
GENERALISED ELLIPTIC BOUNDARY PROBLEMS

K. KRUPCHYK, N. TARKHANOV, AND J. TUOMELA

Abstract. For elliptic systems of differential equations on a manifold with

boundary, we prove the Fredholm property of a class of boundary problems

which do not satisfy the Shapiro-Lopatinskii property. We name these bound-
ary problems generalised elliptic, for they preserve the main properties of ellip-

tic boundary problems. Moreover, they reduce to systems of pseudodifferential
operators on the boundary which are generalised elliptic in the sense of Saks
(1997).
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Introduction

Nowadays by ellipticity is usually meant the property of operators in algebras
with symbolic structure to have an invertible symbol. While a symbol may char-
acterize a very particular property of operators, one tries to construct a full set of
symbols which control the Fredholm property of operators. For algebras of pseu-
dodifferential operators on spaces with singularities the invertibility of symbols no
longer can be verified effectively at all.

The simplest singularity might occur is the boundary of a compact C∞ manifold.
The Fredholm property of boundary value problems in Sobolev spaces on such
manifolds is equivalent to the invertibility of two symbols. One of the two symbol
maps is given by ordinary differential operator which acts in spaces of bounded
functions on the semiaxis under suitable conditions at the origin. Its invertibility is
referred to as the Shapiro-Lopatinskii condition.

The symbol construction is related to an appropriate choice of the principal
parts of operators. These are in turn determined by available group actions on
the underlying manifold. The operators are given domains prescribed by the group
actions in question. The construction of abstract Sobolev spaces based on a group
action goes as far as [Sch91].

2000 Mathematics Subject Classification. Primary 58J05; Secondary 35J40, 35S15.

Key words and phrases. Elliptic operators, homotopy invariance, Fredholm property.

1



2 K. KRUPCHYK, N. TARKHANOV, AND J. TUOMELA

Generally, the ellipticity property of a pseudodifferential operator is only a prop-
erty of the way in which the operator is written, and it may appear or disappear by
replacing the operator by a homotopically equivalent operator. On the other hand,
the Fredholm property of a pseudodifferential operator is homotopically invariant
but it may be necessary to change the function spaces for the evaluation of kernel
and cokernel.

If motivated by the Fredholm property, the class of elliptic operators should
therefore survive under homotopical equivalence. In this way we obtain what we
call generalised elliptic operators. More precisely, a pseudodifferential operator
is called generalised elliptic if it is homotopically equivalent to a classical elliptic
pseudodifferential operator.

We show that generalised elliptic operators give rise to Fredholm operators in
suitable function spaces.

1. Homotopical equivalence

In this section we recall the notion of equivalent overdetermined pseudodifferen-
tial operators which belong to a calculus, cf. § 1.2.1 in [Tar95]. By an overdeter-
mined pseudodifferential operator is meant a sequence

C∞(E0)
d0

E→ C∞(E1)
d1

E→ C∞(E2) (1.1)

consisting of two pseudodifferential operators d0
E and d1

E satisfying d1
Ed0

E = 0. We
write it dE for short.

Two overdetermined pseudodifferential operators dE and dF are called equivalent
if there exist pseudodifferential operators Mi of type F i → Ei and M−1

i of type
Ei → F i, for i = 0, 1, 2, and pseudodifferential operators hE

i of type Ei → Ei−1 and
hF

i of type F i → F i−1, for i = 1, 2, with the property that the following conditions
are fulfilled:

1) Mi+1d
i
F − di

EMi = 0, 2) M−1
i Mi = I − hF

i+1d
i
F − di−1

F hF
i ,

M−1
i+1d

i
E − di

F M−1
i = 0; MiM

−1
i = I − hE

i+1d
i
E − di−1

E hE
i

for i = 0, 1, cf. the diagram

C∞(F 0)
d0

F

�
hF

1

C∞(F 1)
d1

F

�
hF

2

C∞(F 2)yM0

xM−1
0

yM1

xM1
−1

yM2

xM2
−1

C∞(E0)
d0

E

�
hE

1

C∞(E1)
d1

E

�
hE

2

C∞(E2).

(1.2)

If two overdetermined pseudodifferential operators dE and dF are equivalent,
then there is a topological isomorphism between the cohomology spaces of complex
(1.1) and that for dF at steps 0 and 1. This isomorphism is defined by the operators
M0 and M1 from (1.2).

Theorem 1.1. Let dE and dF be equivalent overdetermined pseudodifferential oper-
ators. Then the cohomology spaces Hi(C∞(E·)) and Hi(C∞(F ·)) are topologically
isomorphic for i = 0, 1.

In particular, if both d1
E and d1

F vanish, then d0
F : C∞(F 0) → C∞(F 1) is Fred-

holm if and only if so is the operator d0
E : C∞(E0) → C∞(E1).

Proof. Denote by N(d0
F ) the null-space of d0

F , and N(d0
E) the null-space of d0

E . We
claim that these spaces are topologically isomorphic. To prove this, consider a map
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of N(d0
F ) to N(d0

E) given by v 7→ M0v for v ∈ N(d0
F ). By 1),

d0
EM0v = M1d

0
F v

= 0,

hence M0v belongs to N(d0
E) indeed. Suppose that v ∈ N(d0

F ) satisfies M0v = 0.
Then by 2) we get

v = M−1
0 M0v + hF

1 d0
F v

= 0,

i.e., the map v 7→ M0v is injective. Finally, let u ∈ N(d0
E). Set v = M−1

0 u, then
v ∈ C∞(F 0) and

d0
F v = M−1

1 d0
Eu

= 0,

which is due to 1). Moreover, by 2), we get

M0v = u− hE
1 d0

Eu

= u,

i.e., the map v 7→ M0v is surjective.
We now denote by R(d0

F ) the range of d0
F , and R(d0

E) the range of d0
E . We claim

that the cohomology spaces N(d1
F )/R(d0

F ) and N(d1
E)/R(d0

E) are topologically iso-
morphic. To prove this, consider a map of N(d1

F )/R(d0
F ) to N(d1

E)/R(d0
E) given by

[g] 7→ [M1g] for g ∈ N(d1
F ), where by [g] is meant the cohomology class containing

g, and similarly for [M1g]. This map is well defined, for

d1
EM1g = M2d

1
F g

= 0,

the second equality being due to 1), and if g = d0
F v for some v ∈ C∞(F 0), then

M1g = d0
EM0v by 1), whence [M1g] = 0. Suppose g ∈ N(d1

F ) satisfies [M1g] = 0,
i.e., M1g = d0

Eu for some u ∈ C∞(E0). By 2), we obtain

g = M−1
1 M1g + hF

2 d1
F g + d0

F hF
1 g

= d0
F hF

1 g,

showing [g] = 0, i.e., the map [g] 7→ [M1g] is injective. Finally, let f ∈ N(d1
E). Set

g = M−1
1 f , then g ∈ C∞(F 1) and

d1
F g = M−1

2 d1
Ef

= 0,

which is due to 1). Moreover, by 2), we get

M1g = f − hE
2 d1

Ef − d0
EhE

1 f

= f − d0
EhE

1 f,

i.e., [M1g] = [f ]. Hence it follows that the map [g] 7→ [M1g] is surjective, which
completes the proof. �

By this theorem we can see that equivalent overdetermined pseudodifferential
operators are in fact different manifestations of a mathematical object describing
the same physical or some other process.

The modern theory of operator algebras is mostly interested in describing the
operators which are invertible modulo “small” operators. By “small” operators are
usually meant compact operators, and then the class under study are Fredholm
operators. On using representation theory one arrives at matrix or more general
operator bundles where the invertibility is to be established. In this way one obtains
what pretends to be an algebraic characterisation of the Fredholm property and
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is usually referred to as ellipticity. However, the ellipticity is strongly related to
function spaces that are chosen to be the domain and target space of operators under
consideration. In particular, the classical ellipticity corresponds to usual Sobolev
spaces graded according to scalar orders of operators. This leads to numerous
concepts of ellipticity.

Example 1.1. Consider the differential operator Au := rotu + u defined on func-
tions u : R3 → R3. It is not overdetermined, for the only differential operator A1 sat-
isfying A1A = 0 is obviously A1 = 0. On completing the system Au = 0 to an invo-
lutive system we arrive at the overdetermined differential operator B0 = (1⊕div)A,
i.e., B0u = (Au, div u), with a compatibility operator B1 given by B1f = div f ′−f4

for a function f = (f ′, f4) on R3 with values in R4. The differential operators A
and B are homotopically equivalent, for the commutative diagram

0 → C∞(R3 × R3)
B0

�
0

C∞(R3 × R4)
B1

�
hF

2

C∞(R3 × R) → 0y1 x1

yM1

xM1
−1

y0 x0

0 → C∞(R3 × R3)
A
�
0

C∞(R3 × R3)
0
�
0

0

(1.3)
takes place with M1f = f ′ for f = (f ′, f4) ∈ C∞(R3 ×R4), and M−1

1 f = (f,div f)
for f ∈ C∞(R3 × R3), and hF

2 y = (0,−y) for y ∈ C∞(R3 × R). It is easy to see
that the first line of (1.3) is an elliptic complex in the classical sense. On the other
hand, the operator A is nor elliptic in the classical sense neither Douglis-Nirenberg
elliptic, cf. [KST04]. Hence, under homotopical equivalence the property of being
elliptic can hardly be traced in explicit form.

This example shows that the only way to algebraically recognise the Fredholm
property of a square system is to bring it to a normal form. The normal form
suggests also appropriate function spaces in which A behaves properly. The diagram
(1.3) shows for instance that if M is a compact closed Riemannian manifold of
dimension 3 and A is the differential operator on one-forms on M defined by
Au = du + ∗u, where ∗ is the Hodge star operator, then A induces a Fredholm
operator from Hs(T ∗M) to the subspace of Hs−1(Λ2T ∗M) consisting of all f with
df ∈ Hs−1(Λ3T ∗M).

2. Normal form

Let M be a C∞ manifold with boundary ∂M, and π : V →M a vector bundle
over M.

Denote by πq : Jq(V ) →M the bundle of q -jets of the bundle V . Introduce the
canonical projections

πq
r : Jq(V ) → Jr(V ),

for r ≤ q, and define the embedding εq by requiring that the following complex be
exact

0 → Sq(T ∗M)⊗ V
εq→ Jq(V )

πq
q−1→ Jq−1(V ) → 0.

Let s be a section of the bundle V . Then its q th prolongation, a section of Jq(V ),
is denoted by jqs. We write S(V ) for a space of sections of the bundle V .

Definition 2.1. By a (partial) differential equation of order q on V is meant a
subbundle Rq of Jq(V ). Solutions of Rq are its (local) sections.

We will only consider linear problems in the present paper, so Rq will be a
vector bundle. Suppose V 0 and V 1 are two (vector) bundles. A linear q th order
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differential operator A can be thought of as a linear map S(V 0) → S(V 1). Then
we can associate to A a bundle map A : Jq(V 0) → V 1 by the formula A = Ajq.
Now with A one can represent a differential equation as a zero set of a bundle map,
Rq = kerA, or A(x, jqs(x)) = 0.

Definition 2.2. The differential operator jrA : S(V 0) → S(Jr(V 1)) is said to be
the r th prolongation of A. The associated morphism is denoted by Ar.

Then we can define the prolongation of Rq by Rq+r = kerAr. We also define
R(s)

q+r = πq+r+s
q+r (Rq+r+s). Note that R(s)

q+r ⊂ Rq+r, but in general these sets are not
equal.

Definition 2.3. A differential operator A is called sufficiently regular if R(s)
q+r is a

vector bundle for all r ≥ 0 and s ≥ 0.

If M ⊂ Rn and the operator A has constant coefficients, then A is sufficiently
regular.

Definition 2.4. A differential operator A (of order q) is called formally integrable
if A is sufficiently regular and R(1)

q+r = Rq+r for all r ≥ 0.

The formal integrability of an operator A of order q means that for any r ≥ 1, all
the differential consequences of order q + r of the relations As = 0 may be obtained
by means of differentiations of order no greater than r, and application of linear
algebra.

The formal integrability cannot in general be checked in practice because there
is an infinite number of conditions. Hence we need a stronger property, the invo-
lutivity of the system, which implies formal integrability, and can be checked in a
finite number of steps. For the actual definition of involutivity we refer to [Spe69],
[Pom78], [Sei01], and elsewhere. There is the following important result.

Theorem 2.1. For a given sufficiently regular system Rq there are numbers r and
s such that R(s)

q+r is involutive,

In practice to complete a system to the involutive form one may use DETools
package [BHS01] in computer algebra system MuPAD [GOPW00].

The formal theory gives the notion of a principal symbol of the system which
actually coincides with the classical concept.

Definition 2.5. Let Rq ⊂ Jq(V 0) be a sufficiently regular differential equation
given by Rq = kerA. By the principal symbol σq(A) of A is meant the map
Sq(T ∗M)⊗ V 0 → V 1 defined by σq(A) = Aεq.

Consider a coordinate system on M. Then a linear q th order partial differential
equation Rq is given by

Au :=
∑
|α|≤q

Aα(x)Dαu

= f,

where x ∈ O, an open subset of Rn, and Aα(x) is an (l × k) -matrix of functions
on O. Fixing any one form ξ we get a bundle map σq(A)(ξ) : V 0 → V 1 which in
coordinates is given by

σq(A)(ξ) =
∑
|α|=q

Aα(x)ξα.

To study the Fredholm property of overdetermined operators it is convenient to
reduce the operator to a certain equivalent canonical form.
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Definition 2.6. A differential operator A : S(V 0) → S(V 1) is called normalised
if 1) A is a first order operator; 2) A is involutive; and 3) the principal symbol
σ1(A) : T ∗M⊗ V 0 → V 1 is surjective.

The condition 3) means that there are no (explicit or implicit) algebraic (i.e., non-
differential) relations between unknown functions in the system. If such relations
exist, then we may use them to reduce the number of unknown functions.

Theorem 2.2. Every sufficiently regular operator A can be transformed in a finite
number of steps into an equivalent normalised operator.

To consider boundary value problems we choose two bundles on the boundary Y
of M, i.e., W 0,W 1 → Y. The bundle V i |Y → Y is the restriction of V i → M to
the boundary. If u is a section of V i →M, then γu is the corresponding section of
V i |Y → Y. This map γ is called the trace map.

Definition 2.7. An operator Ψ : S(V 0)× S(W 0) → S(V 1)× S(W 1) of the form

Ψ(u, w) =
( Ψ1,1 0

γΨ2,1 Ψ2,2

)( u
w

)
,

where Ψi,j are differential operators, is called a boundary problem operator.

If W 0 = 0, we obtain in this way an operator Ψ(u) = (Au, γBu) which defines a
classical boundary problem on M.

Definition 2.8. A boundary problem operator Ψ is said to be normalised if Ψ1,1

is normalised and γΨ2,1 contains only differentiation in directions tangent to the
boundary.

Theorem 2.3. Every boundary problem operator Ψ whose component Ψ1,1 is suf-
ficiently regular is equivalent to a normalised boundary problem operator.

Note that this theorem still holds for the classical boundary value problems, i.e.,
in the case Ψ2,2 = 0.

We will not give the explicit mappings involved in the equivalence in Theorem 2.3
but we just indicate the steps of construction of the equivalent normalised boundary
problem operator for a classical boundary problem (A,B). Namely, one should go
through the following 4 steps:

1st step: Construct the involutive form of A.
2nd step: Prolong the system, if necessary, until the order of the system is

higher than the order of normal derivatives in the boundary operator B.
3rd step: Construct an equivalent first order system.
4th step: Eliminate, if necessary, the extra variables (unknown functions)

using the algebraic relations in the system.

It is worth pointing out that the system is involutive if and only if the equivalent
first order system is involutive, cf. [Sei01].

We complete this section by constructing the normalised classical boundary prob-
lem for the familiar stationary Stokes problem in two dimensions.

Example 2.1. Consider the boundary problem in R2
+ = {x ∈ R2 : x2 > 0}

A :
{
−∆u +∇p = f ′,

div u = f3
in X = R2

+,

B : u = 0 on Y = ∂R2
+,

where u = (u1, u2) is the velocity field, p is the pressure, and f ′ = (f1, f2). By
completing the above system to the involutive form we arrive at an overdetermined
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system

A(1) :


−∆u +∇p = f ′,

∆p = div f ′ + ∆f3,
div u = f3,

∂2
1u1 + ∂1∂2u2 = ∂1f3,

∂1∂2u1 + ∂2
2u2 = ∂2f3

(2.1)

in X . Introducing nine new variables (unknown functions)

v1,00 = u1, v1,10 = ∂1u1, v1,01 = ∂2u1,
v2,00 = u2, v2,10 = ∂1u2, v2,01 = ∂2u2,
v3,00 = p, v3,10 = ∂1p, v3,01 = ∂1p

and substituting them into (2.1), and also adding the compatibility equations we
get the first order system

A(2) :



−∂1v1,10 − ∂2v1,01 + v3,10 = f1,
−∂1v2,10 − ∂2v2,01 + v3,01 = f2,

∂1v3,10 + ∂2v3,01 = div f ′ + ∆f3,
v1,10 + v2,01 = f3,

∂1v1,10 + ∂1v2,01 = ∂1f3,
∂2v1,10 + ∂2v2,01 = ∂2f3 and

∂1vj,00 − vj,10 = 0,
∂2vj,00 − vj,01 = 0,

∂2vj,10 − ∂1vj,01 = 0

for j = 1, 2, 3. This system is not normalised since there is an algebraic relation
v1,10 + v2,01 = f3 between the dependent variables. Using this relation we can
now eliminate the unknown function v2.01 from the system and obtain the following
normalised system

A(3) :



−∂1v1,10 − ∂2v1,01 + v3,10 = f1,
∂2v1,10 − ∂1v2,10 + v3,01 = f2 + ∂2f3,

∂1v3,10 + ∂2v3,01 = div f ′ + ∆f3 and
∂1vj,00 − vj,10 = 0,
∂1v2,00 − v2,10 = 0,
∂2vj,00 − vj,01 = 0,
∂2v2,00 + v1,10 = f3,

∂2vj,10 − ∂1vj,01 = 0,
∂1v1,10 + ∂2v2,10 = ∂1f3

for j = 1, 3. Finally, substituting the new unknown functions in the boundary
conditions, we obtain

B(1) :
{

v1,00 = 0,
v2,00 = 0.

Hence it follows that the classical boundary problem operator (A(3), B(1)) is nor-
malised.

3. Boundary problems for overdetermined elliptic systems

Let X be a bounded domain in Rn with smooth boundary Y = ∂X , and A(x, D)
an (l × k) -matrix of scalar partial differential operators with C∞ coefficients in a
neighbourhood of X = X ∪ Y. We assume that l ≥ k, i.e., the inhomogeneous
system Au = f is overdetermined, and that A(x,D) is given a Douglis-Nirenberg
principal symbol structure (N,M), where M = (M1, . . . ,Mk) and N = (N1, . . . , Nl)
are tuples of integer numbers. This means that the order of the entry ai,j(x,D) in
the matrix A(x, D) does not exceed Ni +Mj . As usual, one assumes without loss of
generality that Ni ≤ 0 and max{N1, . . . , Nl} = 0, and that ai,j ≡ 0 if Ni + Mj < 0.
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The integer o = max{Ni + Mj} is a scalar order of A(x, D), and we assume that o
is positive.

We assume that the operator A(x, D) is Douglis-Nirenberg elliptic, i.e., the ma-
trix σ(A)(x, ξ) constituted of the principal homogeneous parts of ai,j(x, ξ) of order
Ni + Mj has maximal rank k for all x ∈ X and ξ ∈ Rn \ {0}. This matrix satisfies
the homogeneity condition in ξ

σ(A)(x, λξ) = κ̃λ σ(A)(x, ξ) κ−1
λ (3.1)

for all λ > 0, where

κλ =

 λ−M1 0
. . .

0 λ−Mk

 , κ̃λ =

 λN1 0
. . .

0 λNl

 .

We will consider the operator A in Sobolev spaces Hs+M (X ) → Hs−N (X ) for
s = 0, 1, . . ., where

Hs+M (X ) = Hs+M1(X )× . . .×Hs+Mk(X ),
Hs−N (X ) = Hs−N1(X )× . . .×Hs−Nl(X ).

To study the kernel and cokernel of the operator A : Hs+M (X ) → Hs−N (X )
one introduces the vector space M(y, η) constituted of all bounded solutions to the
system of ordinary differential equations

σ(A)
(
y, η + ν(y)

1
ı

d

dt

)
u(y, η; t) = 0 (3.2)

on the semiaxis t > 0, depending on the parameter (y, η) ∈ T ∗Y \{0}, where y ∈ Y,
η ∈ T ∗

yY is non-zero, and ν(y) is the unit inner normal vector to the boundary at
the point y.

If the space M(y, η) is trivial for all (y, η) ∈ T ∗Y \{0}, which is possible even for
l = k provided |N | + |M | ≡ 0, then the operator A : Hs+M (X ) → Hs−N (X ) has
closed range and his kernel is finite dimensional, cf. for instance [DN55, Sol71]. In
particular, the equation

Au = f (3.3)

is normally solvable.
In the general case the kernel of the operator A : Hs+M (X ) → Hs−N (X ) is finite

dimensional only if additional boundary conditions

B(x,D)u |Y = u0 (3.4)

are posed on the solutions of (3.3), where B(x,D) is an (m×k) -matrix of scalar par-
tial differential operators with C∞ coefficients in a neighbourhood of the boundary
Y. We assume that B(x, D) is given a Douglis-Nirenberg principal symbol structure
(O,M), too, where O = (O1, . . . , Om), and that B(x,D) complements A(x, D) in
the sense that the space M(y, η) does not contain any non-zero solution satisfying
the condition

σ(B)
(
y, η + ν(y)

1
ı

d

dt

)
u (y, η; 0) = 0 (3.5)

for all (y, η) ∈ T ∗Y \ {0}, cf. [Sol71].
This condition requires that m ≥ max dim M(y, η), where the maximum is over

all points (y, η) ∈ T ∗Y \ {0}.
In the case where l = k, |N | + |M | > 0, and A is properly elliptic, the function

dim M(y, η) is constant on T ∗Y \{0} and is actually equal to 1/2 (|N |+ |M |). Then,
for m = 1/2 (|N | + |M |), our condition on B(x,D) just amounts to the Shapiro-
Lopatinskii condition, and the boundary problem (3.3), (3.4) is called elliptic. An
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elliptic boundary problem gives rise to a Fredholm operator

A :=
(

A
T

)
: Hs+M (X ) →

Hs−N (X )
⊕

Hs−1/2−O(Y)
(3.6)

for s > max{O1, . . . , Om}, where T stands for B followed by the restriction to the
boundary Y, cf. [AD62, Vol65, Sol71].

Solomyak [Sol63] showed a properly elliptic first order differential operator A with
|N |+ |M | = 4, for which it is impossible to find any pseudodifferential operator B
with m = 2 complementing A. It follows that an elliptic system of differential
equations fails in general to possess a boundary problem satisfying the Shapiro-
Lopatinskii condition. As is known [AB64], this restriction on elliptic systems is of
topological character.

However, if one admits boundary matrices B(x, D) with the number of rows m
greater than maxdim M(y, η), then it is always possible to find suitable boundary
conditions complementing A.

Theorem 3.1. For each elliptic operator A of principal symbol structure (N,M)
there is a boundary operator B of principal symbol structure (O,M) which comple-
ments A.

Proof. We first assume that N = 0 and M is the k -row with equal entries o. By
the Green formula for A, cf. for instance [Tar95], the Cauchy data

(u, Dνu, . . . , Do−1
ν u) |Y

obviously complement A, where by Dν is meant differentiation in the direction of
the inner normal vector to Y. We can thus ask about the minimal number of
boundary conditions complementing A.

In a small neighbourhood of the boundary Y we can write the operator B in the
form

o−1∑
j=0

Bj Dj
ν ,

where Bj are differential operators of order o− j acting only in directions tangent
to Y.

Given a point (y, η) ∈ T ∗Y \ {0}, we choose a (k × Q) -matrix Φ(y, η; t) whose
columns constitute a basis of the space M(y, η). Then the matrix

∆(y, η) =


Φ(y, η; 0+)

DtΦ(y, η; 0+)
. . .

Do−1
t Φ(y, η; 0+)

 (3.7)

has maximal rank Q = dim M(y, η) at the point (y, η). Let M(y, η) be a Q -rowed
submatrix of ∆(y, η) of non-zero determinant. Since

B(y, η + ν(y)
1
ı

d

dt
)Φ(y, η; 0+) = (B0(y, η), . . . , Bo−1(y, η))∆(y, η)

we can choose elements of the matrix (B0(y, η), . . . , Bo−1(y, η)) in such a manner
that (B0(y, η), . . . , Bo−1(y, η))∆(y, η) = M(y, η) be fulfilled. Then the operator B
complements A at the point (y, η), and therefore in some neighbourhood U(y, η) of
this point in T ∗Y \ {0}.

If U(y, η) = T ∗Y \ {0} then B is a desired operator. Since each row of the
operator B contains only one non-zero element, whose order we denote by δi, then,
setting Oi = δi − o, we get σ(B) = B.
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If U(y, η) does not coincide with T ∗Y \{0}, then we find a cover of T ∗Y \{0} by
such neighbourhoods U and choose a minimal finite subcover {U1, . . . , UI}. In this
case we form an operator

B =

 B1

. . .
BI

 (3.8)

of (Qi × k) -matrices Bi complementing A in Ui. Then we reduce the number of
rows of this matrix by eliminating equivalent rows, and assign orders to the rows of
B in such a way that σ(B) = B. This readily yields a boundary operator B with
desired properties.

In the general case where A is an elliptic operator with principal symbol structure
(N,M) and M 6= (o, . . . , o) (k -tuple), the data

(uj , Dνuj , . . . , D
mj−1
ν uj) |Y ,

for j = 1, . . . , k, complement A, uj being the j th component of the vector-valued
function u. Hence, substituting zero rows for those rows in the matrix (3.7) which
correspond to the derivatives Dk

νuj for mj ≤ k ≤ o − 1, we get a matrix having
maximal rank at the point (y, η). The rest of the proof runs as before. �

If a boundary operator B with principal symbol structure (O,M) complements
an elliptic operator A with principal symbol structure (N,M), then the boundary
problem (3.6) has finite-dimensional kernel and closed range. The cokernel of the
operator (3.6) can be of infinite dimension even in the case l = k, provided that
m > 1/2 (|N | + |M |), cf. [Sol71]. The proof of this reduces to constructing a left
regulariser of the operator (3.6). The crucial point of this construction consists in
constructing a left regulariser of the symbol

σ(A) =
( σ(A)

σ(T )

)
with constant coefficients in the half-space. Since this theorem is of great importance
in the sequel, we show a simpler construction of a left regulariser of the operator
σ(A) in the half-space. To this end we use a special method of solution of a linear
system presented in [Sob74, Ch. 1].

4. Left regulariser

As usual, we write Rn
+ for the half-space {x ∈ Rn : xn > 0}. Let u be a smooth

function on Rn
+ rapidly decreasing at infinity and satisfying{

A(D)u(x) = f(x) for xn > 0,
B(D)u(x) = u0(x′) for xn = 0,

(4.1)

where A(D) is an (l× k) -matrix of scalar differential operators with constant coef-
ficients and principal symbol structure (N,M) and B(D) is an (m × k) -matrix of
scalar differential operators with constant coefficients and principal symbol struc-
ture (O,M), both operators being without lower terms. Suppose A is elliptic, and
B complements A. For simplicity we first consider the case where A is a homoge-
neous elliptic operator of order o, i.e., ni = 0 and mj = o for all i, j, and the scalar
order of B is less than o, i.e., all O1, . . . , Om are negative. Given any function u on
Rn

+ which is smooth up to the boundary, we extend u by 0 to all of Rn, and denote
this extension by e+u.

Denote by Fx7→ξe+u and Fx′ 7→ξ′u the Fourier transformations of such functions
in x and x′. Then Fx7→ξe+Dαu = ξαFx7→ξe+u for all α = (α1, . . . , αn) with αn = 0,
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and
Fx7→ξe+Dnu = ξnFx7→ξe+u + ıFx′ 7→ξ′u |xn=0+,

Fx7→ξe+Dj
nu = ξj

nFx7→ξe+u + ı

j−1∑
ι=0

ξj−1−ι
n Uι(ξ′),

(4.2)

where Uι(ξ′) = Dι
nFx′ 7→ξ′u |xn=0+.

Set U = (U0, . . . , Uo−1) and

A(ξ) =
o∑

j=0

Aj(ξ′)ξj
n,

where Aj(ξ′) are homogeneous matrix-valued polynomials of degree o − j in ξ′.
Applying the Fourier transform to (4.1) and taking into account (4.2), we readily
get

A(ξ)Fx7→ξe+u + ı

o∑
j=1

j−1∑
ι=0

Aj(ξ′)ξj−1−ι
n Uι(ξ′) = Fx7→ξe+f. (4.3)

Write the second term on the right-hand side of (4.3) in the form ÃU . Changing
the order of summation we see that

ÃU = ı
o−1∑
ι=0

(
A(ξ)−

ι∑
j=0

Aj(ξ′)ξj
n

)
ξ−1−ι
n Uι(ξ′)

= ı
o−1∑
ι=0

( o−1−ι∑
j=0

Aj+1+ι(ξ′)ξj
n

)
Uι(ξ′), (4.4)

and so Ã = (Ã0, . . . , Ão−1) can be specified as a block matrix constituted of

Ãι =
o−1−ι∑

j=0

Aj+1+ι(ξ′)ξj
n,

matrix-valued polynomials of degree o − 1 − ι in ξn. Since A(D) is elliptic, the
matrix A(ξ) has a left inverse matrix A−1

L (ξ) for all ξ ∈ Rn \ {0}. A familiar way
to choose such a matrix is

A−1
L (ξ) = ((A(ξ))∗A(ξ))−1(A(ξ))∗ (4.5)

where A∗ = ĀT is the adjoint matrix. Let R(ξ) = E−A(ξ)A−1
L (ξ) for ξ ∈ Rn \{0},

where E is the identity (l× l)-matrix. Then the system (4.3) is solvable if and only
if

R(ξ)
(
Fx7→ξe+f − ÃU

)
= 0 (4.6)

for all ξ ∈ Rn \ {0}, as is easy to see.
This condition can be transformed, when one uses the equality

((A(ξ))∗A(ξ))−1 =
adj (A(ξ))∗A(ξ)
det(A(ξ))∗A(ξ)

=
C(ξ)
p(ξ)

(4.7)

for ξ ∈ Rn \ {0}, where p(ξ) is a properly elliptic polynomial of order 2$, with
o ≤ $ ≤ ko, and C(ξ) is a (k× k) -matrix of polynomials of degree 2($− o) which
is obtained after possible cancellation of common divisors. Then pR = pE −ACA∗

is a matrix-valued polynomial of degree 2$. However, pR ÃU is a polynomial in ξn

of degree less than 2$. Indeed, since RA ≡ 0, we get

pR ÃU = −ıpR
o−1∑
ι=0

ι∑
j=0

Aj(ξ′)ξj−1−ι
n Uι(ξ′)
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which is due to (4.4). As j ≤ ι, the desired conclusion is obvious. Hence it follows
that

pR ÃU =
2$∑
j=1

ξj−1
n Pj(ξ′)U(ξ′). (4.8)

The coefficients PjU of this polynomial can be expressed through f . Indeed,
multiplying equality (4.6) by ξi−1

n and integrating the product over a contour γ+

enclosing all roots of the polynomial p(ξ′, ξn) in ξn lying in the upper half-plane,
for a fixed ξ′, we obtain

2$∑
j=1

∫
γ+

ξi+j−2
n

p(ξ′, ξn)
dξn Pj(ξ′)U(ξ′). =

∫
γ+

ξi−1
n R(ξ)Fx7→ξe+f dξn (4.9)

for i = 1, . . . , $. The matrix M(ξ′) = (Mi,j(ξ′)) i=1,...,$
j=1,...,$

with entries

Mi,j(ξ′) =
∫

γ+

ξi+j−2
n

p(ξ′, ξn)
dξn

is non-degenerate for all ξ′ ∈ Rn−1 \ {0}, this latter can be seen by verifying the
Shapiro-Lopatinskii condition for the Dirichlet problem on Rn

+ for the elliptic op-
erator p(D). Hence, setting PjU = 0 for j > $, we determine the other PjU by
inverting the matrix M(ξ′). The solution of (4.9) obtained in this way we can write
in the form

PU =

 P1

...
P2$

U

=
(

T Fx7→ξe+f
0

)
(4.10)

for ξ′ ∈ Rn−1 \{0}. Note that for f = 0 the conditions (4.6) and (4.10) are actually
equivalent.

If (4.6) is satisfied, then

Fx7→ξe+u = A−1
L (ξ) (Fx7→ξe+f − ÃU)

for ξ ∈ Rn \ {0}, as is easy to check. Applying the inverse Fourier transform in ξn

to both sides of this equality, we get

Fx′ 7→ξ′u(x′, xn) =
1
2π

∫ ∞

−∞
eıxnξnA−1

L (ξ) (Fx7→ξe+f − ÃU) dξn, (4.11)

where the integral over the real axis can be replaced by the integral over γ+. Fur-
thermore, applying the Fourier transform in x′ to the boundary condition in (4.1)
yields

QU :=
∫

γ+

B(ξ)A−1
L (ξ) Ã(ξ)U(ξ′) dξn

=
∫

γ+

B(ξ)A−1
L (ξ)Fx7→ξe+f dξn −Fx′ 7→ξ′u0, (4.12)

we have used the above formula for Fx′ 7→ξ′u. On the other hand, writing the
boundary operator B(D) in the form

o−1∑
ι=0

Bι(D′)Dι
n

and introducing a block matrix B̃ = (B0, . . . , Bo−1), we obtain from the boundary
condition similarly to (4.3)

B̃(ξ′)U(ξ′) = Fx′ 7→ξ′u0. (4.13)
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Lemma 4.1. If the operator A is elliptic and B complements A, then the homoge-
neous system (4.10), (4.12), (4.13) (i.e., that corresponding to f = 0 and u0 = 0)
has only trivial solution U = 0 for all ξ′ ∈ Rn−1 \ {0}.

Proof. Let U = (U0, . . . , Uo−1) be a solution of the homogeneous system (4.10),
(4.12), (4.13). Our objective will be to show that for each ξ′ ∈ Rn−1 \ {0} the
vector-valued function

v(xn) := − 1
2π

∫ ∞

−∞
eıxnξnA−1

L (ξ) Ã(ξ)U(ξ′) dξn

is a bounded solution of the equation

A
(
ξ′,

1
ı

∂

∂xn

)
v(xn) = 0 (4.14)

for xn 6= 0, satisfying the boundary conditions

B
(
ξ′,

1
ı

∂

∂xn

)
v(xn) = 0 (4.15)

for xn = 0±. Moreover, the jump of the function Dι
nv(xn) at xn = 0 just amounts

to

Dι
nv(0+)−Dι

nv(0−) = Uι (4.16)

whenever ι = 0, 1, . . . , o− 1.
To this end, pick contours γ+ and γ− which bound half-disks in the upper and

lower half-planes containing all singularities of the matrix ((A(ξ))∗A(ξ))−1, i.e., all
roots of the polynomial p(ξ′, ξn). Then the integral over the real axis in the formula
for v(xn) can be replaced by the integral over γ+ for xn > 0 or over γ− for xn < 0.
Hence it follows that v(xn) is bounded for xn 6= 0. Applying the operator A(ξ′, Dn)
to v readily get

A
(
ξ′,

1
ı

∂

∂xn

)
v(xn) =

1
2π

∫
γ±

eıxnξnR Ã(ξ)U(ξ′) dξn −
1
2π

∫
γ±

eıxnξnÃ(ξ)U(ξ′) dξn

(4.17)
for xn 6= 0.

From the equality (4.10) with f = 0 we deduce that R Ã(ξ)U(ξ′) ≡ 0 holds on
the real axis. Therefore, the first integral on the right-hand side of (4.17) reduces
to the integral over a semicircle S±(R) = {ξn ∈ C : |ξn| = R, ±=ξn ≥ 0}, which is
actually independent of R large enough, and by (4.8) it tends to zero when R →∞.
It follows that this integral is equal to zero. By the Cauchy theorem, the second
integral on the right-hand side of (4.17) vanishes, too. This shows that (4.14) is
fulfilled.

We now prove that v(xn) satisfies boundary conditions (4.15). For xn = 0+ this
follows immediately from (4.12) with f = 0 and u0 = 0, because

B
(
ξ′,

1
ı

∂

∂xn

)
v (0+) = − 1

2π

∫
γ+

B(ξ) A−1
L (ξ)Ã(ξ)U(ξ′) dξn

= 0.

To derive the boundary condition (4.15) at xn = 0− we make use of the last equality,
obtaining

B
(
ξ′,

1
ı

∂

∂xn

)
v (0−) = − 1

2π

∫
γ−

B(ξ) A−1
L (ξ)Ã(ξ)U(ξ′) dξn

=
1
2π

∫
S(R)

B(ξ) A−1
L (ξ)Ã(ξ)U(ξ′) dξn
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where S(R) is the circle of radius R around 0. Substituting (4.4) into this equality
we get

B
(
ξ′,

1
ı

∂

∂xn

)
v (0−) = −

o−1∑
j=0

o−1∑
ι=0

( 1
2πı

∫
S(R)

ξj−ι−1
n dξn

)
Bj(ξ′)Uι(ξ′)

+
o−1∑
ι=0

ι∑
j=0

( 1
2πı

∫
S(R)

B(ξ)A−1
L (ξ)ξj−ι−1

n dξn

)
Aj(ξ′)Uι(ξ′).

(4.18)

The second integral on the right-hand side vanishes since the integrand is O(|ξn|−2)
as ξn →∞. It follows that

B
(
ξ′,

1
ı

∂

∂xn

)
v (0−) = −

o−1∑
j=0

o−1∑
ι=0

δι,jBj(ξ′)Uι(ξ′)

= −B̃U,

which vanishes by (4.13).
It remains to establish jump formulas (4.16). For this purpose we start with an

equality

Dk
nv(0+)−Dk

nv(0−)

= − 1
2π

∫
γ+

ξk
nA−1

L (ξ) Ã(ξ)U(ξ′) dξn +
1
2π

∫
γ−

ξk
nA−1

L (ξ) Ã(ξ)U(ξ′) dξn

= − 1
2π

∫
S(R)

ξk
nA−1

L (ξ) Ã(ξ)U(ξ′) dξn.

Once again using equality (4.4) we split the integral on the right-hand side into the
sum
o−1∑
ι=0

( 1
2πı

∫
S(R)

ξk−ι−1
n dξn

)
Uι(ξ′)−

o−1∑
ι=0

ι∑
j=0

( 1
2πı

∫
S(R)

A−1
L (ξ)ξk+j−ι−1

n dξn

)
Aj(ξ′)Uι(ξ′).

(4.19)
The last integral here vanishes if k < o. Hence it follows that

Dk
nv(0+)−Dk

nv(0−) =
o−1∑
ι=0

δk,ιUι

= Uk

whenever k = 0, 1, . . . , o− 1, as desired.
Since the boundary operator B complements A, we conclude that v(xn) = 0

for all xn > 0, and so v(xn) = 0 holds for all xn < 0, too. Indeed, to each
non-trivial solution v(ξ′, xn) of the problem (4.14), (4.15) on the semiaxis R≤0

there corresponds the solution u(ξ′, xn) := (−1)ov(−ξ′,−xn) of the problem (4.14),
(4.15) on the semiaxis R≥0, and this latter has only trivial solution. Using the
jump formulas (4.16) we thus conclude that U(ξ′) = 0 for all ξ′ ∈ Rn−1 \{0}, which
completes the proof. �

The principal significance of Lemma 4.1 is in the assertion that the matrix

B(ξ′) =

 P (ξ′)
Q(ξ′)
B̃(ξ′)


of the system (4.10), (4.12), (4.13) has a left inverse for all ξ′ ∈ Rn−1 \ {0}. Denote
it by B−1

L (ξ′), and the right-hand side of the system by ∆(Fx7→ξe+f,Fx′ 7→ξ′u0).
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Then we obtain
U = B−1

L (ξ′)∆(Fx7→ξe+f,Fx′ 7→ξ′u0). (4.20)

By the very construction, if f = Au and u0 = Bu |Y for some u(x), then (4.20)
gives

U(ξ′) =
(
Fx′ 7→ξ′u(x′, 0+), . . . , Do−1

n Fx′ 7→ξ′u(x′, 0+)
)
.

Substituting (4.20) into (4.11) yields

Fx′ 7→ξ′u(x′, xn)

=
1
2π

∫ ∞

−∞
eıxnξnA−1

L (ξ) (Fx7→ξe+f − Ã(ξ)B−1
L (ξ′)∆(Fx7→ξe+f,Fx′ 7→ξ′u0)) dξn.

(4.21)

Applying the inverse Fourier transform in ξ′, one can now derive a formula for the
solution of problem (4.1) in the form of convolution of f and u0 with matrices of
Poisson kernels, cf. [Sol71].

We are however interested in constructing a mere left regulariser of problem (4.1).
To this end we multiply the integrand in (4.21) by a non-negative function χ(ξ) of
class C∞(Rn) which is equal to 1 for |ξ| > 1 and 0 for |ξ| < 1/2. Such functions are
called excision functions. Applying now the inverse Fourier transform in ξ′, we get
an operator

Π
(

f
u0

)
=

1
(2π)n

∫
Rn

eı〈x,ξ〉χ(ξ)A−1
L (ξ)

(
Fx7→ξe+f − Ã(ξ)B−1

L (ξ′)∆(Fx7→ξe+f,Fx′ 7→ξ′u0)
)
dξ

(4.22)

which is a left regulariser of problem (4.1). Indeed, using (4.3) and (4.20), we readily
get

Π
(

Au
Bu |Y

)
=

1
(2π)n

∫
Rn

eı〈x,ξ〉χ(ξ)A−1
L (ξ)

(
A(ξ)Fx7→ξe+u + Ã(ξ)U(ξ′)− Ã(ξ)U(ξ′)

)
dξ

= e+u− S(e+u)

where

S(e+u)(x) =
1

(2π)n

∫
Rn

eı〈x,ξ〉(1− χ(ξ))Fx7→ξe+u dξ

is a pseudodifferential operator of order −∞ in Rn, as desired.
We now discuss those modifications in the construction of a left regulariser which

should be done in the general case where A is an elliptic operator of principal symbol
structure (N,M). Formula (4.22) for a left regulariser and other main formulas
remain still valid. Note that we can assume without loss of generality that the
tuple N is equal to zero. For if Ni < 0, one can raise the order of the i th row
in the operator A by applying the derivatives Dα with |α| = −Ni to this row,
cf. [Sol71]. In other words, one can find an elliptic differential operator Λ with
constant coefficients and principal symbol structure (0,−N), such that Λ has finite-
dimensional kernel, the composition ΛA is of principal symbol structure (0,M),
and B complements ΛA. Then the composition ΠΛ of the operator Λ and a left
regulariser Π of the problem ( ΛA

T

)
is a left regulariser of the genuine boundary problem A.
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Thus, let N = 0 and o = max{M1, . . . ,Mk} be the scalar order of the operator
A. The decomposition

A(ξ) =
o∑

j=0

Aj(ξ′)ξj
n

remains still valid, however, Aj(ξ′) are possibly inhomogeneous matrix-valued poly-
nomials in ξ′ of order ≤ o − j. Moreover, some Aj(ξ′) may vanish identically. For
the components ai,j(ξ) of the matrix A(ξ) one can write exacter equalities

ai,j(ξ) =
Mj∑
µ=0

ai,j;µ(ξ′)ξµ
n .

Analogously, writing (4.4) componentwise, we obtain

(ÃU)i = ı
k∑

j=1

Mj−1∑
ι=0

Mj−1−ι∑
µ=0

ai,j;ι+µ+1(ξ′)ξµ
nUι,j(ξ′),

which shows that ÃU is completely determined by the components U0,j , . . . , UMj−1,j

of the vector U , for j = 1, . . . , k. Write U ′ for these components, then ÃU = 0 if
U ′ = 0.

The operators A−1
L and R have principal symbol structures (−M, 0) and (0, 0),

respectively. The matrix A∗A has principal symbol structure (M,M), and so
detA∗(ξ)A(ξ) is a homogeneous polynomial in ξ of order 2|M |. The polynomial
p(ξ) of the representation (4.7) has order 2$, and min{M1, . . . ,Mk} ≤ $ ≤ |M |.
The product pR is still a matrix-valued polynomial of degree 2$, however, the de-
gree of the polynomial pRÃU in ξn is less than 2$. Hence it follows that RÃU → 0
as ξn →∞.

The boundary operator B bears principal symbol structure (O,M). The compo-
nents O1, . . . , Om of the tuple O are negative, if we assume that the orders of the
elements bi,j of the matrix B do not exceed Mj . Writing

bi,j(ξ) =
Oi+Mj∑

µ=0

bi,j;µ(ξ′)ξµ
n

we readily observe that similarly to ÃU the vector B̃U is completely determined by
the part U ′ of the vector U . Therefore, the relations (4.10), (4.12), (4.13) can be
thought of as a system relative to the unknown vector U ′.

Then Lemma 4.1 remains valid. This follows by the same method as above, the
only difference being in replacing the jump formulas (4.16) by

Dι
nvj(0+)−Dι

nvj(0−) = Uι,j (4.23)

for every j = 1, . . . , k and for every component Uι,j of the vector Uι, where ι =
0, 1, . . . ,Mj − 1.

In order to establish (4.18) and (4.23), we rewrite (4.18) and (4.19) component-
wise and take into account that the operators BA−1

L and A−1
L have principal symbol

structures (O, 0) and (−M, 0). Then the last integrals in (4.18) and (4.19) are still
equal to zero, for Oi < 0 and $ < Mj . Furthermore, if v(ξ′, xn) is a solution to
the problem (4.14), (4.15) on the semiaxis R−, then by the suitable homogeneity
of the operators A and B the vector-valued function u(ξ′, xn) := κ−1

−1v(−ξ′,−xn)
is a solution of the problem (4.14), (4.15) on the semiaxis R+. It follows that the
problem in R− has also a mere trivial solution. By (4.23) we conclude that U ′ = 0
for all ξ′ ∈ Rn−1 \ {0}, as desired.
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5. Boundary integral equations

Let A and B be (k × k) - and (m × k) -matrices of scalar partial differential
operators with principal symbol structures (N,M) and (O,M) and C∞ coefficients
in the closure of X , respectively. We moreover assume that A is elliptic in X , and
m = (|N |+ |M |)/2.

Consider the general boundary problem{
A(x,D)u(x) = f(x) for x ∈ X ,
B(x,D)u(x) = u0(x) for x ∈ Y.

(5.1)

We first study a homogeneous problem, i.e., that with f = 0. To this end, we
consider also an auxiliary elliptic boundary problem for solutions of the system
Au = 0, {

A(x,D)u(x) = 0 for x ∈ X ,
C(x,D)u(x) = u0(x) for x ∈ Y,

(5.2)

where C is an (m× k) -matrix of scalar partial differential operators with principal
symbol structures (P,M) and smooth coefficients. To the elliptic problem (5.2)
there corresponds an operator

CY : Hs+M (X ) ∩ ker A → Hs−P−1/2(Y) (5.3)

defined by CYu := Cu |Y . It possesses both left and right regulariser Π , that is
Π = C−1

Y,L = C−1
Y,R, where

C−1
Y,LCYu = u− S0u if Au = 0;

CYC−1
Y,Rv = v − S1v and AC−1

Y,Rv = 0,
(5.4)

where S0 and S1 are smoothing operators of order −∞.
We say that the operator (5.3) has principal symbol structure (P + 1/2,M).

Then the operator Π has principal symbol structure (−M,−P − 1/2).
In what follows we need some results of [VG67, P. 2]. Hence we shortly present

them with necessary complements. Consider the operator

Ψ : Hs−P−1/2(Y) → Hs−O−1/2(Y) (5.5)

given by Ψv := BYC−1
Y,Lv. It has principal symbol structure (O + 1/2,−P − 1/2),

what just amounts to (O,−P ). The operator Ψ is well known to be pseudodiffer-
ential, and its complete symbol σ(Ψ) can be computed explicitly. Note that the
operator Ψ is elliptic if and only if the boundary problem (5.1) is elliptic. It is
important that existence and smoothness theorems for problem (5.1) are encoded
in the operator (5.5).

More precisely, let H and H1, H2 be Banach spaces, H ↪→
(
∪sH

s(X )k
)
∩ ker A

and H1,H2 ↪→ ∪sH
s(Y)m. Assume that these embeddings are continuous, when

the target space is endowed with the topology of distributions, and that H2 contains
C∞(Y)m. If in the diagram

H
BY−→ H2yCY ↗ Ψ

H1

the operator CY is Fredholm, then for the operator BY to possess a regulariser
(both left and right one) it is necessary and sufficient that Ψ would possess such a
regulariser. Hence it follows that the operator BY is Fredholm if and only if Ψ is
Fredholm.

As mentioned above, for some elliptic differential operators A it is still impossible
to find a boundary operator C satisfying the Shapiro-Lopatinskii condition, and so,
to choose a Fredholm operator CY . However, in any case we can find, by Theorem
3.1, a boundary operator C which complements A, i.e., we may always choose an
operator CY possessing a left regulariser C−1

Y,L.
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Theorem 5.1. Let CY possess a left regulariser C−1
Y,L. Then the operator BY has

finite-dimensional kernel and is normally solvable, provided that Ψ possesses a left
regulariser. If moreover CY possesses a right regulariser C−1

Y,R, then BY is Fredholm
if and only if so is Ψ.

Proof. Let C−1
Y,L be a left regulariser of CY . Then

BY = BY

(
C−1
Y,LCY + S0

)
= ΨCY + BYS0, (5.6)

where BYS0 is an operator of order −∞ which defines a compact mapping of H to
H2. It follows that BY possesses a left regulariser B−1

Y,L = C−1
Y,LΨ−1

L , and therefore
the operator BY : H → H2 has finite-dimensional kernel and is normally solvable. If
moreover both CY and Ψ possess right regularisers C−1

Y,R and Ψ−1
R , then the operator

BY possesses also a right regulariser B−1
Y,R = C−1

Y,RΨ−1
R , and so it is Fredholm.

Conversely, if CY and BY are Fredholm, then Ψ is obviously Fredholm, too, as
desired. �

From the equality (5.6) the results of [VG67] immediately follow. Yet another
consequence of (5.6) is

Theorem 5.2. If a smoothness theorem is valid for the operators CY and Ψ, then
it also holds for the operator BY , i.e., any solution of problem (5.1) with f = 0 in
∪sH

s(X )k actually belongs to H if u0 ∈ H2.

6. Evaluation of the symbol of Ψ

In this section we discuss the boundary system Ψv = g in detail. It is known,
cf. [VG67], that in order to compute a complete symbol σ(Ψ) of the system in a
neighbourhood of a point (y, η) ∈ T ∗Y \ {0} it suffices to use a local regulariser ΠQ

of (5.1) instead of Π . By this is meant that

CYΠQv = v − S1,Qv,
AΠQv = −T1,Qv

for all vector-valued distributions v supported in a small neighbourhood U of y on
Y, where S1,Q and T1,Q are smoothing operators whose order tends to −∞ when
Q → ∞. The operators Ψ and BYΠQ differ by a smoothing operator SQ of the
same type, i.e., Ψv − BYΠQv = SQv for all Cm -valued distributions with support
in U .

The construction of the operator ΠQ reduces to solving a boundary problem
on the semiaxis R+ for a system of ordinary differential equations with parameter
(y, η) ∈ T ∗Y \ {0}.

Let O be a domain in X , such that O ∩ Y = U , where U is a sufficiently small
neighbourhood of a point y ∈ Y. In this domain we introduce coordinates (y, t) in
which O is defined by the inequalities |y|2 + t2 < ε2 and t > 0, for some ε > 0, while
the boundary Y is given by the equality t = 0. The differential operator A(x, D)
written in these coordinates is denoted by A(y, t,Dy, Dt), and its complete symbol
by A(y, t, η, τ).

We now extend the twisted homogeneity (3.1) to include not only covariables η
and τ but also the variables y and t, which will allow us to freeze coefficients. A
matrix-valued function F (z, t, η, τ) is called twisted homogeneous of order (H,M)
if

F (λ−1z, λ−1t, λη, λτ) = κ̃λ F (z, t, η, τ) κ−1
λ (6.1)
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for all λ > 0, where

κλ =

 λ−M1 0
. . .

0 λ−Mk

 , κ̃λ =

 λH1 0
. . .

0 λHl

 .

For each y0 ∈ U and Q > 0, the operators A, B and C can be written in the
form

A(y, t,Dy, Dt) =
Q∑

q=0

Aq(y0, y − y0, t,Dy, Dt) + AQ+1,R(y0, y − y0, t, Dy, Dt),

B(y, t,Dy, Dt) =
Q∑

q=0

Bq(y0, y − y0, t,Dy, Dt) + BQ+1,R(y0, y − y0, t,Dy, Dt),

C(y, t,Dy, Dt) =
Q∑

q=0

Cq(y0, y − y0, t,Dy, Dt) + CQ+1,R(y0, y − y0, t,Dy, Dt),

(6.2)

where Aq(y0, z, t, η, τ), Bq(y0, z, t, η, τ) and Cq(y0, z, t, η, τ) are matrix-valued poly-
nomials in z, t, η, τ , depending on the parameter y0, which are moreover homoge-
neous of orders (N−q, M), (O−q, M) and (P−q, M), respectively. The coefficients
of the operators AQ+1,R, BQ+1,R and CQ+1,R vanish at the point (z, t) = (0, 0) for Q
large enough, and the multiplicity of this zero increases if Q →∞. The expansions
(6.2) are obtained by applying the Taylor formula to each element of the matrices
A, B and C around the point (y, t) = (y0, 0), and arranging into groups the terms
which have the same generalised order of homogeneity. In particular, A0, B0 and
C0 are principal parts of the corresponding operators with coefficients freezing at
the point (y, t) = (y0, 0).

Set Ãq = Aq(y0,−Dη, t, η, Dt) and similarly for B̃q, C̃q. Consider a family of
boundary problems for systems of ordinary differential equations on the semiaxis
t > 0, parametrised by (y0, η) ∈ T ∗U \ {0},

Ã0 Σ0(y0, η; t) = 0,

C̃0 Σ0(y0, η; 0) = Em;

for q = 0 and

Ã0 Σq(y0, η; t) = −Ã1 Σq−1(y0, η; t)− . . .− Ãq Σ0(y0, η; t),
C̃0 Σq(y0, η; 0) = −C̃1 Σq−1(y0, η; 0)− . . .− C̃q Σ0(y0, η; 0),

(6.3)

for q = 1, . . . , Q, where Σq(y0, η; t) are unknown (k ×m) -matrices. To guarantee
the uniqueness we require Σq(y0, η; t) to vanish when t → +∞.

The problems (6.3) are uniquely solvable if and only if the boundary problem
(5.1) is elliptic, i.e., satisfies the Shapiro-Lopatinskii condition. Furthermore, each
matrix Σq(y0, η; t) is twisted homogeneous of order (−M,−P − q) in (t, η) with C∞

entries for (y0, η) ∈ T ∗U \ {0}.
We now define the operator

op (χΣq) v (y, t) = F−1
η 7→yFy 7→ηχ(η)Σq(y, η; t)v(y)

which maps vector-valued distributions v with compact support in U to vector-
valued distributions in O. Here χ(η) is an excision function on Rn−1 which vanishes
for |η| < 1/2 and is equal to 1 for |η| > 1. Then the family of operators

ΠQ =
Q∑

q=0

op (χΣq)

is a local regulariser of problem (5.1).
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From what has been said it readily follows that the complete symbol of the
operator Ψ is given in local coordinates y = (y1, . . . , yn−1) in the neighbourhood U
by the formal series

σ(Ψ)(y, η) ∼
∞∑

j=0

aj(y, η), (6.4)

with aj(y, η) =
∑

p+q=j

B̃pΣq (y, η; 0).

In particular, the symbol of Ψ of order (O,−P ) is equal to B̃0(y, η,Dt)Σ0 (y, η; 0),
which implies that the problem (5.1) with f = 0 is elliptic if and only if so is the
operator Ψ .

7. Generalised elliptic boundary problems

In [VG67] one discusses boundary problems which lead to uniformly non-elliptic
systems on Y. Developing [Sak80], we now consider boundary problems which lead
to a more broad class of non-elliptic systems.

A boundary problem (5.1) with f = 0 is called generalised elliptic if the system
Ψv = g is generalised elliptic, i.e., if there are admissible global transformations
T1, . . . , Tn, such that the composition Tn . . . T1Λ−OΨ is elliptic in Y and has order
(0,−P ). Here, Λ−O is the diagonal (m ×m) -matrix with entries δi,jΛ−Oj , where
Λ is an arbitrary first order elliptic operator on Y with principal symbol |η|. See
[Sak97] for more details.

The quantity δ(Ψ) + |P |, where δ(Ψ) is the degree of non-ellipticity of the oper-
ator Ψ , is said to be the degree of non-ellipticity of boundary problem (5.1). The
following lemma shows that this definition is correct.

Lemma 7.1. The property of being generalised elliptic and the degree of non-
ellipticity of problem (5.1) with f = 0 are independent of the choice of the auxiliary
elliptic problem (5.2).

Proof. Let CY be yet another operator with principal symbol structure (R,M) defin-
ing an elliptic boundary problem for the system Au = 0, and let P be a regulariser
of this problem. Then Ψ ′ = BYP and Ψ ′′ = CYP are matrix-valued pseudo-
differential operators on Y with principal order structures (O,−R) and (P,−R),
respectively, and the operator Ψ ′′ is elliptic. From (5.4) we obtain

Ψ ′v = BYC−1
Y,LCYPv + BYS0Pv

= ΨΨ ′′v + Sv, (7.1)

where S is a pseudodifferential operator of order −∞. If the operator Ψ is gener-
alised elliptic, i.e., if there are admissible global transformations T1, . . . , Tn, such
that the composition Tn . . . T1Λ−OΨ is elliptic in Y and has order (0,−P ), then the
operator Ψ ′ is generalised elliptic, too, for by (7.1) the operator

Tn . . . T1Λ−OΨ ′v =
(
Tn . . . T1Λ−OΨ

)
Ψ ′′v + S′v

is elliptic in Y and has order (0,−R). Furthermore, if δ(Ψ) and δ(Ψ ′) are the
degrees of non-ellipticity of Ψ and Ψ ′, then δ(Ψ ′) = δ(Ψ) + |P | − |R|, which just
amounts to δ(Ψ ′) + |R| = δ(Ψ) + |P |. That is, the degree of non-ellipticity of
problem (5.1) δ(Ψ) + |P | does not depend on the choice of the auxiliary problem
(5.2), as desired. �

We now turn to function spaces in which the operator BY corresponding to the
problem (5.1) with f = 0 acts. Recall, cf. [Sak78], that any finite sequence of elliptic
operators T1, . . . , Tn determines a space H

s−O−1/2
T (Y) of generalised functions v on

Y, such that
Tn . . . T1Λ−Ov ∈ Hs−1/2(Y).
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It is easy to verify that

Hs−O−n−1/2(Y) ↪→ H
s−O−1/2
T (Y) ↪→ Hs−O−1/2(Y),

and the same space H
s−O−1/2
T (Y) can be described by different equivalent finite

sequences.
By Theorem 3 of [Sak78], to any generalised elliptic operator Ψ there corresponds

a space H
s−O−1/2
T (Y), determined by an arbitrary finite sequence reducing Ψ to an

elliptic operator, such that

Ψ : Hs−P−1/2(Y) → H
s−O−1/2
T (Y) (7.2)

is a Fredholm operator.
Conversely, if there is a space H

s−O−1/2
T (Y) such that the operator (7.2) is Fred-

holm, then Ψ is a generalised elliptic operator and each finite sequence of operators
determining H

s−O−1/2
T (Y) reduces Ψ to an elliptic operator of principal symbol

structure (0,−P ).
Any generalised elliptic boundary problem gives rise to a Fredholm operator BY

acting as
BY : Hs+M (X ) ∩ ker A → H

s−O−1/2
T (Y), (7.3)

the latter space being determined by an arbitrary finite sequence reducing Ψ to
an elliptic operator. It is independent of the choice of the sequence and auxiliary
problem (5.2). Theorem 5.1 shows that the Fredholm property of (7.3) follows from
those of (5.3) and (7.2).

Conversely, if there is a space H
s−O−1/2
T (Y) with the property that the operator

(7.3) is Fredholm, then the operator Ψ = BYC−1
Y,L is Fredholm in the spaces (7.2),

and so generalised elliptic. We have thus arrived at

Theorem 7.2. If an elliptic operator A possesses some boundary problem (5.2)
satisfying the Shapiro-Lopatinskii condition, then the operator BY corresponding to
the problem (5.1) for f = 0 is Fredholm in the spaces (7.3) if and only if this latter
problem is generalised elliptic.

As the range of the operator Ψ is contained in the range of the operator BY ,
Theorem 5.1 readily implies

Corollary 7.3. The null-space of operator (7.3) related to the boundary problem
(5.1) with f = 0 consists of C∞ functions in X , and its range is described by a
condition of orthogonality to certain functions of class C∞(Y).

Moreover, if u is a weak solution of (5.1) with f = 0 and BYu ∈ H
s−O−1/2
T (Y),

then u ∈ Hs+M (X ).
As usual, by the index indBY of operator (7.3) is meant the difference of the

number of linearly independent solutions of the homogeneous problem (5.1) and the
number of linearly independent vector-valued functions the orthogonality to which
provides the solvability of the problem (5.1) with f = 0. By Theorem 7.2, indBY
does not depend on s if s > |O|.

Theorem 7.4. Suppose the problem (5.1) for f = 0 is generalised elliptic. Then
the indices of operators (5.3), (7.2), and (7.3) satisfy

indBY = indΨ + indCY .

Proof. By the properties of index, we obtain from the equalities Ψ = BYC−1
Y,L and

(5.4) that
indΨ = indBY + indC−1

Y,L,

ind C−1
Y,L = − indCY ,

which establishes the formula. �
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This is a simple generalisation of the well-known formula of [AD62] which com-
pares the indices of two elliptic boundary value problems for the same differential
operator in a domain.

8. Inhomogeneous problem

Our next objective is to study the inhomogeneous problem (5.1), i.e., the problem
with arbitrary f . Following [VG67], we consider the auxiliary boundary problem{

A(x, D)u(x) = f for x ∈ X ,
C(x, D)u(x) = 0 for x ∈ Y.

(8.1)

Since it satisfies the Shapiro-Lopatinskii condition, the operator

A : Hs+M (X ) ∩ ker CY → Hs−N (X ) (8.2)

is Fredholm. Hence, for each f ∈ Hs−N (X ) orthogonal to a finite number of smooth
vector-valued functions g1, . . . , gD′ on X , there is a solution u ∈ Hs+M (X ) of (8.1).
Denote by f 7→ Gf the operator which assigns, to any such f , the solution of (8.1)
orthogonal to all solutions of the homogeneous problem (8.1). Obviously, such a
solution Gf is unique. We extend G to an operator on all of Hs−N (X ) by linearity,
setting Gf = 0 if f belongs to the cokernel of (8.2). Then G is a regulariser of the
operator (8.2), i.e.,

GAu = u−H0u if Cu |Y = 0;
AGf = f −H1f and C Gf |Y = 0, (8.3)

where H0 and H1 are projections onto the kernel and cokernel of (8.2), respectively,
both H0 and H1 being smoothing operators of order −∞.

Assume that f is orthogonal to all g1, . . . , gD′ . We look for a solution of (5.1) of
the form u = Gf + U. Then for U we obtain the problem (5.1) with f = 0,{

A(x, D)U(x) = 0 for x ∈ X ,
B(x, D)U(x) = U0(x) for x ∈ Y,

(8.4)

where U0 = u0 − BYGf ∈ Hs−O−1/2(Y), for Gf ∈ Hs+M (X ). Since (8.4) is a
generalised elliptic problem, it has a solution U in Hs+M (X ) if U0 ∈ H

s−O−1/2
T (X )

is orthogonal to a finite number of linearly independent vector-valued functions
v0,1, . . . , v0,D′′ of class C∞(Y), i.e.,∫

Y
(v0,j(x))∗U0(x) ds = 0

for j = 1, . . . , D′′. Summarising we rewrite the conditions of solvability of problem
(5.1) in the form ∫

X
(gj(x))∗f(x) dx = 0, for j = 1, . . . , D′;∫

Y
(v0,j(x))∗(u0(x)−BYGf(x)) ds = 0, for j = 1, . . . , D′′.

(8.5)

It is fairly complicated to show separate conditions on f and uO which are nec-
essary and sufficient for U0 to belong to H

s−O−1/2
T (Y). In other words, it is difficult

to choose natural spaces in which the operator of a generalised elliptic problem
(5.1) acts. Hence we restrict ourselves to an assertion which is not as explicit as
Theorem 7.2.

Theorem 8.1. If problem (5.1) is generalised elliptic of degree of non-ellipticity δ,
then for each s > max{o′, p′}−δ+1/2 it has a solution in the space Hs+M (X ) when-
ever f ∈ Hs−N+n′(X ) and u0 ∈ H

s−O−1/2
T (Y) satisfy the orthogonality conditions

(8.5).
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Here o′ is the maximal order of normal differentiation in the operator B, p′ is the
maximal order of normal differentiation in the operator C, and n′ is the maximal
order of differentiation in the composition Tn . . . T1 reducing Λ−OΨ to an elliptic
operator, n′ ≤ |O| − δ.

The homogeneous problem corresponding to (5.1) has a finite number of linearly
independent solutions, and these are C∞ up to the boundary of X . If u is a weak
solution of (5.1), such that Au ∈ Hs−N+n′(X ) and Bu |Y ∈ H

s−O−1/2
T (Y), then

u ∈ Hs+M (X ).
Indeed, consider a weak solution u of (5.1) with these smoothness properties. By

(8.3), the function U := u−Gf is a solution of the problem{
AU = F in X ,
BU = U0 on Y,

(8.6)

where F = H1f ∈ C∞(X , Ck) and U0 = u0−BYGf ∈ H
s−O−1/2
T (Y). Since Gf lies

in Hs+M (X ), it suffices to show that U ∈ Hs+M (X ). To this end, we consider the
regulariser Π of (5.3). From (5.4) and (8.6) we get

A(U −ΠCYU) = H1f in X ,
CY(U −ΠCYU) = S1CYU on Y,

where H1f and S1CYU are C∞ functions on X and Y, respectively. By the smooth-
ness of solutions of elliptic boundary problems we readily deduce that the difference
U −ΠCYU is C∞ on the closure of X . Applying the operator BY to this function
and taking into account (8.6) we see that ΨCYU = U0 up to a vector-valued function
of class C∞(X ). As Ψ is a generalised elliptic operator with principal symbol struc-
ture (O,−P ) and U0 ∈ H

s−O−1/2
T (Y), Corollary 7.3 yields CYU ∈ Hs−P−1/2(Y).

Combining this with AU ∈ C∞(X , Ck) and once again using the regularity prop-
erty of solutions of elliptic problems, we deduce U ∈ Hs+M (X ), which is the desired
conclusion.

9. An example

Consider an inverse problem of Newton potential. When linearised, the problem
of finding a domain and density by the pair of outer potentials p1 and p2 reduces
to the following one: Given any positive harmonic functions p1 and p2 on an open
set U ⊂ R3, find harmonic functions u1 and u2 in a domain X ⊂⊂ U which satisfy
the boundary conditions

p1u1 − p2u2 = uD,

p1
∂u1

∂ν
− p2

∂u2

∂ν
+ p2pu2 = uN

(9.1)

on Y, where ν is the unit inner normal vector to the boundary Y, and

p =
∂

∂ν
log

p2

p1
.

We first show that (9.1) is a generalised elliptic problem provided that the
function p does not vanish on Y. The principal symbol structures (N,M) and
(O, M) of operators A = ∆E2 and B given by (9.1) choose as follows: N = (0, 0),
M = (2, 2), and O = (−2,−1). Use the auxiliary Dirichlet problem. Then the oper-
ator Ψ reduces to an elliptic pseudodifferential operator of principal symbol struc-
ture (O′,−P ) = ((−2,−2), (2, 2)). Choose orthogonal coordinates x = (x1, x2, x3)
in a neighbourhood of a boundary point y0, such that X be defined by the inequal-
ity xn = t ≥ 0, the lines parallel to the t -axis be geodesics orthogonal to Y, and
t would coincide with the arc length. As in (6.2), the Laplace operator splits as
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∆ = ∆0 + ∆1 + . . ., where

∆0 =
3∑

j=1

aj,j(y0)
∂2

∂x2
j

,

∆1 =
3∑

j=1

〈∇aj,j(y0), x− y0〉
∂2

∂x2
j

+
3∑

j=1

aj(y0)
∂

∂xj
,

where aj,j and aj are expressed through the coefficients of the metric tensor and
a3,3 = 1. In the same way for the matrix B of (9.1) we obtain B = B0 + B1 + . . .,
where

B0 =

(
p1(y0) −p2(y0)

p1(y0)
∂

∂t
−p2(y0)

∂

∂t

)
,

B1 =

( 〈∇p1(y0), x− y0〉 −〈∇p2(y0), x− y0〉

〈∇p1(y0), x− y0〉
∂

∂t
−〈∇p2(y0), x− y0〉

∂

∂t
+ p2(y0)p(y0)

)
.

The problem (6.3) for q = 0 on the half-axis t > 0

∆̃0Σ0 :=
(
|η|2 − ∂2

∂t2

)
Σ0(y0, η; t) = 0,

Σ0(y0, η; 0) = E2

has a unique solution Σ0(y0, η; t) = exp(−|η|t)E2 which vanishes as t → +∞. For
q = 1 it has the form

∆̃0Σ1 = −∆̃1Σ0, for t > 0,
Σ1(y0, η; 0) = 0,

where Σ1(y0, η; t) → 0 as t → +∞. It is easy to compute that

∆̃1Σ0 = (c0 + c1t) exp(−|η|t)E2

whence Σ1(y0, η; t) = t(C0 + C1t) exp(−|η|t)E2. The coefficients c0, c1 and C0, C1

are expressed through the coefficients of operators ∆0 and ∆1. However, the final
result is actually independent of Σ1, as we will see, and so we need not any explicit
expressions.

By (6.4), the first two terms of the complete symbol of operator Ψ of order
(O,−P ) = ((−2,−1), (2, 2)) has the form

a0 + a1 = B̃0Σ0 (y0, η; 0) +
(
B̃1Σ0 (y0, η; 0) + B̃0Σ1 (y0, η; 0)

)
=

(
p1 −p2

−p1|η| p2|η|

)
+
(

0 0
p1C0 − ıQ1 − (p2C0 − ıQ2) + p2p

)
,

where

Qi(y0, η) =
2∑

j=1

∂pi

∂xj
(y0)

∂

∂ηj
|η|

for i = 1, 2. Note that both C0(y0, η) and Qi(y0, η) are of degree 0 in η.
Denote by Λ1 a pseudodifferential operator with principal symbol |η| and consider

the matrix

T =
(

1 0
Λ1 1

)
.

It is easy to check that TΨ is a zero order pseudodifferential operator with principal
symbol

σ0(TΨ) =
(

p1 −p2

p1C0 − ıQ1 − (p2C0 − ıQ2) + p2p

)
.

Since
detσ0(TΨ) = p1p2p + ı (p1Q2 − p2Q1)
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on Y and the imaginary part p1Q2 − p2Q1, which is linear in η for |η| = 1, always
vanishes for some η, the operator TΨ is elliptic if and only if p does not vanish on
the boundary Y.

Summarising, we conclude that Ψ is reducible to the operator TΨ of order 0,
or principal symbol structure (O′,−P ) = ((−2,−2), (2, 2)), as desired. Applying
Theorem 7.2 yields

Theorem 9.1. The operator BY of problem (9.1) is Fredholm in the spaces

BY : Hs+(2,2)(X ) ∩ ker(∆E2) → H
s+(2,2)−1/2
T (Y),

for s ≥ 0, if and only if p |Y 6= 0.

By H
s+(2,2)−1/2
T (Y) is meant the space of generalised vector-valued functions

u0 = (uD, uN ), such that Tu0 ∈ Hs+(2,2)−1/2(Y). This just amounts to saying
that both uD and Λ1uD + uN belong to Hs+3/2(Y). Since the Dirichlet problem
has index 0 and the operator T is invertible, we deduce from Theorem 7.4 that
ind BY = ind(TΨ).
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