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Abstract
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efficients.
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Introduction

After J. Leray [14], J. von Neumann believed that computers need a very
good theory of partial differential equations. On the one hand, they need
general existence, uniqueness and continuity theorems, to make sure that what
they compute does exist and to show that it can be estimated as they do.
On the other hand, computing is efficiently aided by the discovery of explicit
solutions of special problems and by the study of the special functions functions
appearing there.

The purpose of this paper is to bring together two approaches in con-
structing explicit fundamental solutions for non-degenerate partial differential
equations. The first approach is due to Hadamard [10], it is based on the
far-reaching geometric optics asymptotics in mathematical physics. However,
it applies only to second order equations and gives only local results. The
second approach is due to Petrovskii [15], it is based on powerful arsenals of
Fourier transform and distribution theory and is global in the very nature.
However, it is applicable only for general partial differential equations with
constant coefficients.

The plan of the paper is as follows. Section 1 is devoted to explicit formulas
of J. Leray [14] for solutions of the Cauchy problem for Tricomi’s general oper-
ators. In Section 2, we introduce new coordinates. These are geodesic normal
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coordinates in Hadamard’s terminology, or projection caractéristique d’apres
Leray. In Section 3, an elementary proof of J. Leray’s result is presented which
generalises the eiconal equation. In the very technical Section 4 we study the
transport equation. Section 5 gives the convergence and asymptotic proofs of
the formal solution constructed in § 4. In Section 6 we discuss the classification
of fundamental solutions. The last Section 7 gives a counterexample showing
the significance of the non-degeneracy condition.

1 Functional transformations

Let X denote an n -dimensional manifold, x a point of X, the coordinates of
x being (x1, . . . , xn), and v(x) = ρ(x)dx a volume element on X.

Consider a differential operator A of order m on X, in local coordinates A
being

A(x, D) =
∑
|α|≤m

aα(x) Dα,

where Dj =
1

ı

∂

∂xj

. Its dual is an operator A′ such that∫
X

v Au ρdx =

∫
X

A′v u ρdx (1.1)

for all functions u and v with compact support. In the local chart it is given
by

A′(x, D)v =
∑
|α|≤m

(−1)|α|

ρ
Dα

(
ρaαv

)
.

As usual, the dual is assigned to act in spaces of densities on X, but we avoid
this for simplicity of notation.

Write
A(x, ξ) =

∑
|α|≤m

aα(x) ξα

as a sum of homogeneous polynomials in ξ = (ξ1, . . . , ξn), i.e.,

A(x, ξ) =
∞∑

j=0

Am−j(x, ξ)

where Am−j are homogeneous of degree m − j. Think of ξ as a covector (for
instance a gradient) at x, then the maps

A(x, D) 7→ Am(x, ξ),

A(x, D) 7→ Am−1(x, ξ) +
ı

2

n∑
j=1

1

ρ(x)

∂2

∂xj∂ξj

(ρ(x)Am(x, ξ))
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do not depend on the choice of the coordinates.
The first polynomial is called the principal symbol of A, it is denoted by

σm(A)(x, ξ). The second polynomial depends on ρ, it is usually referred to as
the subprincipal symbol of A.

The hypersurfaces C = {x ∈ X : c(x) = 0} in X with c satisfying the
non-linear first order differential equation

σm(A)(x,−ı∇c (x)) = 0 (1.2)

are called characteristics of A. The well-known theory of first order differential
equations shows that they are generated by curves satisfying the system of
ordinary differential equations

dx1

∂H

∂ξ1

= . . . =
dxn

∂H

∂ξn

= − dξ1

∂H

∂x1

= . . . = − dξn

∂H

∂xn

under the additional condition H(x, ξ) = 0, the system being the characteristic
system of the characteristic equation (1.2). These curves are called bicharac-
teristics of A.

From now on we assume X real and affine and ρ = 1. Operators with con-
stant coefficients can be studied by Fourier or Laplace transforms which have
simple and useful properties. But in many problems variable coefficients oc-
cur. For instance, the study of transsonic flow makes use of Tricomi’s operator
x2(∂/∂x1)

2 + (∂/∂x2)
2. Let us call Tricomi’s general operators the operators

whose coefficients of order m, m−1 and < m−1 are affine, constant and null,
respectively, i.e.,

A(x, D) = Am,0(D) +
n∑

j=1

xjAm,j(D) + Am−1(D)

where Am,0, Am,1, . . . , Am,n are homogeneous of order m, and Am−1 is of order
m−1. Their interest lies in the fact that they constitute a first approximation
of the operators with variable coefficients and, for them, the Cauchy problem
can be explicitly solved.

Remark 1.1 The commutator of any two Tricomi’s general operators is
also such an operator, i.e., they form a Lie algebra.

Let S = {x ∈ X : %(x) = 0} be a smooth hypersurface in X. By the
Cauchy problem for A with data on S is meant the problem of finding an
unknown function u satisfying{

Au = f near S,
u = u0 up to order m−1 on S,

(1.3)
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where f and u0 are given functions in a neighbourhood of S.
It is called the analytic Cauchy problem when u is to be analytic, the

data A and S, f , u0 being analytic. Such a problem was solved by Cauchy-
Kovalevskaya’s theorem.

Fifty years later Hadamard [10] pointed out that the problem occurring in
wave propagation is not at all an analytic problem, but a problem with real,
not necessarily analytic, data, A being hyperbolic and S space like. He called
such a problem well-posed. Since that time, the analytic Cauchy problem has
been out of date. However, Hadamard’s warning does not mean that analytic
Cauchy problems never occur. In fact, the explicit information which can be
obtained about well-posed problems comes from similar information about the
so-called unitary solution which is a solution of the simplest analytic Cauchy
problem.

Pick an affine function ξ on X and write ξ · x = ξ0 + ξ1x1 + . . . + ξnxn

for the value of ξ at x. Thus, ξ can be specified as a vector with coordinates
(ξ0, ξ1, . . . , ξn) of a vector space Ξ of dimension n + 1. A hyperplane in X is
ξ′ = {x ∈ X : ξ · x = 0}. These constitute a projective space Ξ′ of dimension
n which is the image of Ξ \ {0}.

Let A be an analytic differential operator on X. By its unitary solution
U(x, ξ) is meant the solution of the analytic Cauchy problem{

A(x, D)U(x, ξ) = 1 near ξ′,
U(x, ξ) = 0 up to order m−1 on ξ′,

(1.4)

i.e., for ξ ·x = 0. The Cauchy-Kovalevskaya theorem shows that U(x, ξ) exists
and is unique at the non-characteristic points x of ξ′, i.e., for all x satisfying
σ(A)(x, ξ) 6= 0.

We often use its derivative

Um(x, ξ) =
(
− ∂

∂ξ0

)m

U(x, ξ)

which satisfies the equation A(x, D)Um(x, ξ) = 0 and which is called a unitary
wave.

The singularity of the solution of the analytic Cauchy problem was studied
by Leray [13, I]. The result essentially simplifies when applied to the unitary
solution. Let u(x, ξ) be a multivalued function, homogeneous in ξ. This func-
tion is said to be uniformisable when u(x, ξ(t, x, υ)) is analytic in t, x and υ for
some analytic mapping ξ(t, x, υ), with t a complex variable of small modulus,
x ∈ X and υ ∈ Ξ, such that υ · x = 0, ξ(t, x, υ) 6= 0 for υ 6= 0, ξ(0, x, υ) = υ
and

ξ(λ1−mt, x, λυ) = λ ξ(t, x, υ) (1.5)

for all complex numbers λ, m being a given integer. We say that ξ(t, x, υ)
uniformises u(x, ξ).
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Moreover, U(x, ξ) and its derivatives up to order m− 1 are uniformisable.
A mapping uniformising them is explicitly known. The carrier of the singu-
larity of U(x, ξ) is the characteristic tangent to ξ′. The principal part of the
singularity of U(x, ξ) is also explicitly known. In order to state these results
precisely, consider the solution x(t, y, υ), ξ(t, y, υ), l(t, y, υ) of the ordinary
differential system

dxj

dt
=

∂H

∂ξj

(x, ξ),
dξj

dt
= −∂H

∂xj

(x, ξ) for j = 1, . . . , n;

dξ0

dt
=

n∑
j=1

xj
∂H

∂xj

(x, ξ)−H(x, ξ);

dl

dt
= Am−1(x,−ıξ)− 1

2

n∑
j=1

∂2H

∂xj∂ξj

(x, ξ)

(1.6)

with the initial data

x(0, y, υ) = y, ξ(0, y, υ) = υ, l(0, y, υ) = 0.

Theorem 1.2 (Uniformisation Theorem) The mapping ξ(t, x, υ) uni-
formises both U(x, ξ) and U ′(x, ξ) and their derivatives up to order m− 1.

Here, U ′ stands for the unitary solution corresponding to the dual operator
A′.

Leray [13, I] gives also an expression for the principal singularity of U(x, ξ).
Namely, the difference

Um(x, ξ)− (−1)m

H(x, υ)
el

(
det

∂(ξ1, . . . , ξn)

∂(υ1, . . . , υn)

)−1/2

, (1.7)

for ξ = ξ(t, x, υ) and l = l(t, x, υ), is an analytic function of t, x and υ when t
is small. Moreover,

det
∂(ξ1, . . . , ξn)

∂(υ1, . . . , υn)
= 1

for t = 0. This is still true with U , H, l replaced by U ′, (−1)mH and −l.
respectively.

The first line of (1.6) is a Hamiltonian system. It follows that (1.6) admits
the first integrals H(x, ξ) and ξ ·x−(m−1) tH(x, ξ) and the invariant differen-
tial form H(y, υ) dt + (dξ) · x. Hence, for x = x(t, y, υ) and ξ = ξ(t, y, υ), we
get

H(x, ξ) = H(y, υ),
ξ · x = (m− 1) tH(y, υ),

(dξ) · x = −H(y, υ) dt− (υ1dy1 + . . . + υndyn) ,
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the latter relation meaning

∂ξ

∂t
· x = −H,

∂ξ

∂y
· x = −υ,

∂ξ

∂υ
· x = 0.

This yields

det
∂(ξ0, ξ1, . . . , ξn)

∂(t, υ1, . . . , υn)
= −H(y, υ) det

∂(ξ1, . . . , ξn)

∂(υ1, . . . , υn)

which proves that the carrier of the singularity of U and U ′ is the characteristic
tangent to ξ′.

The bicharacteristics generating the characteristic tangent to ξ′, and the
second term of (1.7) containing a Jacobian have a mechanical interpretation
as trajectories and mass-impulse density of particles, which can be associated
with the Cauchy problem (1.4).

Example 1.3 When A(D) has constant coefficients and is homogeneous
of degree m, then

U(x, ξ) =
(ξ · x)m

m!

1

H(ξ)

is an integral function of ξ · x/H(ξ) and ξ1, . . . , ξn in accordance with the
uniformisation theorem.

For Tricomi’s general operators the determination of U(x, ξ) reduces to a
first order Cauchy problem by a reciprocity theorem, cf. [14].

By a (right) fundamental solution of the equation A(x, D)u = f is meant
a solution E(x, y) corresponding to f = δy, i.e., Dirac’s measure at y. An
immediate application of (1.1) shows that A′(y, D)E(x, y) = δx, which just
amounts to saying that E ′(y, x) := E(x, y) is a (right) fundamental solution
of A′(y, D).

If the support of E(x, y) belongs to the characteristic conoid with vertex
at y, i.e., the union of all bicharacteristics emanating from y, then knowledge
of E enables us to solve the Cauchy problem (1.3) with zero initial data by
the formula

u(x) =

∫
X

E(x, y)f(y)dy.

Hence, the general well-posed Cauchy problem for a hyperbolic operator A
reduces to the investigation of its fundamental solution E(x, y). Existence and
uniqueness theorems give no precise information about E. However, from what
we know about U(x, ξ), such information can be deduced by the generalised
Laplace transform L, introduced by Leray [13, IV] who developed the theory
of analytic functionals of Fantappiè [7]. More precisely,

E ′(y, x) = Lξ 7→xU
′(y, ξ). (1.8)
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is valid. Formula (1.8) is a deep analogue of John’s famous formula for a
fundamental solution of an elliptic operator with non-constant coefficients, cf.
[12].

As the domain of L consists of multivalued functions f(y, ξ), the most
delicate part of the definition of L lies in the choice of a cycle of integration,
h. It depends on y. The generalised Laplace transform L possesses familiar
properties which allows one to use L for quantisation of functions homogeneous
in ξ. Namely,

(
n− d− 1−

n∑
j=1

xj
∂

∂xj

)
L(f) = L(ξ0f),

∂

∂xj

L(f) = L(ξjf),

d being the homogeneity degree of f in ξ, and

L
( ∂f

∂ξ0

)
= −L(f),

L
( ∂f

∂ξj

)
= −xjL(f)

for x 6= y. Since L does not affect the variable y it commutes with differential
operators in y. Finally, to recover a fundamental solution L has to satisfy
L(1) = δy. The latter relation corresponds to the relation L(f(y)) = f(y)
which is deduced from Cauchy-Fantappiè’s formula, cf. [13, III].

Let us express E(x, y), for x−y small, as the L -transform of some function
f(y, ξ). Since L(f) = 0 if and only if f = 0, the equation A′(y, D)E(x, y) = δx

is equivalent to A′(y, D)f(y, ξ) = 1 under the assumptions that f and its
derivatives in y up to order m − 1 are rationally uniformisable. A trivial
property of rationally uniformisable functions is that they vanish for ξ · y = 0.
Hence, f(y, ξ) should coincide with the unitary solution of A′(y, D). Now,
the uniformisation theorem of the unitary solution shows not only that its
derivatives up to order m−1 are uniformisable, but also that they are rationally
iniformisable. Hence E(x, y) = Lξ→xU

′(y, ξ), which implies the fundamental
formula

E(x, y) = Lξ→xU
′
m(y, ξ)

where U ′
m is the unitary wave of A′(y, D).

From this it follows, in particular, that E(x, y) is holomorphic when x does
not belong to the characteristic conoid with vertex at y.
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2 Characteristic map

In this paper we study a general linear partial differential operator of order
m ≥ 2

A(x, D) =
∑
|α|≤m

aα(x) Dα (2.1)

in a neighborhood U ⊂ Rn of x = 0. Its coefficients may be either C∞ or real
analytic. Still, the results until § 5 is actually the same. Denote its full symbol
by

A(x, ξ) =
∑
|α|≤m

aα(x) ξα,

and its principal symbol by

H(x, ıξ) :=
∑
|α|=m

aα(x) ξα,

for ξ ∈ Rn. In order to get asymptotic results, we always require the non-
degeneracy condition

Hessξ H(x, ξ) := det
( ∂2H

∂ξi∂ξj

(x, ξ)
)

6= 0 (2.2)

to be fulfilled for all x ∈ U and ξ 6= 0.
The Hamiltonian field is defined by

dx

dt
=

∂H

∂ξ
(x, ξ),

dξ

dt
= −∂H

∂x
(x, ξ). (2.3)

Its orbit in T ∗U ∼= U × Rn is the bicharacteristic strip, and the x -component
(x -orbit for short) is a curve in the base space U . We now consider the
hypersurface composed of all the bicharacteristic curves through a fixed point,
say x = 0, hence we also add the initial conditions

x(0) = 0,
ξ(0) = υ,

(2.4)

where |υ| = 1. Its orbits constitute the hypersurface we need, i.e., the char-
acteristic conoid. Denote the solution to this Cauchy problem by x(t, υ) and
ξ(t, υ).

Under the dilation

x 7→ x′ = x,
ξ 7→ ξ′ = λξ,

t 7→ t′ = λ1−mt,
υ 7→ υ′ = λυ,
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both x′(t′, υ′) and ξ′(t′, υ′) still satisfy the equation (2.3), but the initial con-
ditions become x′(0) = 0 and ξ′(0) = υ′. It follows that

x(t, υ) = x(λ1−mt, λυ),
λξ(t, υ) = ξ′(λ1−mt, λυ).

Taking λ = τ and t = τm−1, we conclude that

x(t, υ) = x(1, τυ),
τξ(t, υ) = ξ′(1, τυ),

i.e., both x and τξ are functions of η = τυ. This justifies the notation

x = x(η),
τξ = ξ′(η).

(2.5)

We have thus constructed a mapping η 7→ x which is C∞ or real analytic.
In order to describe its inverse mapping, we note that from (2.3) and (2.4) we
get

x = O(t),
ξ = υ + O(t).

Differentiating the first equations in (2.3) and (2.4) in υ yields

d

dt

(∂xi

∂υj

)
=

n∑
k=1

∂2H

∂ξi∂ξk

∂ξk

∂υj

+
n∑

k=1

∂2H

∂ξi∂xk

∂xk

∂υj

,

∂xi

∂υj

∣∣∣
t=0

= 0.

Also we have
∂xi

∂υj

= O(t)

and
∂xi

∂υj

= t
∂2H

∂υi∂υj

+ o(t).

But (2.5) gives
∂xi

∂υj

= τ
∂xi

∂ηj

,

and taking into account that H as a function of υ is homogeneous of order m
we get

∂xi

∂ηj

= τm−2 ∂2H

∂υi∂υj

(0, υ) + o(1) τm−2.

It follows that (
τ 2−m ∂xi

∂ηj

)
= (I + o(1))

(
Hessυ H(0, υ)

)−1

.

Summing up, we have
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Lemma 2.1 The inverse map of (2.5) is C∞ or real analytic away from
η = 0, and

∂ηi

∂xj

= τ 2−m Fi,j(τ, υ)

where Fi,j is C∞ or real analytic near η = 0.

The coordinates η are called geodesic normal coordinates while (τ, υ) are
called generalized polar coordinates. In the latter case, υ ∈ Sn−1, hence τ and
n − 1 components of υ are independent. We can find a domain on Sn−1

υ , in
which one of the components of υ, say υ1, depends on other components, e.g.,
υ1 = (1− υ2

2 − . . .− υ2
n)1/2. Thus, for υ in this domain, (τ, υ2, . . . , υn) are local

coordinates. We now consider the image of [0, δ)× Sn−1
υ in the x -space, δ > 0

being small enough.

Lemma 2.2 Under the non-degeneracy condition (2.2), we have

∇υ H(0, υ) 6= 0

for υ 6= 0.

Proof. If there were υ0 6= 0 such that ∇υ H(0, υ0) = 0, then Euler’s
formula would give

0 = (m− 1)
∂H

∂υi

(0, υ0)

=
n∑

j=1

∂2H

∂υi∂υj

(0, υ0)υ0
j

for all i = 1, . . . , n. Thus, υ0 would be a non-zero solution of the linear
system above which has a non-vanishing determinant Hessυ H(0, υ0). This is
impossible.

Q.E.D.

Lemma 2.3 For δ > 0 small enough, there exists a positive constant C
such that the image of {(τ, υ) : τ ∈ [0, δ]} lies in the band

C−1δ ≤ |x| ≤ Cδ.

Proof. By the previous Lemma 2.2, there exists a positive constant c such
that

c−1 ≤ |∇H(0, υ)| ≤ c

for all υ ∈ Sn−1. Our result follows directly from the first part of the Hamilto-
nian system (2.3) and Lemma 2.2.

Q.E.D.
We are now in a position to prove



Unitary Solutions of Partial Differential Equations 11

Theorem 2.4 Assume that (2.2) is satisfied. Then, for sufficiently small
δ > 0, the transformation x = x(η) in (2.5) maps [0, δ)×Sn−1

υ onto a neighbor-
hood U of x = 0 in Rn continuously. Moreover, this is a local diffeomorphism
for η 6= 0.

Proof. The proof is immediate because for η 6= 0 the Jacobi matrix

∂(x1, . . . , xn)

∂(τ, υ)

is regular.
Q.E.D.

We denote this map by πH and call it the characteristic mapping. It is
very close to J. Leray’s projection caractéristique, cf. [13, IV]. The x -orbit
connecting the point x and the origin corresponds to the radius through the
point (τ, υ), where υ ∈ Sn−1

υ . Thus, each x -orbit starting from the origin is
defined by υ (the initial value for ξ in (2.3)), and every point x ∈ U can be
connected to the origin by a unique x -orbit. When υ lies in a neighbourhood
V ⊂ Sn−1

υ of υ0, we call the image of these radii in the x -space a conoidal
neighbourhood of the x -orbit defined by υ0.

From the discussion above we see that a conoidal neighbourhood C of any
x -orbit through the origin is blown up by π−1

H to a domain [0, δ) × V , and
the conic point x = 0 is blown up to a domain V on the hypersurface τ = 0.
The space C∞([0, δ)× V ) is pulled back to what we will denote in the sequel
by C∞

H (C), a proper subspace of C∞(C). For any u ∈ C∞
H (C), its pull back

π∗Hu can take different values along different x -orbits, hence different values
at x = 0, i.e., at τ = 0.

In the real analytic case, AH(C) is defined similarly. We shall consider our
problem in either of the two spaces C∞

H and AH .

Remark 2.5 For m = 2, the Jacobi matrix

∂(x1, . . . , xn)

∂(η1, . . . , ηn)

is regular, hence we have a local diffeomorphism near x = 0. This is just the
case studied by Hadamard.

Remark 2.6 We also need estimates of ∂τ/∂xj and ∂υi/∂xj. By methods
similar to those used in the proof of Lemma 2.1, we obtain

∂τ

∂xj

= τ 2−m F0,j(τ, υ),

∂υi

∂xj

= τ 1−m Fi,j(τ, υ),
(2.6)

where F0,j and Fi,j are C∞ or real analytic functions.
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3 Eiconal equation

In the sequel, we look for a solution u(x) to the equation

A(x, D)u =
χλ(x)

Γ (λ + 1)

of the form

u(x) =
( ∞∑

k=0

τ kuk(τ, υ)
) χp(x)

Γ (p + 1)
, (3.1)

where p is to be determined later. Changing the form of the solution to the
present form (3.1) means that we switch to the (τ, υ) coordinates.

For second order equations, Hadamard [10] starts from the construction of
the characteristic conoid composed of the bicharacteristic curves through the
origin. He actually uses Fermat’s principle, i.e., he works in the Lagrangian
framework. What is a substitute of this principle for general partial differential
operators (2.1)? We simply switch to the Hamiltonian framework and thus we
can give Leray’s result an elementary proof.

Theorem 3.1 (Leray [13, IV]) Let A(x, D) be a linear partial differen-
tial operator of (2.1) with C∞ or real analytic coefficients of order m ≥ 2
which satisfies the non-degeneracy condition (2.2). Then the characteristic
conoid with vertex at x = 0 can be written in the form χ(x) = 0, where χ(x)
is C∞ or real analytic near x = 0 but x = 0, such that

H(x,∇χ) =
χ

m− 1
(3.2)

and
∇χ = τξ. (3.3)

Here, x = x(τ, υ) and ξ = ξ(τ, υ) are solutions of (2.3), (2.4).

Proof. Introduce the energy integral

E(x) =

∫ x

0

H(x, ξ) dt.

Since H(x, ξ) is a first integral of the Hamiltonian system, we deduce that
H(x, ξ) ≡ H(0, υ) along the extremals. Since the non-degeneracy condition
is satisfied, we can apply Legendre’s transform ẋ = ∇ξH and obtain the La-
grangian

L(x, ẋ) = ẋξ −H(x, ξ)

= (m− 1) H(x, ξ)
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(Euler’s formula). It is easy to see that L(x, ẋ) is homogeneous in ẋ of order
m/(m− 1). Hence we use another integral as the eiconal integral in our case,
namely

e(x) =

∫ x

0

L(x, ẋ)
m−1

m dt

= (m− 1)
m−1

m

∫ x

0

H(x, ξ)
m−1

m dt. (3.4)

Since a fractional power appears in (3.4), it is necessary to distinguish the
cases when H(0, υ) ≥ 0 and when H(0, υ) ≤ 0. Divide Sn−1

υ into two parts
S±, such that H(0, υ) ≥ 0 for all υ ∈ S+ and H(0, υ) ≤ 0 for all υ ∈ S−
Denote the corresponding parts of the integrals E(x) and e(x) by E±(x) and
e±(x), respectively. Since the integrands of e± (denoted here as F (x, ẋ)) are
homogeneous in ẋ of order 1, the results in the calculus of variation [6, Ch. 2,
p. 111] give

∂e+

∂t
= F (x, ẋ)−

n∑
i=1

ẋi Fẋi
(x, ẋ)

= 0

and

∂e+

∂xi

= Fẋi

=
m− 1

m
L(x, ẋ)−

1
m

∂L

∂ẋi

=
m− 1

m
L(x, ẋ)−

1
m ξi. (3.5)

Substituting these expressions into the Hamiltonian H(x, ξ), we get

L(x, ẋ) = (m− 1) H(x, ξ)

= m−m (m− 1)1−m L(x, ẋ) H
(
x,

∂e+

∂x

)
or

H
(
x,

∂e+

∂x

)
= mm (m− 1)m−1.

Set
χ+(x) = e+(x)

m
m−1 , (3.6)

then

e+(x) = χ+(x)
m−1

m ,

∂e+

∂xi

=
m− 1

m
χ+(x)−

1
m

∂χ+

∂xi



14 N. Tarkhanov

whence

H
(
x,

∂χ+

∂x

)
=

χ+

m− 1
.

We want to see what is the hypersurface χ+(x) = 0. For short, we call it the
“light cone” hereafter. Since along the extremals

e+(x) = (m− 1)
m−1

m tH+(0, υ)
m−1

m ,

χ+(x) = (m− 1) τm H+(0, υ)

are fulfilled, we readily conclude that χ+ = 0 is composed of null-bicharacteris-
tics and thus is the equation of the part of the characteritic conoid where
υ ∈ S+.

Replace H(x, ξ) by −H(x, ξ) = |H(x, ξ)| for υ ∈ S−, and denote the cor-
responding χ by χ−. Then χ−(x) = 0 is the equation of the other part of the
characteristic conoid corresponding to υ ∈ S−.

Setting

χ(x) =

{
χ+(x), if υ ∈ S+,
χ−(x), if υ ∈ S−,

establisches formula (3.2).
By (3.5), we obtain

ξi =
m

m− 1
L(x, ẋ)

1
m

∂e+

∂xi

= m(m− 1)
1
m
−1 H(x, ξ)

1
m

∂e+

∂xi

= m(m− 1)
1
m
−1 H(0, υ)

1
m

∂e+

∂xi

.

Using (3.6) we arrive at (3.3), as desired.
That χ ∈ C∞

H or AH is clear from the expression

χ(x) = (m− 1) τm H(0, υ).

Q.E.D.

Remark 3.2 For m = 2, it is easy to see that χ is C∞ or real analytic
even at x = 0, because we can use Morse’s lemma to write

χ(x) =

p∑
i=1

x2
i −

q∑
i=1

x2
p+i

with p + q = n.
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We thus deduce that although it is impossible to reduce a second order
equation to its normal form, it is possible and very useful to reduce its char-
acteristic conoid to a quadratic surface.

We now study the properties of the function χ(x). First, it has a unique
singular point at x = 0.

Theorem 3.3 Under the assumptions of Theorem 3.1, x = 0 is the unique
singular point of χ(x).

Proof. Since ∇χ = τξ, ξ = υ + o(t) and |υ| = 1, it follows that ∇χ(x) = 0
near x = 0 only for τ = 0.

Q.E.D.

We will need the following technical result on the derivatives of χ(x). We
actually have

Theorem 3.4 Under the above assumptions, we have

∂αχ(x) = τm−(m−1)|α| Fα(τ, υ) (3.7)

where Fα is a C∞ or real analytic function of (τ, υ). In the x -coordinates, this
just amounts to saying that

∂αχ(x) = |x|
m

m−1 Fα(x), (3.8)

where Fα(x) is of class C∞
H or AH .

Proof. The equality (3.7) evidently holds for α = 0. Assume that it is
true for all α with |α| ≤ A, then for |α| = A we obtain

∂xj
∂α

x χ(x) =
( ∂τ

∂xj

∂

∂τ
+

n∑
i=1

∂υi

∂xj

∂

∂υi

) (
τm−(m−1)|α|χα(τ, υ)

)
.

Now, (3.7) follows from (2.6), and (3.8) follows from (3.7) and Lemma 2.3.

Q.E.D.

The special case |α| = 2 is particularly useful later.

Theorem 3.5 Under the same assumptions,

n∑
j=1

∂2H

∂ξi∂ξj

(0, η)
∂2χ

∂xj∂xk

= δi,k + o(τ).
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Proof. From (2.5) we know that both x and τξ are C∞ or real analytic
functions of η. The Hamiltonian equation (2.3) together with initial condition
(2.4) yields

xi =
∂

∂ξi

H(x, τξ) + o(1) t.

Since ∇χ = τξ, we get

xi =
∂

∂ξi

H(x,∇χ) + o(1) τm−1.

Differentiating both sides with respect to xk gives the result.

Remark 3.6 In the proof above we should have replaced o(1) by suitable
C∞ or real analytic functions. This is omitted for simplicity.

4 Transport equations

As mentioned above, we are looking for a solution of the form

u =
( ∞∑

k=0

τ kuk(τ, υ)
) χp(x)

Γ (p + 1)

for the equation

A(x, D)u = f(x)
χλ

Γ (λ + 1)
. (4.1)

We use the (τ, υ) coordinates in (3.1), for the characteristic mapping is not
smooth at x = 0, and so χ(x) = O(1) |x|

m
m−1 fails to be smooth. However, in

the (τ, υ) -coordinates χ(x) = τmH(0, υ) is smooth. This is why we introduced
the spaces C∞

H and AH . These difficulties arise because the order m of the
differential operator may be greater than 2. In fact, we will see in the sequel
that the case m > 2 causes some modifications in the original procedure of
Hadamard. Hence, we will work in the (τ, υ) -frame, on the one hand, and pay
attention to such modifications, which we call “perturbations,” on the other
hand.

Let us decompose A(x, D) into the sum of homogeneous parts Am−j(x, D),
namely

A(x, D) =
m∑

j=0

Am−j(x, D).

We will consider the action of diverse parts on a typical term Uk = τ kuk(τ, υ)
in (4.1). To this end, we need two lemmas in the x -space.
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Lemma 4.1 (Generalised Leibniz’s Lemma) Let A(x, D) be an arbi-
trary linear partial differential operator with sufficiently smooth coefficients.
Then

A(x, D) (uv) =
∑
α∈Zn

+

1

α!
Dαu (∂α

ξ A)(x, D)v.

Applying this formula, we readily get

Am(x, D) u(x)
χp(x)

Γ (p + 1)
=

∑
β∈Zn

+

1

β!
Dβu(x)

(
(∂β

ξ Am)(x, D)
χp(x)

Γ (p + 1)

)
. (4.2)

In order to compute a factor of the type B(x, D) χp/Γ (p + 1) we need a
lemma which is a generalisation of Faa de Bruno’s formula, cf. [8], Chap. II,
Ex.16, p. 78.

Lemma 4.2 Let A(x, D) be a homogeneous differential operator of order
m, f a function of one variable and ϕ(x) a function of n variables, both f and
ϕ being smooth enough. Then

A f(ϕ) =
∑ 1

k!
(∂k1α1+...+knαn

ξ A) f (|k|)(ϕ)
( 1

α1!
Dα1

ϕ
)k1

. . .
( 1

αn!
Dαn

ϕ
)kn

,

where the sum is over all multi-indices α = k1α
1 + . . .+knα

n of length |α| = m
with α1, . . . , αn ∈ Zn

+ and k1, . . . , kn non-negative integers whose sum |k| does
not exceed m.

The proof of this lemma is also omitted, since the main idea of the proof is
the same as that in [8]. Although it is a little technical, we need not explicit
coefficients therein.

Now apply this lemma to diverse terms in (4.2). We start with the case
β = 0 to consider

Am
χp

Γ (p + 1)
=

∑
|α|=m

aα Dα χp

Γ (p + 1)

=
∑ α!

k!
aα

χp−|k|

Γ (p− |k|+ 1)

( 1

α1!
Dα1

χ
)k1

. . .
( 1

αn!
Dαn

χ
)kn

,

(4.3)

the latter sum being over all multi-indices α = k1α
1 + . . . + knα

n of length
|α| = m with α1, . . . , αn ∈ Zn

+ and k1, . . . , kn non-negative integers satisfying
|k| ≤ m.

Pick any summand in (4.3) and denote by l1 the number of multi-indices
αi with |αi| = 1, etc., by lm the number of multi-indices αi with |αi| = m. It
is easy to see that

l1 + . . . + lm = |k|, (4.4)



18 N. Tarkhanov

and since the total order of differentiation in x is m, we have

l1 + 2l2 + . . . + mlm = m.

When |k| = m, the only non-negative integral solution of (4.4) is obviously
(m, 0, . . . , 0). Hence, the part of (4.3) corresponding to |k| = m is( ∑

|α|=m

aα(x)(−ı∇χ)α
) χp−m

Γ (p−m + 1)
=

χ

m− 1

χp−m

Γ (p−m + 1)

=
p−m + 1

m− 1

χp−m+1

Γ (p−m + 2)
.

For |k| = m− 1, the only solution is (m− 2, 1, 0, . . . , 0), and so the corre-
sponding part of (4.3) is( n∑

i,j=1

1

2!
(∂ξi∂ξjAm)(x,−ı∇χ) Dxi

Dxj
χ
) χp−m+1

Γ (p−m + 2)

=
(n

2
+ τ F (η)

) χp−m+1

Γ (p−m + 2)
.

Here we made use of Theorem 3.5. The term τ F (η) will be absorbed into
higher order terms later.

As for the remaining parts corresponding to |k| ≤ m− 2, we can estimate
them by Theorem 3.4, thus obtaining

τm|k|−m(m−1) C(η)
χp−|k|

Γ (p− |k|+ 1)
.

These terms can be written as

C(η) (H(0, υ))m−|k|−1 χp−m+1

Γ (p−m + 1)
.

This is one of the perturbations caused by the assumption m ≥ 2. When
m = 2, it does not appear. It vanishes on the light cone surface, i.e., there
is no such perturbation on the light cone surface. We can actually prove that
C(η) (H(0, υ))m−|k|−1 ≡ 0. Indeed, it is easy to see that it is homogeneous
in η of fisrt order and smooth up to η = 0. So it must be a polynomial of
first degree in η. But it possesses a factor H(0, υ), and so it can be only 0
identically.

We next consider the case |β| = 1 in (4.2), namely

n∑
j=1

Dxj
u(x)

(
(∂ξj

Am)(x, D)
χp(x)

Γ (p + 1)

)
.
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Write

(∂ξj
Am)(x, D) =: B(x, D)

=
∑

|α|=m−1

bα(x)Dα.

It is easy to see that

B(x, D)
χp

Γ (p + 1)
=

χp−m+1

Γ (p−m + 2)

∑
|α|=m−1

bα(x)(D1χ)α1 . . . (Dnχ)αn + R

=
χp−m+1

Γ (p−m + 2)
(∂ξj

Am)(x,−ı∇χ) + R, (4.5)

where

R =
∑ α!

k!
bα

χp−|k|

Γ (p− |k|+ 1)

( 1

α1!
Dα1

χ
)k1

. . .
( 1

αn!
Dαn

χ
)kn

,

the sum is over all multi-indices α = k1α
1+. . .+knα

n of length |α| = m−1 with
α1, . . . , αn ∈ Zn

+ and k1, . . . , kn non-negative integers satisfying |k| ≤ m− 2.
The first term can be written as

χp−m+1

Γ (p−m + 2)
t (∂ξj

Am)(x,−ıξ),

for ∂xi
χ = τξi, while the second term gives another perturbation. In fact, it is

easily verified that

R =
∑

|α|=m−1

bα(x)
m−2∑
k=1

Cα,k(η) τm(p−m+1)H(0, υ)p−k

= τm−1
( m−2∑

k=1

Ck(η) H(0, υ)m−k−1
) χp−m+1

Γ (p−m + 2)

= τm−1F (η)
χp−m+1

Γ (p−m + 2)
.

The first term of (4.5) is a differential operator along the x -orbit while the
remainder R is a perturbation containing a factor τm−1. Still, one should note
that there is also a factor H(0, υ), so there will be no perturbation on the light
cone surface.

The remaining part of (4.2) corresponding to |β| ≥ 2 is easy to evaluate.
Analysis similar to that in treating R actually shows that

1

β!
(∂β

ξ Am)(x, D)
χp(x)

Γ (p + 1)



20 N. Tarkhanov

=
∑

cα(x)
χp−|k|

Γ (p− |k|+ 1)

( 1

α1!
Dα1

χ
)k1

. . .
( 1

αn!
Dαn

χ
)kn

= τ |β|(m−1) C(η) H(0, υ)m−|β|+1 χp−m+1

Γ (p−m + 2)
,

the sum being over all multi-indices α = k1α
1+. . .+knα

n of length m−|β| with
α1, . . . , αn ∈ Zn

+ and k1, . . . , kn non-negative integers satisfying |k| ≤ m− |β|.
By Lemma 2.1,

Dβ
xu =

|β|∑
j=1

τ j(2−m) Lj(η, Dη)u.

Combinging this with the former formula, we conclude that∑
β∈Zn

+
2≤|β|≤m

1

β!
Dβu(x)

(
(∂β

ξ Am)(x, D)
χp(x)

Γ (p + 1)

)
= τ |β|

(
L(η, Dη)u

) χp−m+1(x)

Γ (p−m + 2)
.

We can treat in the same manner those parts Am−k(x, D) where k > 0,
acting on u χp/Γ (p + 1), and obtain our final formula

A(x, D) u(x)
χp

Γ (p + 1)

=
χp−m+1

Γ (p−m + 2)

( 1

m− 1
τ
du

dτ
+

(p−m + 1

m− 1
+

n

2

)
u +

m∑
j=1

τ jLj(η, Dη)u
)
,

(4.6)

where Lj(η, Dη) are differential operators of order j with C∞ or real analytic
coefficients.

Our goal is to solve (4.1) in the form (3.1), and we first replace u in (4.6) by
u0. Then, in order that (4.1) could be satisfied, we should take p−m + 1 = λ,
or

p = λ + m− 1.

Next, comparing the terms of the same order in τ on both sides of (4.1), we
should also take u0 to be a solution of the equation

1

m− 1
τ

d

dτ
u0 +

( λ

m− 1
+

n

2

)
u0 = f(η). (4.7)

For the other terms τ kuk(η) in (4.1) we have similar equations

τ
d

dτ
uk +

(
λ + k +

n

2
(m− 1)

)
uk = Lk(uk−1, . . . , uk−m), (4.8)

where Lh is a linear expression of uk−j and its derivatives up to order j with
C∞ or real analytic coefficients, and uk−j ≡ 0 when k < j.
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The equations (4.7) and (4.8) are transport equations for uk ’s. We are
going to look for their solutions which are “in general” bounded and non-
vanishing near η = 0. This will be done in the next section. Here we sum up
our result as

Theorem 4.3 Equation (4.1) possesses a formal solution (3.1) in which
τ kuk are determined by the transport equations (4.7) and (4.8).

Remark 4.4 If m = 2, there is no perturbations. The powers τ k can be
combined with the factors H(0, υ) to give χ. In this case formula (3.1) becomes

u(x) =
∞∑

k=0

uk(x)
χλ+k+m−1

Γ (λ + k + m)

agreeing with Hadamard’s original result.

5 Convergence and asymptotics of the formal

solutions

In the sections above we derived the eiconal and transport equations, and
hence the formal solutions of equation (4.1) once we can solve the transport
equations (4.7) and (4.8). This can be done easily. For instance, for (4.7) we
get

u0(η) = (m− 1) τ−A

∫ τ

0

σAf(συ)
dσ

σ

σ=τs
= (m− 1)

∫ 1

0

sAf(sη)
ds

s
, (5.1)

where A = λ+(n/2)(m−1). The integration is taken along the x -orbit defined
by the initial data υ, and so υ is treated as a constant parameter. The integral
diverges when

<A = <λ +
n

2
(m− 1)

≤ 0.

In this case, it should be understood in the distributional sense, i.e., as a
Riemann-Liouville integral. The integral (5.1) obviously defines a C∞ or real
analytic function, since f(η) is assumed to be of such kind. As for uk(η), we
have

uk(η) =

∫ 1

0

sA+kLk(uk−1, . . . , uk−m)(sη)
ds

s
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also in the sense of Riemann-Liouville. Each uk is also a C∞ or real analytic
function.

It is worth pointing out that if A ≤ 0 is integer, there will appear terms
containing log τ . We can treat such cases as in [3]. So, we will not handle
these special cases hereafter.

In the sequel, we shall distinguish the C∞ and real analytic cases. Consider
first the real analytic case.

Lemma 5.1 As defined above, the solution u = u(τ, υ) of the Fuchsian
equation

τ
du

dτ
+ Au = f(τ, υ)

is majorised by
C sup

s∈[0,1]

|f(sτ, υ)|,

where C is a suitable constant. In fact, C = 1/<A if <A > 0.

Proof. This follows from the formula

u(τ, υ) =

∫ 1

0

sAf(sτ, υ)
ds

s

cf. (5.1), by an easy computation.
Q.E.D.

We apply this lemma to the transport equations (4.7) and (4.8). Induction
in k = 0, 1, . . . yields in a familiar manner

|uk(η)| ≤ Ck+1M

(1− τ/r)km+1(1− |υ − υ0|/r)km+1
,

with r ≤ 1 and sufficiently large constants M and C independent of (τ, υ). We
thus obtain

Theorem 5.2 If |τ | is small enough, then the formal solution (3.1) con-
verges to a real analytic solution of equaton (4.1).

We now turn to the C∞ case. It is very unlikely that one might prove a
rather general convergence result, since a large class of C∞ partial differential
equations is not locally solvable, while the formal solution (3.1), when con-
verges, implies that a C∞ solution exists provided the right-hand side is C∞.
But in this case we can prove at least the existence of an asymptotic solution.
In fact, the formal solution now is not a formal Taylor series, since its coeffi-
cients depend on τ . But if we expand the coefficients uk(η) as a formal power
series

uk(η) ∼
∞∑

j=0

τ j uk,j(υ),
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then (3.1) becomes a formal Taylor series. Using Borel’s technique, we can
construct a C∞ function u(x) with (3.1) as its asymptotic expansion. We call
it an asymptotic solution of (4.1).

Theorem 5.3 In the C∞ case, equation (4.1) possesses an asymptotic so-
lution u(x) with (3.1) as its asymptotic expansion.

The advantage of using asymptotic solutions lies in the fact that if the
right-hand side f(τ, υ) is compactly supported in a conoidal neighbourhood,
then so are the solutions of transport equations (4.7) and (4.8). Hence, the
asymptotic solution u(x) vanishes identically, not only asymptotically, outside
the neighbourhood. This is of importance for geometric optical problems, cf.
[4].

6 Classification of fundamental solutions

We make use of the solution (3.1) obtained above to construct distributional
solutions to

A(x, D)u = Dirac type distribution. (6.1)

By a Dirac type distribution is meant δ(x) or a distribution supported on the
characteristic conoid χ(x) = 0. The former case gives a response to a point
charge or mass at the origin while the latter corresponds to the propagation of
wave fronts according to the Huygens’ principle. The right-hand side can even
be linear combinations of distributions mentioned above, and their derivatives.
We thus deduce that fundamental solutions actually constitute a rather large
class of distributions different in their nature. Hence we give their classification
as follows.

If the right-hand side of (6.1) is a linear combination of δ and its derivatives,
we call the solution (3.1) a Hadamard-Dirac fundamental solution. If it is a
linear combination of distributions supported on χ(x) = 0, we call (3.1) a
Hadamard-Huygens fundamental solution. And if it is a sum of both, we call
(3.1) a Hadamard mixed fundamental solution.

The main idea for constructing such fundamental solutions is as follows.
Replace χλ(x) on the right-hand side of (4.1) by χλ

+(x) which is supported in
the product [0, δ) × U+ in the (τ, υ) space. Then, (3.1) with χ(x) replaced
by k+(x) still gives a solution supported in the same conoidal neighbourhood.
But χλ

+(x) is a distribution-valued meromorphic function of λ, cf. [2]), then so
is the solution (3.1). Here the non-degeneracy condition (2.2) plays a crucial
role.

If regarded as a function, χλ
+ just amounts to

χλ
+(x) = (m− 1)λ τmλ Hλ

+(0, υ)
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for υ ∈ U+. When thought of as a distribution in the (τ, υ) space, more
precisely, if υ lies in a neighbourhood of (1, 0, . . . , 0), such that

υ1 =
√

1− υ2
2 − . . .− υ2

n,

the independent variables being now (τ, υ2, . . . , υn) with υ2
2 + . . .+υ2

n < ε2 < 1,
the right-hand side of (4.1) should be written as

C(τ, υ) τmλ Hλ
+(0, υ)

Γ (λ + 1)

∣∣∣ det
∂(x1, . . . , xn)

∂(τ, υ2, . . . , υn)

∣∣∣.
Here, the constant (m− 1)λ is absorbed into C(τ, υ). By the method used in
the proof of Lemma 2.1, we see that∣∣∣ det

∂(x1, . . . , xn)

∂(τ, υ2, . . . , υn)

∣∣∣ = ∆(τ, υ) τm−2+(n−1)(m−1)

where ∆(τ, υ) is C∞ or real analytic on [0, δ) × U+ and ∆(τ, υ) > ∆0 > 0.
Hence, as a distribution, the right-hand side of (4.1) is

C(τ, υ) τm(λ+n)−(n+1) ⊗
Hλ

+(0, υ)

Γ (λ + 1)
(6.2)

for υ ∈ U+, with C(τ, υ) a C∞ or real analytic multiplier.

Theorem 6.1 The right-hand side of (4.1) with χ replaced by χ+ is a
distribution-valued meromorphic function of λ divided by another meromorphic
function Γ(λ + 1), and

1) The values λ of P1 = {λ 6∈ −N : m(n + λ)− (n + 1) ∈ −N} are simple
poles with residues

C(τ, υ) δ(k)(τ)⊗Hn(1−m)/m+(1−k)/m.

2) The values λ of P2 = {λ ∈ −N : m(n + λ) − (n + 1) 6∈ N} are regular
points with first Taylor coefficient

C(τ, υ) τm(n−k)−(n+1) ⊗ δ(k−1)(H).

3) The values λ of P3 = {λ ∈ −N : λ = n(1−m)/m + (1− k)/m, k ∈ N}
are regular points with first Taylor coefficient

C(τ, υ) δ(−λ)(τ)⊗ δ(k−1)(H).
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Proof. Consider diverse factors in (6.2). The first is a multiplier. Since
τ ∈ [0, δ), the second factor

τm(n+λ)−(n+1) = τ
m(n+λ)−(n+1)
+

has simple poles when m(n + λ)− (n + 1) ∈ −N, and its residue is

(−1)k

mk!
δ(k)(τ).

The last factor is Hλ(0, υ) = Hλ
+(0, υ) when υ ∈ U+. Just as in the proof of

Lemma 2.2, we prove that the surface H(0, υ) = 0 has no critical points. So
we are in a position to introduce the distribution Hλ

+(0, υ) with simple poles
at λ = −k, where k ∈ N, and the residues C(τ, υ) δ(k−1)(H) at these poles,
respectively. But λ = −k with k ∈ N are also simple poles for the denominator
Γ (λ + 1), hence they are regular points for the right-hand side, and the first
Taylor coefficients are just the quotients of both residues. The theorem is
proved.

Q.E.D.
For a thorough discussion of distribution xλ

+ we refer the reader to [9]. We
now formulate our final theorem.

Theorem 6.2 The procedure in Sections 3, 4 and 5 gives distributional
fundamental solutions. More precisely,

1) λ ∈ P1 leads to Hadamard-Dirac fundamental solutions;
2) λ ∈ P2 leads to Hadamard-Huygens fundamental solutions;
3) λ ∈ P3 leads to Hadamard mixed fundamental solutions.

Proof. By the constructions of Sections 3 and 4, the solutions (whether
convergent or asymptotic) are also distribution-valued meromorphic functions
of λ. We write u(x, λ) for them. They have the same poles and regular points
as the right-hand side.

If λ0 is a regular point, we get

A(x, D)u(x, λ0) = f(x)
χλ0

+ (x)

Γ (λ0 + 1)
.

This is just the cases 2) and 3).
If λ0 is a pole, as in the case 1), we have

A(x, D) res
(
u(x, λ)

)
|λ=λ0 = f(x) res

( χλ
+(x)

Γ (λ + 1)

)
|λ=λ0 .

Theorem 5.3 gives the desired result. Q.E.D.
If A is elliptic then any fundamental solution of A gives us the kernel

of an inverse A−1 as a pseudodifferential operator. The construction of a
fundamental solution for a non-degenerate differential equation leads to a much
larger operator calculus.
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7 Condition of non-degeneracy

The condition of non-degeneracy plays a crucial role in the whole paper. But
in a complex domain there always exist non-zero ξ, such that Hessξ H(0, ξ) =
0, for Hessξ H(0, ξ) is a polynomial. One might conjecture that the non-
degeneracy condition can be weakened to

Hessξ H(0, ξ) 6= 0

for all ξ 6= 0 satisfying H(0, ξ) = 0. However, this fails, as the following
enlightening counter-example shows.

Let

A(x, D) = ∂4
1 − ∂4

2 .

Then,

Hessξ H(0, ξ) = 144 ξ2
1ξ

2
2 ,

which vanishes for ξ1 = 0 or ξ2 = 0. From H(0, ξ) = 0 it follows that ξ1 = ±ξ2,
and so

Hessξ H(0, ξ) = 144 ξ4
1

is non-zero when ξ 6= 0.
The characteristic mapping now is

x1 = 4η3
1,

x2 = 4η3
2,

which obvioisly induces diffeomorphisms between the four quadrants of the
(x1, x2) -plane and those of the (η1, η2) -plane. The neighbourhood U in The-
orem 2.4 should now be replaced by these quadrants, and we can obtain the
eiconal integral e(x) and χ(x) only in each of them. We get

χ(x) = 3 (η4
1 − η4

2)

= 3 · 4−4/3 (x
4/3
1 − x

4/3
2 )

which is multi-valued, and so it is necessary to consider its uniformisation [13,
IV]. We thus conclude that the theory above fails when the non-degeneracy
condition is violated.

This phenomenon is closely related to the structure of the algebraic variety
Hessξ H(0, ξ) = 0. Atiyah in [1] pointed out the significance of Hironaka’s
desingularisation theorem in the study of partial differential equations. Since
most of the difficulties in the general theory of partial differential operators
arise from the singularities of the characteristic variety, it is quite natural to
expect Hironaka’s theorem to be relevant. Hironaka’s result, in the version of
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Atiyah, reads roughly as follows: For a real analytic algebraic variety f(y) = 0,
one can always find local coordinates y = ϕ(x), such that

ϕ∗f (x) = k(x)
n∏

j=1

x
Nj

j ,

where Nj are non-negative integers and k(x) is a non-vanishing real analytic
function. Therefore, a neighbourhood of f−1(0) possesses a stratification with
an n -dimensional stratum ∩n

j=1{xj 6= 0}, an (n − 1) -dimensional stratum
∪n

i=1 ∩n
j=1 {xi = 0, xj 6= 0 for j 6= i}, etc., and a 0 -dimensional stratum

{x = 0}. For the non-degenerate case, this variety H(0, η) = τm H(0, υ) = 0
does not contain k -dimensional strata for k = 1, . . . , n− 2.

Hence, a deep-going development of differential analysis on real algebraic
varieties is required if we wish to extend the theory above to include degenerate
cases.
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