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Abstract. In order to characterise the C∗ -algebra generated by the singular
Bochner-Martinelli integral over a smooth closed hypersurfaces in Cn, we com-
pute its principal symbol. We show then that the Szegö projection belongs to

the strong closure of the algebra generated by the singular Bochner-Martinelli

integral.
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1. Introduction

The Bochner-Martinelli integral formula for holomorphic functions in a bounded
domain in Cn is of great importance in complex analysis, cf. [5]. It is a generaliza-
tion to many variables of the classical Cauchy formula which actually gave rise to
the theory of singular integral equations. A canonical Cauchy-type singular integral
known as Hilbert transform is a corner stone of harmonic analysis. To handle more
refined integral operators of many-dimensional complex analysis, such as Cauchy-
Fantappiè integrals or Szegö projections, etc., there have been elaborated several
calculi of pseudodifferential operators relevant to several complex variables, cf. [7].

The Bochner-Martinelli integral does not apply to derive explicit formulas for
a solution of the ∂̄ -equation, which is a fundamental equation of complex analy-
sis. On the other hand, the singular Bochner-Martinelli integral over each smooth
hypersurface satisfies the cancellation condition, and thus defines a singular inte-
gral operator on the hypersurface. In other words, it belongs to the algebra of
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pseudodifferential operators of order zero with polyhomogeneous symbols. Since
its kernel is very explicit the problems of complex analysis have never required, as
far as we know, the knowledge of its symbol but in the case n = 1. The analysis of
the Bochner-Martinelli singular integral so far undertaken does not go beyond the
potential theory of the 1950s, cf. [4].

Since explicit kernels are more useful than the Fourier transform under the
presence of singularities of the underlying hypersurface, the existing theory of the
Bochner-Martinelli integral leads to the conclusion that no pseudodifferential tech-
nique is required in this theory at all. However, the theory of operator algebras
gives us an evidence to the contrary. To effectively describe the C∗ -algebra gener-
ated by the singular Bochner-Martinelli integral the knowledge of its explicit kernel
is obviously insufficient, for the composition rule for the kernels includes integra-
tion over the hypersurface and cannot be carried out explicitly. On the other hand,
the composition rule for the principal symbols allows one to evaluate the princi-
pal symbol of a power of the singular Bochner-Martinelli integral explicitly. This
immediately gives rise to the Calkin algebra of the algebra under study.

The aim of this paper is to bring together two areas whose interaction might
enrich each other. The first of the two is the theory of algebras of pseudodifferential
operators with symbol structure. And the second area is the potential theory of
the Bochner-Martinelli kernel, which applies to many central problems of complex
analysis.

2. Singular Bochner-Martinelli integral

Let S be a smooth closed hypersurface in Cn, where n ≥ 1. The surface measure
ds on S is induced by the Lebesgue measure dy = dy1 ∧ . . . ∧ dy2n in R2n, where
the complex structure is introduced by ζj = yj + ıyn+j , for j = 1, . . . , n. A trivial
verification shows that dy = (2ı)−ndζ̄ ∧dζ, where dζ = dζ1∧ . . .∧dζn and similarly
for dζ̄.

If S is given in the form S = {ζ ∈ Cn : %(ζ) = 0}, where % ∈ C1(Cn) is a
real-valued function satisfying ∇%(ζ) 6= 0 for all ζ ∈ S, ∇%(ζ) standing for the real
gradient of % at ζ, then

ν(ζ) =
∇%(ζ)
|∇%(ζ)|

is the unit normal vector of S at a point ζ ∈ S oriented in the direction of increasing
of ρ. The complex vector νc = (νc,1, . . . , νc,n) with coordinates νc,j = νj + ıνn+j

is called the complex normal of the hypersurface S. In the coordinates of Cn we
obviously have

νc,j(ζ) =

∂%

∂ζ̄j

|∇ζ̄%(ζ)|
for j = 1, . . . , n.

We now denote by dζ̄[j] the wedge product of all differentials dζ̄1, . . . , dζ̄n but
dζ̄j .

Lemma 2.1. For each j = 1, . . . , n, the pull-back of the differential form dζ ∧dζ̄[j]
under the embedding S ↪→ Cn is equal to (−1)j−1(2ı)n−1ı νc,jds, where ds is the
surface measure on S.
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Proof. An easy computation shows that the pull-back of the differential form dy[j]
under the embedding S ↪→ R2n is equal to (−1)j−1νjds, for every j = 1, . . . , 2n.
From this the lemma follows immediately. �

Given an integrable function f : S → C with compact support on S, the Bochner-
Martinelli integral of f is defined by

(2.1) Mf (z) =
∫

S

f(ζ)U(ζ, z)

for z 6∈ S, where

U(ζ, z) =
(n− 1)!
(2πı)n

n∑
j=1

(−1)j−1 ζ̄j − z̄j

|ζ − z|2n
dζ̄[j] ∧ dζ

is referred to as the Bochner-Martinelli kernel, cf. [5]. Obviously, Mf is a harmonic
function in Cn \ S, and it vanishes at infinity unless n = 1. Moreover, Mf is of
finite order growth near S, hence Mf possesses weak limit values on S both from
within and without S.

If z ∈ S then the integral (2.1) no longer exists, for the kernel U(ζ, z) has a point
singularity at z whose order just amounts to the dimension of S. Moreover, if f is
merely continuous then even the Cauchy principal value of Mf may fail to exist,
i.e.,

(2.2) p.v.Mf (z) = lim
ε→0

∫
ζ∈S

|ζ−z|≥ε

f(ζ)U(ζ, z)

for z ∈ S.

However, if the function f satisfies Dini’s condition at z, i.e.,
∫ 1

0

ωθ(f, z)
θ

dθ < ∞,

where

ωθ(f, z) := sup
ζ∈S

|ζ−z|<θ

|f(ζ)− f(z)|

is the continuity modulus of f at z, then the Cauchy principal value integral (2.2)
exists at this point.

Lemma 2.2. If f ∈ L1
comp(S) satisfies Dini’s condition at a point z ∈ S then the

singular integral (2.2) exists, and

lim
ε→0

Mf (z ± εν(z)) = ∓1
2

f(z) + p.v.Mf (z).

Proof. For this and other generalizations of the classical Sokhotskii-Plemelj jump
formulas we refer the reader to [5]. �

Lemma 2.2 shows in particular that the cancellation condition, which is necessary
and sufficient for the existence of a singular integral operator, is fulfilled for singular
Bochner-Martinelli integral (2.2). From now on we restrict our discussion to this
singular integral operator and will write it simply MSf . If S is of class C∞ then
MS : C∞comp(S) → C∞(S) is a polyhomogeneous pseudodifferential operator of zero
order on S.
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3. Evaluation of the symbol

In this section we evaluate the principal symbol of the singular Bochner-Mar-
tinelli integral (2.2). To this end, we identify the cotangent space T ∗z S of S at a
point z ∈ S with all linear forms on T ∗z R2n which vanish on the one-dimensional
subspace of T ∗z R2n spanned by ν(z). Since T ∗z R2n ∼= R2n, one can actually specify
T ∗z S as the hyperplane through the origin in R2n which is orthogonal to the vector
ν(z).

Lemma 3.1. For all z ∈ S and ξ ∈ T ∗z S, the symbol of order 0 of the operator MS

is equal to

σ0(MS)(z, ξ) =
1
2

n∑
j=1

(
νj(z)

ξn+j

|ξ|
− νn+j(z)

ξj

|ξ|

)
Proof. Using Lemma 2.1 we get

MSf (z) =
1

σ2n

∫
S

f(ζ)
n∑

j=1

ζ̄j − z̄j

|ζ − z|2n
νc,j(ζ) ds(ζ)

=
∫

S

f(ζ)
(
2

n∑
j=1

νc,j(ζ)
∂

∂ζj

)
G2n(z − ζ) ds(ζ),(3.1)

where σ2n is the area of the (2n− 1) -dimensional sphere in R2n, and

G2n(z) =
1

σ2n(2− 2n)
1

|z|2n−2

is the standard fundamental solution of convolution type of the Laplace operator
in R2n.

Let G2n stand for the operator with Schwartz kernel G2n(z − ζ) in R2n. This
is a polyhomogeneous pseudodifferential operator of order −2 well known as the
Newton potential in R2n. Its principal symbol is −|ξ|−2. The equality (3.1) means
that

(3.2) MSf (z) = G2n

(
2

n∑
j=1

νc,j(ζ)
∂

∂ζj

)′
(fσS) ,

where the prime stands for the transposed operator, and σS is the surface layer on
S.

We thus see that the pseudodifferential MS on S is the restriction to S of the
pseudodifferential operator

Ψ = G2n

(
2

n∑
j=1

νc,j(ζ)
∂

∂ζj

)′
on all of R2n. This latter is of order −1 and its principal symbol is easily evaluated,
namely

σ−1(Ψ)(z, ξ) =
ı

|ξ|2
n∑

j=1

νc,j(z) (ξj − ıξn+j)

= ı
n∑

j=1

νc,j(z)
ξj − ıξn+j

|ξ|2
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for z in a neighbourhood of S and ξ ∈ R2n. A familiar argument now shows that
the principal symbol of MS is given by the formula

σ0(MS)(z, ξ) =
1
2π

p.v.

∫ ∞

−∞
σ−1(Ψ)(z, tν(z) + ξ) dt

=
ı

2π

n∑
j=1

νc,j(z) p.v.

∫ ∞

−∞

(tνj(z) + ξj)− ı(tνn+j(z) + ξn+j)
|tν(z) + ξ|2

dt

=
ı

2π

n∑
j=1

νc,j(z) p.v.

∫ ∞

−∞

tνc,j(z) + (ξj − ıξn+j)
t2 + 2t 〈ν(z), ξ〉+ |ξ|2

dt

for all z ∈ S and ξ ∈ R2n orthogonal to the vector ν(z). Note that the integral on
the right-hand side diverges, however, its Cauchy principal value exists, which is
due to the condition 〈ν(z), ξ〉 = 0. We finally obtain

σ0(MS)(z, ξ) =
ı

2π

n∑
j=1

νc,j(z) (ξj − ıξn+j)
∫ ∞

−∞

1
t2 + |ξ|2

dt

=
ı

2|ξ|

n∑
j=1

νc,j(z) (ξj − ıξn+j) ,

which just amounts to

σ0(MS)(z, ξ) =
1
2

n∑
j=1

(
νj(z)

ξn+j

|ξ|
− νn+j(z)

ξj

|ξ|

)
+

ı

2|ξ|
〈ν(z), ξ〉,

showing the lemma. �

Note that for S = {z ∈ Cn : =zn = 0} Lemma 3.1 gives

σ0(MS)(z, ξ) = −1
2

ξn

|ξ|
,

which obviously agrees with the symbol of the Hilbert transform on the real axis,
i.e., for n = 1.

Worth mentioning a very simple and transparent geometric interpretation of the
symbol σ0(MS). The tangent hyperplane TzS of S at a point z contains the complex
plane TC,zS of real dimension 2n−2 determined by the equation (νc(z), ζ − z) = 0,
where by (·, ·) is meant the scalar product in Cn. This plane is called the complex
tangent plane of S at z. The vector νc(z) ∈ Cn spans over C a complex plane
NC,zS of real dimension 2 in Cn, which is called the complex normal plane of
S at z. The whole space Cn splits into the orthogonal sum TC,zS ⊕ NC,zS, if
we put the origin at z. The question is now how well is S fit in this complex
decomposition. The complex vector νc(z) is identified under the complex structure
in R2n with the real vector ν(z). Hence, the multiplication of νc(z) with ı puts it
in the tangent hyperplane TzS. Being the intersection of TzS and NC,zS, the real
vector ıνc(z) = (−νn+1, . . . ,−ν2n, ν1, . . . , νn) completes νc(z) to an orthonormal
basis of NC,zS. The real line in TzS determined by ıνc(z) is well known in complex
analysis and is usually referred to as distinguished direction. Lemma 3.1 then shows
that

(3.3) σ0(MS)(z, ξ) =
1

2|ξ|
〈ıνc(z), ξ〉,
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i.e., the value of the principal symbol of MS at (z, ξ) just amounts to half the
orthogonal projection of the cotangent vector ξ ∈ T ∗z S onto the distinguished di-
rection.

4. C∗ -algebra

Suppose D is a bounded domain in Cn whose boundary is a smooth compact
closed hypersurface S.

We first note that the operator MS is essentially selfadjoint, i.e., the difference
MS − M∗

S is compact. This is a direct consequence of the fact that the principal
symbol of MS is real-valued. Furthermore, it is known that the operator MS is
selfadjoint if and only if S is a sphere in Cn, cf. [5].

Denote byA = A(C(S),MS) the C∗ -algebra generated by the Bochner-Martinel-
li integral MS , its adjoint operator M∗

S , and by all multiplication operators aI with
a ∈ C(S).

For n = 1, the algebra A(C(S),MS) coincides with the whole algebra of one-
dimensional singular integral operators, while for n ≥ 2 it is a proper subalgebra of
zero order pseudodifferential operators on S.

Theorem 4.1. The C∗ -algebra A is irreducible.

Proof. In order to establish the theorem we show that the algebra A does not
have any non-trivial invariant subspace. Each invariant subspace of its subalgebra
{aI : a ∈ C(S)} ∼= C(S) is obviously of the form VΣ = {χΣf : f ∈ L2(S)},
where χΣ is the characteristic function of a measurable subset Σ ⊂ S of positive
measure. Now, the space VΣ is invariant for the entire algebra A if and only if
χΣMS = MSχΣI. In this case the function

χΣ = χΣ · 1

=
(
χΣ

(1
2
I + MS

))
1

=
((1

2
I + MS

)
χΣI

)
1

=
(1

2
I + MS

)
χΣ

admits an analytic extension to the domain D which thus possesses the boundary
values

χΣ (z) =
{

1, if z ∈ Σ ,
0, if z ∈ S \ Σ ,

on S. Thus, modulo a zero measure set, either Σ = ∅ or Σ = S. Hence it follows
that each invariant subspace of the algebra A is trivial, being either {0} or L2(S),
as desired. �

Being irreducible, the algebra A contains non-zero compact operators (for ex-
ample, commutators [aI,MS ]). By Theorem 2.4.9 of [6], it contains the entire ideal
K of compact operators on L2(S).

Denote by Â = A/K the Calkin algebra of the algebra A. The essential spectrum
of the operator MS , i.e., the spectrum of the image M̂S of MS in the Calkin algebra,
coincides obviously with the range of its principal symbol. By (3.3), the essential
spectrum of MS just amounts to the interval [−1/2, 1/2], and thus, by the standard
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functional calculus, the C∗ -subalgebra of Â generated by M̂S is isomorphic and
isometric to C[−1/2, 1/2].

The description of the Calkin algebra Â can be obtained either by using the
familiar localization technique or by deducing the result from the well-known de-
scription of the Calkin algebra for the C∗ -algebra of zero order pseudodifferential
operators on the surface S.

Theorem 4.2. The Calkin algebra Â of the algebra A = A(C(S),MS) is isomor-
phic and isometric to C(S × [−1/2, 1/2]). Under this isomorphism, the homomor-
phism π : A → Â is generated by the following mapping of generators of the algebra
A:

π : aI 7→ a(z), z ∈ S;
π : MS 7→ σ, σ ∈ [−1/2, 1/2].

Note that a zero order pseudodifferential operator Ψ belongs to the algebra A if
and only if its principal symbol has the form

(4.1) σ0(Ψ)(z, ξ) = a
(
z,

1
2|ξ|

〈ıνc(z), ξ〉
)

for a suitable function a ∈ C(S × [−1/2, 1/2]).

5. The Szegö projection

Let D be a strictly pseudoconvex domain in Cn, and let S be its boundary. As
in Section 2, we write ds for the surface measure on S, and consider L2(S) with
respect to this measure.

Moreover, we denote by H2(S) the Hardy space on S, that is, the subspace of
L2(S) consisting of all functions admitting an analytic continuation to the domain
D. Let PS stand for the orthogonal projection of L2(S) onto H2(S), called also
Szegö projection.

By Lemma 2.2, the limit values on S of the Bochner-Martinelli integral from
within S are related to the singular integral by the formula M− = (1/2)I +MS . In
[8] the iterations of M− are proved to converge in the strong topology of L(L2(S))
to the Szegö projection PS in case S is the boundary of a ball in Cn. The ques-
tion arises whether this result can be extended to arbitrary strictly pseudoconvex
domains D.

Using (3.3), we may readily evaluate the principal symbol of iterations MN
− for

all N = 1, 2, . . .. This yields

σ0(MN
− )(z, ξ) =

(1
2

+
1

2|ξ|
〈ıνc(z), ξ〉

)N

=
1

2N

(
1 + 〈ıνc(z),

ξ

|ξ|
〉
)N

(5.1)

whenever z ∈ S and ξ ∈ R2n is orthogonal to the normal vector ν(z). From (5.1)
we deduce by the Schwarz inequality that

(5.2) lim
N→∞

σ0(MN
− )(z, ξ) =

{
1, if ξ = t ıνc(z), t > 0,
0, otherwise,

for all z ∈ S. Moreover, this convergence is uniform on each subset of T ∗S of the
form z ∈ S and |ξ/|ξ| − ıν(z)| ≥ ε, with ε > 0.
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Note that {(z, ξ) : ξ = t ıνc(z), t > 0} is just the symplectic submanifold of T ∗S,
on which the symbols of generalized Toeplitz operators live, cf. [2, § 1]. In [2], the
covector ıνc(z) is written as one-form

−ι∗ = ∂̄%(z)
|∂̄%(z)|

where ι : S ↪→ Cn is the inclusion map.
The equality (5.2) shows that the limit of σ0(MN

− ) is exactly the principal sym-
bol of the Szegö projection PS . Since the generalized Toeplitz operators of negative
order induce compact operators on L2(S), cf. ibid., (5.2) gives us a microlocal ver-
sion of Romanov’s theorem [8] which is also valid for arbitrary strictly pseudoconvex
surfaces.

Theorem 5.1. Assume that S is the boundary of a strictly pseudoconvex domain.
Then

lim
N→∞

((1/2)I + MS)N = PS + KS

in the strong topology of L(L2(S)), where KS is a compact operator.

As but one direct and simple consequence of Theorem 5.1 we mention that

PS (2MS) + K ′
S = (2MS) PS + K ′′

S

= PS (2MS) PS + K ′′′
S

= PS ,

where K ′
S and K ′′

S are compact operators, and K ′′′
S = K ′

SPS = PSK ′′
S . While for S

being the boundary of a ball one has exactly

PS (2MS) = (2MS) PS

= PS (2MS) PS

= PS .

In conclusion we mention as well that if Ψ is a pseudodifferential operator in
A with principal symbol (4.1) then PSΨPS = PS (a(z, 1/2)I)PS holds modulo
compact operators.
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