R?), cf. the formula (68). Since the operator A has the form r~#A, where A is
(locally with respect to X) a polynomial of order y in the vector fields (65), the operator
A is also continuous in the sense

A H (XN x RY) — HERI7H(XN x RY)

for every s,v € R. The question is now which is the more natural definition of spaces in
connection with edge-degenerate operators,

WX x R?) or HY(X" x RY)? (82)
There are, of course, many other questions, for instance,
‘what is natural’? (83)

The question (82) seems to have a natural answer in favour of the spaces H*7 (X" x RY),
because, up to the weight factor, the operators are polynomials in the typical vector fields.
Authors who employ this definition of weighted spaces in connection with configurations
with edge singularities probably share this opinion.
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This is now an excellent opportunity to found a new sect who believes the other truth.

A wise outcome of the discussion would be that both parties have their own right to
exist; the various approaches might be (to some extent) equivalent anyway, or point out
different aspects of the same phenomena . The trivial solution would be that the different
spaces are the same at all (at least locally near » = 0). The latter, however, is not the
case when vy # s.

An answer is that the spaces W?*(R?, K*7(X")) belong to a continuously parametrised
family of spaces W?*(R?, [C*79(X")) for g € R, cf. Remark 1.26. All these spaces are
possible choices for a consistent calculus with the same edge algebra. However, for g =
s — v the spaces W?*(R?, [C*79(X")) and H®7(X" x RY) agree close to r = 0. This
coincidence is a hidden effect and an aspect of what we call a non-naive (or edge-) definition
of weighted spaces, see also [151] and [138].

Let us now have a look at another category of operator-valued symbols in the sense of
Definition 1.27, which play a role in the description of the internal properties of standard
Sobolev spaces.

Let us write R™ = R™ x R9. Recall the well known fact that the operator of restriction
' : S(R") — S(RY), r'u :=u (0} e extends to a continuous operator

' H¥(R™) — H*™ % (RY) (84)

for all s > . This can easily be interpreted as a continuity result of the kind (81) for
some special operator-valued symbol.
In fact, writing ryu := u(0) for v € S(R"), there is an extension to a continuous

operator
ry: H°(R™) — C

for every s > 2. If we endow H*(R™) with the group action ryu(t) = A2 u(t) for A € Ry
and C with the trivial group action, from

1y € C°(RY, L(H*(R™),C)) and 1) =A2r)s," forall \eR, (85)

it follows that .
rg € Sg (R%; H*(R™),C)

for every ¢ € N, cf. Remark 1.28 (i.e., rj is a classical symbol in the covariable n € R,
although it is independent of 1). Then (84) is a consequence of the continuity of

' = Op(r)) : W(R?, H*(R™)) — W?*™ % (RY,C) = H*" % (RY),

cf. the relations (77) and (67). More generally, for every @ € N™ we can form the
composition
D% HY(R™) — C

which is continuous for s — |a| > % and defines a symbol
1D € SEHA(RY; F(R™), C)

which is even homogeneous in the sense rj D% = A%ty Dk ! for all A € R, . From (81)
we then obtain a corresponding continuity of the associated pseudo-differential operator.
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A certain counterpart of such symbols are potential symbols of the form k(n) : C —
S(R™), defined by ¢ — []**2 (z[n])*w(x[n])c for any v € R, a € N™, and a function
w € C°(R™) that is equal to 1 in a neighbourhood of = 0. They define an element

k(n) € S4(R% C, H*(R™))

for every s € R and satisfy the homogeneity relation k(An) = Nk k(n) for A > 1, |n| > ¢
for some constant ¢ > 0.

2 Are regular boundaries harmless?

Classical boundary value problems (such as the Dirichlet or the Neumann problem for the Laplace operator in a smooth
bounded domain) are well understood from the point of view of elliptic regularity up to the boundary, the Fredholm index
in Sobolev spaces, the nature of pseudo-differential parametrices, etc. Regular boundaries in this context are harmless in
the sense that non-regular boundaries require much more specific insight (even for the simplest case of conical singularities).
Of course, also for problems with smooth boundaries there are interesting aspects, worth to be considered up to the present,
for instance, in connection with the index of elliptic operators who do not admit Shapiro-Lopatinskij elliptic conditions, or
around the spectral behaviour.

However, this is not the idea of the discussion here. We want to see how pseudo-differential operators behave near a smooth
boundary and show some connections to the edge calculus.

2.1 What is a boundary value problem?

In an exposition on operators on manifolds with higher singularities we should ask ‘what
is an edge problem’ or ‘what is a higher corner problem’; however, this will be answered
anyway in Chapter 5 below. The structures and inventions for the higher corner calculus
should derive their motivation from something very common, namely, boundary value
problems. Boundary value problems have something to do with the values of a solution at
the boundary, i.e., with boundary conditions. That leads to one of the basic ingredients
also for the analysis on a polyhedral configuration near lower-dimensional strata, namely,
to additional conditions along those strata, with a specific contribution to the symbolic
structure and associated operators, in general, of trace and potential type.

In this section we are interested in the behaviour of pseudo-differential operators with
smooth symbols in a smooth domain in R™ (or on a C'*° manifold with boundary). More-
over, we ask the nature of solvability near the boundary when the operator is elliptic.
For convenience, we first consider a smooth bounded domain 2 C R™ and a classical
pseudo-differential operator A in a neighbourhood of X = €. In the simplest case 4 is a
differential operator,

A= Z aa(x)Dm (86>
with coefficients a, € C*(R"). If  is locally modelled on the half-space
R ={z=(21,...,2,) ER": 2, >0}

we also write z = (y,t) for y = (x1,...,2Z,_1), t := x,, with corresponding covariables
¢ = (n,7). Then o,(A)(x,&), the homogeneous principal symbol of A of order p, cf. the
formula (2), generates a parameter-dependent family of differential operators on R, > ¢,
namely,

oo(A)(y,n) = oy(A)(y,0,n, D), (87)
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(y,n) € T*R"1\ 0, regarded as a family of maps
oo(A)(y,n) : H*(Ry) — HH(Ry) (88)

between the Sobolev spaces H*(R,) := H S(R)}M, s € R. We call (87) the homogeneous
principal boundary symbol of the operator A. This is another example of a symbolic
structure of operators in R”, not explicitly mentioned in Section 1.1. Note that we have

o9(I) =id, and o9(AB) = 0s(A)oy(B) (89)
for differential operators A and B of order u and v, respectively.

Remark 2.1. The homogeneity of the principal boundary symbol refers to a strongly
continuous group {rkx}rer, of isomorphisms on the H*(Ry)-spaces, defined by

rau(t) := )\%u()\t) for X eR,.

For an operator (86) we have aa(A)(y, \n) = Mraon(A)(y,n)ky" for all X € Ry, (y,7n) €
T*R™1\ 0 (¢f., similarly, the formula (28) ).

If @ C R" is a smooth bounded domain and (86) a differential operator in R", we
can replace € locally near 02 by the half-space R”, > (y,t) and calculate the boundary
symbol o9(A)(y,n). This is then invariantly defined as a family of operators (88) for
(y,m) € T*(022) \ 0.

If we recognise the boundary symbol o5(A) of an operator A as another principal
symbolic level, i.e., interpret the pair

a(A) = (04(A),05(A4)) (90)

as the ‘full’” principal symbol of A, then ellipticity should be defined as the invertibility of
both components. However, the second component is not necessarily bijective, as we see
by the following theorem.

Theorem 2.2. Let (86) be elliptic with respect to oy. Then (88) is a surjective family of
Fredholm operators for every s > i — %, (y,m) € T*(00) \ 0.

Remark 2.3. By virtue of Remark 2.1 we have

dimker oy(A)(y,n) = dimker o5(A)(y, %)

Simplest examples show what happens when we look at o5(A) for a oy-elliptic operator
A: Let A = A be the Laplacian with its principal symbol o, (A) = —|¢|*>. Then

82 S S—
0o D)) = Il + o+ H(R.) — HH(R,) (o1)
has the kernel ker o5(A)(n) = {ce™* : ¢ € C} which is of dimension 1 (the other solution
2

0
celt of (—|n|? + ﬁ)u(t) = 0 does not belong to H*(R;) on the positive half-axis).
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In order to associate with 05(A) a family of isomorphisms we can try to enlarge the
boundary symbol to a family of isomorphisms

H*(Ry)  H7HR4)

oo(A) oo(K) : .
(UB(T) UB(Q)) <y7n)' (CQ?_ (Cei_ (92)

by entries 05(T),09(K),09(Q) of finite rank, cf. the discussion in this section below. In
the case (91) it suffices to set j_ =0, j+ = 1 and to take

oo(T) =1y

with the restriction operator 1, : H*(R;) — C for s > 3 , cf. analogously, Section 1.3,
in particular, the homogeneity relation (85). In other Words with the Laplacian we can
associate the family of isomorphisms
H*%(Ry)
go(A s
("o r@o~ o (93)

for s > % which is just the boundary symbol of the Dirichlet problem. Analogously,

oo(T) =10 % gives us the boundary symbol of the Neumann problem.
Let us calculate the inverse of (93). Writing
le(n) := n| £ 7
we have —I_(7)l (1) = —(|n|* + 7%) and
82
7o) () = —op* (1)) op* (L)) = ol + o

The operator op™(l
0

(op™(1-)(n)~" = op
n # 0 with

(n ) S(R;) — S(Ry) is an isomorphism for every n # 0 where
H(IZY(n), and opT(I1)(n) : S(R;) — S(R,) is surjective for every

keropt (1) () = {ce "t . ¢ € C}.
Let us form the map k(n) : C — S(R,) by k(n)c := ce” 1", Then we have

(0p+(rl6+)(77)> (op™ (XN ()  Kk(n) = <(1) (1))

and

Thus, because of

it follows that



Remark 2.4. The potential part k(n) gives rise to an operator-valued symbol in the sense

1 _
of Definition 1.27 (and Remark 1.29), namely, x(n)k(n) € Sy (Rp~" C,S(Ry)) for any
excision function x. Moreover, the operator function x(n)g(n) for

g(n) = —op™ (I1)(n) op™ (I=")(n) + op™ (I11=1) (n)

15 a Green symbol of order —2 and type 0, cf. the terminology in FExample 1.30,

x(mg(n) € ST*RY L*(Ry), S(R4)),

and the n-wise L*(R, )-adjoint has the property

(x9)"(n) € SR L2 (Ry), S(RY)).

In general, if A is an elliptic differential operator, by virtue of Theorem 2.2 we expect
that j_ = 0 is adequate and that we can complete o5(A) by j; := dimkeroy(A) trace
conditions to a family of isomorphisms

H*H(R4)

(o) G @ = (91

(y,n) € T*R™1\ 0. In this case C’+ is interpreted as the fibre of a vector bundle over
T*R"'\ 0; it may be regarded as the pull back of a vector bundle J, ; on the sphere
bundle R"~! x S"~2 under the projection (y,n) — (y,n/|n|).

In order to be able to interpret os(7") as the boundary symbol of a trace operator

T:H(RY) — &2, H ™2 (R

(with orders m;, according to the xy homogeneity of the components of " = *(1%, ..., T}, ))
the bundle J; ; has to be the pull back under the projection (y,7) — y of a vector bundle
J, on the boundary R™"~! itself. This is an assumption that we now impose, although it
may be too restrictive in some cases, cf. the discussion of Section 5.3 below in connection
with the Atiyah-Bott obstruction.

However, for the Dirichlet or the Neumann problem for the Laplace operator as well
as for many other interesting problems this obstruction vanishes; this is enough for the
purposes of this section (it turns out that the insight from this situation is very useful
also for the general case, cf. [129]).

From the classical analysis of boundary value problems for a differential operator (86)
of order y = 2m it is known that additional trace operators T' = *(Ty,...,T,,) may have
the form

(Tju)(y) := ' Bju(y) (95)
for differential operators Bj = 5, bjs(x) DY of different orders m;, with (r'v)(y) :=

v(y,0), such that, when we set o5(1;)(y,n) = r404(B;)(y,0,n, D), j = 1,...,m, with
oy(B;) being the homogeneous principal symbol of B; of order m;, the operators
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complete o5(A)(y,n) to a family of isomorphisms (94) for all sufficiently large real s (and
Jj+ =m).

Globally, an elliptic boundary value problem for a (scalar) differential operator A on
a (say, compact) C* manifold X with boundary 0X is represented by a column matrix

e () -

consisting of the elliptic operator A itself, and a column vector T of trace operators, with
entries T; of the form (95), with differential operators B, in a neighbourhood of 0X,
m; = ord B;.

It is often convenient to unify the orders by passing to compositions TJ = RH™ _%Tj
with order reducing isomorphisms R*~™~2 (as mappings H*(0X) — H*#tmi+3(9X),
s € R) belonging to Lgfmj 7%(6)( ). We can find such operators with homogeneous
principal symbol |p|*~™~2. Then we have Ja(fj)(y,n) = \n|“_mf_%aa(Tj)(y,n) and
Ja(fj)(y,)\n) = )\“aa(fj)(y,n)n;l for all A € Ry, (y,n) € TR\ 0. Of course, we
can reach any other order of the trace operators by composition from the left with a
suitable order reducing isomorphism.

If we now assume that the trace operators are defined from the very beginning in
combination with order reductions from the left and denote the trace operators again by
T (rather than T') our boundary value problems (96) induces continuous operators

H*=#(int X)
A= (?) : Ho(int X)) — Hs_ﬂ(géX ) (97)

for sufficiently large s € R. In this notation J, is a (smooth complex) vector bundle
on 0X, similar to the above one in the half-space case, and H"(0X, Jy) is the space of
distributional sections in J; of Sobolev smoothness r € R.

The boundary symbol 04(.A) of the operator A is a bundle morphism

H* M (Ry)
oa(A) 1 mox H (Ry) — mpx S5 ; (98)
Jy

the global analogue of (94). Here myx : T*(0X) \ 0 — O0X is the canonical projection,
and 7}y denotes the pull backs of vector bundles, here with the corresponding infinite-
dimensional fibres.

Homogeneity of 05(A) means

/<L)\O

o)) =3 ('3 §) ool ) (99)

for all A € Ry, (y,n) € T*(0X) \ 0, where 1 indicates the identity operator; (kK u)(t) =
Azu(Mt), A € R,

The expectation that the composition of operators gives rise to the composition of
the associated principal symbols is not so easy to satisfy in the case of boundary value
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problems, since there is no reasonable composition between the corresponding column ma-
trices (although we have the relations (89)). However, as we shall see, such a composition
property is true of block matrices when the number of rows and columns in the middle
fits together. This is a natural concept in an operator algebra in a suitably generalised
sense. An access to this construction is what we obtain from the ellipticity.

Before we give the definition we want to make a remark on the nature of symbols of
operators A on a C'°° manifold X with boundary 0X. Without loss of generality we may
assume that A has the form B

A=1"Ae" (100)

for a differential operator Aina neighbouring C'* manifold X (for instance, the double of
X), where e' is the operator of extension by zero from int X to X and r* the restriction
to int X. Operators of the from (100) also make sense for arbitrary A € L"(int X) (of
course, also for non-classical pseudo-differential operators) as continuous operators

A=rTAe" : C°(int X) — C*°(int X). (101)

In this section we content ourselves with integer orders p. Let a(,—j(y,t,n,7), j € N,
denote the sequence of homogeneous components of order y — j belonging to a represen-
tation of A in local coordinates (y,t) € 2 x R near the boundary,  C R"~! open. Then
A is said to have the transmission property at the boundary if

a’(u*j)(?% t, -, _T) - 6i7r(u_j)a'(,u*j)(y> t, 7, 7—) (102)
vanishes to the infinite order on the set of non zero normal covectors to the boundary
{(y,t,n,7) €eT"(2xR):t=0,n=0,7#0}

for all 7 € N. This is an invariant condition; so it makes sense as a property of A
globally on X near the boundary. Since the condition is satisfied if and only if all
agu-j(y, t,n,7) = &(“_j)(y’t’U’T>‘Q><ﬁ+><(R"\{O}) have this property, we also talk about
the transmission property of the operator A itself.

Remark 2.5. A differential operator A (with smooth coefficients up to the boundary) has
the transmission property at the boundary. Writing A in the form (100) the ellipticity of
A entails the ellipticity g]ig in a neighbourhood of 0X. Then, if we form a parametriz
P in L}"(X) (i.e.,  — AP,I — PA € L7°°(X)), also P has the transmission property at
0X.

Remark 2.6. Let S*X denote the unit cosphere bundle on X (with respect to a fized
Riemannian metric on X), and let N* denote the bundle of covectors normal to the
boundary that are of length < 1. Set

== $*X|px UN* (103)

which is a fibre bundle on 0X with fibres being {unit spheres} U {straight connection
of south and north poles}, where the south and north poles are locally representend by
(y,0,0,—1) and (y,0,0,+1), respectively. Then, if A € L%(X) is an operator with the
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transmission property at the boundary, the homogeneous principal symbol o,,(A) of (100)
extends from S*X to a continuous function oy(A) on S*X U N* (including the zero
section of N* which is represented by 0X). The ellipticity of A with respect to oy(.), i.e.,
op(A)#0 on T*X\O0, entails the property

oy(A)#0 on Z=. (104)

Definition 2.7. The operator (96) is called elliptic, if both components of its principal
symbol

7(A) = (94(A), 09(A))

are bijective, i.e., for the principal interior symbol oy(A) = 04(A) we have oy(A) # 0
on T*X \ 0, and the principal boundary symbol oy(.A) defines an isomorphism (98) for
any (sufficiently large) s.

Theorem 2.8. Let X be a compact C* manifold with boundary, and (96) an operator of
the described structure. Then the following properties are equivalent:

(i) The operator A is elliptic;
(ii) A induces a Fredholm operator (97) for any fized (sufficiently large) s.
The property (ii) entails the Fredholm property (97) for all (sufficiently large) s.

As a Fredholm operator (97) the elliptic operator A has a parametrix
P=(P K) (105)

in the functional analytic sense, and it is interesting to characterise the nature of P.
The operator P should belong to L_"(int X'). As noted before, since the original elliptic
differential operator A can be seen as the restriction of an elliptic differential operator Ain
a neighbouring C'*° manifold X to X, we can form a parametrix P € L_"(X) of A and ask
the relationship between P and the operator P in the formula (105). An answer was given
in Boutet de Monvel’s paper [13], not only of this point, but about the pseudo-differential
structure of P itself. We do not repeat here all the details; there are many expositions
on Boutet de Monvel’s theory of pseudo-differential boundary value problems, see, for
instance, Rempel and Schulze [102], Grubb [51], Schulze [133]. We want to observe here
some specific features and ‘strange’ points of the pseudo-differential calculus of boundary
value problems. If we form r*Pet we obtain a continuous operator

rtPet : H *(int X) — H*(int X) (106)
for every s > p — 3.

For our differential operator we have A = r*Aet and (rtAet)(rtPet) = rtAPe*
which is the identity map modulo an operator with kernel in C*°(X x X'). The composition
(r* Pet)(rT Ae™) has a more complicated structure; it is equal to the identity modulo a
smoothing operator G in int X, however, not with a kernel in C*°(X x X). The operator
G is called a Green operator, and it is locally in a collar neighbourhood of 90X of the form
Op(g) for a Green symbol g(y,n) of some type d, cf. Example 1.30.
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A
Theorem 2.9. Let A := (T) be an elliptic boundary value problem for the differential
operator A. Then there is a (two-sided) parametriz P of A of the form (105) for

P=r1"Pet + G (107)
for some Green operator G, and a potential operator K, cf. Example 1.30.

The result of Theorem 2.9 is remarkable for several reasons. First of all, if we accept
the operator (105) as a ‘boundary value problem’ for the pseudo-differential operator P
(whatever its precise structure near the boundary is) instead of boundary conditions we
have potential conditions, represented by the operator K. The symbol of K is associated
with the second component of the inverse of (98) which is a row matrix

oa(A) " (y,n) = (0a(P)(y,n) 0a(K)(y,n)).

In this case

oo(P)(y,n) : HH(Ry) — H*(Ry) (108)
is necessarily injective but not surjective, and the operators of finite rank
oo(K)(y.n) : Jry — H*(Ry) (109)

fill up the family (108) to a family of isomorphisms (here .J; , denotes the fibre of J;
over the point y). The local structure of oy(K)(y,n) is just as in Example 1.30; in fact
0o(K)(y,n) is the vector of homogeneous principal components of order —pu of potential
symbols of the kind fx(t[n]; y,n). Concerning the structure of (108) we have, according
to (107),

00(P)(y,1) = 0a(P)(y.n) +00(G)(y, 1), (110)
where 05(G)(y, n) is the homogeneous principal component of order —p of a Green symbol
in the sense of Example 1.30, while

oo(P)(y,n) = 170y (P)(y,0,m, Dy)e™,

with aw(lg)(y, t,n, T) being the homogeneous principal symbol of P near the boundary in
the splitting of variables x = (y,t), and e™ is the operator of extension by zero from R
to R, and r* the restriction from R to R,. B

What we see is the following. Given an elliptic pseudo-differential operator A of order
 in a neighbouring manifold X of a C* manifold X with boundary (with the transmission
property at 0.X) we can form the operator

A=rTAct: H*(int X) — H*#*(int X)
(say, for s > max(y,0) — 3). Its boundary symbol
oa(A)(y,n) =170y(A)(y,0,n, Dy)e” : H(Ry) — H"(Ry) (111)

is a family of Fredholm operators (in general, neither surjective nor injective) for (y,n) €
T*(0X)\0). Then, elliptic conditions may exist both of trace and potential type in a way
that the associated boundary symbols

oo(T)(y,n) - H*(Ry) — Jiy, 0a(K)(y,n): J-y — HH(Ry)
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for suitable vector bundles Jy on 0X (for algebraic reasons combined with a family of
maps 09(Q)(y,n) := 0y(Q)(y,n) : J-, — J4, for an operator Q € Lk (0X;J_, Jy)) fill
up the Fredholm family (111) to a family of isomorphisms

H'Ry)  H7HRy)
oa(A) o9(K) . .
(i) o)) R )

for all (y,n) € T*(0X) \ 0.

Both trace and potential symbols may be necessary at the same time for obtaining
an isomorphism (112). Locally the operator families 05(T"), oo(K) have the structure of
homogeneous principal components of trace and potential symbols as in Example 1.30 (of
some type d € N in the case of 04(T")). More generally, instead of (112) we can consider
isomorphisms of the kind

& — S (113)

<O’3(A) + O’a(G) Ua(K
I, e

) H*(Ry)  H7H(Ry)

o ay) e

with a Green symbol o5(G)(y,n) of analogous structure as in (110) (it takes values in
the space of compact operators H*(R,) — H* #(R,)). Green symbols are generated in
compositions of block matrices of the form (112) and also in inverses. We now pass to an

operator
H*(int X) H*"(int X)
A= (AJTFG g) e o (114)
H*(0X,J.) HM0X, J,)

where A is the original elliptic operator, and G, T, K, () are the extra operators which
constitute an elliptic boundary value problem (114) for A with the principal symbolic
structure

o(A) = (04(A), 09(A)), (115)
for oy (A) := 0y(A) and o5(A) given by (113). Note that

o)) =3 (o ) oot (5 9) (116)
for all (y,n) € T*(0X)\ 0, A € R,.

Operators of the form
_(A+G K
A= ( T Q) (117)

constitute what is also called Boutet de Monvel’s calculus (of pseudo-differential boundary
value problems with the transmission property), cf. [13]. Operators of that kind also make
sense on a not necessarily compact C'>° manifold with boundary.

We now propose ‘answer number 1’ to the question ‘what is a boundary value problem’
to an operator A, namely, such a

‘2 x 2 block matrix (117) with A in the upper left corner, where the extra
operators G, T, K, () are an additional information from the boundary’
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of a specific nature (roughly speaking, pseudo-differential operators on the boundary with
operator-valued symbols as in Example 1.30).

Let B#?(X) denote the space of all operator block matrices of the form (117) that
are of the structure as mentioned before, in particular, A is of order u € Z and has the
transmission property, and the other operators are of order p and type d € N.

In this block matrix set-up the multiplicativity of the principal symbols (115) is again
restored; the only condition for a composition AB (say, for compact X, otherwise com-
bined with a localisation) is that rows and columns in the middle fit together (more
precisely, the bundles on the boundary), and we then have

o(AB) = o(A)o(B), (118)

where the multiplication is componentwise, i.e., oy(AB) = o0y(A)oy(B), os(AB) =
ogo(A)os(B).

Remark 2.10. The definitions and results about operators (117) including Definition
2.11, and Theorems 2.12, 2.13 below easily extend to operators between distributional
sections of vector bundles E,F € Vect(X) and Jy € Vect(Y). In this case instead of
(114) we have the continuity

Hé(int X, E) H*#*(int X, F)
A ® — <) (119)
H*(0X,J.)  H*"0X,J,)

forall s >d — % when d € N denotes the type of the involved Green and trace operators.

Let us now enlarge Definition 2.7 as follows.

Definition 2.11. An operator is called elliptic if both components of its principal symbol
(115) are bijective, i.e., for the principal interior symbol of A we have oy,(A) # 0 on
T*X \ 0, and the principal boundary symbol o5(A) defines isomorphisms (113) for all
(y,m) € T*(0X) \ 0 and any (sufficiently large) s € R. The isomorphism (113) is also
called the Shapiro-Lopatinskij condition (for the elliptic operator A).

Theorem 2.12. Let X be a compact C* manifold with boundary and A be an operator
(117) which represents a boundary value problem for A in the upper left corner. Then the
following properties are equivalent:

(i) The operator A is elliptic in the sense of Definition 2.11;
(ii) A is Fredholm as an operator (114) for some fized (sufficiently large) s € R.

Theorem 2.13. Let X be a C* manifold with boundary and A € B*4(X) an elliptic
operator. Then there is a parametrizc P € B (X) in the sense that the remainders
in the relations

PA=1T-C, AP=I-C
are operators Cy € BN (X),C, € B4 (X) where dy = max(u,d),d, = (d — pu)*, and
T are corresponding identity operators. Here vt := max(v,0) for any v € R.
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Summing up the calculus of operators (117) with its symbolic structure solves the
problem to find an operator algebra that contains all elliptic boundary value problems
(96) for differential operators together with their parametrices (105). Block matrices
appear, for instance, in compositions when we form

(?)(p K) = (?ﬁ é?) (120)

A
for different elliptic operators <T> and (P K) (not necessarily being a parametrix of

each other).
In the special case that (P K) is the parametrix of an elliptic boundary value problem

A A
( ), and if (TV) is another elliptic boundary value problem for the same operator A,

T
(}3) (P K= (Tlp f(%) (121)

then we have
(modulo a compact operator in Sobolev spaces).

Remark 2.14. The operator TK is a classical elliptic pseudo-differential operator on
0X, called the reduction of T to the boundary (by means of T'), and we have

: A : A L
ind (T) —ind (Tv) =ind TK. (122)

The relation (122) is also called the Agranovich-Dynin formula. It compares the indices
of elliptic boundary value problems for the same elliptic operator A in terms of an elliptic
pseudo-differential operator on the boundary. A result of that kind is also true for boundary
value problems of general 2 x 2 block matriz form, cf. [102].

This is one of the occasions where pseudo-differential operators are really useful to
understand the nature of elliptic boundary value problems for differential operators (apart
from the aspect of expressing parametrices). Elliptic pseudo-differential operators on the
boundary ‘parametrise’ via the formula (121) the set of all possible elliptic boundary value
problems for an elliptic operator A on a compact C'*° manifold with boundary.

This shows, in particular, that there are many different elliptic boundary value prob-
lems for A (which is also evident by the above filling up procedure of g5(A) to an iso-
morphism). Of course, it is not so clear at the first glance how many elliptic problems
(96) exist for an elliptic differential operator A with differential boundary conditions of
the kind (95) (up to the pseudo-differential order reduction on the boundary that we
admitted for simplifying the formulation in the sense of (97)). An answer is given in Ag-
mon, Douglis, and Nirenberg [2]. There are also elliptic differential operators A that do
not admit at all elliptic boundary value problems in the sense (117) (for instance, Dirac
operators in even dimensions and other interesting geometric operators). Later on we will
return to this aspect from the point of view of edge conditions.

We will discuss this problem in Section 5 in more detail. At least, the existence of
operators of that kind shows that regular boundaries are not harmless from such a point
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of view. It turns out that nevertheless there are other kinds of elliptic boundary value
problems rather than Shapiro-Lopatinskij elliptic ones; in that framework we may admit
arbitrary elliptic operators A, cf. [129], [133].

Let us consider the case when a differential operator A admits two different (Shapiro-

A A
Lopatinskij) elliptic problems (T > and (T > with trace operators T, and 7_. An
_l’_

example is the Laplace operator A on a (say, compact) C* manifold X with boundary
and 7T the Dirichlet, 7', the Neumann condition.

An interesting category of boundary value problems, are mixed problems, where the
boundary 0X is subdivided into two (say, C*°) submanifolds Y, ,Y_ with common bound-
ary Z (of codimension 1 on 0X) such that 0X =Y_UY,, Z=Y_nNY,. Let us slightly
change notation and identify T with the restriction of the former T to int Y. Then we
obtain an operator

A=%A T. T,) (123)

which represents a mixed problem
Au=f in intX, Tru=gs on intYs. (124)

The question is then which are the natural Sobolev spaces for such problems and to what
extent we can expect the Fredholm property when A is elliptic and 7% satisfy the Shapiro-
Lopatinskij condition on Yz (up to Z from the respective sides). (123) for the Laplace
operator A and Dirichlet and Neumann conditions 7% on Y% represents the so called
Zaremba problem. Reducing 7'y to the boundary by means of 7" gives rise to an operator
R on Y, (which has of course an extension R to a neighbourhood Y, of Y, in 0X) that
has not the transmission property at Z. This shows that the concept of boundary value
problems has to be generalised to the case without the transmission property if one asks
the solvability properties of mixed problems (124).

The formulation of (pseudo-differential) boundary value problems (117) shows some
specific features that should be carefully looked at.

Remark 2.15. The transmission property of symbols (102) rules out practically all sym-
bols which are smooth up to boundary, except for a thin set, defined by the condition (102)
for all j € N. For instance, symbols which have |{|" as their homogeneous principal part
have the transmaission property only when p € 27.

Observe that (up to a constant factor) the absolute value |n| of the covariable on the
boundary is the homogeneous principal symbol of the operator on 0.X which follows from
the reduction of the Neumann problem for the Laplace operator to the boundary by means
of the potential belonging to the solution of the Dirichlet problem. As such they fail to
have the transmission property at any hypersurface of codimension 1 on the boundary.

Remark 2.16. Another remarkable point is that the operator convention (100) is not

defined intrinsically on int X ; it employs the existence of a neighbouring manifold X and
the action of an operator A on X, combined with an extension operator e* from int X to
the other side and then the restriction r* to int X. Fortunately, despite of the jump of

etu at X we have the continuity of

rtAet . H(int X) — H**(int X) (125)
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for s > —% (when X is compact, otherwise between ‘comp/loc’ spaces). In particular, it

follows that

rtAet : C%(X) — C®(X) (126)
18 continuous. Thus the transmission property has the consequence that the smoothness
up to the boundary is preserved under the action.

We may ask to what extent a general pseudo-differential operator A € LZ()N( ) induces

a controlled mapping behaviour on int X when we first realise r*Ae™ as a map (101)

and then try to extend it to Sobolev spaces on int X or to smooth functions up to the

boundary. The answer is disappointing, even in the simplest case on the half-axis when
we look at

op*(a) = ¥ opla)e™ : CF(Ry) — C%(Ry) (127)

for a symbol a(7) € S%(R) with constant coefficients. Taking into account that, at least
for p = 0, the operator (127) induces a continuous map

op*(a) : I2(R;) — LA(Ry), (128)
there is no continuous extension as
op*(a) : H'(Ry) — H*(R,) (129)

for arbitrary s and hence no control of smoothness up to 0. An example where this
smoothness fails to hold is

a(r) = x(7)(0"(r) — 07 (7)) (130)

when 0%(7) is the characteristic function of Ry and x(7) any excision function. The
transmission property at t = 0 is violated in a spectacular way: Instead of a()(+1) =
aq)(—1) we have in this case

aq)(+1) = —a@(—1),

which is a kind of ‘anti-transmission property’.
Let us set

Op,(a)u(z) = // '@z, )u(a’)da' dE. (131)

Apart from the ‘brutal’ operator convention with r* and e*, say, in the half-space
Op,(op™(a)(y,n)) =17 Op,(a)e” (132)

for symbols a(x,€) = a(y.t,n,7) € SHR" ' x Ry x R ) (where we omit indicating
an extension a of a to the opposite side, since the choice does not affect the action on
R" ' x Ry = R"), the question is which are the natural substitutes of the Sobolev spaces
H*(R"}) which are the right choice for the case with the transmission property.

This brings us back to the question of Section 1.3. As observed before, symbols without
the transmission property at the boundary have played a role in mixed elliptic problems,
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e.g., the Zaremba problem. In classical papers of Vishik and Eskin [153], [154] and the
book of Eskin [32] it was decided to realise (132) as continuous operators

1t Op,(a) : Hy(RY) — H*(RY) (133)

(e.g., under the assumption that the symbols are independent of x for large |z[). Here
H3(R}) = {u € H*(R") : suppu C R } and H*(R") = {u’w cu € H¥(R™)}.
+

There is a natural identification between Hg(R',) and Hg (]Ri)hR+ for s > —1. Hence,

for those s we can identify r™ Op(a) with r™ Op(a)e™. However, the operator convention
(133) is not symmetric with respect to the spaces in the preimage and the image; this
makes the composition of operators to a problem. However, for the half-axis case and
for s = p = 0 the book [32] gave a completely different operator convention rather than
op™(a), based on the Mellin transform on R,. In the following section we say more
about Mellin operator conventions. This will show why there is no hope for a continuous
restriction of (128) to a continuous map between Sobolev spaces H*(R,) for arbitrary
s > 0 or to a continuous map

op*(a): S(Ry) — S(Ry) (134)
which preserves smoothness up to zero. This answers the question of Section 2 as follows:
‘regular boundaries are not harmless’ (135)

in the context of boundary value problems, even if the boundary is a single point {0} =
OR,.

Nevertheless, the way out is very beautiful, and we meet old friends: Operators of
the kind (128) belong to the cone algebra on R, cf. [124], where R, is regarded as a
manifold with conical singularity {0}.

What concerns the half-space, (or, more generally, a C°° manifold with boundary) the
answer is not less surprising. The ‘right’ Sovolev spaces are weighted edge spaces

WHI(RY) = WH(R™, K579(R,.)) (136)

for any g € R (in the local description near the boundary). As the ‘answer number 2’ to
the question of Section 2.1 we offer:

‘boundary value problems are edge problems’ (137)

in the sense of a corresponding edge pseudo-differential calculus, ¢f. Rempel and Schulze
[103], the monograph [124], as well as Schulze and Seiler [134]. The nature of edge
problems will be discussed in more detail in Section 3.1 below.

Also mixed elliptic boundary value problems of the type (123) belong to the category
of edge problems, where the interface Z on the boundary in the above description plays
the role of an edge. The same is true of crack problems with smooth crack boundaries as
mentioned at the beginning of Section 1.3.

The case of non-smooth interfaces or boundaries (in the sense of ‘higher’ edges and
corners) requires more advanced tools, cf. Section 5 below.
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Remark 2.17. [t can easily be proved that H3,, (R}) C W (R%}) C H (R%) for every
s,v € R, ¢f., analogously, the relation (74). Thus, if X is a (say, compact) C* manifold
with boundary (with a fized collar neighbourhood of 0X , locally identified with ﬁi > (y,t))
from (136) we obtain global spaces on X that we denote by W7 (X). For simplicity, in
the global definition we assume the coordinate diffeomorphisms to be independent of the
normal variable t for small t. Then, given an asymptotic type P = {(m;,p;)}jen as in
Section 1.2 with rcP C {w € C: Rew < 5 — v}, we can also define subspaces W5 (X)

locally near X based on WH(R" 1 K37 (R,)).

Let us briefly return to (137). What we suggest (and what is really the case) is
that, when we interpret a manifold with C*° boundary as a manifold with (regular) edge
(where the boundary is the edge and R,, the inner normal, the model cone of local
wedges), boundary value problems are a special case of edge problems. The edge calculus
should contain all elements of the calculus of boundary value problems in generalised
form, including edge conditions of trace and potential type, as analogues of boundary
conditions. Moreover, parametrices of elliptic edge problems should contain analogues of
Green’s function in elliptic boundary value problems. Those appear in parametrices, even
when we ignore non-vanishing edge / boundary data. If we perform the edge calculus on
a manifold with boundary, where the typical differential operators A are edge-degenerate,
Le, A=r""3 0 ni<n Galr, y)(— 7) (rD,)* in a coordinate neighbourhood = R, x
of the boundary, Q@ C RY open, aj, € C®(Ry x ), then there is the following chain of
proper inclusions:

{bvp’s with the transmission property at the boundary}
- {bvp’s without (or with) the transmission property at the boundary}
C {edge problems};

here ‘bvp’s, standards for ‘boundary value problems’.

2.2 Quantisation

Quantisation in a pseudo-differential scenario means a rule to pass from a symbol func-
tion to an operator. This notation comes from quantum mechanics with its relationship
between Hamilton functions on phase spaces and associated operators in Hilbert spaces.

Definition 2.18. In the pseudo-differential terminology the map
Op : symbol — operator (138)
18 called an operator convention.

Rules of that kind can be organised in terms of the Fourier transform Fu(§) =
Jan € u(x)dz. Given a symbol a(x,£) on the ‘phase space’ R x R" 3 (x,£) we ob-
tain an assocnated operator by Op(a) = {—»x{a x,&§)Fye}, cf. the formula (131).

If a symbol is involved in this form we also call a(x,§) a ‘left symbol’. More generally,
we may admit ‘double symbols’ a(z, z’, £), and especially ‘right symbols’ a(2’, £); then we
have

= // @z, o E)u(a’)dx' de. (139)
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Concerning x,x" we do not insist on the full R" but also admit x,x’ to vary in an open
subset 2. Then we obtain a continuous map

Op(a) : C3°(2) — C=(9),

provided that a(z,z’,£) € C®(Q2 x Q x R™) belongs to a reasonable symbol class.
Here we take Hérmander’s classes S|, p(€2x Q@ xR"), cf. Definition 1.27 (for the case

E = E = C and trivial group actions). The possibility to give a(x, &) the meaning of a left
or a right symbol (where the resulting operators are different) shows that the quantisation
process is not canonical.

Remark 2.19. A map
symb : operator — symbol (140)

which is a right inverse of (138) (possibly up to negligible terms) may be interpreted as an
analogue of semi-classical asymptotics: Objects of classical mechanics are recovered from
their quantised versions. In pseudo-differential terms we can construct such a map

symb : L?Cl)(Q)proper — ngl)(ﬂ x R™) (141)

on the space Lé‘cl)(Q)pmper of properly supported elements of L‘(‘Cl)(Q) by the rule

A —e_¢Aes =:a(z,§) (142)
for eg := €. This follows from the Fourier inversion formula u(z) = [ e*¢au(&)ds by ap-
plying A on both sides with respect to x, which yields Au(z) = [ 6”35 (e_e(z)Aeg(.))u(€)d

A generalisation of (139) is the expression

Op(a; p)u(x) == // @ (x| € u(z)da' de, (143)

a(z,2',§) € Siyy (2 x Q@ x R"). Here p(z,2',£) € C=(Q x Q& x R") is a real-valued (so
called pseudo-differential phase) function of the form

o(x, 2’ &) = Zgojxm

with coefficients ;(z,2") € C>(Q2 x ), such that grad, ., ¢(x,2',§) # 0 for £ # 0 and
gradgp(z,2',€) = 0 < o = 2. In particular, p(z,2',§) = (r — 2')¢ is an admitted choice.
Then, as is well known, also (143) represents a pseudo-differential operator Op(a;p) €

Ligy(€2). The relation

a(z,&) — Op(a; p) (144)

may be interpreted as an operator convention. It is known to induce an isomorphism

SH

(@ (@ X R")/ST=(Q x R") — Lﬁ;l (€)/L7(%).

As a consequence we have the following result:
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Theorem 2.20. Let ¢(x,2',&) and g?)(:i',i’,é) be pseudo-differential phase functions.
Then there is a map

Slay (@ x R™) — 57 (Q@ x R™), (145)
a(z, &) — a(i, ), such that
Op(a; ) = Op(a; §) mod L™>(Q). (146)
The relation (145) induces an isomorphism
Sty (X R")/S72(Q x R") — 55 (2 x R")/57=(Q x R™). (147)

The map (147) incorporates a change of the operator convention (144) with the phase
function ¢ to the one with the phase function ¢. The corresponding map

a(w,€) — a(z,€)

between (left) symbols is not canonical insofar in the preimage we may add any c(z, &) €
S7°(Q2 x R") and in the image any &(Z,£) € S~°( x R") without violating (146). In
a more precise version of such operator conventions we may ask whether there is more
control of smoothing operators (under suitable assumptions on the behaviour of the phase
functions near the boundary 092).

The following discussion can be subsumed under the following question: Let 2 C R"
be an open set, let ¢(x, 2/, &) € C°(Q x Q x R™) be a pseudo-differential phase function,
and let a(z,£) € S*(Q x R™) be a symbol. Do there exist ‘natural’ scales of subspaces
HH(Q), H(Q) of HE () such that Op(a; ) : C°(Q) — C(Q) extends to a continuous
operator Op(a; @) : H*(Q) — H*#(€) for every s € R (or, if necessary, for certain specific
s)?

To illustrate the point let us consider the operator

op(a)u(t) = // et T)u(t)d dr, (148)

a(t,7) € SH(R, xR), first for u € C°(R, ). If a belongs to S5 (R, xR) = S4(R x R)|g, &
and has the transmission property at ¢t = 0, there is an extension of op(a) as a continuous
map

op’(a): H*(Ry) — H*M(Ry)

for every s > —%. However, if we change the phase function, i.e., replace p(t,t',7) = (t —
t')7 by another pseudo-differential phase function @(r, 7/, p), the corresponding operator

op(ai ¢) s ulr) = [ [ 50 afr oulr'r'de

is not necessarily extendible in that way.

Let us now consider the case that a(t,7) € S45(R; x R) has not the transmission
property at 0. Assume for the moment ;1 = 0 and a independent of t. Recall that the
operator op™(a) is continuous as a map (128) but (in general) not as (129) for all s or as
a continuous operator (134). Beautiful examples are the symbols

ax(7) = x(7)0+(7),
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cf. (130). Observe that the operators

op* (1 - X)6s) : L*(R,) — L*(R,) (149)
have kernels in S(R; xRy )(= S(R xR) ‘R XR)' Thus the essential properties of op™(a4.)
are reflected by

op™(0+) : L*(Ry) — L*(Ry). (150)

The following result may be found in Eskin’s book [32] (see also [124]).

Proposition 2.21. We have (as an equality of continuous operators L*(R;) — L*(R,))

op” (0+) = opas(g=) (151)
for the functions g, (w) := (1 — e 2")~71 g (w) :=1— g (w) = (1 — ¥iw)~L,

In other, words the pseudo-differential operator op*(6+) on R, based on the Fourier
transform (combined with the special precaution at 0 in terms of e™,r") is equivalently
expressed as a Mellin pseudo-differential operator op,,(g+) (cf. the formula (46)) with
the symbol gi}rl . Moreover, we have

2

op” (x0) = op(g+) + G, (152)
where G is an operator with kernel in S(R; x R,), cf. the remainder term (149).

Remark 2.22. We have
g+(w) € ./\/lOR

for R ={(4,0)}jez (in the notation of Section 10.1.2). More precisely, we have

0 foro— +oo,

1 forpo— —o0

9+ (B +io) — {

for all B € R, uniformly in compact $-intervals, and the converse behaviour of g_(3+i0).

Corollary 2.23. The operators op™(61),opT(x0+) : L*(R) — L*(Ry) restrict to con-
tinuous maps

op*(6+),0p" (xf+) : S(Ry) — Sp(Ry) (153)

for the asymptotic type P = {(j,1)};e_n. Note that a function f € SE(Ry) has an
asymptotic expansion

F&) ~ > {ejt? +djt’logt}  ast—0

Jj=0

with constants cj,d; € R. Thus the operators (153) cannot be extendible to continuous
maps H*(R,) — H*(R,) for all s € R.
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The relation (152) gives us an idea of how the operator op*(a) for an arbitrary
a(t) € SH(R) can be expressed as a Mellin pseudo-differential operator on Ry, mod-
ulo a smoothing operator of a controlled behaviour. Let us consider the case p € Z (the
case a(t,7) € SH(R, x R) for arbitrary p € R is treated in [124]). A classical symbol
a(t) € S4(R) has an asymptotic expansion

~ ZX i 0 (T)m" for T — £o0 (154)
7=0

with constants au € C. That means, for every k € N there is an N = N(k) such that
op™*(a(r) — ijo X(T)a fﬁei( )7#77) has a kernel in C¥(R; x R;). Thus the essential

point is to reformulate the operators op™(x(7)0+(7)7!), | € Z, by means of the Mellin
transform. For the case [ € N we can write

op" (X(1)0+(7)7") = 0p™ (') op™ (x(7)0(7)). (155)

In order to express op™(7!) in Mellin terms we observe that op™(7) = ¢~ Yiop,,;(w) on

C((JX)(RJr)a Le

op* () = [ (¢~ opas(w)) = - opy ([0 + ).

In the latter formula we employed the commutation rule op,,(T'f) = top,(f)t?,
with the notation (T f)(w) := f(w + (), for a holomorphic Mellin symbol f(w), e.g., a
polynomial in w.

Thus, setting hy(w) := i’ HJ t(w + j) for I € N we obtain

op* (X(7)0+(7)7") = t™ opy (lugs) + Ci

for the smoothing operator C; = t~*op,,(h;)G. For the case —I € N we have

opt (X(7)0(7)7') = (£ opys (h—r)) " op* (x(7)0 (7)) = (oppr(h)) "'t op™ (x(7)0 (7))
=t""opy (T'h=}) op™ (x(7)0+(7)) =t " opy (T'h_)) ' g4) + C

for the smoothing operator C; = t~'op,, ((T"h_;)™")G.
Thus the formula (154) gives us for every k € N the representation

op™(a) = opy (M) + Di, (156)
for my(t,w) == Y5_gt7#H f,_i(w),
fu-i(w) ={a;_;9:(w) + a,_;9- (w) Hyj(w)
for j =0,..., 1, h(w )—leJ o(w + ), and

Fumi(w) = {a;_ 04 (w) + a,_;g-(w) }(T7 "1, L) (w)

for j > p, and Dy is an operator of a controlled behaviour, explicitly given by the
considerations before. Its kernel belongs to CV(R, x Ry) with N = N(k) — oo as
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k — oo. This concerns the case u € Z; as mentioned before, analogous representations
for © € R may be found in [124].

Of course, the formula (156) is not a complete reformulation of an operator from the
Fourier to the Mellin representation, although it is a good approximation, since we can
pass to an asymptotic sum Z;io L (w).

However, as a corollary of Theorem 2.20 we obtain Mellin representations immediately:

Proposition 2.24. For every a(t,x,1,§) € Séil) (Ry x Q x RY™) there is an m(r,z,w, &)
€ Sé‘cl)(RJr xQxT ) x R™) such that

Op, (op,(a)) = Op,(opy,(m)) mod L™(R; x ). (157)

We want to illustrate Proposition 2.24 on the half-axis R, (the generalisation to R, x
is trivial). Let us admit double symbols on the Fourier as well as on the Mellin side; if
necessary pseudo-differential generalities allow us to pass to representations in terms of
left symbols.

Consider the weighted Mellin pseudo-differential operator

n= [ [TE) T e = i) o (158

. , 1
14y // ezg(log'r —10g7")f(7,.7 7’/, 5 — v+ ZQ) (r’)_%_ﬂyu(’l“/)dﬂd@
0

for an f(r, 1", w) € S (Ry x Ry x I'y_). The operator

1
B: v—>// o) f(p !, 5—7—1—29) u(r')dr'do

is an element of L’(‘CD (R), since

o(r, 7', 0) = o(logr’ —logr) (159)

is a pseudo-differential phase function. This implies 72" Br—2=7 € Lé‘d) (R,), and,
according to Theorem 2.20, we find a representation of op),(f) by a symbol a(t,7) €

Stey(Ry x R) mod L™(Ry), cf. the formula (148).

Remark 2.25. Consider the diffeomorphism

X:Ry =R, x(r):=—logr,
and set y := —logr, i.e., r = e”¥. Then the operator push forward of op,,(f) under x
has the form
i(y=y)of (3= (y~y") y -y 1
e {elz fle e ,é—fy—l—zg ) Yo(y')dy' do. (160)

Now, since x. : Ly (Ry) — Ly (R) is an isomorphism, for every a(t, ', 7) € Si (R4 x
R; x R) we can form a b(y, v/, o) € Séil) (R x R x R) such that

X« op(a) = op,(b) mod L™*(R).
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Setting
1

flrr', 5 =7 +ie) = (%)7(57%(— logr, —logr’, 0)

from (160) it follows that x. op,(a) = x.op,,(f) mod L~>°(R) and hence
op}y(f) = opy(a) mod L=(R,).

A similar argument applies to symbols on Ry x Q > (¢, x) rather than on the half-axis
Ry. Then, if m(r,z, w§) € Si, (Ry x @ x I'i_, x R") denotes a left symbol associated

with f(r,7/,z,5 — v+ ip,§) we just obtain Proposition 2.24.
Remark 2.26. Similarly as (141) we can construct a map
symbyy ¢ Ligy (R X Q) proper — Sfggy (Ry x € % I, xR

by using the inversion formula
u(r, x) / / V(M Fu)(w, §)dwdE

for dw = (2mi) 'dw and applying A € L’ZCD (Rt X Q)proper under the integral sign. This
guves us

symb,(A)(r,x,w, &) = re_g(v)Ar Ve (.) € S( Ry x Q% I X R™).

For ~ = 3 this is, of course, equivalent to the formula (142), cf. also Remark 2.25.

Proposition 2.24 and Remarks 2.25 reformulate operators from the Fourier to the
Mellin representation, modulo smoothing remainders. More interesting are reformulations
with remainders of a controlled behaviour near r = 0 as obtained in the formula (156).
Such results are known in many special situations, cf. the monograph [124] or the papers
[134], [30]. Precise reformulations have been mentioned before in connection with edge-
degenerate operators (25) coming from ‘standard’ differentiaal operators A € Diff*(R™ x
), Q C R? open, ¢ > 0. For ¢ = 0 we obtain Fuchs type operators of the form (19). By
virtue of —rd, = M~'wM = op,,;(w) (= op},;(w) on functions with compact support in
r € R;) we can write (25) in the form

A= 0p, (0p](R)) (161)

for every v € R for the (y,7n)) depending Mellin symbol

h(r,y,w,n) Z ajo(r, y)w (rn)®,

Jtlal<p

ajo(r,y) € C(RY, Diff*~UHeD(X)): in this case X is a sphere.
For ¢ = 0 the action Op,(.) is simply to be omitted, i.e., we have

A=r"*op),(h) (162)
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for h(r,w) = Y1 a;(r)w?, a;(r) € C=(Ry, Diff* 7 (X)).
In general, if A is not a differential operator but a classical pseudo-differential; operator
in R™ we can first consider the push forward of A’Rm\ [0} under polar coordinates y :

R™\ {0} - R, x X,z — (r,¢) (for X = S™71) to a pseudo-differential operator with
(operator-valued) symbol of the form
rp(r, o)
such that
p(r; 0) = p(r,r0)

and p(r, 9) € C°(R,, L ,(X;R;)), and then obtain

(c1)
X (A|Rm\{0}) =rh opr(p) mod L_N(Rm \ {O})
In a second step from p(r, ) we produce a Mellin symbol h(r,w) € C=(R,, L*(X;C))

such that
op,(p) = opy,(h) mod L™*(Ry x X).

Here (for any C'*° manifold X)
LA(X;C x RY)

denotes the space of all holomorphic LY (X;R?)-valued functions h(w,n) such that h(3 +

cl
i0,n) € Ly(X; R, x RY) for every # € R, uniformly in compact S-intervals (for ¢ = 0 we
write L) (X; C)).

Theorem 2.27. (i) Given an arbitrary A € L' (R™ x Q), Q C R? open; the push

(c)
forward of A}( under x : (z,y) — (r,¢,y) has the form

R™\{0})x €2
(Al s o) = 7 OB, (09, (1) mod L™=(Ry x X x @) (163)
(for X = 8™ Y for a family
p(r.y, 0,m) = p(r,y,ro,rn), (164)
p(r,y,8,7) € CF(Ry x Q Liy (X5 R, x RY)); (165)
(i) for every operator function (164) with (165) for a C*° manifold X there exists an
h(r,y,w,7) € C*(Ry x Q, L{,) (X;C x RY))
such that for h(r,y,w,n) := iNz(r,y, w,rn) we have
Op,(op,(p)) = Op,(0op;,(h)) mod L™ (R4 x X x Q) (166)

for every v € R.

Remark 2.28. Note that, although in the relations (163) or (166) we may have smoothing
remainders the kernels of which are not specified near (r,r') = 0, the choice of p and h is
possible in such a way that the dependence on r is smooth up to r = 0. In other words,
from the relation (163) for every v € R we see that the control of the operator convention
18 much more precise than in the general set-up of Proposition 2.24.
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Remark 2.29. O_bsem)e that there is also a wvariant of Proposition 2.24 for symbols
a(t,z,7,§) € S{yy (Ry x QxRY™) that always admit a choice of m(r,z, w,§) € S{y (Ry x
Y x C x R") such that (157) holds. Here S&l)(KJF x 3 x C x R"™) is the space of all

holomorphic functions m(r,z, w,§) in w € C with values in Si, (R x X x R™) such that
m<r7$7ﬁ + ZQ: g) € ngl)(ﬁ"r X E X R;—gn)
for every B € R, uniformly in compact B-intervals.

The relation (166) is a generalisation of (161) to pseudo-differential operators. Intu-
itively it tells us that a pseudo-differential operator A on R™ x 2 near a fictitious edge €2
(or on R™ near the fictitious conical singularity 0) feels like a (weighted) Mellin operator
in model cone direction transversal to the edge (or on the cone R™\ {0} = X” for ¢ = 0,
X = 8™ 1. Another interpretation is that A is edge-degenerate (or of Fuchs type) with
respect to every fictitious smooth edge (or any fictitious conical singularity). We thus
see that the smooth pseudo-differential calculus is full of ‘singular confessions’: Smooth
operators belongs to the more distinguished world of singular (or degenerate) operators,
although they are usually not recognised as legitimate members of that society. After
this presumption we may conject that the ambitions are going much deeper. In fact,
as we saw at the end of Section 2.4.2, the possibilities of smooth differential operators
to pretend to be singular are only bounded by the dimension of the underlying space.
Similar observations are true of pseudo-differential operators with respect to higher edges
and corners.

Surprisingly enough, there are not only fictitious difficulties connected with fictitious
singularities, as explained in [30] or [74]. Even in the case of differential operators (25)
we can ask the properties of edge symbols

on(A)(y,m) : K2(XD) — K7#I71 (X7 (167)

in connection with the families of subordinate conormal symbols

oeon(A)(y,w) =Y ajo(0,y)w’ : H(X) — HH(X). (168)

J=0

If A € Diff*(R™ x Q) is elliptic, it is interesting to know for which weights v € R the
operators (167) are Fredholm for all (y,n) € T*Q\ 0. Admissible weights in that sense
are determined by the condition that the weight line I nt1 does not intersect the set of
points w € C where (168) is not bijective, for all y € Q. If this is the case we may hope
to find vector bundles J. on the edge €2 and a block matrix family of operators

o - ® (169)

<0A(A) oa(K) 2 @

’Cs,'y (X/\) ’Csfu,'yf,u(X/\)
) ia)
which fills up (167) to a family of isomorphisms. Let A € Dift*(M) for a closed compact
C> manifold M (of dimension m + ¢) with an embedded closed compact manifold Y (of
dimension ¢) as a fictitious edge. Then, considering the former A € Diff*(R™ x Q) as a
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local representive, the existence of isomorphisms (169) is a global problem and equivalent
to the condition that indg«y o,(A4) € K(S*Y) is the pull back of an element of K(Y)
(namely [J4] — [J_]) under the canonical projection S*Y — Y. This is a topological
obstruction for the existence of additional edge conditions (of trace, potential, etc., type)
which complete A to a Fredholm block matrix

WY (MN\Y) WS #(M\Y)
A= (; g) : & — S ; (170)
H (Y, J-) H (Y, J4)

cf. the discussion in Section 10.5.1 below. Both the evaluation of the non-bijectivity
points of (168) and of indg«y oA(A) may be serious problems that are far from being
trivial in the case of fictitious edges.

The spaces W*7(M \ Y) are global weighted edge spaces on M \ Y, locally near YV
modelled on W*(RY, IC*7(X")).

As is known for s = v, s —pu > %, s = F € N, cf. [30], operators of the kind (170) are
equivalent reformulations of differential operators

A H (M) — H (M)

by applying suitable isomorphisms

Wes(M\Y) We—hs=i(M\Y)
& = H(M), H""M)— @
H(Y, J(s)) H (Y, J (s — )

for vector bundles J(s), J(s — ) € Vect(Y). In particular, for codimY = 1 such a block
matrix (170) corresponds to a reformulation of A with respect to the subdivision of M
by means of Y. It would be interesting to achieve similar reformulations of A in terms of
subdivisions with corners, e.g., triangulations of M.

Let us return to the relation (166), interpreted as a local result for a pseudo-differential
operator A € L’(Ld)(]\/[ ) on a closed compact manifold M with an embedded fictitious edge
Y of dimension q. We then obtain the following result:

Theorem 2.30. For A € Li (M) and every v € R there exists an operator C, €
L=°(M\'Y) such that A, := A — C.,, has an extension to a continuous operator

AW (M\Y) - WM\ YY)
for every s € R.

This is an immediate consequence of (166) together with the fact that the operators
Opy(opb_i(.)) are continuous in the weighted spaces W#(R?, C*7(X")) (in their ‘comp’
or ‘loc’ versions on open sets {2 with respect to y).

2.3 The conormal cage

Let X be a compact manifold with boundary 0X. By the ‘conormal cage’ we understand
the set S* X U N*, explained in Remark 2.6, consisting of the cosphere bundle S*X as the
cage and the conormal unit intervals over the boundary as the bars.
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Consider a pseudo-differential operator
A:=1tAet : L*(X) — L*(X) (171)

for an A € Lgl()? ), where X is an neighbouring C*° manifold of X (for instance, 2X).
If A has the transmission property at the boundary, the homogeneous principal symbol
oy (A) of order zero has an extension to a continuous function o (A) on S*X U N* which
is automatically determined by the extension of o, (A) from the north and south

S*X
poles by homogeneity 0 to N*. This is just the explanation ‘cé)af)’( the relation (104). If A has
not the transmission property this may be not the case, cf. Remark 2.6.

Let us ask what we have to ensure about the symbolic structure of the operator A
when we want to associate with (171) a Fredholm boundary value problem (with extra
conditions on 0.X). First we require the usual ellipticity of A, i.e., oy(A) # 0 on T*X \ 0.
In addition, after the experience of Section 10.2.1, we have to consider the principal
boundary symbol

0a(A)(y, ) = 170y (A)(y,0,n, Dr)e” : L*(Ry) — L*(Ry) (172)

(in local coordinates = (y,t) € R, with the covariables £ = (1, 7)).
In order to fill up (172) to a family of isomorphisms (112) (here for s = 0) we need
that (172) is a family of Fredholm operators for (y,n) € T*(0X) \ 0.

Theorem 2.31. For the Fredholm property of (172) for all (y,n) € T*(0X) \ 0 it is
necessary and sufficient that o,(A) # 0 and that

5* Xlox
0c05(A)(y, w) = 0y (A)(y,0,0, +1)g (w) + 04(A)(y, 0,0, =1)g-(w)
does not vanish for all w € F% and y € 0X.
This result may be found in Eskin’s book [32], see also [124].
Remark 2.32. Observe that the set

1 1
{weC:w= a+g+(§ +1i0) +a,g,(§ +10), 0 € R}

15 the straight connection of the points ayx € C in the complex plane. The numbers

a:l:(y) = GTZ)(A) (ya 07 07 il)

are the values of oy(A) on the north and the south pole of S*X|ox. Given any f(y,w) €
C*(0X,S8(I'1)) the points

0 ()94 (5 +i0) +a_(n)g-(5 +i0) + fy, 5 +io) (173)

define another connection between ay(y) and a_(y) in the complex plane. Choosing any
diffeomorphism (—1,+1) — I‘%, T — 3 + 10, such that T — =£1 corresponds to 0 — Foo
the connection (173) can be reformulated as

@ ()94 (G + o) +a_(v)g-(5 +io(r) + F(y, 5 +ie(r)), (174)

T € [—1,1], which represents together with the values of oy (A)
tion on the conormal cage S*X U N*.

5 Xlox @ continuous func-
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The function f(y,w) in the relation (173) can be regarded as a Mellin symbol of a
family of operators

m(y,n) = w(tn]) opa (f)(y)o(tn]) (175)

for any choice of cut-off functions w(t),o(t). For the discussion here we may take Mellin
symbols

fly,w) € C=(0X, M),

where M~ is the union over ¢ > 0 of all spaces M;* := {f(w) € A({3 — ¢ < Rew <
s+e}): f(B+io0) € S(R,) for every § € (3 —¢, 54¢), uniformly in compact subintervals}.
With any such Mellin symbol we can associate an operator

M : L*(X) — L*(X)

which is locally on X defined by Op,(op,,(f)) and then glued together by using a
partition of unity on 0X. We then set

aa(M)(y,n) = w(tn]) opp (f)(y)o(t|n])

and

0 A+ M)y, w) = ay (g (5 +i0) + a_()o_ (5 +i0) + fly. 5 +ie)  (176)

forw:%—i-ig.

Definition 2.33. The function (176) is called the (principal) conormal symbol of the
operator A+ M.

Remark 2.34. The notation ‘conormal symbol is motivated by the bijection

VNS DX X Ty, () = (g + (7)) a7

which admits the interpretation of o.(A + M)(y,w) for w € F% as a function on the
conormal unit interval bundle N* of the boundary 0X.

What concerns the summand A the notation is compatible with the information of
the preceding section. In fact, let us write A locally in the coordinates (y,t) € Q x R, in
the form

A = Op,(r" op,(a)(y, n)e")
for a symbol a(y,t,n,7) € S4(Q2 x Ry x R? ). Then we know that
op™(a)(y,n) =17 op,(a)(y, n)e”
admits a Mellin representation near ¢ = 0 with the principal conormal symbol

UC(Op+(a))(y7 w) - CL(())(y, 07 07 1)g+(w) + a(O)(y7 07 07 _1)9— (w)7 (178>

where a(o)(y,t,n,7) is the homogeneous principal component of the symbol a. For the
Mellin summand M = Op,,(m) we employ such a notation anyway, namely,

ae(M)(y, w) = oc(m)(y, w) = f(y, w),
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cf. also Section 10.1.2. The notation ‘conormal symbol” of an operator, originally intro-
duced in [103], is motivated by the relationship with the conormal bundle of a boundary
and the inner normal, interpreted as a manifold with conical singularity. The boundary
symbol of (171) generates a function (174) (for f = 0) on the conormal interval [—1, +1],
and this function has just the meaning of the conormal symbol of the operator (171) when
it is regarded as an element of the cone calculus on the half-axis, see [124], [134].

Theorem 2.35. The conditions o,(A) $*X|ox # 0 and o.(A + M)(y,w) # 0 for all

y € 0X and all w € F% are necessary and sufficient for the Fredholm property of the
operators

go(A+M)(y,n) : L*(Ry) — L*(Ry) (179)
for all (y,n) € T*(0X) \ 0.

This result is an information from [32], see also [124].

By virtue of the homogeneity oo(A+M)(y, A\p) = kroo(A+M)(y,n)ky" for all X € R,
the index of the Fredholm operators (179) is determined by the operators for (y,n) €
S*(0X), the unit cosphere bundle induced by 7*(0X). The space S*(0X) is compact,
and we have

indg- (o) 0a(A + M) € K(S*(9X)) (180)

(here K (.) denotes the K group on the space in the brackets; recall that K(.) is the group
of equivalence classes of pairs (J,G) of vector bundles on that space, where (J,G) ~
(j, CNJ) & JeGaH =~ JeGa H for some vector bundle H (we are talking about smooth
complex vector bundles when the underlying space is a C* manifold, otherwise about
continuous complex vector bundles).

The element (180) is represented by the families of kernels and cokernels of the oper-
ators og(A + M)(y,n), (y,n) € S*(0X), when their dimensions do not depend on (y,n),
otherwise by an easy algebraic construction which reduces the general case to that of
constant dimensions, see, e.g., [124, Section 2.1.7].

The canonical projection m; : S*(0X) — 0X gives rise to a homomorphism 77 :
K(0X) — K(5*(0X)) induced by the bundle pull back, which is compatible with the
equivalence relation.

In order to pass from the operator

A+ M : LX) — L*(X)
to a block matrix Fredholm operator
L*(X) L*(X)
A= <A +TM g) S SIS (181)
L*0X,J ) L*(0X,J,)

for suitable vector bundles J. on 90X, where T, K and () are of similar meaning as the
corresponding operators in (117), we have to require that

indg«@ax) 0a(A+ M) € 11 K(0X) (182)

which is a pseudo-differential version for a topological obstruction for the existence of
elliptic boundary value problems of Atiyah and Bott [6]. We will come back to the nature
of such obstructions in a more general context in Section 5.3 below. A special case is the
following result:
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Theorem 2.36. Let A + M satisfy the conditions of Theorem 2.35. Then there is an
elliptic boundary value problem of the form (181) if and only if the relation (182) holds.

Of course, if we talk about the extra operators K, @ in (181) we mean that they are
of a similar structure as those in (117). To be more precise, the construction follows by
filling up the Fredholm family (172) to a family of isomorphisms

I*R)) IA(R.)

0o(A+ M) oy(K) : —
( oo(T) ‘78<Q))(y’n)‘ J@,y ny’

where J. , are the fibres of vector bundles Jy over y € 9X. Those bundles on 0X just
represent the element (182), i.e.,

inds*(ax) O'a(A + M) = [J+] - [J,],
where [J,] — [J_] denotes the equivalence class of (J;, J_).

Remark 2.37. Let us consider, more generally, operators of the form A+ M + G for a
so called Green operator G € L(L*(X)) which is defined by G = Gy + G where

Go : L*(X) = WP(X),Gry « L2(X) — WG (X)

are continuous for asymptotic types P = {(pj,m;)}jen and Q@ = {(g;,n;)}jen as in
Section 1.2, mcP,mc@ C {Rew < %}, cf. Remark 2.17, and Gq is locally in coordi-
nates (y,t) € R x Ry of the form Op(g) for an operator-valued symbol g(y,n) €
SOR™ ! x R*™ 5 L*(R ), SE(Ry)) such that the pointwise adjoint is a symbol g*(y,n) €
SHR™ x R LA (Ry ), SH(Ry)). Setting aa(G)(y,n) = go)(y,m), (y,n) € T*(9X)\ 0,
(cf. Definition 1.27 and Remark 1.29) then we obtain a family of compact operators

a(G)(y,m) : L*(Ry) — L*(R,).
It follows that indg-(ax) 0a(A + M) = indg-ax) 0o(A+ M + G).

The operators G of Remark 2.37 play a similar role as the Green operators in bound-
ary value problems (117) with the transmission property. In the latter case the Mellin
operators M are not necessary to generate an operator algebra. In the case without the
transmission property (here, for simplicity, in L? spaces and of order zero) boundary value
problems have the form of matrices

A+ M+G K
A=(TETER).

It also makes sense to consider operators between sections in bundles E, F € Vect(X)
also in the upper left cornes, i.e., to consider operators

(183)

L*(X,E) L*(X,F)
A: ) — ) : (184)
L*(0X,J.) L*(0X,J,)
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Let U°(X) denote the space of all such operators. We then have B°(X) := B%0(X) C
0°(X), cf. the notation of Section 2.1. Similarly as (115) the principal symbolic hierarchy
has two components, namely,

0(A) = (94(A), 09(A)), (185)
with the interior symbol
op(A) = 0y(A) : Ty E — 7% F, (186)

mx : T*X \ 0 — X, and the boundary symbol

E'® L*(Ry) F'@ L*(R,)
oo(A) = Thy ® — Thy &) (187)
J T,

mox : T*(0X) \ 0 — 90X, which are bundle morphisms, £’ := E|sx, F' := Flsx.

Remark 2.38. (i) The operators (183) form an algebra (algebraic operations are de-
fined when the entries of the operators fit together). In particular, we have

o(AB) = o(A)a(B)
with componentwise multiplication;
(ii) if o(A) =0, then (184) is compact.

Definition 2.39. An operator A of the form (183) is called elliptic if both components
of o(A) are isomorphisms.

Theorem 2.40. An operator (183) is elliptic if and only if (184) is a Fredholm operator.

Given an A € U°(X) and bundles H € Vect(X), L € Vect(0X) we can pass to a
stabilisation of A by forming a larger block matrix

A+M+G 0K 0N oy pon) (X, FoH)

- id
A= ; 10H g 8 : ® — ®
2 2
. 0 0, LOXIel) LMOX.Jel)

which also belongs to B°(X). It is evident that the ellipticity of A entails the ellipticity
of A. If A, B € U°(X) are elliptic we say that A is stable homotopic to B, if there
are stabilisations A and B of A and B respectively, such that there is a continuous map
v :[0,1] — L°(X) such that (t) is elliptic for every ¢t € [0,1] and v(0) = A, v(1) = B
(here we tacitly use a natural locally convex topology of °(X)). In a similar manner we
can define stable equivalence of pairs of symbols of elliptic operators.

Clearly the index of an elliptic A € B°(X) only depends on the stable equivalence
class of its principal symbols o(A). The space U°(X) of boundary value problems on
X of order 0 (as well the subspace B°(X)) is an example of an operator algebra with
a principal symbolic hierarchy, where several components participate in the ellipticity.
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It is an interesting task to understand in which way the components contribute to the
index and whether and how (analytically, i.e., in terms of symbols) the contribution from
one component can be shifted to another one by applying a stable homotopy through
elliptic symbols. Questions of that kind are reasonable for every operator algebra with
symbolic hierarchies. In the present case of the algebra U°(X) the picture is particularly
beautiful. First, for the subalgebra B°(X) a stable homotopy classification of elliptic
principal symbols was given by Boutet de Monvel [13]. The nature of homotopies depends
on whether or not we admit homotopies through elliptic symbols in °(X), cf. Rempel
and Schulze [103]. We do not give the explicit answer here, but we want to make a few
remarks. If A € U°(X) is (04, 0p)-elliptic, then the upper left corner of (187) is a family
of Fredholm operators. Similarly as Theorem 2.35 that means that (in the bundle case)
0c(A+ M)(y,w) is a family of isomorphisms parametrised by w € I's, or, alternatively,
when we pass to the parametrisation as in Remark 2.34, o.(A + M)(y,n) connects the

isomorphisms
oy(A)(y,0,0,£1) : E; — F; (188)

for y € Y by a family of isomorphisms parametrised by N*. In other words, the ellipticity
of A gives rise to an isomorphism between the pull backs of £ and F' to the conormal
cage S*X U N* with respect to the canonical projection

m: S*XUN" — X.

In the case A € B(X) the isomorphisms (188) are the same for the ‘plus’ and the
‘minus’ sign, and by virtue of the homogeneity of order zero the above mentioned pull
back, restricted to N*, is nothing other than

0u(A)(,0.0.7) : ) — F, (189)

for all =1 < 7 < 1. In the case of a boundary value problem A € U° we have to replace
(189) by a family of the form (174) with f coming from the (in general non-trivial) Mellin
symbol f(y,w) which can cause a non-trivial contribution to indg«y os(.A), cf. also [124,
Section 2.1.9].

3 How interesting are conical singularities?

An example of a cone is what is given to children in Germany on their first day at school, a large cornet filled with sweets.
The tip of the cone (the ‘conical singularity’) then appears not so interesting, essential things in this connection should be
of non-vanishing volume, while the tip is an unwelcome end.

However, if we look at a piece of material with conical singularities (e.g., glass or iron) and observe heat flow and tension
in the body, the physical effects near the conical points can be very important (for instance, destruct the material). Near
the tips the solutions of corresponding partial differential equations may be singular in a specific way.

The analysis in a neighbourhood of a conical singularity is a first necessary step for building up calculi on configurations
with higher (‘polyhedral’) singularities, when we interpret wedges as Cartesian products of cones and C°° manifolds, or
‘higher’ corners as cones with base spaces of a prescribed singular geometry.

3.1 The iterative construction of higher singularities

Intuitively, a manifold B with conical singularities is a topological space B with a (finite)
subset B’ of conical points such that B\ B’ is a C*™° manifold, and every v € B’ has a
neighbourhood V' in B that is modelled on a cone

X2 = (B, x X)/({0} x X) (190)

60



with base X, where X is a " manifold. In order to classify different possibilities of
choosing ‘singular charts’
x:V — X2

on B we only admit maps of a system of singular charts such that for any other element
¥ : V — X2 of that system the transition map

XregOX;éiR+XX—>R+XX

(for Xreg == X {0}’ etc.) is smooth up to 0, i.e., the restriction of a diffeomorphism
RxX — Rx X toR; x X. In this way we distinguish a conical singularity from an
infinite variety of mutually non-equivalent cuspidal singularities.

Let us assume that B’ only consists of a single point v; many (not all) considerations
for a finite set of conical singularities are similar to the case of one conical singularity.

The impact of a conical singularity of a space B can easily be underestimated. At
the first glance we might think that the new effects (compared with the smooth case)
in connection with ellipticity and other structures around the Fredholm property of a
Fuchs type operator A are of the same size as the singularities themselves. However, as
we already saw, there is suddenly a pair (o,(A),0.(A)) of principal symbols, with the
conormal symbol o.(A) as a new component, a family of elliptic operators on the base of
the cone, and, apart from all the other remarkable things in connection with the pseudo-
differential nature of parametrices in the conical case, the conormal symbol has ‘hidden’
spectral properties, i.e., non-bijectivity points in the complex plane C 3 w

oe(A)(w) : H*(X) — H*(X)

(and also poles in the pseudo-differential case) that are often not explicitly known (or
extremly difficult to detect), even in the case of fictitious conical singularities.

Conical singularities are important to create higher order ‘polyhedral’ singularities.
In fact, starting from a cone X with a smooth base X we can form Cartesian products
X2 x Q with open sets € in an Euclidian space R?. A manifold W with smooth edge Y
is then modelled on such wedges X2 x Q near Y (with  corresponding to a chart on Y).
Similarly as for conical singularities we impose some condition on the nature of transition
maps between local wedges. More precisely, if Y : V — X2 xQ, ¥ :V — X2 x Q are
two singular charts on W near a point y € Y, and if we set

Xreg ::x\V\Y:V\YH& XX XQ Xreg ::g\V\Y:V\Yﬁm x X x Q,
then the transition map
Xreg © Xrh t Ry X X x Q= Ry x X x Q (191)

is required to be the restriction of a diffecomorphism R x X xQ — Rx X x 2 to R, x X x€.
This allows us to invariantly attach {0} x X x € to the open stretched wedge Ry x X x 2
which gives us Ry x X x €, the local description of the so called stretched manifold W with
edge, associated with W. The stretched manifold W is a C"*° manifold with boundary,
and OW has the structure of an X-bundle over Y.
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Manifolds with edges form a category 91, with natural morphisms, especially, iso-
morphisms. The manifolds with conical singularities form a subcategory (with edges of
dimension 0).

From 971, we can easily pass to the category 91, of manifolds with singularities of
order 2, locally near the singular subsets modelled on

cones W2 or wedges W2 x Q

for a manifold W € 9, and open 2 C R%. This concept has been carried out in a
paper of Calvo, Martin, and Schulze [15]. In other words, by repeatedly forming cones
and wedges we can reach caterogies of manifolds with singularities which contain many
concrete stratified spaces that are interesting in applications.

Remark 3.1. The notion ‘manifold’ in this connection is only used for convenience. Al-
though there are analogues of charts, here called singular charts, the spaces are topological
manifolds only in exceptional cases, e.q., X* is a topological manifold when X is a sphere
but not when X 1is a torus.

Observe that the category 9 of spaces M of singularity order k£ € N (where k = 0
means the C'™ case) can also be generated as follows: A space M belongs to 9, if there
is a submanifold Y € 9y such that M \Y € M1, and every y € Y has a neighbourhood
V modelled on a wedge X(Akfl) x (1 for a base X(,_1) € My_1, & € R? open, ¢ = dimY,
with similar requirements on the transition maps as before, cf. [15]. For dimY = 0 we
have a corner situation, while dimY > 0 corresponds to a higher edge.

Setting, for the moment Y*) := Y from M \ Y*) € 9,_; we obtain in an analogous
manner a manifold Y *=1 € 9, such that (M \ Y®)\ Y*=D ¢ 9, ,. By iterating
this procedure we obtain a sequence of disjoint C* manifold Y, [ =0, ..., k, such that
MA\A{UL YD} € My (gnya) for every 0 <m < k, and YO .= M\ {Uf;é Yy k=1,

Then we have M = Ji_, Y®, and the spaces

k
M) Uy(l) c M.,

I=j

form a sequence
M=MY>5MD>5  >5M"» (192)

such that Y = MW\ MU 5 =0,...,k —1, and Y*® = M® are C* manifolds.
Those may be interpreted as smooth edges of M of different dimensions. In particular,
Y is the C* part of M of highest dimension. Incidentally we call Y©) the main stratum
of M and set dim M := dim Y. Moreover, we have MW\ MU+D e M, j=0,...,k—1.
Locally near any y € V') the space M is modelled on a wedge

X( iy xQ (193)

dimY )

for an open 2 C R and an element X(;_;) € M;_;.

Example 3.2. (i) If M is a C™ manifold with boundary, we have M € My and MV =
OM, and YO = M\ OM.
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(ii) A manifold M with conical singularity {v} belongs to M, and we have MY = {v}
and YO = M\ {v}.

(iii) Let €y, j =0,1,2, be C* manifolds, and set M = (Q5 x Q1)> x Q. Then we have
MeMyand YO =R, x Ry x Qo x Q x Qy, YO =R, x Q) x Qy, Y = Q.

(iv) Another example of a manifold with singularities is a cube M in R3 with its boundary
MO | the system M@ of one-dimensional edges including the corners, and M) the
set of corner points. In this case we have M € Mg, M) € My, M@ € M, and
M® € M.

For the calculus of operators on an M € 9, it is reasonable to have a look at the space
of ‘adequate’ differential operators. For M € 9, we simply take Diff*(M), the space of
differential operators of order y with smooth coefficients. For M € 90, we take Diff}j (M),
defined as the subspace of all A € Diff*(M \ YV)) that have in a neighbourhood of any
y € YW in the splitting of variables (r,z,y) € Ry x X(g) x Q (with X(g) € My being the
base of the local model cone near Y and © C R4mY™ gpen) the form

rt Z ajo(r,Y) (—rag)j(rDy)a (194)

j+lal<p g
with coefficients a;,(r,y) € C=(R, x Q, Diff*~" 0D (X)), By induction we can define
A € Diff* (M) (195)

deg

for every M € 9, as follows. On M\Y®) € M, we assume A‘M\Y(k> € Diffgeg(M\Y(k))

which is already defined, and in the splitting of variables (r,z,y) € Ry X X(,_1) x § near
any point y € Y®,  C RImY™ open X(—1) € My,_1, the operator A is required to be
of the form (194) with coefficients

aja(r,y) € CF(Ry x Q, Diffh U7V (X)) (196)

The definition of (195) gives rise to the notion of a principal symbolic hierarchy
o(A) := (0;(A))j=0...k; (197)

.....

where o(A) = aw(A‘ A M,) is the standard homogeneous principal symbol of A‘ Mar €
Diff*(M \ M') (recall that M \ M’ € 9My). More generally, (0;(A));=o,.. k-1 is the symbol
of A|M\Y<k> € Difff (M \ Y®) in the sense of M\ Y*) € 9y, while we set

(A = a0, 9) (5P ) (199)

Jtlel<p

(y,m) € T*Y®)\ 0, as a family of operators between functions on the model cone X (1)
The nature of those functions will be explained in Section 5.1 in more detail.

Observe that differential operators (195) can be generated in connection with Rie-
mannian metrics. Assume that X1y € 9M;_1, and let g;—1) be a Riemannian metric on
Xk—1) \Xék—l) € My. Consider the Riemannian metric

dr,% + T,zg(kfl) + dyﬁ (199)
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on the stretched wedge Ry x (X(z_1) \ X(’k_l)) X Qr, Q. € R%* open, for r, € R,
Uk = (Ykas-- - Ykq) € Q. Then the Laplace-Beltrami operator associated with (199)
has the form

_ 0?
T ? <lew + Ag(k—l) + rleQk>7 (200>
k
where AM?U is the Laplace-Beltrami operator on X;_) \Xékfl) associated with g(_1)
2 2
_ : 202 _ o) o)
and Ag, = ;].’“:1 3y,%j the Laplacian on €2;. Note that ko = <Tk8_m> + kg, Assume

that gx—1) is given as

G-y = dri_y +Ti_190-2) + dYi_y (201)
when X,_1) € 9M;_; is locally modelled near an edge point on a wedge X(A,%Q) X Qr_1
for an X9y € Mir_a, Yy € R%*1 open, (1p—1,2,Yx—1) € Ry x Xp_9) x Qi—1, and
g(k—2) a Riemannian metric on X_o) \ X(/k—2)‘ Inserting the Laplace-Beltrami operator
to (201) (using notation analogous to (200)) into (201) it follows that the Laplace-Beltrami
operator for the Riemannian metric

dry + ri{dri_y + i 19w—2) + dyp 1} + dyg

has the form

_ 0? _ 0?
k k-1

By iterating this process we finally arrive at an Xy € 9My; if we prescribe a Riemannian
metric gy on Xy and insert one Laplacian into the other we obtain an element of Diff?ieg(M )
on the singular manifold M := X(Ak_l) x Q. € My,.

3.2 Operators with sleeping parameters

The (pseudo-differential) calculus of operators on a manifold with conical singularities or
edges, locally modelled on

cones X or wedges X x Q, (202)

for a (say, closed and compact) C*° manifold X, gives rise to specific operator-valued
amplitude functions, taking values in operators on X and X%, respectively. For instance,
the calculus on the (infinite stretched) cone X2 = R, x X > (r, r) starts from Fuchs type
differential operators

a;(r) (=rd,)’ (203)

M=

A=r*#
5=0
a;(r) € C=°(R,,Diff*7(X)). The operator family f(r,w) := > aj(r)w’ can be re-
garded as an element of C®(R, L*,(X;T)) for every 8 € R. Then, if we fix 3 := ”T“ —
for n = dim X, we can interpret A as an operator

A=r# Op’](/[_% (f) . Ks,'y(x/\) N lcsf,u,'yf,u<X/\)

64



(under suitable assumptions on the r-dependence of the coefficients a;(r) for r — oo, for
instance, independence of r for large r).
Alternatively, we can start from an operator family p(r, ) := p(r,rp) for any

p(r, 8) € C=(Ry, L(X;Ry)). (204)

In the pseudo-differential case we apply suitable quantisations which produce operators
C, € L~>°(X") such that

Ay =1 op,(p) — Cy K91 (X7) — K270 (X) (205)

is continuous. Such a quantisation can be obtained by constructing a (non-canonical)
map p(r, o) — f(r,w) for an f(r,w) € C*(R,, LE(X; FnTﬂﬂ)) such that

op,(p) = opyr * (f) mod LH(X"). (206)

In order to find C, we choose cut-off functions w(r),d(r),&(r) such that & = 1 on
suppw, w = 1 on suppw. Then, using pseudo-locality, we obtain

rop,(p) = wr™op,(p)& + (1 — w)r " op,(p)(1 — @) + C

for some C' € L~>°(X"). Now (206) allows us to write
T op,(p) = wr T opyy * (1)@ + (1 - w)r ™ op(p)(1 — &) + C, (207)

for C, == C + wr={op,(p) — op’]y\;%(f)}@ € L™>°(X"). This gives us the continuity of
(205). More precisely, A, : C5°(X") — C°°(X") extends by continuity to (205) (C5°(X")
is dense in IC*7(X") for every s,y € R). This is remarkable, since we have

WIS (X)) = wr K0 XM)

for every v € R and a cut-off function w(r), which shows that the argument functions
may have a pole at r = 0 of arbitrary order when ~ is negative enough (cf., analogously,
Theorem 2.30).

The process of generating operators (205) in terms of parameter-dependent fami-
lies (204) can be modified by starting from an edge-degenerate family p(r,y,0,n) =
p(r,y,ro, ) for

B(r,y,8.7) € C=(Ry x Q, Li(X; RG3)), (208)
2 C RY open. We can interpret (208) also as a family (204) with ‘sleeping parameters’
(y,7) € QxRY, while (204) itself consists of an operator in L!;(X) with sleeping parameters
(r,0) € Ry. These are waked up in the process of cone quantisation r~*op,(p) — A..
The remaining parameters (y,7) €  x R? are waked up by means of a suitable edge
quantisation.

The latter step is organised by means of a reformulation (207) depending on the
parameters (y,n). According to Theorem 2.27 we choose an operator function

f(T’ y? w? 77) = f(r’ y? w7 TT/)

65



for an f(r,y,w,7n) € C®(R, x Q, L (X; Fup ), % R¥)) such that

op, (p) (4, m) = oDy * (f)(y,m) mod C=(Ry x ©Q, L™(X";RY)).

Then we write 7*op,.(p)(y,n) in the form

rop(p)(y,n) = Ay (y,n) + C,(y,n)

for

_n
2

Ay(y.n) = w(rlp))r"opy, 2 (f) (v, m@(rn])
+ (1 = w(r[n]))r " op,(p)(y, n) (1 — &(rn))). (209)

From the construction it follows that C,(y,n) € C*(Q, L=°(X";R])). Recall that n —
[n] is a strictly positive C'* function in RY that is equal to |n| for large |n|. Now

Ay m) : KH(XR) — Ko7 (X7

is again a family of continuous operators for all s € R, provided that (what we tacitly
assume) the operator family (208) has a suitable dependence on r for r — oo (e.g.,
independent of r for r > const). In the edge quantisation (i.e., quantisation near r = 0)
it is convenient instead of A, (y,n) to consider the operator function

ay(y,n) = o(r)A,(y,n)a(r)

for some cut-off functions o, which is completely sufficient, since far from r = 0 our
operator on a manifold with edge should belong to the standard calculus of pseudo-
differential operators (where o, are localising functions in connection with a partition
of unity on the respective manifold). Summing up it follows that

or " op,(p)(y,n)d = cA,(y,n)d mod C*(Q, L™=(X";RY)).

Theorem 3.3. We have 0A,(y,n)d € SH(2 x RYKCHT(XN), KC=#1(XN)) for every
s,v € R (¢f. Definition 1.27).

The edge-quantisation itself associated with r~#p(r;y, 0,n7) now follows by applying

Op, which gives us continuous operators
0Dy (0A15) + Wegup (2, K57 (X7)) — WEH(Q, 71771 (X))
for all s, € R.

In Theorem 3.3 and the subsequent application of the Fourier operator convention
along 2 5 y we took operators of L!;(X) with sleeping parameters (r,y,0,1) € Ry X
Q) x R4 combined with a specific rule to activate them. By a globalisation (with
a partition of unity, etc.) we obtain operators on a manifold X; € 9% in the sense
of Section 3.1. Again we can assume that our operators contain sleeping parameters
(12, Y2, 02,M2) € Ry x Qy x R and apply a similar scheme for the next quantisation.

It turns out that it is advisable for such a calculus on wedges X2 x €, of second
generation to slightly modify the expression for A,,(y2,72) (the analogue of (209)) by
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an extra localising factor in the second summand, on the diagonal with respect to the
ro-variable, cf. [17] and Section 5.4, formula (317). This shows that in the iteration of this
process one has to be careful, because the infinite cone X2 has edges with exit to infinity
for ro — oo. The shape of quantisations is worth to be analysed also for other reasons,
see the paper [42] for alternative edge quantisations and their role for a transparent
composition behaviour of edge symbols. In other words, the idea of introducing sleeping
parameters in iterated quantisations for higher calculi should be combined with other
technical inventions.

3.3 Smoothing operators who contribute to the index

Let M be a smooth compact manifold and L (M) the space of classical pseudo-differential
operators of order y on M. Moreover, let SU (T*M \ 0) denote the set of all a(,)(z,&) €
C®(T*M \ 0) such that ag,)(z, A) = Ma(x,§) for all A > 0, (z,&) € T*M \ 0. Then we
have the principal symbolic map

oy LA(M) — SW(T*M \ 0).
Together with the canonical embedding L' (M) — L* (M) we obtain an exact sequence
0 — LA (M) — LA(M) — S9(T"M \ 0) — 0,
in particular, L’Cﬁ_l(M ) = keroy. Every A € L!(M) induces continuous operators
A:H(M)— H* ™M), (210)

and (210) is compact for A € L*~'(M). In particular, L=>°(M) = C°°(M x M) consists of
compact operators. As we know the ellipticity of A is equivalent to the Fredholm property
of (210), and we have

ind A =ind(A+ C) (211)

for every C' € L' (M). Denoting by L*(M)a the set of all elliptic A € L*(M) and
SW(T*M \ 0)e := 0 L3 (M ), this relation shows that the index

ind : Ly (M)en — Z

can be regarded as a map
ind : SU(T*M \ 0)ey — Z. (212)

SE(T*M\ 0)e := oL (M)en. As is known the index only depends on stable homotopy
classes of elliptic principal symbols (the above mentioned relations are valid in analogous
form for operators acting between Sobolev spaces of sections of smooth complex vector
bundles on M; the direct sum of elliptic operators is again elliptic), and the classical
Atiyah-Singer index theorem just refers to these facts.

The phenomena completely change if the underlying manifold is not compact. A
simple example is the case

M = (0,1).
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Taking the identity operator A = 1 in H°(M) := H°(R)|(0,1) which belongs to L% (M),
for every k € N we find an operator Cj, € L™°(M) N L(H°(M), H*(M)) such that
A+ Cy: HY (M) — H°(M) is a Fredholm operator and

ind(A+ Cy) = k.
We can construct such C}, in the form

Cr = wopy(fr)@

for a suitable Mellin symbol fi(z) € S=>°(T" 1 ), with cut-off functions w, @ vanishing in a
neighbourhood of 1. In this case k just coincides with the winding number of the curve

L:={weC:1+ fi(z), zEF%} (213)

under the ellipticity assumption 0 ¢ L.

This is a very special case of operators on a manifold with conical singularities, here the
unit interval with the end points as conical singularities. In other words, in the (pseudo-
differential) calculus on such a manifold we find smoothing operators that produce any
other index when added to a Fredholm operator. Clearly we can also destroy the Fredholm
property when the first summand A is Fredholm, or may achieve it when A is not Fredholm
before. In the present example this is just determined by 0 € L or 0 & L. Other examples
are elliptic operators on more general manifolds B with conical singularities. If we take,
for instance, B = X, with a closed compact C* manifold X, and start from an operator
(203),

AKX — (XY, (214)

then (214) is Fredholm if and only if it is elliptic with respect to the components of the
principal symbolic hierarchy

oy(A) = (%(ALUC(A)IFW_JUE(A))' (215)

Here 0(A) is the principal interior symbol with ellipticity in the Fuchs type sense; more-
over, 0.(A)(z) is the principal conormal symbol with ellipticity in the sense that

o(A)(z): H(X) — H*H(X)

is a family of bijections for all z € FnT—O—l _, and any s € R. Finally, og(A) is the principal
exit symbol. The meaning of og(A) is as follows. Consider A in any subset Ry x U >
(r,x) for r — oo, with U being a coordinate neighbourhood on X. We choose a chart
X : Ry xU — T to a conical set I' € R?™\ {0} in such a way that x(r,z) = 7y (x) for a
diffeomorphism y; : U — V to an open subset V' C S™. Then, in Euclidean coordinates
7 € T (induced by R™"! and related to (r, ) for ¢ = xi(x) via polar coordinates) the
symbol of A takes the form

pE.§) =Y an(i)E", (216)

|| <p

a, € C*(I'). Concerning the precise behaviour of that symbol with respect to & # 0 for
|Z| — o0, in this discussion we are completely free to make a convenient choice.
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Assume, for simplicity, I' = R™" \ {0}; otherwise our considerations can easily be
localised in I'. The condition is then

X(#)aq(7) € Sa(RE™) (217)

for any excision function x in R"™ i.e., x(Z) = 0 for |Z| < ¢y, x(Z) = 1 for |Z| > ¢; for
certain 0 < ¢o < ¢;. Let aq,(0)(Z) denote the homogeneous principal symbol of a,(Z) of
order 0 in & # 0. Then we set

o5 (p)(%,€) = (0o(p)(%,£), 04.e(p)(#,€))

for

0-1/1,e<p)(‘%7é> = Z aa,(O)(j:)éav (‘%7€> S (Rn+1 \ {O}) X (Rn+1 \ {0})

lo]=p

This construction has an invariant meaning, first, locally on conical sets I', [ C R\ {0},
under transition maps I' — I' that are homogeneous in the variable |Z| of order 1, and
then globally on R, x S™. This gives us a pair of functions

0e(A)(r, 2, 0,§) € CF(T(Ry x X)), 0y o(A)(r,2,0,8) € CF(TH(Ry x X))\ 0)

with the homogeneity properties o.(A)(Ar, z, 0,&) = 0(A) (1,2, 0,), Ope(A)(r, z, 0, ) =
Moy o(A)(r, x, 0,€), for A > 0 (in particular, o.(A) does not depend on r in this case).
The pair
o(A) = (0c(A), 0.(A4))

is called the principal exit symbol of A (of order (u;0). Now the ellipticity of A with
respect to og(A) is defined as o.(A) # 0 and oy.(A) # 0. Together with the above
mentioned ellipticity conditions with respect to o4(A) and o.(A) we thus obtain the
ellipticity of A with respect to o,(A), cf. the formula (215).

Let F' be a Fréchet space, and p € R. Then S(“C y(R™; F) denotes the space of
all (classical or non-classical) symbols p(n) with values in F, i.e., if (7,),en is a semi-
norm system for the Fréchet topology of F', the condition is 7,(Dgp) < ca(n)*1°! for all
a € N™,. € N, and, in the classical case, p(n) ~ x(n) 72 P4 (n) for homogeneous
components p(,—;)(n) € CC(R™\ {0}, F), pu—j(An) = M Ip_j(n) for all A > 0, j € N.

Remark 3.4. The condition on local symbols (216) of an operator
H a ;
A=r# Z a;(r) (—TE) , (218)

a;(r) € (R, Diff* (X)), j =0,...,u, can also be formulated as

a;(r) € SY(R, Diﬁw*j(X))’m, j=0,..., 0. (219)
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According to Theorem 1.11 the ellipticity of A is equivalent to the Fredholm property
of the map (212).

The operator A belongs to the cone algebra of pseudo-differential operators on X”.
The cone algebra is motivated by the problem to express parametrices of elliptic differen-
tial operators. It contains operators of the kind

C = r"w(r)op,, > (f)o(r) (220)

with meromorphic Mellin symbols f(w) € MZz>(X) and arbitrary cut-off functions w, @,
cf. Section 10.1.2. Clearly we have C' € L™>°(X"), and

O K3 (XN) = o1 (X M)

is continuous for every s € R.
Similarly as before in the special case M = (0,1) or M = R, we have the following
general theorem.

Theorem 3.5. Let A be an operator on X" as in Remark 3.4 which is elliptic with
respect to 0,(A). Then for every k € N there exists an fr, € MZ>=(X) for some discrete

n
2

asymptotic type R such that, when we set Cy, = r~Fw(r) opL_ (fx)w(r), we have
as a Fredholm operator (215).

The operator A 4+ C}, belongs to the cone algebra on X” (with discrete asymptotics),
and the Fredholm property in general is equivalent to the ellipticity. In the present case
the principal conormal symbol

(A + Cy)(w) = oc(A)(w) + fr(w)
is elliptic with respect to the weight ~, i.e., induces a family of isomorphisms
o(A+ Cy)(w) : H*(X) — H*"(X)

for w e T’ n1_, 8 € R. This is a generalisation of the above mentioned condition 0 ¢ L
for the curve (213)

Remark 3.6. The phenomenon that a calculus of operators contains non-compact oper-
ators that are smoothing on the main stratum s a hint that those smoothing operators
contain a hidden extra principal symbolic structure. In the case of operators in Theorem
3.5 this is just the conormal symbolic structure which is non-vanishing on operators of
the form (220). Other ezamples are the Green operators G occurring in boundary value
problems (114) which are smoothing over int X, but their boundary symbol c5(G) may be
non-trivial.
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3.4 Are cylinders the true corners?

If we want to describe analytic phenomena on a non-compact manifold, for instance,
on R, it appears advisable to do that in intrinsic terms, not referring to the negative
counterpart R_.
Another aspect is the requirement of invariance of the calculus under diffeomorphisms,
for instance,
X:Ry =R, r— —logr. (221)

Diffeomorphisms may destroy the geometry of the underlying space. For instance, (221)
transforms the conical singularity » = 0 to infinity, while R_ disappears in the beyond.
The main results, e.g., on boundary value problems in, say, a half-space R’} = R 1xR, >
(y,r), with R being the inner normal to the boundary R"~!, can certainly be transformed
to results in R™ by the substitution (y,r) — (y, x(r)), but after such a transformation
we lose a part of the feeling for some ingredients of such problems for instance, for the
operator of restriction on Sobolev spaces u(y,r) € H*(R%), s > 1, u(y,r) — u(y,0).
Moreover, if we define pseudo-differential actions in H*(R"}) by rtAet, where A is a
pseudo-differential operator in R”, and e* the extension by zero from R” to R™, r* the
restriction to the half-space, it is not very natural to transport the boundary to infinity.
Boundary value problems may be regarded as edge problems with all the aspects of
interpreting Ki as a manifold with edge r = 0, R, as the model cone of local wedges,
and A as an edge-degenerate operator, cf. [124], [134].

Also other information is better located ‘in the finite’, for instance, on the precise
behaviour of (pseudo-)differential operators in R* 3 = = (x,...,x,) with respect to a
fictitious conical singularity = = 0, or a fictitious edge or corner, e.g., (Tg41,...,%,) =0
for some 0 < ¢ < n. The various cone, edge or corner (pseudo-) differential operators
in R™ with smooth symbols across the singularities belong to the more exclusive clubs of
Fuchs, edge, or corner operators near those singularities.

As we saw, the new interpretation has its price: the quantisations produce a complex
degenerate behaviour of the resulting operators, see, for instance, the formulas (32), (33).

In Fuchs degenerate operators on R, x X it is natural to employ the Mellin transform
instead of the Fourier transform in the axial variable r € R,. The corresponding Mellin
symbols r ™ f(r,w) for f € C®°(R,, LA(X; FnT—H_,Y)), n = dim X, just produce operators
in the cone calculus

rrw(r) op, ? (FD(r) s KM (XY) = KX

and conormal symbols

fO0,w) - H*(X) — H*7"(X),
wel ntl More generally, in edge-degenerate situations we have parameter-dependent
Mellin symbols 7~#f(r,y,w,rn) for f(r,y,w,n) € C*(R, x Q, L(X; Fup % R¥)) and
corresponding y-dependent conormal symbols

f(0,y,w,0): H*(X) — H*(X),

yeQ we Fn+1 . In such a connection it is also common to replace the stretched cone
R, x X by an 1nﬁn1te cylinder by applying the substitution (221).
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Considering the cylinder X” instead of the ‘true’ cone X2 = (R x X)\ ({0} x X) we
already make a compromise insofar we give up the cone ‘as it is’. On the cylinder we have
to restore the information by declaring certain differential operators as the ‘natural’ ones,
namely, those which generalise the shape of the Laplace-Bertrami operators belonging to
conical metrics, cf. (204). Transforming such an operator to the cylinder R x X by the
substitution ¢t = — logr we obtain an operator of the form

e &
e ; bi(t) =5 (222)

with coefficients b;(t) € C*°(R,Diff*7(X)) of a specific behaviour for t — oco. The
smoothness of a;(r) up to r = 0 has an equivalent reformulation in terms of a corre-
sponding property of b;(¢) up to t = oo, but, as noted before, this appears less intuitive.
Moreover, on a cylinder, regarded as the original configuration, we could find quite differ-
ent operators more natural, for instance, when we identify R2Z*"\ {0} with Ry x.S" 5 (¢, z)
via polar coordinates and transform standard differential operators Z\al <u aq () DS with

coefficients a, (7) € S4(R2") (for some v € R and, say, a,(¥) = 0 in a neighbourhood of
z = 0; cf. also (217)) into the form

I aj
> o) (223)

Jj=0

with certain resulting coefficients ¢;(t) € C®(R, Diff*~7(S")) (the latter vanish for t < ¢
for some ¢ > 0 and are thus identified with functions on R > ¢). It is clear that the
behaviour of (223) for ¢ — oo is fairly different from that of (222) (in the case X = 5™).
Moreover, considering a differential operator on an infinite cylinder R x X > (¢,z) in
general, we can assume any other behaviour for ¢ — 4oc0. If the crucial point are the
qualitative properties of solutions u of the equation Au = f, the answer depends on
those assumptions, and different classes of operators may have nothing to do with each
other. In other words, the consideration of a ‘geometric’ object alone (e.g., a cylinder,
or a {cone}\{vertex}, or a {compact smooth manifold with boundary}\{boundary}, or
another non-compact manifold which is diffeomorphic to that) implies nothing on the
analysis there, unless we do not make a specific choice of the operators. Many non-
equivalent cases may be of interest, but it happens that the terminology is confusing.
The first step of finding out who is speaking about what may be to be aware of the
ambiguity of notation. Not only the scenarios around conical singularities, or cylindrical
ends, or boundary value problems came to a colourful terminology, also the higher floors
of singular contemplation produced an impressive diversity of different things under the
same headlines, cooked with corner manifolds, analysis on polyhedra, multi-cylinders, etc.

Genuine geometric corners with their non-complete metrics, induced by smooth ge-
ometries of ambient spaces (e.g., cubes in R3, with all the physical phenomena, such as
heat diffusion in bodies like that, or deformation and tension in models of elasticity) also
live somewhere in the singular labyrinth. Although they have a very complex character,
they are not the hidden beasts but the beauties, waiting for their hero.
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4 Is ‘degenerate’ bad?

In partial differential equations a deviation from normality is often called ‘degenerate’. Similarly as in the pseudo-differential
terminology this has not a negative undertone, at least what concerns importance and relevance to understand phenomena
in natural sciences. The notation ‘pseudo’ in connection with ellipticity is motivated in a similar manner as ‘negative’ in
the context of numbers. A negative number is not necessarily bad, it makes the life with computations a little easier, but

it is also a contribution to the symmetry of the corresponding mathematical structure.
Necessity and beauty form a unity also in problems in partial differential equations on manifolds with singularities, and, in
fact, degenerate operators satisfy such an expectation.

4.1 Operators on stretched spaces

By singularities we understand what is described in Section 3.1. The main idea was to
identify a neighbourhood of lower dimensional strata by wedges X x (2 for a manifold X of
smaller singularity order. A more complete characterisation is to say that every M € 91,
has a subspace Y € 9, (equal to Y®) = M® in the meaning of (192)) such that a
neighbourhood U of Y in M is isomorphic to an X“-bundle over Y for some X € My_;
(details may be found in [15] or [16]). In this connection it is natural to employ the
so-called stretched manifolds. From the local description of M € 9, near Y by wedges
XA x Q, Q C RI™Y open, we have (as a consequence of the precise definitions) also a
local characterisation of M \ 'Y ‘near Y’ by open stretched wedges X" x Q, X" =R, x X
and a cocycle of transition maps

R, x X x Q>R x X xQ (224)

which are isomorphisms in the category 9;,_; and represent an R, x X-bundle L., over
Y. By assumption the maps (224) are restrictions of 9t_;-isomorphisms

RxXxOQ—-RxXxQ (225)
to Ry x X x Q. Moreover, (225) also restrict to 9%_;-isomorphisms
{0} x X xQ — {0} x X x Q (226)

which form a cocycle of an X-bundle over Y that we call Lg,,. By invariantly attaching
{0} x X x Qto Ry x X x Q we obtain Ry x X x €. Then (224) and (226) together give
us a cocycle of maps _

RixXxQ—-R, xXx

which represents an R, x X-bundle L over Y. Let us form the disjoint union
L = Lging U Lieg.

The bijection
U\Y 22 Ly (227)

allows us to complete U \ Y to a stretched neighbourhood U by forming the disjoint union
U = Mng U (U \Y)
for an X-bundle Mg,, over Y which is 90;_;-isomorphic to Lging,

I\\/Hsing; = ]Lsinga (228)
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such that there is a bijection
U=L

that restricts to (227) and (228). Since U \ Y C M we obtain at the same time
M:=UuUM\U),

the so-called stretched manifold associated with M. We then set
Myeg := M \ Miing-

From the construction it follows a continuous map m : M — M which restricts to the
bundle projection 7 : Mging — Y and to an M, ;-isomorphism ﬂ} M Myeg — M\Y.
reg

Msing
An example is the space M := X2 x Q for Y := Q C R? open, X € M;_;. In this case
we have -

M=R; x X xQ, Mgpe = {0} x X x Q, Mo, =R x X x Q.

Remark 4.1. Given an M € M with the stretched manifold M there is the double
2M € DM,y obtained by gluing together two copies of Ml along Ming. The construction of
2M can be explained in local terms as 2(Ry x X x Q) =R x X x Q.

As explained in Section 3.1 a natural way of choosing differential operators on a space
M € 9y, is to locally identify a neighbourhood of a point z € Z := M® with a wedge
XA x Z, to pass to the open stretched wedge X" x = 3 (¢, z, 2) and to generate operators

A=t* | > aja(t,z)(—t%)j(tl)z)a (229)
Jtlel<p

with coefficients a;, € C®(R, x H,lefgeg”lal (X)), taking values in an already con-
structed class of operators on X € 9M,_;.

By definition, X contains an edge Y := X* =1 € 9, such that a neighbourhood V'
of Y in X is isomorphic to a B*-bundle over Y for some B € M_,. Again we can fix
a neighbourhood of a point y € Y modelled on a wedge B2 x Z for some open = C RP,
pass to the associated open stretched wedge B" x Q 3 (r,b,y) and write the coefficients
(196) in the form

. 0
aja(t, Z) = T'i(ui(JHaD) Z Cja;kﬁ(ra t: Y, 2)(—7”8—)k<7'Dy)ﬂ
T
k+181<p—(i+|cl)

with coefficients ¢jo.8(7,t,y, 2) in

O (R, x Q, Diffy, U=+ (gy), (230)
By inserting a;o(t, z) into (229) we obtain
e A 0 \k 0
A = i | Z ritlel Z cja;kg(r,t,y,z)(—ra) (rDy)° (- 8t) (tD)
Jtlal<p k+|Bl<p—(G+|el)
0 d\j
= rH Z dians(r,t,y, 2) (= ra)k(rDy)ﬁ( - rta)J(rtDz)o‘ (231)

JHla)+E+HBI<u
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with coefficients djq.x5(r, t,y, 2) € (230). This process can be iterated, and gives rise to a
class of degenerate operators on a corresponding ‘higher’ stretched wedge, more precisely,
on its interior which is of the form (R;)* x ¥ x Hle Q> (ry,. ., ey, -, yg) for
open sets > C R”, ; C R% for some dimensions n,q;, | = 1,...,k. In the case k = 2
we have (with the corresponding modified notation) B € 9, locally identified with X,
while 2 and = correspond to Qy and 4, respectively, and the variables (71,72, y1, y2) to
(r,t,y, 2).
At the end of the chain of substitutions the operator A takes the form

A=ritrgt o MAR VY, (232)
where A is a polynomial of order p in the vector fields

Rl = Tlarl,Rg = 7'1’/“28,~2,...,Rk =Tiro-... -rk@k, (233)

Vi=10,.,j=1,...,n, where z=(11,...,7,) €3, (234)

Y = (Tlayh')i:l,...,qla Yy = <T1r2ay2i)i:1,...,q27 Y = (7“17’2 IR Tkayki)izl,...,qka (235)

with coefficients in C®((R.)* x £ x [I, ), R == (Ry,...,Re), V = (V4,...,V}),
Y = (Yi,...,Y%). Similar operators have been discussed before in Section 1.1, c¢f. Remark
1.14.

The operators (232) are degenerate in the sense that the coefficients at the derivatives
in r, € Ry or y € ) tend to zero when r; — 0 for 1 < j < [. Clearly they are much
more ‘singular’ at the face (ry,...,7) = 0 than those in Section 1.1, because the latter
ones were obtained by repeatedly introducing polar coordinates into ‘smooth’ operators
given in an ambient space. However, this special case shows that the class of operators
of the kind (232) is far of being rare, since it already contains the operators with smooth
coefficients. In any case the operators (232) have a nice shape, and they are waiting to
be accepted as the new beauties of a future singular world.

Moreover, as we saw, special such operators of this category (and their pseudo-
differential analogues) are a useful frame to understand the calculus of elliptic boundary
value problems (especially, without the transmission property at the boundary), and these
operators are accompanied by a tail of other (operator-valued) symbols which encode in
this case the ellipticity of boundary conditions. We return in Section 5.2 below once again
to the aspect of symbolic hierarchies. Let us note in this connection that, since we have
to be aware of the conormal symbolic structure, it is better to consider the operators in
the form

A=r" . "AR,Y)
for a polynomial A in the vector fields (233) and (235) and coefficients in

C((R4)* x [ ] u, Diff* (X))
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for an X € 9y, where the former ¥ plays the role of local coordinates on X, and v is
the number of vector fields of the type (233), (235), composed with the corresponding
coefficient.

Once we have chosen the ‘stretched’ space

RL)" x X xQ, Q€ My,

as an object of interest we can interpret this again as a manifold with corner and repeat
the game of passing to associated stretched spaces; this gives rise to an infinite sequence.
This is particularly funny when we start from R, x R,. The stretched space has two
corners, and each stretching doubles up the number of corner points.
There are many possible choices of degenerate operators on such configurations, e.g.,
based on the vector fields
N, 1=1,...k (236)

for certain \; € R, together with other vector fields on X and {2, and also the weight factors
in front of the operators can be modified. We do not discuss such possibilities here, but
we want to stress that usually the properties of degenerate operators drastically change
when we change the nature of degeneracy. In particular, when we replace the components
of (233) by (236) (say, for the case \; = 1, I = 1,..., k), the resulting operators have a
quite different behaviour than the former ones, except for £ = 1. In other words there are
many singular futures.

To return to the question in the headline of Section 4, our answer is ‘no’. Although
corner geometries give rise to ugly technicalities if the structure ideas remain unclear, the
calculus on a singular manifold may dissolve the difficulties.

4.2 What is ‘smoothness’ on a singular manifold?

Smoothness of a function on a manifold M with singularities M’ C M, cf. the notation
of Section 3.1, should mean smoothness on the C* manifold M \ M’, together with some
controlled behaviour close to M’. For instance, if M = [0, 1] is the unit interval on the
real axis, we might talk about C*° up to the end points {0} and {1}. More generally, if
M consists of a one-dimensional net with a system M’ of knots, i.e., intersection points of
finitely many intervals, (for instance, M may be the boundary of a triangle in the plane,
or the system of one-dimensional edges of a cube in R?, including corners) we could ask
C* on the intervals up to the end points and continuity across M’.

The ‘right’ notion of smoothness depends on the expectations on the role of that
property. For the analysis of (elliptic) operators on M the above mentioned notion is not
convenient.

Smoothness should survive when we ask the regularity of solutions to an elliptic equa-
tion

Au = f, (237)

A e Diffgeg(M ), for a smooth right hand side f. To illustrate a typical phenomenon
we want to formulate the following slight modification of Theorem 1.17 which refers to
the case M = R, U {0} U {+oo}, with M’ = {0} U {400} being regarded as conical

singularities. Consider an operator A given by (35).
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Theorem 4.2. Let A be elliptic with respect to (o,(A), UC(A)|F177) for some weight
2

veR, ie, a,#0 ando.(A)(w)# 0 on [y Then for every f € L2 o (RONC™(R,)

v Q9,Q%°
the equation (237) has a unique solution

we L% o (R NC®(R,)

P9,pPge
. 0 . . . . 0
for every pair (QF, Q3°) of discrete asymptotic types with some resulting (P, P2°).

In other words, elliptic regularity in the frame of smooth functions has three aspects:

standard smoothness on M \ M’, (238)
weighted properties close to M’, (239)
asymptotic properties close to M. (240)

The individual weighted and asymptotic properties are determined by the calculus of
elliptic operators that we choose on M. There are several choices, as we shall see by the
following Theorem 4.3 and Remark 4.4.

Theorem 4.3. Let A be an operator on X" as in Section 3.3 that is elliptic with respect
to the principal symbol (215). Then

Au= f e K5m (X"

and u € K7 (X") implies
u € K5 (X")

for every discrete asymptotic type Q with some resulting P, for every s € R (in particular,
this also holds for s = o). Moreover,

Au= feSyH(X")

and u € K=°7(X") entail
u € SHXM).

Remark 4.4. There is also a theorem on elliptic reqularity for operators (218) when the
behaviour of coefficients for r — oo is analogous to that for r — 0, namely, a;(r*') €
C>®(Ry, Diff*7(X)). In that case r = 0 and r = oo are treated as conical singularities,
cf. also Remark 1.22.

If A is elliptic in the sense o4(A) # 0, and oy (A) as well as o,(I7"AI™) are elliptic
up to r = 0 (in the Fuchs type sense) and UC(A)(w){FnJrl D H3(X) — HMX) is

- 7

a family of isomorphisms, then Au = f € HZ@?@?”(XA) and u € H™Y(X") imply
u € H;g,p$o(X/\) for every pair of discrete asymptotic types ( g, Q) with some resulting
(P?,PWOO). Especially, for s = oo we see which kind of smoothness survives under the
process of solving an elliptic equation.

7



Once we arrived at the point to call a function smooth on a manifold M with singu-
larities M’ when u is smooth on M \ M’ and of a similar qualitative behaviour near M’
as a solution of an elliptic equation (belonging to the calculus adapted to M) we have a
candidate of a definition also for manifolds with edges and corners. In Section 4.5 below
we give an impression on the general asymptotic behaviour of a solution near a smooth
edge. The variety of possible ‘asymptotic configurations’ in this case is overwhelming,
and it is left to the individual feeling of the reader to see in this behaviour the opened
door to an asymptotic hell or to a spectral paradise.

The functional analytic description of corner asymptotics for the singularity order
k > 2 is another non-trivial part of the story. For instance, if an edge has conical singu-
larities (which corresponds to the case k = 2) we have to expect asymptotics in different
axial directions (r1,73) € Ry x Ry near 1 = 0 and o = 0, and the description of the
interaction of both contributions near the corner point r; = ro = 0 requires correspond-
ing inventions in terms of weighted distributions with asymptotics (especially, when the
Sobolev smoothness s is finite). The asymptotics of solutions of elliptic equations in such
corner situations has been investigated from different point of view in [117], [128], [131],
[70].

4.3 Schwartz kernels and Green operators

The notation ‘Green operators’ in cone and edge calculi is derived from Green’s function
of boundary value problems. In the most classical context we have Green’s function of
the Dirichlet problem

Au= fin Q, Tu= g on 09, (241)

Tw := ulsq, in a bounded smooth domain in R". For convenience we assume for the
moment f € C*(Q2), g € C*°(0N). The problem (241) has a unique solution u € C*(£2)
of the form

u=Pf+ Kg.
Here P : C*=(Q) — C*°(Q) just represents Green’s function of the Dirichlet problem, and

K : C>®(08)) — C*>(Q) is a potential operator.
The operator P is a parametrix of A in 2. Every fundamental solution E of A is a

parametrix, too. Thus the operator
P—-—FE=(G
has a kernel in C*°(€Q2 x Q). The operator G is a Green operator in the sense of our

notation. The operator
A\ !
P K)=
v ©-(7)

belongs to the pseudo-differential calculus of boundary value problems with the transmis-
sion property at the boundary.

From that calculus we know some very remarkable relations. Near the boundary in
local coordinates x = (y,t) € Q x Ry, Q C R? open, ¢ = n — 1, the operator G has the
form

G =Op,(9) +C
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for a symbol g(y,n) such that

9(y.n), 9" (y,n) € SHEQ x RY L*(Ry),S(Ry)) (242)

for p = —2, cf. Example 1.30. The operator C' is smoothing in the calculus of boundary
value problems (in this case with a kernel in C*(Q xR, x QxR )). The structure of Green
symbols g(y,n) is closely related to the nature of elliptic regularity of the homogeneous
principal boundary symbol

82 S S—
aa(A)(n) = —[n|* + 0 2 (Ry) — H**(Ry) (243)
for n #£ 0, s > %, which is an operator with the transmission property at t = 0, elliptic as
usual in the finite (up to ¢t = 0) and exit elliptic for t — co. Thus

aa(A)(nult) = f(t) € S(Ry)

implies u(t) € S(Ry). In particular, we have smoothness at t = 0 and the Schwartz
property for t — oo.
As noted in Example 1.30 the Green symbols act as operators

oy, mu(t) = / " faltn), Vs v, mu()de

for a function fo(t,t;y,m) € S(Ry. x R,) for every fixed y, 7. In addition, the property
(242) reflects remarkable rescaling properties, hidden in Green operators, here encoded
by the twisted homogeneity of the components of the corresponding classical symbol.

The question is now whether this behaviour is an accident, or a typical phenomenon
with a more general background. The answer should be contained in the pseudo-differen-
tial algebras on manifolds with singularities. Although many details on the higher singular
algebras are projects for the future, the expectation is as follows. If M € 9, is a manifold
with singularities of order k, and Y € 9, such that M \'Y € 9, with Y being a
corresponding higher edge, then Y has a neighbourhood U in M which is 9;-isomorphic
to an XkAfl—bundle over Y for an Xj;_; € 9. This gives rise to an axial variable r, € R,
of the cone X7 |, or, if convenient, of the open stretched cone X} | = R, x X;_;. Then,
locally on Y, we can construct Green symbols ¢(y,n) that are classical in the covariables
and take values in operators on weighted cone Sobolev spaces where

gy, m) : KX ,) = SE(Xiy), (244)
g (y,m)  K77H(XT) — ST (X ). (245)

Here v = (V1,...,7) € R* is a tuple of weights, where v — p1 := (y1 — pt, ...,y — pt), and
S(X") (246)

are analogues of the spaces (62) with ‘higher’ asymptotic types P that encode a specific
asymptotic behaviour for r, — 0. In Section 6.3 below we shall deepen the insight on the
nature of higher *7- and S}-spaces.
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The mappings (244) are a generalisation of
g(yﬂ?) : LQ(R-F) - S(R-f—)a (247)

cf. (242). In (247) the asymptotic type P means nothing other than smoothness up
to t = 0 (Taylor asymptotics). The Schwartz property at infinity is typical in Green
symbols. It comes from the role of Green edge symbols to adjust operator families in
the full calculus of homogeneous edge symbols by smoothing elements (in particular, in
the elliptic case in connection with kernels and cokernels), taking into account that the
calculus treats t — oo as an exit to infinity (for n # 0). In such calculi the remainders
near co have Schwartz kernels.

Another interesting aspect on kernels is their behaviour near ¢t = 0.

In the preceding section we tried to give an impression on the enormous variety of
different asymptotic phenomena which may occur in smooth functions on a manifold with
singularities. In (246) this is summarised under the notation ‘P’; it encodes not only
asymptotic information at the tip of the corner with base X but on all the edges of
different dimension, generated by the singularities of X. In particular, with such infinite
edges of X" also the asymptotic information is travelling to oo, i.e., to the conical exit of
X" for t — 0.

Smoothness and asymptotics are not only an aspect of Green symbols but also of
the global smoothing operators on a manifold M with singularities M’ which are usually
regarded as the simplest objects in an operator algebra on M. They are defined, for
instance, by their property to map weighted distributions on M \ M’ to smooth functions
(and the same for the formal adjoints). However, as we saw in Section 4.2, the notion of
smoothness of a function on M is itself a special invention and an input to the a priori
philosophy of how the operators on M in general (also those with non-vanishing symbols)
have to look like. Smoothness in that sense has to be compatible with pseudo-locality of
operators which gives rise to smoothing operators by cutting out distributional kernels
off the diagonal. Their characterisation in terms of (say, tensor products of) smooth
functions is an important aspect of the full calculus on M, and so we need to know what
is smoothness on M. As we see this is a substantial aspect.

4.4 Pseudo-differential aspects, solvability of equations

Pseudo-differential operators on a C'* manifold M can be motivated by parametrices
of elliptic differential operators. More precisely, there is a hull operation which extends
the algebra UMGN Diff*(M) to a corresponding structure that is closed under forming
parametrices of elliptic elements. This process is natural for the same reason as the
construction of multiplicative inverses of non-vanishing integers in the elementary calculus.
If M is a manifold with singularities in the sense that there is a subset M’ C M of singular
points such that M \ M’ is C*°, the hull operation makes sense both for Diff (M \ M’) :=
U,en DI (M \ M) (as before) and for suitable subalgebras of Diff (A \ M’). While for
Dift"(M\ M") the ellipticity is still expressed by oy (A) (the homogeneous principal symbol
of A of order p), in subalgebras we may have additional principal symbolic information
as sketched in Section 1.1. The latter aspect is just one of the specific novelties with
singularities.
Let us have look at some special cases.
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(A.1) Boundary value problems. If M is a C° manifold with boundary, the task
to complete classical differential boundary value problems (e.g., Dirichlet or Neumann
problems for Laplace operators) gives rise to Boutet de Monvel’s calculus of pseudo-
differential operators with the transmission property at the boundary. The operators A
are 2 x 2 block matrices, and the principal symbolic hierarchy consists of pairs

o(A) = (94(A), 09(A)), (248)

with the interior symbol o, and boundary symbol .

(A.2) Operators on manifold with conical singularities. Another case is a
manifold M with conical singularities. As the typical differential operators A we take
the class Diffgeg(M ) of operators that are of Fuchs type near the conical singularities (in
stretched coordinates, and including the weight factors r—* for y = ord A). The principal
symbols consist of pairs

0(A) = (04(A), 0c4(A)) (249)
with the (Fuchs type) interior symbol oy and the conormal symbol o, (referring to the
weight line I’ i1, as described before; n is equal to the dimension of the base of the local
cone, and v € R is a weight). The associated pseudo-differential calculus is called (in our
terminology) the cone algebra, equipped with the principal symbolic hierarchy (249).

The stretched manifold M associated with a manifold M with conical singularities is
a C°° manifold with boundary (recall that the stretched coordinates (r,z) just refer to
a collar neighbourhood of OM with 7 being the normal variable). Nevertheless the cone
calculus has a completely different structure than the calculus of (A.1) of boundary value
problems with the transmission property. This shows that when M means a stretched
manifold to a manifold with conical singularities the notation C'*° ‘manifold with bound-
ary’ does not imply a canonical choice of a calculus (although there are certain relations
between the calculi of (A.1) and (A.2)). The cone algebra solves the problem of express-
ing parametrices of elliptic differential operators A € Diff’g{eg(M ), and it is closed under
parametrix construction for elliptic elements, also in the pseudo-differential case.
Remark 4.5. On a manifold M with conical singularities there are many variants of
‘cone algebras’:

(i) The weight factor r=* can be replaced by any other factor r=", 3 € R, without an
essential change of the calculus;

(i) the ideals of smoothing operators depend on the choice of asymptotics near the tip
of the cone, with finite or infinite asymptotic expansions and discrete or continuous
asymptotics; this affects the nature of smoothing Mellin operators (with lower order
conormal symbols) and of Green operators;

(iii) there is a cone algebra on the infinite cone M = X* with an extra control at the
conical exit to infinity r — oo. In that case we have a principal symbolic hierarchy
with three components o(A) = (0y(A), 0c~(A), or(A));

(iv) in cone algebras which are of interest in applications the base X = OM of the cone
may have a C* boundary; we then have a cone calculus of boundary value problems
in the sense of (A.1), i.e., 2x 2 block matrices A, with principal symbolic hierarchies

o(A) = (0y(A),09(A), 0c(A)),
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or, in the case X® for 0X # 0, with exit calculus at oo,
o(A) = (04(A)), 09(A), 0cy(A), 06(A), 0 (A))
(with exit symbols o and og: from the interior and the boundary, respectively).

(A.3) Operators on manifolds with edges. Let M be a manifold with smooth
edge Y. As the typical differential operators we take Diffﬁeg(]\/[ ) as explained in Section
3.1. In this case the weight factor r—* in front of the operator (in stretched coordinates)
is essential for our edge algebra. Similarly as (A.1), the edge algebra consists of 2 x 2
block matrices A with extra edge conditions of trace and potential type. Instead of the
principal boundary symbol in (248) (which is a 2 x 2 block matrix family on Ry, the
inner normal to the boundary) we now have a principal edge symbol o, - (.A) which takes
values in the cone algebra on the infinite model cone X* of local wedges, as described
in Remark 4.5. The weight v € R is inherited from the cone algebra; o, ,(A) as a 2 x 2
block matrix family of operators K*7(X") — K*=#7#(X") parametrised by T*Y \ 0.

The principal symbolic hierarchy in the edge algebra has again two components
o(A) = (ay(A), on~(A)),

with the (edge-degenerate) interior symbol o, and the principal edge symbol o, . The
edge algebra solves the problem of expressing parametrices for elliptic elements with an
operator A € Diffﬁeg(M ) in the upper left corner, and it is closed under constructing
parametrices of elliptic elements also in the pseudo-differential case.

Remark 4.6. On a manifold M with edge Y there are many variants of ‘edge algebras’,
similarly as Remark 4.5 for the case dimY = 0.

(i) The edge algebra very much depends on the choice of the ideal of smoothing operators
on the level of edge symbols, cf. Remark 4.5 (ii).

(ii) It is desirable to have an edge algebra on the infinite cone M*> with a corresponding
exit symbolic structure, also in the variants of boundary value problems, i.e., a

combination of (A.2) and (A.3), when we have 0X # 0 for the base X of local model
cones. We then have to expect corresponding larger principal symbolic hierarchies.

(i) The edge algebra in the ‘closed case’ (i.e., 0X = 0) is a generalisation of the algebra
of boundary value problems in the sense of (A.1); the edge plays the role of the
boundary and the local model cone of the inner normal. The operators in the upper
left corner have not necessarily the transmission property at the boundary (they may
even be edge degenerate).

Remark 4.7. The manifolds M of Remarks 4.5 and 4.6 (in the case without boundary)
belong to M. For M € My we also talk about the calculus of second generation. The
papers [122], [130], [131], [55], [54], [76], [16] belong to this program.

The precise calculus of higher corner algebras, i.e., for M € 9, for k > 3 is a program
of future research, although there are partial partial results, cf. [130], [15], and Section 5
below.
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The nature of a parametrix of an elliptic operator A characterises to some extent the
solvability of the equation
Au=f. (250)

To illustrate that we consider the simplest case of A € Diff* (M) for a closed compact C*
manifold M and the scale H*(M), s € R, of standard Sobolev spaces on M. The way to
derive elliptic regularity of solutions w is as follows. By virtue of the ellipticity of A there
is a parametrix P € L_"(M), and P : H (M) — H"*(M) is continuous for every r € R.
Then (250) gives us

PAu=(1-G)u=Pf
for an operator G € L™>°(M). Because of GH (M) C H*(M) C H*(M) for every
s € R it follows that u € H=>°(M), f € H"(M) implies v = Pf + Gu € H"*(M).
Observe that the existence of a parametrix also gives rise to so-called a priori estimates
for the solutions. That means, for every r € R we have

lullzsary < eI f | e=ncary + |l iz ) (251)

when v € H™*°(M) is a solution of Au = f € H*#(M), for a constant ¢ = ¢(r,s) > 0.
In fact, we have
ullms ey < 1P fllasany + 1 Gull sy,

and the right hand side can be estimated by (251), since P : H*#(M) — H*(M) and
G : H"(M) — H*(M) are continuous for all s,r € R.

Similar conclusions make sense for elliptic operators on a manifold with singularities.
In other words, to characterise the solvability of the equation (250) it is helpful to have
the following structures.

(S.1) Operator algebras, symbols. Construct an algebra of operators with a
principal symbolic structure that defines operators modulo lower order terms.

(S.2) Ellipticity, parametrices. Define ellipticity in terms of the principal symbols
(and, if necessary, kinds of Shapiro-Lopatinskij or global projection data) and construct
parametrices within the algebra.

(S.3) Smoothing operators. Establish an ideal of smoothing operators to charac-
terise the left over terms.

(S.4) Scales of spaces. Introduce natural scales of distribution spaces such that the
elements of the algebra induce continuous operators.

These aspects together with other features, such as asymptotic summation, formal
Neumann series constructions, operator conventions (quantisations) and recovering of
symbols from the operators, or kernel characterisations, belong to the desirable elements
of calculi, also on manifolds with higher singularities. As we saw this can be a very
complex program. However, the effort is justified. The characterisation of the operators
in the algebra reflects the internal structure of parametrices, while the functional ana-
lytic features of adequate scales of distributions describe in advance the nature of elliptic
regularity.

In addition the algebra aspects appear at once in connection with single operators.
In order to treat any fixed operator of interest on a singular manifold of higher order we
are faced with operator-valued symbolic components which are operator functions with
values in the algebras of lower singularity order that may range over these algebras in

83



(nearly) full generality. Also from that point of view we need the constructions within a
calculus with the features (S.1) - (S.4).

4.5 Discrete, branching, and continuous asymptotics

An interesting problem in partial differential equations near geometric singularities is the
asymptotic behaviour of solutions close to the singularities. For instance, in classical
elliptic boundary value problems (with smooth boundary) the smoothness of the right
hand sides and boundary data entails the smoothness of solutions up to the boundary (of
course, there are also other features of elliptic regularity, e.g., in Sobolev spaces).

The latter property can already be observed on the level of operators on the half-axis
R, > r for an elliptic operator A of the form

A=Y ¢— (252)

J=0

with (say, constant) coefficients ¢;. We can rephrase A as

A=r# Z a;(— r%)j (253)

J=0

with other coefficients a; € C. Assume that ¢y # 0 which is equivalent to ay # 0. The
asymptotics of solutions of an equation

Au=f (254)

for r — 0 when f is smooth up to r = 0 can be obtained in a similar manner as in Section
1.2. In this case the resulting asymptotic type of u is again of the form P = {(—j, O)}jeN,
i.e., represents Taylor asymptotics. Observe that the weight factor »=* in (253) does
not really affect the consideration; in Section 1.2 we could have considered the case with
weight factors as well (as we saw the weight factors are often quite natural).

The transformation from (252) to (253) can be identified with a map (¢;j)o<j<, —
(aj)o<j<u, CH1 — CHF which is not surjective for u > 0. From Section 1.2 we know
that when the coefficients a; in (253) are arbitrary, Taylor asymptotics of solutions u of
(254) is an exceptional case. In fact, even for right hand sides f that are smooth up
to r = 0 we obtain solutions u with asymptotics of other types P, determined by the
poles of the inverse of the conormal symbol ( Z?:o ajw )71. The asymptotic behaviour of
solutions becomes much more complex when the equation (254) is given on a (stretched)
cone X" = R, x X with non-trivial base, say, for a closed compact C'*° manifold X.
Then the resulting asymptotic types may be infinite, and it is interesting to enrich the
information by finite-dimensional spaces L; C C*(X), i.e., to consider sequences

P = {(pjﬂmJ'?Lj)}jeN? (255)

mcP = {pj}jen C {w € C: Rew < "TH — j} for n = dim X and some weight j € R,
Rep; — —o0 as j — oo. Recall that an u(r,z) € K¥7(X") has asymptotics for r — 0 of
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type P, if for every 3 > 0 there is an N = N(3) such that

N my
7) Z cjp(2)rPilogh r € K9P (XM) (256)
j=0 k=0

with coefficients ¢, € Lj, 0 < k < mj;. This condition just defines the space K37 (X").
Observe that when we set © := (¢, 0] for some finite ¥ < 0 and

1
Pg :={(p,m,L) € P: Rep>%—7~l—ﬁ}, (257)
KgT(X") o= lim 37770 (XY, (258)
keN
N m;
Epy(X7) {ZZ rPiloghr ey € Ly, 0 <k <m;, 0<3<N} (259)
7=0 k=0
the direct sum
Kpi(X7) 1= Kg"(X") + Epy (X7) (260)
is a Fréchet space, and we have K3"(X") = lim K3 (X").
Y——00

Operators of the form (253) (in general with r-dependent coefficients a;) occur as the
(principal) edge symbols of edge-degenerate operators

A:=r7F Z bis(r, y)( — r%)j(rDy)ﬂ (261)
JHIBISk

on a (stretched) wedge X" x €2, Q C R? open, with coefficients b;s(r,y) € C* (E+ x Q,
Diff#~G+I8) (X)). The principal edge symbol of (261) is defined as

oA A)n) =1 3 bys(0.)(—r ) () (262)
JHIBI<k
(y,m) € T*Q\ 0, and represents a family of continuous operators
on(A)(y, n) : K7 (X") — K771 (X7 (263)
for every s,v € R. It turns out that the asymptotics of solutions w of an elliptic equation

Au=f (264)

on X" xQ for r — 0 is determined by (263), more precisely, by the inverse of the conormal
symbol of (263), namely, o.ox(A) " (y,w), where

ocon(A)(y, w) = Z bjo(0, y)w’
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which is a family of continuous operators
ocon(A)(y, w) - H*(X) — H**(X)

for every s € R, smooth in y € €2, holomorphic in w € C. However, the question is: ‘what
means asymptotics in the edge case?” The answer is far from being straightforward, and,
what concerns the choice of spaces that contain the solutions, we have a similar problem
as above in connection with the ‘right approach’ to Sobolev spaces, discussed in Section
1.3. Here, in connection with asymptotics, this problem appears in refined form, because
the choice of similar terms of asymptotics requires a confirmation of the formulation of
the spaces. In order to illustrate some of the asymptotic phenomena, for convenience,
we consider the case 2 = R? and assume the coefficients b,g(r,y) to be independent of y
when |y| > C for some C' > 0 and independent of r for r > R for some R > 0. In addition
we assume that for some v € R the operators (263) define isomorphisms for all s € R (in
general, we can only expect Fredholm operators; for the ellipticity those are to be filled
up to 2 x 2 block matrices of isomorphisms by extra entries of trace, potential, etc., type
with respect to the edge R?). For the operator A we assume oy-ellipticity in the sense
that the homogeneous principal symbol

oy (A)(r,x,y,p,&n)

does not vanish for (p,&,n) # 0 and that r#oy(A)(r,z,y, v p,&,r7'n) # 0 for (p,&,n) #
0, up tor =0.
The family of operators

_ d\J s oy
a(y.m) =17 Y bplry)( =) () KX = KX
JHIBISu

can be interpreted as an element a(y,n) € S*(R? x R%; K37(X "), Ks=#77#(X ")) for every
s € R, cf. Definition 1.23 and Remark 1.10, which gives us a continuous operator

A = Op,(a) : WA(RE K (X)) — WAH(RT, K347 H(X 1))

for every s € R. Now the pseudo-differential calculus of edge-degenerate operators allows
us to construct a symbol

p(y,n) € STH(R? x R KMI71(X7), K7 (X)) (265)

such that the operator P := Op,(p) : W*H(R? IC*#77#(X")) — W3 (R, K7 (X7)) is a
parametrix of A in the sense that there is an € > 0 such that

PA —I: W R% K> (X)) — W(RY, K7(X71)) (266)

is continuous for all s, and, similarly, PA—1I. The relation (266) gives us elliptic regularity
of solutions u € W~>°(R?, K~>7(X")) to (264) for

f e W HRI, HIH(XN)), (267)

namely,

w € WH(RY, K57 (X)), (268)
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The precise nature of P is a subtle story, contained in the analysis of the edge algebra,
cf. [121], or [127]. The question is, do we have an analogue of elliptic regularity with edge
asymptotics. Here, an uw € W?*(R?, [C*7(X")) is said to have discrete edge asymptotics of
type P if u € WH(R?, K3"(X")). In the following theorem we assume that the coefficients
b are independent of y everywhere.

Theorem 4.8. Let A satisfy the above conditions, and let the coefficients bjz be in-
dependent of y € R1. Then for every discrete asymptotic type Q@ = {(gj,nj, M;)}jen
(with 7c@ C {w € C : Rew < ™ — (y — p)}) there exists a P as in (10.4.32)
such that w € W™ (R%, K77 (X")) and Au = f € WHRL LG H(XN)) implies
u € W3(RL, K37 (XM)).

This result may be found in [127]. It is based on the fact that there is a parametrix
P = Op,(p) for an amplitude function (265) that restricts to elements

p(y.n) € STHRT x R Ky 77 H(X"), KET (X)) (269)

(in this special case independent of y) for every discrete asymptotic type S with some
resulting B and such that the remainder G := P A — I defines continuous operators

G W (R, L57(X")) — W>(RY,KZ7 (X))

for some discrete asymptotic type B.

The rule in Theorem 4.8 to find P in terms of () is very close to that discussed before
in Section 1.2. The essential observation is that there is a Mellin asymptotic type R (see
the formula (54)) such that

oeon(A) (w) € M (X),

and R in this case is independent of y. Unfortunately, this conclusion does not work in
general, when the coefficients depend on y. Although we also have
oern(A) "y, w) € M (X)

for every fixed y, the asymptotic type R(y) may depend on y, and we cannot expect any
property like (269). The y-dependence of R means that all components of (54) depend
on y; in particular, the numbers n; which encode the multiplicities of poles, may jump
with varying y, and there are no smooth ‘paths’ of poles r;(y), y € R?, in the complex
plane, but, in general, irregular clouds of points {mcR(y) : y € R?}. Then, even if we can
detect some y-dependent families of discrete asymptotic types Q(y), P(y), with the hope
to discover a rule as in Theorem 4.8 also in the general case, the first question is, what are
the spaces W*7(R?, K75, (X"))? An answer for the case dim X = 0 is given in [125], [126].
The point is to encode somehow the expected variable discrete and branching patterns
of poles (that appear after Mellin transforming a function with such asymptotics). We
do not discuss here all the details up to the final conclusions; this would go beyond the
scope of this exposition. More information may be found in [121], or [127], see also
[59]. We want to give an idea of how discrete and branching asymptotics are organised
in such a way that the concept admits edge spaces together with continuity results for
pseudo-differential operators in such a framework.

87



The key word in this connection is ‘continuous asymptotics’. The notion is based on
analytic functionals in the complex plane. We do not recall here too much material on this
topic. Let us content ourselves with some notation. If A(U), U C C open, is the space of
all holomorphic functions in U, endowed with the Fréchet topology of uniform convergence
on compact subsets, we have the space A'(U) of all linear continuous functionals

¢:AU)—C

the so-called analytic functionals in U. For every open U C V we have a restriction
operator A'(U) — A'(V). Given ¢ € A'(C), an open set U C C is called a carrier of (,
if there is an element (y € A'(U) which is the restriction of ¢ to U. A compact subset
K C C is said to be a carrier of ( € A'(C), if every open U D K is a carrier of  in the
former sense.

By A'(K) we denote the subspace of all {( € A'(C) carried by the compact set K. It
is known that A’(K) is a nuclear Fréchet space in a natural system of semi-norms.

It also makes sense to talk about analytic functionals with values in a, say, Fréchet
space E, i.e., we have the spaces A'(K, E) = A'(K)®,E of E-valued analytic functionals,
carried by K. We may take, for instance, £ = C*(X).

Example 4.9. Let K C C be a compact set, and let C' be a smooth compact curve in
C\ K surrounding the set K counter-clockwise. In addition we assume that there is a
diffeomorphism k : S* — C such that, when we identify any w € K with the origin
i C, the corresponding winding number of k is equal to 1; this is required for every
w € K. It can be proved that for every e > 0 there exists a curve C' of this kind such that
dist(K,C) < ¢, ¢f. [112, Theorem 13.5]. Let f € A(C\ K), and form

- / fw (270)

for h € A(C). Then we have ¢ € A'(K). More generally, considering an f(y,w) €
C>®(Q,AC\ K, E)) for an open set Q@ C RY and a Fréchet space E, by

€)= 5 [ S (21)

we obtain an element ((y) € C*(Q, A (K, E)). Clearly (271) is independent of the choice
of C.

In (270) we can take, for instance, f(w) = M,_.,(w(r)r—log" r)(w) for any p € C,
k € N, with M being the weighted Mellin transform (with any weight v € R such that
Rep < 1 —~) and a cut-off function w(r). Then (270) takes the form

(€)= (D" b))y, (272)

h € A(C). This corresponds to the k-th derivative of the Dirac measure at the point p, and
we have ¢ € A'({p}). Inserting h(w) := r~* in (272) it follows that (¢,7~*) = rPlog" r.
More generally, we have the following proposition.
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Proposition 4.10. Let K := {po} U {p1}U...U{pn} forp, € C, j=0,...,N, and let
f € A(C\ K, E) be a meromorphic function with poles at p; of multiplicity m; + 1, and
let (—=1)*klc;r € E be the Laurent coefficients at (z — p;)~**+D 0 < k < m;. Then the
formula (270) represents an element of A'(K, E) which is of the form

N my

Z Z Cak 7 h(w )‘w:pjv (273)

7=0 k=0

and we have (¢,r~") = Z;V:O Sl cikr P log" r.

An analytic functional of the form (273) will be called discrete (and of finite order).
In particular, if (265) is a discrete asymptotic type, the relation (256) can be interpreted
as follows. There is a sequence (; € A'({p;}, L;) of discrete analytic functionals such that
for every 3 > 0 there is an N = N(f3) € N such that

u(r, z) — w(r) (¢, r™v) € ICHA(XM). (274)

=0

This definition of the space K3'(X") admits a generalisation as follows. We replace
{p;} by arbitrary compact sets K; C {w € C : Rew < * —~}, j € N, such that
sup{Rew : w € K;} — —o0 as j — oo. Then an element u(r,z) € K£*(X") is said to
have continuous asymptotics for » — 0, if there is a sequence (; € A (K;,C>(X)) such
that the relation (274) holds for every § > 0 with some N = N(f3).

The notion of continuous asymptotics has been introduced in Rempel and Schulze
[104] and then investigated in detail in [118], [117], [121], [123], [125], [126], see also
[127], or [59, Section 2.3.5]. The original purpose was to find a way to express variable
discrete asymptotics. We do not develop here the full story but only give the main idea.
Intuitively, a family u(r, z,y) € C*(Q, K*>7(X")) should have asymptotics of that kind,
if there is a family

P(y) = {(pi(y), m;(), Lj(y))}jen (275)

of discrete asymptotic types such that for every compact subset M C € and every 3 > 0
there is an N = N(f3) with the property

u(r,x,y) ZZCJ’“ z,y)r P logh r € KA (XM) (276)

7=0 k=0

with coeficients cji(x,y) € L;j(y), 0 < k < m;, for every fixed y € M.

The nature of the family (275) which appears in ‘realistic’ pointwise discrete and
branching asymptotic types belonging to solutions u of (264) in the general case can be
described as follows. For every open set U C € such that U C , U compact, there exists
a sequence of compact sets K; C C, j € N, with the above-mentioned properties and
a sequence (; € C*°(U, A(K;,C*(X))), 5 € N, such that (;(y) € A({p;(v)}, L;(y)) is
discrete for every fixed y € U, and for every 5 > 0 there is an N = N () € N such that

N

u(r,z,y) —w(r) Y (Gy),r ) € KX

J=0
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for every y € U. Observe that this notion really admits branchings of the exponents in
(276) and jumping m;(y) and cjx(z,y) with varying y. Examples of such (;(y) (say, in
the scalar case) are functionals of the form (271) for

c(y) — =
(a(y) = 2)(0(y) = 2)

with coefficients a, b, c € C*°(Q) taking values in Kj.

The characterisation of elements of W _(Q, 7 (X")), s € R, with branching discrete
asymptotics is also interesting. The details are an excellent excersise for the reader. In
order to have an impression what is going on we want to consider once again the case
of constant (in y) discrete asymptotics. Let us give a notion of singular functions of the
edge asymptotics of elements in W#(R?, [C7(X")) of type (255). To this end we fix any
—o0 < ¥ < 0, form Pg by (257) for © = (¢,0], and consider the decomposition (260)
which gives rise to a decomposition

[y, w) =

WA (R, KR (X)) = WA (R, KT (X7)) + VO (RY, Ep,y (X7), (277)

see Remark 1.25, which is valid in analogous form also for the Fréchet space F := K3 (X")

with the subspaces
L:=Kg(X"), M = Ep, (X").
Thus every
u(r,z,y) € WH(R?Y KB (X") € W(R, K3 (X))
can be written as
U(T’, x, y) = Uflat (T7 z, y) + uSing(n €, y)
for an element

ugat (1, 7, y) € WH(R?, K7 (X))
of edge flatness © (relative to the weight ) and a

using(raxay) € VS(RqagP(XA)) = F_1H<77)F(H8(Rq7gP@(X/\)))7

with the Fourier transform F' = F,,_,,. The space Ep,(X") is of finite dimension, cf. the
formula (261). The space V*(R?, Ep, (X")) consists of all linear combinations of functions
n+1

FH ) "5 om)esi (@) (r () (r(m)) 7 og"(r(n)) } (278)

for arbitrary v € H*(RY), v(n) = (Fy—,v)(n). In other words, (278) describes the shape
of the singular functions of the edge asymptotics of constant (in y) discrete type P. In
particular, we see (say, for the case k& = 0) how the Sobolev smoothness in y € R? of the
coefficients of the asymptotics depends on Rep;. Note that decompositions of the kind
(277) have a nice analogue in classical Sobolev spaces H*®(R%9) relative to a hypersurface
RY, cf. the paper [30]. The singular functions (278) can also be written as

FH )" o(m)(¢, (rin) ™) } (279)

90



for suitable discrete ¢ € A'({p;}, L;) and v € H*(RY). The generalisation to continuous
asymptotics is based on singular functions of the form

P ). i) ™) |

for ((n) € A(K, COO(X)®WI:IS(R%)), K C C compact, where ﬁS(R%) = Fy_ H*(RY).
Edge asymptotics in the y-wise discrete case on a wedge X" x € can be modelled on

E2 L ), o)) b (250)

for functions

C(y,m) € C=(U, A'(K,C(X)®-H*(R))), (281)

U C Qopen, U C Q, U compact, K = K(U) C C compact, where ((y,7) is as in (279)
for every fixed y € U.

Now the singular functions with variable discrete and branching asymptotics are for-
mulated as (280) where (281) are pointwise discrete and of finite order, i.e., pointwise
of the form (273), with coefficients c;i(z,y,n7) € L;(y) ® F(H*"s" (RY)), p; = pi(y),
m; = m;(y), cf. the expression (275). Edge asymptotics in such a framework is a rich
program, partly for future research. Elliptic regularity of solutions to elliptic edge prob-
lems with continuous asymptotics is carried out in different contexts, see, e.g., [121], [127],
or [59]. Variable discrete asymptotics for boundary value problems have been studied in
[125], [126] and by Bennish [10]. Here we only want to mention that such a program
requires the preparation of Mellin and Green symbols which also reflect such asymptotics,
similarly as in the discrete case (with Mellin symbol spaces consisting of meromorphic
operator functions).

5 Higher generations of calculi

Manifolds with singularities of order k form a category 2, (9o is the category of C* manifolds, 9% the one of manifolds
with conical singularities or smooth edges, etc.). The elements of 9,1 can be defined in terms of 9, by an iterative
process. Every M € 901, supports an algebra of natural differential operators, with principal symbolic hierarchies and
notions of ellipticity. It is an interesting task to construct associated algebras, as outlined in Section 4.4. The answers that
are already given for 9 and M, see, for instance, [120], [122], or [131], show that the structures on the level k+ 1 require
the parameter-dependent calculus from the level k, together with elements of the index theory and many other features
that are also of interest on their own right. The analysis on manifolds with singularities is not a simple induction from k
to k + 1, although some general observations seem to be clear in ‘abstract terms’.

5.1 Higher generations of weighted corner spaces

One of the main issues of the analysis on manifolds M with higher singularities is the
character of weighted Sobolev spaces on such manifolds. According to the general principle
of successively generating cones and wedges and then to globalising the distributions on
M we mainly have to explain the space

KXY, (tz) e XN, (282)

for a (compact) manifold X € M, s € R, for a weight tuple v € R¥, and what is the
weighted wedge space

W XN x RY),  (t,x,y) € X" x R
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Before we give an impression on how these spaces are organised, we want to recall that
every M € 9, is connected with a chain of subspaces (192), M) ¢ My, 7=0,...,k,
where M© = M. Let us assume for the moment that M) is compact for every j
(otherwise, when we talk about weighted corner spaces, we will also have variants with
subscript ‘(comp)” and ‘(loc)’). Moreover, for simplicity, we first consider ‘scalar’ spaces;
the case of distributional sections of vector bundles will be a modification.

For k = 0 we take the standard Sobolev spaces H*(M), s € R. If M € 9, has conical
singularities, we have our weighted cone spaces H*Y (M) for s,y € R, on the corresponding
stretched manifold M. For M € 91, with smooth edge we can take the weighted edge
spaces W*7(M) for s, € R, on the stretched manifold M associated with M. Those are
subspaces of Hj (int M), modelled on

loc
WH(RY, K57(X M), (283)

locally in a neighbourhood of OM = Mi;,,. The invariance of these spaces refers to an
atlas on M, where the transition maps near » = 0 are independent of r. Recall from
Section 1.3 that we can also form the spaces

W2 (R, K579( X)) (284)

for every s,7v,9 € R, based on the group action (24). Let W#*79(M) denote the corre-
sponding global spaces on M (they make sense for similar reasons as before with an atlas
as for g = 0).

Remark 5.1. The spaces WV~ 7(M) are invariantly defined for particularly natural
charts on M, namely, those mentioned at the beginning of Section 4.1, here for the case
k =1 (c¢f. also [151]). For simplicity, in the following discussion we return to the case
g = 0 and ignore this extra information.

For the higher calculi it seems better to modify some notation and to refer to the
singular manifolds M themselves rather than their stretched versions, although the dis-
tributions are always given on M \ M™ € 9,. So we replace notation as follows:

HET (M) — HSY(M), W (M) — H (M), K7(X") — K37(X5). (285)

We only preserve the WW*7-notation in wedges X x RY, in order to keep in mind the
edge-definition in the sense of Definition 1.23. In other words, we set

W (XA x RY) := WH(RL (X)) (286)

which is equal to (283).
For M € M., k > 1, the weights will have the meaning of tuples

v= (..., ) €R" (287)

Here 7, is the ‘most singular’ weight. For the subspaces M) & Mie—j, j=0,..., k—1,
we take the subtuples

7(]) = (7]4—17 B 77]6) € Rk_j‘ (288)
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The weighted corner space on M) of smoothness s € R and weight ) will be denoted
by ‘

HO (MDY, j=0,... k-1
Occasionally, in order to unify the picture, we also admit the case v*) as the empty weight

tuple and set in this case
Hsry(”(M(k)) — HS(M(k’))

(recall that M*) C M is a C* manifold, cf. Section 3.1). Knowing the meaning of the

spaces
H>Y(M) for M e My (289)

and of
H(XA), K (XA) for X € My, (290)

v = (7,--.,7), for a given k& > 1, the question is how to pass to the corresponding
spaces for £+ 1. An answer is given in [15], and we briefly describe the result. We keep
in mind the group of isomorphisms {r}rer. , on K*7(X*?), defined by

14dim X

(kau)(r,z) = A" 2 u(Ar,x), A€ Ry, (291)

which allows us to form the spaces (286). The space (289) is locally near Y = M®)
modelled on spaces (286) when dimY > 0 and on H*7(X%) for dimY = 0 when (for
simplicity) Y consists of a single corner point. The definition of H*7(X%) is as follows:

HEY (X)) = S;_MTX(HS”' (R x X))

when we write v = (7, 7) for 7' := (7, ...,7%-1), and we employ the induction assump-
tion that the cylindrical space H*Y' (R x X) is already known. Here

(Sgu)(r,.) == e GOy ™)

for u(r,.) € H*'(X2), (r,.) € Ry x X, (r,.) € R x X, r := e~ ". A similar description
of H*7(M) holds locally near Y = M@\ MU+Y for every j = 0,...,k — 1. Then the
space

HE (M) (292)

itself may be obtained by gluing together the local pieces by a construction in terms of
singular charts and a partition of unity on M. In order to define the spaces

Hs,(’y,@) (MA)

with # € R being the weight belonging to the new axial variable ¢ € R, we need again
cylindrical spaces

H Y (Rg x M) (293)
which are locally near any y € Y@, j =0,..., k, modelled on

W (Rt « RdimY(j)”Cs77(j)(X@_l))) for X(jfl) c mj—l

which refers to the representation of a neighbourhood of 3 in M as (193). Since Y(? € 90,
we have the standard cylindrical Sobolev spaces contributing to (293) over R, x Y. By
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virtue of M = U?:o YU the space R x M can be covered by cylindrical neighbourhoods.
Gluing together the local spaces, using singular charts along M and a partition of unity,
yields the space (293). We then set

RO (MB) = Sy_ams (H7 (R x M)),

where 6 plays the role of the new weight 411, belonging to ¢ € R,. Moreover, by forming
arbitrary locally finite sums of elements of H*?(R x M) with compact support in t € R
we obtain a space that we denote by

Higery(Re x M). (294)
Now let us form the spaces

s (T 14+dim Y'(9) sy() A
w (Rt,yj 7ICF,;/ (X(j—l)))7
j=1,...,k and H*(R, x REmY”) for j = 0. Moreover, we employ the spaces (294) with
t instead of t. Let w(t) be any cut-off function on the half-axis and interpet 1 —w(t) in the
following notation as a function in ¢t € R that vanishes for ¢ < 0. By W21 (R, x M) we
denote the set of all u € Hy)l ) (Ry X M)|r, < such that (1 —w(t))u(t,.) (for any cut.—off
function w) expressed in local coordinates on M in the wedge R xR x X(;_1) x Rgimym >

(t,r,x,y), cf. the formula (193), has the form
v(t, tr, z, ty)

for some v(t,7, x,y) € W* (R, 5, /C;er) (X(%—l))) forall j=1,....k and v(t,y) € H*(R; x

Rdimy(o)) for j = 0. The invariance of our spaces under (adequate) coordinate transfor-

mations is not completely trivial. We do not deepen this aspect here. Let us only mention
that we have to specify the charts with the cocycle of transition maps, and we do not
necessarily admit arbitrary isomorphisms of respective local wedges (as manifolds of the
corresponding singularity order).

Coming back to Remark 5.1, we could also employ modified definitions of higher wedge
spaces, based on the spaces K*79(X2) := (r)=9K*7(X%) with group actions

1+dim X
2

(kSu)(r,x) = AF u(Ar,z), AeR,,

for u(r, z) € K*79(X?) instead of (291). However, this has a chain of consequences which
we do not discuss in more detail here. Now we set

cone

IO (MAY = {wu+(1-wp:ue HYOO (M), 0 € Wil (R X M)}

for some cut-off function w(t).
Summing up we have constructed spaces of the kind (292), namely,

HEOD(MA), KOO (MA) for M € M. (295)
For arbitrary N € 911 we obtain the spaces

H s (.0) (N)
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by gluing together local spaces over wedges, similarly as above (292) for the case M € 9.
All these spaces are Hilbert spaces with adequate scalar products. On K9 (M2) we
have a strongly continuous group of isomorphisms, similarly as (291). This allows us to
form the spaces W*(R?, K> (M4)), and we thus have again the raw material for the
next generation of weighted corner spaces.

Let us finally note that the constructions also make sense for non-compact M € 9y;
we assume, for instance, that M is a countable union of compact sets and that such M
are embedded in a compact M € 9. Then we can talk about H;7 (M), defined

b (comp)
to be the set of all elements of H*7(M), supported by a compact subset K C M and
about (), (M) to be the set of all locally finite sums of elements in M} (M). The

(comp)
notation ‘(comp)’ and ‘(loc)’ in parentheses is motivated by the fact that, although the
distributions are given on M\M(l),_the support refers to M (e.g.,if M = R, MM = {0},

we talk about compact support in R,).

5.2 Additional edge conditions in higher corner algebras

As we saw in boundary value problems a basic idea to complete an elliptic operator A to a
Fredholm operator between Sobolev spaces is to formulate additional boundary conditions.
This can be done on the level of symbols by filling up the boundary symbol (111) to a
family (112) of isomorphisms. In general it is necessary to admit vector bundles .J;. on the
boundary, even if the operator A itself is scalar. We also can start from operators acting
between distributional sections of vector bundles E and F', and we then have Fredholm
operators as in Remark 2.10.

In a similar manner we proceed for a manifold M with edge Y = MW, If A €
Diff}, (M E, F) is an edge-degenerate operator (between weighted edge space of (distri-
butional) sections of vector bundles E, F') ellipticity requires filling up the homogeneous
principal edge symbol

on(A)(y,m) s K (X2, ) — KTH7H(X2, F)) (296)
to a 2 x 2 block matrix family of isomorphisms
0A<A) (yv 77) : ICS,’Y(XAa Ey) S” J—7y - ,CS_%,Y_M(XAv Fy) @ J—hy (297)

for suitable Jy. € Vect(Y), (y,n) € T*Y \ 0.

Here, in abuse of notation, E,, F, € Vect(X") denote bundles that are obtained
as follows. First consider the X-bundle Mgy, over Y and the associated X”-bundle
M., with the canonical projection p : Mg, — Mg, induced by X" — X. For every

E € Vect(M) we obtain a bundle p*(E }M' ); then the restriction of the latter bundle to
sing

the fibre of M, over y € Y is denoted again by £,.

The construction of (297) for a oy-elliptic element A of the edge algebra is also mean-
ingful for pseudo-differential operators. The weight v € R is kept fixed; in general there
are many admissible weights for which (296) is a Fredholm family, but the bundles J.
depend on 7.

In any case we obtain 2 x 2 block matrices

HY(M,E)  HHY (M, F)
A ® — ® (298)
H(Y, J-) H1 (Y, Jy)

95



which are Fredholm operators as soon as A is elliptic with respect to o,(.A) and o, (A);
the latter condition is just the bijectivity of (297) for all (y,n) € T*Y \ 0 for some s € R.

Let 2A*(M, g) denote the space of all (298) belonging to the weight data g := (v,v —
i) (the bundles are assumed to be known for every concrete A, otherwise we write
A4(M, g;v) for v:= (E, F;J_, J})).

On a manifold M in the category 9, with the sequence of subspaces (192), M @) e
Mi_j, 0 < j <k, the picture (in simplified form) is a follows. We have weighted Sobolev
spaces

o (M(j), EY)Y and Hsn(j)(M(j)’E(j)>

(comp)
with weights v = (yj41,...,7) ERF 7 for 0 < j < k—1and H(Comp/loc)(M(k), E®) for
vector bundles EV). (For M) compact we omit subscripts ‘(comp)’ and ‘(loc)’.)

The higher corner operator space A*(M, g;v) of operators of order y on M then
consists of (k4 1) x (k + 1) block matrices

A @st (MY, E @Hs k(O B, (299)

Comp loc)

with weight data g := (77, ) — - 1) j=0,... k1 y(j) — = (Yjq1 — My - -, Ve — 1), and tuples
= (BEY, FUY,_o. 1, EV FU) € Vect(MW). The fibre dimensions of the involved

.....

we have
(Aij)ij=t,...c € A (MY g1 00

for every 0 < I < k, with weight and bundle data g and v, respectively, that follow
from g and v by omitting corresponding components. Set ulc A := (A;;)ij=0...k—1. The
principal symbolic hierarchy

o(A) = (0;(A))osj<s (300)
is defined inductively, where (0;(A))o<j<k—1 is the principal symbol of ulc A| gt With
M\ M® € 9,1, such that the symbols up to the order k — 1 are known, while

Fok (G2 B et FY)
ox(A)(y;n) : & — B (301)
B £

for (y,m) € T*M™\0 is the highest principal symbol of order &, cf. (198) for the case when
A consists of an upper left corner which is a differential operator A. Here X,_; € M_1
(by assumption, compact) is the fibre of the X} _;-bundle My, over M (k) 5 y, M®) e 9y,
and

X=X oxV o o xEY

is the chain of subspaces, analogously as (192). In this discussion we tacitly assumed
dim M™® > 0. In the case dim M*) = 0 the space M®*) consists of corner points. Then

96



(301) is to be replaced by an analogue of the former conormal symbols, namely,

@?‘;SHSW/(]) (X]gl)l, E(‘j)) @é:osz_”"Y,(l) — 1 (X]glzl, E(l))
o.(A)(w) : ) — ® . (302)
E(k—l) F(kfl)

w € [Naimx;_;+1 N where 7' = (71,...,7%-1). Clearly, (302) depends on the discrete corner
— 5 Tk

2
points y € M®); for simplicity, we assume that M®*) consists of a single point (subscripts
‘y’” are then omitted).

Definition 5.2. An operator A € A*(M,g;v) for M € My is called elliptic of or-
der u, if A = A‘M\M(M is elliptic as an element of A*(M \ M® g;v') for g =
(YD 4D — p)jmr g, = (BEV FO),_y oy, and if (301) for dim M® > 0 is a

family of isomorphisms for all (y,n) € T*M® \ 0 (or (302) for dim M®*® = 0, for all
w e Fdika_1+1 N )
dim X1

Theorem 5.3. Let A € A*(M, g;v) be elliptic and M € My, compact. Then (299) is a
Fredholm operator for every s € R, and A has a parametriz P € A~*(M, g~ ;v71).

5.3 A hierarchy of topological obstructions

Looking at the constructions of Section 2.1 for an elliptic operator A on X in connection
with the process of filling up the Fredholm family (111) to a family of isomorphisms (112)
we did not emphasise that the existence of the vector bundles JL € Vect(0X) is by no
means automatic. To illustrate that we first recall the homogeneity

ca(A)(y, M) = Mrroa(A)(y,n)ky "

for all A € Ry, (y,n) € T*(0X) \ 0 which shows that we may consider (111) for (y,n) €
S*(0X) (the unit cosphere bundle induced by 7*(0.X)) which is a compact topological
space (when X compact). It suffices to construct (112) first for (y,n) € S*(0X) and then
to extend it by homogeneity u to arbitrary (y,n) € T*(0X) \ 0, setting

-1
— qpp (Bt O My (B O
oot =it ("5 ) aat e ) (1) (303)
cf. the relation (116). From the fact that (111) is a family of Fredholm operators,
parametrised by the compact space S*(0X) we have a K-theoretic index element

indg-(ox) oa(A) € K(S*(0X)). (304)

Recall that the K-group K(.) (for a compact topological space in the parentheses) is a
group of equivalence classes [G4] — [G_] of pairs (G_,G,) of vector bundles G_, G4 €
Vect(.).

If (112) is a family of isomorphisms, the index element (304) is equal to [J;] — [J_]
which means

indg-(ax) 0a(A) € T K(0X) (305)
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when 7 : S*(0X) — 0X denotes the canonical projection. In general, we only have (304),
i.e., (305) is a topological obstruction for the existence of an elliptic operator (117) with
A in the upper left corner. The condition has been studied in [6] for elliptic differential
operators A and in [13] for pseudo-differential operators A with the transmission property
at 0X. Dirac operators (in even dimensions) and other interesting geometric operators
belong the cases where this obstruction does not vanish.

The following discussion is partly hypothetical, it formulates expectations that are
not completely worked out in detail, except for the obvious things such as the following
observation.

Set ' ‘

(X5, By) = @l (X)), B, (306)

Y

’CS_“”Y—M(XA, Fy) = @f:—[)llcs—%’y(l)—u((X]glzl)A7 Fy(l)) (307)

Moreover, let ulc A := (A;;)ij=o,. k1. If (301) is a family of isomorphisms, the k x k
upper left corner

onlule A)(y,n) : KM(XA, B,) — Kr7r (XA, F) (308)

is a family of Fredholm operators for all (y,n) € T*M®\ 0. In addition, using the natural
group actions {K)}rer, and {K)}acr, on the spaces (306) and (307), respectively, we have
the homogeneity

o(ule A)(y, i) = NRaoa (ule A)(y, n)ky !

forall A € Ry, (y,n) € T*M®\ 0. This allows us to interpret (308) as a Fredholm family
on S*M®  and we have

indg. pym on(ule A) € K(S*M®).

It is again a necessary and sufficient condition for the existence of a block matrix family
(301) of isomorphisms with vector bundles E®) | F®) ¢ Vect(M®)) that

indg. pym oa(ule A) € mf K (MW®), (309)

s S*M® — k),

If (309) holds we find the additional entries for o,(A)(y,n) in the k th row and
column, first for (y,n) € S*M® and then for all (y,1) € T*M® \ 0 by an extension by
homogeneity, similarly as (303).

The condition (309) is a topological obstruction for the existence of an elliptic el-
ement A € A*(M, g;v) for a given operator of the form ulc A € A*(M,g;w), w =

If (309) is violated, it should be possible to modify the procedure of filling up (308) to
a family of isomorphisms (301) by completing luc.A to a Fredholm operator .4, by using
global projection data in analogy of the constructions of [136] for the case k = 1 (see also
[129], [135] for the case boundary value problems). The extra entries of A (compared
with ulc.A) then refer to subspaces of the standard Sobolev spaces on M) which are
the image under a pseudo-differential projection. In the opposite case, i.e., when (309)
holds we obtain ellipticity of A in the sense of Definition 5.2 which is an analogue of the
Shapiro-Lopatinskij ellipticity, known from boundary value problems. In that case it is
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interesting to talk about different possibilities of filling up the operator A;; to a Fredholm
operator A in the above mentioned way. Let B be another operator containing .4;; in the
upper left corner, and let B be also elliptic in the sense of Definition 5.2. There is then a
reduction of the conditions (B;;); o,k i,j)#(1,1) to the subspace M® € 9M,_1 by means
of A = (Aij)ijo,. k- The algebraic process is similar to that in [102, Section 3.2.1.3]
for the case of boundary value problems. In other words, there exists an elliptic element
R € A°(MW) (for brevity, weight and bundle data are omitted in the notation) such that

indB—ind A =ind R.

This relation is an analogue of the Agranovich-Dynin formula, cf. Remark 2.14, and [102,
Section 3.2.1.3].

The latter observation can also be interpreted as follows. The elliptic operators on
M parametrise the elliptic operators in A*(M), apart from the ellipticity condition
for Aj; itself (which means, e.g., for & = 1, that Aj; is elliptic of Fuchs type or in the
edge-degenerate sense).

5.4 The building of singular algebras

If M € 9y is given, we assume to have constructed an algebra of operators (M) :=
U, &2 (M) for A*(M) := U, , ¥ (M, g;v), cf. the notation in Section 5.2, with a principal
symbolic structure (0;(.A))o<j<x. For M € M, we may take, for instance, the algebra of
classical pseudo-differential operators on M. The program of the iterative calculus on
M1, My, ..., iS to organise a natural scenario to pass from A(M) to corresponding
higher generations of calculi. Spaces in 91,1 can be obtained from M € 9, by pasting
together local cones M? or wedges M2 x Q, Q C RY open. Analytically, the main
steps (apart from invariance aspects) consist of understanding the correspondence between
(M) and the next higher algebras

A(MA) and A(M> x Q).

The way which is suggested here will be called conification and edgification of the calculus
on M. The experience from the cone and edge algebras of first generation leads to the
following ingredients.

(C.1) Parameter-dependent calculus. Establish 2(M;R!), a parameter-depen-
dent version of 2A(M) with parameters A\ = (\y,...,\;) € R of dimension [ > 1. Here
¢ = (Ng,..., N) € R may be treated as sleeping parameters in the sense of Section
3.2. In the process of the iterative construction it becomes clear how the parameters are
successively activated, cf. the points (C.2) - (C.4) below. In this context we assume that
2A(M;R!) is constructed for every M € 9y; thus since M = R, x M also belongs to
M, (with R, being regarded as a C°> manifold) we also have 2A(M") and A(M";R!). If
A~ (M) denotes the space of smoothing elements in the algebra 2A(M) (defined by their
mapping properties in weighted corner spaces), we set

A~ (M;RY == S(R', A7(M))

for every M € 9.
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(C.2) Holomorphic Mellin symbols and kernel cut-off. Generate an analogue
of A(M;R"), namely, 2A(M;C x R'"1) of holomorphic families in the complex parameter
v € C by applying a kernel cut-off procedure to elements of 2((M;R!) with respect to
Ai. Here A(v,¢) € A(M;C x R'™1) is holomorphic in v = 3 + it € C with values in
A(M; ]Ré_l) such that

A(B +i7,¢) € A(M; R ()
for every g € R, uniformly in finite S-intervals. The holomorphy of operator families can
be defined in terms of holomorphic families of the underlying local symbols (the notion
directly follows in terms of the spaces of symbols, plus holomorphic families of smoothing
operators which is also an easy notion, taking into account their mapping properties
between global weighted spaces, or subspaces with asymptotics). In a similar sense we
can form the spaces

C*(Ry x Z,A(M;RY)) and C®(R, x Z,2(M;C x R*+1),

respectively.
(C.3) Mellin quantisation. Given a

B(t,2,7,¢) € C®(Ry x Z,A(M;RL 7))
we find an N N
h(t,z,v,() € C®(Ry x Z,2(M;C x Rl{l))
such that for p(t, z,7,¢) := p(t, z, t7,tC), h(t, z,v,¢) := h(t, 2, v, t() we have
0P (h)(2,¢) = opy(p)(,¢)  mod C(Q,A™(M";R'™))

for every v € R. The correspondence p — h may be achieved by a combination of a
transformation from the Fourier phase function (¢t — /)7 to the Mellin phase function
(logt" — logt)T with a kernel cut-off construction.
(C.4) Edge quantisation. We start from a family p(t, z,7,() € C* (EJF x =, A(M;
]R;%q)) for 2 C R? open and obtain
p(t, z,7,¢) = plt, 2,17, 1C),  pol(t, z,7,¢) == p(0, 2,17, £C),
Wt z,v,0) == h(t, z,v,t0), ho(t,z,v,() = (Ozvt(’)

by Mellin quantisation. Moreover, we fix cut-off functions w, w, w such that @ = 1 on
supp w, w = 1 on supp w, and cut-off functions o, . We set

ani(z,¢) = tw(t[C]) opyy 2 (h)(z, Q)@(H'[C]) (310)
foraf# € R and n = dim M,
ay(z,¢) = t7(1 = w(t[C))wo(tC, <)) op, (p) (2, O)(1 — D(F[C])) (311)

(' € R is the variable under the Mellin transform), wy(t,t') := 1Z)<1+tt—t2,> for every

¥ € C5°(Ry) such that ¢(¢) =1 for t < 3, ¢(t) =0 for t > 2, cf. [17, Lemma 2.10], and

form the operator-valued amplitude function
a(z,¢) = o{an(z,¢) + ay(z,()}o (312)
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which belongs to " (2 xR%; IO (M2, CsmmO=m8=m (MA)) for every s € R. As above,
0 € R plays the role of the additional weight vz 1.

(C.5) Mellin plus Green symbols. Compositions of symbols of the kind (312) and
computations in connection with ellipticity and parametrices generate a further class of
symbols, namely, Mellin plus Green symbols

m(z,¢) + g(2,¢) € S5(E x RG KOO (M), SO0 (M%), (313)

Here
SO (MA) = lim () NIV OO (M2,
NeN

There are many possible variants for (313), for instance, symbols referring to the weight
line FnT-H_G itself, n = dim M, or to an e-strip around this for a small € > 0, or to a
larger strip in the complex v-plane in which asymptotic phenomena are encoded in terms
of meromorphy. Let as content ourselves here with the e-strip. In that case we choose a
function f(z,v) which is C* in z € Z and holomorphic in {v € C: 2 — 0 —e < Rev <
24l 4e}, taking values in 2A7°°(M), such that f(z,v) € C®(Z,A*(M;Ts)) for every
”TH —0—e<pf< ”TH — 6 + ¢, uniformly in compact (-intervals. Then we set

n

_ 0 -
m(z, () ==t w(t[C]) opy, * (f)(2)@(t'[C]) (314)
for an arbitrary choice of cut-off functions w,w. A Green symbol ¢(z,() is defined by
9(2,¢) € SH(2 x RE KO (M~), SOrtob-nto)(J14)), (315)

for some 6 > 0, for all s, together with a similar condition on the (z,()-wise formal
adjoints. Varying w,@ in (314) we only obtain a Green remainder. The symbols (315)
take values in compact operators IC*(")(M2) — K30=#9=1(A[A): the operator-valued
symbols (314) have not such a property. We have

Op.(m), Op.(g) € A (M").

Recall that M = R, x M belongs to 9My; therefore, the smoothing operators on M” are
already known by induction. Nevertheless, Op,(m),Op,(g) take part as non-smoothing
contributions in the algebra A(M?%), cf. (C.7) below.

(C.6) Global smoothing operators. Formulate the spaces 27>°(N) > C' for arbi-
trary N € M1 by requiring the mapping properties

C HE (N) — Hpl o0y, (316)

s € R, for some 6 = §(C) > 0 and, analogously, for the formal adjoints C*. Here we fix
weight data ((v,0), (v — u, 0 — p)) for arbitrary weights and orders p (the spaces in the
relation (316) are an abbreviation for the direct sums occurring before, with £+ 1 instead
of k).

(C.7) Global corner operators of (k + 1)-th generation. An operator A €
A*(N) for N € M1, associated with weight data ((v,0), (v — p,0 — p)) is defined as
follows:
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We first choose cut-off functions o, 7, & on N that are equal to 1 in a small neighbour-
hood of Z := N®**1 and vanish outside another such neighbourhood, such that @ = 1 on

suppo, o = 1 on supp 5. Then A" (N) consists of all
A = Aging + Areg + C
such that
(i) C e A= (N);

(i) Apeg := (1 — 0)Ame(1 — 5) for Ains := Alnz € A*(V \ Z), also associated with the
weight data (v,v — u);

iii) Agne (modulo pull backs to the manifold) is a locally finite sum of operators of the
g
form

©{Op,(a+m+ g)}y

referring to the local description of N near Z by wedges M= x 2, = C R open (d =
dim Z), for arbitrary symbols a,m, g as in (C.4), (C.5) and functions ¢,y € C3°(Z),
© belonging to a partition of unity on Z and ¥ = 1 on supp ¢.

(C.8) The principal symbolic hierarchy. For A € 2*(N) we set
0(A) = (o (A), on,,, (4)),

where oy (A) = 0(Ajy) is the symbol which is known from the step before, since N\ Z €
mk, and

On (D)0 = 1 {w(rlc]) oy ® (ho) (2, OB(EIC) i
(1 = w(tl¢)wo(tlc], 1Ty ope(po) (2. ) (1 = S [C1))}

+
+ O Ay1 (m+g)(27C)7 (317>

where o,,.,(m + g)(2,¢) is the homogeneous principal part of m + g in the sense of
(operator-valued) classical symbols of order p. The edge symbol (317) is interpreted as a
family of operators

Ope (A)(2,Q) : KEOO(ME) — o mOmmim (112, (318)
(2,() € T*Z \ 0, and we have
ONky1 (A) (27 )‘C) = A#K/)\O-/\k+l (A))(Zv C)’ﬁl

for all A € R;.

6 Historical background and future program

The analysis on manifolds with singularities has a long history. Motivations and models from the applied sciences go back
to the 19 th century. There are deep connections with pure mathematics, e.g., complex analysis, geometry, and topology.
Numerous authors have contributed to the field. We outline here a few aspects of the development and sketch some
challenges and open problems.
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6.1 Achievements of the past development

The analysis on manifolds with singularities is inspired by ideas and achievements from
classical areas of mathematics, such as singular integral operators, Toeplitz operators,
elliptic boundary value problems, Sobolev problems, from the applied sciences with edge
and corner geometries, crack problems, numerical computations, pseudo-differential cal-
culus, asymptotic analysis and Mellin operators with meromorphic symbols, parameter-
dependent ellipticity, spectral theory, ellipticity on non-compact manifolds, expecially,
with conical exits to infinity, Dirac operators and other geometric operators, Hodge the-
ory, index theory, spectral theory, functional calculus, and many other areas.

Elliptic boundary value problems (e.g., Dirichlet or Neumann for the Laplace operator)
in a smooth bounded domain in R™ are often studied directly, not necessarily in the
framework of a voluminous calculus. However, it may be instructive to consider the class
of all elliptic boundary value problems for elliptic differential operators at the same time.

The history of elliptic boundary value problems is well known; there are many stages
and numerous applications. In the present exposition we will not give a complete list of
merits and achievements of the general development.

We mainly focus on ideas that played a role for the iterative calculus of edge and
corner problems. A classical reference is the work of Lopatinskij [75] who introduced a
general concept of ellipticity of boundary conditions for an elliptic differential operator.
We are talking here about Shapiro-Lopatinskij conditions. The operators representing
boundary conditions are also called trace operators.

An algebraic characterisation of elliptic differential trace operators may be found in
Agmon, Douglis, and Nirenberg [2], the complementing condition. Let us also mention
the works of Schechter [115], Solonnikov [146], [147], and the monograph of Lions and
Magenes [72]. Moreover, Solonnikov [145] studied parabolic problems in such a framework.
The Sixtees of the past century were also a period of intensive development of the pseudo-
differential calculus, cf. Kohn and Nirenberg [61], Hormander [57], [58]. Ideas and sources
of this theory (especially, of singular integral operators) are, in fact, much older.

Wiener-Hopf operators became an important model for different kinds of operator al-
gebras with symbolic structures, ellipticity, and Fredholm property. In higher dimensions
they played an essential role in the theory of Vishik and Eskin on pseudo-differential
boundary value problems without (or with) the transmission property at the boundary,
cf. Vishik and Eskin [153], [154] and Eskin’s monograph [32]. An algebra of pseudo-
differential operators with the transmission property at the boundary was established by
Boutet de Monvel [13]. This algebra is closed under constructing parametrices of elliptic
elements.

Similarly as in the work of Vishik and Eskin, the operators in Boutet de Monvel’s alge-
bra have a 2 x 2 block matrix structure with additional trace and potential entries. More-
over, there appear extra Green operators in the upper left corners which are indispensable
in compositions. Apart from the standard ellipticity of the upper left corner there is a no-
tion of ellipticity of the remaining entries which is an analogue of the Shapiro-Lopatinskij
condition, a bijectivity condition for a second (operator-valued) symbolic component.

It turned out very early that the ellipticity of the upper left corner does not guarantee
the existence of a Shapiro-Lopatinskij elliptic 2 x 2 block matrix operator, cf. Atiyah
and Bott [6]. Despite of the general index theory, cf. Atiyah and Singer [9] and the
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subsequent development, which is also an important source of the analysis on manifolds
with singularities, it remained unclear for a long time how to complete boundary value
problems for such operators to a calculus which is closed under parametrix construction for
elliptic elements (answers are given in [129], [134], [133]). The case of differential boundary
value problems of that type was widely studied by numerous authors, see Seeley [140],
Booss-Bavnbek and Wojciechowski [12], or the author’s joint paper with Nazaikinskij,
Sternin, and Shatalov [89], see also [86], jointly with Nazaikinsij, Savin, and Sternin.

Interpreting a (smooth) manifold with boundary as a manifold with edge (with the
boundary as edge and the inner normal as the model cone of local wedges) boundary
value problems have much in common with edge problems. This is particularly typical
for the theory of Vishik and Eskin where the operators on the half-axis are Wiener-Hopf
and Mellin operators that belong (in the language of [121], [124]) to the cone algebra on
the half-axis, c¢f. Eskin’s monograph [32, §15]. Let us also mention in this connection
the work of Cordes and Herman [24] and Gohberg and Krupnik [43], [44]. (The calculus
of Vishik and Eskin was completed to an algebra in [103].) There is another category
of problems with ‘edges’, the so-called Sobolev problems, where elliptic conditions are
posed on submanifolds of codimension > 1, embedded in a given manifold. This type of
problems has been systematically studied by Sternin [148], [149], including conditions of
trace and potential type. In this case the embedded manifolds can also be interpreted as
edges (cf. the recent papers [91], [30] and [73]).

Boundary value problems for differential operators in domains with conical singulari-
ties in weighted Sobolev spaces have been studied by Kondrat’ev [63] and by many other
authors. The Fredholm property in [63] was obtained under the condition of Fuchs type
ellipticity together with the ellipticity of the principal conormal symbol with respect to
a chosen weight. At the same time the asymptotics of solutions at the tip of the cone
was characterised in terms of the non-bijectivity points of the principal conormal symbol
which gives rise to meromorphic operator functions, operating in Sobolev spaces on the
base of the local cones. (The notation ‘conormal symbol’ was introduced in [103] in a
situation of boundary value problems, where ‘conormal” comes from the conormal bundle
of a domain that corresponds to a cone, see also Section 2.3; other authors speak about
operator pencils or indicial families. Our notation is motivated by their role of a principal
symbolic component in a hierarchy.)

Such conormal symbols fit into the frame of parameter-dependent operators and
parameter-dependent ellipticity on a manifold. This is an aspect of independent impor-
tance. Agmon [1] interpreted a spectral parameter as an additional covariable; a similar
concept was applied by Agranovich and Vishik [3] to parabolic problems, and it played an
important role in Seeley’s work [139] on complex powers of an elliptic operator. Later on,
parameter-dependent boundary value problems in the technique of Boutet de Monvel’s
calculus were investigated by Grubb [51] with a more general dependence on parameters.

Parameters in the singular analysis appear in a very simple way. If A is a (say, differ-
ential) operator on a singular configuration M and if we analyse A in a neighbourhood
of a (smooth) stratum Y then we can freeze variables on Y and consider the cotangent
variables 1 to Y (in the symbol of A) as parameters. We then obtain an operator function
a(y,n) on a cone X* transversal to Y. In this connection it is natural to accept X* as
an infinite cone and to interpret a(y,n) as an operator-valued symbol of A. This is just
the idea of boundary symbols on a manifold M with smooth boundary; the transversal
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cone in this case is R.

In Shapiro-Lopatinskij ellipticity there is an automatic control of operators for r — oo
when 7 # 0. Similarly, also for dim X > 0, it is interesting to observe the behaviour of
operators near the conical exit of X to infinity.

The simplest model of such a manifold is the Euclidean space R™ which corresponds
to (S"~ 12 in polar coordinates. Ellipticity up to infinity in the case of differential op-
erators was studied by Nirenberg and Walker [92]. The pseudo-differential calculus of
such operators was independently developed by Shubin [144], Parenti [95] and by Cordes
[23]. It is essential here that the manifolds at infinity have as specific structure, i.e., there
is a ‘metric’ background which leads to standard Sobolev spaces up to infinity. For the
singular analysis near » = 0 it is also important to study operators on finite cylinders
R x X between ‘cylindrical’ Sobolev spaces. Although infinite cones and infinite cylinders
geometrically are nearly the same, the ellipticities are quite different. Ellipticity referring
to the cylindrical metric was investigated by Sternin [150]. The corresponding results are
close to the ones for weighted Sobolev spaces near conical singularities.

Classical operator calculi with symbolic structures usually contain the equivalence
between ellipticity and Fredholm property in the chosen Sobolev spaces on the given
configuration. This is a starting point of many beautiful connections to index theories.
Although this is an interesting side of the history, it goes beyond the scope of this exposi-
tion which is focused more on ‘analytic’ aspects. Geometric and topological relations are
discussed in detail in a new monograph of Nazaikinskij, Savin, Schulze and Sternin [88].

6.2 Conification and edgification

By ‘iterative calculus’ we understand a program to successively generating operator struc-
tures on manifolds with higher singularities, such that ellipticity of the operators, para-
metrices, and index theory make sense. Let us first recall that a manifold M € 9,4,
k € N, can be generated by repeatedly forming cones X2 = (R, x X)/({0} x X) and
wedges X2 x Q, starting from elements X € 9, and open © C R (local edges), combined
with pasting constructions to reach the ‘global’ object M. In the case of a C'"*° manifold
X, ie, X € My, we obtain in this way manifolds with conical singularities and edges,
i.e., objects in My; a next step gives us corner manifolds in My, i.e.; of second generation,
and so on.

Now the program of the iterative calculus is as follows. Given a (pseudo-differential)
operator algebra on X € 9, apply a ‘conification’ to generate a so-called cone algebra
on X2, then an ‘edgification’ to obtain a corresponding edge algebra on X2 x Q, and
then past together the obtained local cone and edge algebras to the next higher algebra
on M € My, 1. The question is now how to organise such conifications and edgifications.
Answers of different generality may be found in the papers and monographs [120], [122],
[119], [121], [127], [131], as well as in the author’s joint works with Rempel [103], [102],
[108], Egorov [31], Kapanadze [59], or Nazaikinskij, Savin, and Sternin [88]. In order
to make the conification and edgification idea transparent we try to give an impression
of how the first cone, edge, and corner algebras were originally found. (The following
discussion has some intersection with the previous section).

First, in the context of the early achievements of the calculus of pseudo-differential
operators, see Kohn and Nirenberg [61], Hormander [57], [58], and of the index theory,
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see Atiyah and Singer [9], it became standard to establish operator algebras with a princi-
pal symbolic structure, closed under the construction of parametrices of elliptic elements,
and containing a minimal class of ‘desirable’ elements, such as differential operators (see
also the discussion in Section 4.4 before). However, already for boundary value problems
on a C'*° manifold with boundary this concept leads to ‘unexpected’ difficulties. Vishik
and Eskin [153], [154] established a very general calculus of pseudo-differential boundary
value problems, but the ‘calculus answer’ was not so smooth as in the boundaryless case;
compositions and parametrices were not given within the calculus. A ‘smooth’ calculus
of boundary value problems in that desirable sense was obtained later on by Boutet de
Monvel [13], however under two severe restrictions. The symbols are required to have
the transmission property at the boundary (these symbols form a thin set in the space
of all pseudo-differential symbols which are smooth up to the boundary). Moreover ellip-
tic operators (such as Dirac operators in even dimensions or other important geometric
operators) are excluded (for topological reasons) from the notion of Shapiro-Lopatinskij
ellipticity of boundary conditions, see also Atiyah and Bott [6], and the discussion in
Section 5.3. In any case, both Vishik, Eskin and Boutet de Monvel stressed the role
of a second principal symbolic component, namely, the boundary symbol which encodes
the Shapiro-Lopatinskij ellipticity of the boundary conditions and refers to the entries of
a 2 x 2 block matrix with trace and potential operators. The latter kind of operators
(together with Green operators) was added as a contribution of the boundary. (Note
that an operator algebra for boundary value problems without any topological restriction
(such as for geometric operators mentioned before) was given in [129], see also [133].) An
algebra of boundary value problems that admits all smooth symbols (also those with-
out the transmission property at the boundary, as in Vishik and Eskin’s work), closed
under parametrix construction of Shapiro-Lopatinskij-elliptic elements, was constructed
by Rempel and Schulze [103]. However, the structure of lower order terms was not yet
analysed in [103]; this came later in the frame of the edge calculus. A crucial role for
[103] played a specific algebra on the half-axis from Eskin’s book [32], namely, a pseudo-
differential algebra of operators of order zero on R, without any condition of transmission
property at 0, formulated by means of the Mellin transform. Lower order terms in this
algebra in Eskin’s formulation are Hilbert Schmidt operators in L?*(R,). From the point
of view of conical singularities this half-axis-algebra can be interpreted as a substructure
of the ‘cone algebra’, see also [124], while the operators in [103] could be seen as edge
operators with the boundary being interpreted as an edge and R, the inner normal, as
the model cone of local wedges. In that sense [103] gave a first example of an edgification
of a cone algebra which is, roughly speaking, a pseudo-differential calculus along the edge
with amplitude functions taking values in the cone algebra on the model cone, here R, .
Of course, also Boutet de Monvel’s algebra can be interpreted as an edgification of its
boundary symbolic calculus, though the operators in this case form a narrower subalgebra
of the cone algebra on R.

In order to really recognise the algebras on the half-axis in connection with conical
singularities, another input was necessary, namely, the analysis of operators of Fuchs,
type, which are of independent interest on manifolds with conical singularities in general.
It was the work of Kondratyev [63] which motivated the author together with Rempel to
try to carry out the hull operation, discussed in Section 4.4, i.e., to complete the Fuchs
type differential operators to a corresponding pseudo-differential algebra. This was first
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done in [107] for the case of a closed manifold with conical singularities, then in [108]
for the case of boundary value problems on a manifold with conical singularities and
boundary, see also [106]. Another orientation (from the point of methods) have the works
of Plamenevskij [98], [100], Derviz [27] and Komech [62] (the latter is close to technique of
Vishik and Eskin. Independently, also Melrose and Mendoza [84] constructed a pseudo-
differential calculus for Fuchs type symbols, see also Melrose [82].

The cone calculus of [107] refers to weighted Mellin Sobolev spaces and subspaces with
discrete asymptotics, using suitable classes of meromorphic Mellin symbols with values in
pseudo-differential operators on the base X of the cone. The cone calculus for dim X =0
was formulated for the purposes of boundary value problems; compared with Eskin’s
algebra on R, the cone algebra of [107] is not restricted to operators of order zero and to
principal conormal symbols of order zero and to Hilbert Schmidt operators as the ideal of
smoothing operators. It contains operators of any order with coefficients that are smooth
up to 0, modulo a possible weight factor, and also lower order conormal symbols; the
smoothing operators are Green operators in the sense that they map K£*7(R,) to spaces
of the kind S} " (R;.) for some discrete asymptotic type P and, analogously, the adjoints.
The details of this calculus were elaborated in [105], see also [108], or [124], [121]. We
stress these features here because the choice of the cone algebra for dim X = 0 is crucial
for the nature of the ‘conification’ of the pseudo-differential calculus on an arbitrary base
X. One step is to fix a choice of an algebra of pseudo-differential operators (with ‘sleeping
parameters’) on X, say L (X;R) in the case of smooth compact (the space of all classical
parameter-dependent pseudo-differential operators of order p on X), and then to organise
the calculus with Mellin symbols h(r,w) € COO(R+,L/:1(X;FRT+I_,Y)) (for n = dim X),
along the lines of the cone algebra on R, . The full structure is, of course, rich in details,
for instance, we can take holomorphic (in w € C) non-smoothing symbols (reached by
kernel cut-off constructions), meromorphic smoothing symbols, and, moreover, for r — oo
impose extra assumptions when we intend to edgify the obtained cone calculus. Summing
up, ‘conification’ means to pass from a prescribed pseudo-differential algebra on a base X
(first smooth and compact) to a cone algebra on X2 by taking the former cone algebra
on R, , but now with symbols taking values in the given algebra on X.

This cone algebra near the tip of the cone (in the variant of a base X with smooth
boundary) is just what completes Kondratyev’s theory [63] to an algebra with the above
mentioned properties. At the same time, during this period of the development there
was another main motivation for the refinement of Eskin’s algebra to the cone algebra on
R, , namely, the aim to generalise the boundary symbolic calculus of Boutet de Monvel’s
algebra to a boundary symbolic calculus of a future algebra of boundary value problems
for symbols which have not necessarily the transmission property at the boundary. That
algebra of boundary value problems itself was intended to be obtained as a correspond-
ing edgification. This program finally created the calculus of boundary value problems
without the transmission property as a substructure of a corresponding edge algebra, cf.
[121], [124], [127], [134]. At that time also the structures of the edge algebra in general
were invented, in which R, the model cone of the case of boundary value problems, was
replaced by an arbitrary cone X with a compact manifold X without (and with smooth)
boundary, cf. [108], [106], [120], [119]. Moreover, the methods have been developed under
the aspect of the general idea of generating operator algebras in terms of the successive
procedure of ‘conification” and ‘edgification’ of already achieved structures.
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Elements of this approach are sketched in Section 5.4. As noted before, the ‘final’
structures and many interesting details are a program of future research, cf. also Section
6.4 below. But also the development up to the present state of the calculus contained
some surprising elements. One of them was the invention of abstract edge Sobolev spaces
W?(RY, H),, with Hilbert spaces H, endowed with the action of a strongly continuous
group of isomorphisms x = {k)}rer,, cf. [120]. From the impression on anisotropic
reformulations of standard Sobolev spaces, on the role of fictitious conical points and
edges, and from the experience in boundary value problems it seemed quite canonical to
take for H a weighted space on an infinite cone with conical exit to infinity, with the
‘unspecific’ weight 0 at infinity. A few years ago (= 2001) I. Witt (who was at that time
in Potsdam) suggested to admit also spaces H with another weight at infinity with an
adjusted variant of the group action . This idea has been used by Airapetyan and Witt
in [4]. Later on Tarkhanov realised such an idea in [151], see also [138] for the case of
boundary value problems. It turns out, see, for instance, [56, Section 7.1.2], that there is a
continuum of different edge spaces which all localise outside the edge to standard Sobolev
spaces and admit an edge pseudo-differential calculus for the same classes of typical edge-
degenerate differential operators. Thus, the problem of ‘edge-quantising’ edge-degenerate
(pseudo-differential) symbols and of carrying out a hull operation as discussed in Section
4.4 has many solutions.

6.3 Similarities and differences between ellipticity and parabol-
icity
In this exposition we mainly focused on the concept of ellipticity. Of course, also other
types of equations are of interest on a manifold with singularities, for instance, parabolic
or hyperbolic ones. Many problems in this connection occur in models of physics.
We want to discuss here a few aspects on parabolic operators. The simplest example

is the heat operator
A=0—A (319)

with the Laplacian A on a Riemanian manifold X, n = dim X, with ¢t € R being the time
variable. In local coordinates x € R™ the operator (319) has an anisotropic homogeneous
principal symbol

oy (A)(,8) =it + [¢]?

which is anisotropic homogeneous of order 2, i.e., satisfies the relation
oy (A)(N*T,08) = N0y (A)(,€)

for every A € R;. The operator (319) is anisotropic elliptic of order 2 in the sense of the
property
op(A) (T, &) #£0 forall (1,&) € R\ {0}. (320)

Parabolicity means that o, (A) has an extension oy(A)(¢,€) := i + |£]?* into the lower
complex ¢ half-plane C_ with respect to the time covariable, such that

op(A)((,€) #£0 forall ((,€) € (C- xR")\ {0}
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With (7,&) ) := (L + 7>+ |€*)/*, 1 € N\ {0}, we can form anisotropic Sobolev spaces
H>O(R x R™) with the norm

Jut, o)y = { [ (.80l Parde ) (321)

s € R, or, more generally, H*®(R x X) on the infinite cylinder R x X. Let us set
Hy"(R x X) := {ue H*O(R x X) : ulg_xx = 0} and

Hy((0,T) x X) = {ul(oomynx : u € HY(R x X))
for every T' > 0. The operator (319) defines continuous maps
A HYD((0,T) x X) — H*P((0,T) x X) (322)
for all s € R, and it is a reasonable problem to ask the solvability of the equation
Au=f

in this scale of spaces, more precisely, to find a solution wu(t,z) € HS’(2)((O,T) x X)

for every f(t,x) € HSiQ’(z)((O,T) x X) and to construct a parametrix (or the inverse)
of the operator (322) within a corresponding anisotropic calculus of pseudo-differential
operators on the cylinder. An answer was given by Piriou [97] in the framework of a
Volterra pseudo-differential calculus, not only for the anisotropy I = 2, but for arbitrary
even [. Corresponding differential operators may have the form

A:= (0, — D)™,
m € N, for an elliptic differential operator D on X of order [, for instance,
D = (—1)"*z2Azs.
Any such operator induces continuous maps
A:HXY0,7) x X) — H7™D((0,T) x X)

for all s € R. The solvability problem is as before, c¢f. [97]. More generally, this also
concerns operators that are locally on X of the form

A= > an(t,x)Df°Dy (323)
ja<m

for @ := (ap,a’) € N |a|, == lag + |&/], an(t,x) € C®(R x X). The anisotropic

homogeneous principal symbol of A is defined by
ou(A)t, 2,7, = ) aalt,x)rE". (324)

loeli=m

It satisfies the identity

0—111(14) (ta L, >‘l7_7 )\f) = )‘maiﬁ (A) <t7 T, T, 6) (325)
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for all A € R,. Parabolicity of (323) means that the extension of oy(A4) to ((,§) €
(C_ x R™)\ {0} satisfies the condition

op(A)(t,x,(, &) #0 forall (t,2,(,&) € RxR" x (C_ xR™)\ {0}). (326)
Observe that then

p(t,z,7,8) = 0¢(A)_1(t, x, T —ig,§)

for any fixed € > 0 belongs to C*°(R x R" x R x R"), and extends to a function p(t, z, ¢, §)
in C®°(R x R™ x (C_ x R™)) which is holomorphic in ¢ € C_ and satisfies the anisotropic
symbolic estimates

D, DL ep(t, 7, ¢, 6)| < e, ) 1™ (327)

for every a, 3 € N'*" (t,2) € Ko x K', Ky CC R, K' cC R" compact, (¢,€) € C_ x R™,
@ = —m, with constants ¢ = c(«, 3, Ko, K') > 0.

Note that analogous considerations make sense for a (in the simplest case) smooth
compact manifold X with boundary. Then, together with the operator A we consider
(first differential) boundary conditions on (0,77) x X, represented by a continuous operator

Sfmjf%v(l)

T HyY((0,7) x X) — & Hy ((0,T) x 0X)
of the form T =*(T},...,Ty) for

Tiu(t,y) == Bj“(ta$)|(o,T)an,
(t,y) € (0,T) x 0X, with differential operators
Bj:= Y bist,x)D* DY,
|81 <my

bjg € C*(R x X). Locally near 90X, in a splitting x = (y, z,) € 90X x [0,1) in tangential
and normal variables near the boundary, and covariables (n,&,), we have the boundary
symbols

oo(A)(t,y, 7,m) = op(A)(t,y,0,7,m,D,,) : H*(Ry) — H™™(R,),
08(1})<t7y777 77) : HS(R-F) - (C,
defined by

Ua(A)(ta Y, T, 77)“ = Ul/J(A) (ta Y, 07 T, n, D:Cn)u7

oo(T))(t,y, ,mu = ou(B;)(t,y,0,7,1m, Dy )tt|g,=0, j=1,...,N,
for (r,n) # 0, s > max{m — 3,m1 + ,...,my + 1}. Setting A :=*(A T) for T :=
Y(Ty, ..., Ty) we thus obtain the principal boundary symbol

H7m(Ry)

oo(A)(t,y,7,m) = ( ZZE?? ) (t,y,7,n) : H*(R}) — (?N . (328)
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Observe that for (kyu)(z,) := A/?u(A\z,), A € R, we have anisotropic homogeneity,
namely,
aa(A)(t,y, X', An) = N"raoa(A)(t,y. 7. )Ry

0o(T;)(t, y, N'm, Ap) = X" 205(T) (L y, 7.5
AeRy, j=1,..., V.

Definition 6.1. The boundary value problem
Au=f in (0,7)x X, Au=g in (0,7) x 0X (329)

is called parabolic, if A is parabolic in the sense of (326), and if the boundary symbol has
an extension to an invertible family of operators

Hm(Ry)
08(A>(t7 Y, CJ?) : HS(R-F) - ® (330)
CN
in (¢,n) € (C_xR"1M)\{0}, holomorphic in{ € C_, s > max{m—21, mi+1, ... my+1}.

Similarly as in the elliptic theory, the number N is determined by the parabolic oper-
ator A.

Theorem 6.2. (i) Let X be a compact C* manifold with boundary. A parabolic bound-
ary value problem A ="*(A T) induces isomorphisms

Hy ™ Y((0,T) x X)
A HYD((0,T) x X) — o
—m—L
o Hy ™20 ((0,7) x 0X)

for all s > max{m — %, my + %, S, my+ %} and 0 < T < oo. The inverse operator
belong to an anisotropic analogue of Boutet de Monvel’s calculus on the cylinder and
18 parabolic within that framework.

(ii) If X is a closed compact C* manifold, then a parabolic operator A, (locally) of the
form (323), induces isomorphisms

A HXY0,7) x X) — H7™D((0,T) x X)

for all s € R and 0 < T < oco. The wnverse operator belongs to an anisotropic
analogue of the calculus of classical pseudo-differential operators and is parabolic in
this class.

A reference for Theorem 6.2 is Agranovich and Vishik [3] and Krainer [68] (in a
slight modification for finite cylinders). The assertion (ii) may be found in the paper
[97] of Piriou. It is also interesting to consider parabolicity on the infinite half-cylinder
R, x X with special attention for ¢ — oo and to establish invertibility of the corresponding
operators in weighted analogues of the above mentioned spaces with exponential weight
up to t = oo. Corresponding results for the case of closed compact X are given in Krainer
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and Schulze [69], see also Krainer [66], [67], and for the case of compact X with C'*
boundary, in the framework of (pseudo-differential) boundary value problems, in Krainer
[68].

In this approach the idea is to interpret the infinite time-space cylinder for ¢ — oo
as a transformed anisotropic cone, obtained for ¢ > ¢ for some ¢ > 0 by the substitution
t=—logr, re€ (0,e7°), cf. also the discussion in Section 3.4, especially, the form of the
operators (222) which comes from operators of Fuchs type (in the parabolic case from
anisotropic ones). Remember that in Fuchs type operators we imposed smoothness of the
coefficients for r — 0 (up to a possible weight factor). That means, for the transformed
operator in t we impose a corresponding behaviour of the coefficients for t — oo.

The above mentioned results on infinite cylinders just express the inverses of such
parabolic operators in the framework of an anisotropic analogue of the cone algebra,
referring to a conical singularity at infinity, more precisely, within an anisotropic version
of the cone algebra with a control of the Volterra property up to infinity. Clearly at infinity
an analogue of the principal conormal symbol is required to be bijective in Sobolev spaces
on the cross section X. This causes a discrete set of forbidden (exponential) weights at
infinity, similarly as in the cone calculus at the tip of the cone (for the corresponding
exponents in power weights).

Similarly as in the ‘usual’ cone algebra it is also interesting to observe asymptotics
of solutions, here interpreted as long-time asymptotics, coming from the meromorphic
structure of the inverse of the principal conormal symbol, see Krainer [66], [67], [68].

Remark 6.3. In parabolic problems it is also common to pose (non-trivial) initial condi-
tions at the bottom of the cylinder. In the case of boundary value problems (see, Agranovich
and Vishik [3]) one usually assumes that the initial values are compatible with the values
on the boundary of the cylinder. We do not discuss the details here but return below to
such problems from a more general point of view.

Parabolicity in the framework of algebras of anisotropic pseudo-differential operators
and the computation of long-time asymptotics is also interesting in connection with special
configurations X with singularities. Looking at simple models of heat flow in media with
singularities of that kind we immediately see the relevance of such a generalisation.

For instance, if X has conical singularities, the additional time variable generates an
edge. Then, considering long-time asymptotics for t — oo we are faced with a corner
problem in the category 9, where t plays the role of a corner axis variable. The same is
true when X is a manifold with smooth edges. Long-time asymptotics for the latter case
have been studied by Krainer and Schulze in [70]. Earlier, parabolicity in an anisotropic
analogue of the edge algebra in a finite time interval (0,7"), i.e., when X is a manifold with
edge, was investigated in [14]. Let us also mention that parabolic boundary value problems
in the pseudo-differential set-up of Vishik and Eskin’s technique have been investigated
in [21], [155].

Also for parabolic operators in cylinders with singularities (in the spatial variables) it
is natural to pose additional data of trace and potential type along the lower-dimensional
strata of the configuration, satisfying a parabolic analogue of the Shapiro-Lopatinskij
condition. That means, that the symbols admit holomorphic extensions into the lower
complex half-plane of the time covariable, required to be invertible there. If we have posed
such conditions, then it is clear that the inverses of the corresponding operators again
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belong to the Volterra calculus of such operators. However, in contrast to the analogous
task in the elliptic theory, the explicit construction of extra Shapiro-Lopatinskij parabolic
conditions seems to be not so easy, although it should be always possible. Some results
in this direction for specific parabolic problems may be found in [85]. Also initial-edge
conditions (in analogy of initial-boundary conditions) with non-trivial initial data on the
bottoms of cylinders associated with lower-dimensional strata of the spatial configurations
belong to the natural tasks in parabolicity on singular manifolds, both under the condition
of compatibility between initial and edge data as well as of non-compatibility (cf. Remark
6.3). As far as we know there is nothing done yet in this direction, and it is certainly
interesting to know more on the nature of solvability of such problems. Note that initial-
boundary value problems with non-compatible data, even in simplest cases of the heat
operator with Dirichlet or Neumann data (or even mixed data of Zaremba type) on the
boundary of the cylinders, together with initial conditions on the bottom of the cylinder
have a simple physical meaning. In the non-compatible case those represent kinds of
mixed problems, combined with corner singularities when the boundary of the cylinder is
not smooth, or if the boundary data are mixed (e.g., of Zaremba type).

6.4 Open problems and new challenges

In the singular analysis (similarly as in other areas of mathematics) it is difficult to give
reasonable criteria on what is an ‘open problem’. The solution may depend on the person
who finds something open or not. It also happens that crucial notions in this field (such
as ‘ellipticity’ or ‘corner manifolds’) occur in quite different meanings. Being aware of this
uncertain background we want to discuss a few aspects of the singular analysis that contain
challenges for the future research. First of all the known elements of the elliptic (and also
the parabolic) theory (including boundary value problems) on smooth configurations are
of interest also in the singular case. This concerns, in particular, the points (S.1) - (S.4)
of Section 4.4 which can be specified for singular manifolds by the discussion in Section
5. A number of new challenges can be summarised under the following key words.

(F.1) Operator algebras. Given manifolds M € My, k € N, k > 2, study the
natural analogues of the (known for k& = 0, 1) pseudo-differential algebras, including the
principal symbolic hierarchies and additional data (of trace and potential type) on the
lower-dimensional strata, and complete necessary elements of the conification and edgifi-
cation process.

As we pointed out in different considerations before, the higher pseudo-differential
algebras on stratified spaces are more general than everything what is usually contained
in theories of boundary value problems (when we consider a boundary as a realisation
of a smooth edge), including the case of symbols without the transmission property at
the boundary. Even if we ignore for the moment the aspect of existence or non-existence
of Shapiro-Lopatinskij edge conditions (and assume, for instance, the case that the ex-
istence is guaranteed) there is a large variety of ‘technical’ elements of a calculus to be
established in the future in such a way that the theory on a space M € 9., is really a
simple iteration of steps up to M. There is the system of quantisations which contains
anisotropic reformulations of isotropic (though degenerate in stretched variables) sym-
bolic information in terms of various operator-valued symbols with twisted homogeneity,
combined with the ‘right’ choices of weighted distribution spaces. In our exposition we
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discussed spaces based on ‘L?-norms’. In applications to non-linear operators it is often
necessary to treat the ‘LP-case’ for p # 2. This is one of the problems with is essentially
open.

Another interesting aspect is the problem of variable and branching asymptotics that
should thoroughly be investigated, cf. Section 4.5 for smooth edges and [125], [126] for
the case of boundary value problems without the transmission property.

There is also the question of ‘embedding’ the calculus for 91 as a subcalculus for
M1, for instance, by ‘artificially’ seeing an M € 9, as an element of My;. This
appears in connection with the following problem. Take an elliptic operator A on a closed
compact C'™ manifold, fix a triangulation, and rephrase A as an elliptic corner operator
A on the arising manifold with edges and corners, where ind A = ind A, then pass to a
more refined triangulation and formulate A again as a corresponding corner operator 2
such that ind A = ind 2, and so on. The investigations in the author’s joint papers with
Dines [30], Dines and Liu [29] can be seen as a contribution to this aspect.

Let us also point out that here we always speak about regular singularities. The various
cuspidal cases may be of quite different character, and also here the main structures on
operator algebras from the point of view of asymptotics in distribution spaces, possible
extra edge conditions, adequate quantisations, construction of parametrices within the
calculus, remain to be achieved.

(F.2) Higher corner spaces. Complete and deepen the investigation of the higher
generations of weighted Sobolev spaces that fit to the operator algebras of (F.1).

The choice of weighted edge spaces on a manifold with smooth edge that we discussed
in Section 1.3 is not entirely canonical. We saw that there is (at least) one continuously
parametrised family of such (mutually non-equivalent) spaces which all admit the edge
calculus, although there is a candidate which seems to be the most ‘natural’ one. Also
on manifolds with higher corners we have many choices and one possible preferable one,
which is for integer smoothness directly connected with degenerate vector fields on the
respective stretched manifold that generate the space of typical differential operators. In
the higher corner cases it seems some work to be done to completely organise the variety of
anisotropic reformulations in connection with higher C*7 (X" )-spaces on respective model
cones, equipped with several necessary and useful characterisations in terms of degenerate
families of pseudo-differential (corner-) operators on X which take into account also the
presence of the conical exit of X” to infinity. It will also be useful to single out subspaces
with asymptotic information and to establish analogues of the kernel characterisations of
Green operators on X”. Also the LP-analogues for p # 2 should be investigated, especially,
from the point of view of anisotropic corner representations and of the continuity of
operators in the algebras between such spaces.

(F.3) Ellipticity under extra conditions on lower-dimensional strata. Study
ellipticity and parametrices as well as the Fredholm property, not only from the point of
view of Shapiro-Lopatinskij ellipticity of conditions on the lower-dimensional strata but
of conditions, partly (or mainly) to be invented for operators which violate the topological
criterion for the existence of Shapiro-Lopatinskij elliptic data.

Having organised pseudo-differential algebras 2A(N) on N € 9.4 in the spirit of (F.1)
we have operators A together with their symbolic hierarchies o(A) as in (C.8), Section
5.4. The idea of (Shapiro-Lopatinskij) ellipticity with respect to o(A) is that A|y\z is
required to be elliptic in 9, i.e., with respect to oy, (A), and that, in addition, (318)
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is a family of isomorphisms for all (z,({) € T*Z \ 0. However, from the edge algebra for
smooth edges (or from boundary value problems) we know that the ‘interior ellipticity’,
i.e., the one with respect to o (.), does not guarantee the bijectivity of (318), but only
the Fredholm property. This is just the occasion to come back to the possible topological
obstruction for the existence of Shapiro-Lopatinskij elliptic conditions on Z, see Section
5.3. The role of such conditions is to fill up (318) to a 2 x 2 block matrix family of
isomorphisms o,,,,(A)(2,() by extra entries of trace and potential type. On the level of
operators they belong to an elliptic element A in A(N) which itself is Fredholm as soon
as IV is compact (and otherwise has a parametrix within the calculus). If the topological
obstruction does not vanish, then, when the interior ellipticity of A refers to Shapiro-
Lopatinskij elliptic data on the lower-dimensional edges of N\ Z, it should be possible to
perform again the machinery of global projection conditions on Z along the lines of [136]
(which treats the case of smooth edges and is a generalisation of [129] and [135]). Vanishing
or non-vanishing of the obstruction with respect to Z might depend on the choice of the
extra edge conditions on the steps for N \ Z before. It is completely open whether that
happens and how it is to be controlled. Another interesting point is, whether the idea
of global projection (or Shapiro-Lopatinskij elliptic) conditions on Z is also possible, if
in the steps before, i.e., within gy,(.) on the edges of N \ Z there are already involved
global projection conditions on a lower level of singularity. At this moment we have to
confess that in the principal symbolic hierarchy o(A) which was defined in (C.8) Section
5.4 we tacitly assumed the symbolic components of oy, (A) to consist of contributions of
Shapiro-Lopatinskij type on all the lower-dimensional singular strata of N\ Z.

Moreover, an inspection of the methods of [129], [135], [136] shows that in the global
projection case the symbolic data which define the ellipticity and then the Fredholm index
of the resulting operator can be enriched by the choice of the respective pairs of global
projections, i.e., ‘simply’ considered as a symbolic contribution, too. The open question is
whether this is really fruitful and whether then, having done that to generalise oy, (.) on
N\ Z, the construction for Z can be continued again with two possible outcomes, vanishing
or non-vanishing of another topological obstruction. Let us note at this point that, in order
to carry out details of this kind, we have to refer all the times to background information
on ellipticity in algebras on M* for M € 9, including effects from the conical exits
to infinity with the corresponding symbolic structures, similarly as is done for the edge
calculus of second generation in [17], [16]. If the symbolic machinery in such a sense
could be successfully established, there remain other beautiful tasks in connection with
operator conventions, moreover, with relative indices under changing weights on different
levels of singularity, and with the investigation of the system of ideals in the full algebras
that are determined by vanishing of some components of o(A). Parametrix constructions
always belong to the main issues; because of the complexity of the involved structures,
this should be done in a careful manner, and the work for the next singularity order is
waiting. Nedless to say that for all components of the symbolic structures one should show
the necessity of ellipticity for the Fredholm property of the associated operator. May be,
this is straightforward (the necessity of ellipticity in the framework of global projection
conditions can be found in [133]; the idea of how to do it in this case goes back to a private
communication with Savin, Sternin and Nazaikinskij during their work in Potsdam 2004;
it was used again in [136] in the edge case).

(F.4) Index theory. Establish index theories in the algebras of (F.1), both for
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Shapiro-Lopatinskij ellipticity and other types of ellipticity of the extra data in the sense
of (F.3).

Ellipticity of an operator on a compact configuration (or a compactified one, where a
certain specific behaviour near the non-compact exits is encoded by the nature of ampli-
tude functions, leading to specific extra principal symbolic objects at the exits) is expected
to guarantee the Fredholm property in natural distribution spaces. If the calculus is well
organised, both properties (i.e., ellipticity and Fredholm property) are equivalent. This
may be a starting point of index theories on singular manifolds. After the eminent in-
fluence of the classical index theory to modern mathematics it is generally accepted that
index theories should be created also for singular manifolds. Speculations about that
could fill several books; so we can only make a few remarks here. Index theories can
have many faces, and predictions on what is most fruitful very much depends on individ-
ual priorities. As soon as we find some operator algebras (or single operators) to be of
sufficient interest we can ask to what extent the index can be expressed purely in terms
of symbols (or other data contributed by the notion of ellipticity, e.g., global projection
conditions). In the Shapiro-Lopatinskij set-up this aspect is quite natural, and, as a
general property of the operator theories, the index only depends on the stable homo-
topy class of the symbols (through elliptic ones). In ellipticities with symbolic hierarchies
we have here a first essential problem. The symbols have operator-valued components
which can be interpreted as semi-classical objects, i.e., as operator families with ampli-
tude functions, where a quantisation is applied with respect to a part of the covariables,
while other covariables remained as parameters, see the Sections 2.2 and 3.2. The ellip-
ticity of the corresponding component (i.e., the invertibility for all remaining variables
and covariables, say, in the cotangent bundle minus zero section of the corresponding
stratum) is a kind of parameter-dependent ellipticity of operators on an infinite singular
cone. There is a subordinate principal symbolic hierarchy with ellipticity in the algebra
on the corresponding infinite cone, again with operator-valued components, again with
subordinate symbols belonging to corresponding algebras where those symbols take their
values, and so on. Thus every symbolic component of the original operator induces tails
of subordinate symbols who all participate in a well organised way in the structure of
the operators, especially, in homotopies through elliptic elements. It is of quite practical
importance for the basic understanding of the algebras on manifolds with singularities
(and a reason to discuss the index problems here anyway) to know things about the index
(better the kernels and cokernels) of operator families in algebras on infinite model cones,
since this just affects the number of additional conditions of trace and potential type on
the corresponding strata.

What concerns homotopies through elliptic symbolic tuples it is interesting to under-
stand to what extent different components may exchange ‘index information’ along the
path that determines the homotopy. In optimal cases the stable homotopy classes can
be represented by very specific ones with particularly simple or ‘standard’ components.
In this connection one may ask, whether in some cases (apart from the smooth compact
case) it suffices to mainly look at kinds of Dirac operators as the elliptic operators on the
main statum. In the singular situation, including the ‘simple’ conical case, we think that
it is not true that an arbitrary elliptic operator on the main stratum, when all the extra
conditions participate in the ellipticity (apart from the effect that global projection condi-
tions influence the situation anyway) can be stably homotopied through elliptic operators
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(in the singular operator algebra) to an operator of Dirac type in the upper left corner. In
other words, if one identifies index theory in a singular case with doing things for Dirac
operators, it is necessary to explain why this has something to do with the index of an
arbitrary elliptic operator on the singular manifold in consideration. This, of course, also
needs to fix an operator algebra context in which all elliptic operators have their right to
exist and to fix the meaning of homotopies of symbols which should lead to homotopies
of Fredholm operators.

Another aspect of the index theory (at least in the classical context of the work of
Atiyah and Singer [8], [9]) is to study external products AK B of elliptic operators A and B
over different manifolds M and N, respectively. The product then lives on the Cartesian
product M x N, it should be elliptic, and we should have ind A X B = ind Aind B,
see also Rodino [109]. For singular M and N the Cartesian product M x N has higher
singularities, and a reasonable formulation of the multiplicativity of the index requires the
corresponding calculus of operators for the resulting order of singularity. At least such
a question may motivate to seriously promote the calculus of operators on manifolds of
arbitrary singularity order. The problem of multiplicativity itself is sufficiently complex
and far from being understood. From the experience with the classical context it is
also clear that we should study elliptic complexes on singular manifolds, Hodge theory,
Kiinneth formulas, and other things, known in analogous form from the smooth compact
case. Also this is a wide field, and only partial results are known, see, for instance, [143],
[96], [116], [78], [137], [48].

Let us finally consider the problem of expressing the index in terms of symbols. An
interesting aspect in this connection are so-called analytic index formulas which may
consist of expressions that directly compute the index by the symbol. Here by ‘symbol’
we understand the principal symbol which is, for instance, for conical singularities, the
pair of interior principal symbol and the conormal symbol on a given weight line. Even in
that case the problem of deriving analytic index formulas (in analogy of Fedosov’s analytic
index formulas in the smooth case, see [33]) is open, with the exception of some particular
cases, while analytic index expressions in which lower order terms also participate are
apparently easier to organise.

By this remark we stop the index discussion here. As noted before, geometric or
topological aspects of ellipticity on a singular manifold are not the main issue of this
exposition; for that we refer to the new monograph [88], together with the bibliography
there.

6.5 Concluding remarks

The structures that we discussed here can be motivated by a quite classical question,
namely, what has to happen in a (pseudo-differential) scenario on a manifold with a non-
complete geometry (for instance, a polyhedron embedded in an Euclidean space) such that
parametrices of elliptic operators belong to the calculus. More precisely, a starting point
may be boundary value problems, say, in a cube in R?, with piecewise smooth Shapiro-
Lopatinskij elliptic data on the boundary, for instance, Dirichlet on some of the faces,
Neumann on the others. Examples are also mixed elliptic problems on a C*° manifold X
with boundary Y, with elliptic conditions on different parts Y. of the boundary, where
Y, subdivide the boundary, i.e., Y =Y _UY,, and Z :=Y_NY, is of condimension 1. In
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the simplest case Z is C*°, in other cases Z may have singularities, for instance, conical
points or edges.

The answer consists of the corner pseudo-differential calculus of boundary value prob-
lems with the transmission property at the smooth part of the boundary. The general
technique and many details may be found in the author’s joint monographs with Ka-
panadze [59] or Harutjunjan [56] which are based on [122], see also [131], [132], or [17],
[15], [16], and the papers [28], [53], [55].

At present there is an increasing stream of investigations in the literature on pseudo-
differential theories which claim a relationship with analysis on polyhedral or corner man-
ifolds. As noted in Section 3.4 a problem is the terminology. In many cases the inves-
tigations are focused on operators on non-compact manifolds with complete Riemannian
metrics and not to configurations in classical boundary value problems, for instance, man-
ifolds with smooth boundary and operators with the transmission property at the bound-
ary (cf. the calculus outlined in Section 2.1). Parametrix constructions for the above
mentioned boundary value problems require careful work with the trace and potential
data occurring on the several faces of the configuration, cf. Section 5.2.

One can discover many ‘unexpected’ relations between the analytic machineries on
complete or incomplete Riemannian manifolds. One example is the connection between
pseudo-differential operators on the half-axis, with standard symbols, smooth up to 0,
based on the Fourier transform, and Mellin pseudo-differential operators, i.e., operators
of Fuchs type, with Mellin symbols that are smooth up to zero, cf. [32], [124], [134] and
the discussion in Section 2.2 around Mellin quantisation. Another example is the possible
embedding of elliptic boundary problems with global projection data (‘APS’ and general-
isations on a manifold with smooth boundary) into the pseudo-differential framework, cf.
[129], [133]. Also the discussion of Section 1.1 on fictitious singularities which makes sense
in the pseudo-differential context as well, shows that ‘usual’ pseudo-differential operators
which are smooth (across a fictitious conical singularity) may suddenly discover their af-
fection to Fuchs type operators or other societies of corner operators, cf. the general class
of Theorem 6.4 below. One key word is the blow up of singularities which gives rise to
degenerate symbols which can be taken as a starting point for Mellin quantisations, cf.
Theorem 2.27.

In Section 4.1 we saw that there are many kinds of differential operators subsumed
under the category ‘degenerate’ with a completely different behaviour. If they are the
result of a blowing up process of singularities, applied to originally given differential
operators D on a singular configuration M (minus M’, the set of singularities; see the
considerations of Section 1.1), then also M itself remains a source of interesting questions.
Also for the above mentioned boundary value problems in polyhedral domains it is helpful
to carry out blow ups and to basically deal with the resulting edge- or corner-degenerate
operators; which are as in the formulas (232), (233), (234). Although the calculus mainly
refers to such objects, we do not ignore what we want to achieve for the corner singularity
itself. The general scheme of constructing parametrices can be described in terms of a
continuation of the axiomatic approach of Section 5.4, see also [130]. Many elements on
what we understand by ellipticity (here in the sense of the Shapiro-Lopatinskij ellipticity
of edge conditions or the ellipticity with respect to the conormal symbols) are described
in Section 5.2. Let us now consider operators in the upper left corners, i.e., operators
on the main stratum. Those are known in advance, i.e., before we add any extra edge
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conditions. Looking at a ‘higher’ stretched corner of the form
K= R x 2 xIIJ_,

for open sets ¥ C R™,  CR%, [ =1,...,k, we first have the space LY (int K) of standard
classical pseudo-differential operators on int K. As such they have left symbols

a(r,z,y,p,&,n) € Sh(int K x RH"M)

for ¢ := Zle @, r=(ri,...,m) € (RO)* z €%, ye Q=T Q, with the covariables
p=(p,...,ox) ERF. E€R" = (m,....,m,) €ERYL, p; € RY, j =1,....k Every
A € LYi(int K) has the form

A = Op(a) mod  L™*(int K) (331)

for such a symbol a. Now a first task to treating corner pseudo-differential operators which
are related to parametrices of differential operators of the form (232) with the vector fields
(233), (234) is to be aware that (J, L{j(int &) contains lots of interesting subalgebras. In
the present case it is adequate take operators with left symbols of the form

a(r,z,y,p,&§,n) =r""plr,z,y,p, &, 1) (332)
where r—# ;=" .. . " and
ﬁ:: (7”1,0177’17’2p27 N AT Tkpk;), ﬁ = (Tlnly mran2,...,mra. .. Tknk)

Let L (int K)comer denote the subset of all A € Lf (int K) of the form (331) with symbols
(332) for arbitrary

Blr, .y, 5,6.7) € S5 ([R4)F x 3 x Q x RETE),

As we know every A € LYi(int K') can be represented by a properly supported operator Ay
modulo an element C' € L™*(int K'). In particular, this is the case for A € LY (int K')corner-
An element A € LY (int K )comer is called oy-elliptic if

ﬁ(u)(rax7yaﬁaf7ﬁ) 7&0 for all (T,l’,y) EK? (ﬁ?gaﬁ) 7é07

where p, is the homogeneous principal symbol of p in (p, &, 1) # 0 of order .
Theorem 6.4. (i) Let A € L!i(int K)comner, B € LY4(int K )corner, and A or B properly

cl

supported. Then we have AB € L’C‘l+”(int K)corner-

(ii) Let A € LE(int K)comer be oy-elliptic. Then there is a (properly supported) para-
metriz Py € L"(int K)comer in the sense

[ — PyA, I—APye L™>(int K).

Moreover, L (int K)comer is closed under the operation of formal adjoints. The proof
is elementary and essentially based on the fact that the spaces of involved symbols are
closed under asymptotic summation (modulo symbols of order —o00), especially, Leibniz
multiplication and Leibniz inversion under the condition of oy-ellipticity.
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There are many other variants of Theorem 6.4, for instance, for operators with symbols
with other weight factors instead of r—* (e.g., without weight factors).

Another aspect of the parametrix construction is to quantise the obtained Leibniz
inverted symbols in such a way that there arise continuous operators in higher weighted
corner spaces. This was outlined in Section 5.4. The nature of those spaces gives a hint
about the adequate smoothing operators in the final corner pseudo-differential algebra.
They can be defined through their mapping properties (and their formal adjoints), namely,
to continuously map weighted spaces of any smoothness s to other weighted spaces of
smoothness s = 0o. The latter aspect is a contribution to the discussion in Section 4.2.

Having a parametrix P of A in the corner algebra of the type of an upper left corner
(the notation P instead of Py indicates the chosen quantisation in order to reach an
operator in the corner calculus), we can try to add extra elliptic conditions, according to
Section 5.2, and to obtain a block matrix operator P with P in the upper left corner.
Then, if A is the elliptic operator in the given boundary value problem A = *(A T)
(say, the Laplacian in a cube M with the Dirichlet/Neumann conditions on the faces of
the boundary M’; indicated by T') then the operator P with can be employed to reduce
A to the boundary M’. The result is an elliptic operator on M’ which can be treated
on the level of operators on the corner manifold M’ without boundary. The resulting
operator R on the boundary, in general being again an elliptic block matrix operator
with an upper left corner R, can be interpreted as a transmission problem for the elliptic
pseudo-differential operator R on M’ with a jumping behaviour across the interfaces
Z = M" of M’ (in the case of a cube M the interfaces M" consist of the system of
one-dimensional edges plus the corner points). To treating R is now a beautiful task in
the framework of boundary value problems for pseudo-differential operators without the
transmission property at the smooth part of the boundary, where the boundary itself may
have corner points M"’. Although the method to carry out all this is clear in principle,
many details, refinements and more explicit information should be worked out in future.
By that we mean, in particular, computing the admissible weights in the weighted corner
spaces, the number of extra interface conditions (of trace and potential type) depending
on the weights, and the explicit (corner-) asymptotics of solutions. In this context there
are lots of other things worth to be developed, for instance, the calculus of operators on
manifolds with conical exits to infinity, modelled on a cylinder with cross section that has
itself singularities. Other useful details to be completed and deepened are Green formulas
of several kind, the kernel cut-off and corner quantisation, or potentials of densities on
a manifolds with corners, embedded in an ambient smooth manifold, with respect to a
fundamental solution of an elliptic operator.
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