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Abstract. We present an overview of some of our recent results on the exis-
tence of rays of minimal growth for elliptic cone operators and two new results
concerning the necessity of certain conditions for the existence of such rays.

1. Introduction

The aim of this article is twofold. On the one hand, we present an overview of
some of the results contained in [5, 6] on the subject in the title, and of the
geometric perspective we developed in the course of the investigations leading to
the aforementioned papers. We illustrate the main ideas of our approach by means
of examples concerning Laplacians on a compact 2-manifold. Already this simple
situation exhibits the structural richness and complexity of the general theory.

On the other hand, we offer some improvements, cf. Theorems 4.3 and 5.5,
regarding necessary and sufficient conditions for a closed sector Λ ⊂ C to be a
sector of minimal growth for a certain class of elliptic cone operators A and for
the associated model operator A∧.

Recall that a closed sector of the form

(1.1) Λ = {λ ∈ C : λ = reiθ for r ≥ 0, θ ∈ R, |θ − θ0| ≤ a}

is called a sector of minimal growth (or of maximal decay) for a closed operator

A : D ⊂ H → H,

where H is a Hilbert space and D is dense in H , if there is a constant R > 0 such
that A − λ is invertible for every λ ∈ ΛR = {λ ∈ Λ : |λ| ≥ R}, and the resolvent
(A − λ)−1 satisfies either of the equivalent estimates

(1.2)
∥

∥(A − λ)−1
∥

∥

L (H)
≤ C/|λ|,

∥

∥(A − λ)−1
∥

∥

L (H,D)
≤ C

for some C > 0 and all λ ∈ ΛR.
We are interested in cone operators on smooth manifolds with boundary.

Specifically, let M be a smooth n-manifold with boundary Y = ∂M and let E →
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M be a Hermitian vector bundle over M . Fix a defining function x for Y . A
differential cone operator of order m acting on sections of E → M is an operator
of the form A = x−mP with P in the class Diffm

b (M ; E) of totally characteristic
differential operators of order m, cf. Melrose [13]. We write A ∈ x−m Diffm

b (M ; E).
More explicitly, in the interior

◦

M of M , A is a differential operator with smooth
coefficients, and near the boundary, in local coordinates (x, y) ∈ (0, ε)×Y , it is of
the form

(1.3) A = x−m
∑

k+|α|≤m

akα(x, y)(xDx)kDα
y

with coefficients akα smooth up to x = 0; here Dx = −i∂/∂x and likewise Dyj .
We will say that A (or P ) has coefficients independent of x near Y , if the co-
efficients akα in (1.3) do not depend on x (this notion depends on the choice of
tubular neighborhood map, defining function x, and connection on E. For a precise
definition see [5]).

This paper consists of 5 sections. In Section 2 we review some basic properties
of cone operators while in Section 3 we discuss the associated model operators.
The new results on rays of minimal growth can be found in Sections 4 and 5. Apart
from the works explicitly cited in the text, our list of references contains additional
items referring to related works on resolvents and rays of minimal growth for
elliptic operators.

2. Preliminaries on cone operators

Let A be a differential cone operator. As introduced in [5], the principal symbol of
A, cσσ(A), is defined on the c-cotangent cT ∗M of M rather than on the cotangent
itself. Over

◦

M it is essentially the usual principal symbol, and equal to
∑

k+|α|=m

akα(x, y)ξkηα

near the boundary Y , see (1.3).

Example. Let M be a compact 2-manifold with boundary Y = S1. Let gY (x) be
a smooth family of Riemannian metrics on S1 such that gY (0) is the standard
metric, dy2. We equip M with a “cone metric” g that near Y takes the form
g = dx2 + x2gY (x) (g is a regular Riemannian metric in the interior of M). Then,
near Y , the Laplace-Beltrami operator ∆ has the form

(2.1) x−2
(

(xDx)2 + a(x, y)(xDx) + ∆Y (x)
)

,

where a(x, y) is a smooth function with a(0, y) = 0 and ∆Y (x) is the nonnegative
Laplacian on S1 associated with gY (x). In this case, near the boundary, we have

cσσ(∆) = ξ2 + σσ(∆Y (x)).
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Ellipticity and boundary spectrum

An operator A ∈ x−m Diffm
b (M ; E) is c-elliptic if cσσ(A) is invertible on cT ∗M\0.

Moreover, the family A − λ is said to be c-elliptic with parameter λ ∈ Λ ⊂ C if
cσσ(A) − λ is invertible on (cT ∗M × Λ)\0.

Associated with A = x−mP there is an operator-valued polynomial

C ∋ σ 7→ P̂ (σ) ∈ Diffm(Y ; E|Y )

called the conormal symbol of P (and of A). If we write A as in (1.3), then

P̂ (σ) =
∑

k+|α|≤m

akα(0, y)σkDα
y .

If A is c-elliptic, then P̂ (σ) is invertible for all σ ∈ C except a discrete set specb(A),

the boundary spectrum of A, cf. [13]; P̂ (σ) is a holomorphic family of elliptic

operators on Y and σ → P̂ (σ)−1 is a meromorphic operator-valued function on C.

Example. The Laplacian (2.1) is clearly c-elliptic. If y is the angular variable on
S1, then

P̂ (σ) = σ2 + ∆Y (0) = σ2 + D2
y,

and the boundary spectrum of ∆ is given by

specb(∆) = {±ik : k ∈ N0}.

Closed extensions

Let m be a positive b-density on M , that is, xm is a smooth everywhere positive
density on M . Let L2

b(M ; E) be the L2 space of sections of E with respect to the
Hermitian form on E and the density m. Consider A initially defined on C∞

0 (
◦

M ; E)
and look at it as an unbounded operator on the Hilbert space

x−m/2L2
b(M ; E) = L2(M ; E; x2m

m).

The particular weight x−m/2 is just a convenient normalization and represents no
loss. If we are interested in A on xµL2

b(M ; E) for µ ∈ R, we can base all our analysis

on the space x−m/2L2
b(M ; E) by considering the operator x−µ−m/2Axµ+m/2.

Typically, A has a large class of closed extensions

(2.2) AD : D ⊂ x−m/2L2
b(M ; E) → x−m/2L2

b(M ; E).

There are two canonical closed extensions, namely the ones with domains

Dmin(A) = closure of C∞
0 (

◦

M ; E) with respect to ‖ · ‖A,

Dmax(A) = {u ∈ x−m/2L2
b(M ; E) : Au ∈ x−m/2L2

b(M ; E)},

where ‖u‖A = ‖u‖+‖Au‖ is the graph norm in Dmax(A). Both domains are dense
in x−m/2L2

b(M ; E), and for any closed extension (2.2),

Dmin(A) ⊆ D ⊆ Dmax(A).

Let

D(A) = {D ⊂ Dmax(A) : D is a vector space and Dmin(A) ⊂ D}.
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The elements of D(A) are in one-to-one correspondence with the subspaces of
Dmax(A)/Dmin(A). If the operator A is fixed and there is no possible ambiguity,
we will omit A from the notation and will write simply Dmin, Dmax, and D.

Theorem 2.1 (Lesch [11]). If A ∈ x−m Diffm
b (M ; E) is c-elliptic, then

dimDmax/Dmin < ∞

and all closed extensions of A are Fredholm. Moreover,

(2.3) indAD = ind ADmin
+ dimD/Dmin.

Modulo Dmin, the elements of Dmax are determined by their asymptotic be-
havior near the boundary of M . The structure of these asymptotics depends on
the conormal symbols of A and on the part of specb(A) in the strip {|ℑσ| < m/2}.
More details will be discussed in the next section.

Corollary 2.2. If A is c-elliptic and symmetric (formally selfadjoint), then

indADmax
= − indADmin

and indADmin
= −

1

2
dimDmax/Dmin.

Example. Consider the cone Laplacian ∆, cf. (2.1). Then (3.2) and (3.6) imply

dimDmax(∆)/Dmin(∆) = 2

and thus, by the previous corollary,

(2.4) ind ∆min = −1 and ind ∆max = 1.

If A ∈ x−m Diffm
b (M ; E) is c-elliptic, the embedding Dmax →֒ x−m/2L2

b(M ; E)
is compact. Therefore, for every D ∈ D and λ ∈ C, the operator AD − λ is also
Fredholm with ind(AD − λ) = indAD. Consequently, if spec(AD) 6= C, then we
necessarily have indAD = 0. For this reason, we will primarily be interested in the
set of domains

(2.5) G = {D ∈ D : indAD = 0}

which is empty unless indADmin
≤ 0 and indADmax

≥ 0. Let d′′ = − indADmin
.

Using that the map D ∋ D 7→ D/Dmin is a bijection, we identify G with the
complex Grassmannian of d′′-dimensional subspaces of Dmax/Dmin.

Example. For ∆ we have
G(∆) ∼= CP

1 = S2.

Note that by (2.3) and (2.4), ind ∆D = 0 if and only if dimD/Dmin = 1.

We finish this section with the following proposition that gives a first glimpse
of the complexity of the spectrum of elliptic cone operators.

Proposition 2.3. If A is c-elliptic and dimG > 0, then for any λ ∈ C there is a
domain D ∈ G such that λ ∈ spec(AD). If, in addition, A is symmetric on Dmin,
then for any λ ∈ R there is a D ∈ G such that AD is selfadjoint and λ ∈ spec(AD).

A proof is given in [5, Propositions 5.7 and 6.7]. A surprising consequence of
the second statement is that for any arbitrary negative number λ there is always
a selfadjoint extension of A having λ as eigenvalue, even if A is positive on Dmin.
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3. The model operator

Let A ∈ x−m Diffm
b (M ; E) be c-elliptic. The model operator A∧ associated with

A is an operator on N+Y , the closed inward normal bundle of Y , that in local
coordinates takes the form

A∧ = x−m
∑

k+|α|≤m

akα(0, y)(xDx)kDα
y ,

if A is written as in (1.3). A Taylor expansion in x (at x = 0) of the coefficients of
the operator A induces a decomposition

(3.1) xmA =

N−1
∑

k=0

Pkxk + xN P̃N for every N ∈ N,

where each Pk has coefficients independent of x near Y . Thus the model operator
can be written, near Y , as A∧ = x−mP0. In other words, A∧ can be thought of as
the “most singular” part of A.

We trivialize N+Y as Y ∧ = [0,∞)×Y . The operator A∧ ∈ x−m Diffm
b (Y ∧; E)

acts on C∞
0 (

◦

Y ∧; E) and can be extended as a densely defined closed operator in
x−m/2L2

b(Y
∧; E). The space L2

b(Y
∧; E) is the L2 space with respect to a density

of the form dx
x ⊗ π∗

mY and the canonically induced Hermitian form on π∗(E|Y ),
where π : Y ∧ → Y is the projection on the factor Y . The density mY is related to
m and, by abuse of notation, we denote π∗(E|Y ) by E, cf. [5]. Again, there are two
canonical domains D∧,min and D∧,max and we denote by D∧ the set of subspaces
of D∧,max that contain D∧,min. There is a natural (and useful) linear isomorphism

θ : Dmax/Dmin → D∧,max/D∧,min,

cf. Section 5. As a consequence we have

(3.2) dimD∧,max/D∧,min = dimDmax/Dmin

which by Theorem 2.1 is finite. It is known (cf. Lesch [11]) that D∧,max/D∧,min is
isomorphic to a finite dimensional space E∧,max consisting of functions of the form

(3.3) ϕ =
∑

σ∈specb(A)
|ℑσ|<m/2

(

mσ
∑

k=0

cσ,k(y) logk x

)

xiσ

where cσ,k ∈ C∞(Y ; E). More precisely, for every u ∈ D∧,max there is a function
ϕ ∈ E∧,max such that u(x, y) − ω(x)ϕ(x, y) ∈ D∧,min for some (hence any) cut-off
function ω ∈ C∞

0 ([0, 1)), ω = 1 near 0. The function ϕ is uniquely determined by
the equivalence class u + D∧,min.

We identify

E∧,max = D∧,max/D∧,min

and let

π∧,max : D∧,max → E∧,max

be the canonical projection.
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Contrary to the situation in Theorem 2.1, the closed extensions of A∧ do
not need to be Fredholm. However, if A − λ is c-elliptic with parameter, then the
canonical extensions A∧,min − λ and A∧,max − λ are both Fredholm for λ 6= 0, cf.
[6, Remark 5.26]. Moreover, we have

(3.4) ind(A∧,min − λ) = indADmin
,

cf. Corollary 5.35 in [6].

Example. On Y ∧ = [0,∞) × S1 with the cone metric dx2 + x2dy2, the Laplace-
Beltrami operator is given by

(3.5) ∆∧ = x−2
(

(xDx)2 + ∆Y

)

,

where ∆Y is the nonnegative Laplacian on S1. ∆∧ is precisely the model operator
associated with the cone Laplacian ∆ discussed in the previous section, cf. (2.1).
It is easy to check that for any cut-off function ω ∈ C∞

0 ([0, 1)), the functions

ω(x) · 1, ∆∧(ω(x) · 1), ω(x) log x, and ∆∧(ω(x) log x)

are all in the space x−1L2
b(Y

∧). Thus ω(x)·1 and ω(x) log x are elements of D∧,max.
In fact,

(3.6) E∧,max = span{1, logx}.

Observe that ∆−λ is c-elliptic with parameter λ ∈ C\R+ and therefore the closed
extensions of ∆∧ − λ are Fredholm for every λ ∈ C\R+.

The model operator has a dilation/scaling property that can be exploited to
analyze its closed extensions and their resolvents from a geometric point of view.
In order to describe this property we first introduce the one-parameter group of
isometries

R+ ∋ ̺ 7→ κ̺ : x−m/2L2
b(Y

∧; E) → x−m/2L2
b(Y

∧; E)

which on functions is defined by

(3.7) (κ̺f)(x, y) = ̺m/2f(̺x, y).

It is easily verified that the operator A∧ satisfies the relation

κ̺A∧ = ̺−mA∧κ̺.

This implies

(3.8) A∧ − λ = ̺mκ̺(A∧ − λ/̺m)κ−1
̺

for every ̺ > 0 and λ ∈ C. This homogeneity property, called κ-homogeneity,
will be used systematically to describe the closed extensions of A∧ with nonempty
resolvent sets.

It is convenient to introduce the set

bg-resA∧ = {λ ∈ C : A∧,min − λ is injective and A∧,max − λ is surjective},

the background resolvent set of A∧, cf. [5].
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Lemma 3.1 (Lemma 7.3 in [5]). If λ ∈ bg-resA∧ and D ∈ D∧, then A∧,D − λ is
Fredholm. The set bg-resA∧ is a disjoint union of open sectors,

bg-resA∧ =
⋃

α∈I⊂N

◦

Λα.

This lemma follows immediately from (3.8).

For λ ∈ bg-resA∧ and D ∈ D∧ we have

(3.9) ind(A∧,D − λ) = ind(A∧,min − λ) + dimD/D∧,min.

Moreover, the map
◦

Λα ∋ λ 7→ ind(A∧,D − λ)

is constant since the embedding D →֒ x−m/2L2
b(Y

∧; E) is continuous. Now, in
analogy with (2.5) we define

G∧,α = {D ∈ D∧ : ind(A∧,D − λ) = 0 for λ ∈
◦

Λα}

and let d′′α = − ind(A∧,min − λ) for λ ∈
◦

Λα. We identify G∧,α with the complex
Grassmannian of d′′α-dimensional subspaces of E∧,max.

The canonical domains D∧,min and D∧,max are both κ-invariant. Thus the
group action κ̺ induces an action on E∧,max. In general, κ̺ does not preserve the
elements of D∧. In fact, the set of κ-invariant domains in D∧ is an analytic variety
because it consists of the stationary points of a holomorphic flow, cf. Section 7 in
[5]. To better analyze the resolvents of the closed extensions of A∧ over the open
sector

◦

Λα, we will consider the manifold G∧,α together with the flow generated by
the induced action of κ̺ given by κ̺(D/D∧,min) = κ̺(D)/D∧,min.

Example. The background resolvent set of ∆∧ is the open sector C\R+; this is
easily seen after noting that ∆∧ is the standard Laplacian in R2 written in polar
coordinates. Moreover, since ind(∆∧,min − λ) = −1 for every λ ∈ C\R+, we have
that D ∈ D∧ belongs to G∧ if and only if dimD/D∧,min = 1. Thus

G∧
∼= CP

1 = S2.

We identify E∧,max with D∧,max/D∧,min and use (3.6) to write

E∧,max = span {1, log x} .

For D ∈ G∧ we then have

(3.10) π∧,maxD = span {ζ0 · 1 + ζ1 log x} for some ζ0, ζ1 ∈ C, (ζ0, ζ1) 6= 0.

Hence, with κ as defined in (3.7), we get

(3.11) π∧,maxκ
−1
̺ D = span{(ζ0 − ζ1 log ̺) · 1 + ζ1 log x}.

Clearly, the only κ-invariant domain in G∧ is the domain DF such that

π∧,maxDF = span{1};



8 Juan B. Gil, Thomas Krainer, and Gerardo A. Mendoza

DF is precisely the domain of the Friedrichs extension of ∆∧, cf. [7]. Every domain
D ∈ G∧ with ζ1 6= 0 in (3.10) generates a nontrivial orbit as given by (3.11). In
order to describe the flow of κ on these nonstationary points, rewrite (3.10) as

π∧,maxD = span
{

ζ0

ζ1

· 1 + log x
}

.

Then the projection to E∧,max of the dilation κ−1
̺ D is given by

(3.12) π∧,maxκ
−1
̺ D = span

{

(

ζ0

ζ1

− log ̺
)

· 1 + log x
}

.

If [ζ0 : ζ1] ∈ CP
1 is the point corresponding to D, then κ−1

̺ D is represented by
[ζ0 − ζ1 log ̺ : ζ1]. In other words, in the situation at hand, the flow generated by
κ on G∧

∼= CP
1 consists of curves that in projective coordinates are lines parallel

to the real axis, see Figure 1.

r ζ0/ζ1

r

C

Figure 1. Orbit in G∧(∆∧) generated by D ↔ ζ0/ζ1 ∈ C.

Observe that the Friedrichs extension corresponds to the point [1 : 0] ∈ CP
1.

Using

π∧,maxκ
−1
̺ D = span

{

1 + ζ1

ζ0−ζ1 log ̺ log x
}

if ̺ 6= eζ0/ζ1

we see that

(3.13) π∧,maxκ
−1
̺ D → span{1} = π∧,maxDF as ̺ → ∞ or ̺ → 0.

Let D0 ∈ G∧ be such that π∧,maxD0 = span{logx}. This domain gives a
selfadjoint extension of ∆∧ which on the sphere corresponds to the point [0 : 1].
The circle consisting of the orbit of D0 together with DF is the set of domains of
selfadjoint extensions of ∆∧.

4. Ray conditions on the model cone

In this section we will discuss the existence of sectors of minimal growth for the
model operator A∧ ∈ x−m Diffm

b (Y ∧; E) associated with a c-elliptic cone operator.
We fix a component

◦

Λα of bg-resA∧ and let G∧ = G∧,α.
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Let Λ be a closed sector such that Λ\0 ⊂
◦

Λα, cf. (1.1), let resA∧,D be the
resolvent set of A∧,D. The κ-invariant domains are the simplest domains to analyze.

Proposition 4.1 (Proposition 8.4 in [5]). Suppose D ∈ G∧ is κ-invariant. If there
exists λ0 ∈

◦

Λα such that A∧,D − λ0 is invertible, then
◦

Λα ⊂ resA∧,D and Λ is a
sector of minimal growth for A∧,D.

If D ∈ G∧ is not κ-invariant, the situation is more complicated. Nonetheless,
in [5] we found a condition necessary and sufficient for a sector Λ to be a sector of
minimal growth for A∧,D. This condition is expressed in terms of finite dimensional
spaces and projections that we proceed to discuss briefly.

For λ ∈ bg-resA∧ we let

K∧,λ = ker(A∧,max − λ).

Then

resA∧,D = bg-resA∧ ∩ {λ : K∧,λ ∩ D = 0},

and for λ ∈ resA∧,D we have

(4.1) D∧,max = K∧,λ ⊕D.

Projecting on E∧,max, this direct sum induces the decomposition

(4.2) E∧,max = π∧,maxK∧,λ ⊕ π∧,maxD,

and the projection on π∧,maxK∧,λ according to (4.2) is given by the map

(4.3)
π̂K∧,λ,D : E∧,max → E∧,max

(u + D∧,min) 7→ πK∧,λ,Du + D∧,min,

where πK∧,λ,D is the projection on K∧,λ according to (4.1).

The following theorem gives a condition on the operator norm of (4.3) for a
sector Λ to be a sector of minimal growth for A∧,D. Define

‖u‖2
λ = ‖u‖2 + |λ|−2‖A∧u‖2

for λ 6= 0 and u ∈ D∧,max.

Theorem 4.2. Let D ∈ G∧, let Λ be a closed sector with Λ\0 ⊂
◦

Λα. Then Λ is
a sector of minimal growth for A∧,D if and only if there are C, R > 0 such that
ΛR ⊂ resA∧,D, and

(4.4)
∥

∥π̂K∧,λ,D

∥

∥

L (E∧,max,‖·‖λ)
≤ C for λ ∈ ΛR,

where π̂K∧,λ,D is the projection (4.3).

This theorem is a rephrasing of [5, Theorem 8.7]. There the condition (4.4)
appears in the equivalent form

(4.4′)
∥

∥π̂K∧,λ̂,κ−1

|λ|1/m
D

∥

∥

L (E∧,max)
≤ C for λ ∈ ΛR,
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where λ̂ = λ/|λ|, and π̂K∧,λ̂,κ−1

|λ|1/m
D is the projection on K∧,λ̂ induced (following

the steps (4.1)–(4.3)) by the direct sum

(4.5) D∧,max = K∧,̺−mλ ⊕ κ−1
̺ D

for λ ∈ resA∧,D and ̺ > 0. This decomposition is a consequence of (4.1) and the
κ-invariance of D∧,max, as follows. First, the κ-homogeneity of A∧ − λ, cf. (3.8),
implies

κ−1
̺ (K∧,λ) = K∧,̺−mλ for ̺ > 0.

Furthermore, if D ∈ G∧ and λ ∈ bg-resA∧, then

̺−mλ ∈ resA∧,κ−1
̺ D ⇐⇒ λ ∈ resA∧,D.

In particular,

K∧,̺−mλ ∩ κ−1
̺ D = {0} ⇐⇒ K∧,λ ∩ D = {0},

as claimed.
The equivalence of (4.4) and (4.4′) follows immediately from the identity

κ−1
|λ|1/mπK∧,λ,D κ|λ|1/m = πK∧,λ̂,κ−1

|λ|1/m
D

using the relation (3.8) and the fact that κ is an isometry on x−m/2L2
b . The virtue

of (4.4′) is that the norm is fixed, while the advantage of (4.4) lies in that it gives
a more explicit dependence on λ and deals with a projection on a subspace of
E∧,max with fixed complement π∧,maxD.

In [5, Corollary 8.22] it is proved that Λ is a sector of minimal growth for
A∧,D if and only if there are constants C, R > 0 such that ΛR ⊂ resA∧,D and

∥

∥κ−1
|λ|1/m(A∧,D − λ)−1

∥

∥

L (x−m/2L2

b,D∧,max)
≤ C/|λ|, λ ∈ ΛR.

It can be shown that this estimate is equivalent to (4.4) and (4.4′).

Example. We consider again the model Laplacian ∆∧ from the previous section.
Recall that bg-res∆∧ = C\R+. For λ ∈ C\R+, we have

π∧,maxK∧,λ = span {−k0 log(−λ) + k1 log x} for some k0, k1 > 0,

where log means the principal branch of the logarithm. Moreover, by (3.12),

π∧,maxκ
−1
̺ D = span

{

(

ζ0

ζ1

− log ̺
)

· 1 + log x
}

.

The projection in (4.4′) can be computed explicitly. Namely, if u = α0 +α1 log x ∈
E∧,max = span{1, logx} and λ = ̺mλ0, then

(4.6) π̂K∧,λ0
,κ−1

̺ Du =
−α0 + α1(

ζ0

ζ1
− log ̺)

k0 log(−λ0) + k1(
ζ0

ζ1

− log ̺)
(−k0 log(−λ0) + k1 log x) .

Let Λ be a closed sector in C\R+ containing the half-plane {ℜλ < 0}. Since
the family of projections (4.6) is bounded as ̺ → ∞, uniformly for |λ0| = 1 in Λ,
regardless of the specific choice of α0, α1, Theorem 4.2 implies that every closed
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extension ∆∧,D, D ∈ G∧, of the model Laplacian admits Λ as a sector of minimal
growth.

Equivalent geometric condition

We identify G∧ with the Grassmannian Grd′′(E∧,max) where d′′ = − ind(A∧,min−λ)
for λ ∈

◦

Λα ⊂ bg-resA∧. Let d′ = dimK∧,λ. The condition that in the Grassman-
nian Grd′′(E∧,max), the curve

[R,∞) ∋ ̺ 7→ π∧,maxκ
−1
̺ D

does not approach the set

VK∧,λ
= {D ∈ Grd′′(E∧,max) : D ∩ π∧,maxK∧,λ 6= 0}

as ̺ → ∞, is sufficient for the validity of (4.4′). This is [5, Theorem 8.28]. The
following theorem states that the condition is also necessary.

For D ∈ Grd′′(E∧,max) let

Ω−(D) =
{

D′ ∈ Grd′′(E∧,max) : ∃ {̺k}
∞
k=1 ⊂ R+ such that

̺k → ∞ and κ−1
̺k

D → D′ as k → ∞
}

.

Theorem 4.3. Let λ0 ∈
◦

Λα. The ray through λ0 is a ray of minimal growth for
A∧,D if and only if Ω−(π∧,maxD) ∩ VK∧,λ0

= ∅.

Proof. Let λ0 ∈
◦

Λα and D ∈ G∧. For simplicity, we use the notation

D = π∧,maxD, V = VK∧,λ0
, K = π∧,maxK∧,λ0

and πK,D = π̂K∧,λ0
,D.

Suppose Ω−(D) ∩ V = ∅. Since Ω−(D) and V are closed sets, there are a neigh-
borhood U of V and a constant R > 0 such that if ̺ > R then κ−1

̺ D 6∈ V . Then

Lemma 5.24 in [5] gives that
∥

∥πK,κ−1
̺ D

∥

∥ is uniformly bounded as ̺ → ∞, and

therefore, by Theorem 4.2 the ray through λ0 is a ray of minimal growth for A∧,D.

Assume now that there are C, R > 0 such that ΛR ⊂ resA∧,D and the
condition (4.4′) is satisfied. Suppose Ω−(D) ∩ V 6= ∅ and let D0 ∈ Ω−(D) ∩ V .
Since D0 ∈ V , we have D0 ∩ K 6= {0}. On the other hand, D0 ∈ Ω−(D) implies
that there is a sequence {̺k}

∞
k=1 ⊂ R+ such that ̺k → ∞ and Dk = κ−1

̺k
D → D0

as k → ∞. Note that for ̺k large we have ̺m
k λ0 ∈ resA∧,D, so λ0 ∈ resA∧,κ−1

̺k
D

and therefore, Dk 6∈ V .

Pick v ∈ D0 ∩ K with ‖v‖ = 1. Let πDk
denote the orthogonal projection on

Dk. Since Dk → D0 as k → ∞, we have πDk
→ πD0

, so vk = πDk
v → πD0

v = v
as k → ∞. Since Dk 6∈ V , vk − v 6= 0 and πK,Dk

vk = 0. Hence

πK,Dk

(

v − vk

‖v − vk‖

)

=
v

‖v − vk‖
→ ∞ as k → ∞,

since ‖v‖ = 1 and vk → v as k → ∞. But this implies that ‖πK,Dk
‖ → ∞

contradicting the boundedness of the norm in (4.4′). Thus Ω−(D) ∩ V = ∅.
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Example. Let ∆∧ be the model Laplacian and let D ∈ G∧. In this case, the
limiting set Ω−(π∧,maxD) consists of the one element of CP

1 corresponding to the
Friedrichs extension of ∆∧, cf. (3.13). From this new perspective, it is evident that
every closed extension of ∆∧ must admit a sector of minimal growth.

5. Rays of minimal growth

We continue to assume that A ∈ x−m Diffm
b (M ; E) is c-elliptic.

Unlike the case of a differential operator with smooth coefficients on a closed
manifold, that a ray Γ is a ray of minimal growth for the principal symbol cσσ(A)
of A is not expected to imply that Γ is a ray of minimal growth for A. In this
context, it is useful to think of A∧ as a symbol (the wedge symbol) associated
with A, cf. Schulze [15], so that it is natural to impose ray conditions on A∧. For
this to work, however, we need to transfer the information about the given domain
D of A on M to equivalent information for A∧ on Y ∧, and vice versa.

Theorem 5.1 (Theorem 4.12 in [5]). There is a natural isomorphism

θ−1 : D∧,max/D∧,min → Dmax/Dmin

given by a finite iterative procedure that involves the boundary spectrum of A and
the decomposition (3.1). In particular, if A has coefficients independent of x near
Y , then θ is the identity map.

Example. Let M be a compact 2-manifold with boundary Y = S1. Let A be a
differential operator in x−2 Diff2

b(M) that over the interior of M coincides with
some Laplacian, and near Y , is of the form

A = x−2
(

(xDx)2 + q(x)∆Y

)

,

where ∆Y is the standard nonnegative Laplacian on S1 and q is a smooth function.
We assume q to have the form

q(x) = α2 + βx + x2γ(x),

where α, β are constants such that 1
2 < α < 1, β 6= 0, and γ(0) = 1. The associated

model operator is then given by

A∧ = x−2
(

(xDx)2 + α2∆Y

)

,

and specb(A) = {±iαk : k ∈ N0}. Since 1
2 < α < 1, only the set {−iα, 0, iα} is

relevant for the spaces Emax and E∧,max, cf. (3.3). Here, similar to E∧,max, the space
Emax consists of singular functions and is isomorphic to the quotient Dmax/Dmin.
If y denotes the angular variable on S1,

E∧,max = span{1, logx, eiyxα, e−iyxα, eiyx−α, e−iyx−α},

Emax = span
{

1, logx, e±iyxα, e±iyx−α
(

1 − β
2α−1x

)

}

.
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In this case, θ : Emax → E∧,max acts as the identity on span{1, logx, e±iyxα}, but

θ
(

e±iyx−α
(

1 − β
2α−1x

)

)

= e±iyx−α.

The map θ induces an isomorphism

Θ : D → D∧

that we use to define D∧ = ΘD for any given D ∈ D. The operator A∧,D∧ is the

closed extension of A∧ in x−m/2L2
b(Y

∧; E) uniquely associated with AD.
As in [6, Section 6], and motivated by the importance of κ̺ in studying the

model operator A∧, we introduce on Dmax(A)/Dmin(A) the one-parameter group

κ̺̃ = θ−1κ̺θ for ̺ > 0.

Similar to the situation on the model cone, the spectrum and resolvent of the
closed extensions of A can be geometrically analyzed by considering the manifold
G, cf. (2.5), together with the flow generated by κ̺̃.

An interesting consequence of Theorem 5.1 is the following.

Proposition 5.2. If A − λ is c-elliptic with parameter λ 6= 0, then

ind(A∧,D∧ − λ) = indAD.

Proof. The existence of θ implies dimD∧/D∧,min = dimD/Dmin. Now, the propo-
sition follows by combining this identity with the relative index formulas (2.3) and
(3.9), together with the equation (3.4).

The following theorem describes the pseudodifferential structure of the resol-
vent of a cone operator A and gives tangible conditions over a given sector Λ on
the symbols cσσ(A) and A∧ for A to have Λ as a sector of minimal growth.

Theorem 5.3 (Theorem 6.9 in [6]). Let A ∈ x−m Diffm
b (M ; E) be such that A − λ

is c-elliptic with parameter λ ∈ Λ. If Λ is a sector of minimal growth for A∧,D∧ ,
then it is a sector of minimal growth for AD. Moreover,

(AD − λ)−1 = B(λ) + GD(λ),

where B(λ) is a parametrix of ADmin
−λ with B(λ)(ADmin

−λ) = 1 for λ sufficiently
large, and GD(λ) is a pseudodifferential regularizing operator of finite rank.

The following lemma gives further information about the behavior at large
of the resolvent along a sector of minimal growth.

Given two cut-off functions ω0 and ω1, the notation ω1 ≺ ω0 will indicate
that ω0 = 1 in a neighborhood of the support of ω1.

Lemma 5.4. Let A ∈ x−m Diffm
b (M ; E) be c-elliptic and let Λ be a sector of minimal

growth for AD. For every pair of cut-off functions ω1 ≺ ω0, supported near the
boundary, we have

(1 − ω0)(AD − λ)−1ω1 ∈ S
(

Λ, L (x−m/2L2
b,Dmax)

)

,

where S stands for Schwartz (rapidly decreasing as |λ| → ∞).
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Proof. Since Λ is a sector of minimal growth for AD, the family A − λ must be
c-elliptic with parameter λ ∈ Λ, and A∧,min −λ must be injective for every λ ∈ Λ,
λ 6= 0. A proof of this can be found in [6, Theorem 4.1].

As a consequence (cf. [6, Section 5]), there is a parametrix B(λ) such that
B(λ)(ADmin

− λ) = 1 for large λ ∈ Λ, and

(5.1) (1 − ω0)B(λ)ω1 ∈ S
(

Λ, L (x−m/2L2
b ,Dmax)

)

for all cut-off functions ω1 ≺ ω0 supported near the boundary. We now make use
of the identity

(AD − λ)−1 = B(λ) + (1 − B(λ)(A − λ))(AD − λ)−1.

Multiplying by (1 − ω0) from the left and by ω1 from the right, (5.1) proves the
assertion for the first term involving B(λ). On the other hand, since 1−B(λ)(A−λ)
vanishes on Dmin for large λ, we have for such λ,

(1 − ω0)(1 − B(λ)(A − λ)) = (1 − ω0)(1 − B(λ)(A − λ))ω2

= −(1 − ω0)B(λ)(A − λ)ω2

= −(1 − ω0)B(λ)ω1(A − λ)ω2

whenever ω2 ≺ ω1. Thus, by (5.1),

(1 − ω0)(1 − B(λ)(A − λ)) : Dmax → Dmax

is rapidly decreasing as |λ| → ∞. Finally, the assertion of the lemma can be
completed using the fact that (AD − λ)−1ω1 : x−m/2L2

b → Dmax is uniformly
bounded.

Necessity of the conditions

The converse of Theorem 5.3 involves proving that the minimal growth of the
resolvent (AD − λ)−1 over a sector Λ implies a corresponding behavior for the
inverse of cσσ(A) − λ and for the resolvent (A∧,D∧ − λ)−1.

While in [6, Theorem 4.1] we established the necessity of the condition on
cσσ(A), we did not address the question whether Λ must necessarily be a sector of
minimal growth for A∧,D∧ . In the next theorem we prove that this is indeed the
case when A has coefficients independent of x near Y = ∂M .

Theorem 5.5. Let A ∈ x−m Diffm
b (M ; E) be c-elliptic with coefficients independent

of x near Y . If Λ is a a sector of minimal growth for AD, then A − λ is c-elliptic
with parameter λ ∈ Λ, and Λ is a sector of minimal growth for A∧,D∧ .

Proof. As stated in the proof of Lemma 5.4, the assumption on the resolvent of
AD implies that A − λ is c-elliptic with parameter λ ∈ Λ and that A∧,min − λ is
injective for every λ 6= 0. Thus we only need to prove the statement about A∧,D∧ .

By Proposition 5.2, and since indAD = 0, we have ind(A∧,D∧ − λ) = 0 for
λ 6= 0. For this reason, in order to show that Λ is a sector of minimal growth for
A∧,D∧ , it suffices to find (for large λ ∈ Λ) a right-inverse of A∧,D∧ − λ that is

uniformly bounded in L
(

x−m/2L2
b ,D∧

)

as |λ| → ∞.
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Since A is assumed to have coefficients independent of x near the boundary,
there is a cut-off function ω0 such that

Aω0 = A∧ω0 and ω0D = ω0D∧.

Let ω1, ω2 be cut-off functions with ω2 ≺ ω1 ≺ ω0. Then the operator

B(λ) = ω1(AD − λ)−1ω2

can be regarded as an operator on M with values in D or as an operator on Y ∧

with values in D∧. Depending on the context we will write B(λ) as

BD(λ) : x−m/2L2
b(M ; E) → D or BD∧(λ) : x−m/2L2

b(Y
∧; E) → D∧.

On M we consider

(AD − λ)BD(λ) = ω0(AD − λ)ω1(AD − λ)−1ω2

= ω2 − ω0(AD − λ)(1 − ω1)(AD − λ)−1ω2

= ω2 + R(λ)

with R(λ) = −ω0(AD − λ)(1 − ω1)(AD − λ)−1ω2. By Lemma 5.4, R(λ) is rapidly
decreasing in the norm as |λ| → ∞.

Because of the presence and nature of the cut-off functions ω0 and ω2, R(λ)
can also be regarded as an operator on Y ∧, say R∧(λ) ∈ S

(

Λ, L (x−m/2L2
b)
)

.
Now, using that (AD − λ)ω1 = (A∧,D∧ − λ)ω1, we get on Y ∧ the identity

(5.2) (A∧,D∧ − λ)BD∧(λ) = ω2 + R∧(λ).

Furthermore, we have

‖BD∧(λ)‖L (x−m/2L2

b,D∧,max) = O(1) as |λ| → ∞,

since, by assumption, ‖BD(λ)‖L (x−m/2L2

b
,Dmax) has the same asymptotic behavior.

On the other hand, as A−λ is c-elliptic with parameter, by [6, Theorem 5.24]
there is a family of pseudodifferential operators B2,∧(λ) : x−m/2L2

b → D∧,min

(uniformly bounded in λ) such that (A∧ − λ)B2,∧(λ) − 1 is regularizing, and for
ω3 ≺ ω2, the families ω3B2,∧(λ)(1 − ω2) and

[

(A∧ − λ)B2,∧(λ) − 1
]

(1 − ω2) are
rapidly decreasing in the norm as |λ| → ∞. Thus, as A∧,D∧(1−ω3) = A∧(1−ω3),

(5.3) (A∧,D∧ − λ)(1 − ω3)B2,∧(λ)(1 − ω2) = (1 − ω2) + S∧(λ)

with S∧(λ) ∈ S
(

Λ, L (x−m/2L2
b)
)

. Finally, the operator family

Q∧(λ) = BD∧(λ) + (1 − ω3)B2,∧(λ)(1 − ω2) : x−m/2L2
b → D∧,max

is bounded in the norm as |λ| → ∞ and by (5.2) and (5.3) we have

(A∧,D∧ − λ)Q∧(λ) − 1 ∈ S
(

Λ, L (x−m/2L2
b)
)

.

By a Neumann series argument, it follows that A∧,D∧ − λ : D∧ → x−m/2L2
b has a

uniformly bounded right-inverse for large λ ∈ Λ.
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