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Abstract

Operators on a manifold with (geometric) singularities are degenerate in a nat-
ural way. They have a principal symbolic structure with contributions from the
different strata of the configuration. We study the calculus of such operators on the
level of edge symbols of second generation, based on specific quantizations of the
corner-degenerate interior symbols, and show that this structure is preserved under
compositions.
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Introduction

This paper is aimed at studying the symbolic structure of operators on a configuration
with singularities of second order. By that we understand a geometry that is locally a
wedge, i.e., a Cartesian product between a cone and an edge, where the base of the cone
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is a manifold W with smooth edge Y ⊂ W . In particular, if Ξ ⊆ Rp is an open set and
W∆ := (R+ ×W )/({0} ×W ) the (infinite) cone with base W , then

W∆ × Ξ (1)

has singularities of second order. The space W itself is, locally near Y , modelled on a
wedge X∆ × Ω for a C∞ manifold X and an open set Ω ⊆ Rq, q = dimY . Then (1) is
locally near Y ∆ × Ξ of the form

(X∆ × Ω)∆ × Ξ.

Thus (1) can be regarded as a manifold with edge Y ∆ × Ξ, and Y ∆ × Ξ itself is a
manifold with smooth edge Ξ. It will often be convenient to talk about corresponding
open stretched spaces, e.g., X∧ := R+ ×X 3 (r, x), or, more generally, (X∧ ×Ω)∧ × Ξ =
R+ × R+ ×X × Ω× Ξ in the splitting of variables (t, r, x, y, z).

If gX is a Riemannian metric on X, then dr2 + r2gX + dy2 is an example of a wedge
metric on X∧ × Ω. The associated Laplace-Beltrami operator can be written as

A := r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)
α (2)

(for µ = 2) with coefficients

ajα ∈ C∞(R+ × Ω,Diffµ−(j+|α|)(X));

here Diffν(·) denotes the space of differential operators of order ν on the C∞ manifold in
the brackets. (Clearly, in the present case we have simply A = r−2((r∂r)

2 + (dimX −
1)r∂r + ∆X) with ∆X being the Laplace-Beltrami operator on X belonging to gX). Let
Diffµdeg,1(X

∧×Ω) denote the space of all differential operators of order µ on X∧×Ω of the
form (2), equipped with the structure of a Fréchet space (for convenience, all manifolds
in consideration are assumed to be countable unions of compact sets). Then, looking at
(X∧ × Ω)∧ × Ξ, Ξ ⊆ Rp open, with a wedge metric of the kind

dt2 + t2(dr2 + r2gX + dy2) + dz2, (3)

the associated Laplace-Beltrami operator has the form

A := t−µ
∑

k+|β|≤µ

bkβ(t, z)(−t∂t)k(tDz)
β (4)

(again for µ = 2) with coefficients bkβ(t, z) ∈ C∞(R+ × Ξ,Diff
µ−(k+|β|)
deg,1 (X∧ × Ω)). Let

Diffµdeg,2((X
∧ × Ω)∧ × Ξ) denote the space of all such differential operators (4) on (X∧ ×

Ω)∧ × Ξ of order µ.
According to (2), the operator (4) can be written as

A = r−µt−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(r, y, t, z)(−r∂r)j(rDy)
α(−rt∂t)k(rtDz)

β (5)
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with coefficients cjα,kβ ∈ C∞(R+ × Ω × R+ × Ξ,Diffµ−(j+|α|+k+|β|)(X)). This shows the
nature of degeneracy of geometric differential operators on the open stretched manifold
(X∧ × Ω)∧ × Ξ close to t = 0 and r = 0. Observe that (5) gives us a natural inclusion

Diffµdeg,2((X
∧ × Ω)∧ × Ξ) ⊂ Diffµdeg,1(X

∧ × (R+ × Ω× Ξ)) (6)

when we reinterpret (t, y, z) ∈ R+×Ω×Ξ as edge variables of the corresponding stretched
wedge X∧ × (R+ × Ω× Ξ).

In this paper we develop some crucial elements of the pseudo-differential calculus for
symbols with ‘corner-degenerate’ behaviour of that kind. The main focus is the structure
of amplitude functions which take values in operators on the infinite stretched wedge
W∧. The definition, given in Section 2.1, represents a specific quantization of corner-
degenerate symbols. In Section 2.2 we study the behaviour under compositions. The rest
of the paper is devoted to necessary details on the nature of the Mellin quantization in
the corner-degenerate situation, cf. Section 3.1, and on Green remainders that appear in
compositions, cf. Section 3.2.

Let us recall that the adequate way of establishing operator conventions (quantiza-
tions) of corner-degenerate interior symbols is far from being evident. This is already the
case for the edge calculus of first generation which corresponds to operators on configu-
rations with smooth edges (of any codimension), cf. [14] and [8]. The edge-quantization
of [8] is an alternative compared with that of [14], in order to make the composition
behaviour more transparent. In higher calculi, an analogue of that idea is more difficult
than the original one. Therefore, in the present set-up we do not try to apply the method
of [8]. However, for the higher singular case it seems to be indispensable to change the
quantization in another way, namely, to localise symbols in corner axis direction t ∈ R+

far from the origin close to the diagonal of R+ ×R+. This is caused by the very complex
behaviour of edge-degenerate operators when the edge has a conical exit to infinity, here
t→∞, which is the case when the model cone itself has singularities, cf. [4].

Similarly as the edge algebra in [14] (cf. also [16] or [5]) our results will be necessary to
establish an operator algebra with extra edge conditions that is closed under the construc-
tion of parametrices, cf., analogously, Boutet Monvel’s algebra [2]. In the present case
the conditions are to be posed both on edges of first and second generation; this will be
done in a future paper. Let us finally give a number of references that have from different
point of view connections with this paper, namely, Agranovich and Vishik [1] (parameter-
dependent calculus), Eskin [6], Rempel and Schulze [13], Grubb [9] (pseudo-differential
calculus of boundary value problems), Witt [19] (structure of operator-valued Mellin sym-
bols), Seiler [18] (Green operators in the cone algebra), Schulze [17] (cone calculus when
the base has smooth edges), and joint works of the second author with Kapanadze [12]
and Harutjunjan [10] (various models of applications, especially, crack theory, and higher
corner Mellin symbols).

1 Operators on a manifold with edge

1.1 Edge symbols for differential operators

By a manifold W with edge Y of first singularity order we understand a quotient space
W = W/ ∼, where W is a C∞ manifold with boundary, ∂W is an X-bundle over Y ,
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and X and Y are C∞ manifolds. The equivalence relation ‘∼’ means w1 = w2 when
w1, w2 ∈ Wreg := W\∂W and πw1 = πw2 when w1, w2 ∈ Wsing := ∂W, where π : Wsing →
Y denotes the canonical projection. From this definition it follows another equivalent
characterisation of a manifold W with (smooth) edge Y , namely, as a topological space
W such that W \ Y and Y are C∞ manifolds, and every y ∈ Y has a neighbourhood
V such that there is a homeomorphism χ : V → X4 × Ω for some open set Ω ⊆ Rq

which is induced by a diffeomorphism π−1V =: V → R+ × X × Ω by passing to the
corresponding quotient map. There is a natural notion of morphisms and isomorphisms
in the corresponding category M1 of such manifolds with edges, cf. [3]. This allows us
to form another category M2 of manifolds K with edge Z of second singularity order.
Here Z is a C∞ manifold, moreover, K \ Z ∈ M1, and K is locally near a point z ∈ Z
modelled on a wedge (1) for an open subset Ξ ⊆ Rp (more precisely, every z ∈ Ξ has a
neighbourhood in K that is homeomorphic to such a wedge). Concerning the transition
maps

W∆ × Ξ → W∆ × Ξ̃ (7)

for different such local models for open Ξ, Ξ̃ ⊆ Rp, we require that there is an isomorphism
R×W × Ξ → R×W × Ξ̃ in M1 that restricts to isomorphisms

R+ ×W × Ξ → R+ ×W × Ξ̃ (8)

and {0} ×W × Ξ → {0} ×W × Ξ̃ in M1 such that (7) is the quotient map with respect

to R+ ×W × Ξ → W∆ × Ξ and R+ ×W × Ξ̃ → W∆ × Ξ̃, respectively.
On K we choose splittings of variables

(t, ·, z) ∈ R+ ×W × Ξ (9)

for every local wedge (1). Let W ∈ M1 be a manifold with edge Y , and let Diffµdeg,1(W )
denote the space of all A ∈ Diffµ(W \Y ) that are locally near Y in the splitting of variables
(r, ·, y) ∈ X∧ × Ω of the form (2). Observe that when χ : W → W̃ is an isomorphism
between W, W̃ ∈ M1, then the operator push forward χ∗ : Diffµdeg,1(W ) → Diffµdeg,1(W ) is
an isomorphism.

Let K ∈ M2 be a manifold with edge Z, and let Diffµdeg,2(K) denote the subspace of
all A ∈ Diffµdeg,1(K \Z) that have near Z in the local splitting of variables (9) the form (4)

with coefficients bkβ(t, z) ∈ C∞(R+×Ξ,Diff
µ−(k+|β|)
deg,1 (W )). It can easily be proved that this

definition makes sense, i.e., is invariant under the transition maps (8) (which correspond
to the local description of isomorphisms in M2). In the following we are mainly interested
in the behaviour of operators in local wedges W∆×Ξ (or corresponding stretched wedges
W∧ × Ξ) rather than globally on K.

The principal symbolic structure of operators A ∈ Diffµdeg,2(K) for K := W∆ × Ξ is
defined as a triple

σ(A) := (σψ(A), σ∧(A), σ∧∧∧(A)) .

Here σψ(A) is the ‘usual’ homogeneous principal symbol of order µ, given on the smooth
part R+ × (W \ Y )× Ξ of K.

Locally near Y in the variables (t, r, x, y, z) ∈ R+× (R+×Σ×Ω)×Ξ (with x ∈ Σ and
y ∈ Ω being local coordinates on X and Y , respectively, Σ ⊆ Rn, Ω ⊆ Rq open) σψ(A) is
the homogeneous principal part of a symbol of form

p (t, r, x, y, z, τ, ρ, ξ, η, ζ) = t−µr−µp̃ (t, r, x, y, z, trτ, rρ, ξ, rη, trζ)
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for an element

p̃ (t, r, x, y, z, τ̃ , ρ̃, ξ, η̃, ζ̃) ∈ Sµcl
(
R+ × R+ × Σ× Ω× Ξ× R2+n+q+p

τ̃ ,ρ̃,ξ,η̃,ζ̃

)
(in the present case p̃ is, of course, a polynominal in (τ̃ , ρ̃, ξ, η̃, ζ̃) of order µ).

Moreover, if we write A in the form (5), we have the edge symbol of first generation

σ∧(A) := r−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(0, y, t, z)(−r∂r)j(rη)α(−irtτ)k(rtζ)β.

This is a family of continuous operators

σ∧(A)(t, y, z, τ, η, ζ) : Ks,γ(X∧) → Ks−µ,γ−µ(X∧) (10)

for (t, y, z, τ, η, ζ) ∈ T ∗(R+ × Ω × Ξ) \ 0, s, γ ∈ R. (The definition of the weighted
cone Sobolev spaces in (10) will be given in Section 1.2 below.) Finally, from (4) with

coefficients bkβ(t, z) ∈ C∞(R+ × Ξ,Diff
µ−(k+|β|)
deg,1 (W )) we define the edge symbol of second

generation

σ∧∧∧(A) := t−µ
∑

k+|β|≤µ

bkβ(0, z)(−t∂t)k(tζ)β,

which is a family of continuous operators

σ∧∧∧(A)(z, ζ) : Ks,(γ,θ)(W∧) → Ks−µ,(γ−µ,θ−µ)(W∧) (11)

for (z, ζ) ∈ T ∗Ξ \ 0, s, γ, θ ∈ R (the spaces in (11) will also be defined in Section 1.2
below).

1.2 Edge spaces of second generation

In this section we formulate some necessary material on weighted cone and edge Sobolev
spaces. We first recall the definition of spaces of first generation. After that we pass to
the corner spaces of second generation.

Let X be a closed compact C∞ manifold, n = dimX, and Hs(X) the standard
Sobolev space of smoothness s ∈ R on X. Moreover, let Lµcl(X; Rl) denote the space of
all classical parameter-dependent pseudo-differential operators on X of order µ ∈ R (that
is, the local symbols a(x, ξ, λ) contain the parameter λ ∈ Rl, the symbolic estimates treat
(ξ, λ) ∈ Rn+l as a covariable, and we set L−∞(X; Rl) := S(Rl, L−∞(X)) with L−∞(X)
being the space of operators with kernel in C∞(X × X)). We employ the fact that for
every µ ∈ R there is an element Rµ(λ) ∈ Lµcl(X; Rl) that is parameter-dependent elliptic
(i.e., the homogeneous principal components a(µ)(x, ξ, λ) of a(x, ξ, λ) do not vanish for
(ξ, λ) 6= 0) and Rµ(λ) : Hs(X) → Hs−µ(X) defines a family of isomorphisms for all s ∈ R
and all λ ∈ Rl.

For µ = s we now choose such a family Rs(ρ), with parameter ρ ∈ R and de-
note by Hs,γ(X∧) for s, γ ∈ R the completion of C∞

0 (X∧) with respect to the norm{
(2πi)−1

∫
Γn+1

2 −γ

‖Rs(Imw)(Mu)(w)‖2
L2(X)dw

} 1
2
. Here (Mu)(w) =

∫
R+
rw−1u(r)dr is the

Mellin transform, applied to u = u(r) ∈ C∞
0 (R+, C

∞(X)) as a C∞(X)-valued function,
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and Γβ := {w ∈ C : Rew = β}, β ∈ R. Observe that the spaces Hs,γ(X∧) are related to
the (standard) cylindrical Sobolev spaces Hs(R×X) by the identity

Hs,γ(X∧) =
(
Sγ−n

2

)−1
Hs(R×X) (12)

where
(Sβu) (p) := e−( 1

2
−β)pu(e−p), p ∈ R. (13)

In this paper a cut-off function w on the half-axis is any ω(r) ∈ C∞
0 (R+), 0 ≤ ω(r) ≤ 1,

that is equal to 1 in a neighbourhood of r = 0. Given two cut-off functions ω, ω̃ we write

ω ≺ ω̃ if ω̃ ≡ 1 on suppω. (14)

Let Hs
cone(X

∧) denote the subspace of all g ∈ Hs
loc(R × X)|R+×X such that for every

coordinate neighbourhood U on X, every diffeomorphism χ : U → V to an open set
V ⊂ Sn, χ(x) = α, every ϕ ∈ C∞

0 (U) and any cut-off function ω(r) we have ϕ(χ−1(α))(1−
ω(r))g(r, χ−1(α)) ∈ Hs(Rn+1) (here (r, α) has the meaning of polar coordinates in Rn+1 \
{0} ∼= (Sn)∧).

For purposes below we set
X� := R×X

when we interpret the cylinder as a manifold with conical exits r → ±∞. In that sense
we define weighted Sobolev spaces Hs;δ(X�) of smoothness s ∈ R and weight δ ∈ R at
r = ±∞ by setting

Hs;δ(X�) :=
{
u(r, x) ∈ Hs

loc(R×X) : u(r, x)|r>0, u(−r, x)|r>0 ∈ 〈r〉−δHs
cone(X

∧)
}

;

here 〈r〉 = (1 + r2)1/2. Observe that H0;0(X�) can be identified with 〈r〉−n/2L2(R × X)
where the L2 space is based on the measure drdx. We now set

Ks,γ(X∧) :=
{
ωf + (1− ω)g : f ∈ Hs,γ(X∧), g ∈ Hs

cone(X
∧)

}
for every s, γ ∈ R and any cut-off function ω on the half-axis. In Ks,γ(X∧) we choose
a Hilbert space scalar product, such that K0,0(X∧) = r−

n
2L2(X∧) with L2 referring to

the measure drdx. In Ks,γ(X∧) we have a strongly continuous group of isomorphisms

{κδ}δ∈R+ , defined by (κδu)(r, x) = δ
n+1

2 u(δr, x). In general, if E is a Hilbert space,
equipped with a strongly continuous group of isomorphisms κδ : E → E, δ ∈ R+, such
that κδκδ′ = κδδ′ for all δ, δ′ ∈ R+, we say that E is equipped with a group action
(‘strongly continuous’ means κλe ∈ C(R+, E) for every e ∈ E). Moreover, if E is a
Fréchet space, written as a projective limit of Hilbert spaces Ej, j ∈ N, with continuous
embeddings . . . ↪→ Ej+1 ↪→ Ej ↪→ . . . ↪→ E0, we say that E is endowed with a group
action κ = {κδ}δ∈R+ , if κ is a group action on E0 which restricts to a group action on Ej

for every j ∈ N.

Definition 1.1. Let E be a Hilbert space with group action κ = {κδ}δ∈R+. Then the
‘abstract edge Sobolev space’ Ws(Rq, E), s ∈ R, is defined as the completion of the space
S(Rq, E) with respect to the norm

‖u‖Ws(Rq ,E) =
{∫

〈η〉2s‖κ−1
〈η〉û(η)‖

2
Edη

} 1
2
,

where 〈η〉 = (1 + |η|)1/2, û(η) = Fu(η) =
∫
e−iyηu(y)dy.
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These spaces have been introduced in [14] in connection with operators on manifolds
with smooth edges. Concerning more details and useful functional analytic properties,
see also [11] or [15].

Applying Definition 1.1 to E = Ks,γ(X∧) with the above mentioned group action we
obtain the spaces

Ws(Rq,Ks,γ(X∧)).

Now letW be a compact manifold with smooth edge Y and consider the stretched manifold
W. Let p : ∂W → Y be the canonical projection of the X-bundle ∂W to the edge Y . Then
for every coordinate neighbourhood U on Y we can form a neighbourhood [0, 1)× p−1(U)
in W and a corresponding diffeomorphism

θ : (0, 1)× p−1(U) → R+ ×X × Rq (15)

associated with a chart U → Rq (obtained by the restriction of a corresponding diffeo-
morphism [0, 1)× p−1(U) → R+ ×X × Rq). We now define the weighted edge space

Ws,γ(W ) for s, γ ∈ R

as the subspace of all u ∈ Hs
loc(Wreg) such that for arbitrary such U we have

(ωϕu) ◦ θ−1 ∈ Ws(Rq,Ks,γ(X∧))

for any ϕ ∈ C∞
0 (U) and a cut-off function ω(r) supported by [0, 1).

By gluing together two copies of W along the common boundary Wsing, we obtain the
double 2W which is a closed compact C∞ manifold. This gives us the scale of spaces
Hs;δ((2W)�), s, δ ∈ R.

Let ω(r) ∈ C∞(W) be a function that is equal to 1 in a neighbourhood of Wsing and
supported in a collar neighbourhood of Wsing. We then define the space

Ws,γ;δ(W�) for s, γ, δ ∈ R (16)

to be the completion of C∞
0 (R×Wreg) with respect to the norm{

‖(1− ω)u‖2
Hs;δ((2W)�) +

N∑
j=1

‖ωϕju ◦ χ−1
j ◦ β−1‖2

〈t,ỹ〉−δWs(Rt×Rq
ỹ
,Ks,γ(R+,r̃×X))

}1/2

.

Here {ϕ1, . . . , ϕN} is a partition of unity subordinate to an open covering {U1, . . . , UN}
of Y by coordinate neighbourhoods, and we fix maps

χj : (t, w) → (t, r, x, y) ∈ R× R+ ×X × Rq

where w varies on a subset of a collar neighbourhood of Wsing in W, which has the form
(0, 1) × X × Uj and is mapped under χj to R+ × X × Rq where the last component is
given by charts θj : Uj → Rq on Y .

Moreover
β : R× R+ ×X × Rq → R× R+ ×X × Rq

is defined by (t, r, x, y) → (t, [t]r, x, [t]y). Here t → [t] denotes a strictly positive C∞

function in t such that [t] = |t| for |t| ≥ c for a constant c > 0 (the same notation will be
used later on also in arbitrary dimensions).
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Another important ingredient of the corner Sobolev spaces of second generation in
(11) are spaces of the kind

Hs,(γ,θ)(W∧) := (Sθ− 1
2

dimW )−1Ws,γ(R×W ), (17)

with Sβ being given by (13) and Ws,γ(R×W ) as an analogue of the cylindrical Sobolev
space occurring in (12), here with W in place of X. More precisely, Ws,γ(R×W ) consists
of all distributions u on R×Wreg such that (1− ω)u ∈ Hs(R× 2W)|R×Wreg and

(ωu) ◦ χ−1 ∈ Ws(R× Rq,Ks,γ(X∧))

for any chart χ : R× U → R× Rq on R× Y , χ(p, y) = (p, χ′(y)), χ′ : U → Rq.

Definition 1.2. (i) We set

Ks,(γ,θ)(W∧) :=
{
σ(t)f(t, w) + (1− σ(t))g(t, w) : f ∈ Hs,(γ,θ)(W∧),

g ∈ Ws,γ;0(W�)|t>0

}
for arbitrary s, γ, θ ∈ R; here σ(t) is any cut-off function on R+.

(ii) We set
S(γ,θ)(W∧) := σK∞,(γ,θ)(W∧) + (1− σ)W∞,γ;∞(W�)|t>0

for any cut-off function σ(t) where W∞,γ;∞(W�) :=
⋂
N∈NWN,γ;N(W�), cf. the

formula (16), and, analogously, K∞,(γ,θ)(W∧) :=
⋂
N∈NKN,(γ,θ)(W∧).

Remark 1.3. We have

S(γ,θ)(W∧) =
⋂
N∈N

〈t〉−NKN,(γ,θ)(W∧).

This gives S(γ,θ)(W∧) the structure of a Fréchet space.

In the spaces Ws,γ;δ(W�), Hs,(γ,θ)(W∧), Ks,(γ,θ)(W∧), we can introduce scalar prod-
ucts in which these are Hilbert spaces. Let us take the scalar products of the spaces of
smoothness and weights zero as reference scalar products of corresponding sesquilinear
pairings.

As scalar product between u, v in the space W0,0;0(W�) we can take

((1− ω)u, (1− ω)v)H0;0((2W)�)

+
N∑
j=1

(ωϕju ◦ χ−1
j ◦ β−1, ωϕjv ◦ χ−1

j ◦ β−1)W0(R1+q
t,ỹ

,K0,0(R+,r̃×X)).

In a similar manner we can proceed with the other spaces. For instance, in K0;(0,0)(W∧)
we take the scalar product

(u, v)K0,(0,0)(W∧) := (σu, σv)H0,(0,0)(W∧) + ((1− σ)u, (1− σ)v)W0,0;0(W�)|t>0
.

The scalar product in H0,(0,0)(W∧) comes from a scalar product in W0,0(R×W ) via (17),
where W0,0(R × W) is identified with h−

n
2L2(R × W) for a function h on Wreg which is

C∞, strictly positive, and equal to r in a neighbourhood of Wsing.
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Proposition 1.4. There is a non-degenerate sesquilinear pairing

Ks,(γ,θ)(W∧)×K−s,(−γ,−θ)(W∧) → C

via the K0,(0,0)(W∧) - scalar product.

The proof is straightforward and left to the reader.

1.3 Parameter-dependent edge operators

Motivated by the form of corner-degenerate differential operators (4), along the linies
of [14] (see also [5] or [16]), we now form families of pseudo-differential operators on a
manifold W with edge Y . This will be done first locally on Y , i.e., on an open set Ω ⊆ Rq

and then globally on W . Local edge-degenerate families are modelled on functions

p̃(t, r, y, z, τ̃ , ρ̃, η̃, ζ̃) ∈ C∞(
R+ × R+ × Ω× Ξ, Lµcl(X; R2+q+p

τ̃ ,ρ̃,η̃,ζ̃
)
)
,

that are first given in terms of standard parameter-dependent operators on X, with the
parameters (τ̃ , ρ̃, η̃, ζ̃) ∈ R2+q+p, smoothly depending on (t, r, y, z) ∈ R+ × R+ × Ω × Ξ.
Later on, in the corner-degenerate set-up, the covariables are used in the meaning

τ̃ = rtτ, ρ̃ = rρ, η̃ = rη, ζ̃ = rtζ.

We then set
p(t, r, y, z, τ̃ , ρ, η, ζ̃) := p̃(t, r, y, z, rτ̃ , rρ, rη, rζ̃) (18)

which gives us an edge-degenerate family of operators on X, with R+ × Ω× Ξ 3 (t, y, z)
being interpreted as the edge and R+ 3 r as the axis of the local model coneX∧ = R+×X.
In order to formulate edge amplitude functions of first generation, we employ the following
Mellin quantization result, cf. [14], [8].

Theorem 1.5. Let p be as in (18), and let ϕ ∈ C∞
0 (R+) be a function such that ϕ ≡ 1

near 1. Then there exists a family of operators of the form

h(t, r, y, z, τ̃ , v, η, ζ̃) = h̃(t, r, y, z, rτ̃ , v, rη, rζ̃)

for an h̃(t, r, y, z, τ̃ , v, η̃, ζ̃) ∈ C∞(
R+ × R+ × Ω× Ξ, Lµcl(X; Rτ̃ × Cv × Rq+p

η̃,ζ̃
)
)

such that

opr(p)(t, y, z, τ̃ , η, ζ̃)− op
1
2
M(h)(t, y, z, τ̃ , η, ζ̃) ∈ C∞(

R+ × Ω× Ξ, Lµcl(X
∧; R1+p+q

τ̃ ,η,ζ̃
)
)
.

The remainder in the latter expression has the form

opr([1− ϕ(r′/r)]p(t, r, y, z, τ̃ , ρ, η, ζ̃)).

Let us choose cut-off functions ω0, ω1, ω2 on the r-half-axis, ω2 ≺ ω1 ≺ ω0, and form
the operator functions

a0(t, y, z, τ̃ , η, ζ̃) = r−µω1(r[τ̃ , η, ζ̃]) op
γ−n

2
M (h)(t, y, z, τ̃ , η, ζ̃)ω0(r

′[τ̃ , η, ζ̃]),

a1(t, y, z, τ̃ , η, ζ̃) = r−µ(1− ω1(r[τ̃ , η, ζ̃])) opr(p)(t, y, z, τ̃ , η, ζ̃)(1− ω2(r
′[τ̃ , η, ζ̃])),
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for n = dimX, and set

a(t, y, z, τ̃ , η, ζ̃) := σ1(r)
{
(a0 + a1)(t, y, z, τ̃ , η, ζ̃)

}
σ0(r

′)

for some cut-off functions σ0(r), σ1(r). In this way we obtain an operator-valued symbol

a(t, y, z, τ̃ , η, ζ̃) ∈ Sµ(R+ × Ω× Ξ× R1+p+q

τ̃ ,η,ζ̃
;Ks,γ(X∧),Ks−µ,γ−µ(X∧)),

for s ∈ R. The latter notation is used in the following sense. Let E and Ẽ be Hilbert
spaces with group actions {κδ}δ∈R+ and {κ̃δ}δ∈R+ , respectively. In the present case we

have E = Ks,γ(X∧), Ẽ = Ks−µ,γ−µ(X∧), and the group action is given by u(r, x) →
δ

n+1
2 u(δr, x), δ ∈ R+, on both spaces, n = dimX. Then

Sµ(U × Rm;E, Ẽ),

for an open set U ⊆ Rd, is defined as the set of all a(x, ξ) ∈ C∞(U × Rm;L(E, Ẽ)) such
that

sup
x∈K,ξ∈Rn

〈ξ〉−µ+|β|‖κ̃−1
〈ξ〉

{
Dα
xD

β
ξ a(x, ξ)

}
κ〈ξ〉‖L(E,Ẽ)

is finite for arbitrary K b U , α ∈ Nd, β ∈ Nm. Moreover, Sµcl(U × Rm;E, Ẽ) denotes
the subspace of so-called classical symbols, defined by asymptotic expansions into terms
χ(ξ)a(µ−j)(x, ξ), j ∈ N, for an excision function χ(ξ) and functions a(µ−j)(x, ξ) that are
homogeneous in the sense

a(µ−j)(x, δξ) = δµ−jκ̃δa(µ−j)(x, ξ)κ
−1
δ

for all (x, ξ) ∈ U × (Rm \ {0}), δ ∈ R+. We also employ symbols for the case where, for

instance, E or Ẽ are Fréchet spaces with group action (cf. the notation in Section 1.2);
the extension of the definition is straightforward, cf. [15].

Examples are the spaces

Sγ(X∧) := ωK∞,γ(X∧) + (1− ω)S(R+, C
∞(X))

for a cut-off function ω(r), written as projective limits of ωKN,γ(X∧) + (1 − ω)〈r〉−N
HN(R+, H

N(X)) over N ∈ N (here Hs(R+, E) := {u|R+ : u ∈ Hs(R, E)} for any Hilbert
space E). An equivalent characterisation is

Sγ(X∧) =
⋂
N∈N

〈r〉−NKN,γ(X∧).

The first part of the following definition comes from the ‘standard’ edge calculus, see [5],
or [16].

Definition 1.6. (i) The space Rµ
G(U × Rm, (γ, β)), U ⊆ Rd open, is the set of all

g(x, ξ) ∈
⋂
s∈R

C∞(U × Rm,L(Ks,γ(X∧),K∞,β(X∧)))
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(called Green symbols of the edge calculus of first generation) of order µ ∈ R with
weights (γ, β) if

g(x, ξ) ∈
⋂
s∈R

Sµcl(U × Rm,Ks,γ(X∧),Sβ+ε(X∧)),

g∗(x, ξ) ∈
⋂
s∈R

Sµcl(U × Rm,Ks,−β(X∧),S−γ+ε(X∧)),

for an ε = ε(g) > 0; here g∗ is the pointwise formal adjoint with respect to the
K0,0(X∧)-scalar product. A similar definition makes sense also when U ⊆ Rd is
replaced by R+ × U ′ for an open set U ′ ⊆ Rd−1.

(ii) Let V ⊆ Re be open, and fix reals γ, θ, β, δ. The space Rµ
G (V × Rp, (γ, θ), (β, δ)), is

the set of all

g(z, ζ) ∈
⋂
s∈R

C∞ (
U × Rp,L(Ks,(γ,θ)(W∧), K∞,(β,δ)(W∧))

)
(called Green symbols of the edge calculus of second generation) if it has the prop-
erties

g(z, ζ) ∈
⋂
s∈R

Sµcl(V × Rp;Ks,(γ,θ)(W∧), S(β+ε1,δ+ε2)(W∧)), (19)

g∗(z, ζ) ∈
⋂
s∈R

Sµcl(V × Rp;Ks,(−β,−δ)(W∧), S(−γ+ε1,−θ+ε2)(W∧)), (20)

(cf. Definition 1.2 (ii)), for certain εi = εi(g) > 0, i = 1, 2; here g∗ is the pointwise
adjoint with respect to the K0,(0,0)(W∧)- scalar product. A similar definition makes
sense also when V is replaced by R+ × V ′ for an open set V ′ ⊆ Re−1, with symbolic
estimates that are required uniformly up to 0 on R+. Let Rµ

G,O(V ×Rp, (γ, θ), (β, δ))
denote the subspace of all g(z, ζ) ∈ Rµ

G(V ×Rp, (γ, θ), (β, δ)) such that (19) and (20)
hold for arbitrary ε2 > 0. Green symbols of that kind will also be called flat.

Below, if the weights (γ, θ), (β, δ) are fixed and known from the context, we also write
Rµ
G,O instead of Rµ

G,O(V × Rp; (γ, θ), (β, δ)).

Proposition 1.7. (i) Let g(x, ξ) ∈ Rµ
G(U × Rm, (γ, β)); then rkg(x, ξ)rl ∈ Rµ

G(U ×
Rn, (γ − l, β + k)) for every l, k ∈ R;

(ii) let g(z, ζ) ∈ Rµ
G(V ×Rp, (γ, θ), (β, δ)); then tkg(z, ζ)tl ∈ Rµ

G(V ×Rp, (γ, θ− l), (β, δ+
k)) for every l, k ∈ R.

Let M−∞(X; Γβ) denote the subspace of all f(v) ∈ L−∞(X; Γβ)
(

:= S(Γβ, L
−∞(X))

)
such that for an ε = ε(f) > 0 there is an extension f(v) ∈ A

(
{v : β − ε < Re v <

β + ε}, L−∞(X)
)

with the property f(δ + iρ) ∈ L−∞(X; Γδ) for every β − ε < δ < β + ε,
uniformly in compact subintervals. Then, for any f(x, v) ∈ C∞(

U,M−∞(X; Γn+1
2
−γ)

)
and

arbitrary cut-off functions ω(r), ω̃(r), the operator family

g(x, ξ) := rβ−γ+εω(r[ξ]) op
γ−n

2
M (f)(x)ω̃(r′[ξ]),

11



ε > 0, is a Green symbol in the sense of Definition 1.6 (i). Of course, for ε = 0 this is not
the case. These operator functions are then a typical ingredient of the edge calculus on
W , namely, the so-called smoothing Mellin operators. An operator G ∈ L−∞(W \ Y ) is
called smoothing in the edge calculus on W , associated with the weight data (γ, β), if G
and its formal adjoint G∗ induce continuous operators

G : Ws,γ(W ) →W∞,β+ε(W ), G∗ : Ws,−β(W ) →W∞,−γ+ε(W )

for all s ∈ R and some ε = ε(G) > 0. The formal adjoint is defined by the W0,0-pairing
with a fixed scalar product (from r−

n
2L2(W)).

More generally, Y−∞(W ; Rl) will denote the space of all Schwartz functions G(λ) on
Rl 3 λ with values in the space of smoothing operators just defined. The weight data are
assumed to be known by the context; otherwise we write Y−∞(W, (γ, β); Rl). We will use
below that this is an inductive limit of Fréchet spaces; so it makes sense to talk about C∞

functions with values in this space. Let us now define edge operators with parameters
together with their symbolic structure. Near the edge in local stretched coordinates they
are defined as operators Opy(a)(t, z, τ̃ , ζ̃) for edge symbols of the form

a(t, y, z, τ̃ , η, ζ̃) = σ1(r){(a0 + a1)(t, y, z, τ̃ , η, ζ̃)}σ2(r
′)

+ m(t, y, z, τ̃ , η, ζ̃) + g(t, y, z, τ̃ , η, ζ̃) (21)

for
m(t, y, z, τ̃ , η, ζ̃) = r−µω(r[τ̃ , η, ζ̃]) op

γ−n
2

M (f)(t, y, z)ω̃(r′[τ̃ , η, ζ̃]),

with a Mellin amplitude function f(t, r, y, z, v) ∈ C∞(
R+×R+×Ω×Ξ,M−∞(X; Γn+1

2
−γ)),

and
g(t, y, z, τ̃ , η, ζ̃) = r−µg0(t, y, z, τ̃ , η, ζ̃),

where g0(t, y, z, τ̃ , η, ζ̃) is a Green symbol in the sense of Definition 1.6 (i) with U :=

R+ × Ω× Ξ 3 x = (t, y, z), ξ = (τ̃ , η, ζ̃) ∈ R1+p+q and weight data γ = β. Let Rµ(R+ ×
Ω×Ξ×R1+q+p

τ̃ ,η,ζ̃
, g) for g = (γ, γ−µ) denote the space of all operator functions of the form

(21). In a similar manner we can define Rµ(R+ × R+ × Ω× Ξ× R1+q+p

τ̃ ,η,ζ̃
, g) when t ∈ R+

is replaced by (t, t′) ∈ R+ × R+. We also use notation like Rµ(R+ × Ω × Ξ × R1+q+p

τ̃ ,η,ζ̃
, g)

and Rµ(R+ × R+ × Ω × Ξ × R1+q+p

τ̃ ,η,ζ̃
, g) when the dependence of the involved amplitude

functions in t or (t, t′) is assumed to be smooth in t ∈ R+ or (t, t′) ∈ R+ × R+.
In the following definition we choose an open covering of Y by charts θj : Uj → Rq,

j = 1, . . . , N , a subordinate partition of unity {ϕ1, . . . , ϕN} and a system of functions
{ψ1, . . . , ψN}, ψj ∈ C∞

0 (Uj), such that ψj ≡ 1 on suppϕj for all j.

Definition 1.8. By C∞(
R+×Ξ,Yµ(W, g; Rτ̃ ×Rp

ζ̃
)
)
3 ã(t, z, τ̃ , ζ̃) we denote the space of

all operator families
Ws,γ(W ) →Ws−µ,γ−µ(W ),

continuous for all s ∈ R, that are of the form

σãedge(t, z, τ̃ , ζ̃)σ̃ + (1− σ)ãint(t, z, τ̃ , ζ̃)(1− ˜̃σ) + g̃(t, z, τ̃ , ζ̃), (22)

where σ(r), σ̃(r), ˜̃σ(r) are cut-off functions such that ˜̃σ ≺ σ ≺ σ̃ and
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(i)

ãedge(t, z, τ̃ , ζ̃) =
N∑
j=1

ϕj(θ
−1
j )∗ Opy(aj)(t, z, τ̃ , ζ̃)ψj

for arbitrary edge symbols aj(t, y, z, τ̃ , η, ζ̃) ∈ Rµ(R+ × Ω × Ξ × R1+p+q

τ̃ ,η,ζ̃
, g) of the

form (21);

(ii) ãint(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ, Lµcl(W \ Y ; R1+p

τ̃ ,ζ̃
)
)
;

(iii) g̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,Y−∞(W, g; R1+p

τ̃ ,ζ̃
)
)
.

2 Edge symbols of second generation

2.1 Quantization of corner-degenerate symbols

Our next objective is to formulate a Mellin quantization result for operator families

p(t, z, τ, ζ) := p̃(t, z, tτ, tζ) with p̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,Yµ(W, g; R1+p

τ̃ ,ζ̃
)
)
, (23)

where Yµ(W, g; R1+p) refers to the weight data g = (γ, γ − µ) with respect to the edge
Y ⊂ W . Let C∞(

R+×Ξ,Yµ(W, g; Cw×Rp
ζ)

)
denote the space of all families of operators

h(t, z, w, ζ) that are entire in w with values in C∞(
R+ × Ξ,Yµ(W, g; Rp

ζ)
)

such that

h(t, z, δ + iτ, ζ) ∈ C∞(
R+ × Ξ,Yµ(W, g; Rτ × Rp

ζ)
)

for every real δ, and uniformly in compact intervals. The definition of holomorphic de-
pendence of operator functions in w ∈ C can be given in more detail by using analogues
of the ingredients of Definition 1.8 with w ∈ C in place of τ̃ . In particular, this needs a
corresponding version of the Rµ-classes, first in the form

Rµ(R+ × Ω× Ξ× Γβ × Rp+q

η,ζ̃
, g) (24)

where τ̃ is replaced by Imw for w ∈ Γβ for some β ∈ R. Then

Rµ(R+ × Ω× Ξ× C× Rp+q

η,ζ̃
, g)

is the space of all entire functions f(t, y, z, w, η, ζ̃) in w with values in Rµ(R+ ×Ω× Ξ×
Rp+q

η,ζ̃
, g) such that f(t, y, z, β + iτ̃ , η, ζ̃) belongs to (24) for every β ∈ R, uniformly in

compact β-intervals.
The following theorem is an analogue of [8, Theorem 3.2], here for the calculus of

second generation.

Theorem 2.1. Let p(t, z, τ, ζ) be as in (23), and let ϕ ∈ C∞
0 (R+) be a function such that

ϕ ≡ 1 near 1. Then there exists a family of operator-valued Mellin symbols of the form

h(t, z, w, ζ) = h̃(t, z, w, tζ) with h̃(t, z, w, ζ̃) ∈ C∞(
R+ × Ξ,Yµ(W, g; Cw × Rp

ζ̃
)
)

(25)
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such that
opt(p)(z, ζ)− op

1
2
M(h)(z, ζ) = opt(r)(z, ζ)

for r(t, t′, z, τ, ζ) := (1 − ϕ(t′/t))p(t, z, τ, ζ), and the operator family opt(r)(z, ζ) belongs
to C∞(

Ξ,Y−∞(W∧, g; Rp
ζ)

)
.

The proof will be given in Section 3.1 below.
Let us choose a function ω(t, t′) ∈ C∞(R+×R+) as in [4, Lemma 2.10], i.e., ω(t, t′) :=

ψ
(

(t−t′)2
1+(t−t′)2

)
for some ψ ∈ C∞

0 (R+) such that ψ(t) = 1 for t < 1
2
, ψ(t) = 0 for t > 3

2
, and

set
a(z, ζ) := σ1(t){a0(z, ζ) + a1(z, ζ)}σ0(t

′) (26)

for

a0(z, ζ) = t−µω1(t[ζ]) op
θ− d

2
M (h)(z, ζ)ω0(t

′[ζ]), (27)

a1(z, ζ) = t−µ (1− ω1(t[ζ]))ω(t[ζ], t′[ζ]) opt(p)(z, ζ) (1− ω2(t
′[ζ])) , (28)

d := dimW , where σ0, σ1 and ω0, ω1, ω2 are cut-off functions on the t-half axis, such that
ω2 ≺ ω1 ≺ ω0.

We then have the following result:

Proposition 2.2. [4, Theorem 3.8] We have

a(z, ζ) ∈ Sµ
(
Ξ× Rp;Ks,(γ,θ)(W∧),Ks−µ,(γ−µ,θ−µ)(W∧)

)
for every s ∈ R.

For
p0(t, z, τ, ζ) := p̃(0, z, tτ, tζ), h0(t, z, w, ζ) = h̃(0, z, w, tζ)

we define

σ∧∧∧(a)(z, ζ) := t−µ
{
ω1(t|ζ|) op

θ− d
2

M (h0)(t, ζ)ω0(t
′|ζ|)

+ (1− ω1(t|ζ|))ω(t|ζ|, t′|ζ|) opt(p0)(z, ζ)(1− ω2(t
′|ζ|))

}
.

Remark 2.3. The edge symbol σ∧∧∧(a)(z, ζ) induces a family of continuous operators

σ∧∧∧(a)(z, ζ) : Ks,(γ,θ)(W∧) → Ks−µ,(γ−µ,θ−µ)(W∧)

for every s ∈ R.

Let us endow the spaces Ks,(γ,θ)(W∧) with the group action

κλ : Ks,(γ,θ)(W∧) → Ks,(γ,θ)(W∧),

defined by (κλu)(t, ·) = λ
d+1
2 u(λt, ·), λ ∈ R+. For (z, ζ) ∈ T ∗Ξ \ 0 we then have

σ∧∧∧(a)(z, λζ) = λµκλσ∧∧∧(a)(z, ζ)κ−1
λ

for all λ ∈ R+, (z, ζ) ∈ T ∗Ξ \ 0.
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2.2 Composition results

We now formulate a result on the compositions of operator-valued amplitude functions of
the kind (26). To this end we reformulate the operators as

a(z, ζ) = ω1(t[ζ])A0(z, ζ)ω0(t
′[ζ]) + (1− ω1(t[ζ]))A1(z, ζ)(1− ω2(t

′[ζ]))

for

A0(z, ζ) := σ1(t)t
−µ op

θ− d
2

M (h)(z, ζ)σ0(t
′), (29)

A1(z, ζ) := σ1(t)t
−µω(t[ζ], t′[ζ]) opt(p)(z, ζ)σ0(t

′), (30)

under the same conditions as before. In particular, we assume ω2 ≺ ω1 ≺ ω0. For the
composition we consider another operator function

b(z, ζ) = ω1(t[ζ])B0(z, ζ)ω0(t
′[ζ]) + (1− ω1(t[ζ]))B1(z, ζ)(1− ω2(t

′[ζ])),

for

B0(z, ζ) := σ̃1(t)t
−ν op

θ+ν− d
2

M (f)(z, ζ)σ̃0(t
′),

B1(z, ζ) := σ̃1(t)t
−νω̃(t[ζ], t′[ζ]) opt(q)(z, ζ)σ0(t

′),

where q is of a similar structure as p, now of order ν, and f is an associated Mellin symbol
as in Theorem 2.1. We fix the involved weights in such a way that

b(z, ζ) ∈ Sν
(
Ξ× Rp;Ks,(γ+ν,θ+ν)(W∧),Ks−ν,(γ,θ)(W∧)

)
for all real s, cf. Proposition 2.2.

Theorem 2.4. Given a(z, ζ) and b(z, ζ) as before, there is a c(z, ζ) of analogous structure,
now of order µ+ ν and referring to the pair of weights (γ + ν, θ+ ν), (γ − µ, θ− µ), such
that for the pointwise composition we have

a(z, ζ)b(z, ζ) = c(z, ζ) + g(z, ζ) (31)

for a Green symbol g(z, ζ) ∈ Rµ+ν
G,O (Ξ× Rq; (γ + ν, θ + ν), (γ − µ, θ − µ)).

Proof. For the formal computations we first omit the arguments and simply write

a = ω1A0ω0 + (1− ω1)A1(1− ω2), b = ω1B0ω0 + (1− ω1)B1(1− ω2).

Then we obtain
ab = S +R1 +R2 (32)

for

S := ω1A0ω1B0ω0 + (1− ω1)A1(1− ω1)B1(1− ω2),

R1 := ω1A0(ω0 − ω1)B1(1− ω2), R2 := (1− ω1)A1(ω1 − ω2)B0ω0.
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Here and in the sequel we systematically apply the relation ω2 ≺ ω1 ≺ ω0 which
implies ωiωj = ωj and (1− ωi)(1− ωj) = 1− ωi for i < j. We then have

R1 = ω2A0(ω0 − ω1)B1(1− ω2) + (ω1 − ω2)A0(ω0 − ω1)B1(1− ω2) = G1 + R̃1

for

G1 := ω2A0(ω0 − ω1)B1(1− ω2) + (ω1 − ω2)A0(ω0 − ω1)B1(1− ω0), (33)

R̃1 := (ω1 − ω2)A0(ω0 − ω1)B1(ω0 − ω2).

The operator family G1 is smoothing because of pseudo-locality; in fact, we have ω2(ω0−
ω1) = 0, and (ω1 − ω2)(1− ω0) = ω1 − ω2 − ω1ω0 + ω2ω0 = 0.

For similar reasons also the remainders Gk below will be smoothing. More precisely,
we shall see that these are flat Green symbols.

Moreover,

R2 = (1− ω0)A1(ω1 − ω2)B0ω0 + (ω0 − ω1)A1(ω1 − ω2)B0ω0 = G2 + R̃2

for

G2 = (1− ω0)A1(ω1 − ω2)B0ω0 + (ω0 − ω1)A1(ω1 − ω2)B0ω2, (34)

R̃2 = (ω0 − ω1)A1(ω1 − ω2)B0(ω0 − ω2).

For S we write S = P + T1 + T2 for

P = ω1A0ω0B0ω0 + (1− ω1)A1(1− ω2)B1(1− ω2), (35)

T1 = ω1A0(ω1 − ω0)B0ω0, T2 = (1− ω1)A1(ω2 − ω1)B1(1− ω2).

Reformulating these expressions gives us

T1 = (ω1 − ω2)A0(ω1 − ω0)B0ω0 + ω2A0(ω1 − ω0)B0ω0 = G3 + T̃1

for

G3 = (ω1 − ω2)A0(ω1 − ω0)B0ω2 + ω2A0(ω1 − ω0)B0ω0, (36)

T̃1 = (ω1 − ω2)A0(ω1 − ω0)B0(ω0 − ω2).

Moreover,

T2 = (1− ω0)A1(ω2 − ω1)B1(1− ω2) + (ω0 − ω1)A1(ω2 − ω1)B1(1− ω2) = G4 + T̃2

for

G4 = (1− ω0)A1(ω2 − ω1)B1(1− ω2) + (ω0 − ω1)A1(ω2 − ω1)B1(1− ω0), (37)

T̃2 = (ω0 − ω1)A1(ω2 − ω1)B1(ω0 − ω2).

We now obtain altogether

ab = P + T1 + T2 +R1 +R2 (38)
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and T1 + T2 +R1 +R2 = T̃1 + T̃2 + R̃1 + R̃2 +
∑4

k=1Gk, where

T̃1 + T̃2 + R̃1 + R̃2

= (ω1 − ω2)A0(ω1 − ω0)B0(ω0 − ω2) + (ω0 − ω1)A1(ω2 − ω1)B1(ω0 − ω2)

+ (ω1 − ω2)A0(ω0 − ω1)B1(ω0 − ω2) + (ω0 − ω1)A1(ω1 − ω2)B0(ω0 − ω2)

= (ω1 − ω2)A0(ω1 − ω0)B0(ω0 − ω2) + (ω0 − ω1)A0(ω2 − ω1)B0(ω0 − ω2)

+ (ω1 − ω2)A0(ω0 − ω1)B0(ω0 − ω2) + (ω0 − ω1)A0(ω1 − ω2)B0(ω0 − ω2) +G5

= G5. (39)

The operator G5 := L1 + L2 + L3 is the smoothing remainder which arises as a sum of
expressions, where we replaced A1 and B1 by A0 and B0, respectively, taking into account
that A0 and B0 are Mellin quantisations of A1 and B1, respectively, namely,

L1 := (ω0 − ω1)A1(ω2 − ω1)B1(ω0 − ω2)− (ω0 − ω1)A0(ω2 − ω1)B0(ω0 − ω2),

L2 := (ω1 − ω2)A0(ω0 − ω1)B1(ω0 − ω2)− (ω1 − ω2)A0(ω0 − ω1)B0(ω0 − ω2),

L3 := (ω0 − ω1)A1(ω1 − ω2)B0(ω0 − ω2)− (ω0 − ω1)A0(ω1 − ω2)B0(ω0 − ω2).

The composition ab is characterised in the desired manner if we show (apart from the
verification that all Gk are flat Green symbols, cf. Section 3.2) that P itself, given by
the expression (35), is of a form as the right hand side of (31). This is the result of the
following two lemmas.

Lemma 2.5. Let p(t, z, τ, ζ) be given by (23) (which is the operator function involved in
a(z, ζ) via (26), (27), (28)), and let, analogously,

q(t, z, τ, ζ) := q̃(t, z, tτ, tζ) with q̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,Yµ(W, g; R1+p

τ̃ ,ζ̃
)
)

(which is involved in b(z, ζ)). Then there is an

r(t, z, τ, ζ) := r̃(t, z, tτ, tζ) with r̃(t, z, τ̃ , ζ̃) ∈ C∞(
R+ × Ξ,Yµ+ν(W, g; R1+p

τ̃ ,ζ̃
)
)

which is the Leibniz product of p and q in the sense

r(t, z, τ, ζ) ∼
∑
k

1

k!
∂kτ

(
t−νp(t, z, τ, ζ)

)
Dk
t t
−µσ0(t)σ̃1(t)q(t, z, τ, ζ)

such that

(1− ω1(t[ζ]))A1(z, ζ)(1− ω2(t
′[ζ]))B1(z, ζ)(1− ω2(t

′′[ζ]))

= σ1(t)t
−(µ+ν)(1− ω1(t[ζ]))ω(t[ζ], t′[ζ]) opt(r)(z, ζ)(1− ω2(t

′[ζ]))σ0(t
′) + g(z, ζ)

for a flat Green symbol g(z, ζ) of order µ+ ν.

The proof is simple after the technique of [4]; details will be omitted.

Lemma 2.6. The operator

ω1(t[ζ])A0(z, ζ)(ω0(t
′[ζ])− 1)B0(z, ζ)(z, ζ)ω0(t

′′[ζ])

is a flat Green symbol of order µ+ ν.
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The technique of proving Lemma 2.6 is the same as that for the remainders Gk to be
characterised in Section 3.2.

The proof of the following observation is a straightforward consequence of the fact
that Mellin operators with symbols can be composed within this category of operators,
cf., similarly, [8, Proposition 4.3].

Lemma 2.7. Let h(t, z, w, ζ) be the (holomorphic in w) Mellin symbol (25) related to
p(t, z, τ, ζ) (via Theorem 2.1), and, analogously, f(t, z, w, ζ) the Mellin symbol related
to q(t, z, τ, ζ). Then there is a (holomorphic in w) Mellin symbol l(t, z, w, ζ) related to
r(t, z, τ, ζ), cf. the notation in Lemma 2.5, such that, when we set

c0(z, ζ) := t−(µ+ν)ω1(t[ζ]) op
θ+ν− d

2
M (l)(z, ζ)ω0(t

′[ζ]),

we have
ω1(t[ζ])A0(z, ζ)B0(z, ζ)ω0(t

′[ζ]) = c0(z, ζ) + g(z, ζ)

for a flat Green symbol g(z, ζ).

3 Parameter-dependent operators on an infinite cone

3.1 A result on Mellin quantization

In this section we prove Theorem 2.1 on the Mellin quantization. Let us first formulate a
theorem which can be obtained in a similar manner as an analogous result of [7], namely,

Theorem 3.1. Let ã(t, y, τ̃ , η, ζ̃) ∈ Rµ(R+ × Ω × R1+q+p

τ̃ ,η,ζ̃
, g) for g = (γ, γ − µ), and set

a(t, y, τ, η, ζ) := ã(t, y, tτ, η, tζ). Moreover, let ϕ ∈ C∞
0 (R+) be a function such that ϕ ≡ 1

near 1. Then there exists an h̃(t, y, w, η, ζ̃) ∈ Rµ(R+ × Ω × Cw × Rq+p

η,ζ̃
, g) such that for

h(t, y, w, η, ζ) := h̃(t, y, w, η, tζ) we have

opt,y(ϕ(t′/t)a)(ζ) = op
1
2
M(opy(h))(ζ)

for all ζ ∈ Rp.

Proof of Theorem 2.1. Let us first recall from [8] that the simpler variant of Theorem 2.1
for the case of a closed compact C∞ manifold M rather than W is the following. Let
pint(t, z, τ, ζ) = p̃int(t, z, tτ, tζ) for a p̃int(t, z, τ̃ , ζ̃) ∈ C∞(

R+ × Ξ, Lµcl(M ; R1+p

τ̃ ,ζ̃
)
)
, and let

ϕ ∈ C∞
0 (R+) be a function which is equal to 1 near 1. Then there exists an hint(t, z, w, ζ) =

h̃int(t, z, w, tζ) with h̃int(t, z, w, ζ̃) ∈ C∞(
R+ × Ξ, Lµcl(M ; C× Rp)

)
such that

opt(pint)(z, ζ)− op
1
2
M(hint)(t, ζ) = opt(rint)(z, ζ) (40)

for rint(t, t
′, z, τ, ζ) := (1− ϕ(t′/t))pint(t, z, τ, ζ), where

opt(ϕ(t′/t)pint)(z, ζ) = op
1
2
M(hint)(z, ζ). (41)
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The result is based on a corresponding variant of Theorem 3.1 for scalar amplitude func-
tions rather than operator-valued ones. Applying this technique we see that h̃ may be
found in the form

h̃(t, y, w, η, ζ̃) = tw op
1
2
M(ϕ(t′/t)f̃)(y, η, ζ̃)(t′)−w,

where

f̃(t, t′, y, iτ, η, ζ̃) = M(t, t′)t′ã(t, y,−M(t, t′)tτ, η, ζ̃)

∈ Rµ(R+ × R+ × Rq
y × Γ0 × Rq+p, g)

and M(t, t′) := (log t− log t′)(t− t′)−1 (recall that the latter function belongs to C∞(R+×
R+) and is strictly positive for t, t′ ∈ R+). The variable z ∈ Ξ will not play any essential
role, so we consider the z-independent case.

By Definition 1.8 the operator function p̃(t, τ̃ , ζ̃) has the form

p̃(t, τ̃ , ζ̃) = p̃edge(t, τ̃ , ζ̃) + p̃int(t, τ̃ , ζ̃) + g̃(t, τ̃ , ζ̃),

cf. the formula (22), which gives us

p(t, τ, ζ) = pedge(t, τ, ζ) + pint(t, τ, ζ) + g(t, τ, ζ) (42)

when we pass to pedge(t, τ, ζ) := p̃edge(t, tτ, tζ), etc. In this notation we may interpret

p̃int(t, τ̃ , ζ̃) as an element of C∞(R+, L
µ
cl(2W; R1+p

τ̃ ,ζ̃
)), and we can apply the formula (40).

Let us now write opt(p)(ζ) = opt(ϕ(t′/t)p)(ζ) + opt(r)(ζ) where r(t, t′, τ, ζ) is given in
Theorem 2.1. By integration by parts for every N ∈ N we can write opt(r)(ζ) =
opt(rN)(ζ), where rN(t, t′, τ, η) = ((1−ϕ(t′/t))(t′/t−1)−NDN

τ p̃(t, tτ, tζ)), which belongs to
C∞(R+ ×R+,Yµ−N(W, g; R1+p)). This gives us the desired characterisation of opt(r)(ζ).

Let {U1, . . . , NN} be an open covering of Y and fix charts θj : Uj → Rq, j = 1, . . . , N .
Moreover, let {ϕ1, . . . , ϕN} be a subordinate partition of unity, and {ψ1, . . . , ψN} a system
of functions ψj ∈ C∞

0 (Uj) such that ϕjψj = ϕj for all j. Then the operator function
p̃(t, tτ, tζ) can be written as

p̃(t, τ̃ , ζ̃) =
N∑
j=1

ϕj p̃edge,j(t, τ̃ , ζ̃)ψj + p̃int(t, τ̃ , ζ̃) + p̃∞(t, τ̃ , ζ̃)

with a remainder p̃∞(t, τ̃ , ζ̃) ∈ C∞(R+,Y−∞(W, g; R1+p

τ̃ ,ζ̃
)), cf. Definition 1.8 (iii). This

gives us, using (41),

opt(ϕ(t′/t)p)(ζ) =
N∑
j=1

ϕj opt[ϕ(t′/t)(θ−1
j )∗ opy(aj)](ζ)ψj

+ op
1
2
M(hint)(ζ) + opt(ϕ(t′/t)p∞)(ζ).

Here aj(t, y, τ̃ , η, ζ̃) = ãj(t, y, tτ, η, tζ) for corresponding ãj(t, y, τ̃ , η, ζ̃) ∈ Rµ(R+ × Rq
y ×

R1+q+p

τ̃ ,η,ζ̃
, g), j = 1, . . . , N . From Theorem 3.1 we obtain Mellin symbols h̃j(t, y, w, η, ζ̃) ∈
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Rµ(R+ × Rq × Cw × Rq+p

η,ζ̃
) such that opt[ϕ(t/t′)(θ−1

j )∗ opy(aj)](ζ) = op
1
2
M(Hj)(ζ) for

Hj(t, w, ζ) = (θ−1
j )∗ opy(hj)(t, w, ζ) for every ζ ∈ Rp. Setting

hedge(t, w, ζ) =
N∑
j=1

ϕjHj(t, w, ζ)ψj

it follows that

opt(ϕ(t′/t)p)(ζ) = op
1
2
M(hedge + hint)(ζ) + opt(ϕ(t′/t)p∞)(ζ).

It remains to consider opt(ϕ(t′/t)p∞)(ζ). By construction we have

p∞(t, τ, ζ) = p̃∞(t, tτ, tζ)

for some p̃∞(t, τ̃ , ζ̃) ∈ C∞(R+,Y−∞(W, g; R1+p

τ̃ ,ζ̃
)). We obtain that there is an

h̃∞(t, w, ζ̃) ∈ C∞(R+,Y−∞(W, g; Cw × Rp

ζ̃
))

such that
opt(ϕ(t′/t)p∞)(ζ) = op

1
2
M(h∞)(ζ) (43)

for h∞(t, w, ζ) = h̃∞(t, w, tζ). However, the way to show (43) is nearly precisely the same
as the corresponding part of the proof of [8, Theorem 3.2]. The point is that the variables
in the kernels of smoothing operators along W are not touchend by the corresponding
Mellin reformulation of opt(ϕ(t′/t)p∞)(ζ); so the method is essentially reduced to the
one-dimensional case R+ 3 t with parameter.

3.2 Green remainders in compositions

We now characterise the remainders in the composition of corner symbols of Section 2.2,
namely (33), (34), (36), (37), (39). They consist again of several summands, and we only
look at some typical terms. The remaining ones can be treated in an analogous manner.
For convenience, we will ignore the dependence on z which is not the essential point. The
first summand of G1 is the operator function

G(ζ) := ω2(t[ζ])A0(ζ)(ω0(t
′[ζ])− (ω1(t

′[ζ]))B1(ζ)(1− ω2(t
′′[ζ])).

Let ϕ ∈ C∞
0 (R+) be a function such that ϕ ≡ 1 on supp(ω0−ω1). Then G can be written

as the composition of

C(ζ) := ω2(t[ζ])A0(ζ)(ω0(t
′[ζ])− (ω1(t

′[ζ]))

and
D(ζ) := ϕ(t[ζ])B1(ζ)(1− ω2(t

′[ζ])).

As noted in Section 2.2, we have ω2 ≡ 0 on supp(ω0 − ω1); so the smoothing effect in the
composition comes from C(ζ). In order to verify that G(ζ) has the properties of Definition
1.6 (ii) we first show that

G(ζ) ∈ C∞(Rp
ζ ,L(Ks,(γ+ν,θ+ν)(W∧),S(γ−µ+ε,θ−µ+ε)(W∧))) (44)
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for every s ∈ R and a certain ε > 0. The considerations for the pointwise adjoints are
analogous and left to the reader. For (44) we first need that

G(ζ) : Ks,(γ+ν,θ+ν)(W∧) → S(γ−µ+ε,θ−µ+ε)(W∧)

for every ζ. This will be a consequence of the continuity of the operators

D(ζ) : Ks,(γ+ν,θ+ν)(W∧) → Ks−ν(γ,θ+δ)(W∧) (45)

for every δ > 0, and of

C(ζ) : Ks−ν,(γ,θ+δ)(W∧) → S(γ−µ+ε,θ−µ+ε)(W∧) (46)

for some ε > 0. The continuity of (45) is a consequence of the arguments in the proof
of [4, Theorem 3.8]. What concerns C(ζ), the factors ω2 on the left and ω0 − ω1 on the
right have an excision effect for the distributional kernel off the diagonal with respect to
(t, t′) ∈ R+×R+. This allows us to repeatedly apply integrations by part under the Mellin
oscillatory integral with respect to the t-variable which defines A0(ζ), cf. the formula (29).
Integrations by parts have the effect that the Mellin symbol h is to be differentiated with
respect to the Mellin covariable w as often as we want. We then see that C(ζ) takes
values in Y−∞(W∧, (γ + ν, γ); Rp

ζ) which are just smoothing Green operators in the edge
calculus on W∧. As such they improve the r-weight of argument functions by an ε > 0.
At the same time, since h is holomorphic in w, the flatness in t remains preserved, i.e.,
the t-weight in the image under (46) can be taken as any 0 < ε ≤ δ. Finally, the Schwartz
property in t for t → ∞ is a consequence of the fact that C(ζ) contains the factor ω2

from the left. The smoothness of (44) in ζ ∈ Rq is straightforward. What remains is to
show that G(ζ) is a classical symbol of order µ + ν. Assumming for the moment that

h(t, w, ζ) = h̃(w, tζ) and, similarly, q(t, τ, ζ) = q̃(tτ, tζ) (with obvious natation) we have

G(λζ) = λµ+νκλG(ζ)κ−1
λ

for all λ ≥ 1, and |ζ| > R for some R > 0 large enough. This shows in this case that
G(ζ) is classical in ζ, as desired, cf. the formula (19). In the general case, i.e., when

h̃(t, w, ζ̃) and q̃(t, τ̃ , ζ̃) explicitly depend on t (smooth up to t = 0), then we can apply a
tensor-product argument analogously as in the proof of [4, Theorem 3.8]. This shows that
the first summand of (33) is a Green symbol in the edge calculus of second generation.
To treat the second summand of G1 which is of the form

G := (ω1 − ω2)A0(ω0 − ω1)B1(1− ω0)

we choose another cut-off function ω3 with the property ω2 ≺ ω1 ≺ ω3 ≺ ω0 (this is always
possible). This allows us to write

G = H + L

for H = (ω1− ω2)A0(1− ω3)(ω0− ω1)B1(1− ω0), L = (ω1− ω2)A0ω3(ω0− ω1)B1(1− ω0).
We can write H = CD for

C := (ω1 − ω2)A0(1− ω3)ϕ, D := (ω0 − ω1)B1(1− ω0)
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for any ϕ ∈ C∞
0 (R+) such that ϕ ≡ 1 on supp(ω0−ω1). Since 1−ω3 ≡ 0 on supp(ω1−ω2),

the factor C is smoothing. Herefore H can be treated in a similar manner as (44).
Moreover, we can write

L = C̃D̃

for C̃ := (ω1−ω2)A0(ω0−ω1), D̃ := ϕω3B1(1−ω0), for any ϕ ∈ C∞
0 (R+) as before. Since

1−ω0 ≡ 0 on suppω3, the factor D̃ is smoothing, and thus we can treat L again along the
lines of (44). In other words, we have characterised G1 as a Green symbol in the sense of
Definition 1.6 (ii).

Let us now pass to G2. The first summand of (34) can be written as a product of

C := (1− ω0)A1(ω1 − ω2), D := ϕB0ω0,

for a ϕ ∈ C∞
0 (R+) which is equal to 1 on supp(ω1 − ω2). For similar reasons as before C

is smoothing, so we can argue in an analogous manner as for (44). To treat the second
summand of (34) we choose a cut-off function ω3 such that ω2 ≺ ω3 ≺ ω1 ≺ ω0 and write

(ω0 − ω1)A1(ω1 − ω2)B0ω2 = H + L

for H := (ω0 − ω1)A1ω3(ω1 − ω2)B0ω2, L := (ω0 − ω1)A1(1− ω3)(ω1 − ω2)B0ω2.
In H the factor (ω0 − ω1)A1ω3 is smoothing and in L the factor (1− ω3)B0ω2. So the

desired characterisation of the terms can be obtained by the same scheme as before. The
terms G3 and G4 can also be treated in that manner. So it remains to consider G5. This
is obviously of the form

G5 = (ω0 − ω1)A1(ω2 − ω1)(B1 −B0)(ω0 − ω2)

+ (ω1 − ω2)A0(ω0 − ω1)(B1 −B0)(ω0 − ω2).

The terms are all concentrated on a compact subset of R+. The operator B1 − B0 is
smoothing, since B0 is the Mellin quantisation of B1. This completes the characterisation
of the Green remainders in the composition formula.
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