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STABLE EXPANSIONS IN HOMOGENEOUS POLYNOMIALS
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Abstract. An expansion for a class of functions is called stable if the partial

sums are bounded uniformly in the class. Stable expansions are of key impor-

tance in numerical analysis where functions are given up to certain error. We
show that expansions in homogeneous functions are always stable on a small

ball around the origin, and evaluate the radius of the largest ball with this

property.
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Introduction

In 1914 H. Bohr proved that there is an r ∈ (0, 1) such that if a power series
converges in the unit disk D and its sum has modulus less than 1 then, for |z| < r,
the sum of absolute values of its terms is again less than 1. As was shown later by
M. Riesz, I. Shur and F. Wiener, one can take r = 1/3 and this constant cannot be
improved.

We have not been aware of any essential motivation for Bohr’s result but a
stable convergence of power series which is of great importance for computations
with power series. Namely, if a power series converges in the unit disk to a bounded
function f then its partial sums satisfy |SNf (z)| ≤ ‖f‖L∞(D) for all |z| < r and
N = 0, 1, . . ..
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The theorem of H. Bohr is merely intermediate in the verification of the last
assertion. There is a direct proof of the stable convergence result due to Rogosinski
[27] which actually shows that the constant r = 1/3 can be enlarged to r = 1/2 in
the new setting.

Moreover, when focused on stable convergence, one naturally requires an esti-
mate

(0.1) |SNf (z)| ≤ C ‖f‖L∞(D)

for all |z| < r and N = 0, 1, . . ., with C a constant independent of N and f . As but
one consequence of what is shown in this paper we mention that for any r ∈ (0, 1)
there is a constant C ≥ 1 depending on r, such that (0.1) holds for all |z| < r and
N = 0, 1, . . ..

Each bounded holomorphic function f in D is known to have weak limit values
on the unit circle S which thus belong to the Hardy space H∞(D). When restricted
to S, the power series expansion of f becomes a Fourier series over the orthonormal
system {eıkt}∞k=0 of eigenfunctions of the Laplace-Beltrami operator on S. The
estimate (0.1) is no longer valid for |z| = 1, the minimal constant C = C(N)
behaves like

(0.2) C(N) =
1
π

log N + O(1)

for N →∞.
The constant (0.2) is called the Landau constant and it just amounts to the norm

of the operator f → SNf acting in the Hardy space H∞(D).
For general Fourier series over the orthonormal system {eıkt}∞k=−∞ the norm

of the operator f → SNf acting on all of the Banach space L∞(S) is of crucial
importance. This constant is usually referred to as Lebesgue constant, cf. [26, 8, 9,
10]. It bears an asymptotic similar to (0.2), the only difference being in replacing
the factor 1/π by larger 4/π2.

We have thus specified the problem treated by Rogosinski [27] within the Fourier
analysis on manifolds. It has been evolved in the far-reaching modern theory of
eigenfunction expansions for selfadjoint elliptic operators or boundary value prob-
lems, cf. [28, 29] and references therein. With this as our starting point, we examine
in this paper stable expansions in homogeneous functions. Our basic example is
the expansion in spherical harmonics which goes as far as Mehler [22], cf. also
[23, 25, 7, 11, 21].

In § 1 we start with trigonometric series on the unit circle and extend them
to power series expansions for harmonic functions in the unit disk. We show how
the analysis of Fourier series on the circle implies that power series expansions for
harmonic functions in a disk are stable in any concentric disk of smaller radius.

In § 2 we give a proof of the theorem of Rogosinski in the context of harmonic
functions. In contrast to the original proof of [27] it is based on properties of the
Fejer kernel.

In § 3 we discuss abstract expansions in homogeneous functions in a domain, as
they arise in the theory of partial differential equations. They fail in general to be
related to any orthogonal expansions on the domain boundary. We show conditions
of stability.

In § 4 we restrict our attention to expansions in eigenfunctions of a selfadjoint
elliptic differential operator on a compact Riemannian manifold. These are direct



STABLE EXPANSIONS IN HOMOGENEOUS POLYNOMIALS 3

generalisations of trigonometric Fourier series, and they need not converge uni-
formly for continuous functions. To sum up such expansions one uses the so-called
Riesz means Rδ

Nf of order δ ≥ 0. We recall sharp asymptotic estimates for Riesz
means in the case of second order elliptic operators. When operating in the space
of bounded functions, the Riesz means are bounded uniformly in N , provided that
their order is large enough.

In § 5 we study expansions in spherical harmonics and highlight the nature of
zonal harmonics.

In § 6 we compute Lebesgue constants for spherical harmonic expansions and
find explicit values of r depending on the order of Riesz means.

In § 7 we restrict our attention to power series expansions for separately har-
monic functions in Reinhardt domains in Cn. Such functions are closely related to
holomorphic functions, and we explicitly compute the Rogosinski radius for simple
bases in the space.

We finish the paper by discussing in § 8 Landau constants, which are substi-
tutes for Lebesgue constants in the case of power series expansions for holomorphic
functions.

1. Trigonometric series

Recall that the system of exponential functions {eıkt}∞k=−∞ is a complete or-
thonormal system in the space L2(S) equipped with the scalar product

(f, g) =
1
2π

∫
S
f(y)g(y) ds(y),

ds being a length form on S. Any function f ∈ L2(S) possesses a Fourier series
expansion

(1.1) f(eıt) =
∞∑

k=−∞

ckeıkt

converging in the L2(S) -norm to f , where the coefficients are given by ck = (f, eıks)
for k ∈ Z.

Denote by f(z) = f(reıt) the harmonic continuation of f into D by the Poisson
integral. In this way we obtain a function of Hardy class H2(D) which expands in
homogeneous harmonic polynomials

(1.2) f(z) =
−1∑

k=−∞

ckz̄−k +
∞∑

k=0

ckzk

in all of D, the series converging uniformly in each disk of radius less than 1 with
center at the origin.

Theorem 1.1. The expansion (1.2) is stable.

Proof. Let f be a bounded harmonic function in D. Then f has weak limit values
on the circle S belonging to L∞(S).
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The limit function f(eıt) expands as a Fourier series (1.1) converging in L2(S).
We have

SNf (eıt) =
N∑

k=−N

ckeıkt

=
1
2π

∫ π

−π

DN (t− s)f(eıs) ds

for all t ∈ [−π, π], where

DN (t− s) =
N∑

k=−N

eıkte−ıks

=
sin(N + 1/2)(t− s)

sin 1/2 (t− s)

is called the Dirichlet kernel, cf. [15, 5.1]. Hence it follows that the norm of the
operator SN acting in L∞(S) just amounts to

‖SN‖L(L∞(S)) =
1
2π

∫ π

−π

|DN (s)| ds(1.3)

=
4
π2

log N + O(1)

for N →∞, cf. (5.1.10) ibid.
The estimates (1.3) already allow one to prove the stability of the expansion

(1.2) on compact subsets of D. To this end, write any z ∈ D in the form z = reıt

with r ∈ [0, 1) and t ∈ [−π, π]. Then

c−kz̄k + ckzk = rk
(
c−ke−ıkt + ckeıkt

)
= rk

(
Skf (eıt)− Sk−1f (eıt)

)
(1.4)

holds for each k = 1, 2, . . ., whence

SNf (z) =
N∑

k=0

rk
(
Skf (eıt)− Sk−1f (eıt)

)
= (1− r)

N−1∑
k=0

rkSkf (eıt) + rNSNf (eıt).

As mentioned, the limit function f(eıt) on the circle is bounded. This readily
implies

|SNf (z)| ≤ sup
N=0,1,...

(
(1− r)

N−1∑
k=0

rk‖Sk‖L(L∞(S)) + rN‖SN‖L(L∞(S))

)
‖f‖L∞(S)

= C ‖f‖L∞(S)(1.5)

whenever |z| ≤ r, which is due to the maximum principle. To complete the proof,
it is sufficient to observe that the constant C depending on r is finite for all r < 1
by (1.3), as desired. �

Note that for any fixed N = 1, 2, . . . and r ∈ (0, 1) the expression under
the supremum sign in (1.5) is a strongly increasing function of either variable
‖S1‖L(L∞(S)), . . . , ‖SN‖L(L∞(S)). It just amounts to 1 if all the variables are equal
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to 1. Hence, (1.3) shows that the constant C in (1.5) is actually larger than 1 for
all r ∈ (0, 1).

2. A theorem of Rogosinski

Theorem 2.1. Let (1.2) converge for each |z| < 1 and |f(z)| ≤ 1. Then the
modulus of

SNf (z) :=
−1∑

k=−N

ckz̄−k +
N∑

k=0

ckzk

does not exceed 1 for all |z| ≤ 1/2 and N = 0, 1, . . ..

Proof. To derive the explicit estimates of Theorem 2.1 we make use of refined
estimates of partial sums SNf (z) through the Cesàro means Σkf (eıt). These latter
are defined by

ΣNf (eıt) =
1

N + 1
(
S0f (eıt) + . . . + SNf (eıt)

)
=

N∑
k=−N

(
1− |k|

N + 1

)
ckeıkt(2.1)

for t ∈ [−π, π]. It is easy to verify that

ΣNf (eıt) =
1
2π

∫ π

−π

FN (t− s)f(eıs) ds

where

FN (t− s) =
N∑

k=−N

(
1− |k|

N + 1

)
eık(t−s)

=
1

N + 1

( sin 1/2 (N + 1)(t− s)
sin 1/2 (t− s)

)2

is called the Fejer kernel, cf. [15, 5.1]. Hence we deduce that the norm of the
operator ΣN acting in L∞(S) is equal to

‖ΣN‖L(L∞(S)) =
1
2π

∫ π

−π

|FN (s)| ds(2.2)

= 1

for all N = 0, 1, . . ., cf. (5.1.8) ibid.
Pick z ∈ D. Write z = reıt, where r ∈ [0, 1) and t ∈ [−π, π]. Once again using

(1.4) we get

SNf (z) =
N∑

k=0

rk
( k∑

j=0

Sjf (eıt)− 2
k−1∑
j=0

Sjf (eıt) +
k−2∑
j=0

Sjf (eıt)
)

=
N∑

k=0

rk
(
(k + 1)Σkf (eıt)− 2kΣk−1f (eıt) + (k − 1)Σk−2f (eıt)

)
which simplifies to

(1−r)2
N−2∑
k=0

rk(k+1)Σkf (eıt) + (1−2r)rN−1NΣN−1f (eıt) + rN (N+1)ΣNf (eıt).
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Since |f(eıt)| ≤ 1 for all t ∈ [−π, π], we apply (2.2) to see that |Σkf (eıt)| ≤ 1 for
all k = 0, 1, . . .. It follows that

|SNf (z)| ≤ (1− r)2
(1− rN

1− r

)′
+ |1− 2r| rN−1N + rN (N + 1)

= 1 + (|1− 2r| − (1− 2r)) rN−1N(2.3)

whenever |z| ≤ r, which is a consequence of the maximum principle for harmonic
functions.

If r ≤ 1/2 then (2.3) gives |SNf (z)| ≤ 1 for all |z| ≤ r, which completes the
proof. �

Note that for 1/2 < r < 1 the inequality (2.3) yields |SNf (z)| ≤ C for |z| ≤ r,
where

C = sup
N=0,1,...

(
1 + 2(2r − 1)rN−1N

)
.

This proves again the stability of expansion (1.2), however, with a worse constant
C than that given by (1.5).

Another way of stating Theorem 2.1 is to say that if f is a bounded harmonic
function in D then

|SNf (z)| ≤ ‖f‖L∞(D)

for all |z| ≤ 1/2 and N = 0, 1, . . ..
For power series expansions of holomorphic functions in the disk Theorem 2.1

is due to Rogosinski [27]. He also proved that the constant r = 1/2 cannot be
improved, cf. § 7. Since holomorphic functions are harmonic, the constant r = 1/2
in Theorem 2.1 cannot be improved, too. In this way we obtain what Aizenberg et
al. [4] call the Rogosinski radius.

3. Stable expansions

Let B = {z ∈ Rn : |z| < 1} be the unit ball in Rn, the boundary of B being the
unit sphere Sn−1 in Rn.

Assume that A is an elliptic homogeneous differential operator of order m with
constant coefficients in a neighbourhood of the closure of B. Then there are diverse
systems {Pα}α∈Z+ of homogeneous polynomials on Rn which form a basis in the
space of solutions of Af = 0 in B, cf. [31, 2.3]. Here, Pα is of order |α|. If f is a
solution to Af = 0 in B of finite order of growth near Sn−1 then f can be expanded
as

(3.1) f(z) =
∑

α∈Z+

cαPα(z)

in a smaller ball with centre at the origin, the series converging uniformly. The
coefficients are given by

cα = −
∫

Sn−1
GA(DαΦ(−y), f(y)),

where Φ is the standard fundamental solution of convolution type for A, and GA a
Green operator. This latter is a bidifferential operator of order m− 1 which takes
its values in differential forms of degree n−1. The integral over Sn−1 is interpreted
in a familiar way, for the derivatives of f possess weak limit values on the boundary
of B.
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The partial sums SNf (z) of series (3.1) are well defined for all z = x in Sn−1.
In fact,

SNf (x) :=
∑
|α|≤N

cαPα(x)

= −
∫

Sn−1
GA(KN (x, y), f(y))(3.2)

for x ∈ Sn−1, where

KN (x, y) =
∑
|α|≤N

Pα(x)⊗DαΦ(−y).

Lemma 3.1. There are constants a and M depending only on n and A, with the
property that

|SNf (x)| ≤ M aN ‖f‖W m−1,∞(B)

for all x ∈ Sn−1 and N = 0, 1, . . ..

Proof. From the structure of a Green operator GA for A it follows immediately
that

|SNf (x)| ≤ M ′
( ∑
|α|≤N

|Pα(x)|
∫

Sn−1

∑
|β|≤m−1

|Dα+βΦ(−y)| ds(y)
)
‖f‖W m−1,∞(B),

with M ′ a constant depending only on A. In order to estimate the derivatives of
the fundamental solution and the polynomials Pα on the unit sphere, we invoke
Lemmas 2.2.3 and 2.3.3 of [31]. This makes it obvious that the sum in parentheses
is majorised by M ′′ aN , where the constants a and M ′′ are independent of N and
f , as desired. �

This lemma shows that the norm of the operator SN acting from Wm−1,∞(B)
to L∞(Sn−1) behaves like M aN for some a > 1. The order of growth in N differs
qualitatively from that for partial sums of eigenfunction expansions on compact
manifolds S of dimension n− 1, whose norms in L(L∞(S)) behave like M Nn−2/2,
cf. § 4.

Theorem 3.2. Expansion (3.1) is stable on a small ball about the origin in the
sense that there are constants r ∈ (0, 1) and C depending on r, with the property
that

|SNf (z)| ≤ C ‖f‖W m−1,∞(B)

whenever |z| ≤ r and f ∈ Wm−1,∞(B).

Proof. Given any z ∈ B, write z = rx with r ∈ [0, 1) and x ∈ Sn−1. Then for each
N = 0, 1, . . . we get

SNf (z) =
∑
|α|≤N

cαPα(rx)

=
N∑

k=0

rk
( ∑
|α|=k

cαPα(x)
)

=
N∑

k=0

rk
(
Skf (x)− Sk−1f (x)

)
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implying

SNf (z) = (1− r)
N−1∑
k=0

rkSkf (x) + rNSNf (x).

Using Lemma 3.1 now yields

|SNf (z)| ≤ (1− r)
N−1∑
k=0

rk|Skf (x)|+ rN |SNf (x)|

≤ M
(
(1− r)

N−1∑
k=0

(ra)k + (ra)N
)
‖f‖W m−1,∞(B)

which is obviously dominated by

M

1− ra
‖f‖W m−1,∞(B)

if r < 1/a. This completes the proof, for M/(1 − ra) is an increasing function of
r ∈ [0, 1/a). �

4. Eigenfunction expansions

Suppose S is a connected compact smooth manifold of dimension n− 1 without
boundary. Let ∆ be a positive elliptic differential operator with smooth coefficients
on S, selfadjoint with respect to a positive density µ.

Let {λk}k=0,1,... be the eigenvalues of ∆ and {ek}k=0,1,... an orthonormal system
of eigenfunctions, ek corresponding to λk. To every integrable function f on S we
can associate a Fourier transform {f̂(k)} with respect to the system {ek}, and an
eigenfunction expansion

(4.1) f '
∞∑

k=0

f̂(k) ek.

Given any δ ≥ 0, the Riesz means of order δ of f are defined by

(4.2) Rδ
Nf (x) =

∑
λk<N+1

(
1− λk

N + 1

)δ

f̂(k) ek(x)

for all N = 0, 1, . . .. The behaviour of Riesz means, as N → ∞, in various spaces
Lp(M,dµ) for 1 ≤ p ≤ ∞ has been extensively studied, cf. [6, 7, 28, 11, 12] and
also the survey [5].

The family Rδ
Nf obviously converges to f in L2(M,dµ) for all δ ≥ 0. However,

Lp -convergence requires sufficiently large δ. The optimal δ is known to be δ(p) =
(n− 1)|1/p− 1/2| − 1/2, i.e., one could expect Lp -boundedness and convergence of
Rδ

Nf only for δ > δ(p).
From negative results in Rn−1 and a transplantation result in [19] it follows that,

for small δ, the family Rδ
Nf does not necessarily converge in norm or pointwise to

f , as N →∞, cf. also [21].
We are interested in the behaviour of Riesz means for bounded functions f , i.e.,

p = ∞ and δ(p) = n − 2/2. The bad behaviour of Riesz means for continuous
or integrable functions has a natural measure in the Lebesgue constants, i.e., the
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integral norms of the Riesz kernels KRδ
N

. These latter generalise the Fejer kernel,
namely,

Rδ
Nf (x) =

∫
S

KRδ
N

(x, y)f(y) dµ(y)

for x ∈ S, where

(4.3) KRδ
N

(x, y) =
∑

λk<N+1

(
1− λk

N + 1

)δ

ek(x)⊗ ek(y).

As is known,

(4.4) ‖Rδ
N‖L(L∞(S)) = sup

x∈S

∫
S

|KRδ
N

(x, y)| dµ(y)

which, given any fixed N , is obviously majorised by a decreasing function of δ ≥ 0.
If δ →∞ then

‖Rδ
N‖L(L∞(S)) → sup

x∈S

∫
S

∣∣∣ ∑
λk=0

ek(x)⊗ ek(y)
∣∣∣ dµ(y).

Example 4.1. If ∆ is the Laplace-Beltrami operator on S related to some Rie-
mannian structure then the eigenspace of ∆ corresponding to the eigenvalue λk = 0
consists of all constant functions on S. Since the corresponding eigenfunction ek

has norm 1, we get

‖Rδ
N‖L(L∞(S)) →

∫
S

|ek|2 dµ(y)

= 1

as δ →∞.

Sharp estimates for the norms of the operators Rδ
N in the cases of the classical

Fourier series on the (n−1) -dimensional torus and on compact connected semisim-
ple Lie groups were given in [13, 8, 16, 14]. The paper [12] extends the estimates
for the norms of Riesz means on L∞(S) and its dual L1(S) to general eigenfunction
expansions.

Theorem 4.2. Suppose ∆ is of order 2. There exist two positive constants M1 and
M2 such that, as N →∞,

1) M1 N
n−2

2 −δ ≤ ‖Rδ
N‖L(L∞(S)) ≤ M2 N

n−2
2 −δ if 0 ≤ δ < (n− 2)/2;

2) M1 log N ≤ ‖Rδ
N‖L(L∞(S)) ≤ M2 log N if δ = (n− 2)/2;

3) M1 ≤ ‖Rδ
N‖L(L∞(S)) ≤ M2 if δ > (n− 2)/2.

Proof. Cf. [12]. �

Note that the estimate 3) is already in [28] for an arbitrary elliptic operator ∆
of order m. In [29] some of these results are extended to the case of manifolds with
boundary, where homogeneous Dirichlet boundary conditions are imposed on the
eigenfunctions.

The knowledge of the order of increase of the operator norms of Rδ
N can be used

to prove positive results on the convergence of Riesz means of functions in suitable
subspaces of Lp(S) or C(S). See, e.g., [25, 5, 13, 10, 14].
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5. Spherical harmonics

Fourier analysis on manifolds is a generalisation of classical Fourier analysis,
where one develops multi-periodic functions on Rn as series of exponentials and
investigates the convergence properties of such developments. Multi-periodic func-
tions can be regarded as functions on a torus, and the exponentials are eigen-
functions of the Laplace-Beltrami operator on the torus. On a general compact
Riemannian manifold one may develop any reasonable function as a series in the
eigenfunctions of the Laplace-Beltrami operator or any other selfadjoint elliptic op-
erator and ask how well this series converges, depending on the regularity of the
function.

Consider the unit sphere Sn−1 in Rn equipped with normalised rotation-invariant
measure µ. For any k ≥ 0, let Hk denote the space of all spherical harmonics of
degree k restricted to Sn−1. As is known, Hk is the eigenspace of the Laplace-
Beltrami operator on Sn−1 corresponding to the eigenvalue k(k + n − 2), whose
multiplicity is thus

σ(n, k) =
(

n + k − 1
n− 1

)
−

(
n + k − 3

n− 1

)
if k ≥ 2.

The space L2(Sn−1) splits up into the orthogonal sum of Hk. Moreover, every
distribution f on Sn−1 has a spherical harmonic expansion

(5.1) f(x) '
∞∑

k=0

Hk(f)(x)

for x ∈ Sn−1, where Hk(f) ∈ Hk. This is the expansion of f in eigenfunctions of
the Laplace-Beltrami operator on the sphere.

It is known [19] that if 1 ≤ p < 2 then there is an f ∈ Lp(Sn−1) for which (5.1)
diverges almost everywhere. That leaves open the general behaviour of spherical
harmonic expansions for elements of L2(Sn−1). For spherical harmonic expansions
of zonal functions the problem is discussed in [21]. Recall that a function f on Sn−1

is said to be zonal about a point y ∈ Sn−1 if f(x) depends only on 〈x, y〉 for all
x ∈ Sn−1.

Recall that the Riesz means of order δ ≥ 0 of the expansion (5.1) are defined for
each N = 0, 1, . . . by

(5.2) Rδ
Nf (x) =

N∑
k=0

(
1− k

N + 1

)δ

Hk(f)(x),

where x ∈ Sn−1. While being formally different from (4.2), the Riesz means (5.2)
actually give an equivalent method of summability.

Theorem 21 of [17] tells us how the convergence of Rδ
Nf (x) controls the size of

the partial sums SNf (x).

Theorem 5.1. Suppose that f is a distribution on the sphere for which there is
some δ > 0 and x ∈ Sn−1, such that Rδ

Nf (x) converges to l as N →∞. Then for
all N

|SNf (x)− l| ≤ M N δ sup
k=0,1,...,N+1

|Rδ
kf (x)|

with M a constant depending only on δ.
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This readily implies

Hk(f)(x) = (Sk(f)(x)− l)− (Sk−1(f)(x)− l)

= O(kδ),

and so the individual terms of the spherical harmonic expansion have controlled
growth, too.

In order to estimate the growth of the Lebesgue constants we must examine more
closely the nature of the operator Rδ

N . We start by considering the reproducing ker-
nel for a finite dimensional subspace Hk of L2(Sn−1). Thus, if {Yk,1, . . . , Yk,σ(n,k)}
is any orthonormal basis for Hk, the orthogonal projection Hk of L2(Sn−1) onto
Hk is given by

Hk(f)(x) =
∫

Sn−1
Zk(x, y)f(y) dµ(y)

where

(5.3) Zk(x, y) =
σ(n,k)∑
j=1

Yk,j(x)Yk,j(y)

are the so-called zonal harmonics.
The function Zk(x, y) is uniquely determined and is called the reproducing kernel

for Hk.
It follows that

Rδ
Nf (x) =

∫
Sn−1

KRδ
N

(x, y)f(y) dµ(y)

for x ∈ S, where

(5.4) KRδ
N

(x, y) =
N∑

k=0

(
1− k

N + 1

)δ

Zk(x, y).

Thus, to compute the Lebesgue constants ‖Rδ
N‖L(L∞(Sn−1)), we must identify the

kernel KRδ
N

(x, y) and compute its L1 -norm.
In case S = Sn−1 the homogeneity of S under the action of the orthogonal group

G = O(n) has been exploited to describe the reproducing kernel for Hk in terms of
certain classical orthogonal polynomials, see e.g. [23, pp. 5–14]. This method gives
precise growth estimates for ‖Rδ

N‖L(L∞(Sn−1)) in terms of known estimates on the
L1 -norm of Jacobi polynomials.

First we notice that the spaces PN and Hk are invariant under the mappings
f 7→ g∗f for g ∈ G, where g∗f (x) = f(gx). This is obvious for PN since x 7→ gx is
linear and thus whenever p(x) is a polynomial of degree at most N , so is p(gx). To
see that Hk is invariant we observe that f 7→ g∗f is an orthogonal map of L2(Sn−1)
since µ is invariant under orthogonal maps of Rn which map Sn−1 to itself. Thus
P⊥k−1 and hence the space Hk = Pk ∩ P⊥k−1 is invariant under the left translation
by G.

Lemma 5.2. The kernel Zk(x, y) is a polynomial of degree at most k in x (and in
y), such that

1) Zk(gx, gy) = Zk(x, y) for all g ∈ G;

2)
∫

Sn−1
Zk(x, y)Zl(x, y) dµ(y) = 0 for all k 6= l;
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3)
∫

Sn−1
|Zk(x, y)|2 dµ(y) = Zk(x, x).

Proof. 1) follows from the uniqueness of the reproducing kernel for Hk. And 2) and
3) are obvious. �

The invariance property of Lemma 5.2 actually allows us to explicitly determine
Zk(x, y).

Lemma 5.3.
1) Let Pk(x, y) be a function on Sn−1×Sn−1 which is a polynomial of degree at

most k in x and in y. Suppose Pk(gx, gy) = Pk(x, y) for every orthogonal
map g. Then Pk(x, y) = pk(〈x, y〉) for some polynomial pk(t) of degree k
on R.

2) For each continuous function f(t) on [−1, 1],∫
Sn−1

f(〈x, y〉) dµ(y) = 1/c

∫ 1

−1

f(t)(1− t2)αdt

where α =
n− 3

2
and c =

∫ 1

−1

(1− t2)αdt.

Proof. 1) is a standard fact about invariants of the orthogonal group. Introduce
an orthogonal basis {e1, . . . , en} for Rn. Then for any x, y in Sn−1 there exist
orthogonal maps g+, g− such that g±x = e1 and g±y = 〈x, y〉e1 ±

√
1− 〈x, y〉2e2.

Thus Pk(x, y) = Pk(g±x, g±y) is a polynomial of degree k in 〈x, y〉 and
√

1− 〈x, y〉2
which is even in the latter variable. Hence it follows that Pk(x, y) = pk(〈x, y〉), as
desired.

2) is a standard fact which follows by introducing polar coordinates in Sn−1

about x. �

6. Lebesgue constants

We can now identify the reproducing kernels on Sn−1 and compute the Lebesgue
constants.

Theorem 6.1. For n ≥ 2,

KRδ
N

(x, y) =
N∑

k=0

(
1− k

N + 1

)δ (
z
(α,α)
k

)−1

P
(α,α)
k (1)P (α,α)

k (〈x, y〉)

where α = (n− 3)/2, P
(α,α)
k is the Jacobi polynomial of degree k and index (α, α),

and

z
(α,α)
k = 1/c

∫ 1

−1

|P (α,α)
k (t)|2(1− t2)αdt

with c =
∫ 1

−1

(1− t2)αdt.

Proof. We make use of formula (5.4) for KRδ
N

(x, y) where Zk(x, y) is the kernel for
the spherical harmonics of degree k. Now parts 1) of Lemmas 5.2 and 5.3 show
that Zk(x, y) = zk(〈x, y〉) for some polynomials zk(t) of degree k. Parts 2) of these
lemmas show that ∫ 1

−1

zk(t)zl(t)(1− t2)αdt = 0
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for k 6= l, so zk(t) is a multiple of the Jacobi polynomial of degree k and index
(α, α). Now the normalisation of Lemma 5.2, 3) requires

zk(1) = zk(〈x, x〉)

= 1/c

∫ 1

−1

|zk(t)|2(1− t2)αdt.

This is uniquely satisfied by the multiple of the Jacobi polynomial

zk(t) =
(
z
(α,α)
k

)−1

P
(α,α)
k (1)P (α,α)

k (t),

which yields the desired equality for KRδ
N

(x, y). �

Using Theorem 6.1 and part 2) of Lemma 5.3 we arrive at explicit expressions
for Lebesgue constants

‖Rδ
N‖L(L∞(Sn−1))

=
1
c

∫ 1

−1

∣∣∣ N∑
k=0

(
1− k

N + 1

)δ (
z
(α,α)
k

)−1

P
(α,α)
k (1)P (α,α)

k (t)
∣∣∣(1− t2)αdt

for all N = 0, 1, . . .. Combining this formula with results from Szegö [30] on Jacobi
polynomials leads to estimates of the norm ‖Rδ

N‖L(L∞(Sn−1)) similar to those of
Theorem 4.2, cf. [25, 11].

Once again we observe that for every fixed N the norm ‖Rδ
N‖L(L∞(Sn−1)) tends

to 1 when δ →∞.
We are now in a position to prove an analogue of Theorem 2.1 in the context of

spherical harmonic expansions. To this end, let f be a harmonic function in the
ball B of finite order of growth near the boundary. Then f has weak limit values
on Sn−1. It will cause no confusion if we use the same letter to designate the limit
values. The distribution f on the sphere can be expanded in spherical harmonics as
(5.1), the series converges in the weak sense. Applying the Poisson formula to both
sides of (5.1) we see that this series actually converges to the original harmonic
function f in the interior of B,

(6.1) f(z) =
∞∑

k=0

Hk(f)(z)

for all |z| < 1, the convergence being uniform on any ball of radius less than 1
about the origin.

Theorem 6.2. The harmonic expansion (6.1) is stable on any compact subset of
the ball B.

Proof. Let f be a bounded harmonic function in B. Write any z ∈ B in the form
z = rx with r ∈ [0, 1) and x ∈ Sn−1. Then

Hk(f)(z) = rkHk(f) (x)

= rk (Skf (x)− Sk−1f (x))
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holds for each k = 1, 2, . . ., whence

SNf (z) =
N∑

k=0

rk (Skf (x)− Sk−1f (x))

= (1− r)
N−1∑
k=0

rkSkf (x) + rNSNf (x).

Obviously, the limit function f(x) on the sphere is bounded. Hence it follows by
Theorem 4.2 that

|SNf (z)| ≤ M2 sup
N=0,1,...

(
(1− r)

N−1∑
k=0

k
n−2

2 rk + N
n−2

2 rN
)
‖f‖L∞(Sn−1)

= C ‖f‖L∞(Sn−1)

whenever |z| ≤ r, which is due to the maximum principle. To complete the proof,
it is sufficient to observe that the constant C depending on r is finite for all r < 1,
as desired. �

Given any δ ≥ 0, we set

Lδ
N = sup

k=0,1,...,N
‖Rδ

k‖L(L∞(Sn−1)),

the suprema being bounded in N provided that δ > (n − 2)/2, which is due to
Theorem 4.2.

Theorem 6.3. Let (6.1) converge for each |z| < 1 and |f(z)| ≤ 1. Then the
modulus of

SNf (z) :=
N∑

k=0

Hk(f)(z)

does not exceed Lδ
N for all |z| ≤ 1/2δ and N = 0, 1, . . ..

Proof. We make use of refined estimates of partial sums SNf (z) through the Riesz
means Rδ

kf (x). Pick z ∈ B. Write z = rx, where r ∈ [0, 1) and x ∈ Sn−1. An easy
computation shows that

H0 = Rδ
0,

H1 = 2δRδ
1 − 2δRδ

0,

H2 = 3δRδ
2 − 2δ2δRδ

1 + (−3δ + 2δ2δ)Rδ
0,

H3 = 4δRδ
3 − 2δ3δRδ

2 + (−3δ + 2δ2δ)2δRδ
1 − (4δ − 2δ3δ − 3δ2δ + 2δ2δ2δ)Rδ

0,

H4 = 5δRδ
4 − 2δ4δRδ

3 + (−3δ + 2δ2δ)3δRδ
2 − (4δ − 3δ2δ − 2δ3δ + 2δ2δ2δ)2δRδ

1

+ (−5δ + 2δ4δ + 3δ3δ + 4δ2δ − 2δ2δ3δ − 3δ2δ2δ − 2δ3δ2δ + 2δ2δ2δ2δ)Rδ
0,

and so on, where we write Hk instead of Hk(f)(x) and Rδ
k instead of Rδ

kf (x) for
short. We thus observe that

Hk =
k∑

j=0

(−1)k−jck,j (j + 1)δRδ
j
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for k = 0, 1, . . ., where ck,k = 1 and

(6.2)

ck,j = ck−1,j−1,

ck,0 =
k∑

j=1

(−1)j−1ck,j (j + 1)δ.

Since

SNf (z) =
N∑

k=0

rkHk(f)(x)

it follows that

S0f (z) = Rδ
0,

S1f (z) = (1− r2δ)
0∑

k=0

rk(k + 1)δRδ
k + r2δRδ

1,

S2f (z) = (1− r2δ)
1∑

k=0

rk(k + 1)δRδ
k + r2(c2,0R

δ
0 + 3δRδ

2),

S3f (z) = (1− r2δ)
2∑

k=0

rk(k + 1)δRδ
k + r2(c2,0 − rc3,0)

0∑
k=0

rk(k + 1)δRδ
k

+ r3(c3,12δRδ
1 + 4δRδ

3),

S4f (z) = (1− r2δ)
3∑

k=0

rk(k + 1)δRδ
k + r2(c2,0 − rc3,0)

1∑
k=0

rk(k + 1)δRδ
k

+ r4(c4,0R
δ
0 + c4,23δRδ

2 + 5δRδ
4),

and so on. In general, we get

SNf (z) = (1− r2δ)
N−1∑
k=0

rk(k + 1)δRδ
k + r2(c2,0 − rc3,0)

N−3∑
k=0

rk(k + 1)δRδ
k

+ r4(c4,0 − rc5,0)
N−5∑
k=0

rk(k + 1)δRδ
k + . . . + rN

∑
N−k=even

cN,k(k + 1)δRδ
k.

Let us look more carefully at the partial sum S1f (z). Since |f(x)| ≤ 1 for all
x ∈ Sn−1, we deduce that |Rδ

kf (x)| ≤ Lδ
N for every k = 0, 1, . . . , N . It follows that

|S1f (z)| ≤
(
|1− r2δ|+ r2δ

)
Lδ

1

whenever |z| ≤ r, which is a consequence of the maximum principle for harmonic
functions. It is easy to see that the expression in parentheses does not exceed 1 if
and only if r ≤ 1/2δ.

We now assume that r = 1/2δ. Then for all |z| ≤ r

|SNf (z)| ≤ C sup
k=0,1,...,N

‖Rδ
k‖L(L∞(Sn−1))
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where

C = r2(c2,0 − rc3,0)
N−3∑
k=0

rk(k + 1)δ + r4(c4,0 − rc5,0)
N−5∑
k=0

rk(k + 1)δ + . . .

+ rN
∑

N−k=even

cN−k,0(k + 1)δ

just amounts to 1, as desired. �

As is seen from the proof, the constant r = 1/2δ seems to be sharp. To rigor-
ously prove this, we need to show an extremal function. Namely, for each z0 ∈ B
satisfying |z0| > 1/2δ there should exist a bounded harmonic function f in the ball
B, such that

(6.3) |SNf (z0)| > Lδ
N ‖f‖L∞(B)

for at least one number N . Note that Lδ
N ≥ 1, for ‖Rδ

0‖L(L∞(Sn−1)) is equal to 1
independently of δ. Hence, our paper [3] gives an evidence to the contrary. Namely,
the asymptotic of the Bohr radius for harmonic functions in a ball of Rn, cf. [3],
shows that an estimate (6.3) may hold for any |z0| > 1/2δ only if log 2/n ≤ 1/2δ.
If for instance δ > (n − 2)/2, then the domain of the latter inequality restricts to
n ≤ 9. Thus, [3] implies a stronger version of Theorem 6.3 if the dimension n is
large enough.

7. Power series

As mentioned in the Introduction, in the case of power series expansions the
Lebesgue constants can be explicitly evaluated. This gives rise to introducing Bohr
and Rogosinski radii, cf. [4], while no deep connections in mathematics has been
observed yet.

Let F(D) be a space of continuous functions in a convex domain D in Rn or Cn,
endowed with the topology of uniform convergence on compact subsets of D.

Suppose {fk}∞k=0 is a topological basis in F(D). By the Bohr radius for this
basis is meant the largest number r > 0 with the property that if f ∈ F(D) has an
expansion

f =
∞∑

k=0

ckfk

and satisfies the inequality |f | < 1 in D then

(7.1)
∞∑

k=0

|ckfk| < 1

in the homothety r D. We denote the Bohr radius with rB .
In a similar way one defines the Rogosinski radius for {fk}∞k=0, the only difference

being in replacing (7.1) by the inequality

(7.2) |
N∑

k=0

ckfk| < 1

in the homothety r D for all partial sums. The Rogosinski radius is denoted by rR.
From (7.1) and (7.2) it follows readily that rB ≤ rR for all spaces F(D) and

bases {fk}∞k=0. For the space of all holomorphic functions in the unit disk D and



STABLE EXPANSIONS IN HOMOGENEOUS POLYNOMIALS 17

the basis {zk}∞k=0 a research of H. Bohr (1914) resulted in rB = 1/3, cf. [20]. The
classical result of Rogosinski [27] states that rR = 1/2 for the same space and the
same basis.

There are many analogues of the phenomenon of Bohr in higher dimensions, cf.
[1] and the references given there. It should be noted that no explicit value of
the Bohr radius is still known for any space of holomorphic functions in a domain
D ⊂ Cn with n > 1. There are only certain estimates for this radius.

In [3] we first after Bohr indicated two cases where the Bohr radius can be
explicitly computed. These are the space of harmonic functions on a ball in Rn and
the space of separately harmonic functions in a polydisk in Cn.

The paper [4] deals with analogues of Rogosinski radius in higher dimensions.
In the case of a complete Reinhardt domain in Cn the Rogosinski radius is proved
to be equal to 1/2 for both partial sums∑

k1≤N1,...,kn≤Nn

ckzk and
∑

k1+...+kn≤N

ckzk

where k = (k1, . . . , kn) and zk = zk1
1 · . . . · zkn

n .
Theorem 2.1 states that the Rogosinski radius for the basis {z̄−k, zk}∞k=0 in the

space of complex-valued harmonic functions in the disk D is at least 1/2. It is
actually equal to 1/2, for it does not exceed the Rogosinski radius for the basis
{zk}∞k=0 in the space of holomorphic functions in D. As extremal function in this
latter case one can take

(7.3) f(z) =
z − a

1− āz
,

where |a| < 1. It is holomorphic in D and satisfies |f(z)| < 1 for |z| < 1. A trivial
verification shows that S1f (z) = −a + (1− |a|2)z. Moreover, if

<
(
− ā

|a|
z
)

>
1

1 + |a|

then |S1f (z)| > 1. Letting |a| → 1 we deduce that the Rogosinski radius for the
basis {zk}∞k=0 does not exceed 1/2.

This result easily extends to separately harmonic functions in a Reinhardt do-
mainD ⊂ Cn, i.e., functions which are harmonic in each complex variable z1, . . . , zn.
The space is endowed with the topology of uniform convergence on compact sub-
sets of D. As a basis in this space we can take the system {1, wα

I } where I varies
over all n-tuples consisting of ±1 (there are 2n such tuples), and α varies over
all multi-indices in Zn

+. Write I = (i1, . . . , in), then wI = (wI,1, . . . , wI,n) where
wI,j = zj , if ij = +1, and wI,j = z̄j , if ij = −1. Under this notation, we have
wα

I = wα1
I,1 . . . wαn

I,n, and any function f(z, z̄) separately harmonic in D has a series
expansion

(7.4) f(z, z̄) =
∑
α

∑
I

cα,Iw
α
I .

For every multi-index N = (N1, . . . , Nn) in Zn
+, we introduce a partial sum of

series (7.4) of the form

(7.5) SNf (z, z̄) =
∑
α≤N

∑
I

cα,Iw
α
I ,
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where the inequality α ≤ N is understood component-wise, i.e., αj ≤ Nj for all
j = 1, . . . , n.

Theorem 7.1. When defined with respect to partial sums (7.5), the Rogosinski
radius for the basis {1, wα

I } in the space of separately harmonic functions in the
unit polydisk Dn is equal to 1/2.

Proof. Denote the Rogosinski radius in question by rR. Applying Theorem 2.1 in
every variable zj , j = 1, . . . , n, we deduce that rR ≥ 1/2. The equality rR = 1/2
now follows by considering each of the holomorphic functions f(zj) given by (7.3),
j = 1, . . . , n. �

Since each complete Reinhardt domain is a union of polydisks, we arrive at the
following consequence.

Corollary 7.2. The Rogosinski radius for the basis {1, wα
I } in the space of sep-

arately harmonic functions in a complete Reinhardt domain D ⊂ Cn is at least
1/2.

Note that Theorem 2.1 is actually valid for any disk of finite radius in the plane.
Combining this with Corollary 7.2, we conclude that if a complete Reinhardt domain
D ⊂ Cn is bounded with respect to at least one variable zj , j = 1, . . . , n, then the
Rogosinski radius for the basis {1, wα

I } in the space of separately harmonic functions
in D just amounts to 1/2.

If a function f(z, z̄) is expanded in a polydisk Dn
r = {z : |z1| < r1, . . . , |zn| < rn}

as a series (7.4), then the coefficients of this expansion are given by

cα,I = lim
t→1−0

1
(2π)n

∫
str

f(z, z̄)
1

wα
I

dz1

z1
∧ . . . ∧ dzn

zn
,

where sr = {z : |z1| = r1, . . . , |zn| = rn} stands for the n -dimensional skeleton of
Dn

r . Hence it follows that if |f(z, z̄)| ≤ M in the polydisk Dn
r then many-dimensional

Cauchy inequalities |cα,I | ≤ M/rα are valid. Given any complete Reinhardt domain
D in Cn, one can apply the Cauchy inequalities to any polydisk lying in D. In this
way we obtain

Lemma 7.3. If f(z, z̄) is expanded in a complete Reinhardt domain D as series
(7.4) and |f(z, z̄)| ≤ M in D, then

(7.6) |cα,I | ≤
M

supD |zα|
.

The estimate (7.6) is a generalisation of an estimate, obtained in [2] for holo-
morphic functions and power series, to the case of separately harmonic functions
and series expansions (7.4).

Corollary 7.4. If a bounded separately harmonic function f(z, z̄) is expanded in
the domain {z : |z1 . . . zn| < 1} as series (7.4), then this expansion contains only
those monomials wα

I which satisfy |wα
I | = |z1 . . . zn|k for some k = 0, 1, . . ..

Yet another class of harmonic functions closely related to holomorphic ones is
constituted by pluriharmonic functions in a Reinhardt domain D ⊂ Cn. As usual,
we give this space the topology of uniform convergence on compact subsets of D.
Pluriharmonic functions with real values are defined to be real parts of holomorphic
functions, complex-valued pluriharmonic functions are obtained by tensoring with
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C. A simple basis in the space of pluriharmonic functions consists of the monomials
zα and z̄α. The following theorem gives the Rogosinski radius of this basis with
respect to partial sums (7.5).

Theorem 7.5. If a complete Reinhardt domain D ⊂ Cn is bounded with respect
to at least one variable zj, j = 1, . . . , n, then the Rogosinski radius for the basis
{zα, z̄α} in the space of pluriharmonic functions in D is equal to 1/2.

Proof. This follows by the same method as in the case of separately harmonic
functions. �

If the Reinhardt domain D is not bounded with respect to any variable, then
Theorem 7.5 fails in general.

Example 7.6. The Rogosinski radius for the basis {zα, z̄α} in the space of pluri-
harmonic functions in the domain D = {z : |z1 . . . zn| < 1} is equal to n

√
1/2.

Indeed, by Corollary 7.4 any pluriharmonic function f(z, z̄) in D is expanded there
as a series

f(z, z̄) =
∞∑

k=0

c−k(z1 . . . zn)k + ck(z1 . . . zn)k

i.e., is actually a harmonic function of one complex variable z1 · . . . · zn. It remains
to apply Theorem 2.1.

It is worth pointing out that harmonic functions in a ball in Rn, n > 2, are no
longer closely related to holomorphic functions of complex variables. In contrast
to Corollary 7.2, Theorem 6.3 puts us on to an idea that the Rogosinski radius for
natural bases in the space of harmonic functions depends on n and tends to 0 when
n →∞.

8. Landau constants in higher dimensions

Set

(8.1) LN = sup
‖f‖L∞(D)≤1

max
|z|≤1

|SNf (z)|,

where SNf is the N th partial sum of the Taylor series

f(z) =
∞∑

k=0

ckzk,

and the supremum is over all holomorphic functions f in the disk D whose modulus
does not exceed 1.

Landau, cf. the book [20], showed a remarkable explicit equality for these con-
stants, namely

LN = 1 +
(1

2

)2

+
(1 · 3

2 · 4

)2

+ . . . +
( (2N − 1)!!

(2N)!!

)2

.

This makes it obvious that

LN ∼ log N

π
for N →∞.

In this section we discuss an analogue of the Landau equality in the case of
several variables.
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Let f(z) be a holomorphic function in a complete Reinhardt domain D ⊂ Cn

and
f(z) =

∑
α

cαzα

in D. There are two natural ways to define the partial sums of this power series,
namely

SNf (z) =
∑
α≤N

cαzα,

where N is an n -tuple of non-negative integers and the inequality α ≤ N is under-
stood component-wise, and

SNf (z) =
∑
|α|≤N

cαzα,

where N is a non-negative integer and |α| = α1 + . . . + αn for a multi-index α in
Zn

+. The latter partial sums are relevant not only for Reinhardt domains, where
any holomorphic function expands as a power series, but also for complete Cartan
domains, where any holomorphic function possesses an expansion in homogeneous
polynomials

(8.2) f(z) =
∞∑

k=0

Pk(z),

Pk being a homogeneous polynomial of degree k.

Theorem 8.1. Let D be a bounded complete Reinhardt domain in Cn and

LN,D = sup
‖f‖L∞(D)≤1

max
z∈D

|SNf (z)|,

for N = (N1, . . . , Nn). Then

(8.3) LN,D ≤ LN1 . . . LNn
.

Proof. To show (8.3) it suffices to apply the result of Landau first in z1, then in z2,
and so on. �

If moreover D = Dn is the unit polydisk then the inequality (8.3) actually turns
into equality. To prove this, take the extremal functions fNj

(zj) of Landau which
satisfy

max
z∈D

|SNj fNj (z)| = LNj ,

cf. [20, § 2], and consider fN (z) = fN1(z1) . . . fNn
(zn). This is a holomorphic

function in Dn satisfying |fN (z)| ≤ 1 and

max
z∈D

|SNfN (z)| = LN1 . . . LNn
.

Combining this with (8.3) we readily obtain the equality LN,D = LN1 . . . LNn
, as

desired.
We now consider a complete Cartan domain D in Cn. Any section of D by a

complex line {z : zj = kjt, t ∈ C} is a disk with centre at the origin. A Cartan
domain D is said to be normal if almost all sections of D by complex lines through
the origin are disks of finite radius.
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Theorem 8.2. Let D be a normal Cartan domain in Cn and

LN,D = sup
‖f‖L∞(D)≤1

max
z∈D

|SNf (z)|,

for N = 0, 1, . . ., the partial sums being with respect to expansion (8.2). Then
LN,D ≤ LN . If moreover D is bounded with respect to at least one complex variable
then

(8.4) LN,D = LN .

Proof. The inequality LN,D ≤ LN follows immediately by applying the result of
Landau to holomorphic functions of one complex variable in sections of D by com-
plex lines through the origin. If the domain D is bounded with respect to a complex
variable zj0 , then for proving (8.4) it suffices to consider the extremal functions
fN (zj0) of Landau, cf. [20, § 2]. �

Let us mention an interesting consequence of Theorems 8.1 and 8.2 for a polydisk
Dn

r . Namely,

L(N,...,N),Dn
r

∼
( log N

π

)n

,

LN,Dn
r

∼ log N

π
,

LnN,Dn
r

∼ log n + log N

π
for N → ∞. While the partial sums S(N,...,N)f are squeezed by SNf from below
and by SnNf from above, the second asymptotic is essentially different from the
first and third asymptotics.

The condition that D is bounded with respect to at least one complex variable
cannot be dropped in Theorem 8.2.

Example 8.3. As is shown in Example 7.6, any bounded holomorphic function
in the domain D = {z : |z1 . . . zn| < 1} depends actually on the single complex
variable z1 . . . zn. Hence it follows that LN,D = L[N/n], where [N/n] stands for the
integer part of the number N/n.

In a number of theorems above we require that the Reinhardt domain D be
complete. This condition can be weakened. Namely, it suffices to require that D
would contain the origin. Any power series converging in such a domain D will
automatically converge in a complete Reinhardt domain containing D. Moreover,
if |f(z)| ≤ 1 for all z ∈ D, then this inequality remains valid in the larger domain,
too.
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