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Introduction.

In the last 30-40 years functional equations have grown to be a large, indepen-
dent branch of mathematics with its own methods, circle of problems and, what is
of great importance, abounding in applications. If on an early stage of development
(XVIII - XIX centuries) functional equations played some auxiliary, may be even
decorative role, describing in an abstract form various fundamental functions from
Analysis, then nowadays functional equations turn out to be a powerful tool when
solving analytical problems in quite different fields of mathematics. One of the first
and most important functional equations was considered by Cauchy. He formulated
the following problem (in a local form): find all continuous function F on the interval
{z | −1 ≤ z ≤ 1} such that the relation

F (x + y)− F (x)− F (y) = 0 (0.1)

valid for all points (x, y) in the square

K = {(x, y) | |x± y| ≤ 1}.

As is well known, the only linear functions F (z) = λz, λ is a constant, solve this
problem. It looks surprisingly, but as was clarified recently, a great deal of various
problems in such diverse fields as integral and functional equations, measure theory,
integral geometry, boundary problems for hyperbolic partial differential equations
turn out to be reducible (sometimes in an equivalent manner) to the functional
equation

F
(
(δ1 + δ2)(t)

)− F
(
δ1(t)

)− F
(
δ2(t)

)
= h(t), t ∈ I = (−1, 1), (0.2)

essentially coinciding with Cauchy equation (0.1). Here δ1 and δ2 are given contin-
uous maps of the interval I into itself, and h and F are some given and unknown
functions with corresponding domains. Precisely this equation is the main object
of the present paper. It is worth adding that equation (0.2) can be regarded as an
analog of the famous cohomological equation

F (t)− F
(
δ(t)

)
= h(t)

appearing in connection with many problem of the theory of dynamical systems and
ergodic theory. Thus, equation (0.2) is of interest not only by itself as an object
of analysis. It is also a necessary link in solving various problems in diverse fields
that, at first sight, by no means have any connection with functional equations. It
turns out that the solvability properties of equation (0.2) and the methods of their
deriving are determined by some mutual properties of the functions δj(t), j = 1, 2.
These mutual properties are formalized by means of a ”configuration” formed by the
functions δj . As will be seen below, when studying equation (0.2) in the case of a Z-
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configuration, we arrive at the explicit (!) solution of the equation, remaining within
frameworks of pure analysis. But the same equation in the case of a P- configura-
tion requires using some delicate results from functional analysis and also applying
new dynamical methods. The application of these methods becomes possible if we
associate equation (0.2) with the semigroup Φδ of maps from an interval I into itself
generated by δ1 and δ2. Not only all the main results related to solvability properties
are formulated in terms of orbits of this semigroup, but also their proofs are based
on the existence of some specific attractors of the corresponding dynamical system.
All these results and methods are the subject of this paper. A special attention is
given to the applications of the results in functional equations in Integral geome-
try and in PDE. The existence of such deep and unexpected connection between
these parts of analysis is the main novelty related to the general theory of functional
equations. It would be interesting, by my opinion, to clarify, whether some other
functional equations different from equation (0.1), are also closely connected with
some analytical problems of quite different form.

1 The main notations and definitions.

In this paper we deal mostly with two intervals

I = {t| − 1 ≤ t ≤ 1} and I ′ = {t| 0 ≤ t ≤ 1}.
Definition 1. Given some real-valued functions H and α1, α2 on the interval
I = I or I ′, the equation

F
(
(α1 + α2)(t)

)− F
(
α1(t)

)− F
(
α2(t)

)
= H(t), t ∈ I (1)

with F being an unknown real-valued function with the domain

DF = R(
α1 + α2

) ∪R(α1) ∪R(α2)

is said to be Cauchy type functional equation on I.
Introducing a linear operator Bα : C(I) → C(DF ) of the form

Bα : F (t) 7→ F (α1(t) + α2(t))− F (α1(t))− F (α2(t))

makes it possible to rewrite (1) in a short form as

BαF (t) = H(t), t ∈ I.

As will be seen, both solvability properties of this equation and the methods
of their receiving depend essentially on some mutual properties (configurations)
of the functions α1 and α2. In this paper we restrict ourselves to two different
configurations formed by α1 and α2, and we fix this difference in the following
definitions.
Definition 2. We say that the maps α1 and α2 from I into itself form a P -
configuration if

1◦ both functions do not decrease on I;

2◦ the ranges of the maps α1 and α2 are the closed intervals [0, 1]

and [−1, 0], respectively.

It follows that

α1(−1) = α2(1) = 0, α1(1) = 1, α2(−1) = −1. (2)

Definition 3. We say that real functions α1(t) and α2(t) on the interval I ′ form
a Z - configuration if
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3◦ αk(0) = 0, k = 1, 2;

4◦ αk(t) > 0, t > 0, k = 1, 2.

Figures 1 and 2 represent typical examples of Z- and P - configurations, respectively.
Dotted lines in both figures are the graphs of the functions z = α1(t)+α2(t) in (t, z)
- plane.

We note that the above conditions determining the two configurations are not
artificial in the sense that all functional equations of the type (1) that have up to
now arisen in various problems in geometry, in the theory of integral and functional
equations, and also in the theory of boundary problems for hyperbolic partial dif-
ferential equations satisfy these conditions (see [P1] - [P3]). Some confirmations of
this fact the reader will find in Sec. 4.

It turns out that an essential information related to the solvability of equation
(1), especially, in the case of a P - configuration, may be derived by means of
new dynamical methods, introduced in the author’s papers [P5]. The application of
these methods becomes possible if we associate this equation with a noncommutative
semigroup of maps from the interval I into itself, generated by α1 and α2. Pass to
the exact formulations.

Definition 4. Given maps α1, α2, from the interval I into itself we denote by
Φα the noncommutative semigroup of maps from I into itself generated by these
maps. The elements of this semigroup are all maps from I into itself of the form

αJ〈0〉 = id, αJ〈n〉 = αjn ◦ · · · ◦ αj1 , n = 1, 2, . . . ,

where J〈n〉 = (j1, . . . , jn) is an arbitrary n - tuple with all jk = 1, 2, and ◦ denotes
the composition of maps. This semigroup determines naturally a dynamical system.

When dealing with a Z - configuration and the corresponding functions αj are
defined on the interval I ′, it is convenient to work with the spaces

C〈k+r〉(I ′) = {u(t) |u(t) = Pk(t) + tk+rφ(t)},

where k ≥ 1 is an integer, and |r| < 1. Here Pk(t) is an arbitrary polynomial of
degree ≤ k, and ϕ(t) is an arbitrary continuous functions on I ′ if r > 0 and, in
addition, ϕ(0) = 0, if r = 0. With the norm

‖u‖〈k+r〉 = supI′ |Pk(t)|+ supI′ |φ(t)|

the space C〈k+r〉(I ′) becomes a Banach space. Roughly speaking, elements of this
space are continuous functions on I ′ whose derivative u(k) at the point t = 0 satisfy
the Hölder condition of order r. It is obvious that C〈k−r〉(I ′) ⊃ C〈k〉(I ′) ⊃ C〈k+r〉(I ′).
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2 Statement of the problems and main results.

2.1 The case of a Z-configuration.

In this subsection we deal with the functional equation (1), where t ∈ I ′, and the
functions α1, α2 form a Z-configuration. It is assumed, unless otherwise stated, that
αj(t) ∈ C〈1〉(I ′), j = 1, 2. As to an unknown function F , it has to be defined on
the interval Î = {t | 0 ≤ t ≤ τ} with τ = max

t∈I′

∑
j αj(t). It is obvious that the

homogeneous equation BαF = 0 has nontrivial solutions F (t) = λt, λ ∈ R. On
the other hand, differentiating equation (1) at the point t = 0 leads to the relation
(independently of F !)

H ′(0) = 0, (3)

which is thus a necessary condition for solvability of this equation. These observa-
tions enable us to formulate the following problem for equation (1) which is (as will
be seen) well posed.

Given real number λ and a function H ∈ C〈1〉(I ′), satisfying conditions (3) find
a function F ∈ C〈1〉(Î) such that

BαF = H on I ′, F ′(0) = λ. (4)

The exposition of the results related to this problem we begin with the theorem
which describes an unexpected connection of the dynamical system generated by
the semigroup Φα with some classical structures of analysis, on the one hand, and
on the other hand, with the Cauchy equation F (x + y)−F (x)−F (y) = 0, which is
undoubtedly one of fundamental equations in analysis.

Theorem 1 1◦ Let functions α1(t) and α2(t) satisfy the hypotheses

α1(t) + α2(t) = t, t ∈ I ′, (5)

and
α′1(0)α′2(0) 6= 0. (6)

If both functions belong to the space C〈1+r〉(I ′), 0 < r < 1, then, for an arbitrary
function H ∈ C〈1+r〉(I ′) satisfying the boundary conditions

H(0) = H ′(0) = 0, (7)

the series ∑

J

H
(
αJ(t)

)
, t ∈ I,

with the summation over all multi-indices J = J〈n〉, n = 0, 1, . . ., converges on I ′

absolutely and uniformly.
2◦ The sum F (t) of this series is a solution of equation BαF = H and belongs to
the space C〈1+r〉(I ′).

Thus, under condition (5) the relation

F (t) =
∑

J

H
(
αJ(t)

)

determines a solution to equation (1) in an explicit form. In the theory of dynamical
systems it is usual to call such series orbital series corresponding to the dynamical
system Φα.

The complete solution of problem (4) is given in the following two theorems.
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Theorem 2 If the functions α1 and α2 satisfy condition (6) and H = 0 on I ′, then,
for a given real number λ, the linear function F (t) = λt is a unique solution of the
problem (4) lying in the space C〈1〉(I ′).

It is of great importance to note that this uniqueness result is established, in con-
trast to the previous theorem, in the wider space C〈1〉(I ′) and without any additional
hypotheses, related to the function α = α1 + α2.

Theorem 3 Assume that, in addition to condition (6) the function α is, in con-
trast with (5), invertible and the inverse function α−1 is continuous. Then, for an
arbitrary function H ∈ C〈1+r〉(I ′), satisfying condition (3), and for any real number
λ, there is a unique solution F ∈ C〈1+r〉(I ′) of problem (4).

Thus, by using the operator terminology, the linear operator Bα is a Fredholm
operator: C〈1+r〉(I ′) → C〈1+r〉(Î) of index zero.

The following theorem relates to the regularity of the solution F to problem (4).
Assume that the functions αj(t), j = 1, 2, lie in the space Ck(I ′) of k times

continuously differentiable functions, k = 1, 2, . . ..

Theorem 4 If the functions α1(t) and α2 satisfy hypotheses (5) and (6), and H ∈
Ck(I ′), k = 1, 2, . . ., then all solutions of the equation BαF = H belong to the space
Ck(I ′). If the function H(t) satisfies hypothesis (7), then the series

∑
J H

(
αJ(t)

)
converges in the topology of Ck(I ′).

This result plays a crucial role when applying the technique of functional equa-
tions in the theory of boundary problems for partial differential equations (where
such an result is usually said to be increasing in smoothness ) (see Sec. 4).

2.2 The case of a P-configuration.

In this subsection we deal with the Cauchy type functional equation BαF =
H(t), but now t ∈ I and the functions α1(t) and α2(t) form a P-configuration. As
it follows from Definition 2, for an arbitrary function F ∈ C(I), the relation

(BαF )(−1) = BαF (1) = −F (0) (8)

holds. It follows that the periodicity condition

H(−1) = H(1) (9)

is necessary for solvability of the equation in question and, hence, the cokernel
cokerBα of the operator Bα is not empty. As the kernel kerBα is also nonempty (as
we already know), the best possible result related to the solvability of equation (1) is
the fredholmness of Bα and, in addition, the relations dimkerBα = dim cokerBα = 1.
This result will be achieved, if we prove the unique solvability of the following bound-
ary problem:

given a number λ ∈ R and a function H satisfying hypothesis (9), to find
a function F on I such that

BαF = H on I and F (1) = λ. (10)

The conditions for such solvability are related to smoothness of the functions F
and H, and to some nontrivial features of the dynamical system generated by the
semigroup Φα. The following notions were introduced in [P1].
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1) An ordered set O = (t1, . . . , tk+1) of points in I is said to be orbit (or
orbit of the point t1) generated by Φα if

tk+1 = αjk
(tk), 1 ≤ k ≤ n, (11)

for an arbitrary natural n ≥ 1.

2) The subsets in I

T1 = {t |α′2(t) = 0}, T2 = {t |α′1(t) = 0}, T = T1 ∪ T2

are said to be guiding sets.

3) An orbit O = (t1, . . . , tn+1), n = 1, 2, . . . is said to be T - proper if in
(11) αjk

= α1, when tk ∈ T1, and αjk
= α2, when tk ∈ T2.

4) If all points of an orbit O belong to the guiding set T , then O is said
to be T - guided orbit.

5) If the end points of an orbitO = (t1, . . . , tn+1) coincide, i.e. t1 = tn+1,
then this orbit is said to be periodic orbit or cycle.

Definition. We denote by NT
α the set of all T - proper T - guided periodic orbits

in I.
Now everything is ready to formulate the main results treated the solvability

properties of equation (1) in the case of a P-configuration.
Denote by T ′j the set of all limit points of the set Tj , j = 1, 2, and let

τ1 = min{t |t ∈ T ′1}, τ2 = max{t |t ∈ T ′2}.

Theorem 5 Assume that the functions α1(t) and α2(t) belong to C1(I) and satisfy
inequalities

α′1(t) + α′2(t) > 0 on I
◦

and α′1(−1)α′2(1) > 0 (12)

Let also
τ2 < τ1, (13)

if both sets T1 and T2 are infinite, and let Tj be an arbitrary set in I, if the set
Tj′ , j′ 6= j, is finite. Then, all solutions of the homogeneous equation

F
(
α1(t) + α2(t)

)
− F

(
α1(t)

)
− F

(
α2(t)

)
= 0 (14)

are linear functions F (z) = λz, if

NT
α = ∅.

The assertion of the theorem remains true if the condition F (1) = λ in (10) is
replaced by the condition F ′(0) = λ. This leads to some insignificant changes in the
proof.

Theorem 6 Assume that in addition to hypotheses (12) and (13) both functions
α1(t) and α2(t) belong to C2(I). Then, for all real λ and for an arbitrary function
H ∈ C2(I), satisfying condition (9), there is a unique solution F ∈ C2(I) of problem
(10) if and only if

NT
α = ∅. (15)

The inverse operator h 7→ F from the space C2(I) into itself is continuous.
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3 Proofs of Theorems 1-7.

3.1 Proof of Theorem 1.

1◦ Set F (t) =
∑

J H
(
αj(t)

)
. The function H(t), as it follows from condition (7)

and from the definition of the space C〈1+r〉(I ′), can be represented as H(t) = t1+rϕ(t)
with ϕ(t) being a continuous function on I ′. For this reason,

F (t) =
∑

J

α1+r
J (t)ϕ(αJ(t) ) =

∞∑

n=0

∑

J〈n〉

α1+r
J〈n〉

(t)ϕ(αJ〈n〉(t) ).

Introduce the notation

An(t) =
∑

J〈n〉

α1+r
J〈n〉

(t), n = 1, 2, . . . .

Taking into account the relation αJ〈0〉(t) = t we can rewrite the function An(t) in
the form

An(t) = t1+r
2∑

j1,...,jn=1

(
αjn ◦ . . . ◦ αj1(t)

αjn−1 ◦ . . . ◦ αj1(t)

)1+r

◦ . . . ◦
(

αj1(t)
t

)1+r

.

Note that, by relations 3◦, (5) and (6) there is a constant q < 1 such that the
inequality (

α1(t) / t
)1+r +

(
α2(t) / t

)1+r ≤ q

holds for all t ∈ I. Therefore, for an arbitrary value k, 1 ≤ k ≤ n, we have

2∑

jk=1

(
αjk

◦ . . . ◦ αj1(t) / αjk−1
◦ . . . ◦ αj1(t)

)1+r ≤ q,

where αj 0 = id. This leads immediately to the relation An(t) ≤ t1+rqn which
implies the uniform convergence of the series

∑
J(αJ(t) / t)1+r. This results in the

representation of the function F (t) in the form

F (t) = t1+rf(t), t ∈ I ′,

with f(t) a continuous function, and completes the proof of assertion 1◦.
2◦ By virtue of relation (5) it can be directly shown that the function F (t) satisfies
the Cauchy type functional equation (1). This completes the proof of Theorem 1.

3.2 Proof of Theorem 2.

Dividing both parts of the homogeneous equation (1) by (α1 + α2)(t), we arrive
at the equivalent functional equation

Φ(α1(t) + α2(t))− ρ1(t)Φ(α1(t))− ρ2(t)Φ(α2(t)) = 0, t ∈ I ′, (16)

where

Φ(z) = F (z)/z, ρj(z) = αj(z)/(α1 + α2)(z), z ∈ I ′ \ {0},
Φ(0) = 0, ρj(0) = α′j/(α1 + α2)′(0), j = 1, 2,

and all the functions αj , ρj , Φ are continuous on the interval I ′. Show that any
continuous solution Φ of equation (16) is a constant. Indeed, let M = maxI′ Φ and
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let t0 = inf{t |Φ(t) = M}. Assume that t0 > 0. Then, by continuity, Φ(t0) = M,
and, therefore, the relation

Φ(α1(t1)) = Φ(α2(t1)) = M,

is valid for an arbitrary point t1 belonging to the nonempty subset {t | α1(t) +
α2(t) = t0}, as ρ1(t) + ρ2(t) = 1 for all values t ∈ I ′. However, this contradicts
to the definition of the point t0, as α1(t1) < t0 (by Definition 3). Thus, we have
proved that t0 = 0, and hence, Φ(0) = M. Repeating literally these arguments in
connection with the point of minimum of the function Φ, we arrive at the relation
Φ(0) = minI′ Φ, and this proves the theorem.

3.3 Proof of Theorem 3.

The result follows immediately from the previous two theorems. To see this, it
suffices to change variable α(t) → t. Then we arrive at the functional equation

G(t)−G(ρ1(t))−G(ρ2(t)) = Ĥ(t), t ∈ Î ,

where

ρ1(t) = α1 ◦ α−1(t), ρ2(t) = α2 ◦ α−1(t), Ĥ(t) = H ◦ α−1(t)

and Î = (0, r), r = max
I′

(α1(t) + α2(t)). It is clear that the above change of variable

preserves the C〈1+r〉- smoothness of all involving functions, and, in addition, the
functions ρj(t), j = 1, 2 and H(t) satisfy conditions (5) and (3), respectively, on Î.
If we represent the write-hand side Ĥ(t) in the form Ĥ(t) = Ĥ(0) +H(t), then the
function G(t) = G(t) + Ĥ(0) is a solution of the equation

BρG := G(t)− G(ρ1(t))− G(ρ2(t)) = H(t)

By Theorem 1 the function

G(t) =
∑

J

H(ρJ(t))

solves this equation, and using Theorem 2 we find that the function

G(t) = −Ĥ(0) +
∑

J

H(ρJ(t)) + λt (17)

is a unique (in the space C〈1+r〉(Î)) solution of the problem

BρG = Ĥ on Î , G′(0) = λα′(0).

It remains to substitute α(t) for t in (17), and to obtain the solution to problem (4)
in an explicit form.

3.4 Proof of Theorem 4.

For the sake of brevity we restrict ourselves to the case k = 2. The general case
can be considered by an interested reader without any difficulty, as the proof below
includes all the essential features of the general case. Note, first of all, that, as it
follows from Definition 3 and relation (6),
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for an arbitrary value T1, 0 < T1 < 1, there is a number N = N(T1)
such that the relation

αJ〈n〉(t) < T1 for all n ≥ N

is valid at any point t ∈ I ′.

Further, as it follows from (5) and (6), there is a number T2 such that the relation

0 < α′j(t) < γ < 1, j = 1, 2,

holds at all points t, 0 ≤ t ≤ T2, for some constant γ. Take an arbitrary number
T1 < 1 and let T = min(T1, T2). Now introduce a number N > 1 such that at all
points t > 0 and for n ≥ N the relations

αJ〈n〉(t) < T and, consequently, α′j(αJ〈n〉(t)) < γ (18)

are valid. Let us prove the differentiability of the function F . Consider the series∑
J | H ′

(
αJ(t)

)
α′J(t) | and write down it in the form

N−1∑

n=0

∑

J〈n〉

∣∣∣H ′
(
αJ〈n〉(t)

)
α′J〈n〉(t)

∣∣∣ +
∞∑

n=N

∑

J〈n〉

∣∣∣H ′
(
αJ〈n〉(t)

)
α′J〈n〉(t)

∣∣∣ , (19)

with
∑

J〈n〉 being the summation over all multiindices J〈n〉 = (j1, . . . , jn), n =
1, 2, . . .. If we use condition (3) and the inequality | H ′(t) |< ct with c a posi-
tive constant, which follows (3), then we conclude that the second term in (19) is
majorized by the function

∞∑

m=1

Am(t) =
∞∑

m=1

∑

J〈m〉

∑

J〈N〉

αJ〈m〉

(
αJ〈N〉(t)

) ∣∣∣∣
(
αJ〈m〉

(
αJ〈N〉

))′∣∣∣∣ .

We are now going to estimate from above the function Am(t), m = 1, 2. Taking into
account the positiveness of the functions α1(t) and α2(t) for t > 0 we find that

Am(t) =
∑

J〈m−1〉

∑

J〈N〉

α1 ◦ αJ〈m−1〉

(
αJ〈N〉(t)

) ∣∣∣∣
(
α1 ◦ αJ〈m−1〉

(
αJ〈N〉(t)

))′∣∣∣∣

+
∑

J〈m−1〉

∑

J〈N〉

α2 ◦ αJ〈m−1〉

(
αJ〈N〉(t)

) ∣∣∣∣
(
α2 ◦ αJ〈m−1〉

(
αJ〈N〉(t)

))′∣∣∣∣

=
∑

J〈m−1〉

∑

J〈N〉

(
α1

(
αJ〈m−1〉(αJ〈N〉)

)
α′1

(
αJ〈m−1〉(αJ〈N〉)

)) ∣∣∣∣
(
αJ〈m−1〉

(
αJ〈N〉

))′∣∣∣∣

+
∑

J〈m−1〉

∑

J〈N〉

(
α2

(
αJ〈m−1〉(αJ〈N〉)

)
α′2

(
αJ〈m−1〉(αJ〈N〉)

)) ∣∣∣∣
(
αJ〈m−1〉

(
αJ〈N〉

))′∣∣∣∣

≤ γ
∑

J〈m−1〉

∑

J〈N〉

αJ〈m−1〉
(
αJ〈N〉

) ∣∣∣∣
(
αJ〈m−1〉

(
αJ〈N〉

))′∣∣∣∣ = γAm−1(t)

On the last step the relations (18) and (5) were used. This proves the uniform
convergence of the series (19) and, at the same time, the differentiability of the
function F (t).
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It remains to prove that F ∈ C2(I ′), if H ∈ C2(I ′). To do this, it suffices as
above, to establish the uniform convergence of the series

∞∑

n=N

∑

J〈n〉

(
H

(
αJ〈N〉(t)

))′′
=

∞∑

n=N

∑

J〈n〉

H ′′
(
αJ〈n〉(t)

)(
α′J〈n〉(t)

)2

+
∞∑

n=N

∑

J〈n〉

H ′
(
αJ〈n〉(t)

)
α′′J〈n〉(t) :=

∑
1 +

∑
2,

where the relation (
f(g)

)′′ = f ′′(g)g′2 + f ′(g)g′′ (20)

has been used. To prove the convergence of the series
∑

1 consider, as above, the
series

∑∞
m=1 Bm(t), majorizing

∑
1, where

Bm(t) =
∑

J〈m〉

∑

J〈N〉

(
αJ〈m〉

(
αJ〈N〉(t)

))′2
.

Having used again the relation αJ〈N〉(t) ∈ (0, T ) for all points t > 0, we find that

α′j
(
αJ〈N〉(t)

)
≤ γ, and hence

Bm(t) =
∑

J〈m−1〉

∑

J〈N〉

(
α1

(
αJ〈m−1〉

(
αJ〈N〉(t)

)))′2
+

(
α2

(
αJ〈m−1〉

(
αJ〈N〉(t)

)))′2

=
∑

J〈m−1〉

∑

J〈N〉

(
α′1

(
αJ〈m−1〉

(
αJ〈N〉(t)

)))2 (
αJ〈m−1〉

(
αJ〈N〉(t)

))′2

+
(
α′1

(
αJ〈m−1〉

(
αJ〈N〉(t)

)))2 (
αJ〈m−1〉

(
αJ〈N〉(t)

))′2 ≤ γ2Bm−1(t)

This proves the convergence of the series
∑

1. It remains to establish the uniform
convergence of the series

∑
2, or, remembering that |H ′(t)| ≤ ct, the analogous

convergence of the series
∑∞

m=1 Cm(t), where

Cm(t) =
∑

J〈m〉

∑

J〈N〉

αJ〈m〉

(
αJ〈N〉(t)

) ∣∣∣∣
(
αJ〈m〉

(
αJ〈N〉(t)

))′′∣∣∣∣ .

Using, as above, relation (20) and the identity αJ〈m〉 = α1 ◦ αJ〈m−1〉 + α2 ◦ αJ〈m−1〉 ,
we arrive at the inequality
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Cm(t) =
∑

J〈m−1〉,J〈N〉

α1

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣∣
(
α1

(
αJ〈m−1〉(αJ〈N〉)

))′′∣∣∣∣

+
∑

J〈m−1〉,J〈N〉

α2

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣∣
(
α2

(
αJ〈m−1〉(αJ〈N〉)

))′′∣∣∣∣

≤
∑

J〈m−1〉,J〈N〉

(
α1

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣α′′1
(
αJ〈m−1〉(αJ〈N〉)

)∣∣∣
(
αJ〈m−1〉(αJ〈N〉)

)′2

+ α2

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣α′′2
(
αJ〈m−1〉(αJ〈N〉)

)∣∣∣
(
αJ〈m−1〉(αJ〈N〉)

)′2)

+
∑

J〈m−1〉,J〈N〉

(
α1

(
αJ〈m−1〉(αJ〈N〉)

)
α′1

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣∣
(
αJ〈m−1〉(αJ〈N〉)

)′′∣∣∣∣

+ α2

(
αJ〈m−1〉(αJ〈N〉)

)
α′′2

(
αJ〈m−1〉(αJ〈N〉)

) ∣∣∣∣
(
αJ〈m−1〉(αJ〈N〉)

)′′∣∣∣∣
)

≤ c
∑

J〈m−1〉,J〈N〉

(
αJ〈m−1〉(αJ〈N〉)

)′2

+ γ
∑

J〈m−1〉,J〈N〉

αJ〈m−1〉(αJ〈N〉)
∣∣∣
(
αJ〈m−1〉(αJ〈N〉)

)′′∣∣∣ = cBm−1(t) + γCm−1(t),

where c = max{sup | α′′1(t), sup | α′′2(t) |}. From what was proved above it follows

that the series
∑∞

m=1 Bm(t) converges uniformly, and, therefore, it is true with

respect to the series
∑∞

m=1 Cm(t). This completes the proof of Theorem 4 for k = 2.

3.5 Proof of Theorem 5.

Note first of all that without loss of generality we can restrict ourselves to the
case of equation

F (t)− F
(
δ1(t)

)
− F

(
δ2(t)

)
= 0, t ∈ I, (21)

where
δ′1(t) + δ′2(t) = 1, t ∈ I, and δ′1(−1)δ′2(1) > 0. (22)

Indeed, by the first relation in (12) the map α(t) = α1(t)+α2(t) from I into itself is
invertible. In addition, the boundary ∂I is invariant with respect to this map. The
change of variable α(t) → t reduces equation (14) to equation (21) with

δ1 = α1 ◦ α−1, δ2 = α2 ◦ α−1.

The new guiding sets Tj = {t | δ′j(t) = 1}, j = 1, 2, are nothing but the sets α−1Tj

with the ”old” Tj . The second relation in (12) and relation (13) remain true in the
new coordinate system due to relation α′(t) > 0. In order to avoid some technical
details we consider the only case where the set T2 is finite. The general case can be
studied on the basis of some specific results related to the attractors of dynamical
systems in question (see [P7]).

Introduce the notation

(BF )(t) = F (t)− F (δ1(t))− F (δ2(t)).

Substituting successively the values t = −1 and t = 1 in the relation (BF )(t) = 0
we find, remembering the definition of the function δj(t), that

(BF )(0) = 0.

11



This makes it possible to conclude that, for an arbitrary function F (t) ∈ C1(I),
relation (21) is equivalent to the relation

F ′(t)− δ′1(t)F
′
(
δ1(t)

)
− δ′2(t)F

′
(
δ2(t)

)
= 0, t ∈ I. (23)

To simplify notation let

aj(t) = δ′j(t), j = 1, 2, and F ′ = G.

Then equation (23) becomes

G(t)− a1(t)G
(
δ1(t)

)
− a2(t)G

(
δ2(t)

)
= 0, t ∈ I, (24)

where, by (22),

a1(t) + a2(t) = 1 aj(t) ≥ 0, j = 1, 2; t ∈ I, (25)
a1(−1)a2(1) 6= 0, (26)

and
Tj = {t | aj(t) = 1}, j = 1, 2.

To prove Theorem 5 it remains to show that the only solution of equation (24) is an
arbitrary constant F (t) = C. We will do this in several steps.

I. Let us show that the extremal values of any solution G(t) ∈ C(I) of equation
(24) spread only along T - proper orbits.

To this end, let M = max
I

G and let M = {t ∈ I | F (t) = M}. If G(t̂) = M ,

then G
(
δ1(t̂)

)
= M − ε1, G

(
δ2(t̂)

)
= M − ε2 for some nonnegative numbers ε1

and ε2. Substituting t̂ for t in equation (24) we find that a1(t̂)ε1 + a2(t̂)ε2 = 0. It
follows that if t̂ ∈ M \ T , then ε1 = ε2 = 0, and hence δ1(t̂) ∈ M, δ2(t̂) ∈ M. But
if t̂ ∈ M ∩ T1, then ε1 = 0, and consequently δ1(t̂) ∈ M. In just the same way,
if t̂ ∈ M ∩ T2, then δ2(t̂) ∈ M. Combining these observations with the definition
of T - proper orbit we conclude that together with every point t1 ∈ M the next
point of any T - proper orbit (t1, t2) also belongs to M. As δ1 and δ2 are maps in
I, this argument can be applied to the point t2. As a result we obtain one or two
points t3 of the form t3 = δj2(t2) = δj2 ◦ δj1(t1) lying in the set M, so that the orbit
O = (t1, t2, t3) turns out to be T - proper. Arguing in the same way, we conclude
that together with every point t1 ∈ M any its T - proper orbit O = (t1, t2, . . .) is
situated in the set M. This proves the above assertion with respect to the maximal
value of the function G(t). But what has been said above with respect to spreading
maximal value M of a solution F along T - proper orbits remains valid for a minimal
value m of the same solution. This completes the proof of assertion.

II. Assume that for an arbitrary point t ∈ I there is a T - proper orbit (t, t1,
t2, . . .) converging to one of the boundary points of I. Then, by continuity of the
function G(t), it attains its extremal values at the points t = −1 and t = 1. Substi-
tuting consecutively these points for t in equation (24) and using relations (2), (25)
and (26) we arrive at the relation

G(−1) = G(1) = G(0).

This means that the maximal and minimal values of G(t) coincide, and hence, G(t) is
a constant. But this immediately implies the relation F (t) = λt and thus completes
the proof of Theorem 5.

III. We now pass to the main technical part of the proof of Theorem 5: the
proof of the assertion formulated at the beginning of II.
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Lemma 7 If t 6= 0 and (t1, t), (t2, t) are two T - proper orbits, then t1 = t2.

Proof. If t1 6= t2 and
t = δj1(t1), t = δj2(t2),

then j1 = j2, as the ranges of the maps δ1 and δ2 have the only common point t = 0.
By the monotonicity properties of the maps δj , it is possible only if δj1(t) = const
at all points t between t1 and t2. But then δ′j1(t) ≡ 0 for these t, and, in particular,
δ′j1(t1) = 0. However, this contradicts to the definition of T - proper orbit: according
this definition only the orbit

(
t1, δj ′(t1)

)
with j ′ 6= j1 is T - proper.

Remark From a geometrical point of view this fact means that two different T -
proper orbits cannot enter at the same point t ∈ I \ {0}.
Lemma 8 If a cyclic orbit Σ is a part of a T - proper orbit O = (t1, t2, . . .), then
t1 6= 0 and t1 ∈ Σ.

Proof. If t1 6∈ Σ we let tq, q ≥ 2, be the first point in O, situated in Σ, so that

Σ = (tq, tq+1, . . . , tq+n),

and tq = tq+n. But then tq−1 6= tq+n+1 as tq−1 6∈ Σ and tq+n+1 ∈ Σ, and, by
Lemma 7, for none of indices j1, j2 the relation

tq = δj1(tq−1) = δj2(tq+n−1)

is possible. This proves that t1 ∈ Σ.
To complete the proof of the lemma it remains to note that the relation t1 = 0

is impossible due to (2): only the points t = −1 and t = 1 can precede the point
t1 = 0, but they both have no predecessors on a cyclic orbit.

We now note that, if both sets T1 and T2 are infinite, then, by (13), for a
sufficiently small ε > 0, there is a neighborhood U1 = (−1,−1 + ε) such that
δ′2(t) > 0 for all points t ∈ U1. It follows that for any such t the orbit O =(
δ2(t), δ2

2(t), . . . , δ
k
2 (t), . . .

)
is T - proper and converges to the point t = −1. In

just the same way, there is a neighborhood U2 = (1 − ε, 1) such that the orbit
O1 = (t, δ1(t), δ2

1(t), . . .), remaining T - proper, converges to the point t = 1 for an
arbitrary t ∈ U2.

However, if one of the sets, say T2, is finite, than this property is guaranteed
only for the neighborhood U2.

Lemma 9 If the above ε > 0 is sufficiently small then there is an integer ν such
that

δν
1 (t) > 1− ε and δν

2 (t) < −1 + ε

for all points t ∈ I.

Proof. To begin with, we note that the relation

δ2(t) < t < δ1(t), t 6= ±1, (27)

holds. For example, the second relation is trivial for t ≤ 0, by Definition 2. If
δ1(t̂) = t̂ for some value t̂, 0 < t̂ < 1, then by (22), δ2(t̂) = 0, and by the same
Definition 2, δ2(t) ≡ 0 on the interval (t̂, 1). But then δ′2(1) = 0, what contradicts
to the second relation (12). This proves the inequality t < δ1(t) for all t 6= 1. In
turn, the latter inequality implies the relation δν

1 (−1) → 1, as ν → ∞. Indeed, the
sequence δ1(−1), δ2

1(−1), . . . is bounded and increases. If lim δν
1 (−1) = ξ, then, by

continuity of δ1, lim δν+1
1 (−1) = δ1(ξ), whence δ1(ξ) = ξ, and ξ = 1. In the same

way δν
2 (1) → −1, as ν → ∞. This proves the lemma for the points t = 1 and

t = −1. The case of an arbitrary t follows now by condition 1◦ in Definition 2. This
completes the proof of Lemma 9.
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Corollary 10 If the last point of some T - proper orbit O(t1, t2, . . . , tN ) lies in the
set U1 (U2 resp.) (for some ε > 0), then the extended orbit O′ =

(
t1, . . . , tN , δ1(tN ),

δ2
1(tN ), . . .

)
(O′ =

(
t1, . . . , tN , δ2(tN ), δ2

2(tN ), . . .
)
, resp.) converges to the point

t = −1 (t = 1, resp.)

The proof is evident.
Now everything is ready to complete the proof of Theorem 5. Let M be the

number of points of the set T2. Then, given an arbitrary point t1 6∈ T2, we create the
T - proper orbit O1 =

(
t1, δ1(t1), . . . , δN

1 (t1)
)

which moves toward the point t = 1.
If N = ν, then the last point of O1 lies in U2 and, by Corollary 10, Theorem 5
is proved. If for some N < ν the point t2 = δN

1 (t1) lies in T2, then we create the
T - proper orbit (t2, δ2(t2), δ2

2(t2), . . . , δ
k
2 (t2)) moving toward t = −1. As above, if

k = ν, then the proof of Theorem 5 is finished by using the extended orbit, due to
Corollary 10. If k < ν and δk

2 (t2) ∈ T1, we extend the sewed orbit (t1, . . . , δN
1 (t1), δ2◦

δN
1 (t1), . . . , δk

2 ◦ δN
1 (t1)) by the points δ1 ◦ δk

2 (t2), . . . , δN1
1 ◦ δk

2 (t2) and so on. As it
follows from Lemma 8, following this procedure we will never return at one of the
previous points tj of the orbit in question, with the exception, may be, of the point
t1. It is clear, that if we do not meet the point t1 after 2Mν described steps, the
corresponding point t2Mν+1 turns out to be in the set U1∪U2. After this¡ it remains to
sew the orbit (t1, . . . , t2Mν+1) with the mentioned orbit (δj(t2Mν+1), δ2

j (t2Mν+1), . . .)
with j = 1 or 2.

Consider the concluding situation: moving along the orbit O we achieved the
point t1. This means that we deal with a periodic T - proper orbit Σ = (t1, . . . , tm)
which is a suborbit of a T - proper orbit O we construct. But (attention!), by
the crucial hypothesis NT

δ = ∅, this cycle Σ is not T - guided. Consequently, Σ
contains a point tq, 1 ≤ q ≤ m − 1, which does not belong to the guiding set
T . If, when constructing the orbit O, we left the point tq by means of a map δj

(i.e. tq+1 = δj(tq)), then now we introduce the new point t̂q+1 = δj′(tk), j′ 6= j.
Extending the orbit O = (t1, . . . , tq, t̂q+1) as above, we arrive at a new T - proper
orbit Õ = (t1, . . . , tq, t̂q+1, t̂q+2, . . .). But this time it can’t meet one of its previous
points (by Lemma 8) and, consequently, after not more than 2Mν steps our T -
proper orbit enters in the neighborhood U1∪U2. To complete the proof of Theorem 5
it remains to use Corollary 10.

Remark If the point t1 (see the text straight away after Corollary 10) lies in
T2, then we consider the point t∗1 = δ2(t1) and repeat all the above arguments in
connection with this point.

3.6 Proof of Theorem 6.

As in the proof of Theorem 5 we reduce problem (10) to the equivalent problem

BF (t) := F (t)− F (δ1(t))− F (δ2(t)) = h(t) on I, F (1) = λ (28)

with δ1(t) and δ2(t) satisfying hypothesis (22). By the invariance of the boundary
∂I with respect to the transformation t → α(t), the hypotheses (8) and (9) become
the necessary conditions for solvability of problem (28) having form

BF (−1) = BF (1) = −F (0)

and
h(−1) = h(1).
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Replacing F (t) by F (t) + t(λ + h(1))− h(1) in (28) we arrive at the problem

BF = ĥ on I, F (0) = 0, F (1) = 0, (29)

where ĥ(t) = h(t) − h(1). This form is precisely starting point in studying prob-
lem (10). As is easily seen, both functions BF (t) and ĥ(t) vanish at the points t = −1
and t = 1. Therefore, differentiating successively the equation BF (t) = ĥµ(t), we
obtain two new problems which are equivalent to the problem (29). These new
problems are

B1F
′(t) := F ′(t)− δ′1(t)F

′(δ1(t)
)− δ′2(t)F

′(δ2(t)
)

= ĥ′µ(t), (30)

B2F
′′(t) := F ′′(t)− δ′

2

1 (t)F ′′(δ1(t)
)− δ′

2

2 (t)F ′′(δ2(t)
)−KF ′′(t) = ĥ′′µ(t), (31)

where F ′(t) and F ′′(t) stand for the correspondent derivatives, and K denotes a
linear operator in C(I)

K : H(t) 7→ δ′′1(t)
∫ δ1(t)

ξ
H(s)ds + δ′′2(t)

∫ δ2(t)

ξ
H(s)ds.

Here ξ is an arbitrary point of the interval (0, 1) such that F ′(ξ) = 0. The existence
of such point ξ is guaranteed by the boundary conditions in (29). For the sake of
brevity we omit the conditions F (0) = 0, F (1) = 0 in (30) and (31). What is
important here is that K is a compact operator in the space C(I). This is easily
verified by virtue of the Arzelà criterion.

Since all the three problems (29), (30) and (31) in question are equivalent, the
solvability of problem (10) under condition (15) will be proved if we establish the
injectivity of the operator B1, and also show that the index indB2 of the operator B2

in the space C(I) is zero.
To prove the injectivity of the operator B1 in the space of functions F vanishing

at the points t = 0 and t = 1 we set ĥ′µ = 0 in (30). By relation (25) the new
equation coincides with problem (24) and, by Theorem 5, all its solutions F ′ are
constants. These constants are nothing except zero, since the function F vanishes
at two points. If remains to prove that indB2 = 0.

To this end we represent the operator B2 in the form B2 = E −L−K, where E
is the identical operator in the space C(I), and L stands for the linear operator of
the form

L : f(t) → δ′
2

1 (t)(f ◦ δ1)(t) + δ′
2

2 (t)(f ◦ δ2)(t).

in the same space. Having proved the invertibility of the operator E−L in the space
C(I), and then applying the Riesz-Shauder theorem to the operators (E−L)−1 and
K, we arrive at the required relation indB2 = 0. The existence of the operator
(E − L)−1 is an almost evident corollary of the following result.

Lemma 11 Under conditions of Theorem 6 there is a natural number N such that
the relation

‖LN‖ < 1 (32)

holds with ‖ · ‖ being the standard norm in the space of linear operators from C(I)
into itself.

Remark Under condition (32) the operator (E−L)−1 is defined as the sum of the
converging series

∑N−1
m=0

∑∞
k=0 LkN+m.

Proof. Introduce the following notation

aj(t) = δ ′
2

j (t); aj2

(
δj1(t)

)
= aj1j2(t); aj3

(
δj2 ◦ δj1(t)

)
= aj1j2j3(t); . . . ,
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with all subindices j, j1, j2, . . . equal to 1 or 2. By induction on N , it is easily verified
that the function (LNF )(t) can be represented in the form

(LNF )(t) =
2∑

j1,...,jN=1

aj1(t)aj1j2(t) . . . aj1...jN (t)F
(
δJ(t)

)
,

where J = (j1, . . . , jN ) and δJ = δjN ◦ . . . ◦ δj1 . It follows, that for an arbitrary
function F with ‖F‖ = 1 the inequality

|LNF )(t)| ≤
2∑

j1,...,jN=1

aj1(t)aj1j2(t) . . . aj1...jN (t)

holds at each point t ∈ I. Denote by ΛN (t) the write-hand side of this relation. We
will now prove that, for any fixed point t ∈ I, there is a positive number N and a
constant γ < 1 such that the relation

ΛN (t) ≤ γ (33)

holds. If t 6∈ T , then a1(t)+a2(t) < 1 by (22), and relation (33) is true for N = 1. If
t ∈ T , consider a T - proper orbit O = (t1, t2, . . . , tN ) with t1 = t such that tN is the
first point in O situated in I \ T and N is the minimal number with this property.
This means, in particular, that

t2 = δj′1(t1), t3 = δj′2(t2), . . . , tN = δj′N−1
(tN−1),

for some fixed indices j′1, . . . , j
′
N−1 and, in addition,

aj′1(t1) = 1, aj′2(t2) = 1, . . . , aj′N−1
(tN−1) = 1,

2∑

jN=1

ajN (tN ) < 1 (34)

The existence of such orbit has been established when proving Theorem 5 (see III,
page 12). It is clear that, for an arbitrary natural m, the relation Λm ≤ 1 is true.
To see this, it suffices to represent Λm in the form

Λm =
∑

j1

aj1

∑

j2

aj1j2 . . .
∑

jm

aj1...jm

and to use the relation a1(t) + a2(t) ≤ 1 for all t ∈ I. Setting

Aj1...jN−1(t) = aj1(t)aj1j2(t) . . . aj1...jN−1(t)

and

Bj1...jN−1(t) =
2∑

jN=1

aj1...jN−1jN (t),

we can rewrite the function ΛN (t) in the form

ΛN (t) =
∑

j1,...,jN−1

Aj1...jN−1(t)Bj1...jN−1(t).

It is evident that if, for some nonnegative numbers pk and qk, the relations

r∑

k=1

pkqk ≤ 1,
r∑

k=1

pk ≤ 1, and qk ≤ 1 for all k,

16



hold, and at least one number qk′ is less than one, then
r∑

k=1

pkqk < 1.

To make use this observation with respect to the function ΛN (t) note that, by the
above, ∑

j1,...,jN−1

Aj1...jN−1(t) ≤ 1.

Furthermore, by the definition of the multi-index (j′1, . . . , j
′
N ), and by (34), we find

that
Bj′1...j′N−1

(t) =
∑

jN

aj′1...j′N−1jN
(t) =

∑

jN

ajN (tN ) < 1.

On the other hand, by virtue the same relation (34),

Aj′1...j′N−1
(t) = aj′1(t1)aj′2(t2) . . . a′jN−1

(tN−1) = 1.

Thus, the function ΛN (t) has the same structure as the expression pkqk above and,
consequently, the inequality ΛN (t) < 1 holds with a constant γ = γ(t) < 1.

Note now that, by virtue of the continuity of all the functions in question, relation
(33) holds at all points of some neighborhood U of the point under consideration
for the same number N , may be with a larger constant γ < 1. The collection of
such neighborhoods forms an open covering of the closed set I \ B. Let {Uj}k

j=1 be
a finite subsystem of these neighborhoods, and Nj , γj the corresponding constants.
Taking m = maxNj and γ = max γj we arrive at the desired inequality ‖Lm‖ < 1,
and this completes the proof of the solvability of problem (10) in the part ”if”.

To prove the necessity of the hypothesis NT
α = ∅ we assume that NT

α 6= ∅. Then
there is a T - proper T - guided periodic orbit O = (t1, . . . , tn+1). If a function F (t)
solves problem (28), than the function G = F ′ solves the equation

G(t) = δ′1G
(
δ1(t)

)− δ′2G
(
δ2(t)

)
= H(t), (35)

with H(t) = ĥ′µ(t) (see (30)). By definition, the points t1, . . . , tn+1 satisfy the
conditions

tk+1 = δjk
(tk), δ′j′k(tk) = 0 for j ′k 6= jk, k = 1, . . . , n, and tn+1 = t1.

Let us substitute t1 for t in equation (35). Then one of the numbers δ′j(t1) is equal to
zero, whereas δ′j′(t1) = 1. Furthermore, t2 = δj′(t1), by the definition of a T - proper
orbit. This leads to the relation G(t1)−G(t2) = H ′(t1). Continuing this procedure
we arrive at the chain of equalities G(t2) − G(t3) = H ′(t2), . . . , G(tn) − G(t1) =
H ′(tn), where the periodicity of the orbit O is used on the last step. Adding all
these relations together, we obtain

n∑

j=1

H ′(tj) = 0. (36)

Thus, in the presence of a T - proper T - guided cycle O = (t1, . . . , tn), this relation
is a necessary condition for the solvability of problem (28). Hence, the necessity of
the condition NT

ζ = ∅ is proved. To complete the proof of Theorem 7 it remains to
establish the continuity of the inverse operator B−1

α . The simplest way to do this
is using Banach closed graph theorem combined with solvability of problem (28)
already proved, and with an obvious a priory estimate

‖BF,C2(I)‖ ≤ const‖F, C2(I)‖,
guaranteing the continuity of the operator B.
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4 Applications.

The main goal of this section is to show that the Cauchy type functional equa-
tions are of the great interest not only by themselves as an object of analysis, but
they arise naturally when solving various problems in such diverse fields as integral
and functional equations, integral geometry, boundary problems for partial differen-
tial equations etc.

In order not to enlarge extremely the size of this paper some of corresponding
results are given with full proofs and the proofs are only outlined for some.

4.1 Multiplicative Cauchy type functional equation.

This title was introduced in the paper [P4] as the definition for functional
equations of the form

F
(
α1(t) + α2(t)

)
= F

(
α1(t)

)
F

(
α2(t)

)
H(t), t ∈ I ′, (37)

where H > 0 is a given function, and the functions α1(t) and α2(t) form one of the
above configurations.

Below we prove two theorems giving an exhaustive solution of the solvability
problem for this equation in both cases of Z- and P- configurations.

4.1.1 The case of a Z- configurations.

We begin with a very simple but crucial lemma which makes it possible to
reduce problem (37) to a standard Cauchy type functional equation.

Lemma 12 If functions α1(t) and α2(t) form a Z- configuration, then any nontriv-
ial continuous solution of equation (37) is positive on I ′.

Proof. Let F (z) 6≡ 0 on I ′ and

z0 = min{ z |F (z) = 0}.

If z0 6= 0 and F (z0) = F
(
α1(t0) + α2(t0)

)
, then, by (37), F

(
α1(t0)

)
= 0 or

F
(
α2(t0)

)
= 0. This means that for some z1 < z0 with z1 = α1(t0) or z1 = α2(t0)

one has F (z1) = 0. But this contradicts to the definition of z0. It remains to
exclude the possibility F (0) = 0. If F (0) = 0, then for an arbitrary small ε > 0
(satisfying also the relation εH(0) < 1) there is a point z ∈ R(α1 + α2) such that
F (z) = ε and F (z′) < ε for all z′ < z. If z = (α1 + α2)(t0), then F

(
α1(t0)

)
< ε

and F
(
α2(t0)

)
< ε, as αj(t) > 0 for t > 0 and j = 1, 2. By (37), this leads to the

impossible relation
ε ≤ ε2H(0) < ε,

and this completes the proof of the lemma.
This lemma makes it possible to reduce equation (37), by taking the logarithm

of both sides of this equation, to the standard Cauchy type functional equation

G
(
α1(t) + α2(t)

)
= G

(
α1(t)

)
+ G

(
α2(t)

)
+H(t), t ∈ I ′.

Denote by C̃〈κ〉(I ′) the space of positive continuous functions f on I ′ such that

ln f(t) ∈ C〈κ〉(I ′)

The following result is a direct corollary of Theorem 2 and Theorem 3.
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Theorem 13 1◦ Assume that the functions α1(t) and α2(t) satisfy condition (7)
and belong to the space C〈1〉(I ′). Then all solutions F of the homogeneous equation

F
(
α1(t) + α2(t)

)
= F

(
α1(t)

)
F

(
α2(t)

)
on I ′, (38)

belonging to the space C̃1(I ′), have a form F (z) = eλz, λ ∈ R.
2◦ Assume that both functions α1(t) and α2(t) satisfy condition of Theorem 3. Then
for an arbitrary function H ∈ C̃〈1+r〉(I ′), 0 < r < 1, satisfying condition (3), and
for any positive number λ, there is a unique solution F ∈ C̃〈1+r〉(I ′) of the problem

F
(
α1 + α2)(t)

)
= F

(
α1(t)

)
F

(
α2(t)

)
H(t), on I ′; F (1) = λ. (39)

This solution can be represented in the form

F (z) = eµz
∏

J

H
(
δJ(z)

)
, z ∈ Î ,

with some (uniquely defined) real µ and δJ running all elements of the semigroup
Φδ, generated by the maps δj = αj ◦ α−1, j = 1, 2, from the interval Î into itself.

4.1.2 The case of a P- configuration.

Let functions α1(t) and α2(t) form a P- configuration. Then a new point, as
compared with the case of a Z-configuration, is that solutions of equation (37) are
not necessarily strictly positive on the interval I, as follows from the

Lemma 14 The equation

F (t) = F
( t− 1

2

)
F

( t + 1
2

)
, t ∈ I, (40)

has infinite set of oscillating solution, i.e. those taking values of opposite signs.1

Proof. Note first of all that the functions α1 = (t− 1)/2 and α2 = (t + 1)/2 form a
P- configuration on I and satisfy condition (5). As is directly verified, any function

Fk(t) = 2 cos(k + 1/2)πt, k = 0, 1, . . .

solves equation (40) and oscillates on I.
By this lemma, the hypothesis of positiveness of a solution to equation (37) is

necessary in the following assertions.

Theorem 15 1◦ Assume that the functions α1(t) and α2(t) belong to the space
C1(I) and satisfy conditions (12), (13) and (15). Then all positive C1- solutions to
the homogeneous equation (38) are of the form

F (z) = eλz, λ ∈ R.

2◦ Let the functions α1(t) and α2(t) belong to the space C2(I) and satisfy the same
hypotheses as in 1◦. Then, for an arbitrary positive function H ∈ C2(I), satisfying
hypothesis (6), and for any real number λ, there is a unique positive solution F ∈
C2(I) to the problem (39). The inverse operator H 7→ F from C2(I) to C2(I) is
continuous.

1This result was obtained by Dr.Galina A.Birulina from Moscow as an answer to the author’s
question. It would be interesting to get to know, whether this property is characteristic for a
P-configuration.
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4.1.3 On a quasi-Cauchy type functional equation.

Here we consider some functional equation which is formally reminds the equa-
tions studied in 3.1.1. The question is the solvability of the equation

F (t) = F (a1t)F (a2t)H(t), t ∈ I ′, (41)

where
0 < a1 < a2 < 1,

and H is a given positive continuous function. The case H(t) ≡ 1 and a2
1+a2

2 = 1 has
been considered in [KCG, Th. 6.1.2] and the solution F (t) = eλt2 has been obtained.

First of all, repeating word for word the proof of Lemma 12, we establish the
positiveness of any solution F to equation (41). This makes it possible to reduce
equation (41) in an equivalent manner to the linear equation.

(LG)(t) := G(t)−G(a1t)−G(a2t) = H(t), t ∈ I ′, (42)

where G = ln F , H = ln H. In what follows we denote by κ a unique root of the
equation

ax
1 + ax

2 = 1.

Denote by [κ] and {κ} the integral and the fractional parts of the number κ, so that
0 < {κ} < 1. In addition to C̃〈κ〉(I ′), we introduce the linear space

C̃〈κ,ρ〉(I ′) = {u ∈ C(I ′) |u(t) = Pk(t) + αtκ + tκ+ργ(t)},

where k = [κ], 0 < ρ < 1 − {κ}, and γ(t) is an arbitrary function from C(I ′). For
the sake of brevity, we agree to use a notation α = (∂/∂t)κu(0)/k!κ.

Theorem 16 1◦ If H(t) = 1, then the function

F (t) = eλtκ , t ∈ I ′,

is a unique solution of equation (41) in the space C̃〈κ〉(I ′), satisfying the condition
F (1) = eλ.
2◦ For an arbitrary function H ∈ C̃〈κ,ε〉(I ′), 0 < ε < 1 − {κ}, satisfying the
necessary condition

(∂/∂t)κH(0) = 0,

and for any real number λ, there is a unique solution F ∈ C̃〈κ,ε〉(I ′) of the problem
treated in 1◦.

Proof. 1◦ Let G ∈ C̃〈κ〉(I ′) be an arbitrary solution of equation (42) with H = 0.
Then, by definition,

G(t) = Pk(t) + tκγ(t), t ∈ I ′, (43)

where k = [κ]. Assume first that κ 6= k. It is clear that if Pk(t) =
∑k

j=0 cjt
j , then

(LPk)(t) =
∑k

j=0 cj(1−aj
1−aj

2)t
j and L(ctκ) = c(1−aκ

1−aκ
2)tκ = 0 for all constants

c, by definition of κ. It follows that the function

λ(t) = γ(t)− γ(0)

satisfies the equation
λ(t)− aκ

1λ(a1t)− aκ
2λ(a2t) = 0.

Taking into account that aκ
1 + aκ

2 = 1 and using the same approach as in Subsec.3.2
we conclude that the maximal and the minimal values of the solution λ coincide
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(and equal to λ(0)), whence λ(t)=const. and, more exactly, λ(t) = 0. This proves
the assertion 1◦ for λ 6= k. If κ = k, then γ(0) = 0 in relation (43), and we arrive
at the same result by repeating the same arguments word for word. This completes
the proof of 1◦.
2◦ First of all, let us show that if a function G ∈ C̃〈κ〉 solves the equation LG = H

with H ∈ C̃〈κ〉, then (∂/∂t)κH(0) = 0. Indeed, let

G =
k∑

j=0

cjt
j + ctκ + tκµ(t) and

H =
k∑

j=0

bjt
j + btκ + tκν(t)

where b and c are constants and µ(0) = ν(0) = 0. It is obvious that

b = c(1− aκ
1 − aκ

2) = 0,

if κ 6= k, and bk = ck(1−ak
1 −ak

2) = 0, if κ = k. To prove the assertion it remains to
present a solution G of the equation LG = H, for any given H ∈ C̃〈κ,ε〉(I ′). Write
down the functions G and H in the form

G =
k∑

1

cjt
j + αtκ + βtκ+ε + tκ+εµ(t), µ(0) = 0

H =
k∑

1

bjt
j + β1t

κ+ε + tκ+εν(t), ν(0) = 0.

If we choose cj = bj/(1− aj
1 − bj

1), β = β1/(1− aκ+ε
1 − aκ+ε

2 ), then what remains to
do is to choose, as µ(t), a solution of the problem

L(tκ+εµ) = tκ+εν, µ(0) = 0. (44)

As L(tκ+εµ) = tκ+ε
[
µ(t)− aκ+ε

1 µ(a1t)− aκ+ε
2 µ(a2t)

]
, problem (44) takes the form

µ(t)− aκ+ε
1 µ(a1t)− aκ+ε

2 µ(a2t) = ν(t), µ(0) = 0. (45)

But, by definition of κ, the relation

aκ+ε
1 + aκ+ε

2 < 1

holds, and this means that the norm of the linear operator in the space C(I ′)

Lε : µ(t) 7→ aκ+ε
1 µ(a1t) + aκ+ε

2 µ(a2t)

is less then one. It follows that the sum of the Neumann series
∑∞

n=0 Ln
ε ν with

L0
ε = id solves the equation in (45). The boundary condition µ(0) = 0 is valid,

as ν(0) = 0 and so (Ln
ε ν)(0) = 0 for all n = 1, 2, . . .. This completes the proof of

Theorem 16.

4.2 On some integral equations relating to a geometric problem

In this subsection we deal with one of the typical problems in integral geometry:
to reconstruct a function in a given domain D from the values of its integrals over
a family {Dq} of subdomains in D. Such problems are always of interest first of
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all by themselves as objects of pure analysis, but also in connection with possible
applications in practical disciplines. The most remarkable example of such a connec-
tion is the famous Radon problem and tomography. A peculiarity of the geometric
problems considering in this paper is that in contrast with a general tradition, we
deal with boundary domains D and the statement of these problems as well as the
corresponding results are closely connected with both local and global properties
of the boundaries ∂D. This connection is realized by means of a semigroup ΦD of
maps from ∂D into itself we associate with the problem in question. On the other
hand, as will be seen, these problems can be reduced to Cauchy type functional
equations on the intervals I and I ′, distinguishing from each other by configurations
of maps generating these equations.These maps also generate a semigroups ΦI , ΦI′ .
We introduce a special isomorphism between the boundary ∂D and (each of) the
intervals I or I ′, and we show that it can be extended up to isomorphism of the
above semigroups ΦD and ΦI . This makes it possible to formulate (and to obtain)
all the geometric results in terms of the semigroup ΦD, by knowing the conditions
of solvability of Cauchy type functional equations in terms of semigroups ΦI and
ΦI′ . We consider separately two situations.

4.2.1 The case of a Z- configuration.

Let l1 and l2 be smooth nonsingular transversal vector fields in a disk B ⊂ R2.
Consider a curvilinear parallelogram D = OA1O

′A2 in B whose sides OA1, O′A2

and OA2, O′A1 are trajectories of the vector fields l1 and l2, respectively. Let
Γ = OO′ be a quasidiagonal in D, i.e. a smooth curve having no common points
with the sides of D and being a trajectory of the vector field l = r1l1 + r2l2 with
some positive constant r1 and r2. It is easily seen that, given vector fields l1, l2 and
a point O, there are some points A1, A2 and O′ such that all the above conditions
are satisfied.

Introduce in D projections

π1 : D → OA1, π2 : D → OA2

along the vector fields l2 and l1, respectively. Given an arbitrary point q ∈ Γ, denote
by Dq the curvilinear parallelogram qq1Oq2 where q1 = π1q and q2 = π2q. Let us
associate with any function f in D the integrals

(Af)(q) =
∫

Dq

fdσ, q ∈ Γ,

were σ denotes a measure on B. The above mentioned geometric problem of recon-
structing a function in D takes now a completely definite form:

given a function h on Γ, to find a function f in D such that

Af(q) = h(q), q ∈ Γ. (46)

For obtaining reach in content results related to equation (46) we will study it in
the framework of the general problem stated in [GGV] for a wide class of integral
equations: for what spaces of functions f and h is the map A : f 7→ h one-to-one,
and what functions h(q) may be represented by the integral in (Af)(q). Restricting
ourselves to continuous functions on D and on Γ we find immediately that the kernel
of the operator A is infinite-dimensional. On the other hand, as will be seen, for
an arbitrary function f ∈ C(D), its image (Af)(q) belongs to the space H(Γ) of all
twice continuously differentiable on Γ functions vanishing with the first derivative at
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the point 0. Therefore, the best possible solution of the problem in question consists
in describing subspaces F(D) ⊂ C(D) for which the map

A : F(D) → H(Γ)

is one-to-one. Among various candidates for the role of F(D) we have chosen a wide
class of subspaces in C(D) arising naturally when solving a wide class of boundary
problems for higher order hyperbolic equations (see Subsec. 4.3).

Definition 5. Given a smooth vector field l in B, we denote by C〈l〉(D) the subset
of functions in C(D), remaining constant along each trajectory of the field l .

As is well known the space C〈l〉(D) admits a very simple description. Let y =
(y1, y2) be a coordinate system in B and

l = {ω1(y), ω2(y) }, y ∈ B

be a coordinate form of l . Denote by ζ(y) a smooth function without critical points
solving the first order differential equation

ω1(y)(∂/∂y1)ζ + ω2(y)(∂/∂y2)ζ = 0. (47)

Then the space C〈l〉(D) consists of all functions f(y) = F
(
ζ(y)

)
with F being

arbitrary continuous function on the range of ζ.
Now everything is ready to formulate our first geometric result.

Theorem 17 Let l1, l2 and l be a triple of smooth nonsingular mutually transversal
vector fields in a dick B ∈ R2 and let D be an above parallelogram constructed by
l1 and l2. Assume that the corresponding quasidiagonal Γ is a twice differentiable
nonsingular curve which is transversal to l everywhere and to l1 and l2 of the point
O. Then for an arbitrary function H ∈ H(Γ) there is a unique solution f ∈ C〈l〉(D)
of equation (46). The inverse operator A−1 is a continuous operator from H(Γ) to
C〈l〉(D).

Proof. For the sake of brevity we consider the situation with constant vector fields
l1, l2 and l . Without loss of generality we assume that the vector fields l1, l2 are
parallel to the coordinate axes x1 and x2, respectively, and consider as D a square
whose two sides coincide with the intervals {x1 | 0 ≤ x1 ≤ 1} and {x2 | 0 ≤ x2 ≤ 1}
on the axes x1 and x2, respectively. Let

x1 = δ1(t), x2 = δ2(t), t ∈ I ′,

be an arbitrary parametric representation of Γ, so that

δ1(0) = δ2(0) = 0, (48)

If l = (ω1, ω2) with ω1 > 0, ω2 < 0, then equation (46) in the coordinate form looks
as follows:

δ1(t)∫

0

δ2(t)∫

0

f(ω1x2 − ω2x1)dx2dx1 = H(t), t ∈ I. (49)

To see this it suffices to note that the function ζ(x1, x2) = ω1x2 − ω2x1 solves
equation (47).

Introduce the new unknown function F (t) as a solution to the problem

F ′′(t) = f(t), F (0) = F ′(0) = 0, (50)
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and substitute F ′′ for f in (49). After repeated integration by parts we arrive at the
following functional equation for the function F :

F
(
ω1δ2(t)− ω2δ1(t)

)
− F

(
ω1δ2(t)

)
− F

(
− ω2δ1(t)

)
= H(t). (51)

Since the map f 7→ F is one-to-one, to prove the theorem, it remains to establish
the unique solvability of equation (51). Note that, by assumptions of the theorem,
we have (δ′1δ

′
2)(0) > 0, which means that

ω1δ
′
2(0)− ω2δ

′
1(0) > 0.

The transversality condition Γ t l guarantees the inequality ω1δ
′
2(t) − ω2δ

′
1(t) > 0

at any point t ∈ I ′. On the other hand, differentiating relation (49) leads to the
differentiability of the function H and to the relation

δ′1(t)

δ2(t)∫

0

f
(
ω1x2 − ω1δ1(t)

)
dx2 + δ′2(t)

δ1(t)∫

0

f
(
ω1δ2(t)− ω2x1

)
dx1 = H ′(t).

It follows, by (48), that H ′(0) = 0. To see that the function H is twice differentiated,
it suffices to represent the left hand-side of the late relation in the form

(
− δ′1(t)/ω2

) ω1δ2(t)−ω2δ1(t)∫

−ω2δ1(t)

f(z)dz +
(
δ′2(t)/ω1

) ω1δ2(t)−ω2δ1(t)∫

ω1δ2(t)

f(z)

Thus, equation (51) is nothing, but a Cauchy type functional equation on I ′, corre-
sponding to a Z-configuration and satisfying all conditions of Theorem 2. By this
theorem, for an arbitrary function H ∈ C2(I ′), satisfying the hypothesis H ′(0) = 0,
there is a unique solution F ∈ C〈1+r〉(I ′) of equation (51), and, by Theorem 4, this
function F belongs to the space C2(I ′). This proves the existence and uniqueness
of a function f ∈ C〈l〉(D), solving equation (49), and completes the proof of The-
orem 17 in the part of the existing of the inverse operator A−1 : C2(Γ) → C(D).
As for the continuity of A−1, it follows immediately from the Banach closed graph
theorem which, in turn, is a consequence of the elementary inequality ‖Af, C2‖ <
const ‖f, C‖, proved above.

Remark The reader easily write down the solution of equation (49) in an explicit
form, using the result of Theorem 1.

4.2.2 The case of a P- configuration.

In this Subsection a geometric problem analogous to that considered above is
studied. But this time a dynamical system associated with this problem turns out to
be much more complicated, and the result obtained is closely connected with a new
boundary problem for higher order hyperbolic differential equations in a bounded
domain in R2, see Subsec. 3.3.

As above, let l1 and l2 be some nonsingular smooth transversal vector fields in
a disk B ⊂ R2. Consider a curvilinear triangle D = OA1A2, whose sides OA1 and
OA2 coincide with trajectories of the vector fields l1 and l2, respectively, and the
side Γ = A1A2 is an arbitrary nonsingular smooth curve transversal to both fields
l1, l2 at the points A1 and A2. In addition, the closure D of the domain D is
supposed to satisfy the following topological hypotheses:

(i) For any point p ∈ D, a trajectory of l j passing through p meets OAk at a
point πkp, j 6= k, 1 ≤ j, k ≤ 2.
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(ii) The set D is l j - convex, j = 1, 2. This means that if given points p and
q in D lie on some trajectory γj of the field l j , then all the points r ∈ γj , j = 1, 2
between p and q belong to D.

Given an arbitrary point q ∈ Γ, let Dq be a curvilinear parallelogram qq1Oq2.
Hypotheses (i) and (ii) guarantee the inclusion Dq ⊂ D for all q ∈ Γ and some-

thing more. Namely, let x = (x1, x2) be a coordinate system in B with the origin at
the point O. Let

x1 = α1(z), x2 = α2(z), z ∈ I,

be an arbitrary parametric representation of Γ and let α(z) = (α1(z), α2(z)). Then
the functions α1(z) and α2(z) satisfy the conditions

α′1(z) ≥ 0, α′2(z) ≤ 0, and α′1(z)− α′2(z) > 0 (52)

This fact is not trivial (see [P4] with respect to the proof).
The geometric problem under consideration takes this time the form of the same

integral equation

(Af)(q) :=
∫

Dq

fdσ = h(q), q ∈ Γ, (53)

as in Subsec. 4.2.1, but with a different domain Dq. All the discussions around the
statement of problem (46) are relevant to problem (53). In particular, the right-
hand side h(q) in (53) should be a twice differentiable function on Γ and satisfy the
periodicity condition

h(A1) = h(A2) = 0.

The latter follows immediately from (53). We denote the space of all such functions
by H0(Γ). To formulate the result, related to the solvability of equation (53) in an
invariant geometric form (not passing to any coordinate form of (53)) it is necessary
to generalize the above dynamical approach by considering certain semigroups of
maps from some curves into themselves. It is interesting to trace the transition from
a pure geometric problem to a Cauchy type functional equation (what includes also
a translation from a geometric language to an analytic one).

Introduce the vector field l = r1l1 + r2l2, where r1 and r2 are positive constants.
In addition to the projections πj , j = 1, 2, along the vector fields lk, j 6= k, we
consider the projection πl : D → Γ along the field l . In other words, given an
arbitrary point p ∈ D, its projection πl p coincides with the intersection of the curve
Γ and the trajectory of the field l , passing through p. Introduce two maps from Γ
into itself,

ζ1 = πl ◦ π1 and ζ2 = πl ◦ π2,

and denote by Φζ the semigroup of maps generated by ζ1 and ζ2, which is analogous
to the semigroup Φδ considered in Sec. 2. As in Subsec. 2.2, we define by means
of the maps ζ1 and ζ2 an orbit in Γ as a sequence of points O = (q1, q2, . . . , qn, . . .)
such that

qk+1 = ζjk
(qk), k = 1, 2, . . . ,

and the set of all such orbits we denote by Oζ . We introduce the guiding sets

Tj = {q ∈ Γ | l j(q) ∈ Tq(Γ)}, j = 1, 2, and T = T1 ∪ T2,

where Tq(Γ) stands for the tangent space to Γ at the point q. Repeating literally
what was said in Subsec. 2.2 we define periodic, T - guided, and T - proper orbits
corresponding to the semigroup Φζ . Finally, we denote by NT

ζ the set of T - proper
T - guided periodic orbits of the type in question. By analogy with condition (13),
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we assume that, if both sets T1 and T2 are infinite, then arbitrary points τ1 ∈ T ′
1

and τ2 ∈ T ′
2 are situated on the curve Γ in the order A1, τ1, τ2, A2. The main result,

related to the problem in consideration, is formulated as the following assertion.

Theorem 18 If all the above hypotheses related to the domain D, the curve Γ and
vector fields l , l1 and l2 are fulfilled, then, for an arbitrary function h ∈ H0(Γ),
there is a unique solution f ∈ C〈l〉(D) of equation (53) if and only if NT

ζ = ∅. The
inverse operator A−1 : h 7→ f is continuous from H0(Γ) to C〈l〉(D).

Proof. Without loss of generality, we assume that the vector fields l1 and l2 are
parallel to the coordinate axes x1 and x2, respectively, and consider as D a curvi-
linear triangle whose two sides coincide with the intervals {x1 | 0 ≤ x1 ≤ 1} and
{x2 | 0 ≤ x2 ≤ 1} on the axes x1 and x2, respectively. Under this assumption, the
vector field l takes the form l = r1l1 + r2l2. With respect to the third side Γ of
the triangle D, it is assumed to be a smooth nonsingular curve transversal to the
coordinate axes. Let

x1 = α1(z), x2 = α2(z), z ∈ I

be an arbitrary parametric representation of the curve Γ. Introduce the notation

α(z) =
(
α1(z), α2(z)

)
,

and assume that α(0) = (0, 1). Then, as was explained above, relations (52) are
valid. It is convenient to treat α as a map: I → Γ which is invertible, by (52).
As was explained above, the space C〈l〉(D) consists of the functions f(r2x1 − r1x2)
with f being an arbitrary continuous function on the closed interval IT = (−r1, r2).
Introduce the functions

ω(x) = r2x1 − r1x2, ω1(x) = ω(x1, 0), ω2(x) = ω(0, x2)

in D, and denote by ωΓ the restriction of ω to Γ. (I do not use consciously the explicit
values of the functions ω1 and ω2 to give to the reader a possibility to observe the
main springs of the proof not connected with the constancy of the vector field l). It
is obvious, that the function

σ(z) = ωΓ ◦ α(z) : I → IT

is invertible and surjective. Indeed, the relation

σ′(z) = ωx1(α)α′1(z) + ωx2(α)α′2(z) > 0, z ∈ I,

holds in view of the inequalities

ωx1 > 0, ωx2 < 0, α′1(z) ≥ 0, α′2(z) ≤ 0,

and this proves the invertibility. As to the surjectivity, take a point q ∈ D such
that ω(q) = −r2. The trajectory of the vector field l passing through q meets Γ at
a point q−. Therefore ωΓ(q−) = −r2. In just the same way we determine a point
q+ ∈ Γ, for which ωΓ(q+) = −r1. This completes the proof of the assertion.

Now, in the coordinate form, equation (53) looks as follows:

α1(z)∫

0

α2(z)∫

0

f
(
ω(x)

)
dx2dx1 = h(z), z ∈ I.
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Applying the one-to-one change (50) of an unknown function f → F we arrive at
the following equivalent functional equation for the function F :

F
(
ωΓ ◦ α(z)

)
− F

(
ω1 ◦ α(z)

)
− F

(
ω2 ◦ α(z)

)
= H(z), (54)

Introduce the new variable t = σ(z), t ∈ IT . Remembering that, by the definition
of the map ζ,

ωj ◦ α = ωΓ ◦ ζj ◦ α, j = 1, 2.

we can rewrite equation (54) in the form

F (t)− F
(
ωΓ ◦ ζ1 ◦ ω−1

Γ (t)
)
− F

(
ωΓ ◦ ζ2 ◦ ω−1

Γ (t)
)

= h
(
σ−1(t)

)
, t ∈ IT .

Let
δj(t) = ωΓ ◦ ζj ◦ ω−1

Γ (t), t ∈ IT . (55)

Then, the last functional equation takes the form

F (t)− F (δ1(t))− F (δ2(t)) = (h ◦ σ)(t), t ∈ IT . (56)

We are now going to show that this equation is a Cauchy type functional equation.
This is an immediate corollary of the following lemma.

Lemma 19 1◦ Both maps δ1 and δ2 are nondecreasing functions;
2◦ the range of δ1 (resp. δ2) is the closed interval (0, r1) (resp. (−r2, 0));
3◦ the relation

δ1(t) + δ2(t) = t

holds for all t ∈ IT .

Proof. 1◦ To simplify notation consider the case of δ1 only. Note that, by the defi-
nition, ω−1

Γ (t) = α(z), so that δ1(t) = ω(ζ1(α(z))), where t = σ(z). By the definition
of the map ζ1 it follows that δ1(t) = ω(α1(z), 0). Thus, δ′1(t) = ωx1(α1, 0)α′1(z) ≥ 0,
by (52).
2◦ By the definition of the map ζ1 : Γ → Γ we have

δ1(t) = ω(π1 ◦ α(z), 0), where t = σ(z). (57)

As all the functions δ1, ω(x1, 0) and α1(z) are nondecreasing, the range of the map
δ1 coincides with the interval

(
ω(α1(0), 0), ω(α1(1), 0)

)
, i.e. R[δ1] = (−r1, 0). In

just the same way one can prove that R[δ2] = (0, r2).
3◦ To prove the assertion we use again relation (57). By linearity of the function
ω, it follows that

δ1(t) + δ2(t) = ω(α1(z), 0) + ω(0, α2(z)) = ω(α1(z), α2(z)) = (ω ◦ α)(σ−1(t)) = t.

This lemma makes it possible to use the result of Theorem 5, when studying
the solvability properties of equation (56). By this theorem we have to consider the
corresponding semigroup Φδ with δ = (δ1, δ2), to introduce the guiding sets

T δ
j = {t ∈ IT | δ′j(t) = 0}, j = 1, 2,

and the corresponding sets of T δ- guided and T δ- proper orbits in IT . Then, as
is known from Theorem 5, the condition NTδ

δ = ∅ is necessary and sufficient for
equation (56) to be uniquely solvable.

Returning to the proof of Theorem 18, we conclude that to complete this proof
it suffices to show that the relations

NTδ
δ = ∅ and N

Tζ

ζ = ∅
hold only simultaneously.

This follows immediately from the following lemma.
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Lemma 20 The ω-image of any (Tζ- guided, Tζ- proper) orbit in Oζ is a (Tδ-
guided, Tδ- proper) orbit in Oδ, and, conversely, any (Tδ- guided, Tδ- proper) orbit
in Oδ is an ω- image of a (Tζ- guided, Tδ- proper) orbit in Oζ .

Proof. It is sufficient to consider only two-element orbits. Let (q, q̂) be an
orbit from Oζ , that is q̂ = ζj(q) for some j = 1, 2. Then, by (55),

ω(q̂) = ω ◦ ζj(q) = (δj ◦ ω)(q),

which means that the ordered pair
(
ω(q), ω(q̂)

)
is an orbit from Oδ. If (t, t̂) is an

orbit from Oδ, i.e. t̂ = δj(t) for some j = 1, 2, then ω−1
Γ (t̂) = ζj ◦ ω−1

Γ (t), by (55),
which means that (t, t̂) is the ω- image of an orbit (ω−1

Γ (t), ω−1
Γ (t̂)) from Oζ . This

proves the lemma in the case of nonspecific orbits.
To prove the lemma it remains to show that the ω- images of the guided sets

(Tζ)j coincide with the guided sets (Tδ)j , j = 1, 2. To this end, take an arbitrary
point q from the guiding set (Tζ)1, for definiteness. This means that q = α(z) for
a (single) z ∈ I and α′1(z) = 0. Let t = ω(q). Then t = σ(z) = (ω ◦ α)(z) and, by
(55),

δ′1
(
σ(z)

)
σ′(z) = ωx1(α1(z), 0) · α′1(z).

As σ′ > 0 and ωx1 > 0, the relations

α′1(z) = 0, and δ′1(t) = 0 for t = σ(z)

are equivalent. This completes the proof of the lemma and, moreover, the proof of
Theorem 18 in the part of the solvability of equation (53). As for the boundedness of
the inverse operator A−1, it suffices to refer to the proof of the analogous assertion
in Theorem 17. The necessity of the condition NT

ζ = ∅ is actually proved when
proving the correspondent part of Theorem 6.

4.3 On the solvability of boundary problem for hyperbolic differ-
ential equations.

As another application of the results relating to a Cauchy type functional equa-
tion we consider now an arbitrary homogeneous strictly hyperbolic differential op-
erator P (∂x, ∂y) of the third order in the (x, y)- plane R2. By definition it is an
arbitrary differential operator of the form

P = (∂/∂l1)(∂/∂l2)(∂/∂l3)

where l1, l2 and l3 are arbitrary mutually transversal vector fields in R2. In the
framework of the classical theory of partial differential equations such operators arise
only in connection with the Cauchy problem for arbitrary hyperbolic equations. A
systematical study of boundary problems for such equations in bounded domains was
begin less then 10 years ago (see [P5]), although some particular equations of this
type arisen earlier in connection with some problems relating to linearized flow of a
chemically relaxing gas([Ch]).

In this Subsection we consider for the sake of brevity only differential operators
of the above type with constant coefficients although the boundary problems can
be easily formulated in an invariant form (not using coordinate systems) for analo-
gous operators with variable coefficients. As will be seen, all the known up to now
problems in question turn out to be equivalent to one of Cauchy type functional
equations (responding either Z- or P- configurations). Thus, the general theory of
functional equations, its language and its methods, become an essential technical
tool when solving boundary problems for partial differential equations, and hence,
to be applied in different practical disciplines.
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4.3.1 Formulation of boundary problems.

Let l1, l2 and l3 be an above triple of smooth nonsingular mutually transversal
vector fields in a disk B ⊂ R2. (The reader not familiar with this differential-
geometric terminology may think on a triple constant nonparallel vector fields). Take
any point O ∈ B and consider six semitrajectories of these vector fields, beginning
at O. All this rays are nothing but characteristics of the operator P . Take an
arbitrary triple of neighboring rays l1, l2 and l3 lying on trajectories of the vector
fields l1, l2 and l3, respectively, and choose arbitrary points A1 ∈ l1, A2 ∈ l2, and
A3 ∈ l3. Assume without loss of generality that the ray l2 lies between l1 and l3 (i.e.
l2 = λ1l1 + λ3l3 with λ1 > 0, λ3 > 0, see Fig. 1).

We associate with the differential operator P canonically two different bounded
domains D1 and D2, and they are just domains where different boundary problems
for the equation Pu = f will be considered.

The domain D1 is determined as the curvilinear triangle A1OA3 whose third side
Γ = A1A3 is an arbitrary nonsingular C2- curve.

The domain D2 is determined as the characteristic parallelogram A1OA2O
′,

whose sides A1O
′ and A2O

′ are trajectories of the vector fields l1 and l2, respectively.
Remark It is clear that given a point O there are six different domains of the

D1- and D2-types. In none of domains of different types the equation Pu = f in
question has been studied. In the following two sections we study separately the
boundary problems of both types.

4.3.2 First partly characteristic problem.

This is the problem we associate with domains D1. In addition to the above
description, this domain is assumed to satisfy the following topological conditions:

(i) the domain D1 is l1- and l2- convex2;
(ii) the projections

π1 : D1 → l1 along the vector field l3,
π2 : D1 → Γ along the vector field l2,
π3 : D1 → l3 along the vector field l1,

satisfy the hypotheses

π1D1 = OA1 and π3D1 = OA3;

(iii) the curve Γ is transversal to the vector field.

The first partly characteristic problem for a given third order strictly hyperbolic
differential operator

P (∂) = (∂/∂l1)(∂/∂l2)(∂/l3)u + Q(∂)u

with Q(∂) being an arbitrary second order differential operator in D1, is formulated
in the following way.

Given an arbitrary function f in D1 and g on ∂D1 = OA1 ∪ OA3 ∪ Γ, find a
function u in D1 such that

P (∂)u = f in D1, u = g on ∂D1. (58)

2For a given smooth vector field l in Rn a set Ω ⊂ Rn is said to be l-convex if, for arbitrary
points p and q in ω lying on a trajectory of l , the full trajectory (p, q) belongs to ω.
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Remark The name ”characteristic” is used in the title to emphasize that the
value of an unknown function u is partially prescribed on the characteristic part
OA1 ∪OA3 of the boundary ∂D1.

It is remarkable that even to formulate the result related to problem (58), we
need some concepts and notions connected with the dynamical systems considered
in Sec. 1.

We introduce two mappings of Γ into itself

δ1 = π2 ◦ π1 and δ2 = π2 ◦ π3,

and consider the semigroup Φδ generated by δ1 and δ2. Let Oδ be the set of orbits
in Γ corresponding to Φδ. Denote by T = T1 ∪T2 the guiding set on Γ, consisting of
characteristic points in Γ with respect to differential operator P (∂). In other words

q ∈ Tj , if Tq(Γ) 3 l j(q), j = 1, 2,

where Tq(Γ) stands for the tangent space of Γ at the point q. Now every thing is
ready to introduce the set NT

δ as the collection of all T - proper periodic orbits lying
in the guiding set T .
Example. If the curve Γ does not contain any characteristic points (i.e. the tan-
gent space of Γ at any point is transversal to all the vectors l j , 1 ≤ j ≤ 3), then
NT

δ = ∅.
Theorem 21 Assume that the vector fields l1, l2 and l3 are constant and the char-
acteristic sets T1 and T2 satisfy an ordering condition formulated before Theorem 18.
Let Γ be a (2 + k)- times differentiable curve. Then problem (58) has a unique so-
lution u ∈ C2+k(D1) for arbitrary functions f ∈ Ck(D1) and g ∈ C2+k(∂D1) if and
only if NT

δ = ∅.
Remark. The specifics of this results are of the two different types. First of all,
this is the first example of a boundary problem for hyperbolic differential equation
in a bounded domain when the value of an unknown function is prescribed on the
entire boundary. On the other hand, the boundary problem turns out to be well
posed, although it assigns only one boundary condition to a third order differential
operator.
Proof. For the sake of brevity we assume the operator P (∂) to be homogeneous
and restrict ourselves to the case f = 0. It is easily to see that a linear change of
variables reduces problem (58) to the problem

(r1∂x + r2∂y)∂x∂yu(x, y) = 0 in D1,

u = h on ∂D1.
(59)

The boundary ∂D now consists of three parts,

Γ1 = {(x, y) | y = 0, 0 ≤ x ≤ 1}, Γ2 = {(x, y) | x = 0, 0 ≤ y ≤ 1},
Γ = {(x, y) | x = α1(t), y = α2(t); −1 ≤ t ≤ 1},

where α1(−1) = 0, α1(1) = 1, α2(−1) = −1, α2(1) = 0. Let h = h1(x) on Γ1,
h = h2(y) on Γ2 and h = h3(x, y) on Γ. In virtue of continuity of the function h on
Γ, the following compatibility conditions are fulfilled:

h1(0) = h2(0), h1(1) = h3(1, 0), h2(1) = h3(0, 1). (60)

Using the postulated properties of the domain D it is easily verified that the
function

u(x, y) =
∫ x

0

( ∫ y

0
F (r2s− r1t)dt

)
ds + h1(x) + h2(y)− h1(0), 0 ≤ x, y ≤ 1, (61)
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satisfies the equation in (59) and the condition u = h on the part Γ1 ∪ Γ2 of the
boundary with any function F ∈ C1(−r1, r2). The necessity to satisfy the condition
u = h3 on Γ leads to the integral equation

∫ α1(t)

0

( ∫ α2(t)

0
F (r2x− r1y)dy

)
dx = H(t), t ∈ I. (62)

Here, as in Subsec. 4.2.2, the equalities x = α1(t), y = α2(t), t ∈ I, describe the
curve Γ in a parametric form, and H(t) = −h1

(
α1(t)

)−h2

(
α2(t)

)
+h3

(
α1(t), α2(t)

)
+

h1(0). What is important is that the function H, generated by any k times piece-
wise differentiable functions h, belongs to the space H(I) = (C2 ∩ C0)(I). This
follows from (60). The inverse statement is also true: a function u which is defined
by formula (61) with F being a solution to equation (62) is a solution of the problem
(59). Thus, the latter problem turns out to be equivalent to the integral equation
(62), which is nothing but equation (49). The unique solvability of the problem (59)
for any function h of the required form under hypothesis NT

ζ = ∅ follows directly
from Theorem 18.

To illustrate the result obtained let us consider the problem (59) in the domains
D1, D2 and D3 (see below). On these figures the only points p and q are charac-

Fig. 3 Fig. 4 Fig. 5

teristic ones. It is easily verified that NT
ζ = ∅ in the case of the domains D1 and

D2 and hence, the problem (59) is well posed in D1 and in D2. On the other hand,
the set NT

ζ in the case of D3 contains the (unique) characteristic T - proper periodic
orbit (p, q, p). That is why Theorem 2 is nonapplicable here.

4.3.3 Second partly characteristic problem.

Let D2 be an arbitrary domain associated with P (∂). Denote by Γ = OO′ a
quasi-diagonal of the curvilinear parallelogram A1OA2O

′ which is supposed to be a
nonsingular C2- curve satisfying the following topological conditions:

(j) the curve Γ is l1- and l2- convex;
(jj) the curve Γ is transversal to the vector l3 at any point, and it has
no common points with the open intervals OA1 and OA2.

The second partly characteristic problem for the above differential operator P (∂) in
the domain D2 is formulated as follows:

Given arbitrary functions f in D2 and g on M = OA1∪OA2∪Γ, find a function
u, in D2 such that

P (∂)u = f in D2,

u = g on M.
(63)
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Remark. By contrast with problem (59), the problem in question is not exactly
boundary problem, because a part of the set M does not lie in ∂D2.

Proceeding with the formulation of the result related to problem (63) we first
establish some compatibility conditions which must hold for the function g. Denote
by g1, g2 and g3 the restrictions of the function g to the curves OA1, OA2 and Γ,
respectively. If {x = xj(t), y = yj(t); 0 ≤ t ≤ 1}, j = 1, 2, 3, are some smooth
parametric representation of these curves and O = (xj(0), yj(0)) for all j, then

u
(
xj(t), yj(t)

)
= gj(t), 0 ≤ t ≤ 1

for j = 1, 2, 3. Denote by τΓ the unit tangent vector of Γ at the point O. By virtue
of transversality of the vectors l1 and l2, there are positive constants λ1 and λ2 such
that

τΓ = λ1l1 + λ2l2.

This immediately leads to the first compatibility condition

g′3(O) = λ1g
′
1(O) + λ2g

′
2(O). (64)

The second one
g1(O) = g2(O) = g3(O) = u(O) (65)

is a consequence of the coincidence of the curves OA1, OA2 and Γ at the point O.

Theorem 22 Let P (∂) be the above differential operator with constant vector fields
l j , 1 ≤ j ≤ 3, defined in a domain D2. Then, for arbitrary functions f ∈ C(D2)
and g ∈ C2(M) satisfying conditions (64) and (65), there is a unique solution
u ∈ C2(D1) of problem (63), and the inverse operator (f, g) 7→ u is bounded. If
f ∈ Ck(D1) and g ∈ C2+k(M), then u ∈ C2+k(D1), k = 1, 2, . . ..

The relation g ∈ C m(M) means that the three functions g1, g2 and g3 are m
times continuously differentiable on their domains.

Proof. For the sake of brevity, we consider only the case of a homogeneous operator
P (∂) (i.e. Q ≡ 0). In this situation there is a linear change of variable reducing
problem (63) to the problem

(∂x − ∂y)∂x∂yu = f in D2

u = g on M (66)

where
D2 = {(x, y) | 0 ≤ x ≤ X, 0 ≤ y ≤ Y }

and the set M consist of the three parts,

M1 = {(x, y)| 0 ≤ x ≤ X, y = 0}, M2 = {(x, y)| x = 0, 0 ≤ y ≤ Y },
and

Γ = {(x, y)| x = δ1(t), y = δ2(t), 0 ≤ t ≤ 1}.
The relations x = δ1(t), y = δ2(t) determine a parametric representation of the
curve Γ, and the functions δ1 and δ2 satisfy the following conditions dictated by
geometric properties of Γ:

(k) δ1(0) = δ2(0) = 0;
(
δ1(1), δ2(1)

)
= (X, Y );

(kk) δ1(t)δ2(t) > 0, 0 < t ≤ 1; δ′1(0)δ′2(0) > 0

(kkk) δ′1(t) + δ′2(t) > 0 and δ′1(t)δ
′
2(t) ≥ 0.
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To see this it is necessary to take into account that the properties (i) and (ii)
of Γ postulated above remain valid under linear nonsingular transformations in R2.
The relations (k) are obvious. The (kk) follows from the properties (i) and (ii) of Γ,
and finally, the relations (kkk) are nothing other than the property (i) of Γ. Indeed,
as we have now l1 = (1, 0), l2 = (0, 1) and l3 = (1,−1), the first inequality in (kkk)
is equivalent to the transversality of an arbitrary tangent vector τ(t) =

(
δ′1(t), δ

′
2(t)

)

of Γ to the vector l3, whereas the second one follows from (i). The first relation in
(kkk) makes possible to assume (without loss of generality) that the functions δ1(t)
and δ2(t) satisfy the condition

(k)′ δ1(t) + δ2(t) = t

Let
g = G1(x) on M1, g = G2(y) on M3, g = G3(x, y) on Γ.

Introduce the function ϕ(t) = G3

(
δ1(t), δ2(t)

)
, 0 ≤ t ≤ 1. The first necessary

compatibility condition related to the functions G1, G2 and ϕ is, by (65),

G1(0) = G2(0) = ϕ(0). (67)

To formulate condition (64) corresponding to the operator (∂x − ∂y)∂x∂y we note
that now l1 = (1, 0), l2 = (0, 1) and τΓ =

(
δ′1(0), δ′2(0)

)
. This means that the

coefficients λ1 and λ2 in (64) are now δ′1(0) and δ′2(0), respectively. Hence, the
second compatibility condition has a form

ϕ′(0) = δ′1(0)G′
1(0) + δ′2(0)G′

2(0). (68)

As the first step in the proof of Theorem 2 we will establish its validity in the
case f = 0. Introduce the function

u(x, y) =
∫ x

0

( ∫ y

0
F (s + t)dt

)
ds + G1(x) + G2(y)−G1(0)

in D2, where F is an arbitrary continuous function in the closed interval Ir =
(0, X + Y ). By virtue of (67), the function u(x, y) satisfies the boundary conditions
u = g on M1 and M2. On the other hand, this function solves the homogeneous
equation in (66) (if the operator ∂x − ∂y to treat as a vector field (1,−1) · (∂x, ∂y)).

To solve problem (66) with f = 0 it remains to choose a continuous function F
such that the function u(x, y) in question satisfies the condition

u(x, y) = G3(x, y) on Γ.

Thus, we arrive at the integral equation
∫ δ1(t)

0

( ∫ δ2(t)

0
F (x + y)dy

)
dx = H(t), 0 ≤ t ≤ 1 (69)

for an unknown function F ∈ C(Ir). Here

H(t) = −G1

(
δ1(t)

)−G2

(
δ2(t)

)
+ G3

(
δ1(t), δ2(t)

)
+ G1(0).

What is important is that the function H(t) satisfies the conditions

H(0) = 0 and H ′(0) = 0.

This follows immediately from compatibility conditions (67) and (68). But then
equation (69) coincides with equation (49) whose solvability has been demonstrated

33



in the very end of the proof of Theorem 17. This completes the proof of Theorem 22
when f = 0. In the case of an arbitrary function f ∈ Ck(D2) what it remains to do
is to find a particular solution u ∈ C2+k(D1) of the differential equation

(∂x − ∂y)∂x∂yu = f, (x, y) ∈ D2.

The reader can verify directly that the function

u(x, y) =
∫ x

0

(∫ y

0

(∫ s−t

γ(s+t)
f

(
s + t + z

2
,
s + t− z

2

)
dz

)
dt

)
ds

with γ = (δ1−δ2)◦(δ1+δ2)−1, is a particular solution of this equation in the domain
D2. The assertion of the theorem is proved.
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