
mn header will be provided by the publisher

Boundary value problems with Toeplitz conditions
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We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz
type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish.
Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding
boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the
new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well
to the nature of operators.
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Introduction

The boundary symbols of elliptic symbols with the transmission property on a manifoldX with boundaryY
are families of Fredholm operators acting in spaces normal to the boundary and parametrised by points of the
cosphere bundleS∗Y . The situation for symbols without the transmission property is similar. To analyse the
nature of associated boundary conditions, we investigate the associated index element.

If A is an elliptic differential operator then the boundary symbolσ∂(A)(y, η) is surjective for all(y, η) ∈ S∗Y .
Then the Lopatinskii condition entails thatindS∗Y σ∂(A) = [s∗Y W̃ ] is an element ofs∗Y K(Y ). In other words,

indS∗Y σ∂(A) ∈ s∗Y K(Y ) (0.1)

is a topological obstruction forA to possess boundary conditionsT elliptic in the sense of Lopatinskii. The
relation (0.1) goes at least as far as [AB64].

There are elliptic differential operatorsA onX which violate condition (0.1). It is well known that Dirac
operators in even dimensions and other interesting geometric operators belong to this category, cf. [Sol63]. Pos-
sible boundary conditions leading to associated Fredholm operators are then rather different from the Lopatinskii
elliptic ones. In fact, after the works of Calderón [Cal63], Seeley [See69], Atiyah et al. [APS75] another kind of
boundary conditions became a natural concept in the index theory of boundary value problems.

There is now a stream of investigations in the literature to establish index formulas in terms of the so-called
η -invariant of elliptic operators on the boundary, see for instance [Mel93], [FST99], and the references there.

General elliptic boundary value problems for differential operators and boundary conditions in subspaces of
Sobolev spaces that are ranges of pseudodifferential projections on the boundary were studied in [See69]. It is
natural to embed such problems into a pseudodifferential algebra, where arbitrary elliptic operators admit either
Lopatinskii elliptic or global projection boundary conditions, and parametrices again belong to the algebra. Such
a calculus for operators with the transmission property at the boundary has been introduced by Schulze [Sch01]
as a “Toeplitz extension” of Boutet de Monvel’s calculus [BdM71].

Elliptic operators in mixed, transmission or crack problems, or, more generally, on manifolds with edges
also require additional conditions along the interfaces, crack boundaries, or edges, cf. [Sch98]. The transmission
property is not a reasonable assumption in such applications. In simplest cases the additional conditions satisfy an
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analogue of the Lopatinskii condition as a direct generalisation of ellipticity of boundary conditions in boundary
value problems. However, for the existence of such conditions for an elliptic operator in the interior topological
obstructions similar to those in boundary value problems are still to be overcome. Thus, it is again natural to ask
whether there are Toeplitz extensions of the corresponding algebras which contain the genuine operator algebras
and admit all interior elliptic symbols that are forbidden by the obstruction.

The paper [SS04] gives an answer for pseudodifferential boundary value problems with general interior sym-
bols, i.e., without the condition of the transmission property at the boundary. This algebra may also be regarded as
a model for operators on manifolds with edges, though the case of boundary value problems has certain properties
which are not typical for edge operators in general.

The present paper contributes to the theory by new weighted Sobolev spaces which are invariant under local
diffeomorphisms ofX. Thus, the theory is carried over to manifolds with boundary while the approach of [SS04]
seems to apply only in the case of half-spaceRn

+.

1 Weighted Sobolev spaces

1.1 Cone Sobolev spaces

The aim of this subsection is to fix some terminology for pseudodifferential analysis on manifolds with conical
and edge singularities.

Fors = 0, 1, . . . andγ ∈ R, we letHs,γ(R+) be the Hilbert space of all distributionsu ∈ D′(R+), such that

r−γ (1 + r)s−j (rDr)ju(r) ∈ L2(R+, dr)

for all j ≤ s.
By duality, the definition extends in a natural way to all negative integers. Using complex interpolation,

it then extends to arbitrary reals. The scalar product inL2(R+) = H0,0(R+) induces a sesquilinear pairing
H−s,−γ(R+) × Hs,γ(R+) → C by (u, v) 7→ (u, v)L2(R+), which allows one to identify the dual space of
Hs,γ(R+) with H−s,−γ(R+).

1.2 Edge Sobolev spaces

Given a Hilbert spaceV endowed with a strongly continuous group of isomorphisms(κλ)λ>0 ⊂ L(V ), we define
the spaceHs(Rq, π∗V ) to be the completion ofS(Rq, V ) with respect to the norm

u 7→
( ∫

〈η〉2s‖κ−1
〈η〉û(η)‖

2
V dη

)1/2

.

If V is a Fŕechet space written as a projective limit of Hilbert spacesVj , j ∈ N, andV is endowed with group
action, we have the spacesHs(Rq, π∗Vj) for all j. We then defineHs(Rq, π∗V ) to be the projective limit of
Hs(Rq, π∗Vj) overj ∈ N.

Example 1.1 ForV = Hs,γ(R+) with the standard group action

(κλu)(r) = λs−γ+1/2u(λr)

we get a weighted Sobolev spaceHs,γ(Rq ×R+) with the norm

‖u‖ =
( ∫

Rq

∫ ∞

0

r−2γ
∑

|β|+j≤s

(1 + r)2(s−|β|−j)|(rDy)β(rDr)ju|2dydr
)1/2

.

Let {O1, . . . , ON} be a covering of the manifoldX by coordinate neighbourhoods and{φ1, . . . , φN} a subor-
dinate partition of unity onX. SupposeOj∩∂X 6= ∅ for j = 1, . . . , N ′ andOj∩∂X = ∅ for j = N ′+1, . . . , N .
Fix chartsδj : Oj → Rn−1× R̄+ for j = 1, . . . , N ′, andδj : Oj → Rn for j = N ′+1, . . . , N . ThenHs,γ(X)
is defined to be the completion ofC∞ functions with compact support inX \ Y with respect to the norm

( N ′∑
j=1

‖δ−1
j

∗(φju)‖2Hs,γ(Rn−1×R+) +
N∑

j=N ′+1

‖δ−1
j

∗(φju)‖2Hs(Rn)

)1/2

. (1.1)
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Throughout this exposition we fix a Riemannian metric onX that induces a product metric ofY × [0, 1] on a
collar neighbourhood ofY . We then have a natural identificationH0,0(X) = L2(X) and, via theL2(X) -scalar
product, a non-degenerate sesquilinear pairingHs,γ(X)×H−s,−γ(X) → C.

Analogous definitions make sense for the case of distributional sections of vector bundles. Given any smooth
complex vector bundleV overX, we have an analogueHs,γ(X,V ) of the above space of scalar-valued functions,
locally modelled byHs(Rn−1, π∗Hs,γ(R+,Ck)), wherek ∈ Z≥0 corresponds to the fibre dimension ofV , cf.
§ 3.5.2 of [Sch98].

For eachV we fix a Hermitian metric. We thus obtain a Hilbert spaceL2(X,V ) whose norm is clearly
equivalent to that ofH0,0(X,V ).

2 The transmission property

2.1 Operators on a manifold with boundary

The study of ellipticity of operatorsA on aC∞ manifoldX with boundaryY gives rise to the question on proper
algebras of pseudodifferential boundary value problems. As mentioned, a particular answer is given in [Sch01]
in terms of an operator algebraΨ ·

gp(X) that contains Boutet de Monvel’s algebraΨ ·
BdM(X) as well as an algebra

Ψ ·
T(Y ) of Toeplitz operators on the boundary.
The transmission property suffices to generate an algebra that contains all differential boundary value problems

together with the parametrices of elliptic elements. The transmission property has been imposed inΨ ·
BdM(X)

as well as inΨ ·
gp(X). It is a natural condition if we prefer standard Sobolev spaces onX or scales of closed

subspaces as a frame for Fredholm operators. On the other hand, in order to understand the structure of stable
homotopies of elliptic boundary value problems, or to reach specific applications, the algebraΨ ·

BdM(X) appears
too narrow. It is interesting to consider a larger algebra, namely, a suitable subalgebraΨ ·

s(X) of the general edge
algebra onX. In this interpretationX is regarded as a manifold with edgeY andR̄+ as the model cone of the
wedgeY × R̄+. The algebraΨ ·

s(X) is adequate for studying mixed and transmission problems and consists of
pseudodifferential boundary value problems not requiring the transmission property. All classical symbols onX
that are smooth up toY are admitted inΨ ·

s(X).
Recall that the operators inΨ ·

s(X) act in a certain scaleHs,γ(X) of weighted edge Sobolev spaces which are
different from the standard Sobolev spacesHs(X), except fors = γ = 0 where we haveH0,0(X) = L2(X) =
H0(X).

To illustrate the idea of constructing our Toeplitz extensionΨ ·
gp(X) of Ψ ·

s(X) we first discuss the corre-
sponding construction for Boutet de Monvel’s algebraΨ ·

BdM(X). The general case will be studied in Section
4.

LetX be a smooth compact manifold with boundary,V , Ṽ smooth vector bundles overX, andW , W̃ smooth
vector bundles overY . ThenΨm,d(X; v) for m ∈ Z andd ∈ Z≥0 is defined to be the space of all block matrix
operators

A :
C∞(X,V )

⊕
C∞(Y,W )

→
C∞(X, Ṽ )

⊕
C∞(Y, W̃ )

(2.1)

of the form

A =
(
r+Pe+ 0

0 0

)
+ G + C, (2.2)

the components of (2.2) being given as follows.
By P is meant a classical pseudodifferential operator of orderm on the double ofX which has the transmission

property atY . As usual,e+ is the operator of extension by zero fromX to 2X, andr+ the restriction from2X
to the interior ofX.

Recall that the transmission property of an operatorP onU×R with coordinatesx = (y, r),U being an open
subset ofRn−1, with respect tor = 0 is defined in terms of the homogeneous componentspm−j(y, r, η, %) of a
symbolp(y, r, η, %) of P by the condition

Dk
rD

β
η

(
pm−j(y, r, η, %)− (−1)m−jpm−j(y, r,−η,−%)

)
| r=0

η=0
= 0
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for all y ∈ U , % ∈ R \ {0}, andk ∈ Z≥0, β ∈ Zn−1
≥0 and allj. This condition is invariant under changes of

coordinates which preserve the boundary.
Thus, for any vector bundlesV andṼ over2X, we haveΨm

tp (2X;V, Ṽ ), the space of all classical pseudodif-

ferential operators of orderm on2X acting from sections ofV to sections of̃V , whose symbols in local coordi-
nates nearY possess the transmission property atY . SetΨm

tp (X;V, Ṽ ) := {r+Pe+ : P ∈ Ψm
tp (2X;V, Ṽ )}. In

other words, the operator in the first summand on the right-hand side of (2.2) belongs toΨm
tp (X;V, Ṽ ).

The operatorC on the right side of (2.2) belongs toΨ−∞,d(X; v), i.e., it is smoothing and of typed.
Here,Ψ−∞,0(X; v) is the space of all operators (2.1) whose Schwartz kernel isC∞ up to the boundary. We fix

Riemannian metrics onX andY , such that a collar neighbourhood ofY has the product metric fromY × [0, 1).
Then the entries of

C = (Cij) i=1,2
j=1,2

are integral operators withC∞ kernels overX ×X,X ×Y , Y ×X andY ×Y , respectively, which are sections
of corresponding external tensor products of bundles on the respective Cartesian products. NowΨ−∞,d(X; v) is
defined to be the space of all operators

C = C0 +
d∑

j=1

Cj

(
Dj 0
0 0

)
,

whereC0, C1, . . . , Cd are arbitrary operators inΨ−∞,0(X; v) andD a first order differential operator which is
equal toDr in a collar neighbourhood of the boundary.

The operatorG in (2.2) is a(2×2) -block matrix with entriesGij , whereG11 has aC∞ kernel overX◦×X◦,
G12 has aC∞ kernel overX◦ × Y ,G21 has aC∞ kernel overY ×X◦ andG22 is a classical pseudodifferential
operator of orderm onY , whileG in local coordinates(y, r) ∈ U × R̄+ nearY is a pseudodifferential operator
G = op(g) with operator-valued symbol of the form

g(y, η) = g0(y, η) +
d∑

j=1

gj(y, η)
( Dj

r 0
0 0

)
, (2.3)

wheregj ∈ Sm−j
cl (U ×Rn−1,Ψ ,0

G (R+;Ck,Ck̃;Cl,Cl̃)) andk, k̃, l, l̃ are the fibre dimensions ofV , Ṽ ,W , W̃ ,
respectively.

The concept of a Green operator in Boutet de Monvel’s algebra is slightly different from that in the edge alge-
bra. Namely, bySm

cl (U ×Rn−1,Ψ ,0
G (R+;Ck,Ck̃;Cl,Cl̃)) is meant the space of all operator-valued symbols

g(y, η) onU ×Rn−1 with the property that

g(y, η) ∈ Sm
cl (U ×Rn−1,L(L2(R+,Ck)⊕Cl,S(R̄+,Ck̃)⊕Cl̃)),

g∗(y, η) ∈ Sm
cl (U ×Rn−1,L(L2(R+,Ck̃)⊕Cl̃,S(R̄+,Ck)⊕Cl)).

Symbolsg(y, η) of the form (2.3) are called Green symbols of orderm and typed. The space of all such symbols
is denoted bySm

cl (U ×Rn−1,Ψ ,d
G (R+;Ck,Ck̃;Cl,Cl̃)).

To any operatorA ∈ Ψm,d(X; v) one assigns a pair of principal symbolsσ(A) = (σΨ (A), σ∂(A)). Here,

σΨ (A) : π∗XV → π∗X Ṽ

is the interior symbol which is the restriction of the principal homogeneous symbol ofP from T ∗(2X) \ {0} to
T ∗X \ {0}, cf. (2.2). Moreover,

σ∂(A) : π∗Y
Hs(R+)⊗ VY

⊕
W

→ π∗Y

Hs−m(R+)⊗ ṼY

⊕
W̃

(2.4)
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is the boundary symbol ofA. It is defined for alls > d− 1/2. It is often convenient to think of it as a family of
maps

σ∂(A) : π∗Y
S(R̄+)⊗ VY

⊕
W

→ π∗Y

S(R̄+)⊗ ṼY

⊕
W̃

. (2.5)

The boundary symbol is defined by

σ∂(A) =
( σ∂(r+Pe+) 0

0 0

)
+ σ∂(G),

whereσ∂(r+Pe+)(y, η) = r+σΨ (A)(y, 0, η,Dr)e+ and

σ∂(G)(y, η) = σ∂(g0)(y, η) +
d∑

j=1

σ∂(gj)(y, η)
( Dj

r 0
0 0

)
,

σ∂(gj) being the principal homogeneous symbol ofgj . It is easy to verify thatσ∂(A) is twisted homogeneous of
degreem, i.e.,

σ∂(A)(y, λη) = λm
( κλ 0

0 I

)
σ∂(A)(y, η)

( κλ 0
0 I

)−1

for all λ ∈ R+. It is worth emphasizing that the group action inHs(R+) ⊗ VY is different from that in
Hs,γ(R+)⊗ VY , namely,(κλu)(r) := λ1/2u(λr) for λ > 0, as ifs = γ.

We systematically employ various facts on operators inΨm,d(X; v). In particular, any such operatorA
induces a continuous map

A :
Hs(X,V )

⊕
Hs(Y,W )

→
Hs−m(X, Ṽ )

⊕
Hs−m(Y, W̃ )

for all reals > d− 1/2, which is compact provided thatσ(A) = 0. Moreover, composition of operators induces
a map

Ψm1,d1(X; v1)×Ψm2,d2(X; v2) ↪→ Ψm,d(X; v2 ◦ v1)

where for
v1 = (V 1, V 2;W 1,W 2),
v2 = (V 2, V 3;W 2,W 3)

we setv2 ◦ v1 = (V 1, V 3;W 1,W 3), whilem = m1 +m2 andd = max{d1,m1 +d2}. On the level of principal
symbols we getσ(A2A1) = σ(A2)σ(A1) with componentwise multiplication.

2.2 Conditions with pseudodifferential projections

As usual, an operatorA ∈ Ψm,d(X; v) is calledσΨ -elliptic if the interior symbolσΨ (A) defines an isomorphism
π∗XV → π∗X Ṽ . In this case,

r+σΨ (A)(y, 0, η,Dr)e+ : Hs(R+)⊗ Vy → Hs−m(R+)⊗ Ṽy (2.6)

is known to be a family of Fredholm operators for all(y, η) ∈ T ∗Y \ {0} and alls > max{m, d} − 1/2. The
Fredholm property of (2.6) is in turn equivalent to that of

r+σΨ (A)(y, 0, η,Dr)e+ : S(R̄+)⊗ Vy → S(R̄+)⊗ Ṽy

for all (y, η) ∈ T ∗Y \ {0}.
An operatorA ∈ Ψm,d(X; v) is called Lopatinskii elliptic if it isσΨ -elliptic and if, in addition,σ∂(A)

induces an isomorphism (2.4) for anys > max{m, d} − 1/2, or, equivalently, an isomorphism (2.5).
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Let Ψm,d(X;V, Ṽ ) stand for the space of upper left corners of operator block matrices inΨm,d(X; v), where
v = (v). The question whether or not aσΨ -elliptic elementA ∈ Ψm,d(X;V, Ṽ ) may be interpreted as the upper
left corner of a Lopatinskii elliptic operatorA ∈ Ψm,d(X; v) gives rise to an operator algebra of boundary value
problems that is different from Boutet de Monvel’s algebra. A general answer is given in [Sch01]. It consists of
a new algebra with boundary conditions which in [Sch01] are called global projection conditions. Operators in
this algebra

A :
Hs(X,V )

⊕
Hs(Y,Q)

→
Hs−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

(2.7)

are characterised by the following data.
The upper left cornerA of the operator block matrixA is assumed to belong toΨm,d(X;V, Ṽ ).
ByQ is meant a tripleQ = (F,W,P ) consisting of a smooth vector bundleF overT ∗Y \{0}, a smooth vector

bundleW overY , and a pseudodifferential projectionP ∈ Ψ0
cl(Y ;W ) with the property thatF just amounts to

the range of the principal homogeneous symbol

p = σΨ (P ) : π∗Y W → π∗Y W, (2.8)

and similarly forQ̃ = (F̃ , W̃ , P̃ ).
The spaces on the boundary in (2.7) are given by

Hs(Y,Q) = PHs(Y,W ),
Hs(Y, Q̃) = P̃Hs(Y, W̃ ),

(2.9)

for s ∈ R. It is obvious that these are closed subspaces ofHs(Y,W ) andHs(Y, W̃ ), respectively.
The operator (2.7) is now defined to be a compositionA = P̃ÃE for an operatorÃ ∈ Ψm,d(X; v) with

v = (V, Ṽ ;W, W̃ ) and

E =
(
I 0
0 E

)
, P̃ =

( I 0
0 P̃

)
,

whereI stands for the identity operator in the corresponding Sobolev space onX andE for the canonical
embeddingHs(Y,Q) ↪→ Hs(Y,W ).

For v = (V, Ṽ ;Q, Q̃), we denote byΨm,d
gp (X; v) the set of all operators (2.7) described above. Continuity of

(2.7) holds for alls > d− 1/2.

Remark 2.1 If P ∈ Ψ0
cl(Y ;W ) is a pseudodifferential projection with principal homogeneous symbolp as

above, thenp2 = p. Vice versa, given any smooth homomorphismp : π∗Y W → π∗Y W which is positively
homogeneous of degree0 and satisfiesp2 = p, there exists a projectionP ∈ Ψ0

cl(Y ;W ) with σΨ (P ) = p. This
can be found in [Sch01].

Ellipticity of an operatorA ∈ Ψm,d
gp (X; v) is defined by a pair of principal symbolsσ(A) = (σΨ (A), σ∂(A)),

whereσΨ (A) : π∗XV → π∗X Ṽ is the interior symbol andσ∂(A) the boundary symbol which is a bundle homo-
morphism

σ∂(A) :
π∗Y S(R̄+)⊗ VY

⊕
F

→
π∗Y S(R̄+)⊗ ṼY

⊕
F̃

(2.10)

still satisfying

σ∂(A)(y, λη) = λm
( κλ 0

0 IF̃

)
σ∂(A)(y, η)

( κλ 0
0 IF

)−1

.

The boundary value problemA is called elliptic if bothσΨ (A) andσ∂(A) are isomorphisms.
Instead of the spaceS(R̄+) in (2.10) we could equivalently consider Sobolev spacesHs(R+) for arbitrary

s > max{m, d} − 1/2.
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Recall, cf. for instance [Sch01], that ifA ∈ Ψm,d
gp (X; v) is elliptic then the operator (2.7) is Fredholm

for any s > max{m, d} − 1/2. Moreover, this operator possesses a parametrixΠ ∈ Ψ−m,t
gp (X; v−1) with

t = max{d−m, 0} andv−1 = (Ṽ , V ; Q̃,Q) in the sense that

ΠA− I ∈ Ψ−∞,tl
gp (X;V ;Q),

AΠ − I ∈ Ψ−∞,tr
gp (X; Ṽ ; Q̃)

(2.11)

for tl = max{m, d} andtr = max{d −m, 0}. Clearly, the remainders in (2.11) are compact in the respective
spaces (2.7).

Notice that the index ofA depends on the particular choice of the global pseudodifferential projectionsP and
P̃ . However, if we do not change the principal symbols (2.8), the freedom in the choice of the projections does
not affect the Fredholm property. This is a general fact on operators in Hilbert spaces, as we shall discuss now.

To this end, letH andH̃ be Hilbert spaces,P1, P2 ∈ L(H) andP̃1, P̃2 ∈ L(H̃) be projections, such that both
P2 − P1 andP̃2 − P̃1 are compact. Then the following result holds.

Theorem 2.2 GivenA ∈ L(H, H̃), assume thatA1 = P̃1A : P1H → P̃1H̃ is a Fredholm operator. Then
this is also true forA2 = P̃2A : P2H → P̃2H̃, and the relative index formula holds

indA2 − indA1 = ind
(
P1 : P2H → P1H

)
+ ind

(
P̃2 : P̃1H̃ → P̃2H̃

)
. (2.12)

P r o o f. Let us first shows that the operators on the right-hand side of (2.12) are Fredholm indeed. SinceP2

acts as the identity onP2H, the difference

P2P1 − I = P2P1 − P 2
2

= P2 (P1 − P2)

is a compact operator onP2H. Therefore,P2 is the Fredholm inverse forP1, andP2P1 : P2H → P2H is
Fredholm of index0. An analogous statement holds for the projectionsP̃2 andP̃1. It follows that the composition
F given by

P2H
P1→ P1H

A1→ P̃1H̃
P̃2→ P̃2H̃

is a Fredholm operator with index

indF = indA1 + ind
(
P1 : P2H → P1H

)
+ ind

(
P̃2 : P̃1H̃ → P̃2H̃

)
.

On the other hand, we get

F = (P̃2P̃1)A2 (P2P1)− P̃2[P̃1, P̃2]A (P2P1) + P̃2P̃1A (I − P2)P1

where[P̃1, P̃2] is the commutator of̃P1 andP̃2 which is a compact operator oñH, for

[P̃1, P̃2] = P̃1P̃2 − P̃2P̃1

= (P̃2 − P̃1)(I − P̃1 − P̃2).

Furthermore,(I − P2)P1 = (P1 − P2)P1 is a compact operator onH. Hence,(P̃2P̃1)A2 (P2P1) differs from
F by a compact remainder and thus is itself Fredholm with the same indexindF = ind(P̃2P̃1)A2 (P2P1). As
we have already proved,P2P1 andP̃2P̃1 are Fredholm operators of index0. It follows thatA2 itself is Fredholm
andindF = indA2, as desired.

3 Boundary value problems without transmission property

3.1 Interior operators

LetX be a smooth compact manifold of dimensionn with smooth boundaryY = ∂X, andV , Ṽ vector bundles
over the double ofX.
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8 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

As defined above,Ψm
s (X;V, Ṽ ) is the space of all pseudodifferential operators of the form

A = r+Pe+ + S

whereP ∈ Ψm
cl (2X;V, Ṽ ) andS ∈ Ψ−∞(X◦;V, Ṽ ).

Clearly, operators inΨm
s (X;V, Ṽ ) are much more general than those in the subspaceΨm

s,tp(X;V, Ṽ ) of
operators with the transmission property.

If Sm
hg(T

∗X \{0},Hom(V, Ṽ )) denotes the set of all smooth bundle homomorphismsam : π∗XV → π∗X Ṽ that

are positively homogeneous of degreem in the covariable, everyA ∈ Ψm
s (X;V, Ṽ ) has a well-defined principal

homogeneous symbol
σΨ (A) := σΨ (P ) |T∗X\{0},

whereP ∈ Ψm
cl (2X;V, Ṽ ) is any operator with the property thatA − r+Pe+ belongs toΨ−∞(X◦;V, Ṽ ).

Moreover, there is a (non-canonical) linear map

op : Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) → Ψm
s (X;V, Ṽ ) (3.1)

with σΨ (op(am)) = am. It can be generated by a standard procedure in terms of local charts and local represen-
tatives of operators with given principal symbols.

Using the spacesHs(Rq, π∗Hs,γ(R+,Ck)) as a local model near the boundary, it is straightforward to intro-
duce weighted Sobolev spacesHs,γ(X,V ) onX for any vector bundleV overX. As mentioned, the embedding
Hs,γ(X,V ) ↪→ Hs

loc(X
◦, V ) holds for alls, γ ∈ R.

By [Sch98], for everyA ∈ Ψm
s (X;V, Ṽ ) and eachγ ∈ R there is an operatorRγ ∈ Ψ−∞(X◦;V, Ṽ ) such

thatAγ := A−Rγ induces a family of continuous operators

Aγ : Hs,γ(X,V ) → Hs−m,γ−m(X, Ṽ ) (3.2)

for all s ∈ R.
There are many ways to find suitable operatorsRγ . Any choice of a correspondenceA 7→ Aγ may be regarded

as an operator convention that maps a complete symbol ofA, i.e., a system of local symbols corresponding to a
covering ofX by coordinate charts, to a continuous operator (3.2). Settingop,γ(am) := (op(am))γ , cf. (3.1),
we get a map

op,γ : Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) →
⋂

s∈R

L(Hs,γ(X,V ),Hs−m,γ−m(X, Ṽ )).

In the rest of this paper we construct an operator algebraΨ ·
gp(X; v;w) of boundary value problems

A =
(
Aγ P
T Q

)
:
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

(3.3)

for arbitraryA ∈ Ψm
s (X;V, Ṽ ) and certain operatorsP , T andQ. The spacesHs(Y,Q) andHs−m(X, Q̃) are

the same as in (2.9).
Every σΨ -elliptic operatorA ∈ Ψm

s (X;V, Ṽ ) occurs up to a stabilisation as an upper left corner of an
elliptic (and then Fredholm) operator (3.3) for a suitable choice ofP , T , Q and dataQ, Q̃. The algebra
Ψ ·

gp(X; v;w) should contain parametrices of elliptic elements. We obtainΨ ·
gp(X; v;w) as an extension of the

algebraΨ ·
s(X; v;w) that plays a similar role asΨ ·

BdM(X; v) in connection with its Toeplitz extensionΨ ·
gp(X; v).

3.2 Edge algebra

Recall the calculus of boundary value problems onX which need not satisfy the transmission property with
respect to the boundaryY , cf. [Sch94].
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This algebra is denoted byΨ ·
s(X; v;w) with v = (V, Ṽ ;W, W̃ ) and weight dataw = (γ, γ −m). It consists

of block matrix operators

A :
C∞

comp(X◦, V )
⊕

C∞(Y,W )
→

C∞(X, Ṽ )
⊕

C∞(Y, W̃ )

of the form

A =
( A 0

0 0

)
+ G + C, (3.4)

the components of (3.4) being as follows.
By A is meant a classical pseudodifferential operator of orderm and typeV → Ṽ in the interior ofX. When

localised to a coordinate chart at the boundary,A is the pull-back of an operatorop(a) whose amplitude function
a is a(k̃× k) -matrix with entries fromSm

cl (U ×Rn−1,Ψm(R+;w)), wherek andk̃ are the fibre dimensions of
V andṼ , respectively.

The operatorG is a(2× 2) -block matrix with entriesGij , whereG11 has aC∞ kernel onX◦ ×X◦,G12 has
aC∞ kernel onX◦ × Y ,G21 has aC∞ kernel onY ×X◦ andG22 is a classical pseudodifferential operator of
orderm and typeW → W̃ onY . When localised to a coordinate chart close to the boundary,G corresponds to
an operatorop(g) with a Green symbolg ∈ Sm

cl (U ×Rq,ΨG(R+;Ck,Ck̃;Cl,Cl̃;w)).
Finally, the operatorC on the right-hand side of (3.4) is assumed to belong to the spaceΨ−∞

G (X; v;w), i.e.,
it is a smoothing Green operator in the edge calculus overX. Such operators are globally characterised by the
continuity properties

C :
Hs,γ(X,V )

⊕
Hs(Y,W )

→
H∞,γ−m+ε(X, Ṽ )

⊕
C∞(Y, W̃ )

,

C∗ :
Hs,−γ+m(X, Ṽ )

⊕
Hs(Y, W̃ )

→
H∞,−γ+ε(X,V )

⊕
C∞(Y,W )

for all s ∈ R and someε > 0 depending onG. Here,C∗ is the formal adjoint ofC in the sense

(Cu, g)H0,0(X,Ṽ )⊕H0(Y,W̃ ) = (u, C∗g)H0,0(X,V )⊕H0(Y,W )

for all
u ∈ C∞

comp(X◦, V )⊕ C∞(Y,W ),
g ∈ C∞

comp(X◦, Ṽ )⊕ C∞(Y, W̃ ).

Every operatorA ∈ Ψm
s (X; v;w) is known to induce a family of continuous mappings

A(λ) :
Hs,γ(X,V )

⊕
Hs(Y,W )

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, W̃ )

, (3.5)

wheres ∈ R. If A is elliptic then the operator (3.5) is Fredholm for alls ∈ R. In this case a parametrix
P ∈ Ψ−m

s (X; v−1;w−1), can be chosen in such a way that the compact remainders are projections of finite
rank. Namely,PA− I projects onto the null-space ofA whileAP − I onto a complement of the range ofA, for
each fixeds. In fact,kerA is independent ofs as well as the dimension ofcokerA, i.e., the index ofA does not
depend ons.

The constructions of this section can easily be generalised to the case of lower order operators, i.e., one can
introduce classesΨm−j

s (X; v;w) with j ∈ Z≥0 and weight dataw = (γ, γ − m). For j ≥ 1, we requireA
to belong toΨm−j

cl (X◦;V, Ṽ ) the local amplitude functiona to Sm−j
cl (U ×Rn−1,Ψm−j(R+; v;w)), andg to

belong toSm−j
cl (U ×Rq,ΨG(R+; v;w)).

By Sm−j
cl (U ×Rn−1,Ψm−j(R+; v;w)) is meant the set of all operator families of the form

a(y, η) =
(
σ(y, η) 0

0 0

)
+ c(y, η),
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10 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

whereσ is a (k̃ × k) -block matrix family with entriesϕ (a0(y, η) + a∞(y, η)) ϕ̃, andc(y, η) is a symbol of
Sm−j

cl (U ×Rn−1,ΨG(R+; v;w)). The expressionsa0 anda∞ stem from a Mellin quantisation, now related to

a symbolp ∈ Sm−j
cl ((U × R̄+)×Rn,L(Ck,Ck̃)), andϕ, ϕ̃ are cut-off functions.

The corresponding subclass of Green operators is denoted byΨm−j
s,G (X; v;w) and the spaces of upper left

corners byΨm−j
s (X;V, Ṽ ;w) andΨm−j

s,G (X;V, Ṽ ;w). respectively. Furthermore, instead of Mellin operators

Ψm
s,M+G(X;V, Ṽ ;w) = Ψm

s (X;V, Ṽ ;w) ∩Ψ−∞(X◦;V, Ṽ ;w) we have

Ψm−j
s,G (X;V, Ṽ ;w) = Ψm−j

s (X;V, Ṽ ;w) ∩Ψ−∞(X◦;V, Ṽ ;w)

for j ≥ 1.
For A ∈ Ψm−j

s (X; v;w), we introduce the pairσm−j(A) = (σm−j
Ψ (A), σm−j

∂ (A)) of principal interior
symbol and boundary symbol. The scheme is the same as forj = 0. Then,Ψm−j−1

s (X; v;w) just amounts to
the space of allA ∈ Ψm−j

s (X; v;w) satisfyingσm−j(A) = 0.
Composition of operators induces a map

Ψm1−j
s (X; v1;w1)×Ψm2−k

s (X; v2;w2) ↪→ Ψm1+m2−(j+k)
s (X; v2 ◦ v1;w2 ◦ w1)

where for
v1 = (V 1, V 2;W 1,W 2),
v2 = (V 2, V 3;W 2,W 3);

w1 = (γ1, γ1 −m1),
w2 = (γ1 −m1, γ1 −m1 −m2)

we setv2 ◦ v1 = (V 1, V 3;W 1,W 3) andw2 ◦ w1 = (γ1, γ1 −m1 −m2). On the level of principal symbols we
get

σm1+m2−(j+k)(A2A1) = σm2−k(A2)σm1−j(A1)

with componentwise multiplication. For a thorough treatment we refer the reader to [ST99].

3.3 Constructions for boundary symbols

Let γ ∈ R. Combining (3.1) with the operator convention of [Sch98], we get a map

op,γ : Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) → Ψm
s (X;V, Ṽ ;w) (3.6)

for w = (γ, γ − m), such thatσΨ (op,γ(am)) = am. Clearly, such a construction is not canonical and not
necessarily linear, but it yields a right inverse of the principal symbolic mapσΨ .

Denote bySm
hg(T

∗Y \ {0},Ψm(R+;VY , ṼY ;w)) the space of all principal homogeneous boundary symbols

σ∂(A) : π∗Y H
s,γ(R+)⊗ VY → π∗Y H

s−m,γ−m(R+)⊗ ṼY

belonging to elementsA ∈ Ψm
s (X;V, Ṽ ;w).

Moreover, letSm
hg,M+G(T ∗Y \{0},Ψm(R+;VY , ṼY ;w)) be the space of all principal homogeneous boundary

symbolsσ∂(A) of elementsA ∈ Ψm
s,M+G(X;V, Ṽ ;w).

In a similar manner we defineSm
hg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) in terms of the space of Green opera-

torsΨm
s,G(X;V, Ṽ ;w).

Note that operatorsσ∂(A) are pointwise elements of the cone algebra onR+ with weight control of breadth
ε for someε > 0 relative to the weightsγ andγ −m, respectively. From the cone theory we have an interior
symbolic structure in(r, %) ∈ T ∗R+ \ {0} which is the standard one of classical pseudodifferential operators on
R+, the exit symbolic structure that is responsible forr → +∞, and the principal conormal symbolic structure
for r → 0. This latter is given by the family

σMσ∂(A)(y, z) : Vy → Ṽy

for y ∈ Y andz ∈ Γ1/2−γ .
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SetT ∗Y X := T ∗X |Y and writeSm
hg(T

∗
Y X \ {0},Hom(VY , ṼY )) for the space of all restrictions of elements

in Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) to T ∗Y X \ {0}. Given anyam ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )), we form
A = op,γ(am). The operator familyσ∂(A)(y, η) allows one to recover

am |T∗
Y X\{0} ∈ Sm

hg(T
∗
Y X \ {0},Hom(VY , ṼY ))

in a unique way, which yields a linear map

σΨ ,Y : Sm
hg(T

∗Y \ {0},Ψm(R+;VY , ṼY ;w)) → Sm
hg(T

∗
Y X \ {0},Hom(VY , ṼY ))

with

kerσΨ ,Y = Sm
hg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)). (3.7)

Remark 3.1 For a pair

(pΨ , p∂) ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ ))× Sm
hg(T

∗Y \ {0},Ψm(R+;VY , ṼY ;w))

there exists anA ∈ Ψm
s (X;V, Ṽ ;w) satisfyingσ(A) = (pΨ , p∂) if and only if σΨ ,Y (p∂) = pΨ |T∗

Y X\{0}.

It is worth pointing out that for every choice ofop,γ the compositionσ∂ op,γ induces a linear map

σ∂ op,γ : Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) →
Sm

hg(T
∗Y \ {0},Ψm(R+;VY , ṼY ;w))

Sm
hg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w))

.

An element ofSm
hg(T

∗X \ {0},Hom(V, Ṽ )) is called elliptic if it defines an isomorphismπ∗XV → π∗X Ṽ .

Theorem 3.2 Suppose there is a nowhere vanishing vector field on the boundaryY . Then, for everyγ ∈ R,
the mapop,γ , cf. (3.6), can be chosen in such a way that the ellipticity ofam ∈ Sm

hg(T
∗X \ {0},Hom(V, Ṽ ))

entails the Fredholm property of

σm(y, η) := σ∂ op,γ(am)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy (3.8)

for all (y, η) ∈ T ∗Y \ {0}.
Note that for generalX a similar result holds up to stabilisation. By this we mean an elliptic symbolãm ∈

Sm
hg(T

∗X \ {0},Hom(V ⊕B, Ṽ ⊕B)) for some vector bundleB onX, such that

ãm = am ⊕ Iπ∗XB

onS∗X.

Theorem 3.3 Supposeγ ∈ R. For any ellipticam ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) there is a smooth vector
bundleB overX, such that for a suitable choice of the mapop,γ

σ̃m(y, η) := σ∂ op,γ(ãm)(y, η) : Hs,γ(R+)⊗ (V ⊕B)y → Hs−m,γ−m(R+)⊗ (Ṽ ⊕B)y

is a Fredholm operator for all(y, η) ∈ T ∗Y \ {0}.
Theorems 3.2 and 3.3 will be proved in Section 4.3. Ifam is elliptic, the operator (3.8) is Fredholm for any

s = s0 ∈ R andη 6= 0 if and only if the principal conormal symbol

σM σ∂ op,γ(am) (y, z) : Vy → Ṽy

is a family of isomorphisms for allz ∈ Γ1/2−γ . In this caseσm(y, η) is actually Fredholm for alls ∈ R, the
null-space ofσm(y, η) does not depend ons, and it is a finite-dimensional subspace ofSγ+ε(R+)×Vy for some
ε > 0. Moreover, there is a finite-dimensional subspace ofSγ−m+ε(R+)× Ṽy for someε > 0, which is a direct
complement of the range ofσm(y, η) in Hs−m,γ−m(R+)⊗ Ṽy for all s ∈ R. This is true for ally ∈ Y .

Copyright line will be provided by the publisher



12 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

3.4 Lopatinskii ellipticity

Let σm ∈ Sm
hg(T

∗Y \ {0},Ψm(R+;VY , ṼY ;w)) be such that the operator

σm(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy

is Fredholm for everys ∈ R and(y, η) ∈ T ∗Y \ {0}, cf. (3.8). Sinceσm is homogeneous, i.e.,σm(y, λη) =
λmκλσm(y, η)κ−1

λ for all λ > 0, it is often sufficient to considerσm on the unit cosphere bundleS∗Y . It will
cause no confusion if we use the same letter to designateσm and its restriction toS∗Y . We then get an index
element

indS∗Y σm ∈ K(S∗Y ).

If τm ∈ Sm
hg(T

∗Y \{0},Ψm(R+;VY , ṼY ;w)) is another element withσΨ ,Y (τm) = σΨ ,Y (σm), then relation
(3.7) gives

σm − τm ∈ Sm
hg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)).

Clearly,τm(y, η) is not necessarily a Fredholm family in the above setting, cf. (3.8). Moreover, if this is the
case, it may happen thatindS∗Y σm 6= indS∗Y τm.

Fix v = (V, Ṽ ;W, W̃ ). LetA ∈ Ψm
s (X; v;w) be a Lopatinskii elliptic boundary value problem with an upper

left cornerA ∈ Ψm
s (X;V, Ṽ ;w). If σm = σ∂(A) we then have a Fredholm family (3.8) and

indS∗Y σ∂(A) = [s∗Y W̃ ]− [s∗Y W ], (3.9)

wheresY : S∗Y → Y is the canonical projection. Thus, as in the calculus of boundary value problems with the
transmission property, we have

indS∗Y σ∂(A) ∈ s∗Y K(Y ),

cf. relation (0.1). Hence, this is a necessary condition forA to be Lopatinskii elliptic.
Given an elliptic symbolam ∈ Sm

hg(T
∗X \ {0},Hom(V, Ṽ )), we may ask whether to anyγ ∈ R there

corresponds a Lopatinskii elliptic operatorA ∈ Ψm
s (X; v;w) for a suitable choice of bundlesW andW̃ overY ,

such thatam = σΨ (A).

Theorem 3.4 Let γ ∈ R. Supposeam ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) is elliptic andA := op,γ(am) is
chosen in such a way that (3.8) is a family of Fredholm operators. Then the following are equivalent:

1) there is a Lopatinskii elliptic boundary value problemA ∈ Ψm
s (X; v;w) such thatam = σΨ (A);

2) indS∗Y σ∂(A) ∈ s∗Y K(Y ).

P r o o f. It remains to show the implication2) ⇒ 1). By assumption, there are vector bundlesW andW̃
on Y , such that (3.9) holds. It is actually a general property of Fredholm families that there exists agm ∈
Sm

hg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) with the property that under notation (3.8)

ker (σm + gm) (y, η) ∼= W̃y,
coker (σm + gm) (y, η) ∼= Wy

for all (y, η) ∈ T ∗Y \ {0}, independently of the specific choice ofs. We can fill up the family of Fredholm
operators(σm + gm)(y, η) to a smooth family of isomorphisms

(
σm + gm km

tm 0

)
(y, η) :

Hs,γ(R+)⊗ Vy

⊕
Wy

→
Hs−m,γ−m(R+)⊗ Ṽy

⊕
W̃y

, (3.10)

first for all (y, η) ∈ S∗Y and then for all(y, η) ∈ T ∗Y by twisted homogeneity of orderm. In addition, since
C∞ functions of compact support onR+ are dense inHs,γ(R+) for all s, γ ∈ R, the potential partkm can be
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chosen to be a mapπ∗Y W → π∗Y C
∞
comp(R+)⊗ ṼY , while the trace parttm may be represented by an element in

π∗Y W̃ ⊗ (C∞
comp(R+)⊗ Ṽ ∗

Y ) through integration

u 7→
∫ ∞

0

〈ktm(y,η)(r), u(r)〉Vydr

for all u ∈ Hs,γ(R+) ⊗ Vy. Here,〈·, ·〉Vy
denotes the pairing betweenVy and its dualV ∗

y . Let us now restrict
gm, km and tm to a coordinate neighbourhoodΩj on Y and interpret the variablesy as local coordinates in
U ⊂ Rn−1 with respect to a chartΩj → U . Choosing a zero excision functionχ(η) we obtain operator-valued
symbols

g = χgm ∈ Sm
cl (U ×Rn−1,L(Hs,γ(R+,Ck),H∞,γ−m(R+,Ck̃))),

k = χkm ∈ Sm
cl (U ×Rn−1,L(Cl,H∞,γ−m(R+,Ck̃))),

t = χtm ∈ Sm
cl (U ×Rn−1,L(Hs,γ(R+,Ck),Cl̃))

for all s ∈ R, wherek = k̃ and l, l̃ are the fibre dimensions of the bundlesV , Ṽ andW , W̃ , respectively.
Denote byGj , Kj andTj the pull-backs ofop(g), op(k) andop(t) from U to Ωj with respect to the charts and
trivialisations of the bundles involved. Pick a covering{Ω1, . . . ,ΩN} of Y by such coordinate neighbourhoods, a
subordinate partition of unity{φ1, . . . , φN}, and a family{ψ1, . . . , ψN} of functionsψj ∈ C∞

comp(Ωj) satisfying
φjψj = φj . We can then pass in a familiar way to an operator

( G K
T 0

)
=

N∑
j=0

( ϕbφj 0
0 φj

)( Gj Kj

Tj 0

)( ϕ̃bψj 0
0 ψj

)
,

whereϕb andϕ̃b are cut-off functions supported close to the boundary. It follows that

A :=
( op,γ(am) +G K

T 0

)
belongs toΨm

s (X; v;w) for v = (V, Ṽ ;W, W̃ ) andσΨ (A) is equal to (3.10), whileσΨ (A) = σΨ (op,γ(am)+G)
just amounts toam.

Remark 3.5 Under the hypotheses2) of Theorem 3.4 it is even possible to constructA ∈ Ψm
s (X; v;w) in

such a way thatA = op,γ(am) is equal to the upper left corner ofA.

To verify this, it is sufficient to setW = Y ×Cl for l ∈ N large enough, and to choose some homogeneous
potential symbolkm : π∗Y W → π∗Y H

s−m,γ−m(R+)⊗ ṼY such that

(σm km) : π∗Y
Hs,γ(R+)⊗ VY

⊕
W

→ π∗Y H
s−m,γ−m(R+)⊗ ṼY (3.11)

is surjective. For sufficiently largel this is possible, and then the null-space of(σm km) can be taken as a copy
of W̃ . Finally, (3.11) can be filled up by a second row(tm qm) to a block matrix isomorphism which plays the
role ofσ∂(A). Then we can pass to a desired boundary value problemA just as in the proof of Theorem 3.4.

The following lemma states that the topological obstruction for the existence of a Lopatinskii elliptic boundary
value problem is not affected by the choice of the operator conventionop,γ .

Lemma 3.6 Assume thatam ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) is a homogeneous elliptic symbol of order

m and õp,γ : Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) → Ψm
s (X;V, Ṽ ;w) be another choice of operator convention

(3.6). If for A = op,γ(am) and Ã = õp,γ(am) both σ∂(A) and σ∂(Ã) are families of Fredholm operators

Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy for all (y, η) ∈ T ∗Y \ {0}, thenindS∗Y σ∂(A) belongs tos∗Y K(Y )
if and only ifindS∗Y σ∂(Ã) does.
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P r o o f. The symbolsσ∂(A) andσ∂(Ã) can be written in the form

σ∂(A) = σ∂(a) + σ∂(m) + σ∂(g),
σ∂(Ã) = σ∂(ã) + σ∂(m̃) + σ∂(g̃),

the terms on the right-hand side having standard meaning in the cone theory. Sinceσ∂(a) = σ∂(ã) modulo
Sm

hg,M+G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)), we may assume without loss of generality thatσ∂(a) = σ∂(ã).
Furthermore, since the elements ofSm

hg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)) are families of compact operators,

the property ofindS∗Y σ∂(A) or indS∗Y σ∂(Ã) to belong tos∗Y K(Y ) is not affected by a Green summand.
Therefore,σ∂(g) andσ∂(g̃) may be ignored.

There isl ∈ N and a monomorphismkm : s∗Y (Y ×Cl) → s∗Y H
s−m,γ−m(R+)⊗ ṼY pointwise mapping to

C∞
comp(R+)⊗ Vy, such that both

(σ∂(A) km) : s∗Y
Hs,γ(R+)⊗ VY

⊕
Y ×Cl

→ s∗Y H
s−m,γ−m(R+)⊗ ṼY

and (
σ∂(Ã) km

)
: s∗Y

Hs,γ(R+)⊗ VY

⊕
Y ×Cl

→ s∗Y H
s−m,γ−m(R+)⊗ ṼY

are surjective. As usual, the choice ofs is unessential.
Setbm = (σ∂(A) km) and b̃m = (σ∂(Ã) km). Observe that the propertyindS∗Y σ∂(A) ∈ s∗Y K(Y ) is

equivalent to saying that forl large enough the bundleker bm over S∗Y may be represented by a system of
trivialisations with transitions isomorphisms depending only ony, not on the covariableη. Clearly, we have
indS∗Y σ∂(A) ∈ s∗Y K(Y ) if and only if indS∗Y bm ∈ s∗Y K(Y ), and similarly for the operator families with
tilde.

Let b̃−1
m be a right inverse of̃bm. It can be calculated within our class of boundary symbols. In fact, in the

casem = γ = 0 the right inverse is equal tõb∗m(b̃mb̃∗m)−1 which possesses the required structure due to the
algebra property of boundary symbols. The general case can then be treated by using order reducing operators,
cf. [ST99].

Sincebm − b̃m = (σ∂(m− m̃) 0) it follows that

bmb̃
−1
m = I + (σ∂(m− m̃) 0) b̃−1

m

= I + σ∂(m0) + g0

belongs toS0
hg,M+G(T ∗Y \{0},Ψm(R+;VY , ṼY ;w−1◦w)) restricted to the cosphere bundleS∗Y . Herem0 is a

smoothing Mellin family which consists of a single term containing the zero power ofr, and the familyg0 belongs
to S0

hg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w−1 ◦w)) restricted toS∗Y . Sinceσ∂(m0) is actually independent ofη
onS∗Y andg0 takes values in compact operators, we get

indS∗Y (I + σ∂(m0) + g0) = indS∗Y (I + σ∂(m0))
∈ π∗Y K(Y ).

From

indS∗Y b̃m = indS∗Y bm − indS∗Y (I + σ∂(m0) + g0)

we then immediately obtain the assertion.

The obstruction for the existence of Lopatinskii elliptic conditions is also not affected by the choice of the
parameterγ ∈ R in the operator conventionop,γ .
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Lemma 3.7 Let am ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) be elliptic. If forAγ = op,γ(am) andAδ = op,δ(am)
both

σ∂(Aγ)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy and
σ∂(Aδ)(y, η) : Hs,δ(R+)⊗ Vy → Hs−m,δ−m(R+)⊗ Ṽy

are Fredholm operators for all(y, η) ∈ T ∗Y \ {0}, then indS∗Y σ∂(Aγ) belongs tos∗Y K(Y ) if and only if
indS∗Y σ∂(Aδ) does.

P r o o f. Starting with the operators

Aγ : Hs,γ(X,V ) → Hs−m,γ−m(X, Ṽ ),
Aδ : Hs−γ+δ,δ(X,V ) → Hs−γ+δ−m,δ−m(X, Ṽ )

which are continuous for alls ∈ R, we pass to

Ãγ =
(
Dγ−δ

Ṽ

)−1

Aδ D
γ−δ
V

∈ Ψm
s (X;V, Ṽ ;w)

by using the order reducing operators from [ST99]. We then obviously obtainσΨ (Aγ) = σΨ (Ãγ) = am,

and so the boundary symbols ofA = Aγ and Ã = Ãγ satisfy the assumptions of Lemma 3.6. In order to
complete the proof it is now sufficient to observe thatindS∗Y σ∂(Ãγ) ∈ s∗Y K(Y ) is equivalent to saying that
indS∗Y σ∂(Aδ) ∈ s∗Y K(Y ), since bothindS∗Y σ∂(Dγ−δ

Ṽ
)−1 andindS∗Y σ∂(Dγ−δ

V ) are equal to zero.

4 Boundary value problems with projection conditions

4.1 Projection data

In the previous section we have seen that Lopatinskii elliptic conditions for a given operatorA of Ψm
s (X; v;w)

may only exists under condition2) of Theorem 3.4. If this is not the case, one might pass to another kind
conditions that we call global projection conditions.

Let us fix some vector space datav = (V, Ṽ ;Q, Q̃) with Q = (F,W,P ) andQ̃ = (F̃ , W̃ , P̃ ) as in§ 2.2.

Definition 4.1 Forw = (γ, γ −m), the spaceΨm
gp(X; v;w) is defined to consist of all operators

A :
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

, (4.1)

s ∈ R, such that

1) the upper left cornerA of the operator block matrixA is assumed to be inΨm
s (X;V, Ṽ ;w);

2) there is anÃ ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w) such thatA = P̃ÃE , whereP̃ andE have the same meaning as in

§ 2.2.

Denote byΨm
gp,M+G(X; v;w) the subspace ofΨm

gp(X; v;w) consisting of allA such thatA = P̃ÃE for some

Ã ∈ Ψm
M+G(X;V, Ṽ ;W, W̃ ;w). In a similar way we introduceΨm

gp,G(X; v;w).
It is now clear that the principal symbolic structure ofΨm

gp(X; v;w) consists of pairsσ(A) = (σΨ (A), σ∂(A)),
whereσΨ (A) : π∗XV → π∗X Ṽ is the principal interior symbol andσ∂(A) the principal boundary symbol which
is a bundle homomorphism

σ∂(A) :
π∗Y H

s,γ(R+)⊗ VY

⊕
F

→
π∗Y H

s−m,γ−m(R+)⊗ ṼY

⊕
F̃

(4.2)
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16 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

given by

σ∂(A)(y, η) :=
(
I 0
0 p̃(y, η)

)
σ∂(Ã)(y, η)

(
I 0
0 e(y, η)

)
,

wheree : F ↪→ π∗Y W is the canonical embedding andp̃ the principal homogeneous symbol ofP̃ ∈ Ψ0
cl(Y ; W̃ ).

Theorem 4.2 Composition of operators induces a map

Ψm1
gp (X; v1;w1)×Ψm2

gp (X; v2;w2) ↪→ Ψm1+m2
gp (X; v2 ◦ v1;w2 ◦ w1)

where for
v1 = (V 1, V 2;Q1, Q2),
v2 = (V 2, V 3;Q2, Q3);

w1 = (γ1, γ1 −m1),
w2 = (γ1 −m1, γ1 −m1 −m2)

we setv2 ◦ v1 = (V 1, V 3;Q1, Q3) andw2 ◦ w1 = (γ1, γ1 −m1 −m2).
For the principal symbols we get

σm1+m2−(j+k)(A2A1) = σm2−k(A2)σm1−j(A1)

with componentwise multiplication.
If A1 orA2 belongs to one of the subspaces with subscriptM +G orG, the same is true for the composition.

P r o o f. This assertion is an immediate consequence of Definition 4.1 and of what has been proved in§ 3.2.

Note thatΨm
gp(X; v;w) can be identified with the set of all compositionsA = P̃ÃP with operatorsÃ ∈

Ψm
s (X;V, Ṽ ;W, W̃ ;w) as in Definition 4.1. HenceΨm

gp(X; v;w) survives under taking the formal adjointA∗

with respect to the scalar products inH0,0(X,V )⊕L2(X,W ) andH0,0(X, Ṽ )⊕L2(X, W̃ ), for the larger class
Ψm

s (X; ·;w) does.

Theorem 4.3 Assume thatA ∈ Ψm
gp(X; v;w). Then,A∗ ∈ Ψm

gp(X; v∗;w∗) wherev∗ = (Ṽ , V ;Q∗, Q̃∗) for

Q∗ = (σΨ (P ∗)π∗Y W,W,P
∗) andQ̃∗ of a similar form, andw∗ = (−γ +m, γ).

Let
A ∈ Ψm

gp(X; vA;w),
B ∈ Ψm

gp(X; vB;w)

for
vA = (VA, ṼA;QA, Q̃A),
vB = (VB, ṼB;QB, Q̃B);

QA = (FA,WA, PA),
Q̃A = (F̃A, W̃A, P̃A),

and similarlyQB, Q̃B. Then one defines the direct sumA⊕B ∈ Ψm
gp(X; vA⊕ vB;w) of A andB in a canonical

way, where

vA ⊕ vB =
(
VA ⊕ VB, ṼA ⊕ ṼB;QA ⊕QB, Q̃A ⊕ Q̃B

)
,

QA ⊕QB = (FA ⊕ FB,WA ⊕WB, PA ⊕ PB)

and, similarly,Q̃A ⊕ Q̃B. For alls ∈ R, the direct sum induces a continuous linear operator

A⊕ B :
Hs,γ(X,VA ⊕ VB)

⊕
Hs(Y,QA ⊕QB)

→
Hs−m,γ−m(X, ṼA ⊕ ṼB)

⊕
Hs−m(Y, Q̃A ⊕ Q̃B)

.

Using in Definition 4.1 the classesΨm−j
s (X; v;w) defined at the end of§ ??, we also introduce the sub-

spacesΨm−j
gp (X; v;w) with j ∈ Z≥0. For any operatorA ∈ Ψm−j

gp (X; v;w), we have a corresponding

pair σm−j(A) = (σm−j
Ψ (A), σm−j

∂ (A)) of principal interior and boundary symbols of orderm − j. Then,
Ψm−j−1

gp (X; v;w) is easily seen to coincide with the space of allA ∈ Ψm−j
gp (X; v;w) satisfyingσm−j(A) = 0.

Theorem 4.4 LetA ∈ Ψm
gp(X; v;w) andσ(A) = 0. Then,A ∈ Ψm−1

gp (X; v;w) and the operator (4.1) is
compact for alls ∈ R.
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P r o o f. Let us writeA in the formA = P̃ÃE for anÃ ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w). If we set

˜̃A :=
( I 0

0 P̃

)
Ã

( I 0
0 P

)
,

we also getA = P̃ ˜̃AE , andσ(A) = 0 impliesσ( ˜̃A) = 0, the latter symbol refers toΨm
s (X;V, Ṽ ;W, W̃ ;w).

This gives us ˜̃A ∈ Ψm−1
s (X;V, Ṽ ;W, W̃ ;w), which entailsA ∈ Ψm−1

gp (X; v;w). The compactness of (4.1)

follows from the compactness of̃̃A in usual Sobolev spaces.

Theorem 4.5 LetAj ∈ Ψm−j
gp (X; v;w) be a sequence of boundary value problems, such that theε -weight

in the Green operators involved inAj does not depend onj. Then there exists anA ∈ Ψm
gp(X; v;w), which is

unique moduloΨ−∞
gp,G(X; v;w), such that

A ∼
∞∑

j=0

Aj ,

i.e.,A−
N−1∑
j=0

Aj ∈ Ψm−N
gp (X; v;w) for all N ∈ N.

The proof is an easy consequence of a corresponding result for the operator spaceΨm
s (X;V, Ṽ ;W, W̃ ;w).

4.2 Ellipticity under projection data

As usual, a boundary value problemA ∈ Ψm
gp(X; v;w) is called elliptic if bothσΨ (A) andσ∂(A) are isomor-

phisms.
The condition that (4.2) is an isomorphism does not depend ons. If it is satisfied for ans0 ∈ R then so is for

all s ∈ R.
Let us now show that in contrast to Lopatinskii conditions there is no obstruction for the existence of elliptic

global projection conditions.

Theorem 4.6 Letam ∈ Sm
hg(T

∗X \ {0},Hom(V, Ṽ )) be an arbitrary elliptic element. Then there is a vector

bundleB overX, such that for eachγ ∈ R there are triplesQ = (F,W,P ), Q̃ = (F̃ , W̃ , P̃ ) depending onγ,
and an elliptic operatorA ∈ Ψm

gp(X; ṽ;w) with ṽ = (V ⊕ B, Ṽ ⊕ B;Q, Q̃) andw = (γ, γ −m), satisfying
σΨ (A) = ãm in the notation of Theorem 3.3.

P r o o f. For notational convenience let us assume thatB = 0. The construction in the general case witham

replaced bỹam is completely analogous. According to Theorem 3.3 we find an operatorAγ = op,γ(am) in

Ψm
s (X;V, Ṽ ;w) with the property that

σm(y, η) := σ∂(Aγ)(y, η) : Hs,γ(R+)⊗ Vy → Hs−m,γ−m(R+)⊗ Ṽy

is a family of Fredholm operators parametrised by(y, η) ∈ T ∗Y \ {0}.
Choose vector bundlesF and F̃ overS∗Y , such that[F̃ ] − [F ] = indS∗Y σm. By a familiar property of

Fredholm families, there is a

gm ∈ Sm
hg,G(T ∗Y \ {0},Ψm(R+;VY , ṼY ;w)),

such that under notation (3.8)
ker (σm + gm) (y, η) ∼= F̃(y,η),

coker (σm + gm) (y, η) ∼= F(y,η)

for all (y, η) ∈ T ∗Y \ {0}, independently of the specific choice ofs. As usual, we can fill up the family of
Fredholm operators(σm + gm)(y, η) to a family of isomorphisms

(
σm + gm km

tm 0

)
(y, η) :

Hs,γ(R+)⊗ Vy

⊕
F(y,η)

→
Hs−m,γ−m(R+)⊗ Ṽy

⊕
F̃(y,η)

, (4.3)

Copyright line will be provided by the publisher



18 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

first for all (y, η) ∈ S∗Y and then for all(y, η) ∈ T ∗Y by twisted homogeneity of orderm.
To shorten notation, the bundlesF andF̃ overS∗Y will be identified with their pull-backs overT ∗Y \ {0}

under the canonical projection(y, η) 7→ (y, η/|η|). Choose any bundlesW andW̃ overY , such thatF andF̃
are subbundles ofπ∗Y W andπ∗Y W̃ , respectively. From (4.3) we can pass to a homomorphism

(
σm + gm k̃m

t̃m 0

)
: π∗Y

Hs,γ(R+)⊗ VY

⊕
W

→ π∗Y

Hs−m,γ−m(R+)⊗ ṼY

⊕
W̃

(4.4)

by extendingkm to k̃m by zero on a complementary bundleF⊥ toF in π∗Y W , while t̃m is defined by composing
tm with the embedding̃F → π∗Y W̃ .

In the same way as in the proof of Theorem 3.4 we construct an operatorÃ ∈ Ψm
s (X;V, Ṽ ;W, W̃ ;w) whose

principal boundary symbol just amounts to (4.4). In addition, the projectionsπ∗Y W → F andπ∗Y W̃ → F̃ along
complementary bundlesF⊥ of F in π∗Y W and F̃⊥ of F̃ in π∗Y W̃ can be interpreted as principal symbols of
certain projectionsP ∈ Ψ0

cl(Y,W ) and P̃ ∈ Ψ0
cl(Y, W̃ ), respectively, cf. Remark 2.1. Then, formingA by

formulaA = P̃ÃE yields an elliptic boundary value problemA ∈ Ψm
gp(X; v;w) for v = (V, Ṽ ;Q, Q̃) and

Q = (F,W,P ), Q̃ = (F̃ , W̃ , P̃ ), satisfyingσΨ (A) = am.

To some extent, elliptic problems with global projection conditions are complemented to Lopatinskii elliptic
boundary value problems.

Theorem 4.7 For any elliptic boundary value problemA ∈ Ψm
gp(X; vA;w) with vA = (V, Ṽ ;QA, Q̃A) there

is an elliptic boundary value problemB ∈ Ψm
gp(X; vB;w) with vB = (Ṽ , V ;QB, Q̃B), such thatA ⊕ B ∈

Ψm
s (X; v;w) for v = (V ⊕ Ṽ ;CN ) is Lopatinskii elliptic.

P r o o f. The upper left cornerA of A belongs toΨm
s (X;V, Ṽ ;w). Its formal adjointA∗ is an element of

Ψm
s (X; Ṽ , V ;w∗) for w∗ = (−γ +m,−γ). The definition ofA∗ is based on the relation

(Au, g)H0,0(X,Ṽ ) = (u,A∗g)H0,0(X,V )

for all u ∈ C∞(X,V ) andg ∈ C∞(X, Ṽ ) of compact support in the interior ofX. This is compatible with the
pointwise formal adjoint on the level of principal boundary symbols

(σ∂(A)(y, η)u, g)H0,0(R+,Ck̃) = (u, σ∂(A∗)(y, η)g)H0,0(R+,Ck),

k and k̃ being the ranks ofV and Ṽ , respectively. The symbolσ∂(A∗) defines a bundle homomorphism
π∗Y H

s,−γ+m(R+)⊗ ṼY → π∗Y H
s−m,−γ(R+)⊗ VY which is Fredholm for alls ∈ R, and

indS∗Y σ∂(A∗) = − indS∗Y σ∂(A).

Pick a sufficiently largeN ∈ N, such that bothFA and F̃A have complementary bundlesFB and F̃B in
S∗Y ×CN , i.e.,

FA ⊕ FB = S∗Y ×CN ,

F̃A ⊕ F̃B = S∗Y ×CN .

Then,
indS∗Y σ∂(A∗) = [F̃B]− [FB].

By [ST99], we have order and weight reducing isomorphisms

Dm−2γ
V : Hs,−γ(X,V ) → Hs−m+2γ,γ−m(X,V ),

Dm−2γ

Ṽ
: Hs,−γ+m(X, Ṽ ) → Hs−m+2γ,γ(X, Ṽ ).

which are continuous for alls ∈ R. Using them we pass fromA∗ to the operatorB := Dm−2γ
V A∗ (Dm−2γ

Ṽ
)−1

which obviously belongs toΨm
s (X; Ṽ , V ;w) and has the property

indS∗Y σ∂(B) = indS∗Y σ∂(A∗).
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As in Theorem 4.6 we find an elementgm ∈ Sm
hg,G(T ∗Y \ {0},Ψm(R+; ṼY , VY ;w)), such that

ker (σ∂(B) + gm) (y, η) ∼= F̃B,(y,η),
coker (σ∂(B) + gm) (y, η) ∼= FB,(y,η)

for all (y, η) ∈ T ∗Y \ {0}. Set
QB = (FB, Y ×CN , PB),
Q̃B = (F̃B, Y ×CN , P̃B),

wherePB andP̃B are pseudodifferential projections ofΨ0
cl(Y ;CN ), whose principal symbols are the projections

Y × CN → FB andY × CN → F̃B alongFA andF̃A, respectively. Analysis similar to that in the proof of
Theorem 4.6 then gives us an elliptic operatorB ∈ Ψm

gp(X; vB;w) with the desired properties.

The boundary value problemA can be recovered from̃A = A⊕ B by the formulaA = P̃A Ã EA with

EA =
(
I 0
0 EA

)
, P̃A =

( I 0
0 P̃A

)
,

whereEA is the canonical embeddingHs(Y,QA) ↪→ Hs(Y,CN ), and similarly forB.
LetA ∈ Ψm

gp(X; v;w) wherev = (V, Ṽ ;Q, Q̃) andw = (γ, γ −m). An operatorΠ ∈ Ψ−m
gp (X; v−1;w−1)

with v−1 = (Ṽ , V ; Q̃,Q) andw−1 = (γ −m, γ) is called a parametrix ofA if

ΠA− I ∈ Ψ−∞
gp,G

(
X; v−1 ◦ v;w−1 ◦ w

)
,

AΠ − I ∈ Ψ−∞
gp,G

(
X; v ◦ v−1;w ◦ w−1

)
.

(4.5)

Theorem 4.8 Every elliptic boundary value problemA ∈ Ψm
gp(X; v;w) possesses a parametrixΠ in the

spaceΨ−m
gp (X; v−1;w−1).

P r o o f. Let us apply Theorem 4.7 toA and formÃ = A ⊕ B ∈ Ψm
s (X; ṽ;w) with some complementary

elliptic operatorB. By [ST99],Ã has a parametrix̃P ∈ Ψ−m
s (X; ṽ−1;w−1), whereσ(P̃) = σ(Ã)−1. Define a

soft left parametrix forA by

Π0 =
(
I 0
0 P

)
P̃

( I 0
0 Ẽ

)
whereẼ : Hs−m(Y, Q̃) ↪→ Hs−m(Y, W̃ ) is the canonical embedding involved iñQ, andP ∈ Ψ0

cl(Y,W ) the
projection involved inQ. Then we get

Π0A =
( I 0

0 P

)
P̃

( I 0
0 P̃

)
Ã

( I 0
0 E

)
.

It follows that the remainderSl = I − Π0A belongs toΨ0
gp(X; v−1 ◦ v;w−1 ◦ w) and satisfiesσ(Sl) = 0.

By Theorem 4.4 we deduce thatSl ∈ Ψ−1
gp (X; v−1 ◦ v;w−1 ◦ w). Applying Theorem 4.5 we find an operator

Cl ∈ Ψ−1
gp (X; v−1 ◦ v;w−1 ◦ w) satisfying(I + Cl)(I − Sl) = I moduloΨ−∞

gp,G(X; v−1 ◦ v;w−1 ◦ w). To do
this, it suffices to form the asymptotic sum

Cl :=
∞∑

j=1

Sj
l .

This immediately yields(I + Cl)Π0A = 1 moduloΨ−∞
gp,G(X; v−1 ◦ v;w−1 ◦ w), and therefore

Πl := (I + Cl)Π0

∈ Ψ−m
gp (X; v−1;w−1)

is a left parametrix ofA. In a similar manner we find a right parametrix, and so we may takeΠ = Πl.

As usual, the existence of a parametrix implies the Fredholm property of elliptic problems with global projec-
tion conditions.
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Theorem 4.9 LetA ∈ Sm
gp(X; v;w) be elliptic. Then

A :
Hs,γ(X,V )

⊕
Hs(Y,Q)

→
Hs−m,γ−m(X, Ṽ )

⊕
Hs−m(Y, Q̃)

is a Fredholm operator for alls ∈ R, cf. (2.7). Moreover, the null-space ofA is independent ofs as well as the
codimension of the range ofA, i.e.,indA is independent ofs.

The parametrixΠ of Theorem 4.8 can be chosen in such a way that the smoothing remainders are projections
of finite rank. In fact,I −ΠA projects ontokerA while I −AΠ projects onto a complement ofimA, for every
s.

P r o o f. The Fredholm property is a direct consequence of the fact that the remaindersI −ΠA andI −AΠ
in (4.5) are compact operators, which is due to Theorem 4.4. The second part of Theorem 4.9 is a consequence
of general facts on elliptic operators that are always satisfied when we have elliptic regularity in the respective
scales of spaces.

As a converse statement for Theorem 4.9 we prove that ellipticity is not only sufficient but also necessary for
the Fredholm property.

Theorem 4.10 SupposeA ∈ Ψ0
gp(X; v;w) for v = (V, Ṽ ;Q, Q̃) andw = (0, 0). If the operator

A :
L2(X,V )

⊕
H0(Y,Q)

→
L2(X, Ṽ )

⊕
H0(Y, Q̃)

(4.6)

is Fredholm, thenA is elliptic.

P r o o f. Write

A =
( A K
T Q

)
in (4.6) and setQ⊥ = (σΨ (I − P )W,W, I − P ) . Then

L2(Y,W ) = H0(Y,Q)⊕H0(Y,Q⊥)

and we defineB ∈ Ψ0
s (X;V, Ṽ ;W, W̃ ⊕W ; (0, 0)) by

B :
L2(X,V )

⊕
L2(Y,W )

∼=

L2(X,V )
⊕

H0(Y,Q)
⊕

H0(Y,Q⊥)

C→

L2(X, Ṽ )
⊕

H0(Y, Q̃)
⊕

H0(Y,Q⊥)

↪→

L2(X, Ṽ )
⊕

L2(Y, W̃ )
⊕

L2(Y,W )

∼=
L2(X, Ṽ )

⊕
L2(Y, W̃ ⊕W )

,

where the mappingC is given by

C =
( A K 0
T Q 0
0 0 I

)
.

It is clear thatdim kerB = dim kerA <∞. Moreover,

kerB∗B = kerB
= (imB∗B)⊥

andB∗B has closed range, forC∗C has. It follows thatB∗B ∈ Ψ0
s (X;V ;W ; (0, 0)) is a Fredholm operator. By

the above,B∗B is an elliptic element of the calculus. This implies that bothσΨ (A) andσ∂(A) are injective. By
passing to adjoint operators we can show in an analogous manner that the symbolsσΨ (A) andσ∂(A) are also
surjective.
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4.3 Operators of order zero

Here we study operatorsA ∈ Ψ0
s (X;V, Ṽ ; (0, 0)) and associated boundary symbols in more detail and prove

Theorems 3.2 and 3.3. Note that by setting

A 7→ Dγ−m

Ṽ
AD−γ

V

one obtains an isomorphismΨm
s (X;V, Ṽ ; (γ, γ −m)) → Ψ0

s (X;V, Ṽ ; (0, 0)).
A direct computation shows that for everỹA ∈ Ψ0

cl(2X;V, Ṽ ) the operatorr+Ãe+ belongs to the space
Ψ0

s (X;V, Ṽ ; (0, 0)). Moreover, for anyA ∈ Ψ0
s (X;V, Ṽ ; (0, 0)) there exists an operator̃A ∈ Ψ0

cl(2X;V, Ṽ ),
such thatA = r+Ãe+ +M+G holds for suitableM+G ∈ Ψ0

M+G(X;V, Ṽ ; (0, 0)). For the principal boundary
symbol ofA we actually have

σ∂(A)(y, η) = r+ã0(y, 0, η,Dr)e+ + σ∂(M +G)(y, η) : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy, (4.7)

whereã0 is the principal homogeneous symbol ofÃ.
Note that in contrast to the usual domain ofσ∂(A) we now preferL2 -spaces, because in the case of violated

transmission property the standard Sobolev spaces or Schwartz spaces with smoothness up to the boundary do
not survive under the action of pseudodifferential operators.

SetS∗Y X := S∗X |Y and denote byS0
hg(S

∗
Y X,Hom(VY , ṼY )) the space of all restrictionsa |S∗

Y X for a ∈
S0

hg(T
∗X \ {0},Hom(V, Ṽ )).

Given anyA ∈ Ψ0
s (X;V, Ṽ ; (0, 0)), such thatσΨ (A) ∈ S0

hg(T
∗X \ {0},Hom(V, Ṽ )) is elliptic, we consider

a := σΨ (A) |S∗
Y X

and ask whether the family

op+(a)(y, η) = r+a(y, η,Dr)e+ : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy (4.8)

is Fredholm for all(y, η) ∈ S∗Y .
WriteN for the[−1, 1] -bundle overY induced by the conormal bundle ofY , i.e.,N is a trivial bundle whose

fibres are intervals[−1, 1] connecting the south pole(η, %) = (0,−1) with the north pole(η, %) = (0, 1) of S∗yX,
wherey varies over all ofY .

Let us recall a criterion for the Fredholm property of (4.8) in terms of Mellin symbols

g±(z) =
1

1− e∓2πz
,

the functionsg±(z) being meromorphic inz ∈ C with simple poles at the pointsıj, wherej ∈ Z. Thus the lines
Γγ = {z ∈ C : =z = γ} do not contain poles provided thatγ 6∈ Z.

Choose a diffeomorphismz : (−1, 1) → Γ1/2 with the property that<z(%) → ±∞ for % → ±1. Setting
a±(y) := a(y, 0,±1) we introduce a family of homomorphismsVY → ṼY by

ã(y, %) := a+(y)g+(z(%)) + a−(y)g−(z(%)). (4.9)

This is well defined for all−1 ≤ % ≤ 1, sinceg+(z) + g−(z) = 1 andg±(z) tends to1 when<z → ±∞ along
the lineΓ1/2.

More precisely, the family (4.9) is a convex combination of the homomorphismsa±(y) : Vy → Ṽy.

Theorem 4.11 The operators (4.8) are Fredholm for all(y, η) ∈ S∗Y if and only if

ã(y, η, %) =
{
a+(y)g+(z(%)) + a−(y)g−(z(%)), for η = 0, % ∈ [−1, 1],
σΨ (A) |S∗

Y X , for |η, %| = 1, (4.10)

is a family of isomorphismsVy → Ṽy for all (y, η, %) ∈ S∗Y X ∪N .
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Theorem 4.11 is known from the theory of singular integral operators, cf. [Esk80]. An explicit proof of the
necessity may be found in [RS82b].

Mention that ifop+(a) stems from a symbolσΨ (A) with the transmission property, we havea+(y) = a−(y),
and hence the criterion of Theorem 4.11 is automatically satisfied as soon asσΨ (A) is elliptic.

In general, each family of isomorphisms (4.10) represents an elementσ(ã) in the relativeK -group of the pair
(B∗

Y X,S
∗
Y X ∪N), whereB∗X is the unit coball bundle ofX andB∗

Y X = B∗X |Y .
By K(B∗

Y X,S
∗
Y X ∪N) ∼= K(R2 × S∗Y ) and the Bott periodicity theorem there is an isomorphism

ι : K(B∗
Y X,S

∗
Y X ∪N) → K(S∗Y ).

Theorem 4.12 Let σΨ (A) be elliptic of order0. SupposeσΨ (A) |S∗
Y X extends to a family of isomor-

phisms (4.10) onS∗Y X ∪ N , andσ(ã) ∈ K(B∗
Y X,S

∗
Y X ∪ N) is the associated element. Then, the equality

indS∗Y op+(a) = ι(σ(ã)) holds fora = σΨ (A) |T∗
Y X\{0}.

For symbols with the transmission property Theorem 4.12 goes at least as far as [BdM71]. A related statement
for symbols of elliptic differential operators is owed to [AB64]. The general case not assuming the transmission
property is treated in [RS82b].

It is clear that any other extensioñ̃a : VY → ṼY of σΨ (A) |S∗
Y X to S∗Y X ∪ N also represents an element

σ(˜̃a) ∈ K(B∗
Y X,S

∗
Y X∪N) and hence a certainι(σ(˜̃a)) ∈ K(S∗Y ). It is not obvious at first glance howι(σ(˜̃a))

can be interpreted asindS∗Y σ for a family σ(y, η) : L2(R+) ⊗ Vy → L2(R+) ⊗ Ṽy of Fredholm operators
parametrised by(y, η) ∈ S∗Y . But the pointwise analytic information from [Esk80] combined with that on the
structure of pseudodifferential boundary value problems not requiring the transmission property from [RS82b]
gives us the following scenario. LetF(VY , ṼY ) denote the set of all families of homomorphismsVy → Ṽy,
continuously parametrised by(y, η, %) ∈ S∗Y X ∪N , that vanish onS∗Y X. Every element ofF(VY , ṼY ) can be
canonically identified with a continuous family of homomorphisms, parametrised by(y, %) ∈ N = Y × [−1, 1],
vanishing onY × ∂[−1, 1]. We then havẽa−1˜̃a (y, η, %) = 1 + f(y, %) for somef ∈ F(VY , ṼY ), or

˜̃a(y, η, %) = ã(y, η, %) (1 + f(y, %))

= ã(y, η, %) + f̃(y, %)

for an f̃ ∈ F(VY , ṼY ). It suffices to consider elements˜̃a of the above kind, such that the pull-back off̃(y, %)
under% = %(z) is a Schwartz function ofz ∈ Γ1/2. In fact, we can obviously construct such an˜̃a starting with an

arbitrary family˜̃̃a of isomorphisms, satisfying̃a− ˜̃̃a ∈ F(VY , ṼY ), by a small change of̃̃̃a |N nearY × ∂[−1, 1]
within the homotopy class of families of isomorphisms represented by˜̃̃a. We then obtainσ(˜̃̃a) = σ(˜̃a) and hence

ι σ(˜̃̃a) = ι σ(˜̃a).
Using the spacesC∞(U,Mm(Γ1/2,Hom(Ck,Ck̃))) as local models, it is straightforward to define spaces

Mm(Y × Γ1/2,Hom(VY , ṼY )) for vector bundlesVY andṼY overY .

Theorem 4.13 LetσΨ (A) be elliptic of order zero anda(y, ξ) the restriction ofσΨ (A) toT ∗Y X\{0}. Suppose
m is an element ofM−∞(Y × Γ1/2,Hom(VY , ṼY )), such that

˜̃a(y, η, %) =
{
a+(y)g+(z(%)) + a−(y)g−(z(%)) +m(y, z(%)), if η = 0, % ∈ [−1, 1],
σΨ (A) |S∗

Y X , if |η, %| = 1, (4.11)

defines a family of isomorphismsVy → Ṽy for all (y, η, %) ∈ S∗Y X ∪ N . Then, for arbitrary cut-off functions
ω(r) andω̃(r),

op+(a)(y, η) + ω(r|η|) opM (m)ω̃(r|η|) : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy

is a family of Fredholm operators parametrised by(y, η) ∈ T ∗Y \ {0}, and for its restriction toS∗Y we have
indS∗Y (·) = ι σ(˜̃a).

This theorem generalises Theorems 4.11 and 4.12. The Fredholm property is shown in [Esk80] in a slightly
modified form without̃ω. The present formulation is given in [Sch94].

Proof of Theorem 3.2.It suffices to treat the casem = γ = 0. Indeed, the reduction to order and weight zero
as at the beginning of§ 4.3 can also be done on the level of interior and boundary symbols. In other words, we
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can first pass to a symbol of order zero by settinga0 = σΨ (Dγ−m

Ṽ
)amσΨ (D−γ

V ), carry out our construction that
yields a Fredholm familyσ0(y, η) as asserted in (3.8), where it is sufficient to consider

σ0(y, η) : L2(R+)⊗ Vy → L2(R+)⊗ Ṽy.

Then we may setσm(y, η) := σ∂(D−γ+m

Ṽ
)(y, η)σ0(y, η)σ∂(Dγ

V )(y, η). As the boundary symbol can be repre-

sented in the form (4.7), it suffices to show thata0(x, ξ) |S∗
Y X for an elliptic principal symbola0 : π∗XV → π∗X Ṽ

admits an extension to an isomorphism

ã : π∗S∗
Y (X)∪NVY → π∗S∗

Y (X)∪N ṼY , (4.12)

whereπS∗
Y (X)∪N : S∗Y (X) ∪N → Y stands for the canonical projection. In fact, having granted this, we apply

an approximation argument of [RS82b] to obtain an element

m(y, z) ∈M−∞(Y × Γ1/2,Hom(VY , ṼY )),

such that (4.11) withσΨ (A) |S∗
Y X replaced bya0 |S∗

Y X is also an extension ofa0 |S∗
Y X to an isomorphism over

all of S∗Y X ∪ N , which is homotopic tõa through isomorphisms. By assumption, there is a nowhere vanishing
vector fieldv onY . Without loss of generality we can assume that|v(y)| = 1 for all y ∈ Y . Pick an isomorphism
TY → T ∗Y . It induces a diffeomorphism∆ : SY → S∗Y between the respective unit sphere bundles. Consider
the composition∆ ◦ v : Y → S∗Y . For everyy ∈ Y there is a unique half-circlẽNy on S∗yX containing the

points∆ ◦ v (y) and(y, 0, 0,±1), north and south poles of the sphere. This yields a trivial bundleÑ onY with
fibre Ñy overy. There is a projection ofS∗Y X to the conormal bundleN , given by(y, 0, η, %) 7→ (y, %), which
induces an isomorphismh : Ñ → N as fibre bundles in the set-up of fibre homeomorphisms. To construct an
extension ofa0 |S∗

Y X to an isomorphism (4.12) it suffices to setã(y, %) := a0(y, 0, η̃, %̃), for hy(η̃, %̃) = %.
Q.E.D.

Proof of Theorem 3.3.Similarly to the preceding proof it suffices to consider the case of any fixed orderm ∈ R
andγ = 0. In the present case it is convenient to takem = 1. Leta1 ∈ S1

hg(T
∗X \ {0},Hom(V, Ṽ )) be elliptic.

Seta′1 := a1 |T∗
Y X , thus obtaining a symbol inS1

hg(T
∗
Y X \ {0},Hom(VY , ṼY )). Using a familiar difference

construction we get an element[a′1] ∈ K(T ∗Y X), the latter group just amounts toK(T ∗Y ×R). Every element
in K(T ∗Y ×R) can be represented by a homomorphism

σ(y, η) + ı% : B → B, (4.13)

with B a smooth vector bundle onT ∗Y ×R whose restriction toT ∗Y is π∗Y BY for a vector bundleBY onY ,
andσ : π∗Y BY → π∗Y BY a self-adjoint elliptic symbol of order1 onY , cf. [APS75, III]. Sinceσ(y, η) is elliptic,
(4.13) is an isomorphism between corresponding fibres for% = 0. Moreover, sinceσ(y, η) is self-adjoint, all
eigenvalues are real. Hence, (4.13) is an isomorphism for all% ∈ R. Passing to stabilisations ofa′1 and (4.13),
we see that for a suitableM ∈ N the homomorphisma′1 ⊕ ICM between the pull-backs ofVY ⊕ CM and
ṼY ⊕CM to S∗Y X has an extension to an isomorphism

ã : π∗S∗
Y X∪N (VY ⊕CM ) → π∗S∗

Y X∪N (ṼY ⊕CM ).

Similarly to the proof of Theorem 3.2 we find an element

m(y, z) ∈M−∞(Y × Γ1/2,Hom(VY ⊕CM , ṼY ⊕CM )),

such that (4.11) withσΨ (A) |S∗
Y X replaced bya′1 ⊕ ICM |S∗

Y X defines an extension ofa′1 ⊕ ICM |S∗
Y X to an

isomorphism over all ofS∗Y X ∪ N , homotopic tõa through isomorphisms. By analogy with Theorem 4.13 we
now form

op+(a1)(y, η) + ω(r|η|)r−1 opM (m)(y) ω̃(r|η|) : H1,0(R+)⊗ (Vy ⊕CM )

→ H0,−1(R+)⊗ (Ṽy ⊕CM ).

To complete the proof, it suffices to apply a reduction of order and weight in much the same way as in the proof
of Theorem 3.2.

Q.E.D.
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