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In this paper we consider the regularization of the Cauchy problem for a system of

second order differential equations with constant coefficients.
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Introduction

As is well known, the Cauchy problem for elliptic equations is ill-posed, the solution of

the problem is unique, but unstable (Hadamard’s example). For ill-posed problems, one

does not prove existence theorems, the existence is assumed a priori. Moreover, the solution

is assumed to belong to a given subset of a function space, usually a compact one [4]. The

uniqueness of the solution follows from the general Holmgren theorem [9].

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be points in Rm, Dρ be a bounded simply

connected domain in Rm whose boundary consists of a cone surface

Σ : α1 = τym, α2
1 = y2

1 + . . . + y2
m−1, τ = tg

π

2ρ
, ym > 0, ρ > 1

and a smooth surface S, lying in the cone.

In the domain Dρ, consider the system of elasticity theory

µ∆U(x) + (λ + µ)grad divU(x) = 0;
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here U = (U1, . . . , Um) is the displacement vector, ∆ is the Laplace operator, λ and µ are

the Lame constants. For brevity, it is convenient to use matrix-valued notation. Let us

introduce the matrix differential operator

A(∂x) = ‖Aij(∂x)‖m×m,

where

Aij(∂x) = δijµ∆ + (λ + µ)
∂2

∂xi∂xj

.

Then the elliptic system can be written in matrix form

A(∂x)U(x) = 0. (1)

Statement of the problem. Assume the Cauchy data of a solution U are given on S,

U(y) = f(y), y ∈ S,

T (∂y, n(y))U(y) = g(y), y ∈ S, (2)

where f = (f1, . . . , fm) and g = (g1, . . . , gm) are prescribed continuous vector functions on

S, T (∂y, n(y)) is the strain operator, i.e.,

T (∂y, n(y)) = ‖Tij(∂y, n(y))‖m×m =

∥∥∥∥λni
∂

∂yj

+ µnj
∂

∂yi

+ µδij
∂

∂n

∥∥∥∥
m×m

.

δij is the Kronecker delta, and n(y) = (n1(y), . . . , nm(y)) is the unit normal vector to the

surface S at a point y.

It is required to determine the function U(y) in D, i.e., find an analytic continuation of

the solution of the system of equations in a domain from the values of f and g on a smooth

part S of the boundary.

On establishing uniqueness in theoretical studies of ill - posed problems, one comes across

important questions concerning the derivation of estimates of conditional stability and the

construction of regularizing operators.

Suppose that, instead of f(y) and g(y), we are given their approximations fδ(y) and gδ(y)

with accuracy δ, 0 < δ < 1 (in the metric of C) which do not necessarily belong to the

class of solutions. In this paper, we construct a family of functions U(x, fδ, gδ) = Uσδ(x)

depending on the parameter σ and prove that under certain conditions and a special choice

of the parameter σ(δ) the family Uσδ(x) converges in the usual sense to the solution U(x) of

problem (1),(2), as δ → 0

Following A.N.Tikhonov, Uσδ(x) is called a regularized solution of the problem. A regu-

larized solution determines a stable method of approximate solution of problem [13].

Using results of [4],[14] concerning the Cauchy problem for the Laplace equation, we

succeeded in constructing a Carleman matrix in explicit form and on in constructing a
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regularized solution of the Cauchy problem for the system (1). Since we refer to explicit

formulas, it follows that the construction of the Carleman matrix in terms of elementary and

special functions is of considerable interest. For m = 2, 3 the problem under consideration

coincides with the Cauchy problem for the system of elasticity theory describing statics of

an isotropic elastic medium. In these cases problem (1),(2) was studied for special classes of

domains in [5], [6], [7], [8].

Further, the Cauchy problem for systems describing steady-state elastic vibrations, for

systems of thermoelasticity, and for systems of Navier-Stokes was studied in [15], [2], [10],

[3].

Earlier, is was proved in [12], [11] that the Carleman matrix exists in any Cauchy problem

for solutions of elliptic systems whenever the Cauchy data are given on a boundary set of

positive measure.

1.Construction of the matrix of fundamental solution for the system of

elasticity of a special form

Definition 1. Γ(y, x) = ||Γij(y, x)||m×m, is called the matrix of fundamental solutions

of system (1), where

Γij(y, x) =
1

2µ(λ + 2µ)
((λ + 3µ)δijq(y, x)− (λ + µ)(yj − xj)

∂

∂xi

q(y, x)), i, j = 2, ...,m,

q(y, x) =

{
1

(2−m)ωm
· 1
|y−x|m−2 , m > 2

1
2π

ln|y − x|, m = 2,

and ωm is the area of unit sphere in Rm.

The matrix Γ(y, x) is symmetric and its columns and rows satisfy equation (1) at an

arbitrary point x ∈ Rm, except y = x. Thus, we have

A(∂x)Γ(y, x) = 0, y 6= x.

Developing Lavrent’ev’s idea concerning the notion of Carleman function of the Cauchy

problem for the Laplace equation [4], we introduce the following notion.

Definition 2. By a Carleman matrix of problem (1),(2) we mean an (m × m) matrix

Π(y, x, σ) satisfying the following two conditions:

1) Π(y, x, σ) = Γ(y, x) + G(y, x, σ),

where σ is a positive numerical parameter and, with respect to the variable y, the matrix

G(y, x, σ) satisfies system (1) everywhere in the domain D.

2) The relation holds∫
∂D\S

(|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|)dsy ≤ ε(σ),
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where ε(σ) → 0, as σ →∞, uniformly in x on compact subsets of D ; here and elsewhere |Π|
denotes the Euclidean norm of the matrix Π = ||Πij||, i.e., |Π| = (

m∑
i,j=1

Π2
ij)

1
2 . In particular

|U | = (
m∑

i=1

U2
i )

1
2 for a vector U = (U1, ..., Um).

Definition 3. A vector function U(y) = (U1(y), ..., Um(y)) is said to be regular in D, if

it is continuous together with its partial derivatives of second order in D and those of first

order in D = D
⋃

∂D.

In the theory of partial differential equations, an important role is played by representa-

tions of solutions of these equations as functions of potential type. As an example of such

representations, we show the formula of Somilian-Bettis [11] below.

Theorem 1. Any regular solution U(x) of equation (1) in the domain D is represented

by the formula

U(x) =

∫
∂D

(Γ(y, x){T (∂y, n)U(y)} − {T (∂y, n)Γ(y, x)}∗U(y))dsy, x ∈ D. (3)

Here A∗ is conjugate to A.

Suppose that a Carleman matrix Π(y, x, σ) of the problem (1),(2) exists. Then for the

regular functions v(y) and u(y) the following holds∫
∂Dρ

[v(y){A(∂y)U(y)} − {A(∂y)v(y)}∗U(y)]dy =

=

∫
∂Dρ

[v(y){T (∂y, n)U(y)} − {T (∂y, n)v(y)}U(y)]dsy.

Substituting v(y) = G(y, x, σ) and u(y) = U(y), a regular solution system (1), into the above

equality, we get ∫
∂Dρ

[G(y, x, σ){A(∂y)U(y)} − {A(∂y)G(y, x, σ)}∗U(y)]dy = 0. (4)

Adding (3) and (4) gives the following theorem.

Theorem 2. Any regular solution U(x) of equation (1) in the domain Dρ is represented

by the formula

U(x) =

∫
∂Dρ

(Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y))dsy, x ∈ Dρ, (5)

where Π(y, x, σ) is a Carleman matrix.

Suppose that K(ω), ω = u + iv (u, v are real), is an entire function taking real values

on the real axis and satisfying the conditions

K(u) 6= 0, sup
v≥1

|vpK(p)(ω)| = M(p, u) < ∞, p = 0, ...,m, u ∈ R1.
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Let

s = α2 = (y1 − x1)
2 + ... + (ym−1 − xm−1)

2.

For α > 0, we define the function Φ(y, x) by the following relations:

if m = 2, then

−2πK(x2)Φ(y, x) =

∫ ∞

0

Im[
K(i

√
u2 + α2 + y2)

i
√

u2 + α2 + y2 − x2

]
udu√

u2 + α2
, (6)

if m = 2n + 1, n ≥ 1, then

CmK(xm)Φ(y, x) =
∂n−1

∂sn−1

∫ ∞

0

Im[
K(i

√
u2 + α2 + ym)

i
√

u2 + α2 + ym − xm

]
du√

u2 + α2
; (7)

where Cm = (−1)n−1 · 2−n(m− 2)πωm(2n− 1)!,

if m = 2n, n ≥ 2, then

CmK(xm)Φ(y, x) =
∂n−2

∂sn−2
Im

K(αi + ym)

α(α + ym − xm)
, (8)

where Cm = (−1)n−1(n− 1)!(m− 2)ωm.

Lemma 1. The function Φ(y, x) can be expressed as

Φ(y, x) =
1

2π
ln

1

r
+ g2(y, x), m = 2, r = |y − x|,

Φ(y, x) =
r2−m

ωm(m− 2)
+ gm(y, x), m ≥ 3, r = |y − x|,

where gm(y, x), m ≥ 2 is a function defined for all values of y, x and harmonic in the variable

y in all of Rm.

With the help of function Φ(y, x) we construct a matrix:

Π(y, x) = ||Πij(y, x)||m×m =

∣∣∣∣∣∣∣∣ λ + 3µ

2µ(λ + 2µ)
δijΦ(y, x)− λ + µ

2µ(λ + 2µ)
(yj − xj)

∂

∂yi

Φ(y, x)

∣∣∣∣∣∣∣∣
m×m

,

i, j = 1, 2, ...,m. (9)

2. The solution of problems (1), (2) in domain Dρ

I. Let x0 = (0, . . . , 0, xm) ∈ Dρ. We adopt the notation

β = τym − α0, γ = τxm − α0, α2
0 = x2

1 + . . . + x2
m−1, r = |x− y|,

s = α2 = (y1 − x1)
2 + . . . + (ym−1 − xm−1)

2, w = iτ
√

u2 + α2 + β, w0 = iτα + β.

We now construct Carleman’s matrix for the problem (1), (2) for the domain Dρ. The

Carleman matrix is explicitly expressed by Mittag-Löffler’s a entire function. It is defined

by series [1]

Eρ(w) =
∞∑

n=0

wn

Γ
(
1 + n

ρ

) , ρ > 0, E1(w) = exp w,
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where Γ(·) is the Euler function.

Denote by γ = γ(1, θ), 0 < θ < π
ρ
, ρ > 1 the contour in the complex plane w, running

in the direction nondecreasing argw and consisting of the following part’s.

1)ray argw = −θ, |w| ≥ 1,

2)arc − θ ≤ argw ≤ θ of the circle |w| = 1,

3)ray argw = θ, |w| ≥ 1.

The contour γ divides complex plane into two parts: D− and D+ lying on the left and

on the right from γ, respectively. Suppose that π
2ρ

< θ < π
ρ
, ρ > 1. Then the formula holds

Eρ(w) = exp wρ + Ψρ(w), w ∈ D+

Eρ(w) = Ψρ(w), E ′
ρ(w) = Ψ′

ρ(w), w ∈ D−, (10)

where

Ψρ(w) =
ρ

2πi

∫
γ

exp ζρ

ζ − w
dζ, Ψ′

ρ(w) =
ρ

2πi

∫
γ

exp ζρ

(ζ − w)2
dζ. (11)

ReΨρ(w) =
Ψρ(w) + Ψρ(w)

2
=

ρ

2πi

∫
γ

exp ζρ(ζ −Rew)

(ζ − w)(ζ − w)
dζ,

ImΨρ(w) =
Ψρ(w)−Ψρ(w)

2i
=

ρImw

2πi

∫
γ

exp ζρ

(ζ − w)(ζ − w)
dζ, (12)

ImΨ′
ρ(w)

Imw
=

ρ

2πi

∫
γ

2 exp ζρ(ζ −Rew)

(ζ − w)2(ζ − w)2
dζ.

In what follows, we take θ = π
2ρ

+ ε2

2
, ρ > 1, ε2 > 0. It is clear that if π

2ρ
+ε2 ≤ |argw| ≤ π,

then w ∈ D− and Eρ(w) = Ψρ(w).

Set

Ek,q(w) =
ρ

2πi

∫
γ

ζq exp ζρ

(ζ − w)k(ζ − w)k
dζ, k = 1, 2, . . . , q = 0, 1, 2, . . . .

If π
2ρ

+ ε2

2
≤ |argw| ≤ π, then the inequalities are valid

|Eρ(w)| ≤ M1

1 + |w|
, |E ′

ρ(w)| ≤ M2

1 + |w|2
,

|Ek,q(w)| ≤ M3

1 + |w|2k
, k = 1, 2, . . . , (13)

where M1, M2, M3 are constants.

Suppose that in formula (10) θ = π
2ρ

+ ε2

2
< π

ρ
, ρ > 1. Then Eρ(w) = Ψρ(w), cos ρθ < 0

and ∫
γ

|ζ|q exp(cos ρθ|ζ|q)|dζ| < ∞, q = 0, 1, 2, . . . . (14)
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In this case for sufficiently large |w| (w ∈ D+, w ∈ D−), we have

min
ζ∈γ

|ζ − w| = |w| sin ε2

2
, min

ζ∈γ
|ζ − w| = |w| sin ε2

2
. (15)

Now from (10) and
1

ζ − w
= − 1

w
+

ζ

w(ζ − w)
,

1

ζ − w
= − 1

w
+

ζ

w(ζ − w)
, (16)

for large |w| we obtain ∣∣∣∣Eρ(w)− Γ−1

(
1− 1

ρ

)
1

w

∣∣∣∣ ≤ ρ

2π sin ε2

2

1

|w|2
·

∫
γ

|ζ| exp [cos ρθ|ζ|ρ] |dζ| ≤ const

|w|2
,

Γ−1

(
1− 1

ρ

)
=

ρ

2πi

∫
γ

exp (ζρ) dζ.

From this it follows that

|Eρ(w)| ≤ M1

1 + |w|
.

From (11),(15) and
1

(ζ − w)2
=

1

w2
− 2ζ

w2(ζ − w)
+

ζ2

w2(ζ − w)2

for large |w|, we obtain ∣∣∣∣E ′
ρ(w)− Γ−1

(
1− 1

ρ

)
1

w2

∣∣∣∣ ≤ const

|w|3

or

|E ′
ρ(w)| = M2

1 + |w|2
.

For k = 1, 2, . . . we have from (16)

1

(ζ − w)k(ζ − w)k
=

[
(−1)k

wk
+ . . . +

ζk

wk(ζ − w)k

] [
(−1)k

wk
+ . . . +

ζk

wk(ζ − w)k

]
=

=
1

|w|2k
− k

|w|2k+1|ζ − w|
+ . . . .

From this for large |w|, (14) and (15) we get∣∣∣∣Ek,q(w)− Γ−1

(
1− 1

ρ

)
1

|w|2k

∣∣∣∣ ≤ const

|w|2k+1

or

|E ′
k,q(w)| = M3

1 + |w|2k
, k = 1, 2, . . . .
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Therefore, since

(ζ − w)(ζ − w) = ζ2 − 2ζ(ym − xm) + u2 + α2 + (ym − xm)2, α2 = s,

then
∂n−1

∂sn−1

1

(ζ − w)(ζ − w)
=

(−1)n−1(n− 1)!

(ζ − w)n(ζ − w)n
.

Now from (11) we obtain

dn−1

dsn−1
ReEρ(w) =

(−1)n−1(n− 1)!ρ

2πi

∫
γ

(ζ − (ym − xm)) exp ζρ

(ζ − w)n(ζ − w)n
dζ,

dn−1

dsn−1

ImEρ(w)√
u2 + α2

=
(−1)n−1(n− 1)!ρ

πi

∫
γ

exp ζρ

(ζ − w)n(ζ − w)n
dζ,

Then from (12) we have ∣∣∣∣ dn−1

dsn−1
ReEρ(w)

∣∣∣∣ ≤ const · r
1 + |w|2∣∣∣∣ dn−1

dsn−1

ImEρ(w)√
u2 + α2

∣∣∣∣ ≤ const · r
1 + |w|2

.

Now for σ > 0, we set in formulas (6)-(9)

K(w) = Eρ(σ
1
ρ w), K(xm) = Eρ(σ

1
ρ γ). (17)

Then, for ρ > 1 we obtain

Φ(y, x) = Φσ(y, x) =
ϕσ(y, x)

cmEρ(σ
1
ρ γ)

, y 6= x,

where ϕσ(y, x) is defined as follows:

if m = 2, then

ϕσ(y, x) =

∞∫
0

Im
Eρ(σ

1
ρ w)

i
√

u2 + α2 + y2 − x2

udu√
u2 + α2

;

if m = 2n + 1, n ≥ 1, then

ϕσ(y, x) =
dn−1

dsn−1

∞∫
0

Im
Eρ(σ

1
ρ w)

i
√

u2 + α2 + ym − xm

udu√
u2 + α2

, y 6= x;

if m = 2n, n ≥ 2, then

ϕσ(y, x) =
dn−2

dsn−2
Im

Eρ

(
σ

1
ρ w

)
α(iα + ym − xm

, y 6= x.

We now define the matrix Π(y, x, σ) by formula (9) for Φ(y, x) = Φσ(y, x).

In the work [14] there is proved
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Lemma 2. The function Φσ(y, x) can be expressed as

Φσ(y, x) =
1

2π
ln

1

r
+ g2(y, x, σ), m = 2, r = |y − x|,

Φσ(y, x) =
r2−m

ωm(m− 2)
+ gm(y, x, σ), m ≥ 3, r = |y − x|,

where gm(y, x, σ), m ≥ 2 is a function defined for all y, x and harmonic in the variable y in

all of Rm.

Using Lemma 2, we obtain.

Theorem 3. The matrix Π(y, x, σ) given by (7)-(9) is a Carleman matrix for problem

(1), (2).

We first consider some properties of function Φσ(y, x)

I. Let m = 2n + 1, n ≥ 1, x ∈ Dρ, y 6= x, σ ≥ σ0 > 0, then

1) for β ≤ α the following inequality holds:

|Φσ(y, x)| ≤ C1(ρ)
σm−2

rm−2
exp(−σγρ),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C2(ρ)
σm

rm−1
exp(−σγρ), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C3(ρ)
σm+2

rm
exp(−σγρ), i = 1, ...,m, (18)

2) for β > α the following inequalities hold:

|Φσ(y, x)| ≤ C4(ρ)
σm−2

rm−2
exp(−σγρ + σReωρ

0),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C5(ρ)
σm

rm−1
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C6(ρ)
σm+2

rm
exp(−σγρ + σReωρ

0), i = 1, ...,m. (19)

II. Let m = 2n, n ≥ 2, x ∈ Dρ, x 6= y, σ ≥ σ0 > 0, then

1) for β ≤ α the following inequalities hold:

|Φσ(y, x)| ≤ C̃1(ρ)
σm−3

rm−2
exp(−σγρ),∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C̃2(ρ)
σm

rm−1
exp(−σγρ), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C̃3(ρ)
σm+2

rm
exp(−σγρ), y ∈ ∂Dρ, i = 1, ...,m, (20)

2) for β > α the following inequalities hold:

|Φσ(y, x)| ≤ C̃4(ρ)
σm−2

rm−2
exp(−σγρ + σReωρ

0),
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∣∣∣∣∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C̃5(ρ)
σm

rm−1
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ,∣∣∣∣ ∂

∂xi

∂Φσ

∂n
(y, x)

∣∣∣∣ ≤ C̃6(ρ)
σm+2

rm
exp(−σγρ + σReωρ

0), y ∈ ∂Dρ, i = 1, ...,m. (21)

III. Let m = 2, x ∈ Dρ, x 6= y, σ ≥ σ0 > 0, then

1) if β ≤ α, then

|Φσ(y, x)| ≤ C7(ρ)E−1(σ
1
ρ γ)ln

1 + r2

r2
,∣∣∣∣∂Φσ

∂yi

(y, x)

∣∣∣∣ ≤ C8(ρ)
E−1

ρ (σ
1
ρ γ)

r
, (22)

2) if β > α , then

|Φσ(y, x)| ≤ C̃7(ρ)E−1(σ
1
ρ γ)(ln

1 + r2

r2
) exp(σReωρ

0),∣∣∣∣∂Φσ

∂yi

(y, x)

∣∣∣∣ ≤ C̃8(ρ)E−1
ρ (σ

1
ρ γ)

1

2
exp(σReωρ

0). (23)

Here all coefficients Ci(ρ) and C̃i(ρ), i = 1, . . . , 8, depend on ρ.

Proof Theorem 3. From the definition of Π(y, x, σ) and Lemma 1, we have

Π(y, x, σ) = Γ(y, x) + G(y, x, σ),

where

G(y, x, σ) = ||Gkj(y, x, σ)||m×m =

=

∣∣∣∣∣∣∣∣ λ + 3µ

2µ(λ + 2µ)
δkjgm(y, x, σ)− λ + µ

2µ(λ + 2µ)
(yj − xj)

∂

∂yi

gm(y, x, σ)

∣∣∣∣∣∣∣∣
m×m

.

Prove that A(∂y)G(y, x, σ) = 0. Indeed, since ∆ygm(y, x, σ) = 0, ∆y =
m∑

k=1

∂2

∂y2
k

and for the

jth column Gj(y, x, σ) :

divGj(y, x, σ) =
1

2µ(λ + 2µ)
· ∂

∂yj

gm(y, x, σ),

then for the kth components of A(∂y)G
j(y, x, σ) we obtain

m∑
i=1

A(∂y)kiGij(y, x, σ) = µ∆y[
λ + 3µ

2µ(λ + 2µ)
·δkjgm(y, x, σ)− λ + µ

2µ(λ + 2µ)
(yj−xj)

∂

∂yk

gm(y, x, σ)]+

+(λ + µ)
∂

∂yk

divGj(y, x, σ) = − λ + µ

2µ(λ + 2µ)

∂2

∂y2
j

gm(y, x, σ) +
λ + µ

2µ(λ + 2µ)

∂2

∂y2
j

gm(y, x, σ) = 0

Therefore, each column of the matrix G(y, x, σ) satisfies to system (1) in the variable y

everywhere on Rm.

The second condition of Carleman’s matrix follows from inequalities (18)-(23). The

theorem proved.
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For fixed x ∈ Dρ we denote by S∗ the part of S, where β ≥ α. It x = x0 = (0, . . . , 0, xm) ∈
Dρ, then S = S∗. In the point (0, . . . , 0) ∈ Dρ, suppose that

∂U

∂n
(0) =

∂U

∂ym

(0),
∂Φσ(0, x)

∂n
=

∂Φσ(0, x)

∂ym

.

Let

Uσ(y) =

∫
S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy, x ∈ Dρ. (24)

Theorem 4. Let U(x) be a regular solution of system (1) in Dρ, such that

|U(y)|+ |T (∂y, n)U(y)| ≤ M, y ∈ Σ. (25)

Then,

1) if m = 2n + 1, n ≥ 1, and for the x ∈ Dρ, σ ≥ σ0 > 0, the following estimate is valid:

|U(x)− Uσ(x)| ≤ MC1(x)σm+1 exp(−σγρ).

2) In case m = 2n, n ≥ 1, x ∈ Dρ, σ ≥ σ0 > 0, the following estimate is valid

|U(x)− Uσ(x)| ≤ MC2(x)σm exp(−σγρ),

where

Ck(x) = Ck(ρ)

∫
∂Dρ

dsy

rm
, k = 1, 2,

Ck(ρ) is a constant depending on ρ.

Proof. From formula (5)

U(x) =

∫
S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy+

+

∫
∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy, x ∈ Dρ,

therefore, (24) implies

|U(x)− Uσ(x)| ≤
∫

∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy ≤

≤
∫

∂Dρ\S∗

[|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|] [|T (∂y, n)Π(y, x, σ)|+ |U(y)|] dsy.

Therefore for β ≤ α we obtain from inequalities (18)-(23), and condition (25) for m =

2n + 1, n ≥ 1

|U(x)− Uσ(x)| ≤ MC1(ρ)σm+1 exp(−σγρ)

∫
∂Dρ

dsy

rm
,
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and for m = 2n, n ≥ 1 we obtain

|U(x)− Uσ(x)| ≤ MC2(ρ)σm exp(−σγρ)

∫
∂Dρ

dsy

rm
.

The theorem proved.

Now we write out a result that allows us to calculate U(x) approximately if, instead of U(y)

and T (∂y, n)U(y) their continuous approximations fδ(y) and gδ(y) are given on the surface

S:

max
S

|U(y)− fδ(y)|+ max
S

|T (∂y, n)U(y)− gδ(y)| ≤ δ, 0 < δ < 1. (26)

We define a function Uσδ(x) by setting

Uσδ(x) =

∫
s∗

[Π(y, x, σ)gδ(y)− {T (∂y, n)Π(y, x, σ)}∗fδ(y)]dsy, x ∈ Dρ, (27)

where σ = 1
Rρ lnM

δ
, Rρ = max

y∈S
Reωρ

0 .

Then the following theorem holds.

Theorem 5. Let U(x) be a regular solution of system (1) in Dρ such that

|U(y)|+ |T (∂y, n)U(y)| ≤ M, y ∈ ∂Dρ.

Then,

1) if m = 2n + 1, n ≥ 1, the following estimate is valid:

|U(x)− Uσδ(x)| ≤ C1(x)δ( γ
R

)ρ

(
ln

M

δ

)m+1

,

2) if m = 2n, n ≥ 1, the following estimate is valid:

|U(x)− Uσδ(x)| ≤ C2(x)δ( γ
R

)ρ

(
ln

M

δ

)m

,

where

Ck(x) = Ck(ρ)

∫
∂Dρ

dsy

rm
, k = 1, 2.

Proof. From formula (5) and (27) we have

U(x)− Uσδ(x) =

∫
∂Dρ\S∗

[Π(y, x, σ){T (∂y, n)U(y)} − {T (∂y, n)Π(y, x, σ)}∗U(y)]dsy+

+

∫
S∗

[Π(y, x, σ){T (∂y, n)U(y)− gδ(y)}+ {T (∂y, n)Π(y, x, σ)}∗(U(y)− fδ(y))]dsy = I1 + I2.

By Theorem 4 for m = 2n + 1, n ≥ 1,

|I1| = MC1(ρ)σm+1 exp(−σγρ)

∫
∂Dρ

dsy

rm
,
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and for the m = 2n, n ≥ 1

|I1| = MC2(ρ)σm exp(−σγρ)

∫
∂Dρ

dsy

rm
.

Now consider |I2| :

|I2| =
∫
S∗

(|Π(y, x, σ)|+ |T (∂y, n)Π(y, x, σ)|) (|T (∂y, n)U(y)− gδ(y)|+ |U(y)− fδ(y)|) dsy.

By Lemma 2 and condition (28) we obtain for m = 2n + 1, n ≥ 1

|I2| = C̃1(ρ)σm+1δ exp(−σγρ + σRewρ
0)

∫
∂Dρ

dsy

rm

and for m = 2n, n ≥ 1,

|I2| = C̃2(ρ)σmδ exp(−σγρ + σRewρ
0)

∫
∂Dρ

dsy

rm
.

Therefore, from

σ =
1

Rρ
ln

M

δ
, Rρ = max

y∈S
Reωρ

0 .

we obtain the desired result.

Corollary 1. The limit relation

lim
σ→∞

Uσ(x) = U(x), lim
δ→0

Uσδ(x) = U(x)

hold uniformly on any compact set from Dρ.
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