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Abstract

We discuss intuitive ideas and historical background of concepts in the analysis
on configurations with singularities, here in connection with our iterative approach
for higher singularities.
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Introduction

The analysis on configurations with singularities (e.g., conical ones, edges, corners, etc.)
is a classical area of mathematics, motivated by models of physics and the applied sciences
and also by structures of geometry and topology. The development goes back to (at least)
the 19th century.

This paper is a survey on some aspects of the recent development and, at the same
time, an introduction. Moreover, it is aimed at discussing new phenomena around the
solvability of partial differential equations near singularities and the interaction of analytic,
geometric and topological aspects. The crucial point will be the concept of ellipticity of
operators with respect to their symbolic structure. After recalling the standard notion on
a smooth manifold, based on the homogeneous principal symbol, we discuss the way of how
a geometric singularity may contribute to other symbolic levels with associated notions of
ellipticity. Observations of that kind are basic for the construction of pseudo-differential
algebras with symbolic hierarchies on manifolds with singularities. The corresponding
theories are voluminous; they may be found in several monographs and articles of the
author, see [121], [127], [131]. The complexity of structures makes it desirable to explain
the intuitive ideas in a separate exposition; this is just our motivation here. Clearly this
cannot be exhaustive. On the one hand there is a vast variety of papers of different
orientation, from concrete models of the applied sciences to operator algebra aspects and
index theory. On the other hand there are different believes on priorities and adequate
approaches in the singular analysis. We hope to illustrate the fascination of the structure
insight connected with understanding and solving problems in this field. Our conclusion
will be that, despite of the enormous experience through the work of the authors of
the ‘singular community’ (and also of the ‘regular’ one), many important problems are
unsolved and that the new challenges open a bright future of the analysis on manifolds
with singularities.

What concerns the literature we cannot give a complete review here. We therefore
content ourselves with a list of references that have from different point of view connec-
tions with this exposition. In particular, we want to mention Gelfand [39], Agmon [1],
Agranovich and Vishik [3], Kohn and Nirenberg [61], Vishik and Eskin [154], Atiyah and
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Singer [9], Eskin [32], Vishik and Grushin [156], Sternin [148], [150], Kondratyev [63],
Plamenevskij [98], [99], [100], Rabinovich [101], Bolley and Camus [11], Gramsch [46],
[47], Gohberg and Sigal [45], Fedosov [33], Seeley [140], Grushin [52], Boutet de Monvel
[13], Atiyah, Patodi, and Singer [7], Maz’ja and Paneah [79], Shubin [144], Parenti [95],
Cordes [22], Fichera [38], Teleman [152], Cheeger [18], Melrose [82], [83], Melrose and
Mendoza [84], Rempel and Schulze [103], [102], Grubb [51], [50], Kondratyev and Oleynik
[64], Grisvard [49], Maz’ja and Rossmann [80], Dauge [26], Chkadua and Duduchava [19],
[20], Costabel and Dauge [25], Shaw [143], Mazzeo [81], Roe [110], Rozenblum [111],
Egorov and Schulze [31], Booss-Bavnbek and Wojciechowski [12], Mantlik [77], Fedosov
and Schulze [34], Lesch [71], Nistor [93], Nistor, Weinstein, and Xu [94], Witt [157], Fe-
dosov, Schulze, and Tarkhanov [35], [36], [37], Nazaikinskij and Sternin [90], [87], Savin
and Sternin [113], [114], Grieser and Lesch [48], Krainer [68], [65], Seiler [141], [142], Gil,
Krainer, and Mendoza [40], [41], Ammann, Lauter, and Nistor [5], Tarkhanov [151].

1 Simple questions, unexpected answers

We start from naive questions such as ‘what are the basic questions or the right notions’ around simple objects who
everybody knows, e.g., on differential operators, their symbols, or the right function spaces. Other questions concern
classical objects from complex analysis who suddenly become obscure if we ask too much . . .

1.1 What is ellipticity?

The ‘standard’ ellipticity of a differential operator

A =
∑
|α|≤µ

aα(x)D
α
x (1)

in an open set Ω ⊆ Rn with coefficients aα ∈ C∞(Ω) refers to its homogeneous principal
symbol

σψ(A)(x, ξ) =
∑
|α|=µ

aα(x)ξ
α, (2)

(x, ξ) ∈ Ω× (Rn \{0}). More generally, if M is a C∞ manifold, an operator A ∈ Diffµ(M)
has an invariantly defined homogeneous principal symbol

σψ(A) ∈ C∞(T ∗M \ 0). (3)

(Diffµ(.) denotes the space of all differential operators of order µ with smooth coefficients
on the manifold in parentheses.)

Definition 1.1. The operator A is called elliptic if σψ(A) 6= 0 on T ∗M \ 0.

Remark 1.2. Since σψ(A) is (positively) homogeneous of order µ, i.e.,

σψ(A)(x, λξ) = λµσψ(A)(x, ξ) (4)

for all (x, ξ) ∈ T ∗M \ 0, λ ∈ R+, we may equivalently require σψ(A)
∣∣
S∗M
6= 0, where S∗M

is the unit cosphere bundle of M (with respect to some fixed Riemannian metric on M).
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Clearly we can also talk about the complete symbol

σ(A)(x, ξ) := a(x, ξ) =
∑
|α|≤µ

aα(x)ξ
α (5)

of an operator A, first on an open set Ω ⊆ Rn and then on a C∞ manifold M . In the
latter case by a complete symbol we understand a system of local complete symbols (5)
with respect to charts χ : U → Ω when U runs over an atlas on M .

The invariance of symbols refers to transition maps κ := χ̃ ◦ χ−1 for different charts
χ : U → Ω, χ̃ : U → Ω̃ which induce isomorphisms κ∗ : Diffµ(Ω) → Diffµ(Ω̃) (subscript
‘∗’ denotes the push forward of an operator under the corresponding diffeomorphism) and
associated symbol push forwards a(x, ξ) → ã(x̃, ξ̃) between the local complete symbols

a(x, ξ) and ã(x̃, ξ̃) of A and Ã = χ∗A, respectively. As is known we have ã(x̃, ξ̃)
∣∣
x̃=κ(x)

∼∑
α

1
α!

(∂αξ a)(x,
tdκ(x)ξ̃)Φα(x, ξ̃) for ∂αξ = ∂α1

ξ1
· . . . · ∂αn

ξn
, Φα(x, ξ̃) := Dα

z e
iδ(x,z)ξ̃

∣∣
z=x

where
δ(x, z) := κ(z) − κ(x) − dκ(x)(z − x), with dκ(x) being the Jacobi matrix of κ, and
the function Φα(x, ξ̃) is a polynomial in ξ̃ of degree ≤ |α|/2, α ∈ Nn, Φ0 = 1. In the
asymptotic expression for ã(x̃, ξ̃) we have equality for differential operators (since the sum
is finite) and an asymptotic sum of symbols in the pseudo-differential case. (Well known
material on spaces Sµ(cl)(Ω×Rn) of pseudo-differential symbols of order µ ∈ R (classical or

non-classical) will be given in connection with Definition 1.27 below; associated pseudo-
differential operators are discussed in Section 2.2).

In particular, for Ã := κ∗A it follows that

σψ(Ã)(x̃, ξ̃) = σψ(A)(x, ξ) for x̃ = κ(x), ξ̃ = (tdκ(x))−1ξ,

which shows that σψ(A) ∈ C∞(T ∗M \ 0).
The ellipticity on the level of complete symbols (5) in local coordinates is the condition

that for every chart χ : U → Ω there is a p(x, ξ) ∈ S−µ(Ω × Rn), n = dimM , such that
p(x, ξ)a(x, ξ)− 1 ∈ S−1(Ω× Rn).

Recall that principal symbols and complete symbols have natural properties with
respect to various operations, for instance,

σψ(I) = 1, σψ(AB) = σψ(A)σψ(B)

(with I being the identity operator), and σ(I) = 1,σ(AB) = σ(A)#σ(B), with the
Leibniz product # between the local complete symbols a(x, ξ) and b(x, ξ) of the operators
A and B, respectively, (a#b)(x, ξ) ∼

∑
α

1
α!

(
∂αξ a(x, ξ)

)
Dα
x b(x, ξ) (the sum on the right

hand side is finite in the case of a differential operator B).
A crucial (and entirely classical) observation is the following result:

Theorem 1.3. Let M be a closed compact C∞ manifold and A ∈ Diffµ(M). Then the
following properties are equivalent:

(i) The operator A is elliptic with respect to σψ.

(ii) A is Fredholm as an operator

A : Hs(M)→ Hs−µ(M) (6)

for some fixed s ∈ R.
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The property (ii) entails that (6) is a Fredholm operator for every s ∈ R.

Parametrices of elliptic differential operators are known to be (classical) pseudo-
differential operators of opposite order. Let Lµ(cl)(M) denote the space of all pseudo-
differential operators on M of order µ ∈ R; the manifold M is not necessarily compact
(in this notation subscript ‘(cl)’ indicates the classical or the non-classical case). More
generally, there are the spaces Lµ(cl)(M ; Rl) of parameter-dependent pseudo-differential op-

erators on M of order µ ∈ R with the parameter λ ∈ Rl. In this case the local amplitude
functions (in Hörmander’s classes) contain (ξ, λ) ∈ Rn × Rl as covariables, the operator
action (locally based on the Fourier transform) refers to (x, ξ), and the operators contain
λ as a parameter.

Every A ∈ Lµcl(M) has a homogeneous principal symbol σψ(A) ∈ C∞(T ∗M \ 0) and a
system of local complete symbols σ(A)(x, ξ). More generally, for A ∈ Lµcl(M ; Rl) there is
a corresponding principal symbol

σψ(A)(x, ξ, λ) ∈ C∞(T ∗M × Rl \ 0), (7)

homogeneous of order µ in (ξ, λ) 6= 0, and for A ∈ Lµ(M ; Rl) we have complete parameter-
dependent symbols.

The ellipticity of an operator A(λ) ∈ Lµ(cl)(M ; Rl) is defined in an analogous manner

as before (for l > 0 the parameter is treated as a component of the ‘covariable’ (ξ, λ)).
Let L−∞(M) denote the space of all operators C on M with kernel c(x, x′) ∈ C∞(M×

M), i.e., Cu(x) =
∫
M
c(x, x′)u(x′)dx′ (dx′ refers to a Riemannian metric onM). Moreover,

set L−∞(M ; Rl) := S(Rl, L−∞(M)).

Theorem 1.4. Let M be a closed compact C∞ manifold. An elliptic operator A ∈
Lµ(cl)(M ; Rl), µ ∈ R, l ∈ N, has a parametrix P ∈ L−µ(cl)(M ; Rl) in the sense

PA = I − Cl, AP = I − Cr (8)

for operators Cl, Cr ∈ L−∞(M ; Rl).
If M is not compact we have an analogous result; in order to have well defined com-

positions in (8) we may choose P in a suitable way, namely, ‘properly supported ’, which
is always possible.

Remark 1.5. Theorems 1.3 and 1.4 are true in analogous form for pseudo-differential
operators acting between Sobolev spaces of distributional sections of (smooth complex)
vector bundles E,F on M ,

A : Hs(M,E)→ Hs−µ(M,F ); (9)

the principal symbol is then a bundle morphism σψ(A) : π∗E → π∗F for π : T ∗M \ 0 →
M , and ellipticity means in this case that σψ(A) is an isomorphism. There are then
corresponding extensions of Theorems 1.3 and 1.4. In addition the Fredholm property of
(9) for a special s = s0 ∈ R entails the Fredholm property for all s ∈ R.

Remark 1.6. We do not repeat all elements of the classical calculus around pseudo-
differential operators and ellipticity on a smooth manifold. Let us only mention that the
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index indA := dim kerA− dim cokerA of the Fredholm operator (6) is independent of s.
In fact, there are finite-dimensional subspaces

V ⊂ C∞(M,E), W ⊂ C∞(M,F )

such that V = kerA,W ∩ imA = {0} and W + imA = Hs(M,F ) for all s ∈ R.

It is a general idea to reduce interesting questions on the nature of an operator A (as
a map between spaces of distributions on M or on the solvability of the equation Au = f)
to the level of symbols which are much easier objects than operators. This is, of course,
a general program, not only for elliptic operators, but also for other types of operators,
e.g., parabolic or hyperbolic ones.

The aspect of connecting symbols with operators and vice versa plays a role in wide
areas of mathematics. Key words in this connection are ‘index theory’, ‘microlocal anal-
ysis’, or ‘quantisation’. The symbolic structure of operators is basic for many areas, e.g.,
in pseudo-differential and Fourier integral operators, symplectic geometry, Hamiltonian
mechanics, spectral theory, operator algebras, or K-theory.

It is not the intention of our remarks to persuade the reader that all this is relevant and
useful. We want to focus here on the analysis of operators on manifolds with singularities
with questions on the nature of symbols, ellipticity, homotopies, index, and other natural
objects. In the singular case those questions arise once again from the very beginning,
similarly as in the early days of the microlocal analysis on smooth manifolds. Nevertheless,
the analysis on non-smooth and non-compact configurations has a long history, and there
is much experience of different generality with the solvability of concrete elliptic (and also
non-elliptic) problems with singularities. The notions and inventions from the smooth
case might be a guideline, at least as a special case. However, such an approach has a
difficulty in principle: There is, of course, no universal ‘true analysis’ of (linear) partial
differential equations on a smooth manifold, and hence we cannot expect anything like
that in the singular case.

As noted at the beginning there exist different confessions in the fields ‘ellipticity’, or
‘index theory’ on manifolds with singularities. Our choice of aspects is motivated by an
iterative approach for manifolds with higher (regular) singularities.

If we know nothing and want to see the smooth situation as a special case we can start
from an operator A ∈ Diffµ(Rn+1) (the dimension n + 1 is taken here for convenience)
and interpret the origin of Rn+1 as a conical point. Introducing polar coordinates (r, φ) ∈
R+ × Sn we obtain A

∣∣
Rn+1\{0} (briefly denoted again by A) as

A = r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
(10)

with coefficients aj ∈ C∞(R+,Diffµ−j(Sn)). Note that the operator A =
∑n+1

j=1 x̃j
∂
∂exj

in

polar coordinates takes the form r
∂

∂r
. Another example is the Laplace operator ∆ =

n+1∑
k=1

∂2

∂x̃2
k

in polar coordinates:

∆ = r−2
((
r
∂

∂r

)2
+ (n− 1)r

∂

∂r
+ ∆Sn

)
6



for the Laplace operator ∆Sn on Sn. Setting

σc(A)(w) =

µ∑
j=0

aj(0)w
j,

w ∈ C, we just obtain the so-called conormal symbol of A of order µ (with respect to
the origin). In this way the operator A suddenly has a second (operator-valued) principal
symbolic component, namely,

σc(A)(w) : Hs(Sn)→ Hs−µ(Sn),

s ∈ R. This can be regarded as a component of a ‘principal symbolic hierarchy’

σ(A) := (σψ(A), σc(A)) (11)

(with a natural compatibility property between σψ(A) and σc(A)).
For the identity operator I we obtain the constant family σc(I)(w) of identity maps

in Sobolev spaces, and the multiplicative rule including conormal symbols has the form

σ(AB) = (σψ(A)σψ(B), (T νσc(A))σc(B)) (12)

if A and B are differential operators of order µ and ν, respectively; (T νf)(w) = f(w+ ν).
In order to recognise σc(A) as a symbol of A in a new context we have to be aware of the
following aspects:

(i) the origin is singled out as a fictitious conical singularity (we could have taken any
other point), and σc(A) also depends on the lower order terms of the operator A (in
any neighbourhood of 0);

(ii) σc(A) refers to a chosen conical structure in Rn+1, i.e., to a splitting of variables
(r, φ) ∈ R+ ×X for X = Sn in which we express the operator A;

(iii) σc(A) is operator-valued, with values in operators on a smooth configuration which
is of less singularity order than the conical case.

We can pass to other splittings (r̃, φ̃) ∈ R+ × X of variables when the transition
diffeomorphism R+×X → R+×X, (r, φ)→ (x̃, φ̃), is smooth up to r = 0. There is then
a transformation rule of conormal symbols which just expresses the invariance, cf. [60].
Specific changes R+×X → R+×X which are smooth up to zero are generated by different
diffeomorphisms Rn+1 → Rn+1 who preserve the origin. A Taylor expansion argument
then shows that in such a case the transformation of conormal symbols is induced by a
linear isomorphism of Rn+1. However, in the context of interpreting a point v (here v = 0)

as a conical singularity, we admit arbitrary changes (r, φ) → (r̃, φ̃) which are smooth up
to r = 0; then, in general, the transformed operator cannot be reduced to an operator
with smooth coefficients across v in the original Euclidean coordinates.

If A ∈ Diffµ(M) is a differential operator on a smooth compact manifold M we can fix
any v ∈M as a fictitious conical singularity and express σc(A) in local coordinates under
a chart χ : U → Rn+1, v ∈ U , such that χ(v) = 0. This gives us a conormal symbolic
structure σc(A) of operators A ∈ Diffµ(M). Together with the interior principal symbol
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we obtain a two-component symbolic hierarchy (11). The same can be done for finitely
many points {v1, . . . , vN} ⊂ M ; this gives us N independent conormal symbols. Let us
restrict the discussion to the simplest case N = 1.

What is now ellipticity of A?
We could refer to any classical exposition, and employ the technical background from

there. However, we want to develop the idea here from the point of view of a child who
looks conciously for the first time to the sky and realises all the different stars, each of
them representing another ellipticity and another index theory.

For the definition we have to foresee a kind of natural analogues of Sobolev spaces
in which the elliptic operators should act as Fredholm operators. Considering M as a
manifold with conical singularity {v} we have the associated stretched manifold M. By
definition M is obtained from M \ {v} by (invariantly) attaching a sphere Sn. This
produces a C∞ manifold with boundary ∂M ∼= Sn. For instance, if M is locally near
v identified with Rn+1 (via a chart) and v with the origin, then M is locally near ∂M
identified with R+ × Sn where (r, φ) ∈ R+ × Sn correspond to polar coordinates in
Rn+1 \ {0}. There is now a scale of weighted Sobolev spaces Hs,γ(M) of smoothness
s ∈ R and weight γ ∈ R, contained in Hs

loc(M \ {v}). Locally near v our operator (in the
chosen splitting of variables (r, φ)) is a polynomial in vector fields

r
∂

∂r
,
∂

∂φ1

, . . . ,
∂

∂φn

(for n+ 1 = dimM), up to the weight factor r−µ.
By definition the stretched manifold M is a C∞ manifold with boundary, and we can

talk about all vector fields that are tangent to ∂M. This is a motivation for a definition
of the spaces Hs,γ(int M) for s ∈ N as

Hs,γ(M) :={u ∈ H0,γ(M) : Dαu ∈ H0,γ(M) for all |α| ≤ s,

for any tuple D = (D1, . . . , Dn+1) of vector fields tangent to ∂M },

where Dα := (Dα1
1 , · . . . · Dαn+1

n+1 ), and H0,γ(int M) is a weighted L2-space, locally near
the boundary defined as rγ−

n
2L2 (R+ × ∂M). This definition immediately extends to an

arbitrary (compact) manifold M with boundary ∂M ∼= X for any closed compact C∞

manifold X, first for s ∈ N and then, by duality and interpolation for all s ∈ R.
In particular, for M = Rn+1 and M = R+ × Sn we also set

Hs,γ(Rn+1 \ {0}) = Hs,γ(M).

The role of the weight γ ∈ R may appear somehow mysterious at the first glance. To give
a motivation we observe that the conormal symbol

σc(A)(w) : Hs(X)→ Hs−µ(X) (13)

represents a holomorphic family of Fredholm operators, cf. Theorem 1.3. The ellipticity
of A with respect to σc(A) should have the meaning of some invertibility of the maps (13),
because a parametrix in the pseudo-differential sense is expected to be associated with
the inverse symbol. However, in general, there exists a non-trivial set DA ⊂ C of points
such that (13) is not invertible. What we know is that

DA ∩ {w ∈ C : c ≤ Rew ≤ c′} (14)
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is finite for every c ≤ c′. This is a consequence of the parameter-dependent ellipticity of
of σc(A)

∣∣
Γβ

as a family of operators on X with parameter Imw, for every β ∈ R; here

Γβ := {w ∈ C : Rew = β}. In our definition of ellipticity we should exclude the set (14)
and feed in an extra weight information:

Definition 1.7. An operator A ∈ Diffµ(M) is called elliptic with respect to the symbol

σγ(A) :=
(
(σψ(A), σc(A)

∣∣
Γn+1

2 −γ

)
for some given weight γ ∈ R, if A is elliptic with respect to σψ(A), cf. Definition 1.1, and
if

σc(A)(w) : Hs(X)→ Hs−µ(X) (15)

is a family of isomorphisms for all w ∈ Γn+1
2
−γ and some s ∈ R.

The justification lies in the following result.

Theorem 1.8. For an operator A ∈ Diffµ(M) on M (regarded as a manifold with conical
singularity v ∈M) the following properties are equivalent:

(i) The operator A is elliptic with respect to (σψ, σc

∣∣
Γn+1

2 −γ

).

(ii) A is Fredholm as an operator

A : Hs,γ(M)→ Hs−µ,γ−µ(M)

for some fixed s ∈ R.

The property (ii) for a specific s entails the same for all s ∈ R.

Theorem 1.8 extends to the case of a general stretched manifold M belonging to a
manifold M with conical singularity {v}. As noted before M is to be replaced in this
case by an arbitrary compact C∞ manifold with boundary ∂M ∼= X (where X is not
necessarily a sphere). Then M := M/∂M (the quotient space in which ∂M is collapsed
to a point v) is a manifold with conical singularity, cf. Section 3 below. The operators A
in this case are assumed to belong to Diffµdeg(M) which is defined to be the subspace of
all A ∈ Diffµ(M \ ∂M) that are of the form

A = r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
(16)

in a collar neighbourhood ∼= [0, 1)×X of the boundary, with aj ∈ C∞([0, 1),Diffµ−j(X)).
Operators of that kind will also be called of Fuchs type. For this situation there exists a
pseudo-differential algebra in analogy to the algebra of pseudo-differential operators on a
C∞ manifold, here with a principal symbolic hierarchy

σ(A) = (σψ(A), σc(A)),

ellipticity, parametrices, etc., cf. also Section 3 below.
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Let us now return to differential operators in the Euclidean space and ask whether there
are other natural notions of ellipticity. First, under suitable conditions on the coefficients
of an operator A ∈ Diffµ(Rm), m := n+ 1, we have continuity A : Hs(Rm)→ Hs−µ(Rm)
between Sobolev spaces globally in Rm for every s ∈ R. For instance, if an operator

A =
∑
|α|≤µ

aα(x)D
α
x

has coefficients aα(x) ∈ S0
cl(Rm

x ) we are in the situation of the calculus of operators globally
in Rm, cf. Parenti [95], Cordes [22], with the principal symbols

σ(A) = (σψ(A), σe(A), σψ,e(A)),

see also the notation in Section 3.3 below, or [127, Section 1.4]. More generally, there is
an analogous notion of ellipticity on an arbitrary manifold with conical exits to infinity.
We do not repeat once again the elements of that theory. Let us only recall that when we
introduce the origin of Rm as a conical singularity we have a combination of the principal
symbolic structure near 0 from the cone calculus and of the exit symbolic structure near
∞, with a principal symbolic hierarchy

σ(A) = (σψ(A), σc(A), σe(A), σψ,e(A)). (17)

The adequate scale of weighted Sobolev spaces in this case is Ks,γ(Rm \ {0}), s, γ ∈ R,
defined by

Ks,γ(Rm \ {0}) := {ωu+ (1− ω)v : u ∈ Hs,γ(Rm \ {0}), v ∈ Hs(Rm)} (18)

for any ω ∈ C∞
0 (Rm) such that ω ≡ 1 in a neighbourhood of zero. In the behaviour with

respect to ellipticity there is, of course, no kind of symmetry under the transformation
(r, φ)→ (r−1, φ) when (r, φ) are polar coordinates in Rm \ {0}. Similarly, if X is a closed
compact C∞ manifold, we have a class of natural operators A on the infinite stretched
cone X∧ := R+ ×X 3 (r, x) and the principal symbolic structure (17), see [127, Section
1.4].

Definition 1.9. Let A ∈ Diffµ(X∧) be an operator of the form

r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
, (19)

with coefficients aj ∈ C∞(R+,Diffµ−j(X)) such that the coefficients locally in (r, x) in a
conical subset of Rm for r → ∞ (n = m − 1 = dimX) admit the pair of exit symbols
σe(A), σψ,e(A) (this is the case, for instance, when the coefficients are independent of r
for large r, cf. also Section 3.3 below, or [127, Section 1.4.5]). Then A is called elliptic
with respect to

σγ(A) := (σψ(A), σc(A)
∣∣
Γn+1

2 −γ

, σe(A), σψ,e(A)) (20)

if all components are elliptic. For σψ(A) that means σψ(A) 6= 0 on T ∗X∧ \ 0 and, in local
coordinates x on X with covariables ξ, and σ̃ψ(A)(r, x, ρ, ξ) := rµσψ(A)(r, x, r−1%, ξ) 6= 0
for (%, ξ) 6= 0, up to r = 0. For σc(A) the condition is that (13) is bijective for all
w ∈ Γn+1

2
−γ and any s ∈ R. The ellipticity condition for the exit symbols σe(A) and

σψ,e(A) will be explained in detail in Section 3.3.
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For an arbitrary closed compact C∞ manifold X there is an analogue of the spaces
(18), namely,

Ks,γ(X∧) = {ωu+ (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)} (21)

for an arbitrary cut-off function ω. The space Hs
cone(X

∧) is locally modelled on the
standard Sobolev spaces for r →∞.

More generally, it may be reasonable to consider the spaces

Ks,γ;g(X∧) := 〈r〉−gKs,γ(X∧) (22)

with an extra weight g ∈ R at infinity.
Recall that for s ∈ N, γ ∈ R, we set

Hs,γ(X∧) := {u ∈ rγ−
n
2L2(R+×X) : (r∂r)

kDα
xu ∈ rγ−

n
2L2(R+×X) for all k+|α| ≤ s},

(23)
where Dα

x runs over the space of all differential operators of order |α| on X; n = dimX.
The definition of the spaces Hs,0(X∧) for arbitrary real s follows by duality with respect
to the r−

n
2L2(R+ × X)-scalar product and interpolation, and then we set Hs,γ(X∧) =

rγHs,0(X∧) for γ ∈ R.

Remark 1.10. The spaces Ks,γ(X∧) are Hilbert spaces with suitable scalar products; in
particular, we have natural identifications K0,0(X∧) = H0,0(X∧) = r−

n
2L2(R+ × X) for

n = dimX. Setting

κλu(r, x) = λ
n+1

2 u(λr, x), λ ∈ R+,

for u ∈ Ks,γ(X∧) we obtain a strongly continuous group of isomorphisms

κλ : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧),

λ ∈ R+. More generally, on Ks,γ;g(X∧) we can consider

κgλu(r, x) := λg+
n+1

2 u(λr, x), λ ∈ R+. (24)

Theorem 1.11. For an A ∈ Diffµ(X∧) as in Definition 1.9 the following properties are
equivalent:

(i) The operator A is elliptic with respect to (20).

(ii) A is Fredholm as an operator A : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧) for some fixed s ∈ R.

Similarly as in Theorem 1.8 the property (ii) for a specific s entails the same for all
s ∈ R. Let us now consider operators A ∈ Diffµ(Rm+qex,y ), q > 0, from the point of view

of polar coordinates Rmex \ {0} 3 x̃ → (r, φ) ∈ R+ × Sn in A
∣∣
(Rm\{0})×Rq (briefly denoted

again by A). Similarly as at the beginning we obtain A in the form

A = r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r ∂

∂r

)j
(rDy)

α, (25)
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now with coefficients ajα ∈ C∞(R+ × Rq,Diffµ−(j+|α|)(Sn)) for n = m − 1. For instance,

for the Laplace operator ∆ =
n+1∑
k=1

∂2

∂x̃2
k

+

q∑
l=1

∂2

∂y2

we obtain

∆ = r−2
((
r
∂

∂r

)2
+ (n− 1)r

∂

∂r
+ ∆Sn +

q∑
l=1

r2 ∂
2

∂y2
l

)
.

This case generates a new operator-valued principal symbol, namely,

σ∧(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(
−r ∂

∂r

)j
(rη)α, (26)

(y, η) ∈ Rq × (Rq \ {0}), which is called the principal edge symbol of the operator A with
Rq being interpreted as an edge. (26) represents a family of continuous operators

σ∧(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧),

X = Sn, for every s, γ ∈ R.
Our new principal symbolic hierarchy here has two components

σ(A) = (σψ(A), σ∧(A)). (27)

The second component is homogeneous in the sense

σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ (28)

for all λ ∈ R+, (y, η) ∈ Rq × (Rq \ {0}). For the identity operator I we have σ∧(I) = id
and for the composition

σ∧(AB) = σ∧(A)σ∧(B)

when A and B are differential operators of order µ and ν, respectively.
Operators of the form (25) including their symbols (27) are meaningful on R+×X×Rq

for an arbitrary closed compact C∞ manifold X. In this connection Rq is regarded as
the edge of the (open stretched) wedge X∧ × Rq with the (open stretched) model cone
X∧ = R+×X. Such operators are called edge-degenerate. This notation comes from the
connection with ‘geometric’ wedges

W = X∆ × Rq,

with non-trivial cones
X∆ := (R+ ×X)/({0} ×X)

(in the quotient space {0} ×X is identified with a point, the tip of the cone).

Remark 1.12. The Laplace-Beltrami operator on R+ ×X ×Rq 3 (r, x, y) belonging to a
Riemannian metric of the form

dr2 + r2gX(r) + dy2

for a family of Riemannian metrics gX(r) on a C∞ manifold X (smooth in r ∈ R+ up to
0) is edge-degenerate. In particular, for q = 0 we obtain an operator of Fuchs type.

12



Remark 1.13. As we see from the preceding discussion, differential operators A in Rn+1

(with their standard principal symbolic structure σψ) secretly belong to several distinguished
societies, namely,

(i) the class of Fuchs type operators with respect to any (fictitious) conical singularty;

(ii) the class of edge-degenerate operators with respect to any (fictitious) edge (when
n ≥ 2).

The ellipticity with respect to σ∧ in the edge-degenerate case is a longer story, and we
return later on to this point, cf. Section 2.1.

The question is now whether our operators have other hidden qualities that we did
not notice so far.

The answer is ‘yes’ (when the dimension is not too small).
The operator (1) (in the dimension n + 1 rather than n) written in the form (10) for

X = Sn or (25) (when the original dimension is equal to m+ q) for X = Sm−1 allows us
to repeat the game, namely, to introduce once again fictitious conical points or edges on
the sphere and to represent the coefficients aj(r) or ajα(r, y) in Fuchs or edge-degenerate
form. In order to make the effects more visible we slightly change the transformation of
(1) to operators of the form (10) or (25) by

(x1, . . . , xm)→ (x′, r) (29)

for x′ := (x1, . . . , xm−1), r := xm. The orthogonal projection of Sm−1
+ := {x ∈ Sm−1 :

xm > 0} to
B := {x′ ∈ Rm−1 : |x′| < 1}

is one-to-one; thus x′ ∈ B can be taken as local coordinates on Sm−1
+ . Clearly for local

representations it suffices to consider the hemisphere Sm−1
+ (up to a rotation). The sub-

stitution of (29) into (1) (when the original dimension is equal to m + q) gives us the
operator A in the form (25) with coefficients

ajα(r, y) ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(B)) (30)

(here we assume q > 0; the case q = 0 is simpler and corresponds to the Fuchs type case).
Now, splitting up the variables in B into x′ = (x′′, t, z) for x′′ := (x1, . . . , xk−1), t = xk,

z = (xk+1, . . . , xm−1), the substitution x′ → (x′′, t) turns (30) into

ajα(r, y) = t−µ+j+|α|
∑

l+|β|≤µ−(j+|α|)

bjα;lβ(r, y, t, z)
(
−t ∂
∂t

)l
(tDz)

β (31)

with Diffµ−(j+|α|)−(l+|β|)(C) -valued coefficients bjα;lβ, smooth in (r, t, y, z) (up to r = 0
and t = 0) for C := {x′′ ∈ Rk−1 : |x′′| < 1

2
} and (t, y) varying in a neighbourhood of

(t, y) = 0. Inserting (31) into (25) we obtain a differential operator of the form

A = r−µt−µÃ (32)

where Ã is a polynomial of degree µ in the vector fields

rt∂r, ∂x1 , . . . , ∂xk−1
, rt∂y1 , . . . , rt∂yq , t∂t, t∂z1 , . . . , t∂zq1

(33)
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for q1 := m − k − 1 with smooth coefficients in (r, t, x′′, y, z) up to r = 0, t = 0. The
operator (32) is degenerate in a specific way. There are two axial variables t and r, and
the principal symbolic hierarchy of A in this case consists of 3 components

σ(A) = (σψ(A)(x, ξ), σ∧1(A)(r, y, z, %, η, ζ), σ∧2(A)(y, η))

with the standard principal symbol σψ(A), the edge symbol σ∧1(A) of first generation and
the edge symbol σ∧2(A) of second generation.

The ellipticity of A with respect to (σψ, σ∧1 , σ∧2) cannot be explained in a few words.
What we mainly need as a new ingredient is an analogue of the Ks,γ-spaces on infinite
cones whose base spaces are manifolds with edges. This will be discussed later on in
Section 6.2. Another important point are extra edge conditions which are necessary both
for σ∧1 and σ∧2 ; they also require separate constructions, cf. Section 2.1 for a very simple
model situation.

Remark 1.14. The Laplace-Beltrami operator on R+×{R+×X×Rq1}×Rq 3 (r, t, x, z, y)
belonging to a Riemannian metric of the kind

dr2 + r2{dt2 + t2gX(r, t, z, y) + dz2}+ dy2

for a family of Riemannian metrics gX(r, t, z, y) on a C∞ manifold X (smooth in the
variables up to r = 0, t = 0) has the form

t−µr−µ
∑

j+|α|+l+|β|≤µ

bjα;lβ(r, y, t, z)
(
−t ∂
∂t

)l
(tDz)

β
(
−rt ∂

∂r

)j
(rtDy)

α (34)

(for µ = 2) with Diffµ−(j+|α|+l+|β|)(X) -valued coefficients which are smooth up to r = 0
and t = 0. Operators of the kind (34) are called corner-degenerate of second generation.

It is now clear that the constructions which lead from (1) to (25) and then to (32)
can be iterated as often as we want (only limited by the total dimension). Every time
we produce new types of degenerate operators with higher principal symbolic structures.
As the Remarks 1.12 and 1.14 show, operators with such degeneracies are connected with
higher corner geometries, not merely with fictitious edges and corners.

Other variants of degenerate operators appear when we introduce in (25) polar coordi-
nates in different hypersurfaces not only with respect to the x-variables on Sm−1 but also
with respect to the y-variables in Rq. This leads again to new principal symbolic structures
and new ellipticities (provided that the concepts of ellipticity for such higher-degenerate
operators are developed far enough).

Summing up we see that the process of iteratively blowing up singularities produces
a large variety of degenerate operators, the ellipticity of which (including their Fredholm
property, in which Sobolev spaces?) was never studied before.

Operators with analogous degeneracies are natural on manifolds with edge and corner
geometries in general. In the following sections we develop step by step more ideas,
motivation and technicalities around operators on corner manifolds.

The surprising answer to the question ‘what is ellipticity’ is that there are many
ellipticities, according to the chosen symbolic structures, most of them being unknown in

14



detail, including all the consequences for the analysis of the corresponding operators and
their index theory.

In the above examples we saw that the additional principal symbolic components, apart
from the standard homogeneous principal symbol on the ‘main stratum’, are contributed
by lower-dimensional (here fictitious) strata. Since the latter ones are special cases of
‘real’ strata we see that the already derived minimal information has to be a part of the
elliptic story also in cases with general polyhedral singularities.

1.2 Meromorphic symbolic structures

As we saw in the preceding section differential operators may have many kinds of symbols,
not only the standard homogeneous symbol. Each of those symbols controls another kind
of ellipticity, the Fredholm property in different scales of (weighted) Sobolev spaces, and
parametrices. One of the most substantial novelties are the conormal symbols who consist
of parameter-dependent operators, in simplest cases on a closed manifold X, the base of
the local model cone (a sphere when the conical point is fictitious).

As Definition 1.9 shows the conormal symbol σc(A)(w) of an operator A of the form
(19) refers to a chosen weight γ ∈ R which is admissible in the sense of the bijectivity
of (15) for all w ∈ Γn+1

2
−γ. Nevertheless, the conormal symbol may be of interest in

the whole complex plane as a (for differential operators) holomorphic operator family.
The inverse (in the elliptic case) exists as a meromorphic family of Fredholm operators
between the corresponding Sobolev spaces on X.

There are now several interesting questions.

(i) Which is the role of the poles (including Laurent expansions) of σc(A)−1 for the
operator A or for the nature of solutions u of Au = f?

(ii) Can we control spaces of meromorphic operator functions as spaces of conormal
symbols in analogy to the scalar symbol spaces?

Concerning (i), as we shall illustrate below, there are many properties of solvability
that depend on poles and zeros (i.e., non-bijectivity points) of the conormal symbols. The
main aspects are asymptotics of solutions and the Fredholm index (especially, the relative
index when we change weights).

For (ii) we have to specify the meaning of ‘control’. The point is that every operator A
generates a pattern of poles and zeros of its conormal symbol σc(A) which is individually
determined by A. Spaces of such meromorphic symbols contain all possible patterns of
that kind, i.e., such symbol spaces encode the asymptotic behaviour of solutions, the
relative index behaviour and other effects, influenced by the conormal symbols for all
possible operators A at the same time.

This is far from being a purely ‘administrative’ discussion on the structure of the
calculus. In fact, if we pass to edge singularities and edge-degenerate operators A we
have subordinate conormal symbols

σcσ∧(A)(y, w) =

µ∑
j=0

aj0(0, y)w
j

15



which are families varying with the edge variable y, and, of course, all data connected
with meromorphy (including the position and multiplicities of poles and zeros) depend on
the variable y.

Let us have a look at a very simple example which shows how the operator determines
individual asymptotics of solutions near r = 0.

Let

Au :=

µ∑
j=0

aj
(
−r ∂

∂r

)j
u(r) = f (35)

be an equation of Fuchs type on R+ with constant coefficients (any weight factor as in
(16) in front the operator is not really essential in the conical case). Then, for

h(w) :=

µ∑
j=0

ajw
j (36)

the equation (35) takes the form opM(h)u = f . Here opM(h)u = M−1hM is the
pseudo-differential operator based on the Mellin transform M in L2(R+), Mu(w) =∫∞

0
rw−1u(r)dr. Under the ellipticity condition

σc(A)(w) = h(w) 6= 0 on Γ 1
2

(37)

we can realise opM(h−1) as a continuous operator L2(R+) → L2(R+), and we find the
solution in the form

u(r) = opM(h−1)(f)(r) = M−1
w→r

(
h−1(w)M(f)(w)

)
. (38)

The Mellin transform M is operating not only on L2(R+) but on subspaces L2
P (R+) of

functions with asymptotics of type

P = {(pj,mj)}j∈N. (39)

Here pj ∈ C, mj ∈ N, Re pj <
1
2
, Re pj → −∞ as j → ∞. The space L2

P (R+) is defined
to be the subspace of all u ∈ L2(R+) such that for every β ∈ R there is an N = N(β)
with

ω(r)
{
u(r)−

N∑
j=0

mj∑
k=0

cjkr
−pj logk r} ∈ rβL2(R+)

with coefficients cjk ∈ C depending on u, for any cut-off function ω (i.e., an element of
C∞

0 (R+) that is equal to 1 near r = 0).

Theorem 1.15. Let A satisfy the conditions aµ 6= 0 and (37), and let f ∈ L2(R+). Then
the equation Au = f has a unique solution u ∈ L2(R+). Moreover, f ∈ L2

Q(R+) for some
asymptotic type Q entails u ∈ L2

P (R+) for some resulting asymptotic type P .

We have, of course, more regularity of solutions than in L2 (cf. Remark 4.4 below).
The meromorphic function h−1(w) belongs to a category of spaces that are defined as

follows.
Let

R = {(rj, nj)}j∈Z (40)
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be a sequence of pairs ∈ C×N, such that |Re rj| → ∞ as |j| → ∞. Set πCR :=
⋃
j∈Z{rj}.

A πCR−excision function is any χR ∈ C∞(C) such that χR(w) = 0 for dist(w, πCR) < c0,
χR(w) = 1 for dist(w, πCR) > c1 for certain 0 < c0 < c1.

Definition 1.16. LetMν
R denote the space of all meromorphic functions f in the complex

plane with poles at rj of multiplicity nj + 1 such that χR(w)f(w)|Γβ
∈ Sνcl(Γβ) for every

β ∈ R uniformly in compact β-intervals; here χR is any πCR-excision function, and
Sνcl(Γβ) is the space of all classical symbols of order ν in the covariable Imw for w ∈ Γβ
with constant coefficients, cf. Definition 1.27 below. For πCR = ∅ the corresponding space
will be denoted by Mν

O.

In our example, if aµ 6= 0, we have

h−1(w) ∈M−µ
R (41)

for some R of the kind (40) determined by the zeros of h(w) in the complex plane.
In order to obtain the regularity result of Theorem 1.15 with asymptotics we consider

the solutions (38) and observe that the space

Mr→wL
2
Q(R+)

for an asymptotic type Q = {(qj, lj)}j∈N, πCQ ⊂ {w : Rew < 1
2
}, can be characterised

as the space A0
Q of those meromorphic functions m(w) in the half-plane Rew < 1

2
with

poles at qj of multiplicity j + 1, such that for every πCQ-excision function χQ we have

χQ(w)m(w)|Γβ
∈ L2(Γβ) (42)

for all β ≤ 1
2

(the meaning for β = 1
2

is that χQ(β + i%)m(β + i%) has an L2(R%)-limit for
β ↗ 1

2
), and (42) holds uniformly in compact β-intervals ⊂ (−∞, 1

2
].

In other words, M : L2(R+)→ L2(Γ 1
2
) restricts to an isomorphism

M : L2
Q(R+)→ A0

Q for every Q.

Now Mf ∈ A0
Q entails h−1(w)Mf(w) ∈ A0

P for some asymptotic type (39). Then the
relation (38) gives us immediately u ∈ L2

P (R+).
This consideration shows by a very simple example how the regularity of solutions

near r = 0 is influenced by the operator A. Namely, the resulting asymptotic type is
determined (apart from Q on the right hand side) by

R
∣∣
Rew< 1

2

for h−1 ∈M−µ
R .

Here R
∣∣
Rew<δ

:= {(q, n) ∈ R : Re q < δ}. The same questions can be asked for r → ∞,
or both for r → 0 and r →∞. Let

P 0 =
{
(p0
j ,m

0
j)

}
j∈N, P∞ = {(p∞j ,m∞

j )}j∈N (43)

be asymptotic types, P0 responsible for r → 0 as before and P∞ for r → ∞ (where
Re p∞j > 1

2
, Re p∞j →∞ as j →∞). Let L2

P 0,P∞(R+) be the subspace of all u ∈ L2
P 0(R+)

such that for every β ∈ R there is an N = N(β) such that

(1− ω(r))
{
u(r)−

N∑
j=0

m∞j∑
k=0

djkr
−p∞j logk r

}
∈ r−βL2(R+)
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for some coefficients djk depending on u, and a cut-off function ω(r).
Then a simple generalisation of the regularity result of Theorem 1.15 with asymptotics

is that
Au = f ∈ L2

Q0,Q∞(R+)⇒ u ∈ L2
P 0,P∞(R+)

for every pair (Q0, Q∞) of asymptotic types with some resulting (P 0, P∞).
The correspondence

Q0 → P 0 comes from R
∣∣
Rew< 1

2

and Q∞ → P∞ from R
∣∣
Rew> 1

2

(44)

by a simple multiplication of meromorphic functions in the complex Mellin w-plane.
In other words, the asymptotic type R of the Mellin symbol h−1(w) is subdivided into

parts in different half-planes, responsible for the asymptotics of solutions for r → 0 and
r →∞.

Let us now slightly change the point of view and ask solutions of the equation (35) for
f ∈ rγL2(R+) := L2,γ(R+) rather than L2(R+), for some weight γ ∈ R.

To this end we first recall that the Mellin transform Mu =
∫∞

0
rw−1u(r)dr

∣∣
Γ 1

2−γ

,

u ∈ C∞
0 (R+), extends to an isomorphism

Mγ : L2,γ(R+)→ L2(Γ 1
2
−γ)

for every γ ∈ R (which is equal to M for γ = 0). Then, having a Mellin symbol (36), we
can form the associated operator

u→Mγu→ h
∣∣
Γ 1

2−γ

Mγu→M−1
γ

(
h
∣∣
Γ 1

2−γ

)
Mγu =: opγM(h)u. (45)

We also write
opM(.) := op0

M(.). (46)

Observe that
opM(h)u = rγ opM(T−γh)r−γu

for (T−γh)(w) := h(w − γ), for arbitrary γ ∈ R, and u ∈ C∞
0 (R+). Considering the

equation (35) for f := rγf0, u := rγu0, for a given element f0 ∈ L2(R+) it follows that

µ∑
j=0

aj

(
−r ∂

∂r

)j
(rγu0) = rγf0 = rγ

µ∑
j=0

aj

(
−r ∂

∂r
− γ

)j
u0. (47)

Thus the equation

µ∑
j=0

aj

(
−r ∂

∂r

)j
(rγu0) = rγf0, f0 ∈ L2(R+)

is equivalent to
opM(T−γh)u0 = f0, (48)

and solutions u = rγu0 of (47) follow from solutions u0 of (48).
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Analogously as before we form spaces of the kind

L2,γ
Pγ

(R+) or L2,γ
P 0

γ ,P
∞
γ

(R+)

for asymptotic types Pγ or (P 0
γ , P

∞
γ ) defined in a similar manner (and with a similar

meaning) as before. More precisely, we have

P 0
γ =

{
(p0
j − γ,m0

j

}
j∈N, P∞

γ =
{
(p∞j − γ,m∞

j )
}
j∈N

for sequences as in (43); then u(r) ∈ L2
P 0

γ ,P
∞
γ

(R+) has asymptotics of type P 0
γ for r → 0

and of type P∞
γ for r →∞.

As a corollary of Theorem 1.15 we now obtain the following result:

Theorem 1.17. Let A satisfy the conditions aµ 6= 0 and

σc(A)(w) = h(w) 6= 0 on Γ 1
2
−γ.

Then the equation Au = f ∈ L2,γ(R+) has a unique solution u ∈ L2,γ(R+). Moreover,
f ∈ L2

Q0
γ ,Q
∞
γ

(R+) for some asymptotic types (Q0
γ, Q

∞
γ ) entails u ∈ L2,γ

P 0
γ ,P
∞
γ

(R+) for resulting

asymptotic types (P 0
γ , P

∞
γ ). Analogously, we can ignore asymptotics at ∞ and conclude

from f ∈ L2,γ
Qγ

(R+) solutions u ∈ L2,γ
Pγ

(R+) for every Qγ with some resulting Pγ.

This is immediate from the reformulation of (47) as (48).
What we also see in analogy of (44) in the weighted case is that the transformation

Q0
γ → P 0

γ comes from R
∣∣
Rew< 1

2
−γ and Q∞

γ → P∞
γ from R

∣∣
Rew> 1

2
−γ. (49)

Remark 1.18. In principle, the generalisation of Theorem 1.15 from γ0 = 0 to arbitrary
γ ∈ R is completely trivial. Nevertheless, something very strange happed during the change
to the new weight. Comparing (44) and (49) we see that some part of the ‘meromorphic
information’ of the inverted conormal symbol σc(A)−1, encoded by R, which is responsible
for the asymptotics of solutions in L2,γ0(R+) for r →∞ may suddenly be responsible for
the asymptotics of solutions in L2,γ(R+) for r → 0, and vice versa, according to the specific
position of R relative to the weight lines Γ 1

2
−γ0 and Γ 1

2
−γ, respectively. In the extremal

case, since πCR (in the case of a differential operator) is finite for our differential operator
A, we may have

πCR ⊂ {w : Rew <
1

2
− γ0}, (50)

or

πCR ⊂ {w : Rew >
1

2
− γ}. (51)

In the case (50) there is no influence of R to the asymptotics of solutions in L2,γ0(R+)
for r → ∞ but ‘very much’ for r → 0, in the case (51) for solutions in L2,γ(R+) it is
exactly the opposite.

The situation becomes even more mysterious if we pass from the operator A to its
formal adjoint A∗ with respect to the scalar product of L2(R+). Writing A in the form
A = opM(h) it follows that

A∗ = opM(h∗) for h∗(w) = h(1− w).

Similarly as (40) there is then an R∗ = {(r∗j , n∗j)}j∈Z such that (h∗)−1(w) ∈ M−µ
R∗ , and it

is obvious in this case that w ∈ πCR is equivalent to 1− w ∈ πCR
∗, cf. the relation (41).
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Remark 1.19. The influence of R to the asymptotics of solutions of Au = f ∈ L2(R+)
for r → ∞ (r → 0) is translated to an influence of to the asymptotics of solutions of
A∗v = g ∈ L2(R+) for r → 0 (r → ∞). In fact, there is a natural bijection R → R∗

induced by w → 1−w under which πCR∩{Rew ≶ 1
2
} is transformed to πCR

∗∩{Rew ≷ 1
2
},

cf. the relation (44).

Let us now pass to operators of the form

A =

µ∑
j=0

aj
(
−r ∂

∂r

)j
(52)

with coefficients aj ∈ Diffµ−j(X) for an arbitrary closed compact C∞ manifold X of
dimension n (it also makes sense to admit aj ∈ C∞(R+,Diffµ−j(X)), together with some
control of the r-dependence for r →∞, cf. also Remark 4.4 below).

As noted in Section 1.1 we have the pair of symbols (1), especially, the conormal
symbol σc(A)(w) =

∑µ
j=0 ajw

j which represents a family of continuous operators

σc(A)(w) : Hs(X)→ Hs−µ(X) (53)

for every s ∈ R, holomorphic in w ∈ C. The generalisation of the discussion before to the
case n = dimX > 0 gives rise to some substantial new aspects.

Assuming σψ-ellipticity of A in the sense that the standard homogeneous principal
symbol σψ(A)(r, x, ρ, ξ) does not vanish on T ∗X∧ \ 0 and that

σ̃ψ(A)(x, %, ξ) := σψ(A)(r, x, r−1%, ξ)

satisfies the condition

σ̃ψ(A)(x, %, ξ) 6= 0 for all (%, ξ) 6= 0, up to r = 0,

the operators (53) are parameter-dependent elliptic on X with the parameter Imw for
w ∈ Γβ = {w ∈ C : Rew = β} for every β ∈ R. The operator function (53) belongs to
a space Mµ

O(X) which is defined as follows. First let Lµcl(X; Rl) denote the space of all
parameter-dependent classical pseudo-differential operators on X of order µ ∈ R with the
parameter λ ∈ Rl, that is, the local amplitude functions a(x, ξ, λ) are classical symbols in
the covariables (ξ, λ) ∈ Rn+l, while L−∞(X; Rl) := S(Rl, L−∞(X)) with L−∞(X) being
the space of smoothing operators on X, i.e., with kernels in C∞(X ×X) (and identified
with L−∞(X), including the Fréchet space structure from C∞(X × X)). For l = 0 we
simply write Lµcl(X).

Then Mµ
O(X) is the space of all h(w) ∈ A(Cw, L

µ
cl(X)) (i.e., holomorphic Lµcl(X)-

valued functions) such that f(β + iρ) ∈ Lµcl(X; Rρ) for every β ∈ R, uniformly in finite
β-intervals.

For an operator (52) we then have σc(A) ∈Mµ
O(X). In addition, the σψ-ellipticity of

A has the consequence that (53) is invertible for all w ∈ C \D for a certain discrete set
D. In order to describe σ−1

c (A)(w) we define sequences

R = {(rj, nj, Nj)}j∈Z, (54)
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where πCR := {rj}j∈N ⊂ C is a subset such that |Re rj| → ∞ as |j| → ∞, nj ∈ N, and
Nj ⊂ L−∞(X) are finite-dimensional subspaces of operators of finite rank.

If E is a Fréchet space and U ⊆ C an open set, by A(U,E) we denote the space of all
holomorphic functions in U with values in E.

Definition 1.20. (i) LetM−∞
R (X) denote the space of all f(w) ∈ A(C\πCR,L

−∞
cl (X))

that are meromorphic with poles at rj of multiplicity nj + 1 and Laurent coefficients
at (w− rj)−(k+1) belonging to Nj for all 0 ≤ k ≤ nj, such that for any πCR-excision
function χR(w) we have (χRf)(β + iρ) ∈ L−∞(X; Rρ) for every β ∈ R, uniformly
in compact β-intervals;

(ii) for µ ∈ R we define
Mµ

R(X) :=Mµ
O(X) +M−∞

R (X). (55)

In order to describe regularity and asymptotics of solutions to elliptic equationsAu = f
we can introduce subspaces Hs,γ

P 0,P∞(X∧) of Hs,γ(X∧) of elements with asymptotics of
types

P 0 = {(p0
j ,m

0
j , L

0
j)}j∈N, P∞ = {(p∞j ,m∞

j , L
∞
j )}j∈N, (56)

where the meaning is quite similar as before for the case dimX = 0. In (56) we assume
p0
j , p

∞
j ∈ C, m0

j ,m
∞
j ∈ N, Re p0

j <
n+1

2
− γ, Re p∞j > n+1

2
− γ for all j, and Re p0

j → −∞,
Re p∞j → +∞ for j → ∞; moreover L0

j , L
∞
j ⊂ C∞(X) are subspaces of finite dimension.

Then u(r, x) ∈ Hs,γ
P 0,P∞(X∧) means that there are coefficients c0j,k ∈ L0

j and c∞j,k ∈ L∞j for

all 0 ≤ k ≤ m0
j and 0 ≤ k ≤ m∞

j , resprectively, j ∈ N, such that for every β ∈ R there
exists an N = N(β) such that

ω(r)
{
u(r, x)−

N∑
j=0

m0
j∑

k=0

c0jk(x)r
−p0j logk r

}
∈ ω(r)Hs,γ+β(X∧) (57)

and

(1− ω(r))
{
u(r, x)−

N∑
j=0

m∞j∑
k=0

c∞jk(x)r
−p∞j logk r

}
∈ (1− ω(r))Hs,γ−β(X∧). (58)

Here ω(r) is any cut-off function.
We can also consider subspaces of elements u ∈ Hs,γ(X∧) of the kind Hs,γ

P 0 (X
∧) (or

Hs,γ
P∞(X∧)) where we observe asymptotics of type P 0 (or P∞) only for r → 0 by requiring

(57) or (r → ∞ by (58)). Now a general theorem which summarises several features on
operators of the kind (52) is the following. First, let us write

opδM(h)u := rδ opM(T−δh)r−δ (59)

for any h(w) ∈ Mµ
R(X) and δ ∈ R such that πCR ∩ Γ 1

2
−δ = ∅ (observe that the notation

(59) is not a contradiction to (46), because for h ∈Mµ
O(X) we have opM(h)u = opδM(h)u

for u ∈ C∞
0 (X∧)).

Theorem 1.21. Let (52) be σψ-elliptic and write h(w) =
∑µ

j=0 ajw
j. Then we have

h−1(w) ∈ M−µ
R (X) for some R as in (54). For every γ ∈ R such that πCR ∩ Γn+1

2
−γ = ∅

the operator A induces an isomorphism

A : Hs,γ(X∧)→ Hs−µ,γ(X∧) (60)
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for every s ∈ R, and the inverse has the form A−1 = op
γ−n

2
M (h−1). Moreover, for every

pair of asymptotic types Q0, Q∞ as in (56) there is an analogous pair P 0, P∞ such that

Au ∈ Hs−µ,γ
Q0,Q∞(X∧)⇒ u ∈ Hs,γ

P 0,P∞(X∧) (61)

for every s ∈ R.

Remark 1.22. For the asymptotics of solution of the equation Au = f for a σψ-elliptic
operator (52) we have a simple analogue of the Remarks 1.18 and 1.19, now referring to
the spaces Hs,γ(X∧) and subspaces with asymptotics, with R being as in Theorem 1.21
(this is a more precise information also for dimX = 0 compared with the discussion in
L2 spaces on the half-axis).

The latter results have natural analogues for the case of σψ-elliptic operators (52)
when the coefficients aj depend on r in a controlled manner (e.g., smooth up to r = 0).
Instead of unique solvability we then have a Fredholm operator (60) (under an analogous
condition on the weight γ), and the relation (61) can be interpreted as a result on elliptic
regularity in spaces with asymptotics. Results of that kind exist in many variants, e.g.,
for finite asymptotic types, or so-called continuous asymptotic types, cf. [120]. In the
framework of pseudo-differential parametrices which exist in the cone algebra, acting as
continuous operators in weighted Sobolev spaces and subspaces with asymptotics, it is
important to stress the conormal symbolic structure, i.e., the spaces of meromorphic
operator function in (55). The Mellin asymptotic types (54) in those spaces of symbols
vary over all possible configurations of that kind which is an enormous input of a priori
information in the corresponding cone calculus with asymptotics. Starting from a specific
asymptotic type R, known by the inverse of the conormal symbol of the operator A, the
correspondence

(Q0, Q∞)→ (P 0, P∞)

in the sense of (61) is completely determined. However, to really compute R may be
a difficult task in concrete cases. For every individual operator A we have to solve a
corresponding non-linear eigenvalue problem, and the asymptotic information (P 0, P∞)
on the solution is not merely defined by the homogeneous principal symbol σψ(A) of the
elliptic operator A but by the global spectral behaviour of operators on the base X of the
cone which is also influenced by the lower order terms.

Similar observations are true when we are only interested in the asymptotics for r → 0
(or r →∞) alone. In this connection later on we shall employ Ks,γ-spaces and weighted
Schwartz spaces with asymptotics. Set

Ks,γP (X∧) := {ωu+ (1− ω)v : u ∈ Hs,γ
P (X∧), v ∈ Ks,γ(X∧)},

cf. the formula (21). Here P = {(pj,mj, Lj)}j∈N is an asymptotic type as the first one in
the formula (56), i.e., responsible for r → 0. Moreover, we define

SγP (X∧) := {ωu+ (1− ω)v : u ∈ H∞,γ
P (X∧), v ∈ S(R+, C

∞(X))}. (62)

The spaces Hs,γ
P (X∧), Ks,γP (X∧), etc., are Fréchet in a natural way.
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1.3 Naive and edge definitions of Sobolev spaces

Sobolev spaces certainly belong to the prominent institutions in the field of partial dif-
ferential equations. The present modest remarks do not reveal anything new as far as
they concern the ‘classical’ context. In fact, we content ourselves with spaces based on
L2 norms and Fourier transforms. However, things suddenly become much more uncer-
tain if we ask the nature of analogous spaces on manifolds with geometric singularities
(cf. also the considerations in Section 6.2 below). As is known the ‘standard’ role of
Sobolev spaces in elliptic PDE is to encode the elliptic regularity of solutions. For in-
stance, if B is the unit ball in R3, solutions u to the Dirichlet problem ∆u = f ∈ Hs−2(B),

u
∣∣
∂B

= g ∈ Hs− 1
2 (∂B) for s > 3

2
belong to Hs(B).

Now let S ⊂ B be the hypersurface S = {(x1, x2, x3) ∈ R3 : x3 = 0, |x1| + |x2| ≤ 1
2
}.

What can we say about the ‘Sobolev’ regularity of solutions of ∆u = f in B \ S with

u|∂B ∈ Hs− 1
2 (∂B), u|intS+ = g+,

∂u

∂x3

∣∣
intS−

= g− (with
∣∣
intS±

denoting the limits at intS

from x3 > 0 and x3 < 0, respectively)? The question includes the choice of ‘natural’
spaces for the boundary values on intS± as well as of the right notion of ellipticity in this
case. The critical zone is, of course, a neighbourhood of ∂S. Problems of that kind occur,
for instance, in crack theory.

Another question is the regularity of solutions to the Zaremba problem

∆u = f in B, u
∣∣
S2

+
= g+,

∂u

∂ν

∣∣∣
S2
−

= g−,

S2
± := ∂B∩{x3 ≷ 0}, where

∂

∂ν
denotes the derivative in direction of the inner normal to

the sphere. Also here the right notion of ellipticity and the choice of analogues of Sobolev
spaces (with respect to their behaviour near the interface S2∩{x3 = 0}) is far from being
evident.

Problems with singularities are meaningful also in the pseudo-differential context.
Parametrices of elliptic problems for differential operators are pseudo-differential, and
questions then do not only concern the spaces but also (hopefully manageable) quantisa-
tions, cf. also Section 2.2 below.

For instance, we can ask the nature of solvability of the equation

r+Ae+u = f (63)

in a (say, bounded) domain Ω ⊂ Rn, when A = Op(a) is an elliptic pseudo-differential
operator in Rn with homogeneous principal symbol

σψ(A)(ξ) = |ξ|µ

for some µ ∈ R. In (63) by e+ we mean the extension of distributions on Ω to zero outside
Ω, and by r+ the operator of restriction to Ω. Even if ∂Ω is smooth and µ 6∈ 2Z the
answer is not trivial. For µ ∈ 2Z we are in the frame of operators with the transmission
property at the boundary, cf. Section 2.1 below.

Another category of problems is the solvability of equations Au = f , say, in R+×Rm,
when A is a polynomial in vector fields of some specific behaviour. In Section 10.1.1 we
already saw examples, such as vector fields of the form

r∂r, ∂x1 , . . . , ∂xn (64)
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for m = n when (r, x) are the coordinates in R+×Rn or, for the case m = n+ q with the
coordinates (r, x, y) in R+ × Rn × Rq

r∂r, ∂x1 , . . . , ∂xn , r∂y1 , . . . , r∂yq . (65)

Polynomials in vector fields (64) and (65) just produce Fuchs type and edge-degenerate
operators, respectively (without weight factors in front of the operators which we found
natural in Section 10.1.1).

In the case (64) for s ∈ N, γ ∈ R, we can form the spaces

Hs,γ(R+ × Rn) := {u(r, x) ∈ r−
n
2
+γL2(R+ × Rn) : (r∂r)

kDα
xu(r, x) ∈ (66)

r−
n
2
+γL2(R+ × Rn) for all k ∈ N, α ∈ Nn, k + |α| ≤ s}.

In the case (65) for s ∈ N, γ ∈ R we might take

Hs,γ(R+ × Rn+q) := {u(r, x, y) ∈ r−
n
2
+γL2(R+ × Rn+q) : (67)

(r∂r)
kDα

x (rDy)
βu(r, x, y) ∈ r−

n
2
+γL2(R+ × Rn+q)

for all k ∈ N, α ∈ Nn, β ∈ Nq, k + |α|+ |β| ≤ s}.

Corresponding spaces for arbitrary real s can be obtained by duality and interpolation.
The spaces (66) have natural invariance properties and can be defined also on an open
stretched cone R+×X =: X∧ for a (say, closed compact) C∞ manifold X. The resulting
spaces are denoted by Hs,γ(X∧), cf. the formula (23).

Also the spaces (67) have analogues in the manifold case, namely, on int W, where
W is a (say, compact) C∞ manifold with boundary ∂W, such that ∂W is an X-bundle
over another C∞ manifold Y . The corresponding spaces are denoted by Hs,γ(int W). In
particular, for W = R+ ×X × Rq, we have the spaces

Hs,γ(X∧ × Rq). (68)

Note that Hs,γ(X∧×Rq) = rγHs,0(X∧×Rq) for all s, γ ∈ R. The spaces Hs,γ(X∧) or their
analogues Hs,γ(int B) on a (compact) stretched manifold B with conical singularities (that
is, a compact C∞ manifold with boundary ∂B ∼= X) are common in the investigation of
elliptic operators on a manifold with conical singularities. Also the spaces Hs,γ(int W) for
q > 0 are taken in many investigations in the literature when the operators are generated
by the vector fields (65).

However, for nearly all purposes that we have in mind here, for instance, the problems
mentioned at the beginning of this section, or also for geometric (edge-degenerate) opera-
tors with the typical weight factor, we find the above mentioned definition of Hs,γ(int W)-
spaces for dimY > 0 not really convenient (which says nothing on whether the spaces
themselves are adequate). That is why we talk in this connection about a ‘naive’ definition
of Sobolev spaces, in contrast to other ones which are more efficient for establishing calculi
on manifolds with (regular) geometric singularities. Also to express ‘canonical’ singular
functions of edge asymptotics another choice of Sobolev spaces seems to be indispensable.

‘Naive’ and ‘non-naive’ definitions of corner Sobolev spaces are also possible for more
than one axial variable. Higher generations of Sobolev spaces in that sense will be con-
sidered in Section 10.6.2 below.
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In order to give some motivation for an alternative choice of Sobolev scales we look
at what happens when we formulate a boundary value problem for an elliptic differential
operator with smooth coefficients in Rn in a smooth domain Ω ⊂ Rn with boundary.

A priori a Sobolev space, given in Rn, has no relation to possible boundaries of a
domain. A boundary contributes some anisotropy into the consideration, and tangential
and normal directions play a different role. More generally, smooth (or non smooth) hy-
persurfaces of arbitrary codimension should interact with isotropic Sobolev distributions
in a specific manner. We want to discuss this point in terms of a representation of the
Euclidean space as a ‘wedge’ Rn = Rm × Rq 3 (z, y) with edge Rq and model cone Rm

(with the origin as a fictitious conical singularity).
Recall that the standard L2-spaces have the property

L2(Rm × Rq) = L2(Rq, L2(Rm)). (69)

More generally, we might try to employ Sobolev spaces taking values in another Sobolev
space.

Let E be a Hilbert space, and let Hs(Rq, E) denote the completion of S(Rq, E) (the
Schwartz space of functions with value in E) with respect to the norm ‖u‖Hs(Rq ,E) ={∫
〈η〉2s‖û(η)‖2Edη

} 1
2
, s ∈ R, 〈η〉 := (1 + |η|2)1/2, with û(η) = (Fy→ηu)(η) being the

Fourier transform in Rq 3 y.
Clearly we have

Hs(Rm × Rq) 6= Hs(Rq, Hs(Rm))

unless s = 0. The question is how to find the ‘right’ anisotropic reformulation of Hs(Rn).
The answer comes from the notion of ‘abstract’ edge Sobolev spaces.

Definition 1.23. Let E be a Hilbert space, equipped with a strongly continuous group of
isomorphisms κλ : E → E, λ ∈ R+, such that κλκδ = κλδ for all λ, δ ∈ R+ (strongly
continuous means {κλe}λ∈R+ ∈ C(R+, E) for every e ∈ E). In that case we will speak
about a group action on E. The abstract edge Sobolev space Ws(Rq, E) of smoothness
s ∈ R, modelled on a Hilbert space E with group action {κλ}λ∈R+, is defined to be the
completion of S(Rq, E) with respect to the norm

‖u‖Ws(Rq ,E) =
{∫
〈η〉2s‖κ−1

〈η〉û(η)‖
2
Edη

} 1
2
. (70)

If E is a Fréchet space with group action {κλ}λ∈R+, i.e., E = lim←−j∈NE
j for a chain

of Hilbert spaces with continuous embeddings . . . ↪→ Ej+1 ↪→ Ej ↪→ . . . ↪→ E0, where
{κλ}λ∈R+ on E0 restricts to a group action on every Ej, j ∈ N, then we set Ws(Rq, E) :=
lim←−j∈NW

s(Rq, Ej).

For E = C with the trivial group action we recover the scalar Sobolev spaces Hs(Rq),
i.e., Hs(Rq) =Ws(Rq,C).

Remark 1.24. For E = Hs(Rm) and κλu(x) := λ
m
2 u(λx), λ ∈ R+, we have a canonical

isomorphism
Hs(Rm × Rq) =Ws(Rq, Hs(Rm)) (71)

for every s ∈ R. The group {κλ}λ∈R+ is unitary on L2(Rm) = Hs(Rm); thus (71) is
compatible with the relation (69).
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Remark 1.25. Writing ‖u‖Ws(Rq ,E) =
{∫
〈η〉2s‖F

(
F−1κ−1

〈η〉F
)
u‖2Edη

} 1
2
, F = Fy→η, we

see that the operator T := F−1κ−1
〈η〉F induces an isomorphism

F−1κ−1
〈η〉F :Ws(Rq, E)→ Hs(Rq, E)

for every s ∈ R. Given a closed subspace L ⊆ E, not necessarily invariant under the
group action {κλ}λ∈R+, we can form Hs(Rq, L) and then

Vs(Rq, L) := T−1Hs(Rq, L). (72)

In the case that {κλ}λ∈R+ induces a group action in L (by restriction) we have, of course,
Vs(Rq, L) = Ws(Rq, L); in any case Vs(Rq, L) is a closed subspace of Ws(Rq, E). If we
have a direct decomposition E = L⊕M into closed subspaces, we get a direct decomposition

Ws(Rq, E) = Vs(Rq, L)⊕ Vs(Rq,M). (73)

Recall that the space Ks,γ(Rm \ {0}) has the property

(1− ω)Ks,γ(Rm \ {0}) = (1− ω)Hs(Rm)

for every ω ∈ C∞
0 (Rm) which is equal to 1 in a neighbourhood of 0. For E := Ks,γ(Rm\{0})

with the group action κλu(z) = λ
m
2 u(λz), λ ∈ R+, we can form the corresponding edge

Sobolev space and observe that

(1− ω)Ws(Rq,Ks,γ(Rm \ {0})) = (1− ω)Hs(Rm+q)

for any such ω. This implies

Hs
comp((Rm \ {0})× Rq) ⊂ Ws(Rq,Ks,γ(Rm \ {0})) ⊂ Hs

loc((Rm \ {0})× Rq). (74)

Remark 1.26. We can also form the spaces

Ws(Rq,Ks,γ;g(X∧)) (75)

based on the group action (24). Those satisfy an analogue of the relation (74) for all
s, γ, g ∈ R. For g := s− γ the spaces have particularly natural properties.

The relation (71) shows that classical Sobolev spaces are special examples of edge
spaces in the sense of Definition 1.23, where a hypersurface Rq of arbitrary codimension
≥ 1 can be interpreted as an edge. Such an anisotropic description of ‘isotropic’ Sobolev
spaces also makes sense with respect to any other (smooth) hypersurface of a C∞ manifold,
cf. the articles [30], [29]. The anisotropic interpretation is particularly reasonable on a C∞

manifold with boundary; in this case the boundary is locally identified with Rq, and R+

(the inner normal with respect to a chosen Riemannian metric in product form near the
boundary) is the substitute of Rn. This gives us the possibility to encode various properties
of regularity of distributions up to the boundary, not only C∞ in terms ofW∞(Rq,S(R+))
but other asymptotics, e.g., W∞(Rq,SγP (R+)) for an asymptotic type P = {(pj,mj)}j∈N
as in Section 1.2, with πCR ⊂ {Rew < 1

2
− γ}. More generally, asymptotics of type

P = {(pj,mj, Lj)}j∈N, cf. the first sequence of (56), with πCP ⊂ {Rew < n+1
2
− γ}
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for n = dimX, gives rise to edge asymptotics of distributions u(r, x, y) on the stretched
wedge X∧ × Rq 3 (r, x, y), modelled on

Ws(Rq,Ks,γP (X∧)),

when (which can be done) Ks,γP (X∧) is written as a projective limit of Hilbert subspaces

of Ks,γ(X∧), endowed with the group action (κλu)(r, x) = λ
n+1

2 u(λr, x), λ ∈ R+.
Sobolev spaces Hs(Rq) described in terms of the Fourier transform are perfectly

adapted to pseudo-differential symbols in Hörmander’s classes Sµ(cl)(U × Rq) 3 a(y, η),

cf. Definition 1.27 below. In particular, 〈η〉s = (1 + |η|2)s/2 is a classical symbol of order
s, and we have

‖u‖Hs(Rq) = ‖〈η〉sû(η)‖L2(Rq).

This relation can be seen as a continuity result for the pseudo-differential operator A =
Op(〈η〉s),

Op(a)u(y) =

∫∫
ei(y−y

′)ηa(y, y′, η)u(y′)dy′d̄η,

d̄η = (2π)−qdη. A simplest version tells us that for a(y, y′, η) ∈ Sµ(R2q
y,y′ × Rq

η) under
suitable conditions on the dependence on (y, y′) for |(y, y′)| → ∞, we have continuity of
the associated operator

Op(a) : Hs(Rq)→ Hs−µ(Rq) (76)

for all s ∈ R. (The conditions are satisfied, for instance, when a(y, y′, η) is independent
of (y, y′) for large |(y, y′)|, and, of course, in much more general cases.)

Analogously, the abstract edge Sobolev spaces of Definition 1.23 have a counterpart
in terms of operator-valued symbols.

Definition 1.27. (i) The space Sµ(U×Rq;E, Ẽ) for open U ⊆ Rp and Hilbert spaces E

and Ẽ, endowed with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+, respectively, is defined

to be the set of all a(y, η) ∈ C∞(U × Rq,L(E, Ẽ)) such that

sup
y∈K
η∈Rq

〈η〉−µ+|β|‖κ̃−1
〈µ〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(E, eE) <∞

for all α ∈ Np, β ∈ Nq, and K b U ; 〈η〉 := (1 + |η|2)1/2;

(ii) the subspace of classical symbols Sµcl(U × Rq;E, Ẽ) 3 a(y, η) is defined by the con-

dition that there are elements a(µ−j)(y, η) ∈ C∞(U × (Rq \ {0}),L(E, Ẽ)), j ∈ N,
satisfying the homogeneity condition

a(µ−j)(y, λη) = λµκ̃λa(µ−j)(y, η)κ
−1
λ (77)

for all λ ∈ R+, such that

a(y, η)− χ(η)
N∑
j=0

a(µ−j)(y, η) ∈ Sµ−(N+1)(U × Rq;E, Ẽ) (78)

for all N ∈ N (here χ(η) is any excision function in η). The relation (77) is also
referred to as twisted homogeneity (of order µ− j).
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For E = Ẽ = C and κλ = κ̃λ = id for all λ ∈ R+ we obtain the scalar symbol spaces
Sµ(cl)(U×Rq) (subscript ‘(cl)’ means that we are speaking about the classical or the general

case). By Sµ(cl)(R
q;E, Ẽ) we denote the subspaces of Sµ(cl)(U ×Rq;E, Ẽ) of y-independent

elements (i.e., symbols with constant coefficients).

Remark 1.28. Let a(y, η) ∈ C∞(U × Rq,L(E, Ẽ)) satisfy the relation

a(y, λη) = λµκ̃λa(y, η)κ
−1
λ

for all λ ≥ 1, (y, η) ∈ U × Rq, |η| ≥ C for a constant C > 0. Then we have a(y, η) ∈
Sµcl(U × Rq;E, Ẽ).

Remark 1.29. Definition 1.27 has a straightforward generalisation to the case of Fréchet
spaces E, (and/or) Ẽ, equipped with group actions in the sense that the spaces are pro-
jective limits of Hilbert spaces with corresponding group actions, cf. the corresponding
notation in the second part of Definition 1.23.

There are many beautiful and unexpected examples of operator-valued symbols.

Example 1.30. An important category of examples are the Green, potential and trace
symbols in the calculus of boundary value problems with the transmission property.

Consider functions

fG(t, t′; y, η) ∈ S(R+ × R+, S
µ+1
cl (Ω× Rq)),

fK(t; y, η) ∈ S(R+, S
µ+ 1

2
cl (Ω× Rq)),

fB(t′; y, η) ∈ S(R+, S
µ+ 1

2
cl (Ω× Rq)),

and form the operator families

g(y, η)u(t) :=

∫ ∞

0

fG(t[η], t′[η]; y, η)u(t′)dt′, u ∈ L2(R+),

k(y, η)c := fK(t[η]; y, η)c, c ∈ C,

b(y, η)u :=

∫ ∞

0

fB(t′[η]; y, η)u(t′)dt′, u ∈ L2(R+).

Here η → [η] is any C∞ function in η ∈ Rq, strictly positive, and [η] = |η| for |η| > C
for some C > 0. We then obtain operator-valued symbols

g(y, η) ∈ Sµcl(Ω× Rq;L2(R+),S(R+)),

k(y, η) ∈ Sµcl(Ω× Rq; C,S(R+)),

b(y, η) ∈ Sµcl(Ω× Rq;L2(R+),C),

called Green, potential, and trace symbols, respectively, of order µ ∈ R and type 0. Green
and trace symbols of type d ∈ N are defined as linear combinations

g(y, η) =
d∑
j=0

gj(y, η)
∂j

∂tj
and b(y, η) =

d∑
j=0

bj(y, η)
∂j

∂tj

with gj and bj being of order µ − j and type 0 (with argument functions belonging to
Hs(R+) for s > d− 1

2
).
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The associated pseudo-differential operators Op(g), Op(k) and Op(b) are called Green,
potential, and trace operators (of the respective types in the Green and trace case).

Example 1.31. Let X be a closed compact C∞ manifold, Ω ⊆ Rq an open set, and
consider an operator A of the form (25) on X∧ × Ω, X∧ = R+ ×X, with coefficients

ajα(r, y) ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X)) (79)

that are independent of r for r > R for some R > 0. Then we have

a(y, η) := r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r ∂

∂r

)j
(rη)α ∈ Sµ(Ω×Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) (80)

for every s, γ ∈ R (the group action is as in Remark 1.10). If the coefficients (79) are
independent of r, then a(y, η) is classical, and we have a(µ)(y, η) = σ∧(A)(y, η), cf. the
expression (26).

In analogy to (76) every a(y, y′, η) ∈ Sµ(R2q
y,y′ × Rq

η;E, Ẽ) (again under suitable con-
ditions on the dependence on (y, y′) for |(y, y′)| → ∞) induces continuous operators

Op(a) :Ws(Rq, E)→Ws−µ(Rq, Ẽ) (81)

for all s ∈ R.
Applying that to the symbol (80) (for Ω = Rq, under a corresponding condition on

the coefficients for |y| → ∞, say, to be constant with respect to y for large |y|) we see
that the associated edge-degenerate operator A = Op(a) (cf. the formula (25)) induces a
continuous operator

A :Ws(Rq,Ks,γ(X∧))→Ws−µ(Rq,Ks−µ,γ−µ(X∧))

for every s, γ ∈ R. Recall that we also have an alternative scale of spaces, namely,
Hs,γ(X∧×Rq), cf. the formula (68). Since the operator A has the form r−µÃ, where Ã is
(locally with respect to X) a polynomial of order µ in the vector fields (65), the operator
A is also continuous in the sense

A : Hs,γ(X∧ × Rq)→ Hs−µ,γ−µ(X∧ × Rq)

for every s, γ ∈ R. The question is now which is the more natural definition of spaces in
connection with edge-degenerate operators,

Ws,γ(X∧ × Rq) or Hs,γ(X∧ × Rq)? (82)

There are, of course, many other questions, for instance,

‘what is natural’? (83)

The question (82) seems to have a natural answer in favour of the spaces Hs,γ(X∧×Rq),
because, up to the weight factor, the operators are polynomials in the typical vector fields.
Authors who employ this definition of weighted spaces in connection with configurations
with edge singularities probably share this opinion.
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This is now an excellent opportunity to found a new sect who believes the other truth.
A wise outcome of the discussion would be that both parties have their own right to

exist; the various approaches might be (to some extent) equivalent anyway, or point out
different aspects of the same phenomena . The trivial solution would be that the different
spaces are the same at all (at least locally near r = 0). The latter, however, is not the
case when γ 6= s.

An answer is that the spacesWs(Rq,Ks,γ(X∧)) belong to a continuously parametrised
family of spaces Ws(Rq,Ks,γ;g(X∧)) for g ∈ R, cf. Remark 1.26. All these spaces are
possible choices for a consistent calculus with the same edge algebra. However, for g =
s − γ the spaces Ws(Rq,Ks,γ;g(X∧)) and Hs,γ(X∧ × Rq) agree close to r = 0. This
coincidence is a hidden effect and an aspect of what we call a non-naive (or edge-) definition
of weighted spaces, see also [151] and [138].

Let us now have a look at another category of operator-valued symbols in the sense of
Definition 1.27, which play a role in the description of the internal properties of standard
Sobolev spaces.

Let us write Rn = Rm×Rq. Recall the well known fact that the operator of restriction
r′ : S(Rn)→ S(Rq), r′u := u

∣∣
{0}×Rq extends to a continuous operator

r′ : Hs(Rn)→ Hs−m
2 (Rq) (84)

for all s > m
2
. This can easily be interpreted as a continuity result of the kind (81) for

some special operator-valued symbol.
In fact, writing r′0u := u(0) for u ∈ S(Rn), there is an extension to a continuous

operator
r′0 : Hs(Rm)→ C

for every s > m
2
. If we endow Hs(Rm) with the group action κλu(t) = λ

m
2 u(t) for λ ∈ R+

and C with the trivial group action, from

r′0 ∈ C∞(Rq,L(Hs(Rm),C)) and r′0 = λ
m
2 r′0κ

−1
λ for all λ ∈ R+ (85)

it follows that
r′0 ∈ S

m
2

cl (Rq;Hs(Rm),C)

for every q ∈ N, cf. Remark 1.28 (i.e., r′0 is a classical symbol in the covariable η ∈ Rq,
although it is independent of η). Then (84) is a consequence of the continuity of

r′ = Op(r′0) :Ws(Rq, Hs(Rm))→Ws−m
2 (Rq,C) = Hs−m

2 (Rq),

cf. the relations (77) and (67). More generally, for every α ∈ Nm we can form the
composition

r′0D
α
x : Hs(Rm)→ C

which is continuous for s− |α| > m
2

and defines a symbol

r′0D
α
x ∈ S

m
2

+|α|(Rq;Hs(Rm),C)

which is even homogeneous in the sense r′0D
α
x = λ

m
2

+|α|r′0D
α
xκ

−1
λ for all λ ∈ R+. From (81)

we then obtain a corresponding continuity of the associated pseudo-differential operator.
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A certain counterpart of such symbols are potential symbols of the form k(η) : C →
S(Rm), defined by c → [η]ν+

m
2 (x[η])αω(x[η])c for any ν ∈ R, α ∈ Nm, and a function

ω ∈ C∞
0 (Rm) that is equal to 1 in a neighbourhood of x = 0. They define an element

k(η) ∈ Sνcl(Rq; C, Hs(Rm))

for every s ∈ R and satisfy the homogeneity relation k(λη) = λνκλk(η) for λ ≥ 1, |η| ≥ c
for some constant c > 0.

2 Are regular boundaries harmless?

Classical boundary value problems (such as the Dirichlet or the Neumann problem for the Laplace operator in a smooth
bounded domain) are well understood from the point of view of elliptic regularity up to the boundary, the Fredholm index
in Sobolev spaces, the nature of pseudo-differential parametrices, etc. Regular boundaries in this context are harmless in
the sense that non-regular boundaries require much more specific insight (even for the simplest case of conical singularities).
Of course, also for problems with smooth boundaries there are interesting aspects, worth to be considered up to the present,
for instance, in connection with the index of elliptic operators who do not admit Shapiro-Lopatinskij elliptic conditions, or
around the spectral behaviour.
However, this is not the idea of the discussion here. We want to see how pseudo-differential operators behave near a smooth
boundary and show some connections to the edge calculus.

2.1 What is a boundary value problem?

In an exposition on operators on manifolds with higher singularities we should ask ‘what
is an edge problem’ or ‘what is a higher corner problem’; however, this will be answered
anyway in Chapter 5 below. The structures and inventions for the higher corner calculus
should derive their motivation from something very common, namely, boundary value
problems. Boundary value problems have something to do with the values of a solution at
the boundary, i.e., with boundary conditions. That leads to one of the basic ingredients
also for the analysis on a polyhedral configuration near lower-dimensional strata, namely,
to additional conditions along those strata, with a specific contribution to the symbolic
structure and associated operators, in general, of trace and potential type.

In this section we are interested in the behaviour of pseudo-differential operators with
smooth symbols in a smooth domain in Rn (or on a C∞ manifold with boundary). More-
over, we ask the nature of solvability near the boundary when the operator is elliptic.
For convenience, we first consider a smooth bounded domain Ω ⊂ Rn and a classical
pseudo-differential operator A in a neighbourhood of X = Ω. In the simplest case A is a
differential operator,

A =
∑
|α|≤µ

aα(x)Dx (86)

with coefficients aα ∈ C∞(Rn). If Ω is locally modelled on the half-space

Rn

+ = {x = (x1, . . . , xn) ∈ Rn : xn > 0}

we also write x = (y, t) for y = (x1, . . . , xn−1), t := xn, with corresponding covariables
ξ = (η, τ). Then σψ(A)(x, ξ), the homogeneous principal symbol of A of order µ, cf. the
formula (2), generates a parameter-dependent family of differential operators on R+ 3 t,
namely,

σ∂(A)(y, η) := σψ(A)(y, 0, η,Dt), (87)
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(y, η) ∈ T ∗Rn−1 \ 0, regarded as a family of maps

σ∂(A)(y, η) : Hs(R+)→ Hs−µ(R+) (88)

between the Sobolev spaces Hs(R+) := Hs(R)
∣∣
R+

, s ∈ R. We call (87) the homogeneous

principal boundary symbol of the operator A. This is another example of a symbolic
structure of operators in Rn, not explicitly mentioned in Section 1.1. Note that we have

σ∂(I) = id, and σ∂(AB) = σ∂(A)σ∂(B) (89)

for differential operators A and B of order µ and ν, respectively.

Remark 2.1. The homogeneity of the principal boundary symbol refers to a strongly
continuous group {κλ}λ∈R+ of isomorphisms on the Hs(R+)-spaces, defined by

κλu(t) := λ
1
2u(λt) for λ ∈ R+.

For an operator (86) we have σ∂(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ for all λ ∈ R+, (y, η) ∈

T ∗Rn−1 \ 0 (cf., similarly, the formula (28) ).

If Ω ⊆ Rn is a smooth bounded domain and (86) a differential operator in Rn, we
can replace Ω locally near ∂Ω by the half-space Rn

+ 3 (y, t) and calculate the boundary
symbol σ∂(A)(y, η). This is then invariantly defined as a family of operators (88) for
(y, η) ∈ T ∗(∂Ω) \ 0.

If we recognise the boundary symbol σ∂(A) of an operator A as another principal
symbolic level, i.e., interpret the pair

σ(A) = (σψ(A), σ∂(A)) (90)

as the ‘full’ principal symbol of A, then ellipticity should be defined as the invertibility of
both components. However, the second component is not necessarily bijective, as we see
by the following theorem.

Theorem 2.2. Let (86) be elliptic with respect to σψ. Then (88) is a surjective family of
Fredholm operators for every s > µ− 1

2
, (y, η) ∈ T ∗(∂Ω) \ 0.

Remark 2.3. By virtue of Remark 2.1 we have

dim kerσ∂(A)(y, η) = dim kerσ∂(A)(y,
η

|η|
).

Simplest examples show what happens when we look at σ∂(A) for a σψ-elliptic operator
A: Let A = ∆ be the Laplacian with its principal symbol σψ(∆) = −|ξ|2. Then

σ∂(∆)(η) = −|η|2 +
∂2

∂t2
: Hs(R+)→ Hs−µ(R+) (91)

has the kernel kerσ∂(∆)(η) = {ce−|η|t : c ∈ C} which is of dimension 1 (the other solution

ce|η|t of (−|η|2 +
∂2

∂t2
)u(t) = 0 does not belong to Hs(R+) on the positive half-axis).
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In order to associate with σ∂(A) a family of isomorphisms we can try to enlarge the
boundary symbol to a family of isomorphisms(

σ∂(A) σ∂(K)
σ∂(T ) σ∂(Q)

)
(y, η) :

Hs(R+)
⊕

Cj−

→
Hs−µ(R+)
⊕

Cj+

(92)

by entries σ∂(T ), σ∂(K), σ∂(Q) of finite rank, cf. the discussion in this section below. In
the case (91) it suffices to set j− = 0, j+ = 1 and to take

σ∂(T ) := r′0

with the restriction operator r′0 : Hs(R+) → C for s > 1
2
, cf. analogously, Section 1.3,

in particular, the homogeneity relation (85). In other words, with the Laplacian we can
associate the family of isomorphisms(

σ∂(∆)
r′0

)
(η) : Hs(R+)→

Hs−2(R+)
⊕
C

(93)

for s > 1
2

which is just the boundary symbol of the Dirichlet problem. Analogously,

σ∂(T ) := r′0 ◦
∂

∂t
gives us the boundary symbol of the Neumann problem.

Let us calculate the inverse of (93). Writing

l±(η) := |η| ± iτ

we have −l−(τ)l+(τ) = −(|η|2 + τ 2) and

σ∂(∆)(η) = − op+(l−)(η) op+(l+)(η) = −|η|2 +
∂2

∂t2
.

The operator op+(l−)(η) : S(R+) → S(R+) is an isomorphism for every η 6= 0 where
(op+(l−)(η))−1 = op+(l−1

− )(η), and op+(l+)(η) : S(R+) → S(R+) is surjective for every
η 6= 0 with

ker op+(l+)(η) = {ce−|η|t : c ∈ C}.
Let us form the map k(η) : C→ S(R+) by k(η)c := ce−|η|t. Then we have(

op+(l+)(η)
r′0

)
(op+(l−1

+ )(η) k(η)) =
(

1 0
0 1

)
and

(op+(l−1
+ )(η) k(η))

(
op+(l+)(η)

r′0

)
= 1.

Thus, because of (
σ∂(∆)(η)

r′0

)
=

(
− op+(l−)(η) 0

0 1

) (
op+(l+)(η)

r′0

)
it follows that (

σ∂(∆)(η)
r′0

)−1

=
(op+(l−1

+ )(η) k(η))
(
− op+(l−1

− )(η) 0
0 1

)
=

(
− op+(l−1

+ )(η) op+(l−1
− )(η) k(η)

)
.
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Remark 2.4. The potential part k(η) gives rise to an operator-valued symbol in the sense

of Definition 1.27 (and Remark 1.29), namely, χ(η)k(η) ∈ S−
1
2

cl (Rn−1
η ; C,S(R+)) for any

excision function χ. Moreover, the operator function χ(η)g(η) for

g(η) := − op+(l−1
+ )(η) op+(l−1

− )(η) + op+(l−1
+ l−1

− )(η)

is a Green symbol of order −2 and type 0, cf. the terminology in Example 1.30,

χ(η)g(η) ∈ S−2
cl (Rn−1

η ;L2(R+),S(R+)),

and the η-wise L2(R+)-adjoint has the property

(χg)∗(η) ∈ S−2
cl (Rn−1

η ;L2(R+),S(R+)).

In general, if A is an elliptic differential operator, by virtue of Theorem 2.2 we expect
that j− = 0 is adequate and that we can complete σ∂(A) by j+ := dim kerσ∂(A) trace
conditions to a family of isomorphisms

(
σ∂(A)
σ∂(T )

)
(y, η) : Hs(R+)→

Hs−µ(R+)
⊕

Cj+

, (94)

(y, η) ∈ T ∗Rn−1 \ 0. In this case Cj+ is interpreted as the fibre of a vector bundle over
T ∗Rn−1 \ 0; it may be regarded as the pull back of a vector bundle J+,1 on the sphere
bundle Rn−1 × Sn−2 under the projection (y, η)→ (y, η/|η|).

In order to be able to interpret σ∂(T ) as the boundary symbol of a trace operator

T : Hs(Rn
+)→ ⊕j+l=1H

s−mj− 1
2 (Rn−1)

(with ordersmj, according to the κλ homogeneity of the components of T = t(T1, . . . , Tj+))
the bundle J+,1 has to be the pull back under the projection (y, η)→ y of a vector bundle
J+ on the boundary Rn−1 itself. This is an assumption that we now impose, although it
may be too restrictive in some cases, cf. the discussion of Section 5.3 below in connection
with the Atiyah-Bott obstruction.

However, for the Dirichlet or the Neumann problem for the Laplace operator as well
as for many other interesting problems this obstruction vanishes; this is enough for the
purposes of this section (it turns out that the insight from this situation is very useful
also for the general case, cf. [129]).

From the classical analysis of boundary value problems for a differential operator (86)
of order µ = 2m it is known that additional trace operators T = t(T1, . . . , Tm) may have
the form

(Tju)(y) := r′Bju(y) (95)

for differential operators Bj =
∑

|β|≤mj
bjβ(x)D

β
x of different orders mj, with (r′v)(y) :=

v(y, 0), such that, when we set σ∂(Tj)(y, η) = r′0σψ(Bj)(y, 0, η,Dt), j = 1, . . . ,m, with
σψ(Bj) being the homogeneous principal symbol of Bj of order mj, the operators

σ∂(T )(y, η) := t(σ∂(Tj)(y, η))j=1,...,m
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complete σ∂(A)(y, η) to a family of isomorphisms (94) for all sufficiently large real s (and
j+ = m).

Globally, an elliptic boundary value problem for a (scalar) differential operator A on
a (say, compact) C∞ manifold X with boundary ∂X is represented by a column matrix

A :=

(
A

T

)
(96)

consisting of the elliptic operator A itself, and a column vector T of trace operators, with
entries Tj of the form (95), with differential operators Bj in a neighbourhood of ∂X,
mj = ordBj.

It is often convenient to unify the orders by passing to compositions T̃j := Rµ−mj− 1
2Tj

with order reducing isomorphisms Rµ−mj− 1
2 (as mappings Hs(∂X) → Hs−µ+mj+

1
2 (∂X),

s ∈ R) belonging to L
µ−mj− 1

2
cl (∂X). We can find such operators with homogeneous

principal symbol |η|µ−mj− 1
2 . Then we have σ∂(T̃j)(y, η) = |η|µ−mj− 1

2σ∂(Tj)(y, η) and

σ∂(T̃j)(y, λη) = λµσ∂(T̃j)(y, η)κ
−1
λ for all λ ∈ R+, (y, η) ∈ T ∗Rn−1 \ 0. Of course, we

can reach any other order of the trace operators by composition from the left with a
suitable order reducing isomorphism.

If we now assume that the trace operators are defined from the very beginning in
combination with order reductions from the left and denote the trace operators again by
T (rather than T̃ ) our boundary value problems (96) induces continuous operators

A =

(
A

T

)
: Hs(intX)→

Hs−µ(intX)
⊕

Hs−µ(∂X, J+)
(97)

for sufficiently large s ∈ R. In this notation J+ is a (smooth complex) vector bundle
on ∂X, similar to the above one in the half-space case, and Hr(∂X, J+) is the space of
distributional sections in J+ of Sobolev smoothness r ∈ R.

The boundary symbol σ∂(A) of the operator A is a bundle morphism

σ∂(A) : π∗∂XH
s(R+)→ π∗∂X

Hs−µ(R+)
⊕
J+

 , (98)

the global analogue of (94). Here π∂X : T ∗(∂X) \ 0 → ∂X is the canonical projection,
and π∗∂X denotes the pull backs of vector bundles, here with the corresponding infinite-
dimensional fibres.

Homogeneity of σ∂(A) means

σ∂(A)(y, λη) = λµ
(
κλ 0
0 1

)
σ∂(A)(y, η)κ−1

λ (99)

for all λ ∈ R+, (y, η) ∈ T ∗(∂X) \ 0, where 1 indicates the identity operator; (κλu)(t) =

λ
1
2u(λt), λ ∈ R+.

The expectation that the composition of operators gives rise to the composition of
the associated principal symbols is not so easy to satisfy in the case of boundary value
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problems, since there is no reasonable composition between the corresponding column ma-
trices (although we have the relations (89)). However, as we shall see, such a composition
property is true of block matrices when the number of rows and columns in the middle
fits together. This is a natural concept in an operator algebra in a suitably generalised
sense. An access to this construction is what we obtain from the ellipticity.

Before we give the definition we want to make a remark on the nature of symbols of
operators A on a C∞ manifold X with boundary ∂X. Without loss of generality we may
assume that A has the form

A = r+Ãe+ (100)

for a differential operator Ã in a neighbouring C∞ manifold X̃ (for instance, the double of

X), where e+ is the operator of extension by zero from intX to X̃ and r+ the restriction

to intX. Operators of the from (100) also make sense for arbitrary Ã ∈ Lµcl(intX) (of
course, also for non-classical pseudo-differential operators) as continuous operators

A = r+Ãe+ : C∞
0 (intX)→ C∞(intX). (101)

In this section we content ourselves with integer orders µ. Let ã(µ−j)(y, t, η, τ), j ∈ N,
denote the sequence of homogeneous components of order µ− j belonging to a represen-
tation of Ã in local coordinates (y, t) ∈ Ω× R near the boundary, Ω ⊆ Rn−1 open. Then

Ã is said to have the transmission property at the boundary if

ã(µ−j)(y, t,−η,−τ)− eiπ(µ−j)ã(µ−j)(y, t, η, τ) (102)

vanishes to the infinite order on the set of non zero normal covectors to the boundary

{(y, t, η, τ) ∈ T ∗(Ω× R) : t = 0, η = 0, τ 6= 0}

for all j ∈ N. This is an invariant condition; so it makes sense as a property of Ã
globally on X near the boundary. Since the condition is satisfied if and only if all
a(µ−j)(y, t, η, τ) := ã(µ−j)(y, t, η, τ)

∣∣
Ω×R+×(Rn\{0}) have this property, we also talk about

the transmission property of the operator A itself.

Remark 2.5. A differential operator A (with smooth coefficients up to the boundary) has
the transmission property at the boundary. Writing A in the form (100) the ellipticity of

A entails the ellipticity of Ã in a neighbourhood of ∂X. Then, if we form a parametrix
P̃ in L−µcl (X̃) (i.e., I − ÃP̃ , I − P̃ Ã ∈ L−∞(X)), also P̃ has the transmission property at
∂X.

Remark 2.6. Let S∗X denote the unit cosphere bundle on X (with respect to a fixed
Riemannian metric on X), and let N∗ denote the bundle of covectors normal to the
boundary that are of length ≤ 1. Set

Ξ := S∗X|∂X ∪N∗ (103)

which is a fibre bundle on ∂X with fibres being {unit spheres} ∪ {straight connection
of south and north poles}, where the south and north poles are locally representend by

(y, 0, 0,−1) and (y, 0, 0,+1), respectively. Then, if Ã ∈ L0
cl(X̃) is an operator with the
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transmission property at the boundary, the homogeneous principal symbol σψ(A) of (100)
extends from S∗X to a continuous function σψ(A) on S∗X ∪ N∗ (including the zero
section of N∗ which is represented by ∂X). The ellipticity of A with respect to σψ(.), i.e.,
σψ(A) 6= 0 on T ∗X \ 0, entails the property

σψ(A) 6= 0 on Ξ. (104)

Definition 2.7. The operator (96) is called elliptic, if both components of its principal
symbol

σ(A) = (σψ(A), σ∂(A))

are bijective, i.e., for the principal interior symbol σψ(A) := σψ(A) we have σψ(A) 6= 0
on T ∗X \ 0, and the principal boundary symbol σ∂(A) defines an isomorphism (98) for
any (sufficiently large) s.

Theorem 2.8. Let X be a compact C∞ manifold with boundary, and (96) an operator of
the described structure. Then the following properties are equivalent:

(i) The operator A is elliptic;

(ii) A induces a Fredholm operator (97) for any fixed (sufficiently large) s.

The property (ii) entails the Fredholm property (97) for all (sufficiently large) s.

As a Fredholm operator (97) the elliptic operator A has a parametrix

P = (P K) (105)

in the functional analytic sense, and it is interesting to characterise the nature of P .
The operator P should belong to L−µcl (intX). As noted before, since the original elliptic

differential operator A can be seen as the restriction of an elliptic differential operator Ã in
a neighbouring C∞ manifold X̃ to X, we can form a parametrix P̃ ∈ L−µcl (X̃) of Ã and ask

the relationship between P̃ and the operator P in the formula (105). An answer was given
in Boutet de Monvel’s paper [13], not only of this point, but about the pseudo-differential
structure of P itself. We do not repeat here all the details; there are many expositions
on Boutet de Monvel’s theory of pseudo-differential boundary value problems, see, for
instance, Rempel and Schulze [102], Grubb [51], Schulze [133]. We want to observe here
some specific features and ‘strange’ points of the pseudo-differential calculus of boundary
value problems. If we form r+P̃ e+ we obtain a continuous operator

r+P̃ e+ : Hs−µ(intX)→ Hs(intX) (106)

for every s > µ− 1
2
.

For our differential operator we have A = r+Ãe+ and (r+Ãe+)(r+P̃ e+) = r+ÃP̃ e+

which is the identity map modulo an operator with kernel in C∞(X×X). The composition

(r+P̃ e+)(r+Ãe+) has a more complicated structure; it is equal to the identity modulo a
smoothing operator G in intX, however, not with a kernel in C∞(X ×X). The operator
G is called a Green operator, and it is locally in a collar neighbourhood of ∂X of the form
Op(g) for a Green symbol g(y, η) of some type d, cf. Example 1.30.
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Theorem 2.9. Let A :=

(
A

T

)
be an elliptic boundary value problem for the differential

operator A. Then there is a (two-sided) parametrix P of A of the form (105) for

P = r+P̃ e+ +G (107)

for some Green operator G, and a potential operator K, cf. Example 1.30.

The result of Theorem 2.9 is remarkable for several reasons. First of all, if we accept
the operator (105) as a ‘boundary value problem’ for the pseudo-differential operator P
(whatever its precise structure near the boundary is) instead of boundary conditions we
have potential conditions, represented by the operator K. The symbol of K is associated
with the second component of the inverse of (98) which is a row matrix

σ∂(A)−1(y, η) = (σ∂(P )(y, η) σ∂(K)(y, η)).

In this case
σ∂(P )(y, η) : Hs−µ(R+)→ Hs(R+) (108)

is necessarily injective but not surjective, and the operators of finite rank

σ∂(K)(y, η) : J+,y → Hs(R+) (109)

fill up the family (108) to a family of isomorphisms (here J+,y denotes the fibre of J+

over the point y). The local structure of σ∂(K)(y, η) is just as in Example 1.30; in fact
σ∂(K)(y, η) is the vector of homogeneous principal components of order −µ of potential
symbols of the kind fK(t[η]; y, η). Concerning the structure of (108) we have, according
to (107),

σ∂(P )(y, η) = σ∂(P̃ )(y, η) + σ∂(G)(y, η), (110)

where σ∂(G)(y, η) is the homogeneous principal component of order −µ of a Green symbol
in the sense of Example 1.30, while

σ∂(P̃ )(y, η) = r+σψ(P̃ )(y, 0, η,Dt)e
+,

with σψ(P̃ )(y, t, η, τ) being the homogeneous principal symbol of P̃ near the boundary in
the splitting of variables x = (y, t), and e+ is the operator of extension by zero from R+

to R, and r+ the restriction from R to R+.
What we see is the following. Given an elliptic pseudo-differential operator Ã of order

µ in a neighbouring manifold X̃ of a C∞ manifoldX with boundary (with the transmission
property at ∂X) we can form the operator

A = r+Ãe+ : Hs(intX)→ Hs−µ(intX)

(say, for s > max(µ, 0)− 1
2
). Its boundary symbol

σ∂(A)(y, η) = r+σψ(A)(y, 0, η,Dt)e
+ : Hs(R+)→ Hs−µ(R+) (111)

is a family of Fredholm operators (in general, neither surjective nor injective) for (y, η) ∈
T ∗(∂X)\0). Then, elliptic conditions may exist both of trace and potential type in a way
that the associated boundary symbols

σ∂(T )(y, η) : Hs(R+)→ J+,y, σ∂(K)(y, η) : J−,y → Hs−µ(R+)
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for suitable vector bundles J± on ∂X (for algebraic reasons combined with a family of
maps σ∂(Q)(y, η) := σψ(Q)(y, η) : J−,y → J+,y for an operator Q ∈ Lµcl(∂X; J−, J+)) fill
up the Fredholm family (111) to a family of isomorphisms

(
σ∂(A) σ∂(K)
σ∂(T ) σ∂(Q)

)
(y, η) :

Hs(R+)
⊕
J−,y

→
Hs−µ(R+)
⊕
J+,y

(112)

for all (y, η) ∈ T ∗(∂X) \ 0.
Both trace and potential symbols may be necessary at the same time for obtaining

an isomorphism (112). Locally the operator families σ∂(T ), σ∂(K) have the structure of
homogeneous principal components of trace and potential symbols as in Example 1.30 (of
some type d ∈ N in the case of σ∂(T )). More generally, instead of (112) we can consider
isomorphisms of the kind(

σ∂(A) + σ∂(G) σ∂(K)
σ∂(T ) σ∂(Q)

)
(y, η) :

Hs(R+)
⊕
J−,y

→
Hs−µ(R+)
⊕
J+,y

(113)

with a Green symbol σ∂(G)(y, η) of analogous structure as in (110) (it takes values in
the space of compact operators Hs(R+) → Hs−µ(R+)). Green symbols are generated in
compositions of block matrices of the form (112) and also in inverses. We now pass to an
operator

A :=

(
A+G K
T Q

)
:
Hs(intX)
⊕

Hs(∂X, J−)
→

Hs−µ(intX)
⊕

Hs−µ(∂X, J+)
, (114)

where A is the original elliptic operator, and G, T,K,Q are the extra operators which
constitute an elliptic boundary value problem (114) for A with the principal symbolic
structure

σ(A) = (σψ(A), σ∂(A)), (115)

for σψ(A) := σψ(A) and σ∂(A) given by (113). Note that

σ∂(A)(y, λη) = λµ
(
κλ 0
0 1

)
σ∂(A)(y, η)

(
κλ 0
0 1

)−1

(116)

for all (y, η) ∈ T ∗(∂X) \ 0, λ ∈ R+.
Operators of the form

A =

(
A+G K
T Q

)
(117)

constitute what is also called Boutet de Monvel’s calculus (of pseudo-differential boundary
value problems with the transmission property), cf. [13]. Operators of that kind also make
sense on a not necessarily compact C∞ manifold with boundary.

We now propose ‘answer number 1’ to the question ‘what is a boundary value problem’
to an operator A, namely, such a

‘2 × 2 block matrix (117) with A in the upper left corner, where the extra
operators G, T,K,Q are an additional information from the boundary’
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of a specific nature (roughly speaking, pseudo-differential operators on the boundary with
operator-valued symbols as in Example 1.30).

Let Bµ,d(X) denote the space of all operator block matrices of the form (117) that
are of the structure as mentioned before, in particular, A is of order µ ∈ Z and has the
transmission property, and the other operators are of order µ and type d ∈ N.

In this block matrix set-up the multiplicativity of the principal symbols (115) is again
restored; the only condition for a composition AB (say, for compact X, otherwise com-
bined with a localisation) is that rows and columns in the middle fit together (more
precisely, the bundles on the boundary), and we then have

σ(AB) = σ(A)σ(B), (118)

where the multiplication is componentwise, i.e., σψ(AB) = σψ(A)σψ(B), σ∂(AB) =
σ∂(A)σ∂(B).

Remark 2.10. The definitions and results about operators (117) including Definition
2.11, and Theorems 2.12, 2.13 below easily extend to operators between distributional
sections of vector bundles E,F ∈ Vect(X) and J± ∈ Vect(Y ). In this case instead of
(114) we have the continuity

A :
Hs(intX,E)

⊕
Hs(∂X, J−)

→
Hs−µ(intX,F )

⊕
Hs−µ(∂X, J+)

(119)

for all s > d− 1
2

when d ∈ N denotes the type of the involved Green and trace operators.

Let us now enlarge Definition 2.7 as follows.

Definition 2.11. An operator is called elliptic if both components of its principal symbol
(115) are bijective, i.e., for the principal interior symbol of A we have σψ(A) 6= 0 on
T ∗X \ 0, and the principal boundary symbol σ∂(A) defines isomorphisms (113) for all
(y, η) ∈ T ∗(∂X) \ 0 and any (sufficiently large) s ∈ R. The isomorphism (113) is also
called the Shapiro-Lopatinskij condition (for the elliptic operator A).

Theorem 2.12. Let X be a compact C∞ manifold with boundary and A be an operator
(117) which represents a boundary value problem for A in the upper left corner. Then the
following properties are equivalent:

(i) The operator A is elliptic in the sense of Definition 2.11;

(ii) A is Fredholm as an operator (114) for some fixed (sufficiently large) s ∈ R.

Theorem 2.13. Let X be a C∞ manifold with boundary and A ∈ Bµ,d(X) an elliptic
operator. Then there is a parametrix P ∈ Bµ,(d−µ)+(X) in the sense that the remainders
in the relations

PA = I − Cl, AP = I − Cr
are operators Cl ∈ B−∞,dl(X), Cr ∈ B−∞,dr(X) where dl = max(µ, d), dr = (d− µ)+, and
I are corresponding identity operators. Here ν+ := max(ν, 0) for any ν ∈ R.
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Summing up the calculus of operators (117) with its symbolic structure solves the
problem to find an operator algebra that contains all elliptic boundary value problems
(96) for differential operators together with their parametrices (105). Block matrices
appear, for instance, in compositions when we form(

A

T

)
(P K) =

(
AP AK
TP TK

)
(120)

for different elliptic operators

(
A

T

)
and (P K) (not necessarily being a parametrix of

each other).
In the special case that (P K) is the parametrix of an elliptic boundary value problem(

A

T

)
, and if

(
A

T̃

)
is another elliptic boundary value problem for the same operator A,

then we have (
A

T̃

)
(P K) =

(
1 0

T̃P T̃K

)
(121)

(modulo a compact operator in Sobolev spaces).

Remark 2.14. The operator T̃K is a classical elliptic pseudo-differential operator on
∂X, called the reduction of T̃ to the boundary (by means of T ), and we have

ind

(
A

T

)
− ind

(
A

T̃

)
= ind T̃K. (122)

The relation (122) is also called the Agranovich-Dynin formula. It compares the indices
of elliptic boundary value problems for the same elliptic operator A in terms of an elliptic
pseudo-differential operator on the boundary. A result of that kind is also true for boundary
value problems of general 2× 2 block matrix form, cf. [102].

This is one of the occasions where pseudo-differential operators are really useful to
understand the nature of elliptic boundary value problems for differential operators (apart
from the aspect of expressing parametrices). Elliptic pseudo-differential operators on the
boundary ‘parametrise’ via the formula (121) the set of all possible elliptic boundary value
problems for an elliptic operator A on a compact C∞ manifold with boundary.

This shows, in particular, that there are many different elliptic boundary value prob-
lems for A (which is also evident by the above filling up procedure of σ∂(A) to an iso-
morphism). Of course, it is not so clear at the first glance how many elliptic problems
(96) exist for an elliptic differential operator A with differential boundary conditions of
the kind (95) (up to the pseudo-differential order reduction on the boundary that we
admitted for simplifying the formulation in the sense of (97)). An answer is given in Ag-
mon, Douglis, and Nirenberg [2]. There are also elliptic differential operators A that do
not admit at all elliptic boundary value problems in the sense (117) (for instance, Dirac
operators in even dimensions and other interesting geometric operators). Later on we will
return to this aspect from the point of view of edge conditions.

We will discuss this problem in Section 5 in more detail. At least, the existence of
operators of that kind shows that regular boundaries are not harmless from such a point
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of view. It turns out that nevertheless there are other kinds of elliptic boundary value
problems rather than Shapiro-Lopatinskij elliptic ones; in that framework we may admit
arbitrary elliptic operators A, cf. [129], [133].

Let us consider the case when a differential operator A admits two different (Shapiro-

Lopatinskij) elliptic problems

(
A

T+

)
and

(
A

T−

)
with trace operators T+ and T−. An

example is the Laplace operator ∆ on a (say, compact) C∞ manifold X with boundary
and T− the Dirichlet, T+ the Neumann condition.

An interesting category of boundary value problems, are mixed problems, where the
boundary ∂X is subdivided into two (say, C∞) submanifolds Y+, Y− with common bound-
ary Z (of codimension 1 on ∂X) such that ∂X = Y− ∪ Y+, Z = Y− ∩ Y+. Let us slightly
change notation and identify T± with the restriction of the former T± to intY±. Then we
obtain an operator

A := t(A T− T+) (123)

which represents a mixed problem

Au = f in intX, T∓u = g∓ on intY∓. (124)

The question is then which are the natural Sobolev spaces for such problems and to what
extent we can expect the Fredholm property when A is elliptic and T∓ satisfy the Shapiro-
Lopatinskij condition on Y∓ (up to Z from the respective sides). (123) for the Laplace
operator A and Dirichlet and Neumann conditions T∓ on Y∓ represents the so called
Zaremba problem. Reducing T+ to the boundary by means of T− gives rise to an operator
R on Y+ (which has of course an extension R̃ to a neighbourhood Ỹ+ of Y+ in ∂X) that
has not the transmission property at Z. This shows that the concept of boundary value
problems has to be generalised to the case without the transmission property if one asks
the solvability properties of mixed problems (124).

The formulation of (pseudo-differential) boundary value problems (117) shows some
specific features that should be carefully looked at.

Remark 2.15. The transmission property of symbols (102) rules out practically all sym-
bols which are smooth up to boundary, except for a thin set, defined by the condition (102)
for all j ∈ N. For instance, symbols which have |ξ|µ as their homogeneous principal part
have the transmission property only when µ ∈ 2Z.

Observe that (up to a constant factor) the absolute value |η| of the covariable on the
boundary is the homogeneous principal symbol of the operator on ∂X which follows from
the reduction of the Neumann problem for the Laplace operator to the boundary by means
of the potential belonging to the solution of the Dirichlet problem. As such they fail to
have the transmission property at any hypersurface of codimension 1 on the boundary.

Remark 2.16. Another remarkable point is that the operator convention (100) is not

defined intrinsically on intX; it employs the existence of a neighbouring manifold X̃ and
the action of an operator Ã on X̃, combined with an extension operator e+ from intX to
the other side and then the restriction r+ to intX. Fortunately, despite of the jump of
e+u at ∂X we have the continuity of

r+Ãe+ : Hs(intX)→ Hs−µ(intX) (125)
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for s > −1
2

(when X is compact, otherwise between ‘comp/loc’ spaces). In particular, it
follows that

r+Ãe+ : C∞(X)→ C∞(X) (126)

is continuous. Thus the transmission property has the consequence that the smoothness
up to the boundary is preserved under the action.

We may ask to what extent a general pseudo-differential operator Ã ∈ Lµcl(X̃) induces
a controlled mapping behaviour on intX when we first realise r+Ae+ as a map (101)
and then try to extend it to Sobolev spaces on intX or to smooth functions up to the
boundary. The answer is disappointing, even in the simplest case on the half-axis when
we look at

op+(a) := r+ op(a)e+ : C∞
0 (R+)→ C∞(R+) (127)

for a symbol a(τ) ∈ Sµcl(R) with constant coefficients. Taking into account that, at least
for µ = 0, the operator (127) induces a continuous map

op+(a) : L2(R+)→ L2(R+), (128)

there is no continuous extension as

op+(a) : Hs(R+)→ Hs(R+) (129)

for arbitrary s and hence no control of smoothness up to 0. An example where this
smoothness fails to hold is

a(τ) = χ(τ)
(
θ+(τ)− θ−(τ)

)
(130)

when θ±(τ) is the characteristic function of R± and χ(τ) any excision function. The
transmission property at t = 0 is violated in a spectacular way: Instead of a(0)(+1) =
a(0)(−1) we have in this case

a(0)(+1) = −a(0)(−1),

which is a kind of ‘anti-transmission property’.
Let us set

Opx(a)u(x) =

∫∫
ei(x−x

′)ξa(x, ξ)u(x′)dx′d̄ξ. (131)

Apart from the ‘brutal’ operator convention with r+ and e+, say, in the half-space

Opy(op+(a)(y, η)) = r+ Opx(a)e
+ (132)

for symbols a(x, ξ) = a(y, t, η, τ) ∈ Sµcl(Rn−1 × R+ × Rn
η,τ ) (where we omit indicating

an extension ã of a to the opposite side, since the choice does not affect the action on
Rn−1×R+ = Rn

+), the question is which are the natural substitutes of the Sobolev spaces
Hs(Rn

+) which are the right choice for the case with the transmission property.
This brings us back to the question of Section 1.3. As observed before, symbols without

the transmission property at the boundary have played a role in mixed elliptic problems,
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e.g., the Zaremba problem. In classical papers of Vishik and Eskin [153], [154] and the
book of Eskin [32] it was decided to realise (132) as continuous operators

r+ Opx(a) : Hs
0(R

n

+)→ Hs−µ(Rn
+) (133)

(e.g., under the assumption that the symbols are independent of x for large |x|). Here
Hs

0(R
n

+) = {u ∈ Hs(Rn) : suppu ⊆ Rn

+} and Hs(Rn
+) = {u

∣∣
Rn

+
: u ∈ Hs(Rn)}.

There is a natural identification between Hs
0(R

n

+) and Hs
0(R

n

+)
∣∣
R+

for s > −1
2
. Hence,

for those s we can identify r+ Op(a) with r+ Op(a)e+. However, the operator convention
(133) is not symmetric with respect to the spaces in the preimage and the image; this
makes the composition of operators to a problem. However, for the half-axis case and
for s = µ = 0 the book [32] gave a completely different operator convention rather than
op+(a), based on the Mellin transform on R+. In the following section we say more
about Mellin operator conventions. This will show why there is no hope for a continuous
restriction of (128) to a continuous map between Sobolev spaces Hs(R+) for arbitrary
s > 0 or to a continuous map

op+(a) : S(R+)→ S(R+) (134)

which preserves smoothness up to zero. This answers the question of Section 2 as follows:

‘regular boundaries are not harmless’ (135)

in the context of boundary value problems, even if the boundary is a single point {0} =
∂R+.

Nevertheless, the way out is very beautiful, and we meet old friends: Operators of
the kind (128) belong to the cone algebra on R+, cf. [124], where R+ is regarded as a
manifold with conical singularity {0}.

What concerns the half-space, (or, more generally, a C∞ manifold with boundary) the
answer is not less surprising. The ‘right’ Sovolev spaces are weighted edge spaces

Ws,γ(Rn
+) :=Ws(Rn−1,Ks,γ;g(R+)) (136)

for any g ∈ R (in the local description near the boundary). As the ‘answer number 2’ to
the question of Section 2.1 we offer:

‘boundary value problems are edge problems’ (137)

in the sense of a corresponding edge pseudo-differential calculus, cf. Rempel and Schulze
[103], the monograph [124], as well as Schulze and Seiler [134]. The nature of edge
problems will be discussed in more detail in Section 3.1 below.

Also mixed elliptic boundary value problems of the type (123) belong to the category
of edge problems, where the interface Z on the boundary in the above description plays
the role of an edge. The same is true of crack problems with smooth crack boundaries as
mentioned at the beginning of Section 1.3.

The case of non-smooth interfaces or boundaries (in the sense of ‘higher’ edges and
corners) requires more advanced tools, cf. Section 5 below.
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Remark 2.17. It can easily be proved that Hs
comp(Rn

+) ⊂ Ws,γ(Rn
+) ⊂ Hs

loc(Rn
+) for every

s, γ ∈ R, cf., analogously, the relation (74). Thus, if X is a (say, compact) C∞ manifold
with boundary (with a fixed collar neighbourhood of ∂X, locally identified with Rn

+ 3 (y, t))
from (136) we obtain global spaces on X that we denote by Ws,γ(X). For simplicity, in
the global definition we assume the coordinate diffeomorphisms to be independent of the
normal variable t for small t. Then, given an asymptotic type P = {(mj, pj)}j∈N as in
Section 1.2 with πCP ⊂ {w ∈ C : Rew < 1

2
− γ}, we can also define subspaces Ws,γ

P (X)
locally near ∂X based on Ws(Rn−1,Ks,γP (R+)).

Let us briefly return to (137). What we suggest (and what is really the case) is
that, when we interpret a manifold with C∞ boundary as a manifold with (regular) edge
(where the boundary is the edge and R+, the inner normal, the model cone of local
wedges), boundary value problems are a special case of edge problems. The edge calculus
should contain all elements of the calculus of boundary value problems in generalised
form, including edge conditions of trace and potential type, as analogues of boundary
conditions. Moreover, parametrices of elliptic edge problems should contain analogues of
Green’s function in elliptic boundary value problems. Those appear in parametrices, even
when we ignore non-vanishing edge / boundary data. If we perform the edge calculus on
a manifold with boundary, where the typical differential operators A are edge-degenerate,

i.e., A = r−µ
∑

j+|α|≤µ ajα(r, y)
(
− r ∂

∂r

)j
(rDy)

α in a coordinate neighbourhood ∼= R+ × Ω

of the boundary, Ω ⊆ Rq open, ajα ∈ C∞(R+ × Ω), then there is the following chain of
proper inclusions:{

bvp’s with the transmission property at the boundary
}

⊂
{
bvp’s without (or with) the transmission property at the boundary

}
⊂

{
edge problems

}
;

here ‘bvp’s, standards for ‘boundary value problems’.

2.2 Quantisation

Quantisation in a pseudo-differential scenario means a rule to pass from a symbol func-
tion to an operator. This notation comes from quantum mechanics with its relationship
between Hamilton functions on phase spaces and associated operators in Hilbert spaces.

Definition 2.18. In the pseudo-differential terminology the map

Op : symbol → operator (138)

is called an operator convention.

Rules of that kind can be organised in terms of the Fourier transform Fu(ξ) =∫
Rn e

−ixξu(x)dx. Given a symbol a(x, ξ) on the ‘phase space’ Rn × Rn 3 (x, ξ) we ob-
tain an associated operator by Op(a) = F−1

ξ→x

{
a(x, ξ)Fx→ξ}, cf. the formula (131).

If a symbol is involved in this form we also call a(x, ξ) a ‘left symbol’. More generally,
we may admit ‘double symbols’ a(x, x′, ξ), and especially ‘right symbols’ a(x′, ξ); then we
have

Op(a)u(x) :=

∫∫
ei(x−x

′)ξa(x, x′, ξ)u(x′)dx′d̄ξ. (139)
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Concerning x, x′ we do not insist on the full Rn but also admit x, x′ to vary in an open
subset Ω. Then we obtain a continuous map

Op(a) : C∞
0 (Ω)→ C∞(Ω),

provided that a(x, x′, ξ) ∈ C∞(Ω× Ω× Rn) belongs to a reasonable symbol class.
Here we take Hörmander’s classes Sµ(cl)(Ω× Ω× Rn), cf. Definition 1.27 (for the case

E = Ẽ = C and trivial group actions). The possibility to give a(x, ξ) the meaning of a left
or a right symbol (where the resulting operators are different) shows that the quantisation
process is not canonical.

Remark 2.19. A map
symb : operator → symbol (140)

which is a right inverse of (138) (possibly up to negligible terms) may be interpreted as an
analogue of semi-classical asymptotics: Objects of classical mechanics are recovered from
their quantised versions. In pseudo-differential terms we can construct such a map

symb : Lµ(cl)(Ω)proper → Sµ(cl)(Ω× Rn) (141)

on the space Lµ(cl)(Ω)proper of properly supported elements of Lµ(cl)(Ω) by the rule

A→ e−ξAeξ =: a(x, ξ) (142)

for eξ := eixξ. This follows from the Fourier inversion formula u(x) =
∫
eixξû(ξ)d̄ξ by ap-

plying A on both sides with respect to x, which yields Au(x) =
∫
eixξ(e−ξ(x)Aeξ(.))û(ξ)d̄ξ.

A generalisation of (139) is the expression

Op(a;ϕ)u(x) :=

∫∫
eiϕ(x,x′,ξ)a(x, x′, ξ)u(x′)dx′d̄ξ, (143)

a(x, x′, ξ) ∈ Sµ(cl)(Ω × Ω × Rn). Here ϕ(x, x′, ξ) ∈ C∞(Ω × Ω × Rn) is a real-valued (so

called pseudo-differential phase) function of the form

ϕ(x, x′, ξ) =
n∑
j=1

ϕj(x, x
′)ξj

with coefficients ϕj(x, x
′) ∈ C∞(Ω × Ω), such that gradx,x′,ξϕ(x, x′, ξ) 6= 0 for ξ 6= 0 and

gradξϕ(x, x′, ξ) = 0⇔ x = x′. In particular, ϕ(x, x′, ξ) = (x− x′)ξ is an admitted choice.
Then, as is well known, also (143) represents a pseudo-differential operator Op(a;ϕ) ∈
Lµ(cl)(Ω). The relation

a(x, ξ)→ Op(a;ϕ) (144)

may be interpreted as an operator convention. It is known to induce an isomorphism

Sµ(cl)(Ω× Rn)/S−∞(Ω× Rn)→ Lµ(cl)(Ω)/L−∞(Ω).

As a consequence we have the following result:
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Theorem 2.20. Let ϕ(x, x′, ξ) and ϕ̃(x̃, x̃′, ξ̃) be pseudo-differential phase functions.
Then there is a map

Sµ(cl)(Ω× Rn)→ Sµ(cl)(Ω× Rn), (145)

a(x, ξ)→ ã(x̃, ξ̃), such that

Op(a;ϕ) = Op(ã; ϕ̃) mod L−∞(Ω). (146)

The relation (145) induces an isomorphism

Sµ(cl)(Ω× Rn)/S−∞(Ω× Rn)→ Sµ(cl)(Ω× Rn)/S−∞(Ω× Rn). (147)

The map (147) incorporates a change of the operator convention (144) with the phase
function ϕ to the one with the phase function ϕ̃. The corresponding map

a(x, ξ)→ ã(x̃, ξ̃)

between (left) symbols is not canonical insofar in the preimage we may add any c(x, ξ) ∈
S−∞(Ω × Rn) and in the image any c̃(x̃, ξ̃) ∈ S−∞(Ω × Rn) without violating (146). In
a more precise version of such operator conventions we may ask whether there is more
control of smoothing operators (under suitable assumptions on the behaviour of the phase
functions near the boundary ∂Ω).

The following discussion can be subsumed under the following question: Let Ω ⊂ Rn

be an open set, let ϕ(x, x′, ξ) ∈ C∞(Ω×Ω×Rn) be a pseudo-differential phase function,
and let a(x, ξ) ∈ Sµ(Ω × Rn) be a symbol. Do there exist ‘natural’ scales of subspaces

Hs(Ω), H̃s(Ω) of Hs
loc(Ω) such that Op(a;ϕ) : C∞

0 (Ω)→ C∞(Ω) extends to a continuous

operator Op(a;ϕ) : Hs(Ω)→ H̃s−µ(Ω) for every s ∈ R (or, if necessary, for certain specific
s)?

To illustrate the point let us consider the operator

op(a)u(t) =

∫∫
ei(t−t

′)τa(t, τ)u(t′)dt′d̄τ, (148)

a(t, τ) ∈ Sµcl(R+×R), first for u ∈ C∞
0 (R+). If a belongs to Sµcl(R+×R) = Sµcl(R×R)|R+×R

and has the transmission property at t = 0, there is an extension of op(a) as a continuous
map

op+(a) : Hs(R+)→ Hs−µ(R+)

for every s > −1
2
. However, if we change the phase function, i.e., replace ϕ(t, t′, τ) = (t−

t′)τ by another pseudo-differential phase function ϕ̃(r, r′, %), the corresponding operator

op(a; ϕ̃) : u(r)→
∫∫

eiϕ̃(r,r′,%)a(r, %)u(r′)dr′d̄%

is not necessarily extendible in that way.
Let us now consider the case that a(t, τ) ∈ Sµcl(R+ × R) has not the transmission

property at 0. Assume for the moment µ = 0 and a independent of t. Recall that the
operator op+(a) is continuous as a map (128) but (in general) not as (129) for all s or as
a continuous operator (134). Beautiful examples are the symbols

a±(τ) = χ(τ)θ±(τ),
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cf. (130). Observe that the operators

op+((1− χ)θ±) : L2(R+)→ L2(R+) (149)

have kernels in S(R+×R+)(= S(R×R)
∣∣
R+×R+

). Thus the essential properties of op+(a±)

are reflected by
op+(θ±) : L2(R+)→ L2(R+). (150)

The following result may be found in Eskin’s book [32] (see also [124]).

Proposition 2.21. We have (as an equality of continuous operators L2(R+)→ L2(R+))

op+(θ±) = opM(g±) (151)

for the functions g+(w) := (1− e−2πiw)−1, g−(w) := 1− g+(w) = (1− e2πiw)−1.

In other, words the pseudo-differential operator op+(θ±) on R+ based on the Fourier
transform (combined with the special precaution at 0 in terms of e+, r+) is equivalently
expressed as a Mellin pseudo-differential operator opM(g±) (cf. the formula (46)) with
the symbol g±

∣∣
Γ 1

2

. Moreover, we have

op+(χθ±) = opM(g±) +G, (152)

where G is an operator with kernel in S(R+ × R+), cf. the remainder term (149).

Remark 2.22. We have
g±(w) ∈M0

R

for R = {(j, 0)}j∈Z (in the notation of Section 10.1.2). More precisely, we have

g+(β + i%)→

{
0 for %→ +∞,
1 for %→ −∞

for all β ∈ R, uniformly in compact β-intervals, and the converse behaviour of g−(β+ i%).

Corollary 2.23. The operators op+(θ±), op+(χθ±) : L2(R+) → L2(R+) restrict to con-
tinuous maps

op+(θ±), op+(χθ±) : S(R+)→ S0
P (R+) (153)

for the asymptotic type P = {(j, 1)}j∈−N. Note that a function f ∈ S0
P (R+) has an

asymptotic expansion

f(t) ∼
∞∑
j=0

{cjtj + djt
j log t} as t→ 0

with constants cj, dj ∈ R. Thus the operators (153) cannot be extendible to continuous
maps Hs(R+)→ Hs(R+) for all s ∈ R.
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The relation (152) gives us an idea of how the operator op+(a) for an arbitrary
a(τ) ∈ Sµcl(R) can be expressed as a Mellin pseudo-differential operator on R±, mod-
ulo a smoothing operator of a controlled behaviour. Let us consider the case µ ∈ Z (the
case a(t, τ) ∈ Sµcl(R+ × R) for arbitrary µ ∈ R is treated in [124]). A classical symbol
a(τ) ∈ Sµcl(R) has an asymptotic expansion

a(τ) ∼
∞∑
j=0

χ(τ)a±µ−jθ±(τ)τµ−j for τ → ±∞ (154)

with constants a±µ−j ∈ C. That means, for every k ∈ N there is an N = N(k) such that

op+
(
a(τ) −

∑N
j=0 χ(τ)a±µ−jθ±(τ)τµ−j

)
has a kernel in Ck(R+ × R+). Thus the essential

point is to reformulate the operators op+(χ(τ)θ±(τ)τ l), l ∈ Z, by means of the Mellin
transform. For the case l ∈ N we can write

op+(χ(τ)θ±(τ)τ l) = op+(τ l) op+(χ(τ)θ±(τ)). (155)

In order to express op+(τ l) in Mellin terms we observe that op+(τ) = t−1i opM(w) on
C∞

0 (R+), i.e.,

op+(τ l) =
l−1∏
j=0

(t−1i opM(w)) = t−lil opM
( l−1∏
j=0

(w + j)
)
.

In the latter formula we employed the commutation rule opM(T 1f) = t opM(f)t−1,
with the notation (T βf)(w) := f(w + β), for a holomorphic Mellin symbol f(w), e.g., a
polynomial in w.

Thus, setting hl(w) := il
∏l−1

j=0(w + j) for l ∈ N we obtain

op+(χ(τ)θ±(τ)τ l) = t−l opM(hlg±) + Cl

for the smoothing operator Cl = t−t opM(hl)G. For the case −l ∈ N we have

op+(χ(τ)θ±(τ)τ l) =
(
tl opM(h−l)

)−1
op+(χ(τ)θ±(τ)) =

(
opM(h−l)

)−1
t−l op+(χ(τ)θ±(τ))

= t−l opM(T lh−1
−l ) op+(χ(τ)θ±(τ)) = t−l opM

(
(T lh−l)

−1g±
)

+ Cl

for the smoothing operator Cl = t−l opM
(
(T lh−l)

−1
)
G.

Thus the formula (154) gives us for every k ∈ N the representation

op+(a) = opM(mk) +Dk, (156)

for mk(t, w) :=
∑k

j=0 t
−µ+jfµ−j(w),

fµ−j(w) = {a+
µ−jg+(w) + a−µ−jg−(w)}hµ−j(w)

for j = 0, . . . , µ, hl(w) = il
∏l−1

j=0(w + j), and

fµ−j(w) = {a+
µ−jg+(w) + a−µ−jg−(w)}(T j−µh−1

µ−j)(w)

for j > µ, and Dk is an operator of a controlled behaviour, explicitly given by the
considerations before. Its kernel belongs to CN(R+ × R+) with N = N(k) → ∞ as
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k → ∞. This concerns the case µ ∈ Z; as mentioned before, analogous representations
for µ ∈ R may be found in [124].

Of course, the formula (156) is not a complete reformulation of an operator from the
Fourier to the Mellin representation, although it is a good approximation, since we can
pass to an asymptotic sum

∑∞
j=0 t

−µ+jfµ−j(w).
However, as a corollary of Theorem 2.20 we obtain Mellin representations immediately:

Proposition 2.24. For every a(t, x, τ, ξ) ∈ Sµ(cl)(R+×Ω×R1+n) there is an m(r, x, w, ξ)

∈ Sµ(cl)(R+ × Ω× Γ 1
2
−γ × Rn) such that

Opx(opt(a)) = Opx(op
γ
M(m)) mod L−∞(R+ × Ω). (157)

We want to illustrate Proposition 2.24 on the half-axis R+ (the generalisation to R+×Ω
is trivial). Let us admit double symbols on the Fourier as well as on the Mellin side; if
necessary pseudo-differential generalities allow us to pass to representations in terms of
left symbols.

Consider the weighted Mellin pseudo-differential operator

opγM(f)u(r) =

∫ ∫ ∞

0

( r
r′

)−( 1
2
−γ+i%)

f(r, r′,
1

2
− γ + i%)u(r′)

dr′

r′
d̄% (158)

= r−
1
2
+γ

∫ ∫ ∞

0

ei%(log r′−log r)f(r, r′,
1

2
− γ + i%)(r′)−

1
2
−γu(r′)dr′d̄%

for an f(r, r′, w) ∈ Sµ(cl)(R+ × R+ × Γ 1
2
−γ). The operator

B : v →
∫ ∫ ∞

0

eiϕ̃(r,r′,%)f(r, r′,
1

2
− γ + i%)u(r′)dr′d̄%

is an element of Lµ(cl)(R+), since

ϕ̃(r, r′, %) = %(log r′ − log r) (159)

is a pseudo-differential phase function. This implies r−
1
2
+γBr−

1
2
−γ ∈ Lµ(cl)(R+), and,

according to Theorem 2.20, we find a representation of opγM(f) by a symbol a(t, τ) ∈
Sµ(cl)(R+ × R) mod L−∞(R+), cf. the formula (148).

Remark 2.25. Consider the diffeomorphism

χ : R+ → R, χ(r) := − log r,

and set y := − log r, i.e., r = e−y. Then the operator push forward of opγM(f) under χ
has the form ∫∫

ei(y−y
′)%

{
e(

1
2
−γ)(y−y′)f(e−y, e−y

′
,
1

2
− γ + i%)

}
v(y′)dy′d̄%. (160)

Now, since χ∗ : Lµ(cl)(R+)→ Lµ(cl)(R) is an isomorphism, for every a(t, t′, τ) ∈ Sµ(cl)(R+×
R+ × R) we can form a b(y, y′, %) ∈ Sµ(cl)(R× R× R) such that

χ∗ opt(a) = opy(b) mod L−∞(R).
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Setting

f(r, r′,
1

2
− γ + i%) :=

( r
r′

)−( 1
2
−γ)
b(− log r,− log r′, %)

from (160) it follows that χ∗ opt(a) = χ∗ opγM(f) mod L−∞(R) and hence

opγM(f) = opt(a) mod L−∞(R+).

A similar argument applies to symbols on R+×Ω 3 (t, x) rather than on the half-axis
R+. Then, if m(r, x, wξ) ∈ Sµ(cl)(R+ × Ω × Γ 1

2
−γ × Rn) denotes a left symbol associated

with f(r, r′, x, 1
2
− γ + i%, ξ) we just obtain Proposition 2.24.

Remark 2.26. Similarly as (141) we can construct a map

symbM : Lµ(cl)(R+ × Ω)proper → Sµ(cl)(R+ × Ω× Γ 1
2
−γ × Rn)

by using the inversion formula

u(r, x) =

∫
Rn

∫
Γ 1

2−γ

r−weξ(x)(MγFu)(w, ξ)d̄wd̄ξ

for d̄w = (2πi)−1dw and applying A ∈ Lµ(cl)(R+ × Ω)proper under the integral sign. This
gives us

symbM(A)(r, x, w, ξ) = rwe−ξ(x)Ar
−weξ(.) ∈ Sµ(cl)(R+ × Ω× Γ 1

2
−γ × Rn).

For γ = 1
2

this is, of course, equivalent to the formula (142), cf. also Remark 2.25.

Proposition 2.24 and Remarks 2.25 reformulate operators from the Fourier to the
Mellin representation, modulo smoothing remainders. More interesting are reformulations
with remainders of a controlled behaviour near r = 0 as obtained in the formula (156).
Such results are known in many special situations, cf. the monograph [124] or the papers
[134], [30]. Precise reformulations have been mentioned before in connection with edge-
degenerate operators (25) coming from ‘standard’ differentiaal operators A ∈ Diffµ(Rn ×
Ω), Ω ⊆ Rq open, q ≥ 0. For q = 0 we obtain Fuchs type operators of the form (19). By
virtue of −r∂r = M−1wM = opM(w) (= opγM(w) on functions with compact support in
r ∈ R+) we can write (25) in the form

A = r−µ Opy(op
γ
M(h)) (161)

for every γ ∈ R for the (y, η)) depending Mellin symbol

h(r, y, w, η) =
∑

j+|α|≤µ

ajα(r, y)w
j(rη)α,

ajα(r, y) ∈ C∞(Rq,Diffµ−(j+|α|)(X)); in this case X is a sphere.
For q = 0 the action Opy(.) is simply to be omitted, i.e., we have

A = r−µ opγM(h) (162)
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for h(r, w) =
∑µ

j=0 aj(r)w
j, aj(r) ∈ C∞(R+,Diffµ−j(X)).

In general, if A is not a differential operator but a classical pseudo-differential; operator
in Rm we can first consider the push forward of A

∣∣
Rm\{0} under polar coordinates χ :

Rm \ {0} → R+ × X, x → (r, φ) (for X = Sm−1) to a pseudo-differential operator with
(operator-valued) symbol of the form

r−µp(r, %)

such that
p(r, %) = p̃(r, r%)

and p̃(r, %̃) ∈ C∞(R+, L
µ
(cl)(X; R%̃)), and then obtain

χ∗(A
∣∣
Rm\{0}) = r−µ opr(p) mod L−µ(Rm \ {0}).

In a second step from p(r, %) we produce a Mellin symbol h(r, w) ∈ C∞(R+, L
µ
cl(X; C))

such that
opr(p) = opγM(h) mod L−∞(R+ ×X).

Here (for any C∞ manifold X)
Lµcl(X; C× Rq)

denotes the space of all holomorphic Lµcl(X; Rq)-valued functions h(w, η) such that h(β +
i%, η) ∈ Lµcl(X; R% × Rq

η) for every β ∈ R, uniformly in compact β-intervals (for q = 0 we
write Lµcl(X; C)).

Theorem 2.27. (i) Given an arbitrary A ∈ Lµ(cl)(R
m × Ω), Ω ⊆ Rq open; the push

forward of A
∣∣
(Rm\{0})×Ω

under χ : (x, y)→ (r, φ, y) has the form

χ∗(A
∣∣
(Rm\{0})×Ω

) = r−µ Opy(opr(p)) mod L−∞(R+ ×X × Ω) (163)

(for X = Sm−1) for a family

p(r, y, %, η) = p̃(r, y, r%, rη), (164)

p̃(r, y, %̃, η̃) ∈ C∞(R+ × Ω Lµ(cl)(X; R%̃ × Rq
η̃)); (165)

(ii) for every operator function (164) with (165) for a C∞ manifold X there exists an

h̃(r, y, w, η̃) ∈ C∞(R+ × Ω, Lµ(cl)(X; C× Rq
η̃))

such that for h(r, y, w, η) := h̃(r, y, w, rη) we have

Opy(opr(p)) = Opy(op
γ
M(h)) mod L−∞(R+ ×X × Ω) (166)

for every γ ∈ R.

Remark 2.28. Note that, although in the relations (163) or (166) we may have smoothing
remainders the kernels of which are not specified near (r, r′) = 0, the choice of p̃ and h̃ is
possible in such a way that the dependence on r is smooth up to r = 0. In other words,
from the relation (163) for every γ ∈ R we see that the control of the operator convention
is much more precise than in the general set-up of Proposition 2.24.
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Remark 2.29. Observe that there is also a variant of Proposition 2.24 for symbols
a(t, x, τ, ξ) ∈ Sµ(cl)(R+×Ω×R1+n) that always admit a choice of m(r, x, w, ξ) ∈ Sµ(cl)(R+×
Σ × C × Rn) such that (157) holds. Here Sµ(cl)(R+ × Σ × C × Rn) is the space of all

holomorphic functions m(r, x, w, ξ) in w ∈ C with values in Sµ(cl)(R+ ×Σ×Rn) such that

m(r, x, β + i%, ξ) ∈ Sµ(cl)(R+ × Σ× R1+n
%,ξ )

for every β ∈ R, uniformly in compact β-intervals.

The relation (166) is a generalisation of (161) to pseudo-differential operators. Intu-
itively it tells us that a pseudo-differential operator A on Rn ×Ω near a fictitious edge Ω
(or on Rm near the fictitious conical singularity 0) feels like a (weighted) Mellin operator
in model cone direction transversal to the edge (or on the cone Rm \ {0} ∼= X∧ for q = 0,
X = Sm−1). Another interpretation is that A is edge-degenerate (or of Fuchs type) with
respect to every fictitious smooth edge (or any fictitious conical singularity). We thus
see that the smooth pseudo-differential calculus is full of ‘singular confessions’: Smooth
operators belongs to the more distinguished world of singular (or degenerate) operators,
although they are usually not recognised as legitimate members of that society. After
this presumption we may conject that the ambitions are going much deeper. In fact,
as we saw at the end of Section 2.4.2, the possibilities of smooth differential operators
to pretend to be singular are only bounded by the dimension of the underlying space.
Similar observations are true of pseudo-differential operators with respect to higher edges
and corners.

Surprisingly enough, there are not only fictitious difficulties connected with fictitious
singularities, as explained in [30] or [74]. Even in the case of differential operators (25)
we can ask the properties of edge symbols

σ∧(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧) (167)

in connection with the families of subordinate conormal symbols

σcσ∧(A)(y, w) =

µ∑
j=0

aj0(0, y)w
j : Hs(X)→ Hs−µ(X). (168)

If A ∈ Diffµ(Rm × Ω) is elliptic, it is interesting to know for which weights γ ∈ R the
operators (167) are Fredholm for all (y, η) ∈ T ∗Ω \ 0. Admissible weights in that sense
are determined by the condition that the weight line Γn+1

2
−γ does not intersect the set of

points w ∈ C where (168) is not bijective, for all y ∈ Ω. If this is the case we may hope
to find vector bundles J± on the edge Ω and a block matrix family of operators

(
σ∧(A) σ∧(K)
σ∧(T ) σ∧(Q)

)
(y, η) :

Ks,γ(X∧)
⊕
J−,y

→
Ks−µ,γ−µ(X∧)

⊕
J+,y

(169)

which fills up (167) to a family of isomorphisms. Let A ∈ Diffµ(M) for a closed compact
C∞ manifold M (of dimension m+ q) with an embedded closed compact manifold Y (of
dimension q) as a fictitious edge. Then, considering the former A ∈ Diffµ(Rm × Ω) as a
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local representive, the existence of isomorphisms (169) is a global problem and equivalent
to the condition that indS∗Y σ∧(A) ∈ K(S∗Y ) is the pull back of an element of K(Y )
(namely [J+] − [J−]) under the canonical projection S∗Y → Y . This is a topological
obstruction for the existence of additional edge conditions (of trace, potential, etc., type)
which complete A to a Fredholm block matrix

A =

(
A K
T Q

)
:
Ws,γ(M \ Y )

⊕
Hs(Y, J−)

→
Ws−µ,γ−µ(M \ Y )

⊕
Hs−µ(Y, J+)

, (170)

cf. the discussion in Section 10.5.1 below. Both the evaluation of the non-bijectivity
points of (168) and of indS∗Y σ∧(A) may be serious problems that are far from being
trivial in the case of fictitious edges.

The spaces Ws,γ(M \ Y ) are global weighted edge spaces on M \ Y , locally near Y
modelled on Ws(Rq,Ks,γ(X∧)).

As is known for s = γ, s− µ > m
2
, s− m

2
6∈ N, cf. [30], operators of the kind (170) are

equivalent reformulations of differential operators

A : Hs(M)→ Hs−µ(M)

by applying suitable isomorphisms

Ws,s(M \ Y )
⊕

Hs(Y, J(s))
→ Hs(M), Hs−µ(M)→

Ws−µ,s−µ(M \ Y )
⊕

Hs−µ(Y, J(s− µ))

for vector bundles J(s), J(s− µ) ∈ Vect(Y ). In particular, for codimY = 1 such a block
matrix (170) corresponds to a reformulation of A with respect to the subdivision of M
by means of Y . It would be interesting to achieve similar reformulations of A in terms of
subdivisions with corners, e.g., triangulations of M .

Let us return to the relation (166), interpreted as a local result for a pseudo-differential
operator A ∈ Lµ(cl)(M) on a closed compact manifold M with an embedded fictitious edge
Y of dimension q. We then obtain the following result:

Theorem 2.30. For A ∈ Lµ(cl)(M) and every γ ∈ R there exists an operator Cγ ∈
L−∞(M \ Y ) such that Aγ := A− Cγ has an extension to a continuous operator

Aγ :Ws,γ(M \ Y )→Ws−µ,γ−µ(M \ Y )

for every s ∈ R.

This is an immediate consequence of (166) together with the fact that the operators

Opy(op
γ−n

2
M (.)) are continuous in the weighted spaces Ws(Rq,Ks,γ(X∧)) (in their ‘comp’

or ‘loc’ versions on open sets Ω with respect to y).

2.3 The conormal cage

Let X be a compact manifold with boundary ∂X. By the ‘conormal cage’ we understand
the set S∗X ∪N∗, explained in Remark 2.6, consisting of the cosphere bundle S∗X as the
cage and the conormal unit intervals over the boundary as the bars.
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Consider a pseudo-differential operator

A := r+Ãe+ : L2(X)→ L2(X) (171)

for an Ã ∈ L0
cl(X̃), where X̃ is an neighbouring C∞ manifold of X (for instance, 2X).

If A has the transmission property at the boundary, the homogeneous principal symbol
σψ(A) of order zero has an extension to a continuous function σψ(A) on S∗X ∪N∗ which
is automatically determined by the extension of σψ(A)

∣∣
S∗X|∂X

from the north and south

poles by homogeneity 0 to N∗. This is just the explanation of the relation (104). If A has
not the transmission property this may be not the case, cf. Remark 2.6.

Let us ask what we have to ensure about the symbolic structure of the operator A
when we want to associate with (171) a Fredholm boundary value problem (with extra
conditions on ∂X). First we require the usual ellipticity of A, i.e., σψ(A) 6= 0 on T ∗X \ 0.
In addition, after the experience of Section 10.2.1, we have to consider the principal
boundary symbol

σ∂(A)(y, η) = r+σψ(A)(y, 0, η,Dt)e
+ : L2(R+)→ L2(R+) (172)

(in local coordinates x = (y, t) ∈ Rn
+, with the covariables ξ = (η, τ)).

In order to fill up (172) to a family of isomorphisms (112) (here for s = 0) we need
that (172) is a family of Fredholm operators for (y, η) ∈ T ∗(∂X) \ 0.

Theorem 2.31. For the Fredholm property of (172) for all (y, η) ∈ T ∗(∂X) \ 0 it is
necessary and sufficient that σψ(A)

∣∣
S∗X|∂X

6= 0 and that

σcσ∂(A)(y, w) := σψ(A)(y, 0, 0,+1)g+(w) + σψ(A)(y, 0, 0,−1)g−(w)

does not vanish for all w ∈ Γ 1
2

and y ∈ ∂X.

This result may be found in Eskin’s book [32], see also [124].

Remark 2.32. Observe that the set

{w ∈ C : w = a+g+(
1

2
+ i%) + a−g−(

1

2
+ i%), % ∈ R}

is the straight connection of the points a± ∈ C in the complex plane. The numbers

a±(y) := σψ(A)(y, 0, 0,±1)

are the values of σψ(A) on the north and the south pole of S∗X|∂X . Given any f(y, w) ∈
C∞(∂X,S(Γ 1

2
)) the points

a+(y)g+(
1

2
+ i%) + a−(y)g−(

1

2
+ i%) + f(y,

1

2
+ i%) (173)

define another connection between a+(y) and a−(y) in the complex plane. Choosing any
diffeomorphism (−1,+1) → Γ 1

2
, τ → 1

2
+ i%, such that τ → ±1 corresponds to % → ∓∞

the connection (173) can be reformulated as

a+(y)g+(
1

2
+ i%(τ)) + a−(y)g−(

1

2
+ i%(τ)) + f(y,

1

2
+ i%(τ)), (174)

τ ∈ [−1, 1], which represents together with the values of σψ(A)
∣∣
S∗X|∂X

a continuous func-

tion on the conormal cage S∗X ∪N∗.
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The function f(y, w) in the relation (173) can be regarded as a Mellin symbol of a
family of operators

m(y, η) := ω(t[η]) opM(f)(y)ω̃(t[η]) (175)

for any choice of cut-off functions ω(t), ω̃(t). For the discussion here we may take Mellin
symbols

f(y, w) ∈ C∞(∂X,M−∞),

where M−∞ is the union over ε > 0 of all spaces M−∞
ε := {f(w) ∈ A({1

2
− ε < Rew <

1
2
+ε}) : f(β+i%) ∈ S(R%) for every β ∈ (1

2
−ε, 1

2
+ε), uniformly in compact subintervals}.

With any such Mellin symbol we can associate an operator

M : L2(X)→ L2(X)

which is locally on ∂X defined by Opy(opM(f)) and then glued together by using a
partition of unity on ∂X. We then set

σ∂(M)(y, η) := ω(t|η|) opM(f)(y)ω̃(t|η|)

and

σc(A+M)(y, w) := a+(y)g+(
1

2
+ i%) + a−(y)g−(

1

2
+ i%) + f(y,

1

2
+ i%) (176)

for w = 1
2

+ i%.

Definition 2.33. The function (176) is called the (principal) conormal symbol of the
operator A+M .

Remark 2.34. The notation ‘conormal symbol’ is motivated by the bijection

ν : N∗ → ∂X × Γ 1
2
, (y, τ)→ (y,

1

2
+ i%(τ)) (177)

which admits the interpretation of σc(A + M)(y, w) for w ∈ Γ 1
2

as a function on the
conormal unit interval bundle N∗ of the boundary ∂X.

What concerns the summand A the notation is compatible with the information of
the preceding section. In fact, let us write A locally in the coordinates (y, t) ∈ Ω×R+ in
the form

A = Opy(r
+ opt(a)(y, η)e

+)

for a symbol a(y, t, η, τ) ∈ Sµcl(Ω× R+ × Rn
η,τ ). Then we know that

op+(a)(y, η) = r+ opt(a)(y, η)e
+

admits a Mellin representation near t = 0 with the principal conormal symbol

σc(op+(a))(y, w) = a(0)(y, 0, 0, 1)g+(w) + a(0)(y, 0, 0,−1)g−(w), (178)

where a(0)(y, t, η, τ) is the homogeneous principal component of the symbol a. For the
Mellin summand M = Op(y)(m) we employ such a notation anyway, namely,

σc(M)(y, w) = σc(m)(y, w) = f(y, w),
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cf. also Section 10.1.2. The notation ‘conormal symbol’ of an operator, originally intro-
duced in [103], is motivated by the relationship with the conormal bundle of a boundary
and the inner normal, interpreted as a manifold with conical singularity. The boundary
symbol of (171) generates a function (174) (for f = 0) on the conormal interval [−1,+1],
and this function has just the meaning of the conormal symbol of the operator (171) when
it is regarded as an element of the cone calculus on the half-axis, see [124], [134].

Theorem 2.35. The conditions σψ(A)
∣∣
S∗X|∂X

6= 0 and σc(A + M)(y, w) 6= 0 for all

y ∈ ∂X and all w ∈ Γ 1
2

are necessary and sufficient for the Fredholm property of the
operators

σ∂(A+M)(y, η) : L2(R+)→ L2(R+) (179)

for all (y, η) ∈ T ∗(∂X) \ 0.

This result is an information from [32], see also [124].
By virtue of the homogeneity σ∂(A+M)(y, λη) = κλσ∂(A+M)(y, η)κ−1

λ for all λ ∈ R+

the index of the Fredholm operators (179) is determined by the operators for (y, η) ∈
S∗(∂X), the unit cosphere bundle induced by T ∗(∂X). The space S∗(∂X) is compact,
and we have

indS∗(∂X) σ∂(A+M) ∈ K(S∗(∂X)) (180)

(here K(.) denotes the K group on the space in the brackets; recall that K(.) is the group
of equivalence classes of pairs (J,G) of vector bundles on that space, where (J,G) ∼
(J̃ , G̃)⇔ J⊕ G̃⊕H ∼= J̃⊕G⊕H for some vector bundle H (we are talking about smooth
complex vector bundles when the underlying space is a C∞ manifold, otherwise about
continuous complex vector bundles).

The element (180) is represented by the families of kernels and cokernels of the oper-
ators σ∂(A +M)(y, η), (y, η) ∈ S∗(∂X), when their dimensions do not depend on (y, η),
otherwise by an easy algebraic construction which reduces the general case to that of
constant dimensions, see, e.g., [124, Section 2.1.7].

The canonical projection π1 : S∗(∂X) → ∂X gives rise to a homomorphism π∗1 :
K(∂X) → K(S∗(∂X)) induced by the bundle pull back, which is compatible with the
equivalence relation.

In order to pass from the operator

A+M : L2(X)→ L2(X)

to a block matrix Fredholm operator

A =

(
A+M K
T Q

)
:

L2(X)
⊕

L2(∂X, J−)
→

L2(X)
⊕

L2(∂X, J+)
(181)

for suitable vector bundles J± on ∂X, where T,K and Q are of similar meaning as the
corresponding operators in (117), we have to require that

indS∗(∂X) σ∂(A+M) ∈ π∗1K(∂X) (182)

which is a pseudo-differential version for a topological obstruction for the existence of
elliptic boundary value problems of Atiyah and Bott [6]. We will come back to the nature
of such obstructions in a more general context in Section 5.3 below. A special case is the
following result:
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Theorem 2.36. Let A + M satisfy the conditions of Theorem 2.35. Then there is an
elliptic boundary value problem of the form (181) if and only if the relation (182) holds.

Of course, if we talk about the extra operators K,Q in (181) we mean that they are
of a similar structure as those in (117). To be more precise, the construction follows by
filling up the Fredholm family (172) to a family of isomorphisms

(
σ∂(A+M) σ∂(K)
σ∂(T ) σ∂(Q)

)
(y, η) :

L2(R+)
⊕
J−,y

→
L2(R+)
⊕
J+,y

,

where J±,y are the fibres of vector bundles J± over y ∈ ∂X. Those bundles on ∂X just
represent the element (182), i.e.,

indS∗(∂X) σ∂(A+M) = [J+]− [J−],

where [J+]− [J−] denotes the equivalence class of (J+, J−).

Remark 2.37. Let us consider, more generally, operators of the form A +M +G for a
so called Green operator G ∈ L(L2(X)) which is defined by G = G0 +G∞ where

G∞ : L2(X)→W∞,0
P (X), G∗

∞ : L2(X)→W∞,0
Q (X)

are continuous for asymptotic types P = {(pj,mj)}j∈N and Q = {(qj, nj)}j∈N as in
Section 1.2, πCP, πCQ ⊂ {Rew < 1

2
}, cf. Remark 2.17, and G0 is locally in coordi-

nates (y, t) ∈ Rn−1 × R+ of the form Op(g) for an operator-valued symbol g(y, η) ∈
S0

cl(Rn−1 × Rn−1;L2(R+),S0
P (R+)) such that the pointwise adjoint is a symbol g∗(y, η) ∈

S0
cl(Rn−1 × Rn−1;L2(R+),S0

Q(R+)). Setting σ∂(G)(y, η) = g(0)(y, η), (y, η) ∈ T ∗(∂X) \ 0,
(cf. Definition 1.27 and Remark 1.29) then we obtain a family of compact operators

σ∂(G)(y, η) : L2(R+)→ L2(R+).

It follows that indS∗(∂X) σ∂(A+M) = indS∗(∂X) σ∂(A+M +G).

The operators G of Remark 2.37 play a similar role as the Green operators in bound-
ary value problems (117) with the transmission property. In the latter case the Mellin
operators M are not necessary to generate an operator algebra. In the case without the
transmission property (here, for simplicity, in L2 spaces and of order zero) boundary value
problems have the form of matrices

A =

(
A+M +G K

T Q

)
. (183)

It also makes sense to consider operators between sections in bundles E,F ∈ Vect(X)
also in the upper left cornes, i.e., to consider operators

A :
L2(X,E)
⊕

L2(∂X, J−)
→

L2(X,F )
⊕

L2(∂X, J+)
. (184)
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Let V0(X) denote the space of all such operators. We then have B0(X) := B0,0(X) ⊂
V0(X), cf. the notation of Section 2.1. Similarly as (115) the principal symbolic hierarchy
has two components, namely,

σ(A) = (σψ(A), σ∂(A)), (185)

with the interior symbol

σψ(A) := σψ(A) : π∗XE → π∗XF, (186)

πX : T ∗X \ 0→ X, and the boundary symbol

σ∂(A) : π∗∂X

E ′ ⊗ L2(R+)
⊕
J−

→ π∗∂X

F ′ ⊗ L2(R+)
⊕
J+

 (187)

π∂X : T ∗(∂X) \ 0→ ∂X, which are bundle morphisms, E ′ := E|∂X , F ′ := F |∂X .

Remark 2.38. (i) The operators (183) form an algebra (algebraic operations are de-
fined when the entries of the operators fit together). In particular, we have

σ(AB) = σ(A)σ(B)

with componentwise multiplication;

(ii) if σ(A) = 0, then (184) is compact.

Definition 2.39. An operator A of the form (183) is called elliptic if both components
of σ(A) are isomorphisms.

Theorem 2.40. An operator (183) is elliptic if and only if (184) is a Fredholm operator.

Given an A ∈ V0(X) and bundles H ∈ Vect(X), L ∈ Vect(∂X) we can pass to a
stabilisation of A by forming a larger block matrix

Ã :=


A+M +G 0 K 0

0 idH 0 0
T 0 Q 0
0 0 0 idL

 :
L2(X,E ⊕H)

⊕
L2(∂X, J− ⊕ L)

→
L2(X,F ⊕H)

⊕
L2(∂X, J+ ⊕ L)

which also belongs to V0(X). It is evident that the ellipticity of A entails the ellipticity

of Ã. If A,B ∈ V0(X) are elliptic we say that A is stable homotopic to B, if there

are stabilisations Ã and B̃ of A and B respectively, such that there is a continuous map
γ : [0, 1] → V0(X) such that γ(t) is elliptic for every t ∈ [0, 1] and γ(0) = Ã, γ(1) = B̃
(here we tacitly use a natural locally convex topology of V0(X)). In a similar manner we
can define stable equivalence of pairs of symbols of elliptic operators.

Clearly the index of an elliptic A ∈ V0(X) only depends on the stable equivalence
class of its principal symbols σ(A). The space V0(X) of boundary value problems on
X of order 0 (as well the subspace B0(X)) is an example of an operator algebra with
a principal symbolic hierarchy, where several components participate in the ellipticity.
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It is an interesting task to understand in which way the components contribute to the
index and whether and how (analytically, i.e., in terms of symbols) the contribution from
one component can be shifted to another one by applying a stable homotopy through
elliptic symbols. Questions of that kind are reasonable for every operator algebra with
symbolic hierarchies. In the present case of the algebra V0(X) the picture is particularly
beautiful. First, for the subalgebra B0(X) a stable homotopy classification of elliptic
principal symbols was given by Boutet de Monvel [13]. The nature of homotopies depends
on whether or not we admit homotopies through elliptic symbols in V0(X), cf. Rempel
and Schulze [103]. We do not give the explicit answer here, but we want to make a few
remarks. If A ∈ V0(X) is (σψ, σ∂)-elliptic, then the upper left corner of (187) is a family
of Fredholm operators. Similarly as Theorem 2.35 that means that (in the bundle case)
σc(A + M)(y, w) is a family of isomorphisms parametrised by w ∈ Γ 1

2
, or, alternatively,

when we pass to the parametrisation as in Remark 2.34, σc(A + M)(y, η) connects the
isomorphisms

σψ(A)(y, 0, 0,±1) : E ′
y → F ′

y (188)

for y ∈ Y by a family of isomorphisms parametrised by N∗. In other words, the ellipticity
of A gives rise to an isomorphism between the pull backs of E and F to the conormal
cage S∗X ∪N∗ with respect to the canonical projection

π : S∗X ∪N∗ → X.

In the case A ∈ B0(X) the isomorphisms (188) are the same for the ‘plus’ and the
‘minus’ sign, and by virtue of the homogeneity of order zero the above mentioned pull
back, restricted to N∗, is nothing other than

σψ(A)(y, 0, 0, τ) : E ′
y → F ′

y (189)

for all −1 ≤ τ ≤ 1. In the case of a boundary value problem A ∈ V0 we have to replace
(189) by a family of the form (174) with f coming from the (in general non-trivial) Mellin
symbol f(y, w) which can cause a non-trivial contribution to indS∗Y σ∂(A), cf. also [124,
Section 2.1.9].

3 How interesting are conical singularities?

An example of a cone is what is given to children in Germany on their first day at school, a large cornet filled with sweets.
The tip of the cone (the ‘conical singularity’) then appears not so interesting, essential things in this connection should be
of non-vanishing volume, while the tip is an unwelcome end.
However, if we look at a piece of material with conical singularities (e.g., glass or iron) and observe heat flow and tension
in the body, the physical effects near the conical points can be very important (for instance, destruct the material). Near
the tips the solutions of corresponding partial differential equations may be singular in a specific way.
The analysis in a neighbourhood of a conical singularity is a first necessary step for building up calculi on configurations
with higher (‘polyhedral’) singularities, when we interpret wedges as Cartesian products of cones and C∞ manifolds, or
‘higher’ corners as cones with base spaces of a prescribed singular geometry.

3.1 The iterative construction of higher singularities

Intuitively, a manifold B with conical singularities is a topological space B with a (finite)
subset B′ of conical points such that B \ B′ is a C∞ manifold, and every v ∈ B′ has a
neighbourhood V in B that is modelled on a cone

X∆ = (R+ ×X)/({0} ×X) (190)
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with base X, where X is a C∞ manifold. In order to classify different possibilities of
choosing ‘singular charts’

χ : V → X∆

on B we only admit maps of a system of singular charts such that for any other element
χ̃ : Ṽ → X∆ of that system the transition map

χ̃reg ◦ χ−1
reg : R+ ×X → R+ ×X

(for χreg := χ
∣∣
V \{v}, etc.) is smooth up to 0, i.e., the restriction of a diffeomorphism

R × X → R × X to R+ × X. In this way we distinguish a conical singularity from an
infinite variety of mutually non-equivalent cuspidal singularities.

Let us assume that B′ only consists of a single point v; many (not all) considerations
for a finite set of conical singularities are similar to the case of one conical singularity.

The impact of a conical singularity of a space B can easily be underestimated. At
the first glance we might think that the new effects (compared with the smooth case)
in connection with ellipticity and other structures around the Fredholm property of a
Fuchs type operator A are of the same size as the singularities themselves. However, as
we already saw, there is suddenly a pair (σψ(A), σc(A)) of principal symbols, with the
conormal symbol σc(A) as a new component, a family of elliptic operators on the base of
the cone, and, apart from all the other remarkable things in connection with the pseudo-
differential nature of parametrices in the conical case, the conormal symbol has ‘hidden’
spectral properties, i.e., non-bijectivity points in the complex plane C 3 w

σc(A)(w) : Hs(X)→ Hs−µ(X)

(and also poles in the pseudo-differential case) that are often not explicitly known (or
extremly difficult to detect), even in the case of fictitious conical singularities.

Conical singularities are important to create higher order ‘polyhedral’ singularities.
In fact, starting from a cone X∆ with a smooth base X we can form Cartesian products
X∆ × Ω with open sets Ω in an Euclidian space Rq. A manifold W with smooth edge Y
is then modelled on such wedges X∆×Ω near Y (with Ω corresponding to a chart on Y ).
Similarly as for conical singularities we impose some condition on the nature of transition
maps between local wedges. More precisely, if χ : V → X∆ × Ω, χ̃ : V → X∆ × Ω̃ are
two singular charts on W near a point y ∈ Y , and if we set

χreg := χ
∣∣
V \Y : V \ Y → R+ ×X × Ω, χreg := χ̃

∣∣
V \Y : V \ Y → R+ ×X × Ω̃,

then the transition map

χ̃reg ◦ χ−1
reg : R+ ×X × Ω→ R+ ×X × Ω̃ (191)

is required to be the restriction of a diffeomorphism R×X×Ω→ R×X×Ω̃ to R+×X×Ω.
This allows us to invariantly attach {0}×X×Ω to the open stretched wedge R+×X×Ω
which gives us R+×X×Ω, the local description of the so called stretched manifold W with
edge, associated with W . The stretched manifold W is a C∞ manifold with boundary,
and ∂W has the structure of an X-bundle over Y .
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Manifolds with edges form a category M1, with natural morphisms, especially, iso-
morphisms. The manifolds with conical singularities form a subcategory (with edges of
dimension 0).

From M1 we can easily pass to the category M2 of manifolds with singularities of
order 2, locally near the singular subsets modelled on

cones W∆ or wedges W∆ × Ω

for a manifold W ∈ M2 and open Ω ⊆ Rq2 . This concept has been carried out in a
paper of Calvo, Martin, and Schulze [15]. In other words, by repeatedly forming cones
and wedges we can reach caterogies of manifolds with singularities which contain many
concrete stratified spaces that are interesting in applications.

Remark 3.1. The notion ‘manifold’ in this connection is only used for convenience. Al-
though there are analogues of charts, here called singular charts, the spaces are topological
manifolds only in exceptional cases, e.g., X∆ is a topological manifold when X is a sphere
but not when X is a torus.

Observe that the category Mk of spaces M of singularity order k ∈ N (where k = 0
means the C∞ case) can also be generated as follows: A space M belongs to Mk if there
is a submanifold Y ∈M0 such that M \Y ∈Mk−1, and every y ∈ Y has a neighbourhood
V modelled on a wedge X∆

(k−1) × Ω for a base X(k−1) ∈Mk−1, Ω ⊆ Rq open, q = dimY ,

with similar requirements on the transition maps as before, cf. [15]. For dimY = 0 we
have a corner situation, while dimY > 0 corresponds to a higher edge.

Setting, for the moment Y (k) := Y from M \ Y (k) ∈Mk−1 we obtain in an analogous
manner a manifold Y (k−1) ∈ M0 such that (M \ Y (k)) \ Y (k−1) ∈ Mk−2. By iterating
this procedure we obtain a sequence of disjoint C∞ manifold Y (l), l = 0, . . . , k, such that
M \

{⋃m
j=0 Y

(k−j)} ∈Mk−(m+1) for every 0 ≤ m < k, and Y (0) := M \
{⋃k−1

j=0 Y
(k−j)}.

Then we have M =
⋃k
l=0 Y

(l), and the spaces

M (j) :=
k⋃
l=j

Y (l) ∈Mk−l

form a sequence
M =: M (0) ⊃M (1) ⊃ . . . ⊃M (k) (192)

such that Y (j) = M (j) \M (j+1), j = 0, . . . , k − 1, and Y (k) = M (k) are C∞ manifolds.
Those may be interpreted as smooth edges of M of different dimensions. In particular,
Y (0) is the C∞ part of M of highest dimension. Incidentally we call Y (0) the main stratum
of M and set dimM := dimY (0). Moreover, we have M (j)\M (j+1) ∈Mj, j = 0, . . . , k−1.
Locally near any y ∈ Y (j) the space M is modelled on a wedge

X4
(j−1) × Ω (193)

for an open Ω ⊆ RdimY (j)
and an element X(j−1) ∈Mj−1.

Example 3.2. (i) If M is a C∞ manifold with boundary, we have M ∈M1 and M (1) =
∂M , and Y (0) = M \ ∂M .
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(ii) A manifold M with conical singularity {v} belongs to M1, and we have M (1) = {v}
and Y (0) = M \ {v}.

(iii) Let Ωj, j = 0, 1, 2, be C∞ manifolds, and set M := (Ω∆
0 ×Ω1)

∆×Ω2. Then we have
M ∈M2 and Y (0) = R+ × R+ × Ω0 × Ω1 × Ω2, Y

(1) = R+ × Ω1 × Ω2, Y
(2) = Ω2.

(iv) Another example of a manifold with singularities is a cube M in R3 with its boundary
M (1), the system M (2) of one-dimensional edges including the corners, and M (3) the
set of corner points. In this case we have M ∈ M3, M

(1) ∈ M2, M
(2) ∈ M1 and

M (3) ∈M0.

For the calculus of operators on an M ∈Mk it is reasonable to have a look at the space
of ‘adequate’ differential operators. For M ∈M0 we simply take Diffµ(M), the space of
differential operators of order µ with smooth coefficients. ForM ∈M1 we take Diffµdeg(M),

defined as the subspace of all A ∈ Diffµ(M \ Y (1)) that have in a neighbourhood of any
y ∈ Y (1) in the splitting of variables (r, x, y) ∈ R+ ×X(0) × Ω (with X(0) ∈M0 being the

base of the local model cone near Y (1) and Ω ⊆ RdimY (1)
open) the form

r−µ
∑

j+|α|≤µ

ajα(r, y)
(
−r ∂

∂r

)j
(rDy)

α (194)

with coefficients ajα(r, y) ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X(0))). By induction we can define

A ∈ Diffµdeg(M) (195)

for every M ∈Mk as follows. On M \Y (k) ∈Mk−1 we assume A
∣∣
M\Y (k) ∈ Diffµdeg(M \Y (k))

which is already defined, and in the splitting of variables (r, x, y) ∈ R+×X(k−1)×Ω near

any point y ∈ Y (k), Ω ⊆ RdimY (k)
open, X(k−1) ∈Mk−1, the operator A is required to be

of the form (194) with coefficients

ajα(r, y) ∈ C∞(R+ × Ω, Diff
µ−(j+|α|)
deg (X(k−1))). (196)

The definition of (195) gives rise to the notion of a principal symbolic hierarchy

σ(A) := (σj(A))j=0,...,k, (197)

where σ0(A) = σψ(A
∣∣
M\M ′

)
is the standard homogeneous principal symbol of A

∣∣
M\M ′ ∈

Diffµ(M \M ′) (recall that M \M ′ ∈M0). More generally, (σj(A))j=0,...,k−1 is the symbol
of A

∣∣
M\Y (k) ∈ Diffµdeg(M \ Y (k)) in the sense of M \ Y (k) ∈Mk−1, while we set

σk(A)(y, η) := r−µ
∑

j+|α|≤µ

ajα(0, y)
(
−r ∂

∂r

)j
(rη)α, (198)

(y, η) ∈ T ∗Y (k) \ 0, as a family of operators between functions on the model cone X∧
(k−1).

The nature of those functions will be explained in Section 5.1 in more detail.
Observe that differential operators (195) can be generated in connection with Rie-

mannian metrics. Assume that X(k−1) ∈Mk−1, and let g(k−1) be a Riemannian metric on
X(k−1) \X ′

(k−1) ∈M0. Consider the Riemannian metric

dr2
k + r2

kg(k−1) + dy2
k (199)
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on the stretched wedge R+ × (X(k−1) \ X ′
(k−1)) × Ωk, Ωk ⊆ Rqk open, for rk ∈ R+,

yk := (yk,1, . . . , yk,qk) ∈ Ωk. Then the Laplace-Beltrami operator associated with (199)
has the form

r−2
k

(
r2
k

∂2

∂r2
k

+ ∆g(k−1)
+ r2

k∆Ωk

)
, (200)

where ∆g(k−1)
is the Laplace-Beltrami operator on X(k−1) \ X ′

(k−1) associated with g(k−1)

and ∆Ωk
=

∑qk
j=1

∂2

∂y2
k,j

the Laplacian on Ωk. Note that r2
k
∂2

∂r2k
=

(
rk

∂
∂rk

)2

+rk
∂
∂rk

. Assume

that g(k−1) is given as
g(k−1) := dr2

k−1 + r2
k−1g(k−2) + dy2

k−1 (201)

when X(k−1) ∈ Mk−1 is locally modelled near an edge point on a wedge X∆
(k−2) × Ωk−1

for an X(k−2) ∈ Mk−2, Ωk−1 ⊆ Rqk−1 open, (rk−1, x, yk−1) ∈ R+ × X(k−2) × Ωk−1, and
g(k−2) a Riemannian metric on X(k−2) \ X ′

(k−2). Inserting the Laplace-Beltrami operator

to (201) (using notation analogous to (200)) into (201) it follows that the Laplace-Beltrami
operator for the Riemannian metric

dr2
k + r2

k

{
dr2

k−1 + r2
k−1g(k−2) + dy2

k−1

}
+ dy2

k

has the form

r−2
k

{
r2
k

∂2

∂r2
k

+ r−2
k−1

{
r2
k−1

∂2

∂r2
k−1

+ ∆g(k−2)
+ r2

(k−2)∆Ωk−1

}
+ r2

k−1∆Ωk

}
.

By iterating this process we finally arrive at an X0 ∈ M0; if we prescribe a Riemannian
metric g0 onX0 and insert one Laplacian into the other we obtain an element of Diff2

deg(M)
on the singular manifold M := X∆

(k−1) × Ωk ∈Mk.

3.2 Operators with sleeping parameters

The (pseudo-differential) calculus of operators on a manifold with conical singularities or
edges, locally modelled on

cones X∆ or wedges X∆ × Ω, (202)

for a (say, closed and compact) C∞ manifold X, gives rise to specific operator-valued
amplitude functions, taking values in operators on X and X∆, respectively. For instance,
the calculus on the (infinite stretched) cone X∆ = R+×X 3 (r, x) starts from Fuchs type
differential operators

A = r−µ
µ∑
j=0

aj(r) (−r∂r)j , (203)

aj(r) ∈ C∞(R+,Diffµ−j(X)). The operator family f(r, w) :=
∑µ

j=0 aj(r)w
j can be re-

garded as an element of C∞(R+, L
µ
cl(X; Γβ)) for every β ∈ R. Then, if we fix β := n+1

2
−γ

for n = dimX, we can interpret A as an operator

A = r−µ op
γ−n

2
M (f) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)
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(under suitable assumptions on the r-dependence of the coefficients aj(r) for r →∞, for
instance, independence of r for large r).

Alternatively, we can start from an operator family p(r, %) := p̃(r, r%) for any

p̃(r, %̃) ∈ C∞(R+, L
µ
cl(X; R%̃)). (204)

In the pseudo-differential case we apply suitable quantisations which produce operators
Cγ ∈ L−∞(X∧) such that

Aγ := r−µ opr(p)− Cγ : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧) (205)

is continuous. Such a quantisation can be obtained by constructing a (non-canonical)
map p̃(r, %̃)→ f(r, w) for an f(r, w) ∈ C∞(R+, L

µ
cl(X; Γn+1

2
−γ)) such that

opr(p) = op
γ−n

2
M (f) mod L−µ(X∧). (206)

In order to find Cγ we choose cut-off functions ω(r), ω̃(r), ˜̃ω(r) such that ω̃ = 1 on
suppω, ω ≡ 1 on supp ˜̃ω. Then, using pseudo-locality, we obtain

r−µ opr(p) = ωr−µ opr(p)ω̃ + (1− ω)r−µ opr(p)(1− ˜̃ω) + C

for some C ∈ L−∞(X∧). Now (206) allows us to write

r−µ opr(p) = ωr−µ op
γ−n

2
M (f)ω̃ + (1− ω)r−µ opr(p)(1− ˜̃ω) + Cγ (207)

for Cγ := C + ωr−µ
{
opr(p) − op

γ−n
2

M (f)
}
ω̃ ∈ L−∞(X∧). This gives us the continuity of

(205). More precisely, Aγ : C∞
0 (X∧)→ C∞(X∧) extends by continuity to (205) (C∞

0 (X∧)
is dense in Ks,γ(X∧) for every s, γ ∈ R). This is remarkable, since we have

ωKs,γ(X∧) = ωrγKs,0(X∧)

for every γ ∈ R and a cut-off function ω(r), which shows that the argument functions
may have a pole at r = 0 of arbitrary order when γ is negative enough (cf., analogously,
Theorem 2.30).

The process of generating operators (205) in terms of parameter-dependent fami-
lies (204) can be modified by starting from an edge-degenerate family p(r, y, %, η) :=
p̃(r, y, r%, rη) for

p̃(r, y, %̃, η̃) ∈ C∞(R+ × Ω, Lµcl(X; R1+q
%̃,η̃ )), (208)

Ω ⊆ Rq open. We can interpret (208) also as a family (204) with ‘sleeping parameters’
(y, η̃) ∈ Ω×Rq, while (204) itself consists of an operator in Lµcl(X) with sleeping parameters
(r, %̃) ∈ R+. These are waked up in the process of cone quantisation r−µ opr(p) → Aγ.
The remaining parameters (y, η̃) ∈ Ω × Rq are waked up by means of a suitable edge
quantisation.

The latter step is organised by means of a reformulation (207) depending on the
parameters (y, η). According to Theorem 2.27 we choose an operator function

f(r, y, w, η) := f̃(r, y, w, rη)
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for an f̃(r, y, w, η̃) ∈ C∞(R+ × Ω, Lµcl(X; Γn+1
2
−γ × Rq

η̃)) such that

opr(p)(y, η) = op
γ−n

2
M (f)(y, η) mod C∞(R+ × Ω, L−∞(X∧; Rq

η)).

Then we write r−µ opr(p)(y, η) in the form

r−µ op(p)(y, η) = Aγ(y, η) + Cγ(y, η)

for

Aγ(y, η) := ω(r[η])r−µ op
γ−n

2
M (f)(y, η)ω̃(r[η])

+ (1− ω(r[η]))r−µ opr(p)(y, η)(1− ˜̃ω(r[η])). (209)

From the construction it follows that Cγ(y, η) ∈ C∞(Ω, L−∞(X∧; Rq
η)). Recall that η →

[η] is a strictly positive C∞ function in Rq that is equal to |η| for large |η|. Now

Aγ(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

is again a family of continuous operators for all s ∈ R, provided that (what we tacitly
assume) the operator family (208) has a suitable dependence on r for r → ∞ (e.g.,
independent of r for r > const). In the edge quantisation (i.e., quantisation near r = 0)
it is convenient instead of Aγ(y, η) to consider the operator function

aγ(y, η) := σ(r)Aγ(y, η)σ̃(r)

for some cut-off functions σ, σ̃ which is completely sufficient, since far from r = 0 our
operator on a manifold with edge should belong to the standard calculus of pseudo-
differential operators (where σ, σ̃ are localising functions in connection with a partition
of unity on the respective manifold). Summing up it follows that

σr−µ opr(p)(y, η)σ̃ = σAγ(y, η)σ̃ mod C∞(Ω, L−∞(X∧; Rq)).

Theorem 3.3. We have σAγ(y, η)σ̃ ∈ Sµ(Ω × Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) for every
s, γ ∈ R (cf. Definition 1.27).

The edge-quantisation itself associated with r−µp(r, y, %, η) now follows by applying
Opy which gives us continuous operators

Opy(σAγσ̃) :Ws
comp(Ω,Ks,γ(X∧))→Ws−µ

loc (Ω,Ks−µ,γ−µ(X∧))

for all s, µ ∈ R.
In Theorem 3.3 and the subsequent application of the Fourier operator convention

along Ω 3 y we took operators of Lµcl(X) with sleeping parameters (r, y, %, η) ∈ R+ ×
Ω × R1+q, combined with a specific rule to activate them. By a globalisation (with
a partition of unity, etc.) we obtain operators on a manifold X1 ∈ M1 in the sense
of Section 3.1. Again we can assume that our operators contain sleeping parameters
(r2, y2, %2, η2) ∈ R+ × Ω2 × R1+q2 and apply a similar scheme for the next quantisation.

It turns out that it is advisable for such a calculus on wedges X∆
1 × Ω2 of second

generation to slightly modify the expression for Aγ2(y2, η2) (the analogue of (209)) by
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an extra localising factor in the second summand, on the diagonal with respect to the
r2-variable, cf. [17] and Section 5.4, formula (317). This shows that in the iteration of this
process one has to be careful, because the infinite cone X∆

1 has edges with exit to infinity
for r2 → ∞. The shape of quantisations is worth to be analysed also for other reasons,
see the paper [42] for alternative edge quantisations and their role for a transparent
composition behaviour of edge symbols. In other words, the idea of introducing sleeping
parameters in iterated quantisations for higher calculi should be combined with other
technical inventions.

3.3 Smoothing operators who contribute to the index

Let M be a smooth compact manifold and Lµcl(M) the space of classical pseudo-differential
operators of order µ on M . Moreover, let S(µ)(T ∗M \ 0) denote the set of all a(µ)(x, ξ) ∈
C∞(T ∗M \ 0) such that a(µ)(x, λξ) = λµa(µ)(x, ξ) for all λ > 0, (x, ξ) ∈ T ∗M \ 0. Then we
have the principal symbolic map

σψ : Lµcl(M)→ S(µ)(T ∗M \ 0).

Together with the canonical embedding Lµ−1
cl (M)→ Lµcl(M) we obtain an exact sequence

0→ Lµ−1
cl (M)→ Lµcl(M)→ S(µ)(T ∗M \ 0)→ 0,

in particular, Lµ−1
cl (M) = kerσψ. Every A ∈ Lµcl(M) induces continuous operators

A : Hs(M)→ Hs−µ(M), (210)

and (210) is compact for A ∈ Lµ−1
cl (M). In particular, L−∞(M) ∼= C∞(M×M) consists of

compact operators. As we know the ellipticity of A is equivalent to the Fredholm property
of (210), and we have

indA = ind(A+ C) (211)

for every C ∈ Lµ−1
cl (M). Denoting by Lµcl(M)ell the set of all elliptic A ∈ Lµcl(M) and

S(µ)(T ∗M \ 0)ell := σψL
µ
cl(M)ell, this relation shows that the index

ind : Lµcl(M)ell → Z

can be regarded as a map
ind : S(µ)(T ∗M \ 0)ell → Z. (212)

S(µ)(T ∗M \ 0)ell := σψL
µ
cl(M)ell. As is known the index only depends on stable homotopy

classes of elliptic principal symbols (the above mentioned relations are valid in analogous
form for operators acting between Sobolev spaces of sections of smooth complex vector
bundles on M ; the direct sum of elliptic operators is again elliptic), and the classical
Atiyah-Singer index theorem just refers to these facts.

The phenomena completely change if the underlying manifold is not compact. A
simple example is the case

M := (0, 1).
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Taking the identity operator A = 1 in H0(M) := H0(R)|(0,1) which belongs to L0
cl(M),

for every k ∈ N we find an operator Ck ∈ L−∞(M) ∩ L(H0(M), H0(M)) such that
A+ Ck : H0(M)→ H0(M) is a Fredholm operator and

ind(A+ Ck) = k.

We can construct such Ck in the form

Ck = ω opM(fk)ω̃

for a suitable Mellin symbol fk(z) ∈ S−∞(Γ 1
2
), with cut-off functions ω, ω̃ vanishing in a

neighbourhood of 1. In this case k just coincides with the winding number of the curve

L := {w ∈ C : 1 + fk(z), z ∈ Γ 1
2
} (213)

under the ellipticity assumption 0 6∈ L.
This is a very special case of operators on a manifold with conical singularities, here the

unit interval with the end points as conical singularities. In other words, in the (pseudo-
differential) calculus on such a manifold we find smoothing operators that produce any
other index when added to a Fredholm operator. Clearly we can also destroy the Fredholm
property when the first summand A is Fredholm, or may achieve it when A is not Fredholm
before. In the present example this is just determined by 0 ∈ L or 0 6∈ L. Other examples
are elliptic operators on more general manifolds B with conical singularities. If we take,
for instance, B = X∆, with a closed compact C∞ manifold X, and start from an operator
(203),

A : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧), (214)

then (214) is Fredholm if and only if it is elliptic with respect to the components of the
principal symbolic hierarchy

σγ(A) := (σψ(A), σc(A)
∣∣
Γn+1

2 −γ

, σE(A)). (215)

Here σψ(A) is the principal interior symbol with ellipticity in the Fuchs type sense; more-
over, σc(A)(z) is the principal conormal symbol with ellipticity in the sense that

σc(A)(z) : Hs(X)→ Hs−µ(X)

is a family of bijections for all z ∈ Γn+1
2
−γ and any s ∈ R. Finally, σE(A) is the principal

exit symbol. The meaning of σE(A) is as follows. Consider A in any subset R+ × U 3
(r, x) for r → ∞, with U being a coordinate neighbourhood on X. We choose a chart
χ : R+×U → Γ to a conical set Γ ⊂ Rn+1

x̃ \ {0} in such a way that χ(r, x) = rχ1(x) for a
diffeomorphism χ1 : U → V to an open subset V ⊂ Sn. Then, in Euclidean coordinates
x̃ ∈ Γ (induced by Rn+1 and related to (r, ϕ) for ϕ = χ1(x) via polar coordinates) the
symbol of A takes the form

p(x̃, ξ̃) =
∑
|α|≤µ

aα(x̃)ξ̃
α, (216)

aα ∈ C∞(Γ). Concerning the precise behaviour of that symbol with respect to x̃ 6= 0 for
|x̃| → ∞, in this discussion we are completely free to make a convenient choice.
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Assume, for simplicity, Γ = Rn+1 \ {0}; otherwise our considerations can easily be
localised in Γ. The condition is then

χ(x̃)aα(x̃) ∈ S0
cl(Rn+1

x̃ ) (217)

for any excision function χ in Rn+1, i.e., χ(x̃) ≡ 0 for |x̃| < c0, χ(x̃) ≡ 1 for |x̃| > c1 for
certain 0 < c0 < c1. Let aα,(0)(x̃) denote the homogeneous principal symbol of aα(x̃) of
order 0 in x̃ 6= 0. Then we set

σE(p)(x̃, ξ̃) := (σe(p)(x̃, ξ̃), σψ,e(p)(x̃, ξ̃))

for

σe(p)(x̃, ξ̃) :=
∑
|α|≤µ

aα,(0)(x̃)ξ̃
α, (x̃, ξ̃) ∈ (Rn+1 \ {0})× Rn+1,

σψ,e(p)(x̃, ξ̃) :=
∑
|α|=µ

aα,(0)(x̃)ξ̃
α, (x̃, ξ̃) ∈ (Rn+1 \ {0})× (Rn+1 \ {0}).

This construction has an invariant meaning, first, locally on conical sets Γ, Γ̃ ⊂ Rn+1\{0},
under transition maps Γ → Γ̃ that are homogeneous in the variable |x̃| of order 1, and
then globally on R+ × Sn. This gives us a pair of functions

σe(A)(r, x, %, ξ) ∈ C∞(T ∗(R+ ×X)), σψ,e(A)(r, x, %, ξ) ∈ C∞(T ∗(R+ ×X) \ 0)

with the homogeneity properties σe(A)(λr, x, %, ξ) = σe(A)(r, x, %, ξ), σψ,e(A)(r, x, %, λξ) =
λµσψ,e(A)(r, x, %, ξ), for λ > 0 (in particular, σe(A) does not depend on r in this case).

The pair
σE(A) := (σe(A), σψ,e(A))

is called the principal exit symbol of A (of order (µ; 0). Now the ellipticity of A with
respect to σE(A) is defined as σe(A) 6= 0 and σψ,e(A) 6= 0. Together with the above
mentioned ellipticity conditions with respect to σψ(A) and σc(A) we thus obtain the
ellipticity of A with respect to σγ(A), cf. the formula (215).

Let F be a Fréchet space, and µ ∈ R. Then Sµ(cl)(R
m;F ) denotes the space of

all (classical or non-classical) symbols p(η) with values in F , i.e., if (πι)ι∈N is a semi-
norm system for the Fréchet topology of F , the condition is πι(D

α
η p) ≤ cα〈η〉µ−|α| for all

α ∈ Nm, ι ∈ N, and, in the classical case, p(η) ∼ χ(η)
∑∞

j=0 p(µ−j)(η) for homogeneous

components p(µ−j)(η) ∈ C∞(Rm \ {0}, F ), p(µ−j)(λη) = λµ−jp(µ−j)(η) for all λ > 0, j ∈ N.

Remark 3.4. The condition on local symbols (216) of an operator

A = r−µ
µ∑
j=0

aj(r)
(
−r ∂

∂r

)j
, (218)

aj(r) ∈ C∞(R+,Diffµ−j(X)), j = 0, . . . , µ, can also be formulated as

aj(r) ∈ S0
cl(R,Diffµ−j(X))

∣∣
R+
, j = 0, . . . , µ. (219)
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According to Theorem 1.11 the ellipticity of A is equivalent to the Fredholm property
of the map (212).

The operator A belongs to the cone algebra of pseudo-differential operators on X∧.
The cone algebra is motivated by the problem to express parametrices of elliptic differen-
tial operators. It contains operators of the kind

C := r−µω(r) op
γ−n

2
M (f)ω̃(r) (220)

with meromorphic Mellin symbols f(w) ∈M−∞
R (X) and arbitrary cut-off functions ω, ω̃,

cf. Section 10.1.2. Clearly we have C ∈ L−∞(X∧), and

C : Ks,γ(X∧)→ K∞,γ−µ(X∧)

is continuous for every s ∈ R.
Similarly as before in the special case M = (0, 1) or M = R+ we have the following

general theorem.

Theorem 3.5. Let A be an operator on X∧ as in Remark 3.4 which is elliptic with
respect to σγ(A). Then for every k ∈ N there exists an fk ∈ M−∞

R (X) for some discrete

asymptotic type R such that, when we set Ck = r−µω(r) op
γ−n

2
M (fk)ω̃(r), we have

ind(A+ Ck) = k

as a Fredholm operator (215).

The operator A+ Ck belongs to the cone algebra on X∧ (with discrete asymptotics),
and the Fredholm property in general is equivalent to the ellipticity. In the present case
the principal conormal symbol

σc(A+ Ck)(w) = σc(A)(w) + fk(w)

is elliptic with respect to the weight γ, i.e., induces a family of isomorphisms

σc(A+ Ck)(w) : Hs(X)→ Hs−µ(X)

for w ∈ Γn+1
2
−γ, s ∈ R. This is a generalisation of the above mentioned condition 0 6∈ L

for the curve (213)

Remark 3.6. The phenomenon that a calculus of operators contains non-compact oper-
ators that are smoothing on the main stratum is a hint that those smoothing operators
contain a hidden extra principal symbolic structure. In the case of operators in Theorem
3.5 this is just the conormal symbolic structure which is non-vanishing on operators of
the form (220). Other examples are the Green operators G occurring in boundary value
problems (114) which are smoothing over intX, but their boundary symbol σ∂(G) may be
non-trivial.
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3.4 Are cylinders the true corners?

If we want to describe analytic phenomena on a non-compact manifold, for instance,
on R+, it appears advisable to do that in intrinsic terms, not referring to the negative
counterpart R−.

Another aspect is the requirement of invariance of the calculus under diffeomorphisms,
for instance,

χ : R+ → R, r → − log r. (221)

Diffeomorphisms may destroy the geometry of the underlying space. For instance, (221)
transforms the conical singularity r = 0 to infinity, while R− disappears in the beyond.
The main results, e.g., on boundary value problems in, say, a half-space Rn

+ = Rn−1×R+ 3
(y, r), with R+ being the inner normal to the boundary Rn−1, can certainly be transformed
to results in Rn by the substitution (y, r) → (y, χ(r)), but after such a transformation
we lose a part of the feeling for some ingredients of such problems, for instance, for the
operator of restriction on Sobolev spaces u(y, r) ∈ Hs(Rn

+), s > 1
2
, u(y, r) → u(y, 0).

Moreover, if we define pseudo-differential actions in Hs(Rn
+) by r+Ae+, where A is a

pseudo-differential operator in Rn, and e+ the extension by zero from Rn
+ to Rn, r+ the

restriction to the half-space, it is not very natural to transport the boundary to infinity.
Boundary value problems may be regarded as edge problems with all the aspects of
interpreting Rn

+ as a manifold with edge r = 0, R+ as the model cone of local wedges,
and A as an edge-degenerate operator, cf. [124], [134].

Also other information is better located ‘in the finite’, for instance, on the precise
behaviour of (pseudo-)differential operators in Rn 3 x = (x1, . . . , xn) with respect to a
fictitious conical singularity x = 0, or a fictitious edge or corner, e.g., (xq+1, . . . , xn) = 0
for some 0 ≤ q < n. The various cone, edge or corner (pseudo-) differential operators
in Rn with smooth symbols across the singularities belong to the more exclusive clubs of
Fuchs, edge, or corner operators near those singularities.

As we saw, the new interpretation has its price: the quantisations produce a complex
degenerate behaviour of the resulting operators, see, for instance, the formulas (32), (33).

In Fuchs degenerate operators on R+×X it is natural to employ the Mellin transform
instead of the Fourier transform in the axial variable r ∈ R+. The corresponding Mellin
symbols r−µf(r, w) for f ∈ C∞(R+, L

µ
cl(X; Γn+1

2
−γ)), n = dimX, just produce operators

in the cone calculus

r−µω(r) op
γ−n

2
M (f)ω̃(r) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

and conormal symbols
f(0, w) : Hs(X)→ Hs−µ(X),

w ∈ Γn+1
2
−γ. More generally, in edge-degenerate situations we have parameter-dependent

Mellin symbols r−µf(r, y, w, rη) for f(r, y, w, η̃) ∈ C∞(R+ × Ω, Lµcl(X; Γn+1
2
−γ × Rq

η̃)) and

corresponding y-dependent conormal symbols

f(0, y, w, 0) : Hs(X)→ Hs−µ(X),

y ∈ Ω, w ∈ Γn+1
2
−γ. In such a connection it is also common to replace the stretched cone

R+ ×X by an infinite cylinder by applying the substitution (221).
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Considering the cylinder X∧ instead of the ‘true’ cone X∆ = (R+×X)\ ({0}×X) we
already make a compromise insofar we give up the cone ‘as it is’. On the cylinder we have
to restore the information by declaring certain differential operators as the ‘natural’ ones,
namely, those which generalise the shape of the Laplace-Bertrami operators belonging to
conical metrics, cf. (204). Transforming such an operator to the cylinder R ×X by the
substitution t = − log r we obtain an operator of the form

e−tγ
µ∑
j=0

bj(t)
∂j

∂tj
(222)

with coefficients bj(t) ∈ C∞(R,Diffµ−j(X)) of a specific behaviour for t → ∞. The
smoothness of aj(r) up to r = 0 has an equivalent reformulation in terms of a corre-
sponding property of bj(t) up to t =∞, but, as noted before, this appears less intuitive.
Moreover, on a cylinder, regarded as the original configuration, we could find quite differ-
ent operators more natural, for instance, when we identify Rn+1ex \{0} with R+×Sn 3 (t, x)
via polar coordinates and transform standard differential operators

∑
|α|≤µ aα(x̃)D

αex with

coefficients aα(x̃) ∈ Sνcl(Rn+1ex ) (for some ν ∈ R and, say, aα(x̃) = 0 in a neighbourhood of
x̃ = 0; cf. also (217)) into the form

µ∑
j=0

cj(t)
∂j

∂tj
(223)

with certain resulting coefficients cj(t) ∈ C∞(R+,Diffµ−j(Sn)) (the latter vanish for t < ε
for some ε > 0 and are thus identified with functions on R 3 t). It is clear that the
behaviour of (223) for t→∞ is fairly different from that of (222) (in the case X = Sn).
Moreover, considering a differential operator on an infinite cylinder R × X 3 (t, x) in
general, we can assume any other behaviour for t → ±∞. If the crucial point are the
qualitative properties of solutions u of the equation Au = f , the answer depends on
those assumptions, and different classes of operators may have nothing to do with each
other. In other words, the consideration of a ‘geometric’ object alone (e.g., a cylinder,
or a {cone}\{vertex}, or a {compact smooth manifold with boundary}\{boundary}, or
another non-compact manifold which is diffeomorphic to that) implies nothing on the
analysis there, unless we do not make a specific choice of the operators. Many non-
equivalent cases may be of interest, but it happens that the terminology is confusing.
The first step of finding out who is speaking about what may be to be aware of the
ambiguity of notation. Not only the scenarios around conical singularities, or cylindrical
ends, or boundary value problems came to a colourful terminology, also the higher floors
of singular contemplation produced an impressive diversity of different things under the
same headlines, cooked with corner manifolds, analysis on polyhedra, multi-cylinders, etc.

Genuine geometric corners with their non-complete metrics, induced by smooth ge-
ometries of ambient spaces (e.g., cubes in R3, with all the physical phenomena, such as
heat diffusion in bodies like that, or deformation and tension in models of elasticity) also
live somewhere in the singular labyrinth. Although they have a very complex character,
they are not the hidden beasts but the beauties, waiting for their hero.
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4 Is ‘degenerate’ bad?

In partial differential equations a deviation from normality is often called ‘degenerate’. Similarly as in the pseudo-differential
terminology this has not a negative undertone, at least what concerns importance and relevance to understand phenomena
in natural sciences. The notation ‘pseudo’ in connection with ellipticity is motivated in a similar manner as ‘negative’ in
the context of numbers. A negative number is not necessarily bad, it makes the life with computations a little easier, but
it is also a contribution to the symmetry of the corresponding mathematical structure.
Necessity and beauty form a unity also in problems in partial differential equations on manifolds with singularities, and, in
fact, degenerate operators satisfy such an expectation.

4.1 Operators on stretched spaces

By singularities we understand what is described in Section 3.1. The main idea was to
identify a neighbourhood of lower dimensional strata by wedgesX∆×Ω for a manifoldX of
smaller singularity order. A more complete characterisation is to say that every M ∈Mk

has a subspace Y ∈ M0 (equal to Y (k) = M (k) in the meaning of (192)) such that a
neighbourhood U of Y in M is isomorphic to an X∆-bundle over Y for some X ∈Mk−1

(details may be found in [15] or [16]). In this connection it is natural to employ the
so-called stretched manifolds. From the local description of M ∈ Mk near Y by wedges
X∆ × Ω, Ω ⊆ RdimY open, we have (as a consequence of the precise definitions) also a
local characterisation of M \Y ‘near Y ’ by open stretched wedges X∧×Ω, X∧ = R+×X
and a cocycle of transition maps

R+ ×X × Ω→ R+ ×X × Ω̃ (224)

which are isomorphisms in the category Mk−1 and represent an R+×X-bundle Lreg over
Y . By assumption the maps (224) are restrictions of Mk−1-isomorphisms

R×X × Ω→ R×X × Ω (225)

to R+ ×X × Ω. Moreover, (225) also restrict to Mk−1-isomorphisms

{0} ×X × Ω→ {0} ×X × Ω̃ (226)

which form a cocycle of an X-bundle over Y that we call Lsing. By invariantly attaching
{0} ×X ×Ω to R+ ×X ×Ω we obtain R+ ×X ×Ω. Then (224) and (226) together give
us a cocycle of maps

R+ ×X × Ω→ R+ ×X × Ω̃

which represents an R+ ×X-bundle L over Y . Let us form the disjoint union

L = Lsing ∪ Lreg.

The bijection
U \ Y ∼= Lreg (227)

allows us to complete U \Y to a stretched neighbourhood U by forming the disjoint union

U = Msing ∪ (U \ Y )

for an X-bundle Msing over Y which is Mk−1-isomorphic to Lsing,

Msing
∼= Lsing, (228)
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such that there is a bijection
U ∼= L

that restricts to (227) and (228). Since U \ Y ⊂M we obtain at the same time

M := U ∪ (M \ U),

the so-called stretched manifold associated with M . We then set

Mreg := M \Msing.

From the construction it follows a continuous map π : M → M which restricts to the
bundle projection π

∣∣
Msing

: Msing → Y and to an Mk−1-isomorphism π
∣∣
Mreg

: Mreg →M\Y .

An example is the space M := X∆ × Ω for Y := Ω ⊆ Rq open, X ∈ Mk−1. In this case
we have

M = R+ ×X × Ω, Msing = {0} ×X × Ω, Mreg = R+ ×X × Ω.

Remark 4.1. Given an M ∈ Mk with the stretched manifold M there is the double
2M ∈Mk−1 obtained by gluing together two copies of M along Msing. The construction of
2M can be explained in local terms as 2(R+ ×X × Ω) = R×X × Ω.

As explained in Section 3.1 a natural way of choosing differential operators on a space
M ∈ Mk is to locally identify a neighbourhood of a point z ∈ Z := M (k) with a wedge
X∆×Ξ, to pass to the open stretched wedge X∧×Ξ 3 (t, x, z) and to generate operators

A = t−µ
∑

j+|α|≤µ

ajα(t, z)
(
− t ∂

∂t

)j
(tDz)

α (229)

with coefficients ajα ∈ C∞(R+ × Ξ,Diff
µ−(j+|α|)
deg (X)), taking values in an already con-

structed class of operators on X ∈Mk−1.
By definition, X contains an edge Y := X(k−1) ∈ M0 such that a neighbourhood V

of Y in X is isomorphic to a B∆-bundle over Y for some B ∈ Mk−2. Again we can fix
a neighbourhood of a point y ∈ Y modelled on a wedge B∆ × Ξ for some open Ξ ⊆ Rp,
pass to the associated open stretched wedge B∧ × Ω 3 (r, b, y) and write the coefficients
(196) in the form

ajα(t, z) = r−(µ−(j+|α|))
∑

k+|β|≤µ−(j+|α|)

cjα;kβ(r, t, y, z)(−r
∂

∂r
)k(rDy)

β

with coefficients cjα;kβ(r, t, y, z) in

C∞(
R+ × Ω,Diff

µ−(j+|α|)−(k+|β|)
deg (B)

)
. (230)

By inserting ajα(t, z) into (229) we obtain

A = r−µt−µ
∑

j+|α|≤µ

rj+|α|
∑

k+|β|≤µ−(j+|α|)

cjα;kβ(r, t, y, z)
(
− r ∂

∂r

)k
(rDy)

β
(
− t ∂

∂t

)j
(tDz)

α

= r−µt−µ
∑

j+|α|+k+|β|≤µ

djα;kβ(r, t, y, z)
(
− r ∂

∂r

)k
(rDy)

β
(
− rt ∂

∂t

)j
(rtDz)

α (231)
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with coefficients djα;kβ(r, t, y, z) ∈ (230). This process can be iterated, and gives rise to a
class of degenerate operators on a corresponding ‘higher’ stretched wedge, more precisely,
on its interior which is of the form (R+)k × Σ ×

∏k
l=1 Ωl 3 (r1, . . . , rk, x, y1, . . . , yk) for

open sets Σ ⊆ Rn, Ωl ⊆ Rql for some dimensions n, ql, l = 1, . . . , k. In the case k = 2
we have (with the corresponding modified notation) B ∈ M0, locally identified with Σ,
while Ω and Ξ correspond to Ω2 and Ω1, respectively, and the variables (r1, r2, y1, y2) to
(r, t, y, z).

At the end of the chain of substitutions the operator A takes the form

A = r−µ1 r−µ2 · . . . · r
−µ
k Ã(R, V, Y ), (232)

where Ã is a polynomial of order µ in the vector fields

R1 = r1∂r1 , R2 = r1r2∂r2 , . . . , Rk = r1r2 · . . . · rk∂rk , (233)

Vj = ∂xj
, j = 1, . . . , n, where x = (x1, . . . , xn) ∈ Σ, (234)

Y1 = (r1∂y1i
)i=1,...,q1 , Y2 = (r1r2∂y2i

)i=1,...,q2 , · · · , Yk = (r1r2 · . . . · rk∂yki
)i=1,...,qk , (235)

with coefficients in C∞((R+)k × Σ ×
∏k

l=1 Ωl), R := (R1, . . . , Rk), V = (V1, . . . , Vn),
Y = (Y1, . . . , Yk). Similar operators have been discussed before in Section 1.1, cf. Remark
1.14.

The operators (232) are degenerate in the sense that the coefficients at the derivatives
in rl ∈ R+ or yl ∈ Ωl tend to zero when rj → 0 for 1 ≤ j ≤ l. Clearly they are much
more ‘singular’ at the face (r1, . . . , rl) = 0 than those in Section 1.1, because the latter
ones were obtained by repeatedly introducing polar coordinates into ‘smooth’ operators
given in an ambient space. However, this special case shows that the class of operators
of the kind (232) is far of being rare, since it already contains the operators with smooth
coefficients. In any case the operators (232) have a nice shape, and they are waiting to
be accepted as the new beauties of a future singular world.

Moreover, as we saw, special such operators of this category (and their pseudo-
differential analogues) are a useful frame to understand the calculus of elliptic boundary
value problems (especially, without the transmission property at the boundary), and these
operators are accompanied by a tail of other (operator-valued) symbols which encode in
this case the ellipticity of boundary conditions. We return in Section 5.2 below once again
to the aspect of symbolic hierarchies. Let us note in this connection that, since we have
to be aware of the conormal symbolic structure, it is better to consider the operators in
the form

A = r−µ1 · . . . · r
−µ
k Ã(R, Y )

for a polynomial Ã in the vector fields (233) and (235) and coefficients in

C∞((R+)k ×
k∏
l=1

Ωl,Diffµ−ν(X))
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for an X ∈ M0, where the former Σ plays the role of local coordinates on X, and ν is
the number of vector fields of the type (233), (235), composed with the corresponding
coefficient.

Once we have chosen the ‘stretched’ space

(R+)k ×X × Ω, Ω ∈M0,

as an object of interest we can interpret this again as a manifold with corner and repeat
the game of passing to associated stretched spaces; this gives rise to an infinite sequence.
This is particularly funny when we start from R+ × R+. The stretched space has two
corners, and each stretching doubles up the number of corner points.

There are many possible choices of degenerate operators on such configurations, e.g.,
based on the vector fields

rλl
l ∂rl , l = 1, . . . , k, (236)

for certain λl ∈ R, together with other vector fields onX and Ω, and also the weight factors
in front of the operators can be modified. We do not discuss such possibilities here, but
we want to stress that usually the properties of degenerate operators drastically change
when we change the nature of degeneracy. In particular, when we replace the components
of (233) by (236) (say, for the case λl = 1, l = 1, . . . , k), the resulting operators have a
quite different behaviour than the former ones, except for k = 1. In other words there are
many singular futures.

To return to the question in the headline of Section 4, our answer is ‘no’. Although
corner geometries give rise to ugly technicalities if the structure ideas remain unclear, the
calculus on a singular manifold may dissolve the difficulties.

4.2 What is ‘smoothness’ on a singular manifold?

Smoothness of a function on a manifold M with singularities M ′ ⊂ M , cf. the notation
of Section 3.1, should mean smoothness on the C∞ manifold M \M ′, together with some
controlled behaviour close to M ′. For instance, if M = [0, 1] is the unit interval on the
real axis, we might talk about C∞ up to the end points {0} and {1}. More generally, if
M consists of a one-dimensional net with a system M ′ of knots, i.e., intersection points of
finitely many intervals, (for instance, M may be the boundary of a triangle in the plane,
or the system of one-dimensional edges of a cube in R3, including corners) we could ask
C∞ on the intervals up to the end points and continuity across M ′.

The ‘right’ notion of smoothness depends on the expectations on the role of that
property. For the analysis of (elliptic) operators on M the above mentioned notion is not
convenient.

Smoothness should survive when we ask the regularity of solutions to an elliptic equa-
tion

Au = f, (237)

A ∈ Diffµdeg(M), for a smooth right hand side f . To illustrate a typical phenomenon
we want to formulate the following slight modification of Theorem 1.17 which refers to
the case M = R+ ∪ {0} ∪ {+∞}, with M ′ = {0} ∪ {+∞} being regarded as conical
singularities. Consider an operator A given by (35).
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Theorem 4.2. Let A be elliptic with respect to (σψ(A), σc(A)
∣∣
Γ 1

2
−γ) for some weight

γ ∈ R, i.e., aµ 6= 0 and σc(A)(w) 6= 0 on Γ 1
2
−γ. Then for every f ∈ L2,γ

Q0
γ ,Q
∞
γ

(R+)∩C∞(R+)

the equation (237) has a unique solution

u ∈ L2,γ
P 0

γ ,P
∞
γ

(R+) ∩ C∞(R+)

for every pair (Q0
γ, Q

∞
γ ) of discrete asymptotic types with some resulting (P 0

γ , P
∞
γ ).

In other words, elliptic regularity in the frame of smooth functions has three aspects:

standard smoothness on M \M ′, (238)

weighted properties close to M ′, (239)

asymptotic properties close to M ′. (240)

The individual weighted and asymptotic properties are determined by the calculus of
elliptic operators that we choose on M . There are several choices, as we shall see by the
following Theorem 4.3 and Remark 4.4.

Theorem 4.3. Let A be an operator on X∧ as in Section 3.3 that is elliptic with respect
to the principal symbol (215). Then

Au = f ∈ Ks−µ,γ−µQ (X∧)

and u ∈ K−∞,γ(X∧) implies
u ∈ Ks,γP (X∧)

for every discrete asymptotic type Q with some resulting P , for every s ∈ R (in particular,
this also holds for s =∞). Moreover,

Au = f ∈ Sγ−µQ (X∧)

and u ∈ K−∞,γ(X∧) entail
u ∈ SγP (X∧).

Remark 4.4. There is also a theorem on elliptic regularity for operators (218) when the
behaviour of coefficients for r → ∞ is analogous to that for r → 0, namely, aj(r

±1) ∈
C∞(R+,Diffµ−j(X)). In that case r = 0 and r = ∞ are treated as conical singularities,
cf. also Remark 1.22.

If A is elliptic in the sense σψ(A) 6= 0, and σψ(A) as well as σψ(I−nAIn) are elliptic
up to r = 0 (in the Fuchs type sense) and σc(A)(w)

∣∣
Γn+1

2 −γ

: Hs(X) → Hs−µ(X) is

a family of isomorphisms, then Au = f ∈ Hs−µ,γ−µ
Q0

γ ,Q
∞
γ

(X∧) and u ∈ H−∞,γ(X∧) imply

u ∈ Hs,γ
P 0

γ ,P
∞
γ

(X∧) for every pair of discrete asymptotic types (Q0
γ, Q

∞
γ ) with some resulting

(P 0
γ , P

∞
γ ). Especially, for s = ∞ we see which kind of smoothness survives under the

process of solving an elliptic equation.
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Once we arrived at the point to call a function smooth on a manifold M with singu-
larities M ′ when u is smooth on M \M ′ and of a similar qualitative behaviour near M ′

as a solution of an elliptic equation (belonging to the calculus adapted to M) we have a
candidate of a definition also for manifolds with edges and corners. In Section 4.5 below
we give an impression on the general asymptotic behaviour of a solution near a smooth
edge. The variety of possible ‘asymptotic configurations’ in this case is overwhelming,
and it is left to the individual feeling of the reader to see in this behaviour the opened
door to an asymptotic hell or to a spectral paradise.

The functional analytic description of corner asymptotics for the singularity order
k ≥ 2 is another non-trivial part of the story. For instance, if an edge has conical singu-
larities (which corresponds to the case k = 2) we have to expect asymptotics in different
axial directions (r1, r2) ∈ R+ × R+ near r1 = 0 and r2 = 0, and the description of the
interaction of both contributions near the corner point r1 = r2 = 0 requires correspond-
ing inventions in terms of weighted distributions with asymptotics (especially, when the
Sobolev smoothness s is finite). The asymptotics of solutions of elliptic equations in such
corner situations has been investigated from different point of view in [117], [128], [131],
[70].

4.3 Schwartz kernels and Green operators

The notation ‘Green operators’ in cone and edge calculi is derived from Green’s function
of boundary value problems. In the most classical context we have Green’s function of
the Dirichlet problem

∆u = f in Ω, Tu = g on ∂Ω, (241)

Tu := u|∂Ω, in a bounded smooth domain in Rn. For convenience we assume for the
moment f ∈ C∞(Ω), g ∈ C∞(∂Ω). The problem (241) has a unique solution u ∈ C∞(Ω)
of the form

u = Pf +Kg.

Here P : C∞(Ω)→ C∞(Ω) just represents Green’s function of the Dirichlet problem, and
K : C∞(∂Ω)→ C∞(Ω) is a potential operator.

The operator P is a parametrix of ∆ in Ω. Every fundamental solution E of ∆ is a
parametrix, too. Thus the operator

P − E =: G

has a kernel in C∞(Ω × Ω). The operator G is a Green operator in the sense of our
notation. The operator

(P K) =

(
∆

T

)−1

belongs to the pseudo-differential calculus of boundary value problems with the transmis-
sion property at the boundary.

From that calculus we know some very remarkable relations. Near the boundary in
local coordinates x = (y, t) ∈ Ω × R+, Ω ⊆ Rq open, q = n − 1, the operator G has the
form

G = Opy(g) + C
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for a symbol g(y, η) such that

g(y, η), g∗(y, η) ∈ Sµcl(Ω× Rq; L2(R+),S(R+)) (242)

for µ = −2, cf. Example 1.30. The operator C is smoothing in the calculus of boundary
value problems (in this case with a kernel in C∞(Ω×R+×Ω×R+)). The structure of Green
symbols g(y, η) is closely related to the nature of elliptic regularity of the homogeneous
principal boundary symbol

σ∂(∆)(η) = −|η|2 +
∂2

∂t2
: Hs(R+)→ Hs−2(R+) (243)

for η 6= 0, s > 3
2
, which is an operator with the transmission property at t = 0, elliptic as

usual in the finite (up to t = 0) and exit elliptic for t→∞. Thus

σ∂(∆)(η)u(t) = f(t) ∈ S(R+)

implies u(t) ∈ S(R+). In particular, we have smoothness at t = 0 and the Schwartz
property for t→∞.

As noted in Example 1.30 the Green symbols act as operators

g(y, η)u(t) =

∫ ∞

0

fG(t[η], t′[η]; y, η)u(t′)dt′

for a function fG(t, t; y, η) ∈ S(R+ × R+) for every fixed y, η. In addition, the property
(242) reflects remarkable rescaling properties, hidden in Green operators, here encoded
by the twisted homogeneity of the components of the corresponding classical symbol.

The question is now whether this behaviour is an accident, or a typical phenomenon
with a more general background. The answer should be contained in the pseudo-differen-
tial algebras on manifolds with singularities. Although many details on the higher singular
algebras are projects for the future, the expectation is as follows. If M ∈Mk is a manifold
with singularities of order k, and Y ∈ M0 such that M \ Y ∈ Mk−1, with Y being a
corresponding higher edge, then Y has a neighbourhood U in M which is Mk-isomorphic
to anX∆

k−1-bundle over Y for anXk−1 ∈Mk−1. This gives rise to an axial variable rk ∈ R+

of the cone X∆
k−1, or, if convenient, of the open stretched cone X∧

k−1 = R+×Xk−1. Then,
locally on Y , we can construct Green symbols g(y, η) that are classical in the covariables
and take values in operators on weighted cone Sobolev spaces where

g(y, η) : Ks,γ(X∧
k−1)→ S

γ−µ
P (X∧

k−1), (244)

g∗(y, η) : Ks,−γ+µ(X∧
k−1)→ S

−γ
Q (X∧

k−1). (245)

Here γ = (γ1, . . . , γk) ∈ Rk is a tuple of weights, where γ − µ := (γ1 − µ, . . . , γk − µ), and

S%P (X∧) (246)

are analogues of the spaces (62) with ‘higher’ asymptotic types P that encode a specific
asymptotic behaviour for rk → 0. In Section 6.3 below we shall deepen the insight on the
nature of higher Ks,γ- and SγP -spaces.
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The mappings (244) are a generalisation of

g(y, η) : L2(R+)→ S(R+), (247)

cf. (242). In (247) the asymptotic type P means nothing other than smoothness up
to t = 0 (Taylor asymptotics). The Schwartz property at infinity is typical in Green
symbols. It comes from the role of Green edge symbols to adjust operator families in
the full calculus of homogeneous edge symbols by smoothing elements (in particular, in
the elliptic case in connection with kernels and cokernels), taking into account that the
calculus treats t → ∞ as an exit to infinity (for η 6= 0). In such calculi the remainders
near ∞ have Schwartz kernels.

Another interesting aspect on kernels is their behaviour near t = 0.
In the preceding section we tried to give an impression on the enormous variety of

different asymptotic phenomena which may occur in smooth functions on a manifold with
singularities. In (246) this is summarised under the notation ‘P ’; it encodes not only
asymptotic information at the tip of the corner with base X but on all the edges of
different dimension, generated by the singularities of X. In particular, with such infinite
edges of X∧ also the asymptotic information is travelling to ∞, i.e., to the conical exit of
X∧ for t→∞.

Smoothness and asymptotics are not only an aspect of Green symbols but also of
the global smoothing operators on a manifold M with singularities M ′ which are usually
regarded as the simplest objects in an operator algebra on M . They are defined, for
instance, by their property to map weighted distributions on M \M ′ to smooth functions
(and the same for the formal adjoints). However, as we saw in Section 4.2, the notion of
smoothness of a function on M is itself a special invention and an input to the a priori
philosophy of how the operators on M in general (also those with non-vanishing symbols)
have to look like. Smoothness in that sense has to be compatible with pseudo-locality of
operators which gives rise to smoothing operators by cutting out distributional kernels
off the diagonal. Their characterisation in terms of (say, tensor products of) smooth
functions is an important aspect of the full calculus on M , and so we need to know what
is smoothness on M . As we see this is a substantial aspect.

4.4 Pseudo-differential aspects, solvability of equations

Pseudo-differential operators on a C∞ manifold M can be motivated by parametrices
of elliptic differential operators. More precisely, there is a hull operation which extends
the algebra

⋃
µ∈N Diffµ(M) to a corresponding structure that is closed under forming

parametrices of elliptic elements. This process is natural for the same reason as the
construction of multiplicative inverses of non-vanishing integers in the elementary calculus.
If M is a manifold with singularities in the sense that there is a subset M ′ ⊂M of singular
points such that M \M ′ is C∞, the hull operation makes sense both for Diff(M \M ′) :=⋃
µ∈N Diffµ(M \M ′) (as before) and for suitable subalgebras of Diff(M \M ′). While for

Diffµ(M\M ′) the ellipticity is still expressed by σψ(A) (the homogeneous principal symbol
of A of order µ), in subalgebras we may have additional principal symbolic information
as sketched in Section 1.1. The latter aspect is just one of the specific novelties with
singularities.

Let us have look at some special cases.
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(A.1) Boundary value problems. If M is a C∞ manifold with boundary, the task
to complete classical differential boundary value problems (e.g., Dirichlet or Neumann
problems for Laplace operators) gives rise to Boutet de Monvel’s calculus of pseudo-
differential operators with the transmission property at the boundary. The operators A
are 2× 2 block matrices, and the principal symbolic hierarchy consists of pairs

σ(A) = (σψ(A), σ∂(A)), (248)

with the interior symbol σψ and boundary symbol σ∂.
(A.2) Operators on manifold with conical singularities. Another case is a

manifold M with conical singularities. As the typical differential operators A we take
the class Diffµdeg(M) of operators that are of Fuchs type near the conical singularities (in
stretched coordinates, and including the weight factors r−µ for µ = ordA). The principal
symbols consist of pairs

σ(A) = (σψ(A), σc,γ(A)) (249)

with the (Fuchs type) interior symbol σψ and the conormal symbol σc,γ (referring to the
weight line Γn+1

2
−γ as described before; n is equal to the dimension of the base of the local

cone, and γ ∈ R is a weight). The associated pseudo-differential calculus is called (in our
terminology) the cone algebra, equipped with the principal symbolic hierarchy (249).

The stretched manifold M associated with a manifold M with conical singularities is
a C∞ manifold with boundary (recall that the stretched coordinates (r, x) just refer to
a collar neighbourhood of ∂M with r being the normal variable). Nevertheless the cone
calculus has a completely different structure than the calculus of (A.1) of boundary value
problems with the transmission property. This shows that when M means a stretched
manifold to a manifold with conical singularities the notation C∞ ‘manifold with bound-
ary’ does not imply a canonical choice of a calculus (although there are certain relations
between the calculi of (A.1) and (A.2)). The cone algebra solves the problem of express-
ing parametrices of elliptic differential operators A ∈ Diffµdeg(M), and it is closed under
parametrix construction for elliptic elements, also in the pseudo-differential case.

Remark 4.5. On a manifold M with conical singularities there are many variants of
‘cone algebras’:

(i) The weight factor r−µ can be replaced by any other factor r−β, β ∈ R, without an
essential change of the calculus;

(ii) the ideals of smoothing operators depend on the choice of asymptotics near the tip
of the cone, with finite or infinite asymptotic expansions and discrete or continuous
asymptotics; this affects the nature of smoothing Mellin operators (with lower order
conormal symbols) and of Green operators;

(iii) there is a cone algebra on the infinite cone M = X∆ with an extra control at the
conical exit to infinity r →∞. In that case we have a principal symbolic hierarchy
with three components σ(A) = (σψ(A), σc,γ(A), σE(A));

(iv) in cone algebras which are of interest in applications the base X ∼= ∂M of the cone
may have a C∞ boundary; we then have a cone calculus of boundary value problems
in the sense of (A.1), i.e., 2×2 block matrices A, with principal symbolic hierarchies

σ(A) = (σψ(A), σ∂(A), σc,γ(A)),
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or, in the case X∆ for ∂X 6= ∅, with exit calculus at ∞,

σ(A) = (σψ(A)), σ∂(A), σc,γ(A), σE(A), σE′(A))

(with exit symbols σE and σE′ from the interior and the boundary, respectively).

(A.3) Operators on manifolds with edges. Let M be a manifold with smooth
edge Y . As the typical differential operators we take Diffµdeg(M) as explained in Section
3.1. In this case the weight factor r−µ in front of the operator (in stretched coordinates)
is essential for our edge algebra. Similarly as (A.1), the edge algebra consists of 2 × 2
block matrices A with extra edge conditions of trace and potential type. Instead of the
principal boundary symbol in (248) (which is a 2 × 2 block matrix family on R+, the
inner normal to the boundary) we now have a principal edge symbol σ∧,γ(A) which takes
values in the cone algebra on the infinite model cone X∆ of local wedges, as described
in Remark 4.5. The weight γ ∈ R is inherited from the cone algebra; σ∧,γ(A) as a 2× 2
block matrix family of operators Ks,γ(X∧) → Ks−µ,γ−µ(X∧), parametrised by T ∗Y \ 0.
The principal symbolic hierarchy in the edge algebra has again two components

σ(A) = (σψ(A), σ∧,γ(A)),

with the (edge-degenerate) interior symbol σψ and the principal edge symbol σ∧,γ. The
edge algebra solves the problem of expressing parametrices for elliptic elements with an
operator A ∈ Diffµdeg(M) in the upper left corner, and it is closed under constructing
parametrices of elliptic elements also in the pseudo-differential case.

Remark 4.6. On a manifold M with edge Y there are many variants of ‘edge algebras’,
similarly as Remark 4.5 for the case dimY = 0.

(i) The edge algebra very much depends on the choice of the ideal of smoothing operators
on the level of edge symbols, cf. Remark 4.5 (ii).

(ii) It is desirable to have an edge algebra on the infinite cone M∆ with a corresponding
exit symbolic structure, also in the variants of boundary value problems, i.e., a
combination of (A.2) and (A.3), when we have ∂X 6= 0 for the base X of local model
cones. We then have to expect corresponding larger principal symbolic hierarchies.

(iii) The edge algebra in the ‘closed case’ (i.e., ∂X = ∅) is a generalisation of the algebra
of boundary value problems in the sense of (A.1); the edge plays the role of the
boundary and the local model cone of the inner normal. The operators in the upper
left corner have not necessarily the transmission property at the boundary (they may
even be edge degenerate).

Remark 4.7. The manifolds M of Remarks 4.5 and 4.6 (in the case without boundary)
belong to M1. For M ∈ M2 we also talk about the calculus of second generation. The
papers [122], [130], [131], [55], [54], [76], [16] belong to this program.

The precise calculus of higher corner algebras, i.e., for M ∈Mk for k ≥ 3 is a program
of future research, although there are partial partial results, cf. [130], [15], and Section 5
below.
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The nature of a parametrix of an elliptic operator A characterises to some extent the
solvability of the equation

Au = f. (250)

To illustrate that we consider the simplest case of A ∈ Diffµ(M) for a closed compact C∞

manifold M and the scale Hs(M), s ∈ R, of standard Sobolev spaces on M . The way to
derive elliptic regularity of solutions u is as follows. By virtue of the ellipticity of A there
is a parametrix P ∈ L−µcl (M), and P : Hr(M)→ Hr+µ(M) is continuous for every r ∈ R.
Then (250) gives us

PAu = (1−G)u = Pf

for an operator G ∈ L−∞(M). Because of GH−∞(M) ⊂ H∞(M) ⊂ Hs(M) for every
s ∈ R it follows that u ∈ H−∞(M), f ∈ Hr(M) implies u = Pf + Gu ∈ Hr+µ(M).
Observe that the existence of a parametrix also gives rise to so-called a priori estimates
for the solutions. That means, for every r ∈ R we have

‖u‖Hs(M) ≤ c
(
‖f‖Hs−µ(M) + ‖u‖Hr(M)

)
(251)

when u ∈ H−∞(M) is a solution of Au = f ∈ Hs−µ(M), for a constant c = c(r, s) > 0.
In fact, we have

‖u‖Hs(M) ≤ ‖Pf‖Hs(M) + ‖Gu‖Hs(M),

and the right hand side can be estimated by (251), since P : Hs−µ(M) → Hs(M) and
G : Hr(M)→ Hs(M) are continuous for all s, r ∈ R.

Similar conclusions make sense for elliptic operators on a manifold with singularities.
In other words, to characterise the solvability of the equation (250) it is helpful to have
the following structures.

(S.1) Operator algebras, symbols. Construct an algebra of operators with a
principal symbolic structure that defines operators modulo lower order terms.

(S.2) Ellipticity, parametrices. Define ellipticity in terms of the principal symbols
(and, if necessary, kinds of Shapiro-Lopatinskij or global projection data) and construct
parametrices within the algebra.

(S.3) Smoothing operators. Establish an ideal of smoothing operators to charac-
terise the left over terms.

(S.4) Scales of spaces. Introduce natural scales of distribution spaces such that the
elements of the algebra induce continuous operators.

These aspects together with other features, such as asymptotic summation, formal
Neumann series constructions, operator conventions (quantisations) and recovering of
symbols from the operators, or kernel characterisations, belong to the desirable elements
of calculi, also on manifolds with higher singularities. As we saw this can be a very
complex program. However, the effort is justified. The characterisation of the operators
in the algebra reflects the internal structure of parametrices, while the functional ana-
lytic features of adequate scales of distributions describe in advance the nature of elliptic
regularity.

In addition the algebra aspects appear at once in connection with single operators.
In order to treat any fixed operator of interest on a singular manifold of higher order we
are faced with operator-valued symbolic components which are operator functions with
values in the algebras of lower singularity order that may range over these algebras in
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(nearly) full generality. Also from that point of view we need the constructions within a
calculus with the features (S.1) - (S.4).

4.5 Discrete, branching, and continuous asymptotics

An interesting problem in partial differential equations near geometric singularities is the
asymptotic behaviour of solutions close to the singularities. For instance, in classical
elliptic boundary value problems (with smooth boundary) the smoothness of the right
hand sides and boundary data entails the smoothness of solutions up to the boundary (of
course, there are also other features of elliptic regularity, e.g., in Sobolev spaces).

The latter property can already be observed on the level of operators on the half-axis
R+ 3 r for an elliptic operator A of the form

A =

µ∑
j=0

cj
dj

drj
(252)

with (say, constant) coefficients cj. We can rephrase A as

A = r−µ
µ∑
j=0

aj
(
− r d

dr

)j
(253)

with other coefficients aj ∈ C. Assume that c0 6= 0 which is equivalent to a0 6= 0. The
asymptotics of solutions of an equation

Au = f (254)

for r → 0 when f is smooth up to r = 0 can be obtained in a similar manner as in Section
1.2. In this case the resulting asymptotic type of u is again of the form P =

{
(−j, 0)

}
j∈N,

i.e., represents Taylor asymptotics. Observe that the weight factor r−µ in (253) does
not really affect the consideration; in Section 1.2 we could have considered the case with
weight factors as well (as we saw the weight factors are often quite natural).

The transformation from (252) to (253) can be identified with a map (cj)0≤j≤µ →
(aj)0≤j≤µ, Cµ+1 → Cµ+1, which is not surjective for µ > 0. From Section 1.2 we know
that when the coefficients aj in (253) are arbitrary, Taylor asymptotics of solutions u of
(254) is an exceptional case. In fact, even for right hand sides f that are smooth up
to r = 0 we obtain solutions u with asymptotics of other types P , determined by the

poles of the inverse of the conormal symbol
( ∑µ

j=0 ajw
j
)−1

. The asymptotic behaviour of
solutions becomes much more complex when the equation (254) is given on a (stretched)
cone X∧ = R+ × X with non-trivial base, say, for a closed compact C∞ manifold X.
Then the resulting asymptotic types may be infinite, and it is interesting to enrich the
information by finite-dimensional spaces Lj ⊂ C∞(X), i.e., to consider sequences

P =
{
(pj,mj, Lj)

}
j∈N, (255)

πCP = {pj}j∈N ⊂ {w ∈ C : Rew < n+1
2
− j} for n = dimX and some weight j ∈ R,

Re pj → −∞ as j →∞. Recall that an u(r, x) ∈ Ks,γ(X∧) has asymptotics for r → 0 of
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type P , if for every β > 0 there is an N = N(β) such that

u(r, x)− ω(r)
N∑
j=0

mj∑
k=0

cjk(x)r
−pj logk r ∈ Ks,β(X∧) (256)

with coefficients cjk ∈ Lj, 0 ≤ k ≤ mj. This condition just defines the space Ks,γP (X∧).
Observe that when we set Θ := (ϑ, 0] for some finite ϑ < 0 and

PΘ :=
{
(p,m,L) ∈ P : Re p >

n+ 1

2
− γ + ϑ

}
, (257)

Ks,γΘ (X∧) := lim←−
k∈N
Ks,γ−ϑ−k−1

(X∧), (258)

EPΘ
(X∧) :=

{ N∑
j=0

mj∑
k=0

cjk(x)ω(r)r−pj logk r : cjk ∈ Lj, 0 ≤ k ≤ mj, 0 ≤ j ≤ N
}
, (259)

the direct sum
Ks,γPΘ

(X∧) := Ks,γΘ (X∧) + EPΘ
(X∧) (260)

is a Fréchet space, and we have Ks,γP (X∧) = lim←−
ϑ→−∞

Ks,γPΘ
(X∧).

Operators of the form (253) (in general with r-dependent coefficients aj) occur as the
(principal) edge symbols of edge-degenerate operators

A := r−µ
∑

j+|β|≤µ

bjβ(r, y)
(
− r ∂

∂r

)j
(rDy)

β (261)

on a (stretched) wedge X∧ × Ω, Ω ⊆ Rq open, with coefficients bjβ(r, y) ∈ C∞(
R+ × Ω,

Diffµ−(j+|β|)(X)
)
. The principal edge symbol of (261) is defined as

σ∧(A)(y, η) := r−µ
∑

j+|β|≤µ

bjβ(0, y)
(
− r ∂

∂r

)j
(rη)β, (262)

(y, η) ∈ T ∗Ω \ 0, and represents a family of continuous operators

σ∧(A)(y, η) : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧) (263)

for every s, γ ∈ R. It turns out that the asymptotics of solutions u of an elliptic equation

Au = f (264)

on X∧×Ω for r → 0 is determined by (263), more precisely, by the inverse of the conormal
symbol of (263), namely, σcσ∧(A)−1(y, w), where

σcσ∧(A)(y, w) =

µ∑
j=0

bj0(0, y)w
j
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which is a family of continuous operators

σcσ∧(A)(y, w) : Hs(X)→ Hs−µ(X)

for every s ∈ R, smooth in y ∈ Ω, holomorphic in w ∈ C. However, the question is: ‘what
means asymptotics in the edge case?’ The answer is far from being straightforward, and,
what concerns the choice of spaces that contain the solutions, we have a similar problem
as above in connection with the ‘right approach’ to Sobolev spaces, discussed in Section
1.3. Here, in connection with asymptotics, this problem appears in refined form, because
the choice of similar terms of asymptotics requires a confirmation of the formulation of
the spaces. In order to illustrate some of the asymptotic phenomena, for convenience,
we consider the case Ω = Rq and assume the coefficients bjβ(r, y) to be independent of y
when |y| > C for some C > 0 and independent of r for r > R for some R > 0. In addition
we assume that for some γ ∈ R the operators (263) define isomorphisms for all s ∈ R (in
general, we can only expect Fredholm operators; for the ellipticity those are to be filled
up to 2× 2 block matrices of isomorphisms by extra entries of trace, potential, etc., type
with respect to the edge Rq). For the operator A we assume σψ-ellipticity in the sense
that the homogeneous principal symbol

σψ(A)(r, x, y, ρ, ξ, η)

does not vanish for (ρ, ξ, η) 6= 0 and that rµσψ(A)(r, x, y, r−1ρ, ξ, r−1η) 6= 0 for (ρ, ξ, η) 6=
0, up to r = 0.

The family of operators

a(y, η) := r−µ
∑

j+|β|≤µ

bjβ(r, y)
(
− r ∂

∂r

)j
(rη)β : Ks,γ(X∧)→ Ks−µ,γ−µ(X∧)

can be interpreted as an element a(y, η) ∈ Sµ
(
Rq×Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧)

)
for every

s ∈ R, cf. Definition 1.23 and Remark 1.10, which gives us a continuous operator

A = Opy(a) :Ws(Rq,Ks,γ(X∧))→Ws−µ(Rq,Ks−µ,γ−µ(X∧))

for every s ∈ R. Now the pseudo-differential calculus of edge-degenerate operators allows
us to construct a symbol

p(y, η) ∈ S−µ
(
Rq × Rq;Ks−µ,γ−µ(X∧),Ks,γ(X∧)

)
(265)

such that the operator P := Opy(p) :Ws−µ(Rq,Ks−µ,γ−µ(X∧))→Ws(Rq,Ks,γ(X∧)) is a
parametrix of A in the sense that there is an ε > 0 such that

PA− I :Ws(Rq,Ks,γ(X∧))→W∞(Rq,K∞,γ+ε(X∧)) (266)

is continuous for all s, and, similarly, PA−I. The relation (266) gives us elliptic regularity
of solutions u ∈ W−∞(Rq,K−∞,γ(X∧)) to (264) for

f ∈ Ws−µ(Rq,Ks−µ,γ−µ(X∧)), (267)

namely,
u ∈ Ws(Rq,Ks,γ(X∧)). (268)
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The precise nature of P is a subtle story, contained in the analysis of the edge algebra,
cf. [121], or [127]. The question is, do we have an analogue of elliptic regularity with edge
asymptotics. Here, an u ∈ Ws(Rq,Ks,γ(X∧)) is said to have discrete edge asymptotics of
type P if u ∈ Ws(Rq,Ks,γP (X∧)). In the following theorem we assume that the coefficients
bjβ are independent of y everywhere.

Theorem 4.8. Let A satisfy the above conditions, and let the coefficients bjβ be in-
dependent of y ∈ Rq. Then for every discrete asymptotic type Q = {(qj, nj,Mj)}j∈N
(with πCQ ⊂ {w ∈ C : Rew < n+1

2
− (γ − µ)}) there exists a P as in (10.4.32)

such that u ∈ W−∞(Rq,K−∞,γ(X∧)) and Au = f ∈ Ws−µ(Rq,Ks−µ,γ−µQ (X∧)) implies
u ∈ Ws(Rq,Ks,γP (X∧)).

This result may be found in [127]. It is based on the fact that there is a parametrix
P = Opy(p) for an amplitude function (265) that restricts to elements

p(y, η) ∈ S−µ(Rq × Rq;Ks−µ,γ−µS (X∧),Ks,γB (X∧)) (269)

(in this special case independent of y) for every discrete asymptotic type S with some
resulting B and such that the remainder G := PA− I defines continuous operators

G :Ws(Rq,Ks,γ(X∧))→W∞(Rq,K∞,γeB (X∧))

for some discrete asymptotic type B̃.
The rule in Theorem 4.8 to find P in terms of Q is very close to that discussed before

in Section 1.2. The essential observation is that there is a Mellin asymptotic type R (see
the formula (54)) such that

σcσ∧(A)−1(w) ∈M−µ
R (X),

and R in this case is independent of y. Unfortunately, this conclusion does not work in
general, when the coefficients depend on y. Although we also have

σcσ∧(A)−1(y, w) ∈M−µ
R(y)(X)

for every fixed y, the asymptotic type R(y) may depend on y, and we cannot expect any
property like (269). The y-dependence of R means that all components of (54) depend
on y; in particular, the numbers nj which encode the multiplicities of poles, may jump
with varying y, and there are no smooth ‘paths’ of poles rj(y), y ∈ Rq, in the complex
plane, but, in general, irregular clouds of points {πCR(y) : y ∈ Rq}. Then, even if we can
detect some y-dependent families of discrete asymptotic types Q(y), P (y), with the hope
to discover a rule as in Theorem 4.8 also in the general case, the first question is, what are
the spacesWs,γ(Rq,Ks,γP (y)(X

∧))? An answer for the case dimX = 0 is given in [125], [126].
The point is to encode somehow the expected variable discrete and branching patterns
of poles (that appear after Mellin transforming a function with such asymptotics). We
do not discuss here all the details up to the final conclusions; this would go beyond the
scope of this exposition. More information may be found in [121], or [127], see also
[59]. We want to give an idea of how discrete and branching asymptotics are organised
in such a way that the concept admits edge spaces together with continuity results for
pseudo-differential operators in such a framework.
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The key word in this connection is ‘continuous asymptotics’. The notion is based on
analytic functionals in the complex plane. We do not recall here too much material on this
topic. Let us content ourselves with some notation. If A(U), U ⊆ C open, is the space of
all holomorphic functions in U , endowed with the Fréchet topology of uniform convergence
on compact subsets, we have the space A′(U) of all linear continuous functionals

ζ : A(U)→ C,

the so-called analytic functionals in U . For every open U ⊆ V we have a restriction
operator A′(U) → A′(V ). Given ζ ∈ A′(C), an open set U ⊆ C is called a carrier of ζ,
if there is an element ζU ∈ A′(U) which is the restriction of ζ to U . A compact subset
K ⊂ C is said to be a carrier of ζ ∈ A′(C), if every open U ⊃ K is a carrier of ζ in the
former sense.

By A′(K) we denote the subspace of all ζ ∈ A′(C) carried by the compact set K. It
is known that A′(K) is a nuclear Fréchet space in a natural system of semi-norms.

It also makes sense to talk about analytic functionals with values in a, say, Fréchet
space E, i.e., we have the spaces A′(K,E) = A′(K)⊗̂πE of E-valued analytic functionals,
carried by K. We may take, for instance, E = C∞(X).

Example 4.9. Let K ⊂ C be a compact set, and let C be a smooth compact curve in
C \ K surrounding the set K counter-clockwise. In addition we assume that there is a
diffeomorphism κ : S1 → C such that, when we identify any w ∈ K with the origin
in C, the corresponding winding number of κ is equal to 1; this is required for every
w ∈ K. It can be proved that for every ε > 0 there exists a curve C of this kind such that
dist(K,C) < ε, cf. [112, Theorem 13.5]. Let f ∈ A(C \K), and form

〈ζ, h〉 :=
1

2πi

∫
C

f(w)h(w)dw (270)

for h ∈ A(C). Then we have ζ ∈ A′(K). More generally, considering an f(y, w) ∈
C∞(Ω,A(C \K,E)) for an open set Ω ⊆ Rq and a Fréchet space E, by

〈ζ(y), h〉 :=
1

2πi

∫
C

f(y, w)h(w)dw (271)

we obtain an element ζ(y) ∈ C∞(Ω,A′(K,E)). Clearly (271) is independent of the choice
of C.

In (270) we can take, for instance, f(w) = Mr→w(w(r)r−p logk r)(w) for any p ∈ C,
k ∈ N, with M being the weighted Mellin transform (with any weight γ ∈ R such that
Re p < 1

2
− γ) and a cut-off function ω(r). Then (270) takes the form

〈ζ, h〉 = (−1)k
dk

dwk
h(w)|w=p, (272)

h ∈ A(C). This corresponds to the k-th derivative of the Dirac measure at the point p, and
we have ζ ∈ A′({p}). Inserting h(w) := r−w in (272) it follows that 〈ζ, r−w〉 = r−p logk r.
More generally, we have the following proposition.
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Proposition 4.10. Let K := {p0} ∪ {p1} ∪ . . . ∪ {pN} for pj ∈ C, j = 0, . . . , N , and let
f ∈ A(C \K,E) be a meromorphic function with poles at pj of multiplicity mj + 1, and
let (−1)kk!cjk ∈ E be the Laurent coefficients at (z − pj)−(k+1), 0 ≤ k ≤ mj. Then the
formula (270) represents an element of A′(K,E) which is of the form

〈ζ, h〉 =
N∑
j=0

mj∑
k=0

(−1)kcjk
dk

dwk
h(w)

∣∣
w=pj

, (273)

and we have 〈ζ, r−w〉 =
∑N

j=0

∑mj

k=0 cjkr
−pj logk r.

An analytic functional of the form (273) will be called discrete (and of finite order).
In particular, if (265) is a discrete asymptotic type, the relation (256) can be interpreted
as follows. There is a sequence ζj ∈ A′({pj}, Lj) of discrete analytic functionals such that
for every β > 0 there is an N = N(β) ∈ N such that

u(r, x)− ω(r)
N∑
j=0

〈ζj, r−w〉 ∈ Ks,β(X∧). (274)

This definition of the space Ks,γP (X∧) admits a generalisation as follows. We replace
{pj} by arbitrary compact sets Kj ⊂ {w ∈ C : Rew < n+1

2
− γ}, j ∈ N, such that

sup{Rew : w ∈ Kj} → −∞ as j → ∞. Then an element u(r, x) ∈ Ks,γ(X∧) is said to
have continuous asymptotics for r → 0, if there is a sequence ζj ∈ A′(Kj, C

∞(X)) such
that the relation (274) holds for every β > 0 with some N = N(β).

The notion of continuous asymptotics has been introduced in Rempel and Schulze
[104] and then investigated in detail in [118], [117], [121], [123], [125], [126], see also
[127], or [59, Section 2.3.5]. The original purpose was to find a way to express variable
discrete asymptotics. We do not develop here the full story but only give the main idea.
Intuitively, a family u(r, x, y) ∈ C∞(Ω,Ks,γ(X∧)) should have asymptotics of that kind,
if there is a family

P (y) = {(pj(y),mj(y), Lj(y))}j∈N (275)

of discrete asymptotic types such that for every compact subset M ⊂ Ω and every β > 0
there is an N = N(β) with the property

u(r, x, y)− ω(r)
N∑
j=0

mj∑
k=0

cjk(x, y)r
−pj(y) logk r ∈ Ks,β(X∧) (276)

with coefficients cjk(x, y) ∈ Lj(y), 0 ≤ k ≤ mj, for every fixed y ∈M .
The nature of the family (275) which appears in ‘realistic’ pointwise discrete and

branching asymptotic types belonging to solutions u of (264) in the general case can be
described as follows. For every open set U ⊂ Ω such that U ⊂ Ω, U compact, there exists
a sequence of compact sets Kj ⊂ C, j ∈ N, with the above-mentioned properties and
a sequence ζj ∈ C∞(U,A′(Kj, C

∞(X))), j ∈ N, such that ζj(y) ∈ A′({pj(y)}, Lj(y)) is
discrete for every fixed y ∈ U , and for every β > 0 there is an N = N(β) ∈ N such that

u(r, x, y)− ω(r)
N∑
j=0

〈ζj(y), r−w〉 ∈ Ks,β(X∧)
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for every y ∈ U . Observe that this notion really admits branchings of the exponents in
(276) and jumping mj(y) and cjk(x, y) with varying y. Examples of such ζj(y) (say, in
the scalar case) are functionals of the form (271) for

f(y, w) :=
c(y)− z

(a(y)− z)(b(y)− z)

with coefficients a, b, c ∈ C∞(Ω) taking values in Kj.
The characterisation of elements ofWs

loc(Ω,Ks,γ(X∧)), s ∈ R, with branching discrete
asymptotics is also interesting. The details are an excellent excersise for the reader. In
order to have an impression what is going on we want to consider once again the case
of constant (in y) discrete asymptotics. Let us give a notion of singular functions of the
edge asymptotics of elements in Ws(Rq,Ks,γ(X∧)) of type (255). To this end we fix any
−∞ < ϑ < 0, form PΘ by (257) for Θ = (ϑ, 0], and consider the decomposition (260)
which gives rise to a decomposition

Ws(Rq,Ks,γPΘ
(X∧)) =Ws(Rq,Ks,γΘ (X∧)) + Vs(Rq, EPΘ

(X∧)), (277)

see Remark 1.25, which is valid in analogous form also for the Fréchet space E := Ks,γPΘ
(X∧)

with the subspaces
L := Ks,γΘ (X∧),M := EPΘ

(X∧).

Thus every
u(r, x, y) ∈ Ws(Rq,Ks,γP (X∧) ⊂ Ws(Rq,Ks,γPΘ

(X∧))

can be written as
u(r, x, y) = uflat(r, x, y) + using(r, x, y)

for an element
uflat(r, x, y) ∈ Ws(Rq,Ks,γΘ (X∧))

of edge flatness Θ (relative to the weight γ) and a

using(r, x, y) ∈ Vs(Rq, EP (X∧)) ≡ F−1κ〈η〉F (Hs(Rq, EPΘ
(X∧))),

with the Fourier transform F = Fy→η. The space EPΘ
(X∧) is of finite dimension, cf. the

formula (261). The space Vs(Rq, EPΘ
(X∧)) consists of all linear combinations of functions

F−1
{
〈η〉

n+1
2 v̂(η)cjk(x)ω(r〈η〉)(r〈η〉)−pj logk(r〈η〉)

}
(278)

for arbitrary v ∈ Hs(Rq), v̂(η) = (Fy→ηv)(η). In other words, (278) describes the shape
of the singular functions of the edge asymptotics of constant (in y) discrete type P . In
particular, we see (say, for the case k = 0) how the Sobolev smoothness in y ∈ Rq of the
coefficients of the asymptotics depends on Re pj. Note that decompositions of the kind
(277) have a nice analogue in classical Sobolev spaces Hs(Rd+q) relative to a hypersurface
Rq, cf. the paper [30]. The singular functions (278) can also be written as

F−1
{
〈η〉

n+1
2 v̂(η)〈ζ, (r〈η〉)−w〉

}
(279)
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for suitable discrete ζ ∈ A′({pj}, Lj) and v ∈ Hs(Rq). The generalisation to continuous
asymptotics is based on singular functions of the form

F−1
{
〈η〉

n+1
2 〈ζ(η), (r〈η〉)−w〉

}
for ζ(η) ∈ A′(K,C∞(X)⊗̂πĤs(Rq

η)), K ⊂ C compact, where Ĥs(Rq
η) = Fy→ηH

s(Rq
y).

Edge asymptotics in the y-wise discrete case on a wedge X∧ × Ω can be modelled on

F−1
y→η

{
〈η〉

n+1
2 〈ζ(y, η), (r〈η〉)−w〉

}
(280)

for functions
ζ(y, η) ∈ C∞(U,A′(K,C∞(X)⊗̂πĤs(Rq

η))), (281)

U ⊂ Ω open, U ⊂ Ω, U compact, K = K(U) ⊂ C compact, where ζ(y, η) is as in (279)
for every fixed y ∈ U .

Now the singular functions with variable discrete and branching asymptotics are for-
mulated as (280) where (281) are pointwise discrete and of finite order, i.e., pointwise

of the form (273), with coefficients cjk(x, y, η) ∈ Lj(y) ⊗ F (Hs−n+1
2 (Rq)), pj = pj(y),

mj = mj(y), cf. the expression (275). Edge asymptotics in such a framework is a rich
program, partly for future research. Elliptic regularity of solutions to elliptic edge prob-
lems with continuous asymptotics is carried out in different contexts, see, e.g., [121], [127],
or [59]. Variable discrete asymptotics for boundary value problems have been studied in
[125], [126] and by Bennish [10]. Here we only want to mention that such a program
requires the preparation of Mellin and Green symbols which also reflect such asymptotics,
similarly as in the discrete case (with Mellin symbol spaces consisting of meromorphic
operator functions).

5 Higher generations of calculi

Manifolds with singularities of order k form a category Mk (M0 is the category of C∞ manifolds, M1 the one of manifolds
with conical singularities or smooth edges, etc.). The elements of Mk+1 can be defined in terms of Mk by an iterative
process. Every M ∈ Mk supports an algebra of natural differential operators, with principal symbolic hierarchies and
notions of ellipticity. It is an interesting task to construct associated algebras, as outlined in Section 4.4. The answers that
are already given for M1 and M2, see, for instance, [120], [122], or [131], show that the structures on the level k+ 1 require
the parameter-dependent calculus from the level k, together with elements of the index theory and many other features
that are also of interest on their own right. The analysis on manifolds with singularities is not a simple induction from k
to k + 1, although some general observations seem to be clear in ‘abstract terms’.

5.1 Higher generations of weighted corner spaces

One of the main issues of the analysis on manifolds M with higher singularities is the
character of weighted Sobolev spaces on such manifolds. According to the general principle
of successively generating cones and wedges and then to globalising the distributions on
M we mainly have to explain the space

Ks,γ(X∧), (t, x) ∈ X∧, (282)

for a (compact) manifold X ∈ Mk, s ∈ R, for a weight tuple γ ∈ Rk, and what is the
weighted wedge space

Ws,γ(X∧ × Rq), (t, x, y) ∈ X∧ × Rq.
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Before we give an impression on how these spaces are organised, we want to recall that
every M ∈Mk is connected with a chain of subspaces (192), M (j) ∈Mk−j, j = 0, . . . , k,
where M (0) = M . Let us assume for the moment that M (j) is compact for every j
(otherwise, when we talk about weighted corner spaces, we will also have variants with
subscript ‘(comp)’ and ‘(loc)’). Moreover, for simplicity, we first consider ‘scalar’ spaces;
the case of distributional sections of vector bundles will be a modification.

For k = 0 we take the standard Sobolev spaces Hs(M), s ∈ R. If M ∈M1 has conical
singularities, we have our weighted cone spacesHs,γ(M) for s, γ ∈ R, on the corresponding
stretched manifold M. For M ∈ M1 with smooth edge we can take the weighted edge
spaces Ws,γ(M) for s, γ ∈ R, on the stretched manifold M associated with M . Those are
subspaces of Hs

loc(int M), modelled on

Ws(Rq,Ks,γ(X∧)), (283)

locally in a neighbourhood of ∂M = Msing. The invariance of these spaces refers to an
atlas on M, where the transition maps near r = 0 are independent of r. Recall from
Section 1.3 that we can also form the spaces

Ws(Rq,Ks,γ;g(X∧)) (284)

for every s, γ, g ∈ R, based on the group action (24). Let Ws,γ;g(M) denote the corre-
sponding global spaces on M (they make sense for similar reasons as before with an atlas
as for g = 0).

Remark 5.1. The spaces Ws,γ;s−γ(M) are invariantly defined for particularly natural
charts on M, namely, those mentioned at the beginning of Section 4.1, here for the case
k = 1 (cf. also [151]). For simplicity, in the following discussion we return to the case
g = 0 and ignore this extra information.

For the higher calculi it seems better to modify some notation and to refer to the
singular manifolds M themselves rather than their stretched versions, although the dis-
tributions are always given on M \M (1) ∈M0. So we replace notation as follows:

Hs,γ(M)→ Hs,γ(M), Ws,γ(M)→ Hs,γ(M), Ks,γ(X∧)→ Ks,γ(X∆). (285)

We only preserve the Ws,γ-notation in wedges X∆ × Rq, in order to keep in mind the
edge-definition in the sense of Definition 1.23. In other words, we set

Ws,γ(X∆ × Rq) :=Ws(Rq,Ks,γ(X∆)) (286)

which is equal to (283).
For M ∈Mk, k ≥ 1, the weights will have the meaning of tuples

γ = (γ1, . . . , γk) ∈ Rk. (287)

Here γk is the ‘most singular’ weight. For the subspaces M (j) ∈ Mk−j, j = 0, . . ., k − 1,
we take the subtuples

γ(j) := (γj+1, . . . , γk) ∈ Rk−j. (288)
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The weighted corner space on M (j) of smoothness s ∈ R and weight γ(j) will be denoted
by

Hs,γ(j)

(M (j)), j = 0, . . . , k − 1.

Occasionally, in order to unify the picture, we also admit the case γ(k) as the empty weight
tuple and set in this case

Hs,γ(k)

(M (k)) := Hs(M (k))

(recall that M (k) ⊂ M is a C∞ manifold, cf. Section 3.1). Knowing the meaning of the
spaces

Hs,γ(M) for M ∈Mk (289)

and of
Hs,γ(X∆),Ks,γ(X∆) for X ∈Mk−1, (290)

γ = (γ1, . . . , γk), for a given k ≥ 1, the question is how to pass to the corresponding
spaces for k + 1. An answer is given in [15], and we briefly describe the result. We keep
in mind the group of isomorphisms {κλ}λ∈R+ , on Ks,γ(X∆), defined by

(κλu)(r, x) = λ
1+dim X

2 u(λr, x), λ ∈ R+, (291)

which allows us to form the spaces (286). The space (289) is locally near Y = M (k)

modelled on spaces (286) when dimY > 0 and on Hs,γ(X∆) for dimY = 0 when (for
simplicity) Y consists of a single corner point. The definition of Hs,γ(X∆) is as follows:

Hs,γ(X∆) := S−1

γk−dim X
2

(Hs,γ′(R×X))

when we write γ = (γ′, γk) for γ′ := (γ1, . . . , γk−1), and we employ the induction assump-
tion that the cylindrical space Hs,γ′(R×X) is already known. Here

(Sβu)(r, .) := e−( 1
2
−β)ru(e−r, .)

for u(r, .) ∈ Hs,γ(X∆), (r, .) ∈ R+ × X, (r, .) ∈ R × X, r := e−r. A similar description
of Hs,γ(M) holds locally near Y (i) = M (j) \M (j+1) for every j = 0, . . . , k − 1. Then the
space

Hs,γ(M) (292)

itself may be obtained by gluing together the local pieces by a construction in terms of
singular charts and a partition of unity on M . In order to define the spaces

Hs,(γ,θ)(M∆)

with θ ∈ R being the weight belonging to the new axial variable t ∈ R+ we need again
cylindrical spaces

Hs,γ(Rt ×M) (293)

which are locally near any y ∈ Y (j), j = 0, . . . , k, modelled on

Ws
(
Rt × RdimY (j)

,Ks,γ(j)

(X∆
(j−1))

)
for X(j−1) ∈Mj−1

which refers to the representation of a neighbourhood of y inM as (193). Since Y (0) ∈M0,
we have the standard cylindrical Sobolev spaces contributing to (293) over Rt× Y (0). By
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virtue of M =
⋃k
j=0 Y

(j) the space R×M can be covered by cylindrical neighbourhoods.
Gluing together the local spaces, using singular charts along M and a partition of unity,
yields the space (293). We then set

Hs,(γ,θ)(M∆) := Sθ−dim M
2

(Hs,γ(R×M)),

where θ plays the role of the new weight γk+1, belonging to t ∈ R+. Moreover, by forming
arbitrary locally finite sums of elements of Hs,γ(R ×M) with compact support in t ∈ R
we obtain a space that we denote by

Hs,γ
loc(t)(Rt ×M). (294)

Now let us form the spaces

Ws
(
R1+dimY (j)

t,ey ,Ks,γ
(j)er,x (X∆

(j−1))
)
,

j = 1, . . . , k, and Hs(Rt×RdimY (0)
) for j = 0. Moreover, we employ the spaces (294) with

t instead of t. Let ω(t) be any cut-off function on the half-axis and interpet 1−ω(t) in the
following notation as a function in t ∈ R that vanishes for t ≤ 0. By Ws,γ

cone(R+ ×M) we
denote the set of all u ∈ Hs,γ

loc(t)(Rt×M)|R+,t×M such that (1−ω(t))u(t, .) (for any cut-off

function ω) expressed in local coordinates on M in the wedge R×R+×X(j−1)×RdimY (j)

y 3
(t, r, x, y), cf. the formula (193), has the form

v(t, tr, x, ty)

for some v(t, r̃, x, ỹ) ∈ Ws(Rt,ey,Ks,γ(j)er,x (X∆
(j−1))) for all j = 1, . . . , k, and v(t, ỹ) ∈ Hs(Rt ×

RdimY (0)
) for j = 0. The invariance of our spaces under (adequate) coordinate transfor-

mations is not completely trivial. We do not deepen this aspect here. Let us only mention
that we have to specify the charts with the cocycle of transition maps, and we do not
necessarily admit arbitrary isomorphisms of respective local wedges (as manifolds of the
corresponding singularity order).

Coming back to Remark 5.1, we could also employ modified definitions of higher wedge
spaces, based on the spaces Ks,γ;g(X∆) := 〈r〉−gKs,γ(X∆) with group actions

(κgλu)(r, x) = λg+
1+dim X

2 u(λr, x), λ ∈ R+,

for u(r, x) ∈ Ks,γ;g(X∆) instead of (291). However, this has a chain of consequences which
we do not discuss in more detail here. Now we set

Ks,(γ,θ)(M∆) :=
{
ωu+ (1− ω)v : u ∈ Hs,(γ,θ)(M∆), v ∈ Ws,γ

cone(R+ ×M)
}

for some cut-off function ω(t).
Summing up we have constructed spaces of the kind (292), namely,

Hs,(γ,θ)(M∆),Ks,(γ,θ)(M∆) for M ∈Mk. (295)

For arbitrary N ∈Mk+1 we obtain the spaces

Hs,(γ,θ)(N)
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by gluing together local spaces over wedges, similarly as above (292) for the case M ∈Mk.
All these spaces are Hilbert spaces with adequate scalar products. On Ks,(γ,θ)(M∆) we
have a strongly continuous group of isomorphisms, similarly as (291). This allows us to
form the spaces Ws(Rq,Ks,(γ,θ)(M∆)), and we thus have again the raw material for the
next generation of weighted corner spaces.

Let us finally note that the constructions also make sense for non-compact M ∈Mk;
we assume, for instance, that M is a countable union of compact sets and that such M
are embedded in a compact M̃ ∈ Mk. Then we can talk about Hs,γ

(comp)(M), defined

to be the set of all elements of Hs,γ(M̃), supported by a compact subset K ⊆ M and
about Hs,γ

(loc)(M) to be the set of all locally finite sums of elements in Hs,γ
(comp)(M). The

notation ‘(comp)’ and ‘(loc)’ in parentheses is motivated by the fact that, although the
distributions are given on M \M (1), the support refers to M (e.g., if M = R+,M

(1) = {0},
we talk about compact support in R+).

5.2 Additional edge conditions in higher corner algebras

As we saw in boundary value problems a basic idea to complete an elliptic operator A to a
Fredholm operator between Sobolev spaces is to formulate additional boundary conditions.
This can be done on the level of symbols by filling up the boundary symbol (111) to a
family (112) of isomorphisms. In general it is necessary to admit vector bundles J± on the
boundary, even if the operator A itself is scalar. We also can start from operators acting
between distributional sections of vector bundles E and F , and we then have Fredholm
operators as in Remark 2.10.

In a similar manner we proceed for a manifold M with edge Y = M (1). If A ∈
Diffµdeg(M;E,F ) is an edge-degenerate operator (between weighted edge space of (distri-
butional) sections of vector bundles E,F ) ellipticity requires filling up the homogeneous
principal edge symbol

σ∧(A)(y, η) : Ks,γ(X∆, Ey)→ Ks−µ,γ−µ(X∆, Fy)) (296)

to a 2× 2 block matrix family of isomorphisms

σ∧(A)(y, η) : Ks,γ(X∆, Ey)⊕ J−,y → Ks−µ,γ−µ(X∆, Fy)⊕ J+,y (297)

for suitable J± ∈ Vect(Y ), (y, η) ∈ T ∗Y \ 0.
Here, in abuse of notation, Ey, Fy ∈ Vect(X∧) denote bundles that are obtained

as follows. First consider the X-bundle Msing over Y and the associated X∧-bundle
M∧

sing, with the canonical projection p : M∧
sing → Msing, induced by X∧ → X. For every

E ∈ Vect(M) we obtain a bundle p∗(E
∣∣
Msing

); then the restriction of the latter bundle to

the fibre of M∧
sing over y ∈ Y is denoted again by Ey.

The construction of (297) for a σψ-elliptic element A of the edge algebra is also mean-
ingful for pseudo-differential operators. The weight γ ∈ R is kept fixed; in general there
are many admissible weights for which (296) is a Fredholm family, but the bundles J±
depend on γ.

In any case we obtain 2× 2 block matrices

A :
Hs,γ(M,E)

⊕
Hs(Y, J−)

→
Hs−µ,γ−µ(M,F )

⊕
Hs−µ(Y, J+)

(298)
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which are Fredholm operators as soon as A is elliptic with respect to σψ(A) and σ∧(A);
the latter condition is just the bijectivity of (297) for all (y, η) ∈ T ∗Y \ 0 for some s ∈ R.

Let Aµ(M, g) denote the space of all (298) belonging to the weight data g := (γ, γ −
µ) (the bundles are assumed to be known for every concrete A, otherwise we write
Aµ(M, g; v) for v := (E,F ; J−, J+)).

On a manifold M in the category Mk with the sequence of subspaces (192), M (j) ∈
Mk−j, 0 ≤ j ≤ k, the picture (in simplified form) is a follows. We have weighted Sobolev
spaces

Hs,γ(j)

(comp)(M
(j), E(j)) and Hs,γ(j)

(loc) (M (j), E(j))

with weights γ(j) = (γj+1, . . . , γk) ∈ Rk−j for 0 ≤ j ≤ k− 1 and Hs
(comp/loc)(M

(k), E(k)) for

vector bundles E(j). (For M (j) compact we omit subscripts ‘(comp)’ and ‘(loc)’.)
The higher corner operator space Aµ(M, g; v) of operators of order µ on M then

consists of (k + 1)× (k + 1) block matrices

A :
k⊕
j=0

Hs,γ(j)

(comp)(M
(j), E(j))→

k⊕
l=0

Hs−µ,γ(l)−µ
(loc) (M (l), E(l)), (299)

with weight data g := (γ(j), γ(j)−µ)j=0,...,k−1, γ
(j)−µ := (γj+1−µ, . . . , γk−µ), and tuples

v := (E(j), F (j))j=0,...,k, E
(j), F (j) ∈ Vect(M (j)). The fibre dimensions of the involved

bundles may be zero. In that case the corresponding spaces are omitted. Writing

A = (Aij)i,j=0,...,k

we have
(Aij)i,j=l,...,k ∈ Aµ(M (l), g(l); v(l))

for every 0 ≤ l ≤ k, with weight and bundle data g(l) and v(l), respectively, that follow
from g and v by omitting corresponding components. Set ulcA := (Aij)i,j=0,...,k−1. The
principal symbolic hierarchy

σ(A) := (σj(A))0≤j≤k (300)

is defined inductively, where (σj(A))0≤j≤k−1 is the principal symbol of ulcA
∣∣
M\M(k) with

M \M (k) ∈Mk−1, such that the symbols up to the order k − 1 are known, while

σk(A)(y, η) :
⊕k−1
j=0Ks,γ

(j)
((X

(j)
k−1)

∆, E
(j)
y )

⊕
E

(k)
y

→
⊕k−1
l=0Ks−µ,γ

(l)−µ((X
(l)
k−1)

∆, F
(l)
y )

⊕
F

(k)
y

(301)

for (y, η) ∈ T ∗M (k)\0 is the highest principal symbol of order k, cf. (198) for the case when
A consists of an upper left corner which is a differential operator A. Here Xk−1 ∈Mk−1

(by assumption, compact) is the fibre of theXk−1-bundle Msing overM (k) 3 y, M (k) ∈M0,
and

Xk−1 = X
(0)
k−1 ⊃ X

(1)
k−1 ⊃ . . . ⊃ X

(k−1)
k−1

is the chain of subspaces, analogously as (192). In this discussion we tacitly assumed
dimM (k) > 0. In the case dimM (k) = 0 the space M (k) consists of corner points. Then
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(301) is to be replaced by an analogue of the former conormal symbols, namely,

σc(A)(w) :
⊕k−2
j=0Hs,γ′(j)(X

(j)
k−1, E

(j))
⊕

E(k−1)

→
⊕k−2
l=0Hs−µ,γ′(l)−µ(X

(l)
k−1, E

(l))
⊕

F (k−1)

, (302)

w ∈ Γdim Xk−1+1

2
−γk

where γ′ = (γ1, . . . , γk−1). Clearly, (302) depends on the discrete corner

points y ∈M (k); for simplicity, we assume that M (k) consists of a single point (subscripts
‘y’ are then omitted).

Definition 5.2. An operator A ∈ Aµ(M, g; v) for M ∈ Mk is called elliptic of or-
der µ, if A′ := A

∣∣
M\M(k) is elliptic as an element of Aµ(M \ M (k), g; v′) for g′ :=

(γ(j), γ(j) − µ)j=1,...,k−1, v′ = (E(j), F (j))j=1,...,k−1, and if (301) for dimM (k) > 0 is a
family of isomorphisms for all (y, η) ∈ T ∗M (k) \ 0 (or (302) for dimM (k) = 0, for all
w ∈ Γdim Xk−1+1

2
−γk

).

Theorem 5.3. Let A ∈ Aµ(M, g; v) be elliptic and M ∈ Mk compact. Then (299) is a
Fredholm operator for every s ∈ R, and A has a parametrix P ∈ A−µ(M, g−1; v−1).

5.3 A hierarchy of topological obstructions

Looking at the constructions of Section 2.1 for an elliptic operator A on X in connection
with the process of filling up the Fredholm family (111) to a family of isomorphisms (112)
we did not emphasise that the existence of the vector bundles J± ∈ Vect(∂X) is by no
means automatic. To illustrate that we first recall the homogeneity

σ∂(A)(y, λη) = λµκλσ∂(A)(y, η)κ−1
λ

for all λ ∈ R+, (y, η) ∈ T ∗(∂X) \ 0 which shows that we may consider (111) for (y, η) ∈
S∗(∂X) (the unit cosphere bundle induced by T ∗(∂X)) which is a compact topological
space (when X compact). It suffices to construct (112) first for (y, η) ∈ S∗(∂X) and then
to extend it by homogeneity µ to arbitrary (y, η) ∈ T ∗(∂X) \ 0, setting

σ∂(A)(y, η) := |η|µ
(
κ|η| 0
0 1

)
σ∂(A)(y,

η

|η|
)

(
κ|η| 0
0 1

)−1

, (303)

cf. the relation (116). From the fact that (111) is a family of Fredholm operators,
parametrised by the compact space S∗(∂X) we have a K-theoretic index element

indS∗(∂X) σ∂(A) ∈ K(S∗(∂X)). (304)

Recall that the K-group K(.) (for a compact topological space in the parentheses) is a
group of equivalence classes [G+] − [G−] of pairs (G−, G+) of vector bundles G−, G+ ∈
Vect(.).

If (112) is a family of isomorphisms, the index element (304) is equal to [J+] − [J−]
which means

indS∗(∂X) σ∂(A) ∈ π∗1K(∂X) (305)
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when π1 : S∗(∂X)→ ∂X denotes the canonical projection. In general, we only have (304),
i.e., (305) is a topological obstruction for the existence of an elliptic operator (117) with
A in the upper left corner. The condition has been studied in [6] for elliptic differential
operators A and in [13] for pseudo-differential operators A with the transmission property
at ∂X. Dirac operators (in even dimensions) and other interesting geometric operators
belong the cases where this obstruction does not vanish.

The following discussion is partly hypothetical, it formulates expectations that are
not completely worked out in detail, except for the obvious things such as the following
observation.

Set
Ks,γ(X∆, Ey) := ⊕k−1

j=0Ks,γ
(j)

((X
(j)
k−1)

∆, E(j)
y ), (306)

Ks−µ,γ−µ(X∆, Fy) := ⊕k−1
l=0K

s−µ,γ(l)−µ((X
(l)
k−1)

∆, F (l)
y ). (307)

Moreover, let ulcA := (Aij)i,j=0,...,k−1. If (301) is a family of isomorphisms, the k × k
upper left corner

σ∧(ulcA)(y, η) : Ks,γ(X∆, Ey)→ Ks−µ,γ−µ(X∆, Fy) (308)

is a family of Fredholm operators for all (y, η) ∈ T ∗M (k)\0. In addition, using the natural
group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ on the spaces (306) and (307), respectively, we have
the homogeneity

σ∧(ulcA)(y, λη) = λµκ̃λσ∧(ulcA)(y, η)κ−1
λ

for all λ ∈ R+, (y, η) ∈ T ∗M (k) \0. This allows us to interpret (308) as a Fredholm family
on S∗M (k), and we have

indS∗M(k) σ∧(ulcA) ∈ K(S∗M (k)).

It is again a necessary and sufficient condition for the existence of a block matrix family
(301) of isomorphisms with vector bundles E(k), F (k) ∈ Vect(M (k)) that

indS∗M(k) σ∧(ulcA) ∈ π∗1K(M (k)), (309)

π1 : S∗M (k) →M (k).
If (309) holds we find the additional entries for σ∧(A)(y, η) in the k th row and

column, first for (y, η) ∈ S∗M (k) and then for all (y, η) ∈ T ∗M (k) \ 0 by an extension by
homogeneity, similarly as (303).

The condition (309) is a topological obstruction for the existence of an elliptic el-
ement A ∈ Aµ(M, g; v) for a given operator of the form ulcA ∈ Aµ(M, g; w), w :=
(E(j), F (j))j=0,...,k−1, that is elliptic with respect to (σj(.))j=0,...,k−1.

If (309) is violated, it should be possible to modify the procedure of filling up (308) to
a family of isomorphisms (301) by completing lucA to a Fredholm operator A, by using
global projection data in analogy of the constructions of [136] for the case k = 1 (see also
[129], [135] for the case boundary value problems). The extra entries of A (compared
with ulcA) then refer to subspaces of the standard Sobolev spaces on M (k) which are
the image under a pseudo-differential projection. In the opposite case, i.e., when (309)
holds we obtain ellipticity of A in the sense of Definition 5.2 which is an analogue of the
Shapiro-Lopatinskij ellipticity, known from boundary value problems. In that case it is
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interesting to talk about different possibilities of filling up the operator A11 to a Fredholm
operator A in the above mentioned way. Let B be another operator containing A11 in the
upper left corner, and let B be also elliptic in the sense of Definition 5.2. There is then a
reduction of the conditions (Bij)i,j=0,...,k,(i,j) 6=(1,1) to the subspace M (1) ∈Mk−1 by means
of A = (Aij)i,j=0,...,k. The algebraic process is similar to that in [102, Section 3.2.1.3]
for the case of boundary value problems. In other words, there exists an elliptic element
R ∈ A0(M (1)) (for brevity, weight and bundle data are omitted in the notation) such that

indB − indA = indR.

This relation is an analogue of the Agranovich-Dynin formula, cf. Remark 2.14, and [102,
Section 3.2.1.3].

The latter observation can also be interpreted as follows. The elliptic operators on
M (1) parametrise the elliptic operators in Aµ(M), apart from the ellipticity condition
for A11 itself (which means, e.g., for k = 1, that A11 is elliptic of Fuchs type or in the
edge-degenerate sense).

5.4 The building of singular algebras

If M ∈ Mk is given, we assume to have constructed an algebra of operators A(M) :=⋃
µ Aµ(M) for Aµ(M) :=

⋃
g,v Aµ(M, g; v), cf. the notation in Section 5.2, with a principal

symbolic structure (σj(A))0≤j≤k. For M ∈M0 we may take, for instance, the algebra of
classical pseudo-differential operators on M . The program of the iterative calculus on
Mk+1,Mk+2, . . ., is to organise a natural scenario to pass from A(M) to corresponding
higher generations of calculi. Spaces in Mk+1 can be obtained from M ∈Mk by pasting
together local cones M∆ or wedges M∆ × Ω, Ω ⊆ Rq open. Analytically, the main
steps (apart from invariance aspects) consist of understanding the correspondence between
A(M) and the next higher algebras

A(M∆) and A(M∆ × Ω).

The way which is suggested here will be called conification and edgification of the calculus
on M . The experience from the cone and edge algebras of first generation leads to the
following ingredients.

(C.1) Parameter-dependent calculus. Establish A(M ; Rl), a parameter-depen-
dent version of A(M) with parameters λ = (λ1, . . . , λl) ∈ Rl of dimension l ≥ 1. Here
ζ := (λ2, . . . , λl) ∈ Rl−1 may be treated as sleeping parameters in the sense of Section
3.2. In the process of the iterative construction it becomes clear how the parameters are
successively activated, cf. the points (C.2) - (C.4) below. In this context we assume that
A(M ; Rl) is constructed for every M ∈ Mk; thus since M∧ = R+ ×M also belongs to
Mk (with R+ being regarded as a C∞ manifold) we also have A(M∧) and A(M∧; Rl). If
A−∞(M) denotes the space of smoothing elements in the algebra A(M) (defined by their
mapping properties in weighted corner spaces), we set

A−∞(M ; Rl) := S(Rl,A−∞(M))

for every M ∈Mk.
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(C.2) Holomorphic Mellin symbols and kernel cut-off. Generate an analogue
of A(M ; Rl), namely, A(M ; C × Rl−1) of holomorphic families in the complex parameter
v ∈ C by applying a kernel cut-off procedure to elements of A(M ; Rl) with respect to
λ1. Here A(v, ζ) ∈ A(M ; C × Rl−1) is holomorphic in v = β + iτ ∈ C with values in
A(M ; Rl−1

ζ ) such that

A(β + iτ, ζ) ∈ A(M ; Rl
τ,ζ)

for every β ∈ R, uniformly in finite β-intervals. The holomorphy of operator families can
be defined in terms of holomorphic families of the underlying local symbols (the notion
directly follows in terms of the spaces of symbols, plus holomorphic families of smoothing
operators which is also an easy notion, taking into account their mapping properties
between global weighted spaces, or subspaces with asymptotics). In a similar sense we
can form the spaces

C∞(
R+ × Ξ,A(M ; Rl)

)
and C∞(

R+ × Ξ,A(M ; C× Rl+1)
)
,

respectively.
(C.3) Mellin quantisation. Given a

p̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,A(M ; Rleτ,eζ))

we find an
h̃(t, z, v, ζ̃) ∈ C∞(

R+ × Ξ,A(M ; C× Rl−1eζ )
)

such that for p(t, z, τ, ζ) := p̃(t, z, tτ, tζ), h(t, z, v, ζ) := h̃(t, z, v, tζ) we have

opγM(h)(z, ζ) = opt(p)(t, ζ) mod C∞(Ω,A−∞(M∧; Rl−1))

for every γ ∈ R. The correspondence p → h may be achieved by a combination of a
transformation from the Fourier phase function (t − t′)τ to the Mellin phase function
(log t′ − log t)τ with a kernel cut-off construction.

(C.4) Edge quantisation. We start from a family p̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,A(M ;

R1+qeτ,eζ )
)

for Ξ ⊆ Rq open and obtain

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ), p0(t, z, τ, ζ) := p̃(0, z, tτ, tζ),

h(t, z, v, ζ) := h̃(t, z, v, tζ), h0(t, z, v, ζ) := h̃(0, z, v, tζ)

by Mellin quantisation. Moreover, we fix cut-off functions ω, ω̃, ˜̃ω such that ω̃ ≡ 1 on

supp ω, ω ≡ 1 on supp ˜̃ω, and cut-off functions σ, σ̃. We set

aM(z, ζ) := t−µω(t[ζ]) op
Θ−n

2
M (h)(z, ζ)ω̃(t′[ζ]) (310)

for a θ ∈ R and n = dimM ,

aψ(z, ζ) := t−µ(1− ω(t[ζ]))ω0(t[ζ], t
′[ζ]) opt(p)(z, ζ)(1− ˜̃ω(t′[ζ])) (311)

(t′ ∈ R is the variable under the Mellin transform), ω0(t, t
′) := ψ

(
(t−t′)2

1+(t−t′)2

)
for every

ψ ∈ C∞
0 (R+) such that ψ(t) = 1 for t < 1

2
, ψ(t) = 0 for t > 2

3
, cf. [17, Lemma 2.10], and

form the operator-valued amplitude function

a(z, ζ) := σ{aM(z, ζ) + aψ(z, ζ)}σ̃ (312)
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which belongs to Sµ
(
Ξ×Rd; Ks,(γ,θ)(M∆),Ks−µ,(γ−µ,θ−µ)(M∆)

)
for every s ∈ R. As above,

θ ∈ R plays the role of the additional weight γk+1.
(C.5) Mellin plus Green symbols. Compositions of symbols of the kind (312) and

computations in connection with ellipticity and parametrices generate a further class of
symbols, namely, Mellin plus Green symbols

m(z, ζ) + g(z, ζ) ∈ Sµcl
(
Ξ× Rd; Ks,(γ,θ)(M∆),S(γ−µ,θ−µ)(M∆)

)
. (313)

Here
S(γ,θ)(M∆) := lim

←−
N∈N

〈t〉−NKN,(γ,θ)(M∆).

There are many possible variants for (313), for instance, symbols referring to the weight
line Γn+1

2
−θ itself, n = dimM , or to an ε-strip around this for a small ε > 0, or to a

larger strip in the complex v-plane in which asymptotic phenomena are encoded in terms
of meromorphy. Let as content ourselves here with the ε-strip. In that case we choose a
function f(z, v) which is C∞ in z ∈ Ξ and holomorphic in {v ∈ C : n+1

2
− θ − ε < Re v <

n+1
2
−θ+ε}, taking values in A−∞(M), such that f(z, v) ∈ C∞(Ξ,A−∞(M ; Γβ)) for every

n+1
2
− θ − ε < β < n+1

2
− θ + ε, uniformly in compact β-intervals. Then we set

m(z, ζ) := t−µω(t[ζ]) op
θ−n

2
M (f)(z)ω̃(t′[ζ]) (314)

for an arbitrary choice of cut-off functions ω, ω̃. A Green symbol g(z, ζ) is defined by

g(z, ζ) ∈ Sµcl
(
Ξ× Rd; Ks,(γ,θ)(M∆),S(γ−µ+δ,θ−µ+δ)(M∆)

)
. (315)

for some δ > 0, for all s, together with a similar condition on the (z, ζ)-wise formal
adjoints. Varying ω, ω̃ in (314) we only obtain a Green remainder. The symbols (315)
take values in compact operators Ks,(γ,θ)(M∆) → Ks,(γ−µ,θ−µ)(M∆); the operator-valued
symbols (314) have not such a property. We have

Opz(m), Opz(g) ∈ A−∞(M∧).

Recall that M∧ = R+×M belongs to Mk; therefore, the smoothing operators on M∧ are
already known by induction. Nevertheless, Opz(m),Opz(g) take part as non-smoothing
contributions in the algebra A(M∆), cf. (C.7) below.

(C.6) Global smoothing operators. Formulate the spaces A−∞(N) 3 C for arbi-
trary N ∈Mk+1 by requiring the mapping properties

C : Hs,(γ,θ)
(comp)(N)→ H∞,(γ−µ+δ,θ−µ+δ)

(loc) (N), (316)

s ∈ R, for some δ = δ(C) > 0 and, analogously, for the formal adjoints C∗. Here we fix
weight data ((γ, θ), (γ − µ, θ − µ)) for arbitrary weights and orders µ (the spaces in the
relation (316) are an abbreviation for the direct sums occurring before, with k+1 instead
of k).

(C.7) Global corner operators of (k + 1)-th generation. An operator A ∈
Aµ(N) for N ∈ Mk+1, associated with weight data ((γ, θ), (γ − µ, θ − µ)) is defined as
follows:
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We first choose cut-off functions σ, σ̃, ˜̃σ on N that are equal to 1 in a small neighbour-
hood of Z := N (k+1) and vanish outside another such neighbourhood, such that σ̃ = 1 on

suppσ, σ = 1 on supp ˜̃σ. Then Aµ(N) consists of all

A = Asing + Areg + C

such that

(i) C ∈ A−∞(N);

(ii) Areg := (1− σ)Aint(1− ˜̃σ) for Aint := A|N\Z ∈ Aµ(N \ Z), also associated with the
weight data (γ, γ − µ);

(iii) Asing (modulo pull backs to the manifold) is a locally finite sum of operators of the
form

ϕ{Opz(a+m+ g)}ψ

referring to the local description of N near Z by wedges M∆×Ξ, Ξ ⊆ Rq open (d =
dimZ), for arbitrary symbols a,m, g as in (C.4), (C.5) and functions ϕ, ψ ∈ C∞

0 (Ξ),
ϕ belonging to a partition of unity on Z and ψ ≡ 1 on suppϕ.

(C.8) The principal symbolic hierarchy. For A ∈ Aµ(N) we set

σ(A) := (σint(A), σ∧k+1
(A)),

where σint(A) = σ(Aint) is the symbol which is known from the step before, since N \Z ∈
Mk, and

σ∧k+1
(A)(z, ζ) := t−µ{ω(t|ζ|) op

θ−n
2

M (h0)(z, ζ)ω̃(t|ζ|)
+ (1− ω(t|ζ|))ω0(t|ζ|, t′|ζ|) opt(p0)(z, ζ)(1− ˜̃ω(t′|ζ|))}
+ σ∧k+1

(m+ g)(z, ζ), (317)

where σ∧k+1
(m + g)(z, ζ) is the homogeneous principal part of m + g in the sense of

(operator-valued) classical symbols of order µ. The edge symbol (317) is interpreted as a
family of operators

σ∧k+1
(A)(z, ζ) : Ks,(γ,θ)(M∆)→ Ks−µ,(γ−µ,θ−µ)(M∆), (318)

(z, ζ) ∈ T ∗Z \ 0, and we have

σ∧k+1
(A)(z, λζ) = λµκλσ∧k+1

(A))(z, ζ)κ−1
λ

for all λ ∈ R+.

6 Historical background and future program

The analysis on manifolds with singularities has a long history. Motivations and models from the applied sciences go back
to the 19 th century. There are deep connections with pure mathematics, e.g., complex analysis, geometry, and topology.
Numerous authors have contributed to the field. We outline here a few aspects of the development and sketch some
challenges and open problems.

102



6.1 Achievements of the past development

The analysis on manifolds with singularities is inspired by ideas and achievements from
classical areas of mathematics, such as singular integral operators, Toeplitz operators,
elliptic boundary value problems, Sobolev problems, from the applied sciences with edge
and corner geometries, crack problems, numerical computations, pseudo-differential cal-
culus, asymptotic analysis and Mellin operators with meromorphic symbols, parameter-
dependent ellipticity, spectral theory, ellipticity on non-compact manifolds, expecially,
with conical exits to infinity, Dirac operators and other geometric operators, Hodge the-
ory, index theory, spectral theory, functional calculus, and many other areas.

Elliptic boundary value problems (e.g., Dirichlet or Neumann for the Laplace operator)
in a smooth bounded domain in Rn are often studied directly, not necessarily in the
framework of a voluminous calculus. However, it may be instructive to consider the class
of all elliptic boundary value problems for elliptic differential operators at the same time.

The history of elliptic boundary value problems is well known; there are many stages
and numerous applications. In the present exposition we will not give a complete list of
merits and achievements of the general development.

We mainly focus on ideas that played a role for the iterative calculus of edge and
corner problems. A classical reference is the work of Lopatinskij [75] who introduced a
general concept of ellipticity of boundary conditions for an elliptic differential operator.
We are talking here about Shapiro-Lopatinskij conditions. The operators representing
boundary conditions are also called trace operators.

An algebraic characterisation of elliptic differential trace operators may be found in
Agmon, Douglis, and Nirenberg [2], the complementing condition. Let us also mention
the works of Schechter [115], Solonnikov [146], [147], and the monograph of Lions and
Magenes [72]. Moreover, Solonnikov [145] studied parabolic problems in such a framework.
The Sixtees of the past century were also a period of intensive development of the pseudo-
differential calculus, cf. Kohn and Nirenberg [61], Hörmander [57], [58]. Ideas and sources
of this theory (especially, of singular integral operators) are, in fact, much older.

Wiener-Hopf operators became an important model for different kinds of operator al-
gebras with symbolic structures, ellipticity, and Fredholm property. In higher dimensions
they played an essential role in the theory of Vishik and Eskin on pseudo-differential
boundary value problems without (or with) the transmission property at the boundary,
cf. Vishik and Eskin [153], [154] and Eskin’s monograph [32]. An algebra of pseudo-
differential operators with the transmission property at the boundary was established by
Boutet de Monvel [13]. This algebra is closed under constructing parametrices of elliptic
elements.

Similarly as in the work of Vishik and Eskin, the operators in Boutet de Monvel’s alge-
bra have a 2×2 block matrix structure with additional trace and potential entries. More-
over, there appear extra Green operators in the upper left corners which are indispensable
in compositions. Apart from the standard ellipticity of the upper left corner there is a no-
tion of ellipticity of the remaining entries which is an analogue of the Shapiro-Lopatinskij
condition, a bijectivity condition for a second (operator-valued) symbolic component.

It turned out very early that the ellipticity of the upper left corner does not guarantee
the existence of a Shapiro-Lopatinskij elliptic 2 × 2 block matrix operator, cf. Atiyah
and Bott [6]. Despite of the general index theory, cf. Atiyah and Singer [9] and the
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subsequent development, which is also an important source of the analysis on manifolds
with singularities, it remained unclear for a long time how to complete boundary value
problems for such operators to a calculus which is closed under parametrix construction for
elliptic elements (answers are given in [129], [134], [133]). The case of differential boundary
value problems of that type was widely studied by numerous authors, see Seeley [140],
Booss-Bavnbek and Wojciechowski [12], or the author’s joint paper with Nazaikinskij,
Sternin, and Shatalov [89], see also [86], jointly with Nazaikinsij, Savin, and Sternin.

Interpreting a (smooth) manifold with boundary as a manifold with edge (with the
boundary as edge and the inner normal as the model cone of local wedges) boundary
value problems have much in common with edge problems. This is particularly typical
for the theory of Vishik and Eskin where the operators on the half-axis are Wiener-Hopf
and Mellin operators that belong (in the language of [121], [124]) to the cone algebra on
the half-axis, cf. Eskin’s monograph [32, §15]. Let us also mention in this connection
the work of Cordes and Herman [24] and Gohberg and Krupnik [43], [44]. (The calculus
of Vishik and Eskin was completed to an algebra in [103].) There is another category
of problems with ‘edges’, the so-called Sobolev problems, where elliptic conditions are
posed on submanifolds of codimension ≥ 1, embedded in a given manifold. This type of
problems has been systematically studied by Sternin [148], [149], including conditions of
trace and potential type. In this case the embedded manifolds can also be interpreted as
edges (cf. the recent papers [91], [30] and [73]).

Boundary value problems for differential operators in domains with conical singulari-
ties in weighted Sobolev spaces have been studied by Kondrat’ev [63] and by many other
authors. The Fredholm property in [63] was obtained under the condition of Fuchs type
ellipticity together with the ellipticity of the principal conormal symbol with respect to
a chosen weight. At the same time the asymptotics of solutions at the tip of the cone
was characterised in terms of the non-bijectivity points of the principal conormal symbol
which gives rise to meromorphic operator functions, operating in Sobolev spaces on the
base of the local cones. (The notation ‘conormal symbol’ was introduced in [103] in a
situation of boundary value problems, where ‘conormal’ comes from the conormal bundle
of a domain that corresponds to a cone, see also Section 2.3; other authors speak about
operator pencils or indicial families. Our notation is motivated by their role of a principal
symbolic component in a hierarchy.)

Such conormal symbols fit into the frame of parameter-dependent operators and
parameter-dependent ellipticity on a manifold. This is an aspect of independent impor-
tance. Agmon [1] interpreted a spectral parameter as an additional covariable; a similar
concept was applied by Agranovich and Vishik [3] to parabolic problems, and it played an
important role in Seeley’s work [139] on complex powers of an elliptic operator. Later on,
parameter-dependent boundary value problems in the technique of Boutet de Monvel’s
calculus were investigated by Grubb [51] with a more general dependence on parameters.

Parameters in the singular analysis appear in a very simple way. If A is a (say, differ-
ential) operator on a singular configuration M and if we analyse A in a neighbourhood
of a (smooth) stratum Y then we can freeze variables on Y and consider the cotangent
variables η to Y (in the symbol of A) as parameters. We then obtain an operator function
a(y, η) on a cone X∆ transversal to Y . In this connection it is natural to accept X∆ as
an infinite cone and to interpret a(y, η) as an operator-valued symbol of A. This is just
the idea of boundary symbols on a manifold M with smooth boundary; the transversal
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cone in this case is R+.
In Shapiro-Lopatinskij ellipticity there is an automatic control of operators for r →∞

when η 6= 0. Similarly, also for dimX > 0, it is interesting to observe the behaviour of
operators near the conical exit of X∆ to infinity.

The simplest model of such a manifold is the Euclidean space Rn which corresponds
to (Sn−1)∆ in polar coordinates. Ellipticity up to infinity in the case of differential op-
erators was studied by Nirenberg and Walker [92]. The pseudo-differential calculus of
such operators was independently developed by Shubin [144], Parenti [95] and by Cordes
[23]. It is essential here that the manifolds at infinity have as specific structure, i.e., there
is a ‘metric’ background which leads to standard Sobolev spaces up to infinity. For the
singular analysis near r = 0 it is also important to study operators on finite cylinders
R×X between ‘cylindrical’ Sobolev spaces. Although infinite cones and infinite cylinders
geometrically are nearly the same, the ellipticities are quite different. Ellipticity referring
to the cylindrical metric was investigated by Sternin [150]. The corresponding results are
close to the ones for weighted Sobolev spaces near conical singularities.

Classical operator calculi with symbolic structures usually contain the equivalence
between ellipticity and Fredholm property in the chosen Sobolev spaces on the given
configuration. This is a starting point of many beautiful connections to index theories.
Although this is an interesting side of the history, it goes beyond the scope of this exposi-
tion which is focused more on ‘analytic’ aspects. Geometric and topological relations are
discussed in detail in a new monograph of Nazaikinskij, Savin, Schulze and Sternin [88].

6.2 Conification and edgification

By ‘iterative calculus’ we understand a program to successively generating operator struc-
tures on manifolds with higher singularities, such that ellipticity of the operators, para-
metrices, and index theory make sense. Let us first recall that a manifold M ∈ Mk+1,
k ∈ N, can be generated by repeatedly forming cones X∆ = (R+ × X)/({0} × X) and
wedges X∆×Ω, starting from elements X ∈Mk and open Ω ⊆ Rq (local edges), combined
with pasting constructions to reach the ‘global’ object M . In the case of a C∞ manifold
X, i.e., X ∈ M0, we obtain in this way manifolds with conical singularities and edges,
i.e., objects in M1; a next step gives us corner manifolds in M2, i.e., of second generation,
and so on.

Now the program of the iterative calculus is as follows. Given a (pseudo-differential)
operator algebra on X ∈ Mk, apply a ‘conification’ to generate a so-called cone algebra
on X∆, then an ‘edgification’ to obtain a corresponding edge algebra on X∆ × Ω, and
then past together the obtained local cone and edge algebras to the next higher algebra
on M ∈Mk+1. The question is now how to organise such conifications and edgifications.
Answers of different generality may be found in the papers and monographs [120], [122],
[119], [121], [127], [131], as well as in the author’s joint works with Rempel [103], [102],
[108], Egorov [31], Kapanadze [59], or Nazaikinskij, Savin, and Sternin [88]. In order
to make the conification and edgification idea transparent we try to give an impression
of how the first cone, edge, and corner algebras were originally found. (The following
discussion has some intersection with the previous section).

First, in the context of the early achievements of the calculus of pseudo-differential
operators, see Kohn and Nirenberg [61], Hörmander [57], [58], and of the index theory,
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see Atiyah and Singer [9], it became standard to establish operator algebras with a princi-
pal symbolic structure, closed under the construction of parametrices of elliptic elements,
and containing a minimal class of ‘desirable’ elements, such as differential operators (see
also the discussion in Section 4.4 before). However, already for boundary value problems
on a C∞ manifold with boundary this concept leads to ‘unexpected’ difficulties. Vishik
and Eskin [153], [154] established a very general calculus of pseudo-differential boundary
value problems, but the ‘calculus answer’ was not so smooth as in the boundaryless case;
compositions and parametrices were not given within the calculus. A ‘smooth’ calculus
of boundary value problems in that desirable sense was obtained later on by Boutet de
Monvel [13], however under two severe restrictions. The symbols are required to have
the transmission property at the boundary (these symbols form a thin set in the space
of all pseudo-differential symbols which are smooth up to the boundary). Moreover ellip-
tic operators (such as Dirac operators in even dimensions or other important geometric
operators) are excluded (for topological reasons) from the notion of Shapiro-Lopatinskij
ellipticity of boundary conditions, see also Atiyah and Bott [6], and the discussion in
Section 5.3. In any case, both Vishik, Eskin and Boutet de Monvel stressed the role
of a second principal symbolic component, namely, the boundary symbol which encodes
the Shapiro-Lopatinskij ellipticity of the boundary conditions and refers to the entries of
a 2 × 2 block matrix with trace and potential operators. The latter kind of operators
(together with Green operators) was added as a contribution of the boundary. (Note
that an operator algebra for boundary value problems without any topological restriction
(such as for geometric operators mentioned before) was given in [129], see also [133].) An
algebra of boundary value problems that admits all smooth symbols (also those with-
out the transmission property at the boundary, as in Vishik and Eskin’s work), closed
under parametrix construction of Shapiro-Lopatinskij-elliptic elements, was constructed
by Rempel and Schulze [103]. However, the structure of lower order terms was not yet
analysed in [103]; this came later in the frame of the edge calculus. A crucial role for
[103] played a specific algebra on the half-axis from Eskin’s book [32], namely, a pseudo-
differential algebra of operators of order zero on R+, without any condition of transmission
property at 0, formulated by means of the Mellin transform. Lower order terms in this
algebra in Eskin’s formulation are Hilbert Schmidt operators in L2(R+). From the point
of view of conical singularities this half-axis-algebra can be interpreted as a substructure
of the ‘cone algebra’, see also [124], while the operators in [103] could be seen as edge
operators with the boundary being interpreted as an edge and R+, the inner normal, as
the model cone of local wedges. In that sense [103] gave a first example of an edgification
of a cone algebra which is, roughly speaking, a pseudo-differential calculus along the edge
with amplitude functions taking values in the cone algebra on the model cone, here R+.
Of course, also Boutet de Monvel’s algebra can be interpreted as an edgification of its
boundary symbolic calculus, though the operators in this case form a narrower subalgebra
of the cone algebra on R+.

In order to really recognise the algebras on the half-axis in connection with conical
singularities, another input was necessary, namely, the analysis of operators of Fuchs,
type, which are of independent interest on manifolds with conical singularities in general.
It was the work of Kondratyev [63] which motivated the author together with Rempel to
try to carry out the hull operation, discussed in Section 4.4, i.e., to complete the Fuchs
type differential operators to a corresponding pseudo-differential algebra. This was first
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done in [107] for the case of a closed manifold with conical singularities, then in [108]
for the case of boundary value problems on a manifold with conical singularities and
boundary, see also [106]. Another orientation (from the point of methods) have the works
of Plamenevskij [98], [100], Derviz [27] and Komech [62] (the latter is close to technique of
Vishik and Eskin. Independently, also Melrose and Mendoza [84] constructed a pseudo-
differential calculus for Fuchs type symbols, see also Melrose [82].

The cone calculus of [107] refers to weighted Mellin Sobolev spaces and subspaces with
discrete asymptotics, using suitable classes of meromorphic Mellin symbols with values in
pseudo-differential operators on the base X of the cone. The cone calculus for dimX = 0
was formulated for the purposes of boundary value problems; compared with Eskin’s
algebra on R+ the cone algebra of [107] is not restricted to operators of order zero and to
principal conormal symbols of order zero and to Hilbert Schmidt operators as the ideal of
smoothing operators. It contains operators of any order with coefficients that are smooth
up to 0, modulo a possible weight factor, and also lower order conormal symbols; the
smoothing operators are Green operators in the sense that they map Ks,γ(R+) to spaces
of the kind Sγ−µP (R+) for some discrete asymptotic type P and, analogously, the adjoints.
The details of this calculus were elaborated in [105], see also [108], or [124], [121]. We
stress these features here because the choice of the cone algebra for dimX = 0 is crucial
for the nature of the ‘conification’ of the pseudo-differential calculus on an arbitrary base
X. One step is to fix a choice of an algebra of pseudo-differential operators (with ‘sleeping
parameters’) on X, say Lµcl(X; R) in the case of smooth compact (the space of all classical
parameter-dependent pseudo-differential operators of order µ on X), and then to organise
the calculus with Mellin symbols h(r, w) ∈ C∞(R+, L

µ
cl(X; Γn+1

2
−γ)) (for n = dimX),

along the lines of the cone algebra on R+. The full structure is, of course, rich in details,
for instance, we can take holomorphic (in w ∈ C) non-smoothing symbols (reached by
kernel cut-off constructions), meromorphic smoothing symbols, and, moreover, for r →∞
impose extra assumptions when we intend to edgify the obtained cone calculus. Summing
up, ‘conification’ means to pass from a prescribed pseudo-differential algebra on a base X
(first smooth and compact) to a cone algebra on X∆ by taking the former cone algebra
on R+, but now with symbols taking values in the given algebra on X.

This cone algebra near the tip of the cone (in the variant of a base X with smooth
boundary) is just what completes Kondratyev’s theory [63] to an algebra with the above
mentioned properties. At the same time, during this period of the development there
was another main motivation for the refinement of Eskin’s algebra to the cone algebra on
R+, namely, the aim to generalise the boundary symbolic calculus of Boutet de Monvel’s
algebra to a boundary symbolic calculus of a future algebra of boundary value problems
for symbols which have not necessarily the transmission property at the boundary. That
algebra of boundary value problems itself was intended to be obtained as a correspond-
ing edgification. This program finally created the calculus of boundary value problems
without the transmission property as a substructure of a corresponding edge algebra, cf.
[121], [124], [127], [134]. At that time also the structures of the edge algebra in general
were invented, in which R+, the model cone of the case of boundary value problems, was
replaced by an arbitrary cone X∆ with a compact manifold X without (and with smooth)
boundary, cf. [108], [106], [120], [119]. Moreover, the methods have been developed under
the aspect of the general idea of generating operator algebras in terms of the successive
procedure of ‘conification’ and ‘edgification’ of already achieved structures.
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Elements of this approach are sketched in Section 5.4. As noted before, the ‘final’
structures and many interesting details are a program of future research, cf. also Section
6.4 below. But also the development up to the present state of the calculus contained
some surprising elements. One of them was the invention of abstract edge Sobolev spaces
Ws(Rq, H)κ with Hilbert spaces H, endowed with the action of a strongly continuous
group of isomorphisms κ = {κλ}λ∈R+ , cf. [120]. From the impression on anisotropic
reformulations of standard Sobolev spaces, on the role of fictitious conical points and
edges, and from the experience in boundary value problems it seemed quite canonical to
take for H a weighted space on an infinite cone with conical exit to infinity, with the
‘unspecific’ weight 0 at infinity. A few years ago (∼= 2001) I. Witt (who was at that time
in Potsdam) suggested to admit also spaces H with another weight at infinity with an
adjusted variant of the group action κ. This idea has been used by Airapetyan and Witt
in [4]. Later on Tarkhanov realised such an idea in [151], see also [138] for the case of
boundary value problems. It turns out, see, for instance, [56, Section 7.1.2], that there is a
continuum of different edge spaces which all localise outside the edge to standard Sobolev
spaces and admit an edge pseudo-differential calculus for the same classes of typical edge-
degenerate differential operators. Thus, the problem of ‘edge-quantising’ edge-degenerate
(pseudo-differential) symbols and of carrying out a hull operation as discussed in Section
4.4 has many solutions.

6.3 Similarities and differences between ellipticity and parabol-
icity

In this exposition we mainly focused on the concept of ellipticity. Of course, also other
types of equations are of interest on a manifold with singularities, for instance, parabolic
or hyperbolic ones. Many problems in this connection occur in models of physics.

We want to discuss here a few aspects on parabolic operators. The simplest example
is the heat operator

A := ∂t −∆ (319)

with the Laplacian ∆ on a Riemanian manifold X, n = dimX, with t ∈ R being the time
variable. In local coordinates x ∈ Rn the operator (319) has an anisotropic homogeneous
principal symbol

σψ(A)(τ, ξ) := iτ + |ξ|2

which is anisotropic homogeneous of order 2, i.e., satisfies the relation

σψ(A)(λ2τ, λξ) = λ2σψ(A)(τ, ξ)

for every λ ∈ R+. The operator (319) is anisotropic elliptic of order 2 in the sense of the
property

σψ(A)(τ, ξ) 6= 0 for all (τ, ξ) ∈ R1+n \ {0}. (320)

Parabolicity means that σψ(A) has an extension σψ(A)(ζ, ξ) := iζ + |ξ|2 into the lower
complex ζ half-plane C− with respect to the time covariable, such that

σψ(A)(ζ, ξ) 6= 0 for all (ζ, ξ) ∈ (C− × Rn) \ {0}.

108



With 〈τ, ξ〉(l) := (1 + |τ |2 + |ξ|2l)1/2l, l ∈ N \ {0}, we can form anisotropic Sobolev spaces
Hs,(l)(R× Rn) with the norm

‖u(t, x)‖Hs,(l)(R×Rn) =
{∫
〈τ, ξ〉2s(l)|û(τ, ξ)|2dτdξ

} 1
2
, (321)

s ∈ R, or, more generally, Hs,(l)(R × X) on the infinite cylinder R × X. Let us set

H
s,(l)
0 (R×X) :=

{
u ∈ Hs,(l)(R×X) : u|R−×X = 0

}
and

H
s,(l)
0 ((0, T )×X) :=

{
u|(−∞,T )×X : u ∈ Hs,(l)

0 (R×X)
}

for every T > 0. The operator (319) defines continuous maps

A : H
s,(2)
0 ((0, T )×X)→ H

s−2,(2)
0 ((0, T )×X) (322)

for all s ∈ R, and it is a reasonable problem to ask the solvability of the equation

Au = f

in this scale of spaces, more precisely, to find a solution u(t, x) ∈ H
s,(2)
0 ((0, T ) × X)

for every f(t, x) ∈ H
s−2,(2)
0 ((0, T ) × X) and to construct a parametrix (or the inverse)

of the operator (322) within a corresponding anisotropic calculus of pseudo-differential
operators on the cylinder. An answer was given by Piriou [97] in the framework of a
Volterra pseudo-differential calculus, not only for the anisotropy l = 2, but for arbitrary
even l. Corresponding differential operators may have the form

A := (∂t −D)m,

m ∈ N, for an elliptic differential operator D on X of order l, for instance,

D = (−1)1+ l
2 ∆

l
2 .

Any such operator induces continuous maps

A : H
s,(l)
0 ((0, T )×X)→ H

s−m,(l)
0 ((0, T )×X)

for all s ∈ R. The solvability problem is as before, cf. [97]. More generally, this also
concerns operators that are locally on X of the form

A =
∑
|α|≤m

aα(t, x)D
α0
t D

α′

x (323)

for α := (α0, α
′) ∈ N1+n, |α|l := lα0 + |α′|, aα(t, x) ∈ C∞(R × X). The anisotropic

homogeneous principal symbol of A is defined by

σψ(A)(t, x, τ, ξ) :=
∑
|α|l=m

aα(t, x)τ
α0ξα

′
. (324)

It satisfies the identity

σψ(A)(t, x, λlτ, λξ) = λmσψ(A)(t, x, τ, ξ) (325)
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for all λ ∈ R+. Parabolicity of (323) means that the extension of σψ(A) to (ζ, ξ) ∈
(C− × Rn) \ {0} satisfies the condition

σψ(A)(t, x, ζ, ξ) 6= 0 for all (t, x, ζ, ξ) ∈ R× Rn × (C− × Rn) \ {0}). (326)

Observe that then
p(t, x, τ, ξ) := σψ(A)−1(t, x, τ − iε, ξ)

for any fixed ε > 0 belongs to C∞(R×Rn×R×Rn), and extends to a function p(t, x, ζ, ξ)
in C∞(R×Rn× (C−×Rn)) which is holomorphic in ζ ∈ C− and satisfies the anisotropic
symbolic estimates

|Dα
t,xD

β
ζ,ξp(t, x, ζ, ξ)| ≤ c〈ζ, ξ〉µ−|β|l(l) (327)

for every α, β ∈ N1+n, (t, x) ∈ K0×K ′, K0 ⊂⊂ R, K ′ ⊂⊂ Rn compact, (ζ, ξ) ∈ C−×Rn,
µ := −m, with constants c = c(α, β,K0, K

′) > 0.
Note that analogous considerations make sense for a (in the simplest case) smooth

compact manifold X with boundary. Then, together with the operator A we consider
(first differential) boundary conditions on (0, T )×X, represented by a continuous operator

T : H
s,(l)
0 ((0, T )×X)→ ⊕Nj=1H

s−mj− 1
2
,(l)

0 ((0, T )× ∂X)

of the form T = t(T1, . . . , TN) for

Tju(t, y) := Bju(t, x)|(0,T )×∂X ,

(t, y) ∈ (0, T )× ∂X, with differential operators

Bj :=
∑

|β|l≤mj

bj,β(t, x)D
β0
t D

β′

x ,

bj,β ∈ C∞(R×X). Locally near ∂X, in a splitting x = (y, xn) ∈ ∂X × [0, 1) in tangential
and normal variables near the boundary, and covariables (η, ξn), we have the boundary
symbols

σ∂(A)(t, y, τ, η) := σψ(A)(t, y, 0, τ, η,Dxn) : Hs(R+)→ Hs−m(R+),

σ∂(Tj)(t, y, τ, η) : Hs(R+)→ C,

defined by

σ∂(A)(t, y, τ, η)u := σψ(A)(t, y, 0, τ, η,Dxn)u,

σ∂(Tj)(t, y, τ, η)u := σψ(Bj)(t, y, 0, τ, η,Dxn)u|xn=0, j = 1, . . . , N,

for (τ, η) 6= 0, s > max{m − 1
2
,m1 + 1

2
, . . . ,mN + 1

2
}. Setting A := t(A T ) for T :=

t(T1, . . . , TN) we thus obtain the principal boundary symbol

σ∂(A)(t, y, τ, η) :=

(
σ∂(A)
σ∂(T )

)
(t, y, τ, η) : Hs(R+)→

Hs−m(R+)
⊕

CN

. (328)
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Observe that for (κλu)(xn) := λ1/2u(λxn), λ ∈ R+, we have anisotropic homogeneity,
namely,

σ∂(A)(t, y, λlτ, λη) = λmκλσ∂(A)(t, y, τ, η)κ−1
λ ,

σ∂(Tj)(t, y, λ
lτ, λη) = λmj+

1
2σ∂(Tj)(t, y, τ, η)κ

−1
λ ,

λ ∈ R+, j = 1, . . . , N .

Definition 6.1. The boundary value problem

Au = f in (0, T )×X, Au = g in (0, T )× ∂X (329)

is called parabolic, if A is parabolic in the sense of (326), and if the boundary symbol has
an extension to an invertible family of operators

σ∂(A)(t, y, ζ, η) : Hs(R+)→
Hs−m(R+)
⊕

CN

(330)

in (ζ, η) ∈ (C−×Rn−1)\{0}, holomorphic in ζ ∈ C−, s > max{m− 1
2
,m1+

1
2
, . . . ,mN+ 1

2
}.

Similarly as in the elliptic theory, the number N is determined by the parabolic oper-
ator A.

Theorem 6.2. (i) Let X be a compact C∞ manifold with boundary. A parabolic bound-
ary value problem A = t(A T ) induces isomorphisms

A : H
s,(l)
0 ((0, T )×X)→

H
s−m,(l)
0 ((0, T )×X)

⊕
⊕Nj=1H

s−mj− 1
2
,(l)

0 ((0, T )× ∂X)

for all s > max{m− 1
2
,m1 + 1

2
, . . . ,mN + 1

2
} and 0 < T <∞. The inverse operator

belong to an anisotropic analogue of Boutet de Monvel’s calculus on the cylinder and
is parabolic within that framework.

(ii) If X is a closed compact C∞ manifold, then a parabolic operator A, (locally) of the
form (323), induces isomorphisms

A : H
s,(l)
0 ((0, T )×X)→ H

s−m,(l)
0 ((0, T )×X)

for all s ∈ R and 0 < T < ∞. The inverse operator belongs to an anisotropic
analogue of the calculus of classical pseudo-differential operators and is parabolic in
this class.

A reference for Theorem 6.2 is Agranovich and Vishik [3] and Krainer [68] (in a
slight modification for finite cylinders). The assertion (ii) may be found in the paper
[97] of Piriou. It is also interesting to consider parabolicity on the infinite half-cylinder
R+×X with special attention for t→∞ and to establish invertibility of the corresponding
operators in weighted analogues of the above mentioned spaces with exponential weight
up to t =∞. Corresponding results for the case of closed compact X are given in Krainer
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and Schulze [69], see also Krainer [66], [67], and for the case of compact X with C∞

boundary, in the framework of (pseudo-differential) boundary value problems, in Krainer
[68].

In this approach the idea is to interpret the infinite time-space cylinder for t → ∞
as a transformed anisotropic cone, obtained for t > c for some c > 0 by the substitution
t = − log r, r ∈ (0, e−c), cf. also the discussion in Section 3.4, especially, the form of the
operators (222) which comes from operators of Fuchs type (in the parabolic case from
anisotropic ones). Remember that in Fuchs type operators we imposed smoothness of the
coefficients for r → 0 (up to a possible weight factor). That means, for the transformed
operator in t we impose a corresponding behaviour of the coefficients for t→∞.

The above mentioned results on infinite cylinders just express the inverses of such
parabolic operators in the framework of an anisotropic analogue of the cone algebra,
referring to a conical singularity at infinity, more precisely, within an anisotropic version
of the cone algebra with a control of the Volterra property up to infinity. Clearly at infinity
an analogue of the principal conormal symbol is required to be bijective in Sobolev spaces
on the cross section X. This causes a discrete set of forbidden (exponential) weights at
infinity, similarly as in the cone calculus at the tip of the cone (for the corresponding
exponents in power weights).

Similarly as in the ‘usual’ cone algebra it is also interesting to observe asymptotics
of solutions, here interpreted as long-time asymptotics, coming from the meromorphic
structure of the inverse of the principal conormal symbol, see Krainer [66], [67], [68].

Remark 6.3. In parabolic problems it is also common to pose (non-trivial) initial condi-
tions at the bottom of the cylinder. In the case of boundary value problems (see, Agranovich
and Vishik [3]) one usually assumes that the initial values are compatible with the values
on the boundary of the cylinder. We do not discuss the details here but return below to
such problems from a more general point of view.

Parabolicity in the framework of algebras of anisotropic pseudo-differential operators
and the computation of long-time asymptotics is also interesting in connection with special
configurations X with singularities. Looking at simple models of heat flow in media with
singularities of that kind we immediately see the relevance of such a generalisation.

For instance, if X has conical singularities, the additional time variable generates an
edge. Then, considering long-time asymptotics for t → ∞ we are faced with a corner
problem in the category M2, where t plays the role of a corner axis variable. The same is
true when X is a manifold with smooth edges. Long-time asymptotics for the latter case
have been studied by Krainer and Schulze in [70]. Earlier, parabolicity in an anisotropic
analogue of the edge algebra in a finite time interval (0, T ), i.e., when X is a manifold with
edge, was investigated in [14]. Let us also mention that parabolic boundary value problems
in the pseudo-differential set-up of Vishik and Eskin’s technique have been investigated
in [21], [155].

Also for parabolic operators in cylinders with singularities (in the spatial variables) it
is natural to pose additional data of trace and potential type along the lower-dimensional
strata of the configuration, satisfying a parabolic analogue of the Shapiro-Lopatinskij
condition. That means, that the symbols admit holomorphic extensions into the lower
complex half-plane of the time covariable, required to be invertible there. If we have posed
such conditions, then it is clear that the inverses of the corresponding operators again
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belong to the Volterra calculus of such operators. However, in contrast to the analogous
task in the elliptic theory, the explicit construction of extra Shapiro-Lopatinskij parabolic
conditions seems to be not so easy, although it should be always possible. Some results
in this direction for specific parabolic problems may be found in [85]. Also initial-edge
conditions (in analogy of initial-boundary conditions) with non-trivial initial data on the
bottoms of cylinders associated with lower-dimensional strata of the spatial configurations
belong to the natural tasks in parabolicity on singular manifolds, both under the condition
of compatibility between initial and edge data as well as of non-compatibility (cf. Remark
6.3). As far as we know there is nothing done yet in this direction, and it is certainly
interesting to know more on the nature of solvability of such problems. Note that initial-
boundary value problems with non-compatible data, even in simplest cases of the heat
operator with Dirichlet or Neumann data (or even mixed data of Zaremba type) on the
boundary of the cylinders, together with initial conditions on the bottom of the cylinder
have a simple physical meaning. In the non-compatible case those represent kinds of
mixed problems, combined with corner singularities when the boundary of the cylinder is
not smooth, or if the boundary data are mixed (e.g., of Zaremba type).

6.4 Open problems and new challenges

In the singular analysis (similarly as in other areas of mathematics) it is difficult to give
reasonable criteria on what is an ‘open problem’. The solution may depend on the person
who finds something open or not. It also happens that crucial notions in this field (such
as ‘ellipticity’ or ‘corner manifolds’) occur in quite different meanings. Being aware of this
uncertain background we want to discuss a few aspects of the singular analysis that contain
challenges for the future research. First of all the known elements of the elliptic (and also
the parabolic) theory (including boundary value problems) on smooth configurations are
of interest also in the singular case. This concerns, in particular, the points (S.1) - (S.4)
of Section 4.4 which can be specified for singular manifolds by the discussion in Section
5. A number of new challenges can be summarised under the following key words.

(F.1) Operator algebras. Given manifolds M ∈ Mk, k ∈ N, k ≥ 2, study the
natural analogues of the (known for k = 0, 1) pseudo-differential algebras, including the
principal symbolic hierarchies and additional data (of trace and potential type) on the
lower-dimensional strata, and complete necessary elements of the conification and edgifi-
cation process.

As we pointed out in different considerations before, the higher pseudo-differential
algebras on stratified spaces are more general than everything what is usually contained
in theories of boundary value problems (when we consider a boundary as a realisation
of a smooth edge), including the case of symbols without the transmission property at
the boundary. Even if we ignore for the moment the aspect of existence or non-existence
of Shapiro-Lopatinskij edge conditions (and assume, for instance, the case that the ex-
istence is guaranteed) there is a large variety of ‘technical’ elements of a calculus to be
established in the future in such a way that the theory on a space M ∈Mk+1 is really a
simple iteration of steps up to Mk. There is the system of quantisations which contains
anisotropic reformulations of isotropic (though degenerate in stretched variables) sym-
bolic information in terms of various operator-valued symbols with twisted homogeneity,
combined with the ‘right’ choices of weighted distribution spaces. In our exposition we
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discussed spaces based on ‘L2-norms’. In applications to non-linear operators it is often
necessary to treat the ‘Lp-case’ for p 6= 2. This is one of the problems with is essentially
open.

Another interesting aspect is the problem of variable and branching asymptotics that
should thoroughly be investigated, cf. Section 4.5 for smooth edges and [125], [126] for
the case of boundary value problems without the transmission property.

There is also the question of ‘embedding’ the calculus for Mk as a subcalculus for
Mk+1, for instance, by ‘artificially’ seeing an M ∈ Mk as an element of Mk+1. This
appears in connection with the following problem. Take an elliptic operator A on a closed
compact C∞ manifold, fix a triangulation, and rephrase A as an elliptic corner operator
A on the arising manifold with edges and corners, where indA = indA, then pass to a
more refined triangulation and formulate A again as a corresponding corner operator A

such that indA = ind A, and so on. The investigations in the author’s joint papers with
Dines [30], Dines and Liu [29] can be seen as a contribution to this aspect.

Let us also point out that here we always speak about regular singularities. The various
cuspidal cases may be of quite different character, and also here the main structures on
operator algebras from the point of view of asymptotics in distribution spaces, possible
extra edge conditions, adequate quantisations, construction of parametrices within the
calculus, remain to be achieved.

(F.2) Higher corner spaces. Complete and deepen the investigation of the higher
generations of weighted Sobolev spaces that fit to the operator algebras of (F.1).

The choice of weighted edge spaces on a manifold with smooth edge that we discussed
in Section 1.3 is not entirely canonical. We saw that there is (at least) one continuously
parametrised family of such (mutually non-equivalent) spaces which all admit the edge
calculus, although there is a candidate which seems to be the most ‘natural’ one. Also
on manifolds with higher corners we have many choices and one possible preferable one,
which is for integer smoothness directly connected with degenerate vector fields on the
respective stretched manifold that generate the space of typical differential operators. In
the higher corner cases it seems some work to be done to completely organise the variety of
anisotropic reformulations in connection with higher Ks,γ(X∧)-spaces on respective model
cones, equipped with several necessary and useful characterisations in terms of degenerate
families of pseudo-differential (corner-) operators on X which take into account also the
presence of the conical exit of X∧ to infinity. It will also be useful to single out subspaces
with asymptotic information and to establish analogues of the kernel characterisations of
Green operators onX∧. Also the Lp-analogues for p 6= 2 should be investigated, especially,
from the point of view of anisotropic corner representations and of the continuity of
operators in the algebras between such spaces.

(F.3) Ellipticity under extra conditions on lower-dimensional strata. Study
ellipticity and parametrices as well as the Fredholm property, not only from the point of
view of Shapiro-Lopatinskij ellipticity of conditions on the lower-dimensional strata but
of conditions, partly (or mainly) to be invented for operators which violate the topological
criterion for the existence of Shapiro-Lopatinskij elliptic data.

Having organised pseudo-differential algebras A(N) on N ∈Mk+1 in the spirit of (F.1)
we have operators A together with their symbolic hierarchies σ(A) as in (C.8), Section
5.4. The idea of (Shapiro-Lopatinskij) ellipticity with respect to σ(A) is that A|N\Z is
required to be elliptic in Mk, i.e., with respect to σint(A), and that, in addition, (318)
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is a family of isomorphisms for all (z, ζ) ∈ T ∗Z \ 0. However, from the edge algebra for
smooth edges (or from boundary value problems) we know that the ‘interior ellipticity’,
i.e., the one with respect to σint(.), does not guarantee the bijectivity of (318), but only
the Fredholm property. This is just the occasion to come back to the possible topological
obstruction for the existence of Shapiro-Lopatinskij elliptic conditions on Z, see Section
5.3. The role of such conditions is to fill up (318) to a 2 × 2 block matrix family of
isomorphisms σ∧k+1

(A)(z, ζ) by extra entries of trace and potential type. On the level of
operators they belong to an elliptic element A in A(N) which itself is Fredholm as soon
as N is compact (and otherwise has a parametrix within the calculus). If the topological
obstruction does not vanish, then, when the interior ellipticity of A refers to Shapiro-
Lopatinskij elliptic data on the lower-dimensional edges of N \Z, it should be possible to
perform again the machinery of global projection conditions on Z along the lines of [136]
(which treats the case of smooth edges and is a generalisation of [129] and [135]). Vanishing
or non-vanishing of the obstruction with respect to Z might depend on the choice of the
extra edge conditions on the steps for N \ Z before. It is completely open whether that
happens and how it is to be controlled. Another interesting point is, whether the idea
of global projection (or Shapiro-Lopatinskij elliptic) conditions on Z is also possible, if
in the steps before, i.e., within σint(.) on the edges of N \ Z there are already involved
global projection conditions on a lower level of singularity. At this moment we have to
confess that in the principal symbolic hierarchy σ(A) which was defined in (C.8) Section
5.4 we tacitly assumed the symbolic components of σint(A) to consist of contributions of
Shapiro-Lopatinskij type on all the lower-dimensional singular strata of N \ Z.

Moreover, an inspection of the methods of [129], [135], [136] shows that in the global
projection case the symbolic data which define the ellipticity and then the Fredholm index
of the resulting operator can be enriched by the choice of the respective pairs of global
projections, i.e., ‘simply’ considered as a symbolic contribution, too. The open question is
whether this is really fruitful and whether then, having done that to generalise σint(.) on
N\Z, the construction for Z can be continued again with two possible outcomes, vanishing
or non-vanishing of another topological obstruction. Let us note at this point that, in order
to carry out details of this kind, we have to refer all the times to background information
on ellipticity in algebras on M∆ for M ∈ Mk, including effects from the conical exits
to infinity with the corresponding symbolic structures, similarly as is done for the edge
calculus of second generation in [17], [16]. If the symbolic machinery in such a sense
could be successfully established, there remain other beautiful tasks in connection with
operator conventions, moreover, with relative indices under changing weights on different
levels of singularity, and with the investigation of the system of ideals in the full algebras
that are determined by vanishing of some components of σ(A). Parametrix constructions
always belong to the main issues; because of the complexity of the involved structures,
this should be done in a careful manner, and the work for the next singularity order is
waiting. Nedless to say that for all components of the symbolic structures one should show
the necessity of ellipticity for the Fredholm property of the associated operator. May be,
this is straightforward (the necessity of ellipticity in the framework of global projection
conditions can be found in [133]; the idea of how to do it in this case goes back to a private
communication with Savin, Sternin and Nazaikinskij during their work in Potsdam 2004;
it was used again in [136] in the edge case).

(F.4) Index theory. Establish index theories in the algebras of (F.1), both for
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Shapiro-Lopatinskij ellipticity and other types of ellipticity of the extra data in the sense
of (F.3).

Ellipticity of an operator on a compact configuration (or a compactified one, where a
certain specific behaviour near the non-compact exits is encoded by the nature of ampli-
tude functions, leading to specific extra principal symbolic objects at the exits) is expected
to guarantee the Fredholm property in natural distribution spaces. If the calculus is well
organised, both properties (i.e., ellipticity and Fredholm property) are equivalent. This
may be a starting point of index theories on singular manifolds. After the eminent in-
fluence of the classical index theory to modern mathematics it is generally accepted that
index theories should be created also for singular manifolds. Speculations about that
could fill several books; so we can only make a few remarks here. Index theories can
have many faces, and predictions on what is most fruitful very much depends on individ-
ual priorities. As soon as we find some operator algebras (or single operators) to be of
sufficient interest we can ask to what extent the index can be expressed purely in terms
of symbols (or other data contributed by the notion of ellipticity, e.g., global projection
conditions). In the Shapiro-Lopatinskij set-up this aspect is quite natural, and, as a
general property of the operator theories, the index only depends on the stable homo-
topy class of the symbols (through elliptic ones). In ellipticities with symbolic hierarchies
we have here a first essential problem. The symbols have operator-valued components
which can be interpreted as semi-classical objects, i.e., as operator families with ampli-
tude functions, where a quantisation is applied with respect to a part of the covariables,
while other covariables remained as parameters, see the Sections 2.2 and 3.2. The ellip-
ticity of the corresponding component (i.e., the invertibility for all remaining variables
and covariables, say, in the cotangent bundle minus zero section of the corresponding
stratum) is a kind of parameter-dependent ellipticity of operators on an infinite singular
cone. There is a subordinate principal symbolic hierarchy with ellipticity in the algebra
on the corresponding infinite cone, again with operator-valued components, again with
subordinate symbols belonging to corresponding algebras where those symbols take their
values, and so on. Thus every symbolic component of the original operator induces tails
of subordinate symbols who all participate in a well organised way in the structure of
the operators, especially, in homotopies through elliptic elements. It is of quite practical
importance for the basic understanding of the algebras on manifolds with singularities
(and a reason to discuss the index problems here anyway) to know things about the index
(better the kernels and cokernels) of operator families in algebras on infinite model cones,
since this just affects the number of additional conditions of trace and potential type on
the corresponding strata.

What concerns homotopies through elliptic symbolic tuples it is interesting to under-
stand to what extent different components may exchange ‘index information’ along the
path that determines the homotopy. In optimal cases the stable homotopy classes can
be represented by very specific ones with particularly simple or ‘standard’ components.
In this connection one may ask, whether in some cases (apart from the smooth compact
case) it suffices to mainly look at kinds of Dirac operators as the elliptic operators on the
main statum. In the singular situation, including the ‘simple’ conical case, we think that
it is not true that an arbitrary elliptic operator on the main stratum, when all the extra
conditions participate in the ellipticity (apart from the effect that global projection condi-
tions influence the situation anyway) can be stably homotopied through elliptic operators
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(in the singular operator algebra) to an operator of Dirac type in the upper left corner. In
other words, if one identifies index theory in a singular case with doing things for Dirac
operators, it is necessary to explain why this has something to do with the index of an
arbitrary elliptic operator on the singular manifold in consideration. This, of course, also
needs to fix an operator algebra context in which all elliptic operators have their right to
exist and to fix the meaning of homotopies of symbols which should lead to homotopies
of Fredholm operators.

Another aspect of the index theory (at least in the classical context of the work of
Atiyah and Singer [8], [9]) is to study external products A�B of elliptic operators A and B
over different manifolds M and N , respectively. The product then lives on the Cartesian
product M × N , it should be elliptic, and we should have indA � B = indA indB,
see also Rodino [109]. For singular M and N the Cartesian product M × N has higher
singularities, and a reasonable formulation of the multiplicativity of the index requires the
corresponding calculus of operators for the resulting order of singularity. At least such
a question may motivate to seriously promote the calculus of operators on manifolds of
arbitrary singularity order. The problem of multiplicativity itself is sufficiently complex
and far from being understood. From the experience with the classical context it is
also clear that we should study elliptic complexes on singular manifolds, Hodge theory,
Künneth formulas, and other things, known in analogous form from the smooth compact
case. Also this is a wide field, and only partial results are known, see, for instance, [143],
[96], [116], [78], [137], [48].

Let us finally consider the problem of expressing the index in terms of symbols. An
interesting aspect in this connection are so-called analytic index formulas which may
consist of expressions that directly compute the index by the symbol. Here by ‘symbol’
we understand the principal symbol which is, for instance, for conical singularities, the
pair of interior principal symbol and the conormal symbol on a given weight line. Even in
that case the problem of deriving analytic index formulas (in analogy of Fedosov’s analytic
index formulas in the smooth case, see [33]) is open, with the exception of some particular
cases, while analytic index expressions in which lower order terms also participate are
apparently easier to organise.

By this remark we stop the index discussion here. As noted before, geometric or
topological aspects of ellipticity on a singular manifold are not the main issue of this
exposition; for that we refer to the new monograph [88], together with the bibliography
there.

6.5 Concluding remarks

The structures that we discussed here can be motivated by a quite classical question,
namely, what has to happen in a (pseudo-differential) scenario on a manifold with a non-
complete geometry (for instance, a polyhedron embedded in an Euclidean space) such that
parametrices of elliptic operators belong to the calculus. More precisely, a starting point
may be boundary value problems, say, in a cube in R3, with piecewise smooth Shapiro-
Lopatinskij elliptic data on the boundary, for instance, Dirichlet on some of the faces,
Neumann on the others. Examples are also mixed elliptic problems on a C∞ manifold X
with boundary Y , with elliptic conditions on different parts Y± of the boundary, where
Y± subdivide the boundary, i.e., Y = Y− ∪Y+, and Z := Y− ∩Y+ is of condimension 1. In
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the simplest case Z is C∞, in other cases Z may have singularities, for instance, conical
points or edges.

The answer consists of the corner pseudo-differential calculus of boundary value prob-
lems with the transmission property at the smooth part of the boundary. The general
technique and many details may be found in the author’s joint monographs with Ka-
panadze [59] or Harutjunjan [56] which are based on [122], see also [131], [132], or [17],
[15], [16], and the papers [28], [53], [55].

At present there is an increasing stream of investigations in the literature on pseudo-
differential theories which claim a relationship with analysis on polyhedral or corner man-
ifolds. As noted in Section 3.4 a problem is the terminology. In many cases the inves-
tigations are focused on operators on non-compact manifolds with complete Riemannian
metrics and not to configurations in classical boundary value problems, for instance, man-
ifolds with smooth boundary and operators with the transmission property at the bound-
ary (cf. the calculus outlined in Section 2.1). Parametrix constructions for the above
mentioned boundary value problems require careful work with the trace and potential
data occurring on the several faces of the configuration, cf. Section 5.2.

One can discover many ‘unexpected’ relations between the analytic machineries on
complete or incomplete Riemannian manifolds. One example is the connection between
pseudo-differential operators on the half-axis, with standard symbols, smooth up to 0,
based on the Fourier transform, and Mellin pseudo-differential operators, i.e., operators
of Fuchs type, with Mellin symbols that are smooth up to zero, cf. [32], [124], [134] and
the discussion in Section 2.2 around Mellin quantisation. Another example is the possible
embedding of elliptic boundary problems with global projection data (‘APS’ and general-
isations on a manifold with smooth boundary) into the pseudo-differential framework, cf.
[129], [133]. Also the discussion of Section 1.1 on fictitious singularities which makes sense
in the pseudo-differential context as well, shows that ‘usual’ pseudo-differential operators
which are smooth (across a fictitious conical singularity) may suddenly discover their af-
fection to Fuchs type operators or other societies of corner operators, cf. the general class
of Theorem 6.4 below. One key word is the blow up of singularities which gives rise to
degenerate symbols which can be taken as a starting point for Mellin quantisations, cf.
Theorem 2.27.

In Section 4.1 we saw that there are many kinds of differential operators subsumed
under the category ‘degenerate’ with a completely different behaviour. If they are the
result of a blowing up process of singularities, applied to originally given differential
operators D on a singular configuration M (minus M ′, the set of singularities; see the
considerations of Section 1.1), then also M itself remains a source of interesting questions.
Also for the above mentioned boundary value problems in polyhedral domains it is helpful
to carry out blow ups and to basically deal with the resulting edge- or corner-degenerate
operators; which are as in the formulas (232), (233), (234). Although the calculus mainly
refers to such objects, we do not ignore what we want to achieve for the corner singularity
itself. The general scheme of constructing parametrices can be described in terms of a
continuation of the axiomatic approach of Section 5.4, see also [130]. Many elements on
what we understand by ellipticity (here in the sense of the Shapiro-Lopatinskij ellipticity
of edge conditions or the ellipticity with respect to the conormal symbols) are described
in Section 5.2. Let us now consider operators in the upper left corners, i.e., operators
on the main stratum. Those are known in advance, i.e., before we add any extra edge
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conditions. Looking at a ‘higher’ stretched corner of the form

K := (R+)k × Σ× Πk
l=1Ωl

for open sets Σ ⊆ Rn, Ωl ⊆ Rql , l = 1, . . . , k, we first have the space Lµcl(intK) of standard
classical pseudo-differential operators on intK. As such they have left symbols

a(r, x, y, ρ, ξ, η) ∈ Sµcl(intK × Rk+n+q)

for q :=
∑k

l=1 ql, r = (r1, . . . , rk) ∈ (R+)k, x ∈ Σ, y ∈ Ω := Πk
l=1Ωl, with the covariables

ρ = (ρ1, . . . , ρk) ∈ Rk, ξ ∈ Rn, η = (η1, . . . , ηk) ∈ Rq, ηj ∈ Rqj , j = 1, . . . , k. Every
A ∈ Lµcl(intK) has the form

A = Op(a) mod L−∞(intK) (331)

for such a symbol a. Now a first task to treating corner pseudo-differential operators which
are related to parametrices of differential operators of the form (232) with the vector fields
(233), (234) is to be aware that

⋃
µ L

µ
cl(intK) contains lots of interesting subalgebras. In

the present case it is adequate take operators with left symbols of the form

a(r, x, y, ρ, ξ, η) := r−µp̃(r, x, y, ρ̃, ξ, η̃) (332)

where r−µ := r−µ1 · . . . · r
−µ
k and

ρ̃ := (r1ρ1, r1r2ρ2, . . . , r1r2 . . . rkρk), η̃ := (r1η1, r1r2η2, . . . , r1r2 . . . rkηk).

Let Lµcl(intK)corner denote the subset of all A ∈ Lµcl(intK) of the form (331) with symbols
(332) for arbitrary

p̃(r, x, y, ρ̃, ξ, η̃) ∈ Sµcl
(
(R+)k × Σ× Ω× Rk+n+qeρ,ξ,eη )

.

As we know every A ∈ Lµcl(intK) can be represented by a properly supported operator A0

modulo an element C ∈ L−∞(intK). In particular, this is the case for A ∈ Lµcl(intK)corner.
An element A ∈ Lµcl(intK)corner is called σψ-elliptic if

p̃(µ)(r, x, y, ρ̃, ξ, η̃) 6= 0 for all (r, x, y) ∈ K, (ρ̃, ξ, η̃) 6= 0,

where p̃(µ) is the homogeneous principal symbol of p̃ in (ρ̃, ξ, η̃) 6= 0 of order µ.

Theorem 6.4. (i) Let A ∈ Lµcl(intK)corner, B ∈ Lνcl(intK)corner, and A or B properly
supported. Then we have AB ∈ Lµ+ν

cl (intK)corner.

(ii) Let A ∈ Lµcl(intK)corner be σψ-elliptic. Then there is a (properly supported) para-
metrix P0 ∈ L−µcl (intK)corner in the sense

I − P0A, I − AP0 ∈ L−∞(intK).

Moreover, Lµcl(intK)corner is closed under the operation of formal adjoints. The proof
is elementary and essentially based on the fact that the spaces of involved symbols are
closed under asymptotic summation (modulo symbols of order −∞), especially, Leibniz
multiplication and Leibniz inversion under the condition of σψ-ellipticity.
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There are many other variants of Theorem 6.4, for instance, for operators with symbols
with other weight factors instead of r−µ (e.g., without weight factors).

Another aspect of the parametrix construction is to quantise the obtained Leibniz
inverted symbols in such a way that there arise continuous operators in higher weighted
corner spaces. This was outlined in Section 5.4. The nature of those spaces gives a hint
about the adequate smoothing operators in the final corner pseudo-differential algebra.
They can be defined through their mapping properties (and their formal adjoints), namely,
to continuously map weighted spaces of any smoothness s to other weighted spaces of
smoothness s =∞. The latter aspect is a contribution to the discussion in Section 4.2.

Having a parametrix P of A in the corner algebra of the type of an upper left corner
(the notation P instead of P0 indicates the chosen quantisation in order to reach an
operator in the corner calculus), we can try to add extra elliptic conditions, according to
Section 5.2, and to obtain a block matrix operator P with P in the upper left corner.
Then, if A is the elliptic operator in the given boundary value problem A = t(A T )
(say, the Laplacian in a cube M with the Dirichlet/Neumann conditions on the faces of
the boundary M ′, indicated by T ) then the operator P with can be employed to reduce
A to the boundary M ′. The result is an elliptic operator on M ′ which can be treated
on the level of operators on the corner manifold M ′ without boundary. The resulting
operator R on the boundary, in general being again an elliptic block matrix operator
with an upper left corner R, can be interpreted as a transmission problem for the elliptic
pseudo-differential operator R on M ′ with a jumping behaviour across the interfaces
Z = M ′′ of M ′ (in the case of a cube M the interfaces M ′′ consist of the system of
one-dimensional edges plus the corner points). To treating R is now a beautiful task in
the framework of boundary value problems for pseudo-differential operators without the
transmission property at the smooth part of the boundary, where the boundary itself may
have corner points M ′′′. Although the method to carry out all this is clear in principle,
many details, refinements and more explicit information should be worked out in future.
By that we mean, in particular, computing the admissible weights in the weighted corner
spaces, the number of extra interface conditions (of trace and potential type) depending
on the weights, and the explicit (corner-) asymptotics of solutions. In this context there
are lots of other things worth to be developed, for instance, the calculus of operators on
manifolds with conical exits to infinity, modelled on a cylinder with cross section that has
itself singularities. Other useful details to be completed and deepened are Green formulas
of several kind, the kernel cut-off and corner quantisation, or potentials of densities on
a manifolds with corners, embedded in an ambient smooth manifold, with respect to a
fundamental solution of an elliptic operator.
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volume 1. Dunod, Paris, 1968.

[73] X. Liu and B.-W. Schulze. Boundary value problems in edge representation. Preprint
2004/14, Institut für Mathematik, Potsdam, 2004.

[74] X. Liu and B.-W. Schulze. Ellipticity on manifolds with edges and boundary.
Preprint 2004/04, Institut für Mathematik, Potsdam, 2004. Monatshefte für Math-
ematik. (to appear).

[75] Ya.A. Lopatinskij. On a method of reducing boundary problems for a system of
differential equations of elliptic type to regular equations. Ukräın. Math. Zh., 5:123–
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