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Abstract. We establish a new calculus of pseudodifferential operators on a manifold with

smooth edges and study ellipticity with extra trace and potential conditions (as well as Green

operators) at the edge. In contrast to the known scenario with conditions of that kind in integral

form we admit in this paper ‘singular’ trace, potential and Green operators, which are related to

the corresponding operators of positive type in Boutet de Monvel’s calculus for boundary value

problems.
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1. Introduction

The construction of a pseudodifferential algebra containing both the classical boundary value prob-
lems (such as the Dirichlet or Neumann problem for the Laplacian) as well as their parametrices
leads in case of a (compact) manifold M with smooth boundary to Boutet de Monvel’s algebra [1].
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The operators in this calculus have block-matrix form,

(1.1)

(
A K

T Q

)
:

C∞(M,E)
⊕

C∞(∂M, J−)
−→

C∞(M,F )
⊕

C∞(∂M, J+)
,

(which continuously extend to Sobolev spaces), where E, F and J−, J+ are vector bundles over M
and the boundary ∂M , respectively. Classical boundary value problems correspond to operators 

A

T

!
and dim J− = 0, where A is a differential operator and T the boundary condition, now called

a trace operator. Shapiro-Lopatinskij elliptic problems have a parametrix of the form (A K), where
K is a potential operator and A = r+ P e+ +G with a (singular) Green operator G and a classical
pseudodifferential operator P on the double 2M of M that has the transmission property with
respect to the boundary of M (moreover, e+ denotes the operator of extension by zero from M to
2M , while r+ denotes restriction from 2M to intM). Elements of Boutet de Monvel’s algebra are
filtered by their order µ ∈ Z (which is simply the usual order of the (pseudo)differential part in the
upper left corner) and posses a so-called type, which is a non-negative integer d ∈ N0. The type can
be different from zero only for trace operators and (singular) Green operators. For example, taking
k-times the derivative in normal direction followed by restriction to the boundary and application
of a pseudodifferential operator on the boundary yields a trace operator of type d = k + 1.

Another more complicated task is that of developing an elliptic theory for differential operators
on a manifold M with edges. Roughly speaking, outside a lower dimensional smooth stratum Y

(the edge), M is a smooth manifold, while each point of Y has a neighbourhood homeomorphic to
U ×X∆, where U is an open subset of Y and X∆ is a cone with smooth closed cross section X.
Note that a manifold with boundary is a particular case of a manifold with edge, namely one with
X being a point and thus X∆ = R+, the normal to the boundary. Typical differential operators on
M are edge degenerate, i.e. they have a specific singular structure close to the edge (see Section 3 for
more details). As it turns out, elliptic edge degenerate differential operators in general do not have
the Fredholm property (in suitable edge Sobolev spaces), but one has to impose additional trace
and potential conditions over the edge, possibly even simultaneously. In other words, developing a
Fredholm theory for edge degenerate operators leads to a pseudodifferential calculus of operators in
block-matrix form similarly as in (1.1), the so-called edge algebra. This calculus has been developed
by the first author in [10], [11], [12]. A detailed exposition may be found in [3]; a short overview
we provide in Section 8 of this paper.

As is known from the author’s joint works [13] or [14] the analogy between the respective calculi for
boundary value problems and ‘edge problems’ goes very far. But there are also essential differences:
While Boutet de Monvel’s calculus requires the transmission property, the edge calculus admits
general pseudodifferential symbols smooth up to the boundary. In contrast to standard elliptic trace
conditions (e.g. of Dirichlet or Neumann type) at the boundary which make sense on solutions of
sufficiently high Sobolev regularity, the solutions to edge problems generally do not admit traces
of that kind. On the other hand, solutions to edge problems may have asymptotics at the edge,
that can be regarded as a substitute of Taylor asymptotics at the boundary (i.e., smoothness up to
the boundary). It is now natural and desirable to organise a calculus of edge degenerate operators
with trace conditions based on those general asymptotics (called singular trace conditions) rather
than Taylor asymptotics.
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In the present paper we just establish such an extension of the edge algebra by our new singular
trace and Green operators. We study compositions of the corresponding edge operators, formulate
ellipticity with singular trace, etc., conditions at the edge, and obtain parametrices within the
calculus.

2. Symbols of Boutet de Monvel’s algebra

As noted in the introduction, boundary value problems with the transmission property may be
regarded as a model for calculi with singular trace (and also Green) operators. Let us describe this
on the level of boundary symbols in a half-space Ω × R+ with an open set Ω ⊂ Rq. The variable
in Ω we will denote by y, the one of R+ by t.

Let p(y, t, η, τ) be a (classical) symbol of integer order µ with the transmission property at t = 0
(the symbols of that kind form a closed subspace Sµtr(Ω× R+ × Rq+1) of C∞(Ω× R+, S

µ
cl(Rq+1))

with Sµcl(Rq+1) being the space of classical symbols of order µ with constant coefficients). Assume
that p is independent of t for t > T for some T > 0. Let us set

(2.1) op+(p)(y, η) = r+op(p)(y, η)e+

for
(
op(p)(y, η)u

)
(t) =

∫∫
ei(t−t

′)τp(y, t, η, τ)u(t′) dt′d̄τ, d̄τ = (2π)−1dτ, where e+ denotes the
operator of extension by zero from R+ to R and r+ the restriction from R to R+ of distributions
(in (2.1) on the right hand side we tacitly insert a symbol p̃ on Ω×R×Rq+1 with p = p̃|Ω×R+×Rq+1 ;
however, since the operator is independent of the choice of p̃ we simply write p). As is known, (2.1)
defines a family of continuous operators

op+(p)(y, η) : Hs(R+) −→ Hs−µ(R+), s > − 1
2 ,

where Hs(R+) := Hs(R)|R+ with Hs(R) being the standard Sobolev space of smoothness s on R.
Defining for λ > 0

(2.2) κλ : Hs(R+) −→ Hs(R+), (κλu)(t) = λ
1
2u(λt),

we obtain a strongly continuous group of isomorphisms on the space Hs(R+), i.e.,

i) κ1 = 1 and κλκδ = κλδ for all λ, δ > 0,
ii) λ 7→ κλu : [0,∞)→ Hs(R+) is continuous for any u ∈ Hs(R+).

In particular, these operators are unitary on L2(R+) (with the standard scalar product). An es-
sential observation is that op+(p)(y, η) is an operator-valued symbol in the following sense.

If E is a Hilbert space and {κλ}λ∈R+ a strongly continuous group of isomorphisms on E, we say
that E is endowed with a group action. Let us set 〈η〉 = (1 + |η|2)1/2.

Definition 2.1. Given Hilbert spaces E and Ẽ with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ , re-
spectively,

(2.3) Sµ(Ω× Rq;E, Ẽ)

will denote the space of all functions a(y, η) ∈ C∞(Ω× Rq,L(E, Ẽ)) such that

sup
y∈K,η∈Rq

〈η〉−µ+|α|‖κ̃−1
〈η〉D

α
ηD

β
y a(y, η)κ〈η〉‖L(E, eE) <∞

for every compact K ⊂ Ω and all multi-indices α, β ∈ Nq.
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Note that we obtain an equivalent definition of (2.3) when we replace 〈η〉 by, for instance, a smooth
function η 7→ [η] that is strictly positive and satisfies [η] = |η| for |η| > C for a C > 0. In the
sequel, for convenience, we assume C = 1.

A function a(µ)(y, η) ∈ C∞(Ω × (Rq\{0}),L(E, Ẽ)) is called (twisted) homogeneous in η 6= 0 of
order µ if

(2.4) a(µ)(y, λη) = λµκ̃λa(µ)(y, η)κ−1
λ for all (y, η) ∈ Ω× (Rq\{0}) for all λ > 0.

Note that when χ(η) is an arbitrary zero-excision function on Rq (i.e., χ is smooth, vanishes in a
neighbourhood of the origin, and equals 1 for |η| > R for some R > 0) we have χ(η)a(µ)(y, η) ∈
Sµ(Ω× Rq;E, Ẽ) if a(µ) is homogeneous in the former sense. This gives rise to

(2.5) Sµcl(Ω× Rq;E, Ẽ),

the subspace of (2.3) of all elements a(y, η) which admit an asymptotic expansion into terms of
the kind χ(η)a(µ−j)(y, η), with homogeneous functions a(µ−j)(y, η) of order µ − j, j ∈ N. In this
case we let

σ∧(a)(y, η) = a(µ)(y, η)

denote the homogeneous principal symbol.

The concept of operator-valued symbols in the above sense is very close to the scalar case where
E = Ẽ = C and the group actions are trivial (i.e., identity operators for all λ > 0). Nevertheless
there are beautiful (and sometimes surprising) examples of such operator-valued symbols, as we
shall see below.

Example 2.2. For every p(y, t, η, τ) ∈ Sµtr(Ω× R+ × Rq+1) (independent of t for large t) we have

op+(p)(y, η) ∈ Sµ(Ω× Rq;Hs(R+),Hs−µ(R+)), s > −1
2
.

Moreover, if p(µ) denotes the homogeneous principal part of p of order µ in (η, τ) 6= 0, then

p(µ)(y, η) := op+(p(µ)|t=0)(y, η), (y, η) ∈ Ω× (Rq\{0})

is homogeneous in the sense of the relation (2.4).

It is also necessary for our purposes to admit Ẽ to be a Fréchet space with group action: Let

Ẽ = lim←−j∈N Ẽ
j

be a projective limit of Hilbert spaces Ẽj with continuous embeddings Ẽj+1 ↪→ Ẽj ↪→ . . . ↪→ Ẽ0

such that Ẽ0 is endowed with a group action {κλ}λ∈R+ that restricts to a group action {κλ| eEj}λ∈R+

on Ẽj for every j. Then Ẽ is said to be endowed with the group action {κλ}λ∈R+ . We have the
spaces Sµ(cl)(Ω× Rq;E, Ẽj) for all j, and

Sµ(cl)(Ω× Rq;E, Ẽ) = lim←−
j∈N

Sµ(cl)(Ω× Rq;E, Ẽj)

is, by definition, the projective limit of these spaces (subscript ‘(cl)’ means that we are talking
about the classical or the general case).

As is known, the parametrix of an elliptic boundary value problem
(
A
T

)
in the half-space Ω ×

R+, with an elliptic differential operator A and a trace operator T which satisfies the Shapiro-
Lopatinskij condition with respect to A (for instance, the Dirichlet or the Neumann problem for
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the Laplacian), can be expressed within Boutet de Monvel’s calculus of pseudodifferential boundary
value problems. Besides the symbols of Example 2.2, this calculus also contains so-called Green
symbols. Such symbols have an order µ ∈ R and a so-called type d ∈ N. They have the form of 2×2
block matrices

(2.6) g(y, η) = g0(y, η) +
d∑
l=1

gl(y, η)

(
∂lr 0
0 0

)
where ∂r indicates differentiation in the direction normal to the boundary, and, with suitable
j+, j− ∈ N0,

gl(y, η) ∈ Sνcl(Ω× Rq;L2(R+)⊕ Cj− ,S(R+)⊕ Cj+), ν = µ− l,

is a 2× 2 block matrix symbol of order ν, whose pointwise adjoint satisfies

gl(y, η)∗ ∈ Sνcl(Ω× Rq;L2(R+)⊕ Cj+ ,S(R+)⊕ Cj−).

Here, S(R+) = lim←−k∈N〈t〉
−kHk(R+) and L2(R+) are endowed with the group action {κλ}λ∈R+

from (2.2), while the spaces L2(R+)⊕ CN and S(R+)⊕ CN are endowed with {κλ ⊕ idCN }λ∈R+ .

Writing g(y, η) = (gij(y, η))i,j=1,2, the component g21 (the left lower corner) is a so-called trace
symbol of order µ and type d, while g12 is a potential symbol of order µ.

The associated operators Op(g) (the pseudodifferential operator with respect to the Fourier trans-
form in the y-variables), occasionally also denoted by Opy(g), are generated in the parametrix
construction of elliptic boundary value problems. For example, Green’s function of the Dirichlet
problem for the Laplacian ∆ is, locally near the boundary, of the form E + Op(g11) for a funda-
mental solution E of ∆ and a Green symbol g11(y, η) of type 0. Moreover, the potential operator
in the solution of the Dirichlet problem is, locally near the boundary, of the form Op(g12) (clearly,
these relations are true modulo smoothing operators in Boutet de Monvel’s calculus, cf. [1]).

Remark 2.3. The amplitude functions of boundary value problems in Ω× R+ have the form

(2.7) a(y, η) =

(
op+(p)(y, η) 0

0 0

)
+ g(y, η)

where op+(p) is as in Remark 2.2, and the second summand, given by (2.6) belongs to

Sµcl(Ω× Rq;Hs(R+)⊕ Cj− ,S(R+)⊕ Cj+), for all s > d− 1
2 .

From (2.6) we see that trace and Green operators of type 0 are of integral form (in contrast to
operators of positive type that are combined with differentiations in normal direction and the
restriction to the boundary). As noted in the introduction, the calculus of edge problems of [12]
has a similar structure, but the corresponding analogues of trace and Green operators of positive
type are still missing. In the present paper we introduce them as so-called singular operators while
the former ones from the edge calculus are of integral form and regarded as regular operators.

3. Symbolic structure of edge-degenerate differential operators

We now start discussing a category of operator-valued symbols that contribute to the symbolic
calculus of operators on a manifold with edge. By definition (cf. Section 6.1 below) such a manifold
is locally, near the edge, represented by a wedge

X4 × Ω, X4 = (R+ ×X)/({0} ×X),
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with an edge Ω (an open set in Rq) and a model cone X4 for a closed smooth Riemannian manifold
X. The half-space case just corresponds to dimX = 0.

An edge-degenerate differential operator A on an open stretched wedge

X∧ × Ω, X∧ = R+ ×X,

in the splitting of variables (r, x, y) has the form

(3.1) A = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)α

with coefficients ajα ∈ C∞(R+×Ω,Diffµ−(j+|α|)(X)), where Diffν(X) is the space of all differential
operators of order ν with smooth coefficients onX. Since the main aspects concern a neighbourhood
of r = 0 we assume that the coefficients ajα are independent of r for r > R for some R > 0.

We have A = Opy(a) for the operator-valued amplitude function

(3.2) a(y, η) = r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rη)α.

We now fix an adequate scale of spaces such that (3.2) is an operator-valued symbol in the sense of
(2.3). To this end we let ω denote a cut-off function on the half-axis, i.e. ω ∈ C∞0 (R+) and ω ≡ 1
near r = 0.

Definition 3.1. Let s ∈ N, γ ∈ R, and n := dimX. We denote by Ks,γ(X∧) the space of all
u(r, x) ∈ r−n

2 L2(R+ ×X, drdx) such that

(r∂r)kDα
x (ωu)(r, x) ∈ r−n

2 L2(R+ ×X, drdx) for all k + |α| ≤ s,

where Dα
x for α = (α1, . . . , αn) denotes any composition vα1

1 . . . vαn
n of vector fields vj on X, and

(1− ω)u ∈ Hs
cone(X

∧),

the standard Sobolev space of smoothness s ∈ R on the infinite cone X∧ (cf. [12] for details).

Note that for X = Sn (the unit sphere in Rn+1) we have (1− ω)Hs
cone(X

∧) = (1− ω)Hs(Rn+1).

The definition of Ks,γ(X∧) for general s ∈ R follows by duality (with respect to the K0,0-scalar
product) and interpolation. The spaces Ks,γ(X∧) can be equipped with norms in terms of Hilbert
space scalar products. In particular, we have

K0,0(X∧) = r−
n
2 L2(R+ ×X, drdx).

We shall endow each Ks,γ(X∧) with the group action defined by

(3.3) (κλu)(r, x) = λ
n+1

2 u(λr, x), λ > 0.

For references below we also form the Fréchet spaces

(3.4) Sγ(X∧) = {u ∈ K∞,γ(X∧) : (1− ω)u ∈ S(R+, C
∞(X))},

endowed with the same group action.

Remark 3.2. For purposes below we also consider the spaces Ks,γ;g(X∧) := [r]−gKs,γ(X∧), g ∈ R,
endowed with the group action

(κgλu)(r, x) = λg+
n+1

2 u(λr, x), λ > 0.
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Setting

(3.5) Ks,γ(X∧) = Ks,γ;s−γ(X∧),

we have that Ks,γ(X∧) = rγKs,0(X∧) for every s, γ ∈ R.

Proposition 3.3. Given an edge-degenerate differential operator A, the associated operator family
(3.2) represents an operator-valued symbol

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧))

for every s, γ ∈ R. The family of operators

(3.6) σ∧(A)(y, η) = r−µ
∑

j+|α|≤µ

ajα(0, y)(−r∂r)j(rη)α

is (twisted) homogeneous of order µ, i.e., σ∧(A)(y, λη) = λµκλσ∧(A)(y, η)κ−1
λ for all λ > 0.

Remark 3.4. The operator family (3.2) also represents an operator-valued symbol

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ;g(X∧),Ks−µ,γ−µ;g(X∧))

for every s, γ, g ∈ R, where we now refer to the group action {κgλ}λ∈R+ in both spaces, cf. Remark
3.2. In particular, we have

a(y, η) ∈ Sµ(Ω× Rq;Ks,γ(X∧),Ks−µ,γ−µ(X∧))

for every s, γ ∈ R. For convenience, we shall formulate most of our results for the case g = 0 but
already mention here that they extend to the case of arbitrary weight g ∈ R.

Let σψ(A)(r, x, y, %, ξ, η) denote the usual homogeneous principal symbol of the operator (3.1) of
order µ. Together with (3.6) we then have the principal symbol of A,

(3.7) σ(A) := (σψ(A), σ∧(A)),

which controls the ellipticity in the edge calculus.

The operator A is called σψ-elliptic if it is elliptic as usual and if, in addition, its rescaled symbol

σ̃ψ(A)(x, y, %, ξ, η) :=
(
rµσψ(A)(r, x, y, r−1%, ξ, r−1η)

)∣∣
r=0

does not vanish for (%, ξ, η) 6= 0.

The ellipticity of A with respect to both components of (3.7) also requires the bijectivity of

(3.8) σ∧(A)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧)

for all (y, η) ∈ Ω × (Rq\{0}). However, this cannot be expected to hold true without additional
information. It is known that the σψ-ellipticity of A entails the Fredholm property of (3.8) for all
weights γ ∈ R \D, for a discrete set D = D(y) ⊂ R. The (necessary and sufficient) condition for
the Fredholm property is that the subordinate principal conormal symbol

σM (A)(y, z) =
µ∑
j=0

aj0(0, y)zj : Hs(X) −→ Hs−µ(X)

is invertible for all z with Re z = n+1
2 − γ.
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Similarly as for boundary value problems, the idea of ellipticity of edge problems (in the ‘usual’
sense, cf. [12], [3]) is to fill up the Fredholm family (3.8) by finite rank operators to a 2× 2 block
matrix family of isomorphisms

(3.9) σ∧(A)(y, η) :
Ks,γ(X∧)
⊕

Cj−
−→
Ks−µ,γ−µ(X∧)

⊕
Cj+

with σ∧(A)(y, η) as the upper left corner, where A =

(
A K

T Q

)
is a corresponding edge problem

with the homogeneous principal edge symbol (3.9). Edge symbols are then 2 × 2 block matrix
symbols

a(y, η) =

(
a(y, η) +m(y, η) 0

0 0

)
+ g(y, η) ∈ Sµ(Ω× Rq;E, Ẽ)

with E = Ks,γ(X∧) ⊕ Cj− and Ẽ = Ks−µ,γ−µ(X∧) ⊕ Cj+ , where g(y, η) is a so-called Green
symbol and m(y, η) a smoothing Mellin symbol, such that A = Op(a). For details see the appendix,
Section 8.

4. Spaces with asymptotics

4.1. Cone Sobolev spaces. Beside the spaces Ks,γ(X∧) that we defined in Definition 3.1,
we are also interested in subspaces consisting of functions that have asymptotics for r → 0. In this
connection let

(4.1) P = {(pj ,mj , Lj) : j = 0, . . . , N} for (pj ,mj , Lj) ∈ C× N× C∞(X),

with N ∈ N ∪ {∞} and each Lj is a finite dimensional subspace of C∞(X). We also assume that
pk 6= pl for k 6= l and, in case N =∞, that Re pj → −∞ for j →∞.

Definition 4.1. Let γ ∈ R and 0 < θ ∈ R ∪ {∞}. A discrete asymptotic type associated with the
weight data (γ, θ) is a set P as in (4.1) that satisfies

πCP := {pj : j = 0, . . . , N} ⊂
{
z : n+1

2 − γ − θ < Re z < n+1
2 − γ

}
.

The set of all such P we shall denote by As(γ, θ).

For P ∈ As(γ, θ) with θ <∞ we form the space

(4.2) EP (X∧) =
{
u(r, x) = ω(r)

N∑
j=0

mj∑
k=0

cjk(x)r−pj logk r : cjk ∈ Lj for all j, k
}
,

which is of finite dimension and contained in Sγ(X∧). We equip EP (X∧) with a norm by fixing an
isomorphism

EP (X∧) ∼= L0 ⊕ . . .⊕ L0︸ ︷︷ ︸
(m0+1)-times

⊕ . . .⊕ LN ⊕ . . .⊕ LN︸ ︷︷ ︸
(mN+1)-times

∼= Cι(P ),

ι(P ) =
N∑
j=0

(mj + 1) dimLj .

(4.3)

For θ <∞ and s ∈ R let us set

(4.4) Ks,γθ (X∧) = lim←−j∈N K
s,γ+θ− 1

1+j (X∧).



OPERATORS WITH SINGULAR TRACE CONDITIONS ON A MANIFOLD WITH EDGES 9

This Fréchet space is regarded as the subspace of functions which are flat of order θ with respect
to the reference weight γ.

Definition 4.2. Let s, γ ∈ R and P ∈ As(γ, θ) with θ <∞. Then we define

Ks,γP (X∧) = Ks,γθ (X∧) + EP (X∧).

Note that the sum in the previous definition is a direct sum. In the case P ∈ As(γ,∞), we set

Pk = {(p,m,L) ∈ P : n+1
2 − γ − k < Re p} ∈ As(γ, k), k ∈ N,

and then define

(4.5) Ks,γP (X∧) = lim←−k∈N K
s,γ
Pk

(X∧), SγP (X∧) = Sγ(X∧) ∩ K∞,γP (X∧).

All these spaces with asymptotics we endow with the group action {κλ}λ∈R+ from (3.3).

Note that in the previous constructions, we also allow P ∈ As(γ, θ) to be the empty set. In this case,
obviously, Ks,γP (X∧) = Ks,γθ (X∧). To unify notation, in this case we write Sγθ (X∧) := SγP (X∧).

4.2. Edge Sobolev spaces. We shall now introduce Sobolev spaces on Rq × X∧ that will
serve as the local models for corresponding Sobolev spaces on a manifold with edge.

Definition 4.3. Let E be a Hilbert space with group action {κλ}λ∈R+ . Then the so-called abstract
edge Sobolev space Ws(Rq, E), s ∈ R, is defined as the completion of S(Rq, E) with respect to the
norm

‖u‖Ws(Rq,E) =
(∫

[η]2s
∥∥κ−1

[η] û(η)
∥∥2

E
dη

) 1
2

,

where û(η) = (Fu)(η) is the Fourier transform of u.

The space Ws(Rq, E) is then a Hilbert space with scalar product

〈u, v〉Ws(Rq,E) =
∫

[η]2s
〈
κ−1

[η] û(η), κ
−1
[η] v̂(η)

〉
E
dη.

In the special case of κλ = idE for all λ > 0, the edge Sobolev space Ws(Rq, E) coincides with
Hs(Rq, E), the usual E-valued Sobolev space on Rq.
Note that replacing in the previous definition [η] by 〈η〉 yields an equivalent norm on the space
Ws(Rq, E) and that

(4.6) L := F−1 κ−1
[η] F :Ws(Rq, E) −→ Hs(Rq, E)

is an isomorphism for each real s.

Remark 4.4. If {κλ}λ∈R+ is a group action on E, there exist constants c,M ≥ 0 such that
‖κλ‖L(E) ≤ c λM for all λ > 0. From this it immediately follows that

Ws+M (Rq, E) ↪→ Hs(Rq, E) ↪→Ws−M (Rq, E).

Analogous constructions make sense for the case of a Fréchet space E = lim←−j∈N E
j with group

action, cf. the notation after Remark 2.2. In this case we have the spaces

Ws(Rq, E) = lim←−
j∈N
Ws(Rq, Ej)

and a corresponding isomorphism (4.6).
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Example 4.5. Choosing E = Ks,γ(X∧) or E = Ks,γP (X∧) with the group action from (3.3), we
obtain so-called weighted edge Sobolev spaces (with asymptotics)

Ws,γ(Rq ×X∧) :=Ws(Rq,Ks,γ(X∧)), Ws,γ
P (Rq ×X∧) :=Ws(Rq,Ks,γP (X∧)).

Remark 4.6. We can also form Ws(Rq,Ks,γ;g(X∧)) with the spaces Ks,γ;g(X∧) and the corre-
sponding group action from Remark 3.2. In particular, for the case g = s− γ we obtain the spaces

W s,γ(Rq ×X∧) :=Ws(Rq,Ks,γ(X∧)).

It then can be proved (cf. [16], [6]) that, for any cut-off function ω(r) ∈ C∞(R+),

ωW s,γ(Rq ×X∧) = rγ ωW s,0(Rq ×X∧).

In our calculus we assume from now on, for convenience, that g = 0. However, note that the
(analogous) results remain true for arbitrary g, especially, for the case g = s− γ.
For purposes below we recall a continuity result of operators between abstract edge Sobolev spaces.

Proposition 4.7. Let E and Ẽ be spaces endowed with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ ,
respectively. Moreover, let a(y, η) ∈ Sµ(Ω×Rq;E, Ẽ) for Ω = Rq be independent of y for large |y|.
Then

Op(a) : S(Rq, E) −→ S(Rq, Ẽ),

and Op(a) extends for each s ∈ R to a continuous operator

Op(a) :Ws(Rq, E) −→Ws−µ(Rq, Ẽ).

If E is the direct sum E = E0 + E1 of two closed subspaces, where {κλ}λ∈R+ restricts to a group
action on E0 but E1 is not necessarily invariant under the group action, we obtain by (4.6)

(4.7) Ws(Rq, E) =Ws(Rq, E0) + Vs(Rq, E1), Vs(Rq, E1) := L−1Hs(Rq, E1).

This is also a direct decomposition into closed subspaces. If E0 is orthogonal to E1, (4.7) is also
an orthogonal decomposition. In fact, if b1 is the (orthogonal) projection in E onto E1, then

(4.8) P1 := F−1
η→y(κ[η] b1 κ

−1
[η] )F = Op(p1), p1(η) = κ[η] b1 κ

−1
[η] ,

is the (orthogonal) projection onto Vs(Rq, E1) along Ws(Rq, E0).

Example 4.8. Let 0 < σ <∞ and S ∈ As(γ − σ, σ) a finite asymptotic type. Then E1 := ES(X∧)
is not invariant under κλ from (3.3). Taking either E0 = Ks,γ(X∧) or E0 = Ks,γP (X∧) and
E = E0 + E1, the above construction yields spaces

Ws,γ(Rq ×X∧)S =Ws(Rq,Ks,γ(X∧)) + Vs(Rq, ES(X∧)),

Ws,γ
P (Rq ×X∧)S =Ws(Rq,Ks,γP (X∧)) + Vs(Rq, ES(X∧)).

(4.9)

Since ES(X∧) ⊂ K∞,γ−σ(X∧), these are both subspaces of Ws,γ−σ(Rq ×X∧).

In the situation of Example 4.8 we shall derive in Proposition 5.11 more precise information about
the structure of the corresponding projection P1 from (4.8) and its symbol p1(η).

Remark 4.9. In our formalism we also want to admit the choice σ = 0. Then S is the empty set
and we simply have Ws,γ

(P )(R
q ×X∧)S =Ws,γ

(P )(R
q ×X∧).
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5. The class of edge symbols of non-trivial type

The aim of the present section is to introduce our new calculus with singular trace and Green
operators, locally on a stretched wedge Ω ×X∧. The global situation of a manifold with edges is
studied in Section 6.

Throughout the section we fix a weight γ ∈ R, real numbers µ and σ, τ ≥ 0, and endow C with
the trivial group action, κλ ≡ 1 for all λ > 0, while all spaces on X∧ carry the group action from
(3.3). Also, we fix asymptotic types

S = {(pj ,mj , Lj)}j=0,...,N , πCS ⊂
{
z : n+1

2 − γ < Re z < n+1
2 − (γ − σ)

}
,(5.1)

T = {(p′j ,m′
j , L

′
j)}j=0,...,N ′ , πCT ⊂

{
z : n+1

2 − (γ − µ) < Re z < n+1
2 − (γ − µ− τ)

}
.(5.2)

We write

Ks,γ(X∧)S := Ks,γ(X∧) + ES(X∧),

and set, for each η ∈ Rq,

(5.3) p1,S(η) = κ[η] bS κ
−1
[η] , p0,S(η) = 1− p1,S(η),

with bS being the projection inKs,γ(X∧)S on ES(X∧) alongKs,γ(X∧), cf. (4.8). Analogous notation
we use for spaces and projections associated with T and γ − µ.

Maybe it would be more precise to include in the notation of p0,S(η) and p1,S(η) the smoothness-
parameter s ∈ R. However, we shall not do so, since we may consider bS as the restriction to
Ks,γ(X∧)S of the map u + v 7→ v : K−∞,γ(X∧) ⊕ ES(X∧) → ES(X∧). Hence pj,S(η) for small s
restricts to the corresponding pj,S(η) for larger s.

5.1. Trace and potential symbols. We begin with the intoduction and analysis of so-called
singular trace symbols.

Definition 5.1. A singular trace symbol of order ν (with respect to S and the weight datum γ)
is an element

t1(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧)S ,C)

with the property that t1(y, η) vanishes on Ks,γ(X∧) for all (y, η).

Note that when t1(y, η) vanishes on Ks,γ(X∧) for all (y, η), then also the homogeneous components
t1,(ν−l)(y, η) vanish on Ks,γ(X∧) for all l ∈ N. In fact, we have

t1,(ν)(y, η) = lim
λ→∞

λ−νt1(y, λη)κλ

which yields the result for l = 0. In a similar manner we can argue for arbitrary l ∈ N.

Singular trace symbols can be characterised in a more explicit way. But before we derive this
description (cf. Proposition 5.6, below), let us first illustrate how the standard trace symbols of
positive type in Boutet de Monvel’s algebra can be interpreted in this context.

Example 5.2. Consider the case X∧ = R+ (i.e., dimX = 0) such that Ω × R+ 3 (y, r) may be
interpreted as the local model of a smooth manifold with boundary. It is known that for any γ > 1

2

with γ /∈ 1
2 + N we have the identity

Hγ(R+) = Kγ,γ(R+) + ES(R+), S = {(j, 0) : j = 0, . . . , [γ − 1
2 ]};



12 D. KAPANADZE, B.-W. SCHULZE, AND J. SEILER

here we write [t] = max{m ∈ Z : m ≤ t} if t is a real number. ES(R+) consists of all finite Taylor
polynomials

u(r) = ω(r)
[γ− 1

2 ]∑
j=0

cj r
j , cj ∈ C,

and has dimension [s− 1
2 ] + 1. Let us now fix 0 ≤ k ≤ [γ − 1

2 ] and define

t1 : Hγ(R+) −→ C, t1u =
dk

drk

∣∣∣
r=0

u.

Obviously, t1 vanishes on Kγ,γ(R+). We consider t1 as a symbol independent of (y, η). It then
satisfies the homogeneity relation

t1u = λk+
1
2 t1κ

−1
λ u for all λ > 0,

which shows that t1 ∈ S
k+ 1

2
cl (Ω× Rq;Kγ,γ(R+)S ,C). Even more,

(5.4) t1 ∈ ∩
s∈R

S
k+ 1

2
cl (Rq;Ks,γ(R+)S ,C),

by extending (for s < γ) t1 by vanishing on Ks,γ(R+). Thus we are in the above situation, here for
σ = γ.

Let us assume for the moment that the asymptotic type S only consists of a single triple (p,m,L)

with p ∈ C satisfying Re p < n+1
2 − (γ − σ). Then ES(X∧) =

{
ω(r) r−p

m∑
j=0

ϕj(x) logj r : ϕj ∈ L
}

.

We shall now make use of the Mellin transform. It is defined by

(Mv)(z) =
∫ ∞

0

rzv(r)
dr

r

for v ∈ C∞0 (R+) and can be extended to various other spaces (for the basic properties of the Mellin
transform we refer to [3]). For example, if ω1 is an arbitrary cut-off function then

(5.5) Mω1 : Ks,γ(X∧)S −→ A
({

Re z > n+1
2 − γ

}
\{p},Hs(X)

)
,

where A(U,F ) denotes the holomorphic functions on U with values in F . In fact, if u ∈ Ks,γ(X∧)S ,
then v := M(ω1u) has a pole in p of multiplicitym+1. More precisely, if u(r, x) = ω(r) r−pϕ(x) logk r,
then the principal part of v is (−1)kk!ϕ(x)(z − p)−(k+1). This allows us to compose (5.5) with the
map

(5.6) Bp,k : v 7→ 1
2πi

∫
|z−p|<ε

(z − p)kv(z) dz, 0 ≤ k ≤ m

where ε > 0 is chosen sufficiently small. The map Bp,k computes the Laurent coefficient of v at
(z − p)−(k+1) which belongs to the space L. Now the following observation is obvious:

Lemma 5.3. Let S be as in (5.1). Then any function t(y, η) ∈ C∞(Ω×Rq,L(Ks,γ(X∧)S ,C)) with
t(y, η)|Ks,γ(X∧) ≡ 0 has a unique representation as

t(y, η) =
N∑
j=0

mj∑
k=0

djk(y, η) ◦Bpj ,k ◦Mω1

with djk(y, η) ∈ C∞(Ω×Rq, L∗j ), where L∗j denotes the dual space of Lj. In fact, given t(y, η), then

djk(y, η)ϕ =
(−1)k

k!
t(y, η)

(
ω(r) r−pj ϕ logk r

)
, ϕ ∈ Lj .
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Of course, the previous lemma has a corresponding formulation if we replace the parameter-space
Ω×Rq by another one. A direct consequence of Lemma 5.3 is that singular trace symbols of order
−∞ associated with the asymptotic type S are precisely of the form

(5.7) t(y, η) =
N∑
j=0

mj∑
k=0

djk(y, η)
( 1

2πi

∫
|z−pj |=ε

(z − pj)k[M(ω1u)](z) dz
)

with djk(y, η) ∈ C∞(Ω) ⊗̂π S(Rq, L∗j ). Moreover, if t1(y, η) is as in Definition 5.1 and t1,(α)(y, η) is
a homogeneous component, then

t1,(α)(y, η)u = |η|α−
n+1

2

M∑
j=0

mj∑
k=0

d
(α)
jk (y, η|η| )

( 1
2πi

∫
|z−pj |=ε

(z − pj)k
[
Mr→z(ω1u)( r

|η| )
]
(z) dz

)

= |η|α−
n+1

2

M∑
j=0

mj∑
k=0

d
(α)
jk (y, η|η| )

( 1
2πi

∫
|z−p|=ε

|η|z(z − pj)k[M(ω1u)](z) dz
)(5.8)

for functions d(α)
jk (y, η) ∈ C∞(Ω×Sq−1, L∗j ), where Sq−1 denotes the unit-sphere in Rq. This follows

by using the homogeneity relation

t1,(α)(y, η) = |η|α t1,(α)(y,
η
|η| )κ

−1
|η|

together with the formula from Lemma 5.3 in the version for the unit-sphere. In fact, it is also
true that if we define t1,(α)(y, η) by (5.8) with arbitrary d

(α)
jk (y, η) ∈ C∞(Ω × Sq−1, L∗j ), then we

obtain that t1,(α)(y, η) is a smooth function on Ω × (Rq \ {0}) with values in L(Ks,γ(X∧)S ,C)
that vanishes on Ks,γ(X∧) and is twisted homogeneous of order α. The homogeneity is clear, the
smoothness follows from the next result.

Lemma 5.4. Let S be as in (5.1) and t : Ω×(Rq\{0})→ L(Ks,γ(X∧)S ,C) such that t(y, η)|Ks,γ(X∧) ≡
0. Then t(y, η) is a smooth function if and only if so is s(y, η) = t(y, η)κ−1

|η| .

Proof. Let bS : Ks,γ(X∧)S → ES(X∧) be the canonical projection along Ks,γ(X∧). By the
vanishing condition and the κλ-invariance of Ks,γ(X∧) it is immediately seen that

t(y, η) = t(y, η)κ−1
|η| bS κ|η| = s(y, η)(bS κ|η|), s(y, η) = t(y, η)(bS κ−1

|η| ).

So it remains to show that bSκλ ∈ L(ES(X∧)) depends smoothly on λ > 0, since from this it follows
its smoothness as a function with values in L(Ks,γ(X∧)S). However, if u(r, x) = ω(r)r−pϕ(x) logj r,
then

(5.9) (bSκλu)(r, x) = ω(r)(λr)−pϕ(x) logj(λr) = ω(r) r−p
j∑
l=0

cl(λ)ϕ(x) logl r

with cl(λ) =
(
j
l

)
logj−l λ. This at once implies the requested smoothness. �

There is an obvious analogous version of Lemma 5.4 by replacing Ω × (Rq \ {0}) by Ω × Rq and
κ|η| by κ[η] or κ〈η〉.

Lemma 5.5. Let S be as in (5.1) and t ∈
⋂
s∈R L(Ks,γ(X∧)S ,C) such that t vanishes on Ks,γ(X∧)

for each s. Then

c−1
ε 〈η〉−ε ‖t‖L(Ks,γ(X∧)S ,C) ≤ 〈η〉

n+1
2 −γ+σ ‖t κ〈η〉‖L(Ks,γ(X∧)S ,C) ≤ cε〈η〉ε ‖t‖L(Ks,γ(X∧)S ,C)

with both ε > 0 and cε ≥ 1 neither depending on s ∈ R, η ∈ Rq nor on t with the required properties.



14 D. KAPANADZE, B.-W. SCHULZE, AND J. SEILER

Proof. Arguing as in the proof of Lemma 5.4, we get

‖t‖L(Ks,γ(X∧)S ,C) ≤ ‖t κ〈η〉‖L(Ks,γ(X∧)S)‖bS κ−1
〈η〉‖L(ES(X∧))

and ‖t κ〈η〉‖L(Ks,γ(X∧)S ,C) ≤ ‖t‖L(Ks,γ(X∧)S ,C)‖bS κ〈η〉‖L(ES(X∧)). For the norm estimate of bS κλ
we have to consider terms as in (5.9) and to note that

|λ−p logk λ| ≤ ck,ε max(λε, λ−ε)λ−Re p for all λ > 0,

where we choose ε so small that Re p+ ε ≤ n+1
2 − γ + σ. �

The above observations now lead to the announced description of singular trace symbols. For this,
let χ(η) be a zero excision function on Rq.

Proposition 5.6. A function t1(y, η) ∈ C∞(Ω× Rq,L(Ks,γ(X∧)S ,C)) is a singular trace symbol
of order ν in the sense of Definition 5.1, if and only if there exists a sequence of homogeneous
components t1,(ν−l), l ∈ N, of the form (5.8) (with α replaced by ν − l) such that for each given

M ∈ N there exists an L ∈ N such that the difference t1(y, η)−
L∑
l=0

χ(η)t1,(ν−l)(y, η) is of the form

(5.7) with all djk(y, η) belonging to S−M (Ω× Rq).

Before defining our new class of trace symbols let us recall the structure of a trace symbol from
the standard edge algebra: It is a symbol

t0(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧),C),

such that the (pointwise) formal adjoint symbol satisfies, for some ε > 0,

t0(y, η)∗ ∈ Sνcl(Ω× Rq; C,S−γε (X∧)).

Definition 5.7. A trace symbol of order ν in the local edge calculus on X∧ × Ω (with respect to
S and the weight-datum γ) is an operator family t(y, η) such that

t(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧)S ,C),

and t(y, η) has a representation

t(y, η) = t0(y, η) p0,S(η) + t1(y, η)

with a ν-th order singular trace symbol t1(y, η) and a t0(y, η) being a trace symbol in the standard
edge symbol algebra as described above. If t1(y, η) ≡ 0, we call t(y, η) also a regular trace symbol.

Theorem 5.8. Let t(y, η) be a trace symbol as in Definition 5.7 for Ω = Rq, and let t(y, η) be
independent of y for large |y|. Then Op(t) induces continuous operators

(5.10) Op(t) :Ws(Rq,Ks,γ(X∧)S)→ Hs−ν(Rq), s ∈ R,

and we have

(5.11) Op(t1)u = 0 for all u ∈ Ws(Rq,Ks,γ(X∧)).

Moreover, the singular trace operators are localised at the edges (in contrast to the regular trace
operators), i.e., if v ∈ Ws(Ω,Ks,γ(X∧)S) vanishes in a neighbourhood of r = 0 then Op(t1)v = 0.
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Proof. Property (5.10) follows from Proposition 5.11 (see below) and Proposition 4.7, noting
that Ws(Rq,C) = Hs(Rq). The relation (5.11) holds true, since t1(y, η)û(η) ≡ 0 for any u ∈
S(Rq,Ks,γ(X∧)). For the latter statement note that the vanishing of v near r = 0 implies that, in
fact, v ∈ Ws(Ω,Ks,γ(X∧)). Then apply (5.11). �

We finish this section by defining potential symbols. For their definition it will be convenient to
use the notation

Sγ−µε (X∧)T = Sγ−µε (X∧)⊕ ET (X∧), ε > 0.(5.12)

Definition 5.9. A potential symbol of order ν (with respect to T and the weight-datum γ − µ) is
a symbol

(5.13) k(y, η) ∈ Sνcl(Ω× Rq; C,Sγ−µε (X∧)T )

for some ε = ε(k) > 0.

If we write k(y, η) = p0,T (η)k(y, η) + p1,T (η)k(y, η) then the first summand is a potential symbol
from the usual edge-algebra associated with the weight-datum γ − µ.

Also potential symbols can be characterized in a more explicit way. In fact, symbols (5.13) are
precisely those of the form

C 3 c 7→ [η]
n+1

2 k̃(y, η; r[η], x) c ∈ Sγ−µε (X∧)T

with a symbol kernel
k̃(y, η; r, x) ∈ Sνcl(Ω× Rq) ⊗̂π Sγ−µε (X∧

(r,x))T .

5.2. Parameter-dependent families of projections. We now investigate more deeply the
pseudodifferential structure of the family of projections p1,S(η), cf. (5.3).

Let us define, for 0 ≤ j ≤ N and 0 ≤ k ≤ mj , zero order symbols by

tjk(η)u = [η]−
n+1

2
1

2πi

∫
|z−pj |=ε

(z − pj)kM(ω1u(r/[η]))(z) dz.

Using the unitary isomorphism ES(X∧) ∼= Cι(S), see (4.3), this gives rise to a map

t(η) = tS(η) := (tjk(η)) 0≤j≤N,
0≤k≤mj

: Ks,γ(X∧)S −→ Cι(S).

We have t(λη) = t(η)κ−1
λ for λ ≥ 1, |η| ≥ 1, hence t(η) ∈ S0

cl(Rq;Ks,γ(X∧)S ,Cι(S)) (in fact, each
component of t(η) is a singular trace symbol). Moreover, let us define a (system of) potential
symbols

k(η) = kS(η) : Cι(S) −→ Ks,γ(X∧)S

by setting, for each c = (cjk) 0≤j≤N,
0≤k≤mj

∈ Cι(S),

k(η)c = [η]
n+1

2 ω(r[η])
N∑
j=0

mj∑
k=0

cjk (r[η])−pj logk(r[η])

(on the right-hand side we have identified cjk with an element in Lj , using the identification (4.3)).
We then have k(λη) = κλk(η) for λ ≥ 1, |η| ≥ 1 which entails k(η) ∈ S0

cl(Rq; Cι(S),Ks,γ(X∧)S).

From the construction if follows that t(η)k(η) = idCι(S) for all η ∈ Rq, and hence

(5.14) k(η)t(η) : Ks,γ(X∧)S −→ Ks,γ(X∧)S
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is a family of continuous projections.

Lemma 5.10. If k(η) and t(η) are constructed as above, then

(5.15) p0,S(η) = 1− k(η) t(η) for all η ∈ Rq.

Proof. By conjugation with κ[η] the claim is equivalent to showing that

bS = (κ−1
[η] k(η))(t(η)κ[η])

for each η. However, this is true, since the first factor on the right-hand side is the map

c = (cjk) 7→ ω(r)
N∑
j=0

mj∑
k=0

cjk r
−pj logk r,

while the second factor equals (tjk) with tjku =
1

2πi

∫
|z−pj |=ε

(z − pj)kM(ω1u)(z) dz. �

By straightforward calculation, for any u ∈ Ks,γ(X∧),

(5.16) p0,S(η)
(
u+ ω(r)

N∑
j=0

mj∑
k=0

cjk r
−pj logk r

)
= u+

(
ω(r)− ω(r[η])

) M∑
j=0

mj∑
k=0

cjk r
−pj logk r.

From this formula and by Lemma 5.10 we deduce the following:

Proposition 5.11. Let s ∈ R. Then p0,S(η) ∈ S0
cl(Rq;Ks,γ(X∧)S ,Ks,γ(X∧)) and

Op(p0,S) :Ws(Rq,Ks,γ(X∧)S) −→Ws(Rq,Ks,γ(X∧)S)

is the projection onto Ws(Rq,Ks,γ(X∧)) along Vs(Rq, ES(X∧)). Moreover,

(5.17) Dα
η p0,S(η) ∈ S−|α|cl (Rq;Ks,γ(X∧)S ,S∞(X∧)) for all |α| ≥ 1

(cf. (3.4)), and Dα
η p0,S(η) vanishes on Ks,γ(X∧) for each η.

In the terminology introduced in the next section, (5.17) means that Dα
η p0,S(η) is a singular Green

symbol of order −|α| whenever |α| ≥ 1.

5.3. Regular and singular Green symbols. Besides trace and potential symbols there is
another category of so-called Green symbols needed for our new calculus. They are build up from
regular and singular Green symbols.

Definition 5.12. A singular Green symbol of order ν (with respect to S, T , and the weight-datum
(γ, γ − µ, θ)) is a symbol

g1(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧)S ,Sγ−µε (X∧)T )

(see (5.12) for the notation) that vanishes on Ks,γ(X∧) for all (y, η), and where ε = ε(g1) > 0.

Along the lines of the material from Section 5.1, singular Green symbols have a more explicit
representation: If g1(y, η) is as in Definition 5.12, all homogeneous components g1,(ν−j), j ∈ N,
pointwise vanish on Ks,γ(X∧). If S is as in (5.1) then

g1,(ν−j)(y, η) = |η|ν−j
N∑
j=0

mj∑
k=0

κ|η| ◦ ejk(y, η|η| ) ◦Bpj ,k ◦Mγ−σ−n
2
ω1 ◦ κ−1

|η|

: Ks,γ(X∧)S → Sγ−µε (X∧)T ,
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where Bp,k is as in the formula (5.6) and with uniquely determined functions

(5.18) ejk(y, η) ∈ C∞(Ω× Sq−1,L(Lj ,Sγ−µε (X∧)T )).

Identifying ejk(y, η) with an L∗j -valued function

l∗jk(y, η; r, x) ∈ C∞(Ω× Sq−1) ⊗̂π Sγ−µε (X∧)T ⊗̂π L∗j ,

we obtain

[g1,(ν−j)(y, η)u](r, x) =

|η|
n+1

2 +ν−j
N∑
j=0

mj∑
k=0

l∗jk(y,
η
|η| ; r|η|, x)

( 1
2πi

∫
|z−pj |=ε

(z − pj)k
[
Mr′→z(κ−1

|η|ω1u)
]
(z)dz

)
.

(5.19)

In other words, each homogeneous component of a singular Green symbol has a unique repre-
sentation as a finite linear combination of summands that are the (pointwise) composition of
homogeneous components of a singular trace symbol and a potential symbol.

Definition 5.13. A Green symbol of order ν (with respect to S, T , and the weight-datum (γ, γ −
µ, θ)) in the local edge calculus on X∧ × Ω is any operator function

g(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧)S ,K∞,γ−µ(X∧)T )

which has a representation

g(y, η) = g0(y, η) p0,S(η) + g1(y, η),

where g1(y, η) is a singular Green symbol and, for some ε = ε(g0) > 0,

g0(y, η) ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,γ(X∧),Sγ−µε (X∧)T ),

g0(y, η)∗ ∈ ∩
s∈R

Sνcl(Ω× Rq;Ks,−γ+µ+τ (X∧),S−γε (X∧)),

where ∗ refers to the pointwise adjoint with respect to the K0,0(X∧) scalar product. If g1(y, η) ≡ 0,
we call g(y, η) a regular Green symbol.

Note that if g0(y, η) is as in the previous definition, then

p0,T (η) g0(y, η) ∈ RνG(Ω× Rq; (γ, γ − µ))

is a Green symbol from the standard edge algebra, cf. Section 8.

Example 5.14. The pointwise composition

g(y, η) := k(y, η) t(y, η)

of a ν0-th order trace symbol and a ν1-th order potential symbol in the sense of Definitions 5.7 and
5.9, respectively, is a Green symbol of order ν = ν0 + ν1 in the sense of the Definition 5.13.

We shall also condsider vector-valued variants of trace, potential, and Green symbols, i.e.

t(y, η) : Ks,γ(X∧,Ck) −→ Cj+ ,

k(y, η) : Cj− −→ Ks−µ,γ−µ(X∧,Cl)T ,

g(y, η) : Ks,γ(X∧,Ck)S −→ Ks−µ,γ−µ(X∧,Cl)T
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where Ks,γ(X∧,Ck) =
k
⊕
j=1
Ks,γ(X∧), and analogously for the other spaces. This is achieved by

considering matrices of corresponding size, whose entries are all trace, potential, or Green symbols
of same order and with respect to the same data.

Definition 5.15. Let 1 ≤ k, l ∈ N and j+, j− ∈ N (possibly also 0). Then

RνG(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T

denotes the space of all (2× 2)-block matrix symbols

(5.20) g(y, η) =

(
g11(y, η) g12(y, η)
g21(y, η) g22(y, η)

)
:
Ks,γ(X∧,Ck)S

⊕
Cj−

−→
Ks−µ,γ−µ(X∧,Cl)T

⊕
Cj+

,

where g11(y, η) is an (l× k)-matrix of ν-th order Green symbols, g21(y, η) is an (j+ × k)-matrix of
ν-th order trace symbols, g12(y, η) is an (j+ × l)-matrix of ν-th order potential symbols (all with
respect to S, T and the weight-datum (γ, γ − µ), and g22(y, η) is an (j+ × j−)-matrix of scalar
symbols from Sνcl(Ω× Rq).

To have a convenient terminology at hand, we shall call symbols (5.20) again Green symbols. Note
that they are particular operator-valued symbols

(5.21) g(y, η) ∈ Sνcl(Ω× Rq;Ks,γ(X∧,Ck)S ⊕ Cj− ,Sγ−µ(X∧,Cl)T ⊕ Cj+).

5.4. The full symbol class and its calculus. For the following considerations recall that
Ks−µ,γ−µ(X∧) is a subspace of Ks−µ,γ−µ(X∧)T .

Definition 5.16. Let ν ∈ R with µ− ν ∈ N. The space

Rν(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T

consists of all symbols a(y, η) of the form

(5.22) a(y, η) =

(
a0(y, η) p0,S(η) 0

0 0

)
+ g(y, η) :

Ks,γ(X∧,Ck)S
⊕

Cj−
−→
Ks−µ,γ−µ(X∧,Cl)T

⊕
Cj+

with an arbitrary standard edge symbol a0(y, η) ∈ Rν(Ω×Rq; (γ, γ − µ), (k, l)) (cf. Section 8), and
some Green symbol g(y, η) ∈ RνG(Ω× Rq; (γ, γ − µ), (k, l, j−, j+))S,T .

Observe that then, for every s ∈ R,

Rν(Ω× Rq;(γ, γ − µ), (k, l; j−, j+))S,T ⊂

⊂ Sν(Ω× Rq;Ks,γ(X∧,Ck)S ⊕ Cj− ,Ks−ν,γ−µ(X∧,Cl)T ⊕ Cj+).

Thus if Ω = Rq and a(y, η) as in (5.22) is independent of y for large |y|, then it induces continuous
operators

Op(a) :
Ws(Rq,Ks,γ(X∧,Ck)S)

⊕
Hs(Rq,Cj−)

−→
Ws−ν(Rq,Ks−ν,γ−µ(X∧,Cl)T )

⊕
Hs−ν(Rq,Cj+)

, s ∈ R.
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Definition 5.17. For a(y, η) ∈ Rµ(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T we set

σ∧(a)(y, η) =

(
σ∧(a0)(y, η)σ∧(p0,S)(η) 0

0 0

)
+ σ∧(g)(y, η),

where σ∧(a0) is the standard principal edge symbol (cf. Section 8) and σ∧(p0,S)(η) := 1−κ|η|bSκ−1
|η| .

Moreover, σ∧(g)(y, η) denotes the homogeneous principal symbol of g(y, η) as a classical symbol of
order µ, cf. (5.21). We call σ∧(a)(y, η) the principal edge symbol of a(y, η).

From this definition if follows that

σ∧(a)(y, λη) = λµκλ σ∧(a)(y, η)κ−1
λ

as a family of operators Ks,γ(X∧,Ck)S → Ks−µ,γ−µ(X∧,Cl)T with the usual group action defined
by (κλu)(r, x) = λ

n+1
2 u(λr, x) for λ ∈ R+.

Definition 5.18. Let a(y, η) ∈ Rµ(Ω×Rq; (γ, γ−µ), (k, l; j−, j+))S,T be as in (5.22) (with ν = µ).
Then we define the conormal symbol of a as

σM (a)(y, z) = σM (a0)(y, z),

where σM (a0) denotes the standard conormal symbol, cf. Section 8.

Proposition 5.19. If a(y, η) ∈ Rν(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T then

∂αη ∂
β
ya(y, η) ∈ Rν−|α|(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T

for any multi-indices α, β ∈ Nq.

Theorem 5.20. For j ∈ N let aj(y, η) ∈ Rν−k(Ω × Rq; (γ, γ − µ), (k, l; j−, j+))S,T such that the
ε-weights involved in the Green symbol parts of each aj are independent of j. Then there exists a
symbol a(y, η) ∈ Rν(Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T such that, for all N ∈ N,

a(y, η)−
N−1∑
j=0

aj(y, η) ∈ Rν−N (Ω× Rq; (γ, γ − µ), (k, l; j−, j+))S,T .

Proposition 5.21. The pointwise composition of a(y, η) ∈ Rν(Ω×Rq; (γ, γ−µ), (k, l̃; j−, j̃+))S,R
and ã(y, η) ∈ Reν(Ω× Rq; (γ − µ, γ − µ− µ̃), (l̃, l; j̃+, j+))R,T yields a symbol

ã(y, η)a(y, η) ∈ Rν+eν(Ω× Rq; (γ, γ − µ− µ̃), (k, l; j−, j+))S,T .

Theorem 5.22. Let the notation be as in the previous Proposition 5.21 with Ω = Rq and both
ã(y, η) and a(y, η) be independent of y for large |y|. Then there exists a symbol

(ã#a)(y, η) ∈ Rν+eν(Ω× Rq; (γ, γ − µ− µ̃), (k, l; j−, j+))S,T ,

the so-called Leibniz-product of ã and a, such that Op(ã)Op(a) = Op(ã#a). If ν = µ and ν̃ = µ̃

then

σ∧(ã#a)(y, η) = σ∧(ã)(y, η)σ∧(a)(y, η), σM (ã#a)(y, z) = (TµσM (ã))(y, z)σM (a)(y, z),

where T σ acts on functions by shifting the argument, (T σf)(z) = f(z + σ).

The proofs of Propositions 5.19, 5.21 and Theorems 5.20, 5.22 are somewhat lengthy and laborious,
nevertheless elementary in the sense that they only rely on the correponding properties of standard
edge symbols and general operator-valued symbols (and (5.17) for Proposition 5.19). Therefore we
omit these proofs.
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6. Operators of non-trivial type on manifolds with edges

Let us begin this section by introducing a useful notation that we shall use frequently throughout
the sequel: If u, v are real-valued, continuous functions on a topological space, we shall write u ≺ v
if v ≡ 1 on an open neighborhood containing the support of u.

6.1. Manifolds with edges and Sobolev spaces. The analysis of our classes of edge-
pseudodifferential operators takes place on (the interior of) a smooth manifold with boundary M,
that near the boundary has the structure of a fibre bundle over a smooth closed base space and
where the fibre is a cone over a smooth closed manifold (both base space and cross section of the
cone without boundary). For simplicity, we shall assume in this paper that this bundle is trivial.
In case of trivial cross section (i.e., a point) we obtain a usual manifold with smooth boundary.

More precisely, there exists a homeomorphism of a neighborhood V of ∂M to Y × [0, 1)×X, where
X and Y are smooth closed manifolds, that restricts to a diffeomorphism between V \ ∂M and
Y × (0, 1)×X. This gives rise to a splitting of coordinates that we shall keep fixed from now on.
By identifying points (y, 0, x) and (y, 0, x′) for any x, x′ ∈ X, we may obtain from M a topological
space M which is regarded as a manifold with edge Y and model-cone X∧. In order to emphasise
this geometric structure, we shall often write M instead of M.

We shall now define weighted edge Sobolev spaces with and without asymptotics. To this end we
assume that the asymptotic type S is as in (5.1) but, additionally satisfies the so-called shadow
condition: If (p,m,L) ∈ S and Re p− 1 ≥ n+1

2 − γ then there exists (p̃, m̃, L̃) ∈ S with p̃ = p− 1,
m ≤ m̃ and L ⊂ L̃. This property ensures, in particular, that the operator of multiplication by
any function ϕ ∈ S(R+) maps Ks,γ(X∧)S into itself.

Let us fix a covering of Y by coordinate systems χj : Uj ⊂ Y → Ωj ⊂ Rq, j = 1, . . . , N , and a
system of functions ϕj , ψj ∈ C∞0 (Uj) such that ϕ1, . . . , ϕN form a partition of unity, and ϕj ≺ ψj
for each 1 ≤ j ≤ N . Moreover, ω ∈ C∞0 ([0, 1[) is a cut-off function, and we consider (1 − ω) as
a function on M that vanishes near the boundary as well as a function on the double 2M (by
extension by 0).

Definition 6.1. The space Ws,γ;g(M) for g, s, γ ∈ R consists of all distributions u on M \ ∂M
such that (1− ω)u ∈ Hs(2M) and

(6.1) χj∗(ϕjωu) ∈ Ws(Rq,Ks,γ;g(X∧)) for all 1 ≤ j ≤ N

(cf. Remark 4.6), where χj∗ denotes the push-forward of distributions from Uj × (0, 1) × X to
Ωj × (0, 1)×X under the map (y, r, x) 7→ (χj(y), r, x).

In an analogous manner we define Ws,γ;g(M)S and subspaces Ws,γ;g
ε (M)(S) for some ε > 0.

Up to equivalence of norms, the previous definitions are independent of the involved data (cut-
off function, partition of unity, etc.), see Theorems 4 and 19 in Section 3.2.5 of [11]. Clearly
Definition 6.1 has a straightforward extension to sections of vector-bundles E over M , yielding a
scaleWs,γ;g(M,E). For simplicity of the presentation, however, we shall restrict ourselves to trivial
bundles, i.e.,

Ws,γ;g(M,Ck)(S) =
k
⊕
j=1
Ws,γ;g(M)(S)

and analogously subspaces with asymptotics Q ∈ As(γ, θ).
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In the following, we again restrict ourselves to the case g = 0, having in mind that the (analogous)
results remain valid also for arbitrary g, in particular, for g = s− γ.

6.2. Global projections in edge Sobolev spaces with asymptotics. In the construction
of our new symbol algebra we made often use of the canonical splitting

Ws(Rq,Ks,γ(X∧,Ck)S) =Ws(Rq,Ks,γ(X∧,Ck))⊕ Vs(Rq, ES(X∧,Ck))

and the corresponding projection Op(p0,S). Passing to the manifold with edges W , we canonically
can speak ofWs,γ(M,Ck)S and its subspaceWs,γ(M,Ck), but there is not such a canonical choice
of a complementing space. To overcome this problem, we shall prove in this subsection the following
Theorem 6.2.

Theorem 6.2. There exists an operator P0,S = P0,S(k) having the following properties, simulta-
neously for all s ∈ R:

a) P0,S ∈ L(Ws,γ(M,Ck)S) is a projection onto Ws,γ(M,Ck).

Moreover, P0,S is a pseudodifferential operator in the following sense:

b) If ϕ,ψ ∈ C∞(M) are located in a chart U×[0, 1)×X with coordinate map χ : U → Ω ⊂ Rq,
then

ϕP0,S ψ = ϕχ∗Op(p0,S + r)ψ,

where p0,S(η) is as in (5.3) (with [η] now referring to the local expression for a smoothed
norm function on the cotangent bundle of the edge Y ),

r(y, η) ∈ S−1
cl (Ω× Rq;Ks,γ(X∧,Ck)S ,S∞(X∧,Ck)),

and r(y, η) ≡ 0 on Ks,γ(X∧,Ck).
c) If ω1, ω2 ∈ C∞([0, 1[) are cut-off functions with ω2 ≺ ω1 then

(1− ω1)P0,S ω2, ω2 P0,S (1− ω1) : Ws,γ(M,Ck)S −→W∞,∞(M,Ck),

both vanishing on Ws,γ(M,Ck).
d) If ω1, ω2 ∈ C∞([0, 1[) are cut-off functions and ϕ1, ϕ2 ∈ C∞(Y ) have disjoint support,

then

(ω1ϕ1)P0,S (ω2ϕ2) : Ws,γ(M,Ck)S −→W∞,∞(M,Ck),

vanishing on Ws,γ(M,Ck).

In b), χ∗ denotes the operator pull-back under the map (y, r, x) 7→ (χ(y), r, x).

By virtue of property a), we have that P0,S ϕ = ϕ whenever ϕ ∈ C∞(M) vanishes to infinite order
at the boundary (respectively to sufficiently high order, depending on the asymptotic type S).

Property b) of the previous theorem says that locally, near the edge, P0,S coincides with Op(p0,S),
cf. Proposition 5.11, modulo a singular Green operator of order −1, that additionally generates
infinite flatness. In particular, the local edge symbols σ∧(p0,S)(y, η) globally lead to a vector-bundle
homomorphism

(6.2) σ∧(P0,S) : (T ∗Y \ 0)×Ks,γ(X∧,Ck)S −→ (T ∗Y \ 0)×Ks,γ(X∧,Ck)S .
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Note that different choices of projections, say P0,S and P̃0,S , having the properties stated in the
theorem give rise to the same principal edge symbol (6.2). Moreover,

P0,S − P̃0,S : Ws,γ(M,Ck)S −→Ws−1,∞(M,Ck),

vanishing on Ws,γ(M,Ck).

Proof of Theorem 6.2. Without loss of generality we assume k = 1.

Recall that we have identified a collar neighbourhood of ∂M in M with Y × [0, 1[ × X. Let us

fix a covering Y =
N
∪
i=1

Ui with coordinate charts χi : Ui → Ωi ⊂ Rq and a subordinate partition

of unity {ϕi ∈ C∞0 (Ui) : i = 1, . . . , N}. Moreover choose ψi ∈ C∞0 (Ui) with ϕi ≺ ψi, and let
ω, ω̃ ∈ C∞0 ([0, 1[) be cut-off functions (viewed as functions on M, supported near the boundary)
with ω ≺ ω̃. Then we set

(6.3) P0,S =
N∑
i=1

(ωϕi)χi∗Op(p0,i) (ψiω̃) + (1− ω), p0,i(y, η) = 1− κ[η] bS κ
−1
[η] ,

with [η] denoting the expression in local coordinates y ∈ Ωi of a smoothed norm function on the
cotangent-bundle over Y , and bS being the projection in Ks,γ(X∧)S onto Ks,γ(X∧) along ES(X∧),
cf. (5.3).

By construction, it is clear that P0,S = 1 on Ws,γ(M) and that P0,S(Ws,γ(M)S) = Ws,γ(M).
Since Ws,γ(M) is a closed subspace of Ws,γ(M)S , we obtain a).

For b) we first have a look how an operator of the form Op(p0,i) behaves under coordinate changes
(in the edge variable). By the standard formula of expressing a pseudodifferential operator in new
coordinates,

(χ∗p)(x, ξ)
∣∣
x=χ(y)

∼
∑
α

1
α!

(Dα
η p)(y,

tχ′(y)ξ)Dα
z e

iκ(y,z)ξ
∣∣
z=y

with κ(y, z) = χ(z)−χ(y)−χ′(y)(z− y), applied to p0,i and using (5.17), we obtain that Op(p0,i)
on (Ωi ∩ Ω) × X∧ under the coordinate change χi ◦ χ transforms to Op(p0,S + r) with p0,S and
r as described in the statement. Thus, choosing a cut-off function ω0 with ω0 ≺ ω and using
P0,S(1− ω0) = (1− ω0), we find

ϕP0,S ψ = ϕP0,S ω0 ψ + ϕ (1− ω0)ψ = ϕχ∗Op(p0,S + r)ω0 ψ + ϕ (1− ω0)ψ.

By the properties of p0,S and r we find ϕχ∗Op(p0,S + r) (ω0 − 1)ψ = −ϕ (1 − ω0)ψ and this
obviously yields ϕP0,S ψ = ϕχ∗Op(p0,S + r)ψ.

c), d) First of all, observe that all operators in question vanish on Ws,γ(M), since on that space
P0,S coincides with the identity operator. For the same reason, we even have ω2 P0,S (1− ω1) = 0
on Ws,γ(M)S .

By definition of P0,S in (6.3), the statement will follow if we verify corresponding properties for the
local operators R1 := (1− ω1)Op(p0,i)ω2 and R2 := ϕ̃1Op(p0,i) ϕ̃2, where ϕ̃1, ϕ̃2 ∈ C∞(Ωi) have
disjoint support. To show this let, without loss of generality, Ωi = Rq and [·] be independent of y
for large |y|. By using the explicit representation (5.16), and writing (1 − ω1) = tN (t−N (1 − ω1))
for arbitrary N ∈ N, it is straightforward to see that R1 = Op(r1) with a symbol r1 ∈ S−N (Rq ×
Rq;Ks,γ(X∧)S ,S∞(X∧)). This yields R1 :Ws,γ(Rq×X∧)S →W∞,∞(Rq×X∧). The same is true
for R2, using integration by parts and (5.17). �
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Remark 6.3. Adapting methods and results of [2] that show that, for a smooth compact manifold
Ω with boundary, Hs(Ω)/Hs

0(Ω) is isomorphic to Hs(∂Ω,C[s− 1
2 ]), where Hs

0(Ω) denotes the closure
of C∞0 (int Ω) in Hs(Ω), one can show that

kerP0,S
∼=Ws,γ(M,Ck)S

/
Ws,γ(M,Ck) ∼= Hs(Y,Ck ⊗ Cι(S)),

where ι(S) is the dimension of ES(X∧), cf. (4.3).

6.3. Global regular and singular Green operators. The full algebra of operators on a
manifold with edges will consist, roughly speaking, of pseudodifferential operators that locally near
the edge can be represented as an operator with symbol from the edge symbol algebra introduced
in Definition 5.16. There are also non-local operators in this algebra which we shall introduce first.

Definition 6.4. A smoothing operator (associated with asymptotic types S, T , vector bundles Ck,
Cl, J−, J+, and with weight-data (γ, γ − µ)) is an operator C such that, for all s ∈ R,

(6.4) C = C0

(
P0,S 0

0 1

)
+

(
C11 0
C21 0

)
:
Ws,γ(M,Ck)S

⊕
Hs(Y, J−)

−→
W∞,γ−µ(M,Cl)T

⊕
H∞(Y, J+)

where

a) P0,S is a projection as in Theorem 6.2,
b) both C11 and C21 vanish on Ws,γ(M,Ck), and there exists an ε = ε(C11) > 0 such that

C11 :Ws,γ(M,Ck)→W∞,γ−µ
ε (M,Cl)T ,

c) for any r ∈ R

C0 :
Wr,γ(M,Ck)

⊕
Hr(Y, J−)

−→
W∞,γ−µ
ε (M,Cl)T

⊕
H∞(Y, J+)

for some ε = ε(C0) > 0, while its adjoint C∗0 induces maps

C∗0 :
Wr,−γ+µ+τ (M,Cl)

⊕
Hr(Y, J+)

−→
W∞,−γ
ε (M,Ck)
⊕

H∞(Y, J−)
.

The space of all such operators we shall denote by

Y−∞(M ; (γ, γ − µ), (k, l; J−, J+))S,T .

If in (6.4) we can choose C11 = 0 and C21 = 0, we call C a regular smoothing operator. If C0 is

represented as a block matrix, C0 =

(
C0

11 C0
12

C0
21 C0

22

)
, and we can choose in (6.4) both C0

11 = 0 and

C0
21 = 0, we call C a singular smoothing operator.

Let us remark that – after fixing the choice of P0,S – the decomposition (6.4) uniquely determines
C0, C11, and C21.

For the definition of global Green operators let Y =
N
∪
i=1

Ui with coordinate charts χi : Ui →
Ωi ⊂ Rq over which J± is trivial with trivializations χi,± : J±

∣∣
Ui
−→ Ωi × Cj± . Let ϕ1, . . . , ϕN

be a corresponding partition of unity on Y and ψi ∈ C∞0 (Ui) such that ϕi ≺ ψi. Moreover, let
ω, ω̃ ∈ C∞0 ([0, 1)) be cut-off functions with ω ≺ ω̃.
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Definition 6.5. A Green operator of order ν ∈ R (associated with asymptotic types S, T , vector
bundles Ck, Cl, J−, J+, and with weight-data (γ, γ − µ)) is any operator G of the form

(6.5) G =
N∑
i=1

(
ωϕi ◦ χ∗i 0

0 ϕi ◦ χ∗i,+

)
Op(gi)

(
(χi)∗ ◦ ωψi 0

0 (χi,−)∗ ◦ ψi

)
+ C

(χ∗ and χ∗ denote the pull-back and push-forward, respectively, of sections under χ), where C is
a smoothing operator in the sense of Definition 6.4 and each gi is a ν-th order Green symbol as
in Definition 5.15, gi ∈ RνG(Ωi ×Rq; (γ, γ − µ), (k, l; j−, j+))S,T . The space of all such operators is
denoted by

YνG(M ; (γ, γ − µ), (k, l; J−, J+))S,T

6.4. The algebra of edge operators on W .

Definition 6.6. Let µ, ν ∈ R with µ− ν ∈ N. The space

Yν(M ; (γ, γ − µ), (k, l; J−, J+))S,T

consists of all operators

(6.6) A =

(
AP0,S 0

0 0

)
+ G :

Ws,γ(M,Ck)S
⊕

Hs(Y, J−)
−→
Ws−µ,γ−µ(M,Cl)T

⊕
Hs−µ(Y, J+)

where P0,S is as in Theorem 6.2, G ∈ YνG(M ; (γ, γ − µ), (k, l; J−, J+))S,T , and A is an operator
from the standard edge algebra Y ν(M ; (γ, γ − µ), (k, l)), cf. Section 8.

Remark 6.7. Throughout the paper we admit also the case σ = τ = 0, i.e., that the asymptotic types
S and T disappear, cf. Remark4.9. In that case we recover the standard edge algebra Yν(M ; (γ, γ−
µ), (k, l; J−, J+)).

Similarly as in (6.5), each operator A ∈ Yν(M ; (γ, γ−µ), (k, l; J−, J+))S,T can be expressed locally
near the edge in terms of edge symbols belonging to Rν(Ωi × Rq; (γ, γ − µ), (k, l; j−, j+))S,T .

Definition 6.8. Let A ∈ Yµ(M ; (γ, γ − µ), (k, l; J−, J+))S,T be as in (6.6) with ν = µ. Let us
denote by πY : T ∗Y \ 0 → Y the canonical projection. Then the principal edge symbol of A is the
vector-bundle homomorphism

σ∧(A) =

(
σ∧(A)σ∧(P0,S) 0

0 0

)
+ σ∧(G) :

π∗Y

Ks,γ(X∧,Ck)S
⊕
J−

 −→ π∗Y

Ks−µ,γ−µ(X∧,Cl)T
⊕
J+

 , s ∈ R,

(6.7)

where σ∧(A) is the principal edge symbol of standard edge operators, cf. Section 8, and σ∧(P0,S)
is as in (6.2). Moreover, the conormal symbol of A is, by definition,

σM (A)(y, z) = σM (A)(y, z) : Hs(X) −→ Hs−µ(X), s ∈ R,

where y ∈ Y and z ∈ C with Re z = n+1
2 − γ, cf. Section 8.
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Occcasionally, we prefer to write the action of the principal edge symbol in each fibre, i.e.,

(6.8) σ∧(A)(y, η) :
Ks,γ(X∧,Ck)S

⊕
J−,y

−→
Ks−µ,γ−µ(X∧,Cl)T

⊕
J+,y

, (y, η) ∈ T ∗Y \ 0.

Besides principal edge and conormal symbol we have the standard interior pseudodifferential sym-
bol

σψ(A) := σψ(A) ∈ C∞
(
T ∗(M \ Y ) \ 0

)
,

cf. (8.8), and the rescaled symbol

σ̃ψ(A) := σ̃ψ(A) ∈ C∞
(
(T ∗∂M× R) \ 0

)
,

cf. (8.9). Based on the algebra property of the standard edge algebra and the composition result
Theorem 5.22, one can show the following:

Theorem 6.9. Let A ∈ Yν(M ; (γ, γ − µ), (k, l̃; J−, J̃+))S,R and Ã ∈ Yeν(M ; (γ − µ, γ − µ −
µ̃), (l̃, l; J̃+, J+))R,T . Then

ÃA ∈ Yν+eν(M ; (γ, γ − µ− µ̃), (k, l; J−, J+))S,T .

Moreover, in case ν = µ and ν̃ = µ̃,

σ∧(ÃA)(y, η) = σ∧(Ã)(y, η)σ∧(A)(y, η), σM (ÃA)(y, z) = (TµσM (Ã))(y, z)σM (A)(y, z),

where T σ is the shift operator, (T σf)(z) = f(z + σ).

Similarly, using Theorem 5.20, we have:

Theorem 6.10. For j ∈ N let Aj ∈ Yµ−j(M ; (γ, γ − µ − µ̃), (k, l; J−, J+))S,T such that the ε-
weights involved in the Green parts of each Aj do not dependent on j. Then there exists an operator
A ∈ Yµ(M ; (γ, γ − µ− µ̃), (k, l; J−, J+))S,T such that, for all N ∈ N,

A−
N−1∑
j=0

Aj ∈ Yµ−N (M ; (γ, γ − µ− µ̃), (k, l; J−, J+))S,T .

7. Ellipticity and parametrix

In this section we introduce the notion of ellipticity in the edge calculus with singular trace and
Green operators and show that elliptic operators possess a parametrix within the calculus. As a
preliminary step, we consider in Section 7.1 the subalgebra of operators which coincide with the
identity modulo Green operators. The general case is then treated in the subsequent Section 7.2.

Definition 7.1. An operator A ∈ Yµ(M, (γ, γ − µ), (k, k; J−, J+))S,T is called elliptic if

(i) σψ(A) and σ̃ψ(A) are pointwise invertible on T ∗(M\Y )\0 and (T ∗∂M×R)\0, respectively,
(ii) σ∧(A)(y, η) defines isomorphisms (6.8) for all (y, η) ∈ T ∗Y \0 and some s ∈ R.

Note that if A =

(
A11 A12

A21 A22

)
is elliptic, then

(7.1) σ∧(A11)(y, η) : Ks,γ(X∧,Ck)S −→ Ks−µ,γ−µ(X∧,Ck)T
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is a family of Fredholm operators of index j+ − j−, where j± denotes the fibre dimensions of J±.
Under the ellipticity assumption (i), the Fredholm property of (7.1) in turn is equivalent to the
bijectivity of the subordinate conormal symbol

σM (A)(y, z) : Hs(X)→ Hs−µ(X), s ∈ R,

for all y ∈ Y and z ∈ Γn+1
2 −γ . In particular, it does not depend on the choice of S and T , and

the conormal symbol might have non-bijectivity points on the weight line Γn+1
2 −(γ−σ) (with σ

corresponding to the type S).

7.1. The inverse of identity plus Green symbol. For the following statement we use the
notation I = diag(1, 1).

Proposition 7.2. Let G ∈ Y0
G(M, (γ, γ), (k, k; J, J))S,S such that σ∧(I+G)(y, η) = I+σ∧(G)(y, η)

is an isomorphism for each y and η 6= 0. Then there exists a C ∈ Y0
G(M, (γ, γ), (k, k; J, J))S,S such

that

(I + σ∧(G)(y, η))−1 = I + σ∧(C)(y, η) for all (y, η) ∈ T ∗Y \0.

Proof. For notational simplicity let k = 1. Without loss of generality, we may assume γ = 0.
Let us write

(7.2) I + σ∧(G)(y, η) =:

(
1 +G11 G12

G21 G22

)
(y, η) :

K0,0(X∧)S
⊕
J

−→
K0,0(X∧)S
⊕
J

and let us suppress (y, η) from the notation for a while. Since the following considerations are local
in (y, η), we assume that J = Cj for some j ∈ N.

Let bS be the projection in K0,0(X∧)S onto ES(X∧) along K0,0(X∧), cf. (5.3) and (5.15). Then(
1− bS
bS

)
: K0,0(X∧)S →

K0,0(X∧)
⊕

ES(X∧)
is an isomorphism with the inverse (l0 l1). We then set

B :=

1− bS 0
bS 0
0 1

 and form the isomorphism B(I + σ∧(G))B−1 which equals

(7.3)

b0(1 +G11)l0 b0(1 +G11)l1 b0G12

b1G21l0 b1G21l1 b1G12

G21l0 G21l1 G22

 :

K0,0(X∧)
⊕

ES(X∧)
⊕
Cj

−→

K0,0(X∧)
⊕

ES(X∧)
⊕
Cj

.

Using an isomorphism ES(X∧) ∼= Cι(S), cf. (4.3), and writing G := b0G11l0, we transform (7.3) to
the form

(7.4)

(
1 +G H12

H21 H22

)
:
K0,0(X∧)
⊕

Cι(S)+j

−→
K0,0(X∧)
⊕

Cι(S)+j

.
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Now let (y0, η0) ∈ S∗Y (the unit cosphere bundle) be fixed. Since isomorphisms form an open
set and each matrix can be approximated arbitrarily well by an invertible one, there exists an
invertible (ι(S) + j)× (ι(S) + j)-matrix H̃22 such that

(7.5)

(
1 +G H12

H21 H̃22

)
:
K0,0(X∧)
⊕

Cι(S)+j

−→
K0,0(X∧)
⊕

Cι(S)+j

is pointwise invertible in an open neighborhood of (y0, η0) in S∗Y . From the decomposition(
1 +G H12

H21 H̃22

)
=

(
1 H12H̃

−1
22

0 1

)(
(1 +G)−H12H̃

−1
22 H21 0

0 H̃22

)(
1 0

H̃−1
22 H21 1

)
we deduce that the second term on the right-hand side is invertible, since all the other block-
matrices are. In particular,

1 +D : K0,0(X∧) −→ K0,0(X∧), D := G−H12H̃
−1
22 H21,

is invertible. But now D is (the symbol of) a regular Green operator, i.e. a Green operator from
the standard edge calculus. Then it is known that (1+D)−1 = 1+M with a (symbol of a) regular
Green operator. This yields(

1 +G H12

H21 H̃22

)−1

=

(
1 +M −(1 +M)H12H̃

−1
22

−H̃−1
22 H21(1 +M) H̃−1

22

)
=:

(
1 +M N12

N21 N22

)
.

Then (
1 +G H12

H21 H22

)(
1 +M N12

N21 N22

)
=

(
1 0
B R

)
with an invertible matrix R, and it follows that

(7.6)

(
1 +G H12

H21 H22

)−1

=

(
1 +M N12

N21 N22

)(
1 0

−R−1B R−1

)
=:

(
1 +K L12

L21 L22

)
,

where the functions K and Lij are smooth near (y0, η0), and have the properties that

K(y, η),K(y, η)∗ : K0,0(X∧) −→ S0
ε (X

∧), L12(y, η), L21(y, η)∗ : Cι(S)+j −→ S0
ε (X

∧)

for some ε > 0.

Since the local inverses are unique, we thus obtain an inverse of the form (7.6) globally on S∗Y ,
having the mapping properties just described. It then remains to set(

1 + C11 C12

C21 C22

)
= B−1

(
1 +K L12

L21 L22

)
B

and to define σ∧(C)(y, η) by

I + σ∧(C)(y, η) = diag(κ|η|, 1)

(
1 + C11 C12

C21 C22

)
(y, η/|η|) diag(κ−1

|η| , 1).

By using a zero excision function χ(η), we then find a corresponding operator C having the con-
structed principal edge symbol. �
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7.2. The parametrix construction.

Theorem 7.3. Let A ∈ Yµ(M, (γ, γ − µ), (k, k, J−, J+))S,T be elliptic. Then A has a parametrix
P ∈ Y−µ(M, (γ − µ, γ), (k, k, J+, J−))T,S, i.e.,

AP − I ∈ Y−∞(M, (γ − µ, γ − µ), (k, k, J+, J+))T,T ,

PA− I ∈ Y−∞(M, (γ, γ), (k, k, J−, J−))S,S ,

where I = diag(1, 1) is the identity operator. In particular, A induces Fredholm operators

A :
Ws,γ(M,Ck)S

⊕
Hs(Y, J−)

−→
Ws−µ,γ−µ(M,Ck)T

⊕
Hs−µ(Y, J+)

, s ∈ R.

Proof. Let us construct a left parametrix P; the construction of a right-parametrix is similar.
Then P is a two-sided parametrix, and we obtain the Fredholm property of A, since the remainders
are compact operators in the respective Sobolev spaces. For the construction of P we assume for
simplicity that k = 1 (the general case is completely analogous).

Writing A as a block-matrix A = (Aij)i,j=1,2 with A11 = AP0,S , cf. the formulas (6.6) and (7.1),
condition (ii) of Definition 7.1 yields a family of Fredholm operators

σ∧(A)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧), (y, η) ∈ T ∗Y \ 0,

of index l+ − l− for l+ = j+ + ι(T ) and l− = j− + ι(S). Using the technique of constructing a
parametrix in the standard edge calculus (cf. Theorem 8.5, below), we find an elliptic operator
B ∈ Y−µ(M, (γ − µ, γ), (1, 1;L+, L−)) for L+ = J+ ⊕ Cι(T ) and L− = J− ⊕ Cι(S), which has the
following properties: The upper left corner B of B, viewed as an element of L−µ(M \ Y ), is a
parametrix of the elliptic operator A ∈ Lµ(M \ Y ), and (TµσM (B))σM (A) = 1. Moreover, the
operator B is Fredholm as a map

B :
Ws−µ,γ−µ(M)

⊕
Hs−µ(Y, J+)⊕Hs−µ(Y,Cι(T ))

−→
Ws,γ(M)
⊕

Hs(Y, J−)⊕Hs(Y,Cι(S))
.

A simple algebraic argument, using the isomorphisms

Ws,γ(M)⊕Hs(Y,Cι(S)) ∼=Ws,γ(M)S , Ws−µ,γ−µ(M)⊕Hs−µ(Y,Cι(T )) ∼=Ws−µ,γ−µ(M)T ,

cf. Remark 6.3, allows us to reorganise the operator B to an operator

P0 :
Ws−µ,γ−µ(M)T

⊕
Hs−µ(Y, J+)

−→
Ws,γ(M)S
⊕

Hs(Y, J−)

with P0 ∈ Y−µ(M, (γ − µ, γ), (1, 1; J−, J+))T,S and such that

G := P0A− I ∈ Y0
G(M, (γ, γ), (1, 1; J−, J−))S,S .

Both P0 and A are elliptic; thus also I + G is elliptic. By Proposition 7.2 we find an operator
C ∈ Y0

G(M, (γ, γ), (1, 1; J−, J−))S,S such that

(I + C)(I + G) = I +K for a K ∈ Y−1
G (M, (γ, γ), (1, 1; J−, J−))S,S .
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Setting P1 = (I + C)P0 we thus obtain P1A = I + K. Applying Theorem 6.10, we can form the
asymptotic sum

L :=
∞∑
j=1

(−1)jKj ∈ Y−1
G (M, (γ, γ), (1, 1; J−, J−))S,S .

Then P := (I + L)P1 is the desired left parametrix. In the latter steps we employed Theorem 6.9
several times. �

7.3. Concluding remarks. Comparing the spaces Yµ(M, (γ, γ − µ), (k, l, J−, J+))S,T and
Yµ(M, (γ, γ−µ), (k, l, J−, J+)), the additional ingredients of the new calculus are Green operators
(in block-matrix sense) associated with discrete asymptotic data in the weight strips {z : n+1

2 −γ <
Re z < n+1

2 − γ + σ} and {z : n+1
2 − (γ − µ) < Re z < n+1

2 − (γ − µ) + τ}, respectively. Such
operators are able to ‘reproduce’ non-smoothing Mellin operators in the upper left corner when
they are given on the weight line Re z = n+1

2 −γ+σ instead of Re z = n+1
2 −γ (the latter is the case

in both variants of the edge calculus). This is due to the fact that differences of Mellin operators
for different weight lines (and with specific meromorphic symbols) generate Green operators of the
singular category, cf. [3].

It would be interesting to study subalgebras of our calculus with meromorphic Mellin symbols in
which the Mellin operators refer to Re z = n+1

2 − γ + σ instead of Re z = n+1
2 − γ. This would

require a careful choice of admitted Mellin symbols and a detailed analysis of the asymptotic data.
The paper [8] of Liu and Witt can be interpreted in this spirit.

One may expect many other interesting examples of such subcalculi of edge problems, for instance,
algebras generated by boundary value problems without the transmission property at the boundary,
with (principal) interior symbols of the form |ξ|µ for some µ /∈ 2Z (the case µ ∈ 2Z corresponds to
the case with transmission property). An edge algebra interpretation of boundary value problems
(without transmission property) is given in [13].

Such investigations could deepen the insight into the structure of parametrices of mixed elliptic
problems, but the details might be quite voluminuous.

8. Appendix: The standard calculus for manifolds with edges

In this appendix we shall give a brief summary of the so-called edge algebra. For a reference of the
here presented material we refer the reader to [3],[5], and [15].

In the following Ω ⊂ Rq denotes an open set, and X is a closed smooth manifold of dimension
n ∈ N0. We shall denote by Lµcl(X) the Fréchet space of classical pseudodifferential operators on
X, and by Lµcl(X; Λ) the space of parameter-dependent operators, where Λ = Rl for some l ∈ N.
More precisely, the local symbols of parameter-dependent operators satisfy estimates of the form

|∂βx∂αξ ∂
γ
λa(x, ξ, λ)| ≤ C (1 + |ξ|+ |λ|)µ−|α|−|γ|,

and they have asymptotic expansions in components that are positively homogeneous in (ξ, λ). In
short, (ξ, λ) is treated as a covariable.

8.1. Mellin symbols and Mellin pseudodifferential operators. For γ ∈ R and ε > 0
let us set

S(γ,ε) = {z ∈ C :
∣∣ 1
2 − γ − Re z

∣∣ < ε},



30 D. KAPANADZE, B.-W. SCHULZE, AND J. SEILER

i.e. S(γ,ε) is the open, vertical strip of width ε around the line Re z = 1
2 − γ.

Definition 8.1. Let γ ∈ R, µ ∈ R ∪ {−∞} and ε > 0. The space Mµ
(γ,ε)(X; Λ) consists of all

holomorphic functions h : S(γ−n
2 ,ε)
→ Lµcl(X; Λ) such that

hδ(λ, %) := h(λ, n+1
2 − γ + δ + i%) ∈ Lµcl(X; Λ× R%)

uniformly in δ ∈ (−ε, ε). Since this is a Fréchet space in a canonical way, it is meaningful to speak
of C∞(Ω× R+,M

µ
(γ,ε)(X; Λ)). We set

Mµ
γ (X; Λ) = ∪

ε>0
Mµ

(γ,ε)(X; Λ), C∞(Ω× R+,M
µ
γ (X; Λ)) = ∪

ε>0
C∞(Ω× R+,M

µ
(γ,ε)(X; Λ)),

and

Mµ
O(X; Λ) = ∩

ε>0
Mµ

(γ,ε)(X; Λ), C∞(Ω× R+,M
µ
O(X; Λ)) = ∩

ε>0
C∞(Ω× R+,M

µ
(γ,ε)(X; Λ)).

The definitions are analogous for the spaces depending only on Ω× R+ and those independent of
the parameter λ ∈ Λ.

A symbol h(y, r, λ, z) belonging to C∞(Ω × R+,M
µ
γ (X; Λ)) induces a family of Mellin pseudodif-

ferential operators on the infinite cone X∧ = R+ ×X by

[opγ−
n
2

M (h)(y, λ)u](r) :=
1

2πi

∫
Re z= n+1

2 −γ
r−zh(y, r, λ, z)(Mu)(z) dz, u ∈ C∞0 (X∧).

Here, we have identified C∞0 (X∧) with C∞0 (R+, C
∞(X)), and M denotes the Mellin transform.

8.2. Green and smoothing Mellin symbols. For the following definition recall the defi-
nition of cone Sobolev spaces Ks,γ(X∧) from Section 2 and its group action κλ.

Definition 8.2. Let γ, γ′ ∈ R and µ ∈ R ∪ {−∞}. The space RµG(Ω × Rq; (γ, γ′)) consists of all
operator-valued symbols (cf. Section 2) g(y, η) ∈ Sµcl(Ω×Rq;K0,γ(X∧),K0,γ′(X∧)) such that there
exists an ε > 0 with

g(y, η) ∈ ∩
s∈R

Sµcl(Ω× Rq;Ks,γ(X∧),Sγ
′+ε(X∧)),

g(y, η)∗ ∈ ∩
s∈R

Sµcl(Ω× Rq;Ks,−γ
′
(X∧),S−γ+ε(X∧)).

In the previous definition, ∗ refers to the pointwise adjoint with respect to the scalar product of
K0,0(X∧) = L2(X∧, r−ndrdx), which allows an identification of K−s,−γ(X∧) and the dual space
of Ks,γ(X∧).

Definition 8.3. Let γ ∈ R and µ ∈ R ∪ {−∞}. The space RµM+G(Ω × Rq; (γ, γ − µ)) consists of
all operator-valued symbols of the form

(8.1) m(y, η) + g(y, η) = ω0(r[η]) r−µ opγ−
n
2

M (h)(y)ω1(r[η]) + g(y, η),

where g(y, η) ∈ RµG(Ω × Rq; (γ, γ − µ)) is a Green symbol, h ∈ C∞(Ω,M−∞
γ (X)), and ω0, ω1 ∈

C∞([0, 1[) are arbitrary cut-off functions. For ν ∈ R with 1 ≤ µ− ν ∈ N we set

RνM+G(Ω× Rq; (γ, γ − µ)) = RνG(Ω× Rq; (γ, γ − µ)).
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It can be shown that then, for each s ∈ R,

RνM+G(Ω× Rq; (γ, γ − µ)) ⊂ Sνcl(Ω× Rq;Ks,γ(X∧),K∞,γ−µ(X∧)).

If (m+ g)(y, η) is as in (8.1), its homogeneous principal symbol is defined as

(8.2) σ∧(m+ g)(y, η) = ω0(r|η|) r−µ opγ−
n
2

M (h)(y)ω1(r|η|) + σ∧(g)(y, η), η 6= 0,

where σ∧(g)(y, η) denotes the homogeneous principal symbol of g(y, η). This symbol we shall refer
to as the principal edge symbol of (m+ g)(y, η). The (principal) conormal symbol of (m+ g)(y, η)
is, by definition,

(8.3) σM (m+ g)(y, z) = h(y, z) ∈ C∞(Ω,M−∞
γ (X)).

8.3. Edge amplitude functions.

Definition 8.4. Let γ ∈ R and µ, ν ∈ R with µ− ν ∈ N. Then Rν(Ω×Rq; (γ, γ − µ)) denotes the
space of so-called edge symbols

a(y, η) = σ
{
r−ν opγ−n/2M (h)(y, η) +m(y, η) + g(y, η)

}
σ0 + (1− σ) op(p)(y, η) (1− σ1),

where the notation has the following meaning:

a) σ, σ0, σ1 ∈ C∞0 ([0, 1[) are cut-off functions with σ1 ≺ σ ≺ σ0,
b) h(y, r, η, z) = h̃(y, r, rη, z) with h̃ ∈ C∞(Ω× R+,M

ν
O(X; Rqη)),

c) (m+ g)(y, η) ∈ RνM+G(Ω× Rq; (γ, γ − µ)),
d) p(y, r, η, %) ∈ C∞(Ω× R+, L

ν
cl(X; Rqη × R%)), independent of r for large r.

Edge symbols are particular operator-valued symbols, namely

Rν(Ω× Rq; (γ, γ − µ)) ⊂ Sν(Ω× Rq;Ks,γ(X∧),Ks−ν,γ−µ(X∧)).

In case ν = µ we define the principal edge symbol of a(y, η) by

(8.4) σ∧(a)(y, η) = r−µ opγ−n/2M (h∧)(y, η) + σ∧(m+ g)(y, η), h∧(y, r, z, η) = h̃(y, 0, rη, z),

cf. (8.2), and the conormal symbol of a(y, η) by

(8.5) σM (a)(y, z) = h̃(y, 0, z, 0) + σM (m+ g)(y, z),

cf. (8.3).

There is an obvious generalization to (l × k)-matrices of such edge symbols, yielding the space

Rν(Ω× Rq; (γ, γ − µ), (k, l)).

8.4. The algebra of edge pseudodifferential operators on M . In the following we let
M be a manifold with edge Y and model cone X∧ as it is described in Section 6. For γ ∈ R and
µ, ν ∈ R with µ− ν ∈ N,

(8.6) Y ν(M, (γ, γ − µ), (k, l))

denotes the space of ν-th order edge operators (with respect to (k, l) and the weight-data (γ, γ−µ)).
Modulo global smoothing operators they are obtained by pasting together (using a partition of
unity on M) usual pseudodifferential operators of order ν on the interior of M with operators that
are localized near the edge and that are defined locally by means of pseudodifferential operators
with operator-valued symbols from Rν(Ω × Rq; (γ, γ − µ), (k, l)). We shall omit the details here.
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The space of global smoothing operators, Y −∞(M, (γ, γ − µ), (k, l)), consists of all operators G :
W0,γ(M,Ck)→W0,γ−µ(M,Cl) such that there exists an ε > 0 with

(8.7) G :Ws,γ(M,Ck) −→W∞,γ−µ+ε(M,Cl), G∗ :Ws,−γ+µ(M,Cl) −→W∞,−γ+ε(M,Ck),

for each s ∈ R, where ∗ refers to the adjoint with respect to the scalar product of W0,0(M) that
admits an identification of the dual space of Ws,σ(M) with W−s,−σ(M).

Each A ∈ Y ν(M, (γ, γ − µ), (k, l)) induces continuous operators

Ws,γ(M,Ck) −→Ws−ν,γ−µ(M,Cl), s ∈ R.

8.5. Principal symbols. As a matter of fact,

Y ν(M, (γ, γ − µ), (k, l)) ⊂ Lνcl(intM ; Ck,Cl)

for intM := M \ Y , i.e., any edge operator is a usual pseudodifferential operator on the interior of
M . In particular, with each A ∈ Y µ(M, (γ, γ−µ), (k, l)) we can associate the standard homogeneous
principal symbol

(8.8) σψ(A) ∈ C∞(T ∗intM \ 0,L(Ck,Cl)).

In local coordinates, corresponding to the splitting of coordinates (y, r, x) near the edge, the ho-
mogeneous principal symbol has a special ‘degenerate’ form namely

σψ(A)(y, r, x, η, %, ξ) = r−µ p̃(µ)(y, r, x, rη, r%, ξ),

with a symbol p̃(µ)(y, r, x, η̃, %̃, ξ) homogeneous in (η̃, %̃, ξ). Removing this degeneracy leads to

σ̃ψ(A)(y, x, η, %, ξ) = p̃(µ)(y, 0, x, η, %, ξ) = lim
r→0+

rµσψ(A)(y, r, x, r−1η, r−1%, ξ).

Globally, this yields the so-called rescaled symbol

(8.9) σ̃ψ(A) ∈ C∞((T ∗(Y ×X)× R) \ 0,L(Ck,Cl)).

Moreover, induced by the local amplitude functions of Definition 8.4, we have the principal edge
symbol

(8.10) σ∧(A) ∈ C∞(T ∗Y \ 0,L(Ks,γ(X∧,Ck),Ks−µ,γ−µ(X∧,Cl)).

8.6. Ellipticity. An operatorA ∈ Yµ(M, (γ, γ−µ), (k, k; J−, J+)) (cf. the notation of Remark
6.7) is said to be elliptic, if σψ(A), σ̃ψ(A), and σ∧(A) satisfy the conditions of Definition 7.1.

Theorem 8.5. An elliptic operator A ∈ Yµ(M, (γ, γ − µ), (k, k; J−, J+)) possesses a parametrix
P ∈ Y−µ(M, (γ − µ, γ), (k, k; J+, J−)), i.e. AP − I and PA − I are of order −∞ in the spaces
belonging to the data ((γ − µ, γ − µ), (k, k; J+, J+)) and ((γ, γ), (k, k; J−, J−)), respectively.

For a proof of this theorem see [3], for example.



OPERATORS WITH SINGULAR TRACE CONDITIONS ON A MANIFOLD WITH EDGES 33

References

[1] L. Boutet de Monvel. Boundary problems for pseudo-differential operators. Acta Math. 126 (1971), 11-51.

[2] N. Dines, B.-W. Schulze. Mellin-edge-representations of elliptic operators. Math. Methods Appl. Sci. 28 (2005),

2133-2172.

[3] Ju.V. Egorov, B.-W. Schulze. Pseudo-differential operators, singularities, applications. Operator Theory: Ad-

vances and Applications 93, Birkhäuser Verlag, 1997.
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