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Abstract. We study boundary-contact problems for elliptic equations (and systems)
with interfaces that have edge singularities. Such problems represent continuous operators
between weighted edge spaces and subspaces with asymptotics. Ellipticity is formulated
in terms of a principal symbolic hierarchy, containing interior, transmission, and edge
symbols. We construct parametrices, show regularity with asymptotics of solutions in
weighted edge spaces and illustrate the results by boundary-contact problems for the
Laplacian with jumping coefficients.
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1 Introduction and formulation of the problems

1.1 Edge boundary-contact problems

This paper is aimed at studying boundary-contact problems with singularities at the in-
terfaces. Problems of this kind have been investigated by several authors, in different
context, partly under specific assumptions on the geometry or the involved dimensions,
cf. Escauriaza, Fabes, and Verchota [6], Torres and Welland [17], Chkadua [3], [4], Li and
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Vogelius [12], Li and Nirenberg [11], Kapanadze and Schulze [9] (the latter paper studies
the case with conical singularities at the interfaces).

In the present paper we study the case with edge singularities: Let G be a bounded
domain in the Euclidean space (first of any dimension, in the example below of dimension
3) of the form G = G+ ∪G− ∪ S for open subdomains G± of G such that G+ ∩G− = S
is an interface of codimension 1. More precisely, we assume that ∂G+ = S, S ∩ ∂G = ∅,
which has the consequence that ∂G− = S ∪∂G. Starting from a pair of elliptic systems of
differential operators A± of order µ in G± (with smooth coefficients up to the respective
boundaries) our problems have the form

A±u± = f± in G±, (1)

Tu− = h on ∂G, (2)

T+u+ + T−u− = g on S. (3)

Here T is (Shapiro-Lopatinskij) elliptic with respect to the operator A−, and T± rep-
resent elliptic transmission conditions with operators of the form T± = t(T±,j)j=1,...,N ,

T±,ju± := (B±,ju±)|S (4)

for differential operators B±,j of order mj with smooth coefficients, defined in a tubular
neighbourhood V of S in G. The restriction to S refers to the corresponding plus or
minus side. The trace operator T = t(T1, . . . , TN ′) is given in an analogous form, i.e.,
Tju− = Bju−|∂G for smooth differential operators of order m′

j in a collar neighbourhood
of ∂G. The numbers N and N ′ are known from the context. For instance, if A± are
L × L systems of operators of order 2m in dimension ≥ 3, then we have N = 2mL and
N ′ = mL (under some standard conditions on the principal symbols of the operators near
S and ∂G, respectively, see Agmon, Douglis, and Nirenberg [1]). For our approach is not
essential whether we consider scalar operators or systems.

As it was mentioned above the main focus of the paper is the case when G± are
manifolds with edges Y ⊂ S and boundary; in this case S itself is a closed manifold with
edge singularity Y . More precisely, we assume that

(i) ∂G±\Y and Y are C∞ manifolds, and dim Y = q;

(ii) every y ∈ Y has a neighbourhood modelled on a wedge Ξ∆
± × Ω, where Ξ∆

± :=
(R+ × Ξ±)/({0} × Ξ±) for a certain closed compact C∞ manifold Ξ± = Ξ±(y),
dim Ξ± = n and an open set Ω ⊂ Rq.

The behaviour of solutions far from S is known from the standard theory of elliptic
boundary value problems when we assume ∂G to be smooth. To illustrate the situation we
mainly look at the case of scalar operators. Note also that when S is smooth the problem
(1)-(3) represents continuous operators
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A =


A+ 0
0 A−

T+ T−
0 T

 :
Hs(G+)
⊕

Hs(G−)
→

Hs−µ(G+)
⊕

Hs−µ(G−)
⊕

⊕Nl=1H
s−ml− 1

2 (S)
⊕

⊕N ′
j=1H

s−m′
j−

1
2 (∂G)

(5)

for arbitrary s > max{ml + 1
2 ,m′

j + 1
2} (in the system case we would have everywhere

the CL-valued analogues of the Sobolev spaces). Such transmission problems are well
investigated, cf. [13], or [14, Section 4.3.3.], and [9, Section 3.2].

If S has an edge singularity Y it is adequate to replace the standard Sobolev spaces by
weighted edge spaces and subspaces with asymptotics. Let us introduce more convenient
notation. We set W± = G±, then S = ∂W+ = W−\∂G. By virtue of the nature of the
singular charts in the above condition (ii) we can interpret the set W±\Y as a subspace
of a space W± that is locally near Y modelled on open stretched wedges of the form
[0, 1)×Ξ±×Y , where r ∈ [0, 1) is the axial variable of the respective cone with Ξ± as the
base manifold. The example in Section 3.2 will concern the case dim Ξ± = 1, and we then
assume that Ξ+ = [0, α] and Ξ− = [α, 2π] for 0 < α < π.

For the interface S we use the following local representation [0, 1)×Σ×Y . The global
stretched ‘surface’ S obtained from S by blowing up the singularity near Y then has the
property

∂W+,reg = Sreg, ∂W−,reg = Sreg ∪ ∂G,

where subscript ‘reg’ denotes the stretched space minus the bottom r = 0. More precisely,
W±,reg means the C∞ manifold with boundary which is locally near Y represented by
(0, 1) × Ξ± × Y ; similarly, S is a C∞ manifold with boundary, and Sreg = S \ ∂S. There
are now weighted edge spaces Ws,γ(W±) and Ws,γ(S) of smoothness s and weight γ (and
subspaces with asymptotics for r → 0, to be introduced below). Then our boundary-
contact problem locally represents continuous operators

A :
Ws,γ(W+)
⊕

Ws,γ(W−)
→

Ws−µ,γ−µ(W+)
⊕

Ws−µ,γ−µ(W−)
⊕

⊕Nl=1W
s−ml− 1

2
,γ−ml− 1

2 (S)
⊕

⊕N ′
j=1H

s−m′
j−

1
2 (∂G)

(6)

for arbitrary s > max{ml + 1
2 ,m′

j + 1
2} and γ ∈ R.

We assume that A± near r = 0 are operators of edge-degenerate type. This includes
the case of operators with smooth coefficients up to the interface from the respective side
which easily follows by introducing polar coordinates transversal to Y . Moreover, the trace
operators T±,j in (4) are assumed to be of the form of a composition of an edge-degenerate
differential operator B±,j with the restriction to int S, cf. the formulas (11), (12) below.

The program of the paper is to solve problems of type (1)-(3) in terms of a parametrix
construction under a natural condition of ellipticity (referring to the weights) and to obtain
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asymptotics of solutions in weighted edge spaces. The necessary material will be given
in Section 2. In Section 3.2 we give an example; this could be easily generalised to other
elliptic equations.

1.2 The principal symbolic structure

Recall that when S is smooth (and also the coefficients of the involved operators up to
the interface) the ellipticity of A refers to a principal symbolic hierarchy

σ(A) := (σψ(A+), σψ(A−), σtr(A), σ∂(A)),

where A is regarded as an operator (5). The first two components σψ(A±) are the ho-
mogeneous principal symbols of the operators A± over intΞ± (smooth up to respective
boundaries). The boundary symbol σ∂(A) := t(σ∂(A−) σ∂(T )) comes from the stan-
dard calculus of boundary value problems. Recall that when (x′, t) is a local splitting
of variables in a collar neighbourhood ∂G × [0, 1) of the boundary, with the covari-
ables (ξ′, τ), then σ∂(A−)(x′, ξ′) := σψ(A−)(x′, 0, ξ′, Dt) interpreted as an operator family
σ∂(A−)(x′, ξ′) : Hs(R+) → Hs−µ(R+). If T = t(T1, . . . , TN ′) is given in terms of expres-
sions Tku− = Bku−|∂G we set

σ∂(Tk)(x, ξ′)f := (σψ(Bk)(x′, 0, ξ′, Dt)f)|t=0

and σ∂(T ) := t(σ∂(Tk))k=1,...,N ′ .
The principal transmission symbol σtr(A) is defined as follows: let us choose a tubular

neighbourhood V ⊂ G of S, set V± := V ∩ Ξ±, and let ε : V− → V+ be defined by
ε(x′, t) = (x′,−t). Then we can pass to the operator

AV+ :=

 A+|intV+ 0
0 ε∗(A−|intV−)

T+ ε∗T−

 .

Here
ε∗(A−|intV−) := (ε∗)−1A−|intV−ε∗, (7)

with ε∗ being the function pull back under ε and

(ε∗T−)u := (ε∗B−,j |intV−u)|S (8)

for a function u on V+. Then the operator AV+ represents a boundary value problem on
V+ with the boundary symbol

σ∂(AV+)(x′, ξ′) :
Hs(R+)
⊕

Hs(R+)
→

Hs−µ(R+)
⊕

Hs−µ(R+)
⊕
Cµ

, (x′, ξ′) ∈ T ∗S\0. (9)

Now we obtain σtr(A) (the so called principal transmission symbol of A) from σ∂(AV+)
by applying the push forward (ε−1)∗ to the operators of the second column of (9) from
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R+ to R−, similarly as the relation between the operators (7), (8). This gives rise to an
operator family

σtr(A)(x′, ξ′) :
Hs(R+)
⊕

Hs(R−)
→

Hs−µ(R+)
⊕

Hs−µ(R−)
⊕
Cµ

, (x′, ξ′) ∈ T ∗S\0. (10)

The transmission problem (5) is called elliptic if the symbols σψ(A±)(x, ξ) are non-
vanishing for all (x, ξ) ∈ T ∗G±\0 and if (9) and (10) are bijective operators for all suffi-
ciently large s. For more details, cf. [9].

Let us now return to our singular configuration, i.e., S has an edge singularity Y .
Denote by Areg the restriction of the operator (6) to distributions in the complement of
Y . Then σ(Areg) is as before. Close to the edge singularity we have to add a so called
principal edge symbol σ∧(A), which comes from the theory of boundary value problems
on a manifold with edges. As noted before by inserting polar coordinates (r, φ, y) we pass
to the stretched domains [0, 1)× Ξ± × Y . Then we obtain the operators A± in the form

A± = r−µ
∑

k+|β|≤µ

a±jβ(r, y)(−r∂r)k(rDy)β (11)

with coefficients a±kβ(r, y) ∈ C∞(R+ × Y, Diffµ−(k+|β|)(Ξ±)). Here Diffν(·) denotes the
space of all differential operators of order ν on the manifold in the brackets. Similarly, for
the trace operators T± we assume

T± = t
(
rint Sr

−ml
∑

k+|β|≤mj

b±j,kβ(r, y)(−r∂r)k(rDy)β)
)
j=1,...,N

, (12)

with coefficients b±j,kβ(r, y) ∈ C∞(R+ × Y, Diffmj−(k+|β|)(Ξ±)), and rint S denotes the oper-
ator of restriction to int S.

The representation of the operators in edge degenerate form is just the reason for the
continuity of (6) in weighted edge spaces. The typical Fuchs type differentiation −r∂r in
(11) can be regarded as a Mellin operator with symbol z, i.e., −r∂r = M−1zM, where
Mu(z) =

∫∞
0 rz−1u(r)dr is the Mellin transform. The variable z will often be considered

on the ‘weight line’
Γβ = {z ∈ C : Re z = β}

for some β ∈ R. The Mellin transform will also be applied to vector-valued functions on
R+, first with compact support and then extended to various function and distribution
spaces. A Mellin pseudo-differential operator with respect to some weight γ ∈ R is defined
as follows:

opγM (h)u(r) := (2π)−1

∫∫ ∞

0

(r′

r

) 1
2
−γ+i%

h
(
r, r′,

1
2
− γ + i%

)
u(r′)

dr′

r′
d%,

where h(r, r′, z) is a parameter-dependent (operator-valued) amplitude function with co-
variable z ∈ Γ 1

2
−γ . Writing

h̃±(r, y, z, η̃) :=
∑

k+|β|≤µ

a±kβ(r, y)zkη̃β
∣∣∣
η̃=rη

,
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the Mellin amplitude functions in our case have the form

h±(r, y, z, η) = h̃±(r, y, z, η̃)|η̃=rη.

Similarly, we have

h′±(r, y, z, η) = h̃′±(r, y, z, η̃)|η̃=rη := t
(
rΣ

∑
k+|β|≤mj

b±kβ(r, y)zkη̃β
)
j=1,...,N

∣∣∣
η̃=rη

.

Then A± = Opy(a±), where

a±(y, η) = r−µop
γ− 1

2
M (h±) = r−µ

∑
k+|β|≤µ

a±kβ(r, y)(−r∂r)j(rη)β (13)

and Opy(a)u(y) :=
∫∫

ei(y−y
′)ηa(y, η)u(y′)dyd̄η, d̄η := (2π)1−qdη.

Writing T± = diag(r−mj )Opy(op
γ−n

2
M (h′±)) we obtain that the operator A close to r = 0

has the form
A = m(r)Opy(op

γ−n
2

M (h))

for a matrix m(r) := diag(r−µ, r−µ,diag(mj)) and the matrix of Mellin amplitude func-
tions h(r, y, z, η) = h̃(r, y, z, η̃)|η̃=rη where

h̃(r, y, z, η̃) :=

 h̃+(r, y, z, η̃) 0
0 h̃−(r, y, z, η̃)

h̃′+(r, y, z, η̃) h̃′−(r, y, z, η̃)

 . (14)

The function h̃(r, y, z, η) is smooth up to r = 0 and takes values in the space of transmission
problems on Sn with respect to the subdivision Sn = Ξ+ ∪ Ξ− with the interface Σ =
Ξ+ ∩ Ξ−. The adequate choice of γ depends on the so called principal edge symbol
σ∧(A)(y, η) which is in our case defined by the expression

σ∧(A)(y, η) := m(r)op
γ−n

2
M (h̃(0, y, z, rη)).

This is an operator function parametrised by (y, η) ∈ Y × (Rq\{0}), acting as

σ∧(A)(y, η) :
Ks,γ(Ξ∧+)
⊕

Ks,γ(Ξ∧−)
→

Ks−µ,γ−µ(Ξ∧+)
⊕

Ks−µ,γ−µ(Ξ∧−)
⊕

⊕Nl=1K
s−ml− 1

2
,γ−ml− 1

2 (Σ∧)

, (15)

where Ks,γ(X∧) denote weighted Sobolev spaces on the cone X∧ = R+ × X (here X
stands for Ξ± or Σ), of smoothness s ∈ R and weight γ ∈ R (concerning the definition,
cf. Section 2.1 below). The operators σ∧(A)(y, η) take values in the transmission cone
algebra with a corresponding symbolic structure. The ellipticity of A also requires the
bijectivity of (15) for all (y, η) ∈ Ω × (Rq\{0}). However, this cannot be expected to
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hold true without additional information. The necessary and sufficient condition for the
Fredholm property of (15) is that the subordinate principal conormal symbol

σMσ∧(A)(y, z) = h̃(0, y, z, 0) :
Hs(Ξ+)
⊕

Hs(Ξ−)
→

Hs−µ(Ξ+)
⊕

Hs−µ(Ξ−)
⊕

⊕Nl=1H
s−ml− 1

2 (Σ).

(16)

is invertible for all z with Re z = n+1
2 − γ.

Summing up a boundary-contact problem (6) with an interface S with edge singularity
has a principal symbolic hierarchy

σ(A) = (σψ(A+), σψ(A−), σtr(Areg), σ∧(A), σ∂(A)), (17)

where σtr(Areg) was defined before.

1.3 Outline of the results

In this paper we study boundary-contact problems A which are elliptic with respect to
σ(A), that is, σψ(A±) are non-vanishing as usual, and the other components are bijective
families. The precise conditions are given in Definition 3.1. We construct parametrices
within an ‘algebra’ of pseudo-differential boundary-contact problems with a similar prin-
cipal symbolic structure as (17), cf. Theorem 3.3. The operators act in weighted edge
spaces and subspaces with asymptotics. We single out a specific subalgebra of so called
Green operators (the notation comes from Boutet de Monvel’s calculus [2]), combined with
asymptotic data close to the edge. Outside any neighbourhood of the edge these operators
are smoothing (and of some type), while close to edge they are pseudo-differential with so
called Green symbols, acting in weighted spaces on the infinite cones, cf. the notation in
Section 3.3.

Green operators are the left-over terms in parametrices, and the continuity in weighted
edge spaces with asymptotics in the image gives rise to the the regularity of solutions with
asymptotics, cf. Theorem 3.4.

2 Boundary-contact operators

2.1 Cone Sobolev spaces with asymptotics

Let X be a C∞ manifold of dimension n and denote by Lµcl(X; Rl) the space of all
parameter-dependent (with parameter λ ∈ Rl) classical pseudo-differential operators on
X in its natural Fréchet topology. We first consider the case that X is closed, compact.

Let Hs,γ(X∧) for s, γ ∈ R denote the completion of C∞
0 (X∧) with respect to the norm{ 1

2πi

∫
Γn+1

2 −γ

||Rs(Im z)Mu(z)||2L2(X)dz
}1/2

.

Here, Rs(%) is a parameter-dependent elliptic operator belonging to the space Lscl(X; R)
that induces isomorphisms Rs(%) : Ht(X)→ Ht−s(X) for all t, s ∈ R. Here Hs(X) is the
standard Sobolev space on X of smoothness s ∈ R, and H0(X) is identified with L2(X).
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In the present paper a cut-off function on R+ is any real valued function ω ∈ C∞
0 (R+)

such that ω = 1 near 0. We then define

Ks,γ(X∧) := {ωu + (1− ω)v : u ∈ Hs,γ(X∧), v ∈ Hs
cone(X

∧)}

for any cut-off function ω. Here we use a version of weighted Sobolev spaces Hs
cone(X

∧)
that are standard ones near infinity, for details, cf. [16]. In particular, for X = Sn (the
unit sphere in Rn+1) we have (1 − ω)Hs

cone(X
∧) = (1 − ω)Hs(Rn+1). We endow the

spaces Ks,γ(X∧) with a Hilbert space structure in a natural way. Observe that when we
set κλ : u(r, x) → λ

n+1
2 u(λr, x) for λ ∈ R+, we obtain a strongly continuous group of

isomorphisms operating on Ks,γ(X∧).

Remark 2.1 We will also need spaces of that kind in the variant when X is a compact
C∞ manifold with boundary. In this case we first consider the double 2X (obtained by
gluing together two copies X± of X along the common boundary ∂X to a closed compact
C∞ manifold; we then identify the original X with X+). Then we define

Ks,γ(X∧) := {u|(intX)∧ : u ∈ Ks,γ((2X)∧)}.

In particular, we have the spaces Ks,γ(Ξ∧±), and (13) induce families of continuous opera-
tors a±(y, η) : Ks,γ(Ξ∧±)→ Ks−µ,γ−µ(Ξ∧±) for all s, γ ∈ R.

Here we always assume the coefficients a±kβ in (13) to be independent of r for large r, which
is adequate in our context. The families a±kβ are C∞ in (y, η), and they are operator-valued
symbols in the following sense: If E is a Hilbert space and {κλ}λ∈R+ a strongly continuous
group of isomorphisms on E, κλκδ = κλδ for all λ, δ ∈ R+, we say that E is endowed with a
group action. Given Hilbert spaces E and Ẽ with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ ,
respectively,

Sµ(Ω× Rq;E, Ẽ) (18)

for open Ω ⊆ Rq and µ ∈ R will denote the subspace of all a(y, η) ∈ C∞(Ω×Rq,L(E, Ẽ))
such that

sup
y∈K,η∈Rq

〈η〉−µ+|β|||κ̃−1
〈η〉D

α
yDβ

ηa(y, η)κ〈η〉||L(E,Ẽ)

is finite for every K ⊂⊂ Ω and all multi-indices α, β ∈ Nq. Here 〈η〉 = (1 + |η|2)1/2. Note
that we obtain an equivalent definition of (18) when we replace η by, for instance, a C∞

function η → [η] that is strictly positive and satisfies [η] = |η| for |η| > C for a C > 0.
A function a(µ)(y, η) ∈ C∞(Ω × (Rq\{0}),L(E, Ẽ)) is called (‘twisted’) homogeneous

in η 6= 0 of order µ if
a(µ)(y, λη) = λµκ̃λa(µ)(y, η)κ−1

λ (19)

for all (y, η) ∈ Ω × (Rq\{0}), λ ∈ R+. Note that when χ(η) is an arbitrary excision
function in Rq (i.e., in C∞(Rq), zero in a neighbourhood of the origin, 1 for |η| > R for
some R > 0) we have χ(η)a(µ)(y, η) ∈ Sµ(Ω× Rq;E, Ẽ) when a(µ) is homogeneous in the
former sense. This gives rise to

Sµcl(Ω× Rq;E, Ẽ), (20)

the subspace of (18) of all elements a(y, η) which admit an asymptotic expansion into
terms of the kind χ(η)a(µ−j)(y, η), with homogeneous functions a(µ−j)(y, η) of order µ− j,
j ∈ N. In this case we set

σ∧(a)(y, η) := a(µ)(y, η).
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The concept of operator-valued symbols in that sense is very close to the scalar case where
E = Ẽ = C and the group actions are trivial (i.e., identity operators for all λ ∈ R+).

The definition has a generalisation to pairs of Fréchet spaces E and Ẽ. For instance,
let Ẽ be defined as a projective limit lim←−j∈N Ẽj of Hilbert spaces Ẽj with continuous

embeddings Ẽj+1 ↪→ Ẽj ↪→ . . . ↪→ Ẽ0 such that Ẽ0 is endowed with a group action
{κλ}λ∈R+ such that {κλ|Ẽj}λ∈R+ defines a group action Ẽj for every j. Then Ẽ is said to
be equipped with the group action {κλ}λ∈R+ . We have the spaces Sµ(cl)(Ω×Rq;E, Ẽj) for

all j, and Sµ(cl)(Ω×Rq;E, Ẽ) is the projective limit of these spaces over j (subscript ‘(cl)’
means that we are talking about the classical or the general case).

We are interested in subspaces Ks,γP (X∧) of Ks,γ(X∧) with asymptotics for r → 0 of
type P , i.e.,

u(r, x) ∼
∑
j

mj∑
k=0

cjk(x)r−pj logk r

with pj ∈ C, mj ∈ N, and coefficients cjk that we control as elements in certain finite-
dimensional subspaces Lj ⊂ C∞(X). In this connection we set

P = {(pj ,mj , Lj)}j=0,...,N (21)

and assume that πCP := {pj}j=0,...,N ⊂ {z : Re z < n+1
2 −γ}. We may talk about finite or

infinite asymptotics. In the finite case we fix a weight interval Θ = [0, ϑ) for some ϑ > 0
and set

Ks,γΘ (X∧) := lim←−
j∈N
Ks,γ+ϑ−

1
1+j (X∧).

This space is regarded as the subspace of functions which are flat of order Θ with respect to
the reference weight γ. Assuming N to be finite for finite Θ and πCP ⊂ {z : n+1

2 −γ−ϑ <
Re z < n+1

2 − γ} we form the space

EP (X∧) := {ω(r)
N∑
j=0

mj∑
k=0

cjk(x)r−pj logk r : cjk ∈ Lj for 0 ≤ k ≤ mj , 0 ≤ j ≤ N}

which is of finite dimension and contained in K∞,γ(X∧). We then define

Ks,γP (X∧) := Ks,γΘ (X∧) + EP (X∧) (22)

(which is a direct sum). In the case of infinite Θ we admit N to be ∞ and assume in this
case Re pj → −∞ as j →∞. Then, setting Pk = {(p, m,L) ∈ P : Re p > n+1

2 −γ−(1+k)}
and Θk := [0, 1 + k), k ∈ N, we have the spaces Ks,γPk

(X∧) and define

Ks,γP (X∧) = lim←−
k∈N
Ks,γPk

(X∧)

in the Fréchet topology of the projective limit.
Let P be an asymptotic type of the kind (21), associated with (γ, Θ) (i.e., a weight γ

plus a fixed (finite or infinite) weight interval Θ = [0, ϑ)), and set

SγP (X∧) := {ωu + (1− ω)v : u ∈ K∞,γ
P (X∧), v ∈ S(R+, C∞(X))}. (23)
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This is a (nuclear) Fréchet space.
The space of SγP (X∧) can be represented as a projective limit of Hilbert spaces con-

tained in K∞,γ(X∧), in which {κλ}λ∈R+ , κλ : u(r, x)→ λ
n+1

2 u(λr, x), λ ∈ R+, are endowed
with group actions. According to our general notation {κλ}λ∈R+ is a group action in (23).
For references below we also form the spaces

Sγ(X∧) := {ωu + (1− ω)v : u ∈ K∞,γ(X∧), v ∈ S(R+, C∞(X))}.

The definitions of the spaces Ks,γP (X∧), SγP (X∧) for the case of a smooth manifold X
with smooth boundary ∂X are analogous. For details see [16] or [8].

2.2 Edge spaces with asymptotics

Let E be a Hilbert space equipped with a group action {κλ}λ∈R+ .

Definition 2.2 The space Ws(Rq, E) for s ∈ R is the completion of S(Rq, E) (the
Schwartz space of E-valued functions) with respect to the norm{∫

〈η〉s||κ−1(η)û(η)||2E
} 1

2
.

Here κ(η) = κ〈η〉 and û(η) is the Fourier transform in Rq.

If E = lim←−j∈N Ej is a Fréchet space written as a projective limit of Hilbert spaces Ej with

continuous embeddings Ej+1 ↪→ Ej , and let {κλ}λ∈R+ be a group action on E0 which
restricts to group actions on Ej for every j . In that case we have continuous embeddings
Ws(Rq, Ej+1) ↪→Ws(Rq, Ej), and we write

Ws(Rq, E) = lim←−
j∈N
Ws(Rq, Ej).

Similarly as standard Sobolev spaces we also have ‘comp’ and ‘loc’ versions Ws
comp(Ω, E)

and Ws
loc(Ω, E) for any open set Ω ⊂ Rq. More details on the nature of abstract edge

spaces may be found in [15] or [16].
Let X be a compact C∞ manifold with boundary ∂X and apply Definition 2.2 to the

spaces Ks,γ(X∧), Ks,γ((∂X)∧) with group actions κ
(n)
λ u(r, x) = λ(n+1)/2u(λr, x) for u ∈

Ks,γ(X∧) and κ
(n−1)
λ u(r, x′) = λn/2v(λr, x′) for v ∈ Ks,γ((∂X)∧), respectively. Then the

spaces Ws,γ(X∧ × Rq) :=Ws(Rq,Ks,γ(X∧)), Ws,γ((∂X)∧ × Rq) :=Ws(Rq,Ks,γ((∂X)∧))
are called edge spaces of smoothness s and weight γ.

We now introduce subspaces ofWs,γ(X∧×Rq) 3 u(r, x, y) with asymptotics for r → 0,
which are discrete and constant with respect to the edge variable y.

Note that we can write Ks,γP (X∧) as a projective limit of {κλ}λ∈R+-invariant Hilbert
spaces Ek, k ∈ N, which gives us the edge spacesWs(Rq, Ek) with continuous embeddings
Ws(Rq, Ek+1) ↪→Ws(Rq, Ek) for all k, and then we define

Ws,γ
P (X∧ × Rq) :=Ws(Rq,Ks,γP (X∧)) (24)

as the projective limit lim←−k∈NW
s(Rq, Ek) with the corresponding Fréchet structure. It can

easily be proved that (24) is independent of the specific choice of the sequence {Ek}k∈N.
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To characterise the singular functions of the edge asymptotics we first observe that
when E is a Hilbert (or Fréchet space) with group action, we have canonical isomorphisms

T (η) := F−1κ−1
〈η〉F :Ws(Rq, E)→ Hs(Rq, E)

for all s ∈ R, cf. [15]. Let E = E0 ⊕ E1 be a direct decomposition of E into closed
subspaces, not necessarily invariant under the group action {κλ}λ∈R+ on E. We then
obtain Hs(Rq, E) = Hs(Rq, E0)⊕Hs(Rq, E1) which generates a direct decomposition

Ws(Rq, E) = T−1Hs(Rq, E0)⊕ T−1Hs(Rq, E1) (25)

into closed subspaces.
Let us apply this construction to the space E = Ks,γP (X∧), decomposed as (22) with

E0 = Ks,γΘ (X∧), E1 = EP (X∧), for an element P as in (21), where the weight interval Θ
is finite. The space Ks,γΘ (X∧) is closed with respect to {κλ}λ∈R+ ; which gives us

T−1Hs(Rq,Ks,γΘ (X∧)) =Ws(Rq,Ks,γΘ (X∧)),

also denoted byWs,γ
Θ (X∧×Rq). However, EP (X∧) is not preserved under the group action,

but we can form
VsP (X∧ × Rq) := T−1EP (X∧)

which is as a closed subspace of Ws,γ
P (X∧ ×Rq). In other words, we have a direct decom-

position
Ws,γ
P (X∧ × Rq) =Ws,γ

Θ (X∧ × Rq) + VsP (X∧ × Rq)

into a component of distributions of edge-flatness Θ and a space of singular functions with
discrete (and constant in y) edge asymptotics of type P .

Remark 2.3 Every f(r, x, y) ∈ Ws,γ
P (X∧ × Rq) for a (discrete) asymptotic type P of

the kind (21), Θ = [0, ϑ) finite (i.e., N <∞), can be written in the form

f(r, x, y) = fsing(r, x, y) + fΘ(r, x, y)

for singular functions

fsing(r, x, y) =
N∑
j=0

mj∑
k=0

F−1
η→y[η]

n+1
2 ω(r[η])cjk(x)(r[η])−pj logk(r[η])v̂jk(η)

with suitable vjk ∈ Hs(Rq), coefficients cjk ∈ Lj, 0 ≤ k ≤ mj, for all j, and a flat
remainder fΘ(r, x, y) ∈ Ws,γ

Θ (X∧ × Rq). Note that in the case s =∞ we may write

fsing(r, x, y) =
N∑
j=0

mj∑
k=0

ω(r)cjk(x)wjk(y)r−pj logk r

mod W∞,γ
Θ (X∧ × Rq) = H∞(Rq,K∞,γ

Θ (X∧)) with elements wjk ∈ H∞(Rq).

One may ask to what extent our notation of singular functions of the edge asymptotics
depends on the choice of the function η → [η]. One can prove, cf. [8], that when p(η) is
any other element of C∞(Rq) such that c1[η] ≤ p(η) ≤ c2[η] for all η ∈ Rq, with constants
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c1 < c2, then fsing(r, x, y) can be reformulated into an equivalent expression with p(η) in
place of [η] and other coefficients cjk, vjk, mod Ws,γ

Θ (X∧ × Rq). Also the choice of ω is
not essential modulo such flat remainders.

Let us return to our configuration. Asymptotics of solutions (also to be expressed
explicitly for specific examples) will be formulated in terms of the spacesWs,γ

P+
(Ξ∧+×Rq)⊕

Ws,γ
P−

(Ξ∧− × Rq), i.e., for given γ ∈ R such that the principal edge symbol is a family of
Fredholm operators, the components of a solution u(r, φ, y) = t(u+(r, φ, y), u−(r, φ, y))
can be written as

u±(r, φ, y)

=
N∑
j=0

m±,j∑
k=0

F−1
η→y[η]

n+1
2 ω(r[η])c±,jk(φ)(r[η])−p±,j logk(r[η])v̂±,jk(η) + u±,Θ(r, φ, y)

for asymptotic types P± = {(p±,j ,m±,j , L±,j)}j∈N, coefficients c±,jk ∈ L±,j , v±,jk ∈
Hs(Rq) for all j and 0 ≤ k ≤ m±,j and flat remainder u±,Θ.

2.3 Mellin quantisation of transmission symbols

Our next objective is to establish some pseudo-differential formalities which express the
structure of parametrices of our boundary-contact problems for differential operators.

Similarly as in the calculus of boundary value problems in a domain with edges the
main information comes from a neighbourhood of the edge. In localised form we have
(stretched) wedges Ξ± × Rq and Σ∧ × Rq, respectively, with Rq being the local model of
the edge of dimension q, and Ξ± and Σ are the base manifolds of the respective model
cones.

By assumption there is a closed compact C∞ manifold M such that Ξ± ⊂ M are
compact C∞ manifolds with common boundary Σ = Ξ+∩Ξ−, M := Ξ+∪Ξ−. In the above
context M is the sphere Sn but the general theory admits M to be arbitrary. It will be
convenient to formulate operators for the case that Σ has only one connected component
(although in the example below we have M = S1 with Ξ+ = [0, α], Ξ− = [α, 2π] for
0 < α < π with Σ consisting of two point φ = 0 and φ = α; the corresponding modification
will be straightforward). The main ingredient of the symbolic structure of parametrices
of elliptic boundary-contact problems are parameter-dependent transmission problems of
the class Bµ,d(Ξ+,Ξ−; Rl), µ ∈ Z, d ∈ N, where λ ∈ Rl is parameter (in our case needed
for the case l = 1, 2). The spaces Bµ,d(Ξ+,Ξ−; Rl) consist of families

p(λ) : Hs(Ξ+)⊕Hs(Ξ−)⊕Hs− 1
2 (Σ)→ Hs−µ(Ξ+)⊕Hs−µ(Ξ−)⊕Hs−µ− 1

2 (Σ) (26)

s > d− 1
2 , cf. also (16). The precise definition is given in [9]. The technique in connection

with transmission problems in the case of smooth interfaces is close to the calculus of
pseudo-differential boundary value problems with the transmission property, see [5], [2],
[7], [14]. For convenience we consider block matrices p(λ) = (pij(λ))i,j=1,2,3 such that
the entries are scalar and of order as in the formula (26); more precisely, p11(λ) is of
order µ, p31(λ) of order µ + 1

2 , etc. In general, we may have larger matrices with entries
of arbitrary orders. However this case only needs trivial modifications and will be tacitly
used later on. Let us also note that in the pseudo-differential characterisation of boundary
and transmission problems we have to expect trace and potential entries at the same time
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(in contrast to (16)) where we only have trace terms; the potential terms are generated in
parametrices).

The spaces Bµ,d(Ξ+,Ξ−; Rl) are Fréchet, and there are subspaces Bµ,d
G (Ξ+,Ξ−; Rl) of

so called Green elements where p11(λ) ∈ L−∞(int Ξ+; Rl), p22(λ) ∈ L−∞(int Ξ−; Rl).

Remark 2.4 There is a straightforward analogue of the spaces Bµ,d(Ξ+,Ξ−; Rl) for
the case of non-compact Ξ± with common boundary Ξ+ ∩ Ξ−, decomposing a manifold
M . Then the Sobolev spaces in (26) have to be replaced by corresponding ‘comp’ and
‘loc’ variants. Spaces of transmission operators in the non-compact case will occur in the
versions Bµ,d(Ξ∧+,Ξ∧−; Rl) and

Bµ,d(Ξ∧+ × Rq,Ξ∧− × Rl). (27)

Motivated by the form of (11), (12) we consider, in particular, families of operators

p(r, y, %, η) := p̃(r, y, r%, rη) (28)

for p̃(r, y, %̃, η̃) ∈ C∞(R+×Rq, Bµ,d(Ξ+,Ξ−; R1+q
%̃,η̃ )) (the weight factors r−µ, etc., in front of

the operators (11), (12) are ignored for the moment). In contrast to the case of differential
transmission problems as in Section 1.2 we have not at once associated families (14) that
are holomorphic in z, but we need a so called Mellin quantisation to pass from p to
families h of that kind. In order to formulate a corresponding result we need to say what
we understand by a holomorphic family of transmission problems.

By Bµ,d(Ξ+,Ξ−; C × Rq) for any q ∈ N we denote the space of all h(z, η) ∈
A(C, Bµ,d(Ξ+, Ξ−; Rq)) (i.e., entire functions with values in Bµ,d(Ξ+,Ξ−; Rq)) such that

h(β + i%, η) ∈ Bµ,d(Ξ+,Ξ−; R1+q
%,η )

for every β ∈ R, uniformly in compact β-intervals. The space Bµ,d(Ξ+,Ξ−; C × Rq) is
Fréchet as well. So we can talk about C∞ functions in (r, η) ∈ R+×Rq with values there.

Theorem 2.5 ([9], Theorem 3.10) Given any p̃(r, y, %̃, η̃) ∈ C∞(R+×Rq, Bµ,d(Ξ+,
Ξ−; R1+q

%̃,η̃ )) there exists an h̃(r, y, z, η̃) ∈ C∞(R+ × Rq, Bµ,d(Ξ+,Ξ−; C × Rq)) such that
p(r, y, %, η) defined by (28) and h(r, y, z, η) := h̃(r, y, z, rη) satisfy the relation

opr(p)(y, η) = opδM (h)(y, η) mod C∞(Rq, B−∞,d(Ξ∧+,Ξ∧−; Rq))

for every δ ∈ R.

Observe that op
γ−n

2
M (h)(y, η) ∈ C∞(Rq, Bµ,d(Ξ∧+,Ξ∧−; Rq)) and

op
γ−n

2
M (h)(y, η) : Hs(Ξ∧+)⊕Hs(Ξ∧−)⊕Hs−

1
2 (Σ∧)→ Hs−µ(Ξ∧+)⊕Hs−µ(Ξ∧−)⊕Hs−µ−

1
2 (Σ∧)

are continuous operators for all s > d− 1
2 .

Remark 2.6 If p and h are as in Theorem 2.5 and

p0(r, y, %, η) := p̃(0, y, r%, rη), h0(r, y, z, η) := h̃(0, y, z, rη)

we also have opr(p0)(y, η) = opδM (h0)(y, η) mod C∞(Rq, B−∞,d(Ξ∧+,Ξ∧−; Rq))
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Transmission amplitude functions in (y, η) ∈ Rq × Rq (as variables and covariables on
the edge) are defined as follows. Let ωj(r), j = 1, 2, 3, be cut-off functions such that ω2 ≡ 1
on suppω1 and ω1 ≡ 1 on supp ω3. Moreover, let σ(r), σ̃(r) be other cut-off functions.
Then we form

a(y, η) := σ(r)r−µ{ω1(r[η])op
γ−n

2
M (h)(y, η)ω2(r[η])

+(1− ω1(r[η]))opr(p)(y, η)(1− ω3(r[η]))}σ̃(r). (29)

Similarly as before in the case of differential transmission problems we have

a(y, η) ∈ Sµ(Rq × Rq;E, Ẽ)

with
E = Ks,γ(Ξ∧+)⊕Ks,γ(Ξ∧−)⊕Ks−

1
2
,γ− 1

2 (Σ∧),

Ẽ = Ks−µ,γ−µ(Ξ∧+)⊕Ks−µ,γ−µ(Ξ∧−)⊕Ks−µ−
1
2
,γ−µ− 1

2 (Σ∧).

The space of symbols refers to the group action

κλ : u+(r, ·)⊕ u−(r, ·)⊕ v(r, ·)→ λ
n+1

2 u+(λr, ·)⊕ u−(λr, ·)⊕ v(λr, ·). (30)

This allows us to form Opy(a). Observe that when we consider the family of (pseudo-
differential) transmission problems r−µp̃(r, y, rDr, rDy) (obtained by applying the operator
convention based on the Fourier transform in (r, y) ∈ R+ × Rq) we have

σ(r)r−µp̃(r, y, rDr, rDy)σ̃(r) = Opy(a) mod B−∞,d(Ξ∧+ × Rq,Ξ∧− × Rq).

Thus p → Opy(a) can be regarded as a quantisation of the {transmission problem on
(Ξ+,Ξ−)}-valued amplitude function r−µp(r, y, %, η), now based on the Mellin transform
in r-direction near r = 0. At the same time we took holomorphic representatives in
the quantisation in r near 0. In order to reflect asymptotic phenomena in the pseudo-
differential context we therefore add so called smoothing Mellin plus Green symbols. The
definitions will be given in Section 3.3 below.

Let us now describe the principal symbolic structure of the operator functions a(y, η).
From the definition we see that a(y, η) ∈ C∞(Rq, Bµ,d(Ξ∧+,Ξ∧−; Rq)). Writing a(y, η) =
(aij(y, η))i,j=1,2,3 we have a11(y, η) ∈ C∞(Rq, Lµcl(int Ξ∧+; Rq)), and a22(y, η) ∈ C∞(Rq,
Lµcl(int Ξ∧−; Rq)), where the operators have the transmission property at the interface Σ∧.

Let σψ,±(a) denote the parameter-dependent (with parameter η ∈ Rq) homogeneous
principal symbol of a11(y, η) and a22(y, η), respectively, with the + sign for the first, the
− sign for the second operator. Let us consider, for instance, the plus case. We have
σψ,+(a) ∈ C∞(T ∗Ξ∧+ × Rq\0) (with additional smoothness in y ∈ Rq and 0 denoting the
covector (%, ξ, η) = 0). In addition in the splitting of variables (r, x, y) ∈ R+×Ξ+×Rq we
have the representation

σψ,+(a)(r, x, y, %, ξ, η) = r−µσ̃ψ,+(a)(r, x, y, r%, ξ, rη)

for a homogeneous function σ̃ψ,+(a)(r, x, y, r%, ξ, rη) in (%̃, ξ, η̃) 6= 0, smooth up to r = 0.
In a similar manner we have σψ,−(a) together with σ̃ψ,−(a).

In order to define the principal transmission symbol of a(y, η) we consider a tubular
neighbourhood V ⊂ M of Σ, V ∼= Σ × (−1, 1), set V± = Ξ± ∩ V and define a reflection
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diffeomorphism ε : V ∧
− → V ∧

+ by ε(r, x′, t) := (r, x′,−t), x′ ∈ Σ. This allows us to pass to
the operators

aV ∧+ (y, η) := diag(id, (ε∗)−1, id)a(y, η)|V ∧diag(id, ε∗, id).

We thus obtain a family of (pseudo-differential) boundary-value problems aV ∧+ (y, η) on V ∧
+

with the boundary Σ∧. As such it has a principal boundary symbol

σ∂(aV ∧+ )(r, x′, y, %, ξ′, η) : Hs(R+)⊕Hs(R+)⊕ C→ Hs−µ(R+)⊕Hs−µ(R+)⊕ C,

s > d− 1
2 ; here (x′, ξ′) denotes the points in T ∗Σ, and the definition refers to (%, ξ′, η) 6= 0.

Passing to

σtr(a)(r, x′, y, %, ξ′, η) := diag(id, ε∗, id)σ∂(aV ∧+ )(r, x′, y, %, ξ′, η)diag(id, (ε∗)−1, id)

we obtain the homogeneous principal transmission symbol of a of order µ, namely,

σtr(a)(r, x′, y, %, ξ′, η) : Hs(R+)⊕Hs(R−)⊕ C→ Hs−µ(R+)⊕Hs−µ(R−)⊕ C.

From the definition it follows that there is another operator function σ̃tr(a)(r, x′, y, %̃, ξ′, η̃),
homogeneous in (%̃, ξ′, η̃) 6= 0 and smooth up to r = 0, such that

σtr(a)(r, x′, y, %, ξ′, η) = r−µσ̃tr(a)(r, x′, y, r%, ξ′, rη).

2.4 The algebra of boundary-contact operators

The category of operators A that we study in this section are a pseudo-differential ana-
logue of the boundary-contact problems of Section 1.1. Because of the expected shape of
parametrices of elliptic elements and in order to carry out compositions within our class
of operators we start from 4× 4 block matrices A = (Aij)i,j=1,...,4 which contain trace and
potential operators with respect to S, and ∂G at the same time. Our operators will be
continuous as maps

A :Ws,γ
(P+)(W+)⊕Ws,γ

(P−)(W−)⊕Ws− 1
2
,γ− 1

2

(S) (S, CL)⊕Hs− 1
2 (∂G, CI′)

→Ws−µ,γ−µ
(Q+) (W+)⊕Ws−µ,γ−µ

(Q−) (W−)⊕Ws−µ− 1
2
,γ−µ− 1

2

(T ) (S, CN )⊕Hs−µ− 1
2 (∂G, CJ ′) (31)

for all s > d − 1
2 . Subscripts ‘(P±)’, etc., mean that we have continuity between spaces

with (or without) the corresponding asymptotic types.
We will concentrate on the regularity of solutions with asymptotics, starting from

solutions in weighted edge spaces without asymptotics. This allows us to ignore any extra
edge entries of trace and potential type with respect to Y (those may occur in the general
edge pseudo-differential calculus). The regularity including the smoothness s would require
observing also these conditions; however, this is voluminous; so we ignore this aspect here.
In order to understand the typical contributions to the asymptotics it is enough to consider
operators close to the edge, i.e., the localised on a (stretched) ‘wedge’ of the form M∧×Rq

for M = Ξ+ ∪ Ξ− with Σ = Ξ+ ∩ Ξ−. Since ∂G does not intersect the edge we omit the
components referring to ∂G (although the smoothing operators in the global edge calculus
may also contribute asymptotic information). In other words the essential information is
coming from 3× 3 block matrices (Aij)i,j=1,2,3.

15



Remark 2.7 As noted before in the pseudo-differential descriptions we mainly content
ourselves with scalar entries, especially, L = N = 1, because the entries of larger block
matrices are completely characterised by this case.

In the localised situation we have W+ = (R+ × Ξ±) × Rq (with Y being identified with
Rq) and S = (R+ × Σ)× Rq. To unify some notation we set W = R+ ×M × Rq which is
a stretched wedge, subdivided into W±, i.e., W = W+ ∪W− with S = W+ ∩W−. Then a
(pseudo-differential) boundary-contact operator on W has the form

A = Opy(a + m + g) +Aint + C (32)

where a(y, η) is an amplitude function of the form (29) with respect to the spaces E and
Ẽ, furthermore, m(y, η) is a smoothing Mellin symbol of the form (47) below, and g(y, η)
is a Green symbol, cf. Section 3.3. For convenience, we always assume that the involved
amplitude functions are independent of y for large |y|. Moreover, let

Aint ∈ (1− σ)Bµ,d(Ξ∧+ × Rq,Ξ∧− × Rq)(1− ˜̃σ),

where σ(r) is as in (29) and ˜̃σ is another cut-off function such that σ ≡ 1 on supp ˜̃σ. There
is no reason to admit a particularly general behaviour of Aint for large r or |y|; therefore,
we simply assume that the operators are continuous in the above mentioned edge spaces.

The operator C is smoothing. For type d = 0 such operators are characterised by the
following properties: C induces continuous operators

C :Ws,γ(W+)⊕Ws,γ(W−)⊕Ws′,γ− 1
2 (S)→W∞,γ−µ

Q+
(W+)⊕W∞,γ−µ

Q−
(W−)⊕W∞,γ−µ− 1

2
T (S)

for all s > 1
2 , s′ ∈ R, with certain asymptotic types Q±, T depending on C; a similar

behaviour is required for the formal adjoint C∗. For arbitrary d ∈ N the structure is

C = C0 +
d∑
j=1

Cjdiag(Dj , 0, 0) (33)

for smoothing Cj of type 0, 0 ≤ j ≤ d, and a first order differential operator D which
differentiates in normal direction to Σ (= ∂Ξ±), cf. the above local description of W±.

Observe that when ω(y, y′) ∈ C∞(Rq × Rq) is a function which is equal to 1 in a
neighbourhood of diag(Rq × Rq) and 0 outside another neighbourhood of the diagonal,
then the operator

Opy((1− ω)(a + m + g)) (34)

is smoothing in the above mentioned sense.
Let us also note that an evident global analogue of smoothing operators in the edge

calculus on G with the given boundary-contact configuration, encodes global asymptotic
properties of solutions, contributed by remainders after the local characterisation of asymp-
totics.

Operators of the form (32) will be called (local) boundary-contact operators. Let µ =
ordA (the order of A). Compositions between such operators are possible if one factor is
properly supported in a suitable sense (which is an obvious modification of a corresponding
notion in the scalar pseudo-differential calculus). For instance, Op(ω(a + m + g)) with
ω(y, y′) as above, is properly supported with respect to (y, y′)-variables. Moreover, Aint
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can be replaced by a properly supported representative in the class (1 − σ)Bµ,d(Ξ∧+ ×
Rq,Ξ∧− × Rq)(1− ˜̃σ) modulo some smoothing operator G of the kind (33).

Given an operator A of the form (32) we set

σ(A) = (σψ,+(A), σψ,−(A), σtr(A), σ∧(A)) (35)

where σψ,±(A) := σψ,±(a) + σψ,±(Aint), σtr(A) := σtr(a) + σtr(Aint), and σ∧(A) :=
σ∧(a + m + g), cf. the notation in Section 3.3. Apart from the principal symbol (35)
our operators also have a subordinate (complete) conormal symbols σM (A); it will be
defined in Section 3.3 below.

Remark 2.8 In the latter definition we used the fact that the space of transmission
operators Bµ,d(Ξ∧+ × Rq,Ξ∧− × Rq) has principal interior symbols σψ,±(·) as functions on
T ∗(Ξ∧± ×Rq)\0 as usual (smooth up to Σ∧ ×Rq from the respective sides) and a principal
transmission symbol σtr(·) parametrised by T ∗(Σ × Rq)\0, which is a natural analogue of
the transmission symbol (10) in the case of differential transmission problems. Observe
that also the elements (32) belong to Bµ,d(Ξ∧+ × Rq,Ξ∧− × Rq), and they have a specific
‘edge-degenerate’ structure near the edge Rq. The definition of the class of all operators
(32) is independent of the choice of the cut-off functions σ, σ̃, ˜̃σ.

Clearly in the global calculus on G the tuple (35) is to be completed by a corresponding
principal boundary symbol σ∂(A) associated with the boundary ∂G.

Theorem 2.9 The composition of two boundary-contact operators A and Ã (one of
them properly supported) is again a boundary-contact operator, where ord(AÃ) = ordA+
ordÃ and σ(AÃ) = σ(A)σ(A) (with componentwise composition).

Definition 2.10 A boundary-contact operator (32) is called Green (of order µ and
type d) if both a(y, η) and m(y, η) in (32) vanish, and Aint ∈ (1−σ)B−∞,d(Ξ∧+×Rq,Ξ∧−×
Rq)(1− ˜̃σ).

Remark 2.11 A boundary-contact operator G is Green if and only if

(i) G ∈ B−∞,d(Ξ∧+ × Rq,Ξ∧− × Rq);

(ii) σM (A) ≡ 0 (cf. the corresponding notation in Section 3.3).

Proposition 2.12 (i) Let G be as in Definition 2.10 (associated with the weights γ,
γ − µ and the weight data Θ). Then G induces a continuous operator

G :Ws,γ(W+)⊕Ws,γ(W−)⊕Ws− 1
2
,γ− 1

2 (S)

→Ws−µ,γ−µ
Q+

(W+)⊕Ws−µ,γ−µ
Q−

(W−)⊕Ws−µ− 1
2
,γ−µ− 1

2
T (S) (36)

for every s > d − 1
2 , with asymptotic types Q± and T , associated with the weight

data (γ − µ,Θ) and (γ − µ− 1
2 ,Θ), respectively, (Q± and T depending on G).

(ii) If A or Ã in Theorem 2.9 is a Green operator, then so is the composition.
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Proof. A Green operator can be equivalently characterised by G = Opy(g)+C for a Green
symbol g(y, η), cf. the notation of Section 3.3, and a smoothing operator C, cf. formula
(33). Since C has the desired mapping property, the assertion follows from the fact that
g(y, η) is an operator-valued symbol (48) between the spaces E and Ẽ (given in connection
with (48)) with group action (30), and

Opy(g) :Ws(Rq, E)κ →Ws−µ(Rq, Ẽ)κ, (37)

κ = {κλ}, is continuous. Subscripts ‘κ’ indicate edge spaces modelled on E with the
group action κ, cf. Definition 2.2. Now the space on the left of (37) just coincides with
the space on the left of (36) while the space on the right of (37) which is equal to

Ws−µ(Rq,Sγ−µQ+
(Ξ∧+))⊕Ws−µ(Rq,Sγ−µQ−

(Ξ∧−))⊕Ws−µ− 1
2 (Rq,Sγ−µ−

1
2

T (Σ∧)),

where the Ws-spaces refer to the ‘standard’ group actions on the respective spaces; these
are continuously embedded into ones on the right of (36). 2

3 Asymptotics of solutions

3.1 Ellipticity and regularity of solutions

We now turn to the ellipticity of boundary-contact problems. The structures can be moti-
vated by the fact that the pseudo-differential representatives in the algebra of boundary-
contact (or transmission) operators formulate in advance the structure of parametrices of
elliptic problems for differential operators, while the weighted edge spaces a-priori formu-
late the nature of elliptic regularity of solutions (with or without asymptotics). To see the
results in principle it suffices to assume that the operators are 3 × 3 block matrices with
scalar entries, cf. Remark 2.7. A simple modification then admits the study of arbitrary
block matrices (also several kinds of row and column matrices where some components may
simply disappear). As in the preceding sections the dimension of Ξ± may be arbitrary;
here for convenience > 1.

Definition 3.1 A boundary-contact operator A of the form (32) of order µ ∈ Z and
type d ∈ N on a stretched wedge W = W+∪W− (with scalar entries) is called elliptic (with
respect to a fixed weight γ ∈ R) if the components of the principal symbolic hierarchy (35)
have the following properties:

(i) The interior symbols σψ,±(A) do not vanish on T ∗(W±,reg)\0; similarly, we have
σ̃ψ,±(A)(r, x, y, %, ξ, η) 6= 0 for all (%, ξ, η) 6= 0, up to r = 0;

(ii) the transmission symbol σtr(A) defines a family of bijections

σtr(A) : Hs(R+)⊕Hs(R−)⊕ C→ Hs−µ(R+)⊕Hs−µ(R−)⊕ C

parametrised by the points of T ∗(Sreg)\0; similarly, σ̃tr(A)(r, x′, y, %, ξ′, η) are bijec-
tions for all (%, ξ′, η) 6= 0, up to r = 0;

(iii) the edge symbol σ∧(A), parametrised by (y, η) ∈ T ∗Rq\0, defines a family of Fredholm
operators

σ∧(A) : Ks,γ(Ξ∧+)⊕Ks,γ(Ξ∧−)⊕Ks−
1
2
,γ− 1

2 (Σ∧)

→ Ks−µ,γ−µ(Ξ∧+)⊕Ks−µ,γ−µ(Ξ∧−)⊕Ks−µ−
1
2
,γ−µ− 1

2 (Σ∧).
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The conditions (ii), (iii) are required for all s > max(µ, d)− 1
2 ; they are then independent

of s.

Remark 3.2 Condition (iii) in Definition 3.1 together with (i), (ii) is equivalent to the
bijectivity of the subordinate conormal symbol σMσ∧(A)(y, z) := h̃(0, y, z, 0) + f00(y, z),

σMσ∧(A)(y, z) : Hs(Ξ+)⊕Hs(Ξ−)⊕Hs− 1
2 (Σ)→ Hs−µ(Ξ+)⊕Hs−µ(Ξ−)⊕Hs−µ− 1

2 (Σ)

for any (and, then, equivalently, all) s > max(µ, d)− 1
2 , for all y ∈ Rq and all z ∈ Γn+1

2
−γ,

n = dim Ξ±.

Observe that we have σMσ∧(A)(y, z) ∈ C∞(Rq,Mµ,d
R (Ξ+,Ξ−)) for some Mellin asymptotic

type R as described in Section 3.3 below. Recall that the role of the conormal symbols for
the asymptotics of solution in the simpler case of conical singularities has been emphasised
in the work of Konratyev [10].

The y-wise inverse (σMσ∧(A)(y, z)) defines a family in M
−µ,max(d−µ,0)
S (Ξ+,Ξ−), where

the Mellin asymptotic type S may depend on y. We do not study this effect here; this
would require continuous asymptotic types or refined versions of variable and pointwise
discrete asymptotic types, cf. [15] or [8]. Therefore, in the following Theorems 3.3 and
3.4 we assume that the symbols which are involved in the operator A are a sum of y-
independent ones plus functions which vanish of infinite order at the edge; in particular, S
is then independent of y (we could impose weaker conditions on the coefficients, but their
formulation requires more details).

Theorem 3.3 Let A be a boundary-contact operator which is elliptic of order µ and
type d in the sense of Definition 3.1. Then there exists an elliptic (properly supported)
boundary-contact operator P of order −µ and type max(d − µ, 0) (with respect to the
weight γ − µ) which is a parametrix of A in the sense that

I − PA = Gl and I − AP = Gr

are Green operators of order 0 and types dl = max(µ, d) and dr = max(d − µ, 0), respec-
tively.

Proof. First observe that the operator A is elliptic in Bµ,d(Ξ∧+×Rq,Ξ∧−×Rq) with respect
to σψ,± and σtr. We use the fact that there is then a (properly supported) parametrix
P1 ∈ B−µ,max(d−µ,0) (Ξ∧+ ×Rq,Ξ∧− ×Rq) of A such that σψ,±(P1) = σψ,±(A)−1, σtr(P1) =
σtr(A)−1. We now improve P1 near the edge Rq, i.e., near r = 0, by setting

P := Opy(b + l + g) + (1− σ)P1(1− ˜̃σ). (38)

Here b(y, η) is given by

b(y, η) := σ(r)rµ{ω1(r[η])op
γ−µ−n

2
M (f)(y, η)ω2(r[η])

+(1− ω1(r[η]))opr(t)(y, η)(1− ω3(r[η]))}σ̃(r)

with cut-off functions σ, σ̃, ω1, ω2, ω3 as in (29), and

t(r, y, %, η) = t̃(r, y, r%, rη) (39)
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for a suitable t̃(r, y, r%, rη) ∈ C∞(R+×Rq, B−µ,e(Ξ+,Ξ−; R1+q)), e := max(d−µ, 0) and an
associated f(r, y, z, η) = f̃(r, y, z, rη), f̃(r, y, z, rη) ∈ C∞(R+×Rq, B−µ,e(Ξ+,Ξ−; C×Rq))
in the sense of Theorem 2.5. Moreover, l(y, η) is a suitable Mellin edge symbol of analogous
form as (47) below, here with −µ and γ − µ instead of µ and γ, respectively. The choice
of l will be explained later on in this proof.

In order to construct the operator family (39) (which we only need in a neighbourhood
of r = 0, since the operators (32) are independent of the cut-off functions σ, σ̃, etc.,
modulo smoothing elements) we first recall that the essential contribution to A near the
edge is given by the operator function

r−µp̃(r, y, r%, rη) (40)

for p̃(r, y, %̃, η̃) ∈ C∞(R+×Rq, Bµ,d(Ξ+,Ξ−; R1+q)). Let us ignore for the moment the way
to obtain (32) in terms of (40) and Theorem 2.5. From the assumption of ellipticity with
respect to σψ,± and σtr (including the σ̃ψ,± and σ̃tr objects up to r = 0) we know that
p̃(r, y, %̃, η̃) is parameter-dependent elliptic in Bµ,d(Ξ+,Ξ−; R1+q)) with the parameters %̃,
η̃, for every (r, y) ∈ R+ × Rq (up to r = 0). This allows us to construct a parameter-
dependent elliptic family p̃(−1)(r, y, %̃, η̃) ∈ C∞(R+ × Rq, B−µ,e(Ξ+,Ξ−; R1+q)) such that
for the pointwise composition (in (r, y) ∈ R+ × Rq) we have

p̃(−1)(r, y, %̃, η̃)p̃(r, y, %̃, η̃) = 1 + c̃(r, y, %̃, η̃) (41)

for an element c̃(r, y, %̃, η̃) ∈ C∞(R+ × Rq, B−1,max(µ,d)(Ξ+,Ξ−; R1+q)). In the following
considerations we carry out operators in terms of Leibniz products of operator functions
depending on (r, y, r%, rη) which imitate compositions of associated pseudo-differential
operators Opr,y(·) with such amplitude functions. Denoting the Leibniz multiplication
between such operator functions b and c by #, i.e.,

b(r, y, r%, rη)#c(r, y, r%, rη) ∼
∑

α∈N1+q

1
α!

(∂α%,ηb(r, y, r%, rη))Dα
r,yc(r, y, r%, rη),

(with ∂ indicating differentiation without the factor i−1) we see some very convenient
properties. In the asymptotic summation the ‘edge-degenerate’ shape of the terms remains
preserved, and also the representative modulo an operator function of order −∞ can be
chosen in such a way that it is smooth in the first r-variable up to zero. Another feature
of this kind of operations is that {rµb(r, y, r%, rη)}#{r−µc(r, y, r%, rη)} is of analogous
behaviour, i.e., the extra r-powers are cancelling out, such that there only remain smooth
terms in the first r-variable up to zero. From (41) it follows that

{rµp̃(−1)(r, y, r%, rη)}{r−µp̃(r, y, r%, rη)} = 1 + c̃(r, y, r%, rη).

This implies that

{rµp̃(−1)(r, y, r%, rη)}#{r−µp̃(r, y, r%, rη)} = 1 + c̃1(r, y, r%, rη).

for a c̃1(r, y, r%, rη) of analogous property as c̃(r, y, r%, rη). There is now a d̃1(r, y, r%, rη),
again of the same structure, such that

{1 + d̃1(r, y, r%, rη)}#{1 + c̃1(r, y, r%, rη)} = 1 + k̃(r, y, r%, rη)

20



for a k̃(r, y, r%, rη) ∈ B−∞,max(µ,d)(Ξ+,Ξ+; R1+q). This gives us[
{1 + d̃1(r, y, r%, rη)}#{rµp̃(−1)(r, y, r%, rη)}

]
#{r−µp̃(r, y, r%, rη)} = 1 + k̃(r, y, r%, rη).

The expression in [. . . ] is nothing other than rµt̃(r, y, r%, rη) with an operator function
t̃(r, y, %̃, η̃) as required. As announced before we want to express our parametrix near
r = 0 in a form analogous to (32). Since in the final result we admit Green remainders of
order 0 the only point is to find the Mellin amplitude function l(y, η) which is expected
to be of the form

l(y, η) = rµω(r[η])
k∑
j=0

rj
∑
|α|≤j

op
γj−µ−n

2
M (ljα)(y)ηαω̃(r[η]) (42)

for suitable γj such that γ−j ≤ γj ≤ γ (especially, γ0 = γ) and smoothing Mellin symbols
ljα ∈ C∞(Rq,M−∞,e

Rjα
(Ξ+,Ξ−)) with certain Mellin asymptotic types Rjα. The main issue

is to find l0 := l00; the other ljα then follow afterwards. Similarly as in the general edge
operator calculus we have

σMσ∧(b)(y, z + µ)σMσ∧(a)(y, z) = 1 + h0(y, z + µ)

for some h0(y, z) ∈ C∞(Rq,M
−∞,max(µ,d)
R (Ξ+,Ξ−)) and certain R. The principal conormal

symbol of b(y, η) has the form σMσ∧(b)(y, z) = f̃(0, y, z, 0). This gives us

(1 + h0(y, z + µ))−1f̃(0, y, z + µ, 0) = (σMσ∧(a)(y, z))−1.

We have (1 + h0(y, z + µ))−1 − 1 = k0(y, z + µ) ∈ C∞(Rq,M
−∞,max(µ,d)
R (Ξ+,Ξ−)); here

and in the sequel by R we denote different Mellin asymptotic types. We have l0(y, z) :=
k0(y, z)f̃(0, y, z, 0) ∈ C∞(Rq,M−∞,e

R (Ξ+,Ξ−)). The invertibility of σMσ∧(a)(y, z) for all
z ∈ Γn+1

2
−γ shows us that l0(y, z + µ) has no poles on the weight line Γn+1

2
−(γ−µ). Thus

we can form (42) with the constructed l0(y, z) and unknown Mellin symbols ljα(y, z) for
j > 0, |α| ≤ j. In any case it follows that

σMσ∧

[
(b + l)#ya

]
(y, z) = 1

for all y ∈ Rq, z ∈ C; here #y denotes the Leibniz multiplication of (operator-valued)
amplitude functions in y. The complete conormal symbol of b(y, η) + l(y, η) has the form

l(y, z, η) :=
( 1

j!
( ∂j

∂rj
f̃(r, y, z, rη)

)
|r=0 +

∑
|α|≤j

ljα(y, z)ηα
)

0≤j≤k
;

we see that the components are polynomials in η of order j. Similarly, a(y, η) has the
complete conormal symbol

f(y, z, η) :=
( 1

j!
( ∂j

∂rj
h̃(r, y, z, rη)

)
|r=0 +

∑
|α|≤j

fjα(y, z)ηα
)

0≤j≤k
.

The sequence e(y, z, η) of conormal symbols of (b + l)#ya then follows by a combination
of #y with the Mellin translation product in z, cf., analogously, [16, Theorem 2.4.15] or
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[18]. Setting e(y, z, η) = (1, 0, . . . , 0) we obtain (since l0(y, z) is already calculated and
f(y, z, η) is given by the original operator) a recursive formula to uniquely determine the
components ljα for j > 0 and |α| ≤ j. This allows us to form (42) for any choice of cut-off
functions ω, ω̃ (and of the function η → [η]). Any other choice generates remainders in
form of Green symbols g(y, η) of order −µ, cf. the corresponding observation in Section 3.3
below. Thus, without loss of generality we may assume that σ(r)ω(r[η]) = ω(r[η]) and
σ̃(r)ω̃(r[η]) = ω̃(r[η]) for all r ∈ R+, η ∈ Rq with σ, σ̃ being the cut-off functions in the
expression for b(y, η). In order to obtain a properly supported parametrix also near r = 0
we choose a cut-off factor ω(y, y′) as mentioned in connection with (34) and observe that
for every Green symbol g1(y, η) (here of order −µ) there is another Green symbol g(y, η)
such that

P0 := Opy(ω(b + l + g1)) = Op(b + l + g) + C (43)

for a smoothing operator C (cf. the notation in Section 2.4). Since in the final parametrix
we accept Green remainders of order zero the expression (38) with the above mentioned
P1 and (43) gives us a left parametrix of A. In a similar manner we find a right parametrix
modulo a Green remainder. Thus our parametrix is two-sided; this completes the proof.
2

We now formulate the regularity of solutions u to elliptic boundary-contact equations
Au = f with asymptotics.

Theorem 3.4 Let A be an elliptic boundary-contact operator of order µ ∈ Z and type
d ∈ N, and let u ∈ Ws,γ(W+)⊕Ws,γ(W)⊕Ws− 1

2
,γ− 1

2 (S) be a solution of

Au = f ∈ Ws−µ,γ−µ
Q+

(W+)⊕Ws−µ,γ−µ
Q−

(W−)⊕Ws−µ− 1
2
,γ−µ− 1

2
T (S)

for some s > max(µ, d) − 1
2 and asymptotic types Q± and T , associated with the weight

data (γ − µ,Θ) and (γ − µ − 1
2 ,Θ), respectively, Θ = [0, k + 1) for any k ∈ N. Then we

have
u ∈ Ws,γ

P+
(W+)⊕Ws,γ

P−
(W−)⊕Ws− 1

2
,γ− 1

2
S (S)

for resulting asymptotic types P± and S, associated with the weight data (γ, Θ) and (γ −
1
2 ,Θ), respectively.

Proof. Applying Theorem 3.3 the operator A has a (properly supported) parametrix P.
From Au = f we obtain PAu = (I − Gl)u = Pf . According to (31) the function Pf is of
the same smoothness as u and has asymptotics. By virtue of Proposition 2.12 also Glu is
of the required smoothness and has asymptotics. 2

Remark 3.5 Definition 3.1 easily extends to the case of boundary-contact operators
(including systems in the upper left corner) with an arbitrary number of trace and po-
tential transmission conditions; those may also have different orders, cf. the examples
in Section 1.2. We then have corresponding analogues of Theorem 3.3, 3.4, and of the
auxiliary structures in Section 3.3.

3.2 An example

Let us consider a simple example, namely,

A+ = ∆|W+ , A− = c∆|W− (44)
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for a constant c 6= 0, with ∆ being the Laplace operator in R3, and

T± = t(T±,1, T±,2) for T±,1u := ±u|int S and T±,2u :=
∂

∂ν±
u|int S, (45)

where ν± are the outward normal directions to the boundaries of W±\{0}.

Theorem 3.6 The boundary-contact operator

A =

 A+ 0
0 A−

T+ T−


is elliptic for all γ ∈ R\{1− π

π−αj : j ∈ Z}.

Proof. The ellipticity conditions (i), (ii) of Definition 3.1 are obviously satisfied for our
problem and also the condition on the Mellin asymptotic type S. It remains to find the
non-bijectivity points for the corresponding conormal symbol, cf. Remark 3.2.

The Laplace operator in polar coordinates r−2{∂2
φ + (−r∂r)2 − (rDy)2} gives rise to

the principal edge and conormal symbols

σ∧(∆)(η) = r−2{∂2
φ + (−r∂r)2 − (rη)2}

and
σMσ∧(∆)(z) = ∂2

φ + z2,

respectively. Then (16) has the form

σMσ∧(A)(z) =



z2 + ∂2
φ 0

0 c(z2 + ∂2
φ)

r′0 −r′0
r′0∂φ r′0∂φ
r′α −r′α

r′α∂φ r′α∂φ

 :
Hs(Ξ+)
⊕

Hs(Ξ−)
−→

Hs−2(Ξ+)
⊕

Hs−2(Ξ−)
⊕
C2

⊕
C2

, (46)

where Ξ+ = [0, α], Ξ− = [α, 2π]. The admissible weight γ for our boundary-contact prob-
lem follows from the set D of those points z ∈ C where h(z) in not bijective. Calculations
in [9] shows that D =

{
π

π−αj
}
j∈Z. Since dim Ξ± = 1 we obtain γ ∈ R\{1− π

π−αj : j ∈ Z}.
2

Theorem 3.4 can be specialised to the present situation.
In particular, let u ∈ Ws,γ(W+) ⊕Ws,γ(W−) ⊕Ws− 1

2
,γ− 1

2 (S) be a solution of Au =
0. Then near the edge, in the splitting of variables (r, φ, y) we obtain asymptotics of
u(r, φ, y) = t(u+(r, φ, y), u−(r, φ, y)) of the form

u±(r, φ, y) ∼
∑

j∈Z\0, π
π−α

j<1−γ

F−1
η→y[η]ω(r[η])c±,j(φ)(r[η])−

π
π−α

j v̂±,j(η)

+F−1
η→y[η]ω(r[η])c±,00(φ)v̂±,00(η) + F−1

η→y[η]ω(r[η])c±,01(φ) log(r[η])v̂±,01(η)

with coefficients c±,j , c±,00, c±,01 ∈ C∞(Ξ±), v±,j , v±,00, v±,01 ∈ Hs(R). The second two
terms only occur in the case γ < 1.

23



3.3 The asymptotic contribution in transmission operators

As we saw in Section 3.1 the asymptotics of solutions to an elliptic boundary-contact
problem is ‘generated’ by a specific ingredient of the parametrices, namely, by Mellin
operators with meromorphic amplitude functions. In the present case they take values
in the space B−∞,d(Ξ+,Ξ−) of smoothing transmission operators of type d on the base
Ξ+ ∪ Ξ− with respect to the interface Σ. Recall that the parameter-dependent analogue
B−∞,d(Ξ+,Ξ−; Rl) is defined as S(Rl, B−∞,d(Ξ+,Ξ−)). If U ⊂ C is an open set and E
a Fréchet space, by A(U,E) we denote the space of all holomorphic functions in U with
values in E.

A sequence R = {(rj , nj , Nj)}j∈Z of triples rj ∈ C, nj ∈ N, Nj ⊂ B−∞,d(Ξ+,Ξ−) is
called a Mellin asymptotic type if πCR := {rj}j∈Z intersects every strip {z : c < Re z < c′},
c < c′, in a finite set, and if Nj is a finite-dimensional subspace of operators of finite
rank. Then M−∞,d

R (Ξ+,Ξ−) denotes the subspace of all f(z) ∈ A(C\πCR,B−∞,d(Ξ+,Ξ−))
such that (χRf)(β + i%) ∈ B−∞,d(Ξ+,Ξ−; R%) for every β ∈ R, uniformly in compact β-
intervals (where χR is an arbitrary πCR-excision function, i.e., χR ∈ C∞(C), χR(z) = 0 for
dist(πCR, z) < c0, χR(z) = 1 for dist(πCR, z) > c1 for certain 0 < c0 < c1), and, moreover,
f(z) is meromorphic with poles at rj of multiplicity nj + 1 and Laurent coefficients at
(z − rj)−(k+1) belonging to Nj for 0 ≤ k ≤ nj . Let Mµ,d

R (Ξ+,Ξ−) := Mµ,d
O (Ξ+,Ξ−) +

M−∞,d
R (Ξ+,Ξ−) where Mµ,d

O (Ξ+,Ξ−) := B−∞,d(Ξ−,Ξ+; C), cf. Section 2.3.
We now fix a weight interval Θ = [0, k + 1), k ∈ N, and form operator functions

m(y, η) := r−µω(r[η])
k∑
j=0

rj
∑
|α|≤j

op
γj−n

2
M (fjα)(y)ηαω̃(r[η]) (47)

for arbitrary cut-off functions ω, ω̃, and fjα ∈ C∞(Rq,M−∞,d
Rjα

(Ξ+,Ξ−)) for certain Mellin
asymptotic types Rjα and weights γj such that γ−j ≤ γj ≤ γ for all and πCRjα∩Γn+1

2
−γj

=
∅. Every such m(y, η) defines a C∞ family in (y, η) ∈ Rq × Rq of continuous operators
m(y, η) : E → Ẽ for

E = Ks,γ(P+)(Ξ
∧
+)⊕Ks,γ(P−)(Ξ

∧
−)⊕Ks−

1
2
,γ− 1

2

(S) (Σ∧)

and
Ẽ = K∞,γ−µ

(Q+) (Ξ∧+)⊕K∞,γ−µ
(Q−) (Ξ∧−)⊕K∞,γ−µ− 1

2

(T ) (Σ∧)

for arbitrary s > d− 1
2 and asymptotic types P±, S, with some resulting asymptotic types

Q±, T (associated with the weight data (γ, Θ) and (γ − µ,Θ), respectively), determined
by the choice of Mellin asymptotic types Rjα (similarly as before, subscripts ‘(P±)’, etc.,
indicate spaces without asymptotics or subspaces with asymptotics of type P±). Observe
that we have

m(y, η) ∈ Sµcl(R
q × Rq;E, Ẽ),

based on the group action (30). The homogeneous principal part of m(y, η) is given by

σ∧(m)(y, η) = r−µω(r|η|)
k∑
j=0

rj
∑
|α|=j

op
γj−n

2
M (fjα)(y)ηαω̃(r|η|),
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(y, η) ∈ T ∗Rq\0. The analogues of symbols of the kind (47) in standard boundary value
problems are well investigated. We do not consider here all the useful properties. Let us
only observe that when we change the cut-off functions ω, ω̃ or the weights γjα we only
change m(y, η) by a so called Green symbol. The definition is as follows.

A C∞ family in (y, η) ∈ Rq ×Rq of operators g(y, η) is called a Green symbol of order
µ and type d = 0 if it represents a symbol

g(y, η) ∈ Sµcl(R
q × Rq;E, Ẽ) (48)

for E := Ks,γ(Ξ∧+) ⊕ Ks,γ(Ξ∧−) ⊕ Ks−
1
2
,γ− 1

2 (Σ∧) and Ẽ := Sγ−µQ+
(Ξ∧+) ⊕ Sγ−µQ−

(Ξ∧−) ⊕

Sγ−µ−
1
2

T (Σ∧) for asymptotic types Q±, T depending on g (and associated with the weight
data (γ − µ,Θ) and (γ − µ− 1

2 ,Θ), respectively), for all real s > −1
2 , and if the pointwise

adjoint g∗(y, η) satisfies an analogous condition with respect to spaces of opposite weights
and corresponding asymptotic types P±, S in the image. Moreover, a Green symbol g(y, η)
of order µ and type d ∈ N is an operator family of the form

g(y, η) = g0(y, η) +
d∑
j=1

gj(y, η)diag(Dj , 0, 0)

for arbitrary Green symbols gj(y, η) of order µ and type 0 and a first order differential
operator D of similar meaning as in (33) (i.e., differentiating transversally to Σ). By
σ∧(g)(y, η), (y, η) ∈ T ∗Rq\0, we denote the homogeneous principal component of g(y, η)
of order µ.

Remark 3.7 Let g(y, η) be a Green symbol which is independent of y for |y| > C for
a constant C > 0. Then G = Opy(g) is a Green operator in the sense of Definition 2.10.

We now define the complete conormal symbol σM (A) belonging to a boundary contact
operator A of the form (32). The symbols a(y, η) and m(y, η) are given by (29) and (47),
respectively. In (47) we have fixed a weight strip Θ = [0, k + 1). We set

σM (A) :=
( 1

j!
( ∂j

∂rj
h̃(r, y, z, rη)

)
|r=0 +

∑
|α|≤j

fjα(y, z)ηα
)

0≤j≤k
.

The definition is motivated in a similar manner as in the general calculus of operators on
a configuration with edges.

Remark 3.8 If A, Ã are as in Theorem 2.9 the complete conormal symbol σM (AÃ)
can be computed in terms of σM (A) and σM (Ã) as the Leibniz-Mellin translation product.
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