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We describe a new algebra of boundary value problems which contains Lopatinskii elliptic as well as Toeplitz
type conditions. These latter are necessary, if an analogue of the Atiyah-Bott obstruction does not vanish.
Every elliptic operator is proved to admit up to a stabilisation elliptic conditions of such a kind. Corresponding
boundary value problems are then Fredholm in adequate scales of spaces. The crucial novelty consists of the
new type of weighted Sobolev spaces which serve as domains of pseudodifferential operators and which fit well
to the nature of operators.
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Introduction

The boundary symbols of elliptic symbols with the transmission property on a madifoldth boundaryY
are families of Fredholm operators acting in spaces normal to the boundary and parametrised by points of the
cosphere bundl&*Y. The situation for symbols without the transmission property is similar. To analyse the
nature of associated boundary conditions, we investigate the associated index element.

If Ais an elliptic differential operator then the boundary symhglA)(y, n) is surjective for ally, n) € S*Y.
Then the Lopatinskii condition entails thaids-y o5(A) = [}, W] is an element 0% K (Y). In other words,

indg«y 0o(A) € sy K(Y) (0.2)

is a topological obstruction foA to possess boundary conditioselliptic in the sense of Lopatinskii. The
relation (0.1) goes at least as far as [AB64].

There are elliptic differential operator$ on X which violate condition (0.1). It is well known that Dirac
operators in even dimensions and other interesting geometric operators belong to this category, cf. [Sol63]. Pos-
sible boundary conditions leading to associated Fredholm operators are then rather different from the Lopatinskii
elliptic ones. In fact, after the works of Calder[Cal63], Seeley [See69], Atiyah et al. [APS75] another kind of
boundary conditions became a natural concept in the index theory of boundary value problems.

There is now a stream of investigations in the literature to establish index formulas in terms of the so-called
n -invariant of elliptic operators on the boundary, see for instance [Mel93], [FST99], and the references there.

General elliptic boundary value problems for differential operators and boundary conditions in subspaces of
Sobolev spaces that are ranges of pseudodifferential projections on the boundary were studied in [See69]. It is
natural to embed such problems into a pseudodifferential algebra, where arbitrary elliptic operators admit either
Lopatinskii elliptic or global projection boundary conditions, and parametrices again belong to the algebra. Such
a calculus for operators with the transmission property at the boundary has been introduced by Schulze [Sch01]
as a “Toeplitz extension” of Boutet de Monvel's calculus [BdM71].

Elliptic operators in mixed, transmission or crack problems, or, more generally, on manifolds with edges
also require additional conditions along the interfaces, crack boundaries, or edges, cf. [Sch98]. The transmission
property is not a reasonable assumption in such applications. In simplest cases the additional conditions satisfy an
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2 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

analogue of the Lopatinskii condition as a direct generalisation of ellipticity of boundary conditions in boundary
value problems. However, for the existence of such conditions for an elliptic operator in the interior topological
obstructions similar to those in boundary value problems are still to be overcome. Thus, it is again natural to ask
whether there are Toeplitz extensions of the corresponding algebras which contain the genuine operator algebras
and admit all interior elliptic symbols that are forbidden by the obstruction.

The paper [SS04] gives an answer for pseudodifferential boundary value problems with general interior sym-
bols, i.e., without the condition of the transmission property at the boundary. This algebra may also be regarded as
a model for operators on manifolds with edges, though the case of boundary value problems has certain properties
which are not typical for edge operators in general.

The present paper contributes to the theory by new weighted Sobolev spaces which are invariant under local
diffeomorphisms ofX. Thus, the theory is carried over to manifolds with boundary while the approach of [SS04]
seems to apply only in the case of half-sp&te.

1 Weighted Sobolev spaces

1.1 Cone Sobolev spaces

The aim of this subsection is to fix some terminology for pseudodifferential analysis on manifolds with conical
and edge singularities.
Fors =0,1,...andy € R, we letH*" (R ) be the Hilbert space of all distributiomse D’(R ), such that
=7 (1+7)"9 (rD,)u(r) € L*(Ry, dr)

forall j < s.

By duality, the definition extends in a natural way to all negative integetUsing complex interpolation,
it then extends to arbitrary real The scalar product id?(R.) = H%°(R.) induces a sesquilinear pairing
H™*77(Ry) x H*7(Ry) — C by (u,v) — (u,v)r2r,), Which allows one to identify the dual space of
H*7(Ry) with H 577 (R4).

1.2 Edge Sobolev spaces

Given a Hilbert spac®” endowed with a strongly continuous group of isomorphiémgso C £(V'), we define
the spacd?*(R?, 7*V) to be the completion af (R?, V') with respect to the norm

we (fohegaclan) "

If V is a Fechet space written as a projective limit of Hilbert spaiceg € N, andV’ is endowed with group
action, we have the spacég’(R?, 7*V}) for all j. We then defingZ®(R?, 7*V') to be the projective limit of
H*(R?,7*V;) overj € N.

Example 1.1 ForV = H*®7 (R ) with the standard group action

(kau)(r) = A7 20(0r)
we get a weighted Sobolev spafé-"(R? x R ) with the norm

lall = ([ 7 3 @ 6D, e, )

IB]+i<s

/2

Let{O4,...,Ox} be acovering of the manifold by coordinate neighbourhoods afwh, . .., ¢y} a subor-
dinate partition of unity ofX. Suppos&); N9X # @forj=1,...,N andO,;NdX =(forj = N'+1,...,N.
Fix chartss; : O; — R"" ! xR forj=1,...,N’,and§; : O; — R"forj = N’ +1,...,N. ThenH*7(X)
is defined to be the completion 6f*° functions with compact support il \ Y with respect to the norm

N’ N 1/2
(Z 161 (@) | 2o (-1 xm 1) + > ||5fl*(¢ju)||qu(m)) . (1.1)

j=1 J=N'+1
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Throughout this exposition we fix a Riemannian metric’hat induces a product metric ®f x [0,1] on a
collar neighbourhood of . We then have a natural identificatidf:°(X) = L?(X) and, via theL?(X) -scalar
product, a non-degenerate sesquilinear paifirig (X ) x H=*~7(X) — C.

Analogous definitions make sense for the case of distributional sections of vector bundles. Given any smooth
complex vector bundI& over X, we have an analogué®? (X, V') of the above space of scalar-valued functions,
locally modelled byH*(R"~!, 7* H*7(R, C*)), wherek € Z>, corresponds to the fibre dimension1of cf.

§ 3.5.2 of [Sch98].

For eachV we fix a Hermitian metric. We thus obtain a Hilbert spacg X, V) whose norm is clearly

equivalent to that of/%%( X, V).

2 The transmission property

2.1 Operators on a manifold with boundary

The study of ellipticity of operatord on aC'> manifold X with boundaryY” gives rise to the question on proper
algebras of pseudodifferential boundary value problems. As mentioned, a particular answer is given in [Sch01]
in terms of an operator algebdg, ,(X) that contains Boutet de Monvel's algebfg ,,(X) as well as an algebra
v.(Y) of Toeplitz operators on the boundary.

The transmission property suffices to generate an algebra that contains all differential boundary value problems
together with the parametrices of elliptic elements. The transmission property has been imp#ggg (tX)
as well as in?,,(X). Itis a natural condition if we prefer standard Sobolev spaceX @r scales of closed
subspaces as a frame for Fredholm operators. On the other hand, in order to understand the structure of stable
homotopies of elliptic boundary value problems, or to reach specific applications, the algeRréX ) appears
too narrow. Itis interesting to consider a larger algebra, namely, a suitable subalgéBraof the general edge
algebra onX. In this interpretationX is regarded as a manifold with edyeandR ;. as the model cone of the
wedgeY x R.,. The algebra?;(X) is adequate for studying mixed and transmission problems and consists of
pseudodifferential boundary value problems not requiring the transmission property. All classical symkols on
that are smooth up t9" are admitted in?; (X).

Recall that the operators i#,(X) act in a certain scal& *7 (X) of weighted edge Sobolev spaces which are
different from the standard Sobolev spaé¢e¥ X ), except fors = v = 0 where we haveé??’(X) = L?(X) =
HO(X).

To illustrate the idea of constructing our Toeplitz extensibp, (X) of ¥ (X) we first discuss the corre-
sponding construction for Boutet de Monvel’s algelirg,,;(X). The general case will be studied in Section
4,

Let X be a smooth compact manifold with bounddry,V smooth vector bundles ovéf, andiW, W smooth
vector bundles oveY'. Then #4(X;v) for m € Z andd € Z> is defined to be the space of all block matrix
operators

C>®(X,V) C>®(X,V)
A: &) — &) (2.1)
C=(Y, W) C=(Y, W)

of the form

rtPet 0
A=("07 o

the components of (2.2) being given as follows.

By P is meant a classical pseudodifferential operator of anden the double o’ which has the transmission
property atY’. As usuale™ is the operator of extension by zero fronto 2.X, andr™ the restriction from2.X
to the interior ofX.

Recall that the transmission property of an oper&tan U x R with coordinates: = (y, r), U being an open
subset ofR™~!, with respect to- = 0 is defined in terms of the homogeneous compongnts; (y, r, 1, o) of a
symbolp(y, r, n, o) of P by the condition

D:CDg (an—j (ya r,n, Q) - (71)m7]pm—j (y7 r,—=n, 7@)) |

)+g+c (2.2)

0o=20
0

r=
n=
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4 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

forally € U, p € R\ {0}, andk € Z>, 8 € Z';gl and allj. This condition is invariant under changes of
coordinates which preserve the boundary.

Thus, for any vector bundldg andV over2X, we have?{ (2.X;V, f/), the space of all classical pseudodif-
ferential operators of orden on 2.X acting from sections of to sections o/, whose symbols in local coordi-
nates neak” possess the transmission propertyatSet i3 (X; V, V):={rtPet: Pec U (2X5V, V)}. In
other words, the operator in the first summand on the right-hand side of (2.2) belo¥gs o; V, f/).

The operato€ on the right side of (2.2) belongs ®~°>°¢(X;v), i.e., it is smoothing and of typé

Here, ¥ —>°9(X;v) is the space of all operators (2.1) whose Schwartz kerii&tisip to the boundary. We fix
Riemannian metrics oX andY’, such that a collar neighbourhood¥fhas the product metric froifi x [0, 1).
Then the entries of

are integral operators witi*° kernels overtX x X, X xY,Y x X andY x Y, respectively, which are sections
of corresponding external tensor products of bundles on the respective Cartesian products. N&WX ; v) is
defined to be the space of all operators

C:co+§d:cj( %j 8 ).
=1

whereCy, C, . . .,Cq4 are arbitrary operators i# —°>%(X;v) and D a first order differential operator which is
equal toD.,. in a collar neighbourhood of the boundary.

The operatog in (2.2) is a(2 x 2) -block matrix with entries7;;, whereG1; has aC'> kernel overX° x X°,
G112 has aC> kernel overX° x Y, Go; has aC* kernel overY x X° andGa; is a classical pseudodifferential
operator of ordem onY’, while G in local coordinatesy, ) € U x R, nearY is a pseudodifferential operator
G = op(g) with operator-valued symbol of the form

d j
9(y,m) = go(y,n) +Zgj(yﬂ7)( %’ 8 ) (2.3)

Jj=1

whereg; € ST (U x R, w3 (R ; CF, CF; C!, CY)) andk, k, 1, [ are the fibre dimensions &f, V, W, W/,
respectively.

The concept of a Green operator in Boutet de Monvel’s algebra is slightly different from that in the edge alge-
bra. Namely, byS™7(U x R"™1, W(’;)(RJr; Ck, CF, Cl,CZ)) is meant the space of all operator-valued symbols
g(y,n) onU x R™~! with the property that

gly,n) € SFU xR L(L*(R4,CH) e CLSR,, CH e ),
g*(yn) € SPU xR, L(L* Ry, CF) @ CL SRy, CH) & CY)).

Symbolsg(y, ) of the form (2.3) are called Green symbols of ordeand typed. The space of all such symbols
is denoted byS7 (U x R™~1, W (R ; C*, CF; C!, CY)).
To any operatod € ¥™%(X;v) one assigns a pair of principal symbel§4) = (o (A),05(A)). Here,

op(A): TV -1k V

is the interior symbol which is the restriction of the principal homogeneous symiifiafm 7*(2X) \ {0} to
T*X \ {0}, cf. (2.2). Moreover,

H(Ry) ® Vy H™(Ry) @ Vy
oo(A) : 7y ® — Ty ® (2.4)
%4 w
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is the boundary symbol ofl. It is defined for alls > d — 1/2. Itis often convenient to think of it as a family of
maps

(2.5)

SRy W S(Ry)® Wy
ca(A) : 7y @ — Ty S
w w

The boundary symbol is defined by

oo (A) = ( UB(TBP6+) 8 )—i—aa(g),

whereoy(r* Pet)(y,n) = rtow(A)(y,0,n,D,)et and

B d Di 0
00(@)(y:m) = 0a(90) (y:1) + >_oalg) . ( 7 )

j=1

os(g;) being the principal homogeneous symbopof it is easy to verify thats (A) is twisted homogeneous of
degreem, i.e.,
KA

7o)y n) = A" (g ? JoalAwm( " ? )_1

for all A € Ry. Itis worth emphasizing that the group action if¥ (R.) ® Vy is different from that in
H*(Ry) ® Vy, namely,(kxu)(r) := AY2u(r) for X > 0, as ifs = .
We systematically employ various facts on operatorspitt-?(X;v). In particular, any such operatot
induces a continuous map
H*(X,V) H*™(X,V)
A: @ — @
H(Y,W)  H™™Y,W)

for all reals > d — 1/2, which is compact provided that.4) = 0. Moreover, composition of operators induces
amap
grdi(Xou)) x UM% (X 0y) s WYX 0y 0 vp)

where for

vo= (VLVEWLW?),

V2 = (VQ,VS;W27W3)
we setvy ovy = (V1 V3, WL W3), while m = m; +msy andd = max{d;, m; +ds}. On the level of principal
symbols we getr(A%A') = o(A?)o(A') with componentwise multiplication.

2.2 Conditions with pseudodifferential projections

As usual, an operatot € gmd(X;v)is calledo y -elliptic if the interior symbob y (A) defines an isomorphism
%V — 7% V. Inthis case,

rtoy(A)(y,0,n,D,)et - H'(Ry) @V, — H"™(R4) @V, (2.6)

is known to be a family of Fredholm operators for @}l n) € 7*Y \ {0} and alls > max{m,d} — 1/2. The
Fredholm property of (2.6) is in turn equivalent to that of

rtou(A)(y,0,n,D,)et - SR1) @V, — SR4) OV,

forall (y,n) € T*Y \ {0}.
An operatorA € ¥™?(X;v) is called Lopatinskii elliptic if it iso ¢ -elliptic and if, in addition,o(.A)
induces an isomorphism (2.4) for agy> max{m, d} — 1/2, or, equivalently, an isomorphism (2.5).
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6 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

Let ¥4 (X;V, V) stand for the space of upper left corners of operator block matricg&%f(X; v), where
v = (v). The question whether or noba, -elliptic elementd € ¥™4(X;V, f/) may be interpreted as the upper
left corner of a Lopatinskii elliptic operatot € ¥™?(X;v) gives rise to an operator algebra of boundary value
problems that is different from Boutet de Monvel's algebra. A general answer is given in [SchO1]. It consists of
a new algebra with boundary conditions which in [Sch01] are called global projection conditions. Operators in
this algebra

H*(X,V) Hs™(X,V)
. & (2.7)

A: & .
H(Y,Q) HT™MY, Q)

are characterised by the following data.

The upper left corner of the operator block matrix is assumed to belong t&(X; V, V).

By @ is meant a tripl&) = (F, W, P) consisting of a smooth vector bundieover7*Y\ {0}, a smooth vector
bundleW overY’, and a pseudodifferential projectidhe ¥9(Y; W) with the property thaf” just amounts to
the range of the principal homogeneous symbol

p=ocw(P): 13 W — 7y W, (2.8)

and similarly forQ = (F, W, P).
The spaces on the boundary in (2.7) are given by

H(Y,Q) = PH(Y,W), (2.9)
H(Y,Q) = PH*(Y,W), '
for s € R. Itis obvious that these are closed subspacegdl, W) and H*(Y, w), respectively.

The operator (2.7) is now defined to be a compositibn= P.AE for an operatotd € wmd(X;v) with

v=(V,V;W,W) and
T
e=(o ) P=(y p)

where I stands for the identity operator in the corresponding Sobolev spacé and E for the canonical
embedding+* (Y, Q) — H*(Y,W).

Forv = (V, V:Q, Q), we denote b ;g’d(X; v) the set of all operators (2.7) described above. Continuity of
(2.7) holds for alls > d — 1/2.

Remark 2.1 If P € ¥5(Y;W) is a pseudodifferential projection with principal homogeneous symiasi
above, thep? = p. Vice versa, given any smooth homomorphism =3 W — =3 W which is positively
homogeneous of degr@eand satisfiep? = p, there exists a projectioR € ¥4 (Y; W) with oy (P) = p. This
can be found in [SchO1].

Ellipticity of an operatotd € ¥7*(X;v) is defined by a pair of principal symbaig.A) = (o4 (A), 0o(A)),
whereo i (A) : 75V — 7%V is the interior symbol and,(.A) the boundary symbol which is a bundle homo-
morphism

v S(Ry) @ Wy v S(Ry) @ Wy
o(A) : ® — @ (2.10)
F

F

still satisfying

wo A =3 (" Jeotm( )

The boundary value problep is called elliptic if botho » (A) andos(.A) are isomorphisms.
Instead of the spac8(R..) in (2.10) we could equivalently consider Sobolev spalié¢R ., ) for arbitrary
s > max{m,d} — 1/2.
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Recall, cf. for instance [Sch01], that A € ngvd(X;v) is elliptic then the operator (2.7) is Fredholm
for any s > max{m,d} — 1/2. Moreover, this operator possesses a paraméfric ¥, ™*(X;v~") with
t = max{d —m,0} andv~! = (V,V;Q, Q) in the sense that

HA-1 ¢ v >4X:V;Q),
AE/l —-I € wgfoom((x- v% (211)
gp L

for t; = max{m, d} andt, = max{d — m,0}. Clearly, the remainders in (2.11) are compact in the respective
spaces (2.7).

Notice that the index ofd depends on the particular choice of the global pseudodifferential projedtiansi
P. However, if we do not change the principal symbols (2.8), the freedom in the choice of the projections does
not affect the Fredholm property. This is a general fact on operators in Hilbert spaces, as we shall discuss now.

To this end, let andH be Hilbert spaces?;, P, € £L(H) andP;, P, € £L(H) be projections, such that both
P, — P, andP, — P, are compact. Then the following result holds.

Theorem 2.2 GivenA € L(H, H), assume thatl, = P,A: PH — P,H is a Fredholm operator. Then
this is also true ford, = P, A : P,H — P, H, and the relative index formula holds

ind Ay — ind A, = ind (P1 . PH — PlH) +ind (152 . PLH — PQFI). (2.12)

Proof. Let us first shows that the operators on the right-hand side of (2.12) are Fredholm indeed Since
acts as the identity of, H, the difference

PP —1 = PP — Py
Py (P — P,)

is a compact operator oR, H. Therefore,P is the Fredholm inverse foPy, and %P : BoH — PH is
Fredholm of index. An analogous statement holds for the projecti®pandP; . It follows that the composition
F given by

PRHO PHYAPAED PA
is a Fredholm operator with index
ind F = ind 4; + ind (P1  PH — PlH) +ind (152 P — 1521?).
On the other hand, we get
F = (PyP)) Ay (PyP)) — By|Py, P))A(PyP,) + P,PLA(I — P) Py
where[Py, P,] is the commutator of; and P, which is a compact operator di, for
[P, P)] = PiP,— PP
= (Ph—P){I-P —P).

Furthermore(I — )P, = (P, — P»)P, is a compact operator of. Hence,(]%?l) Ay (P, Py) differs from
F by a compact remainder and thus is itself Fredholm with the same indeX = ind(PQPl) As (P Py). As
we have already proved; P; and P, P, are Fredholm operators of indéxIt follows that A, itself is Fredholm
andind F' = ind A», as desired. O

3 Boundary value problems without transmission property

3.1 |Interior operators

Let X be a smooth compact manifold of dimensiomwith smooth boundary” = X, andV, V vector bundles
over the double o .
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8 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

As defined abovey™(X; V, V) is the space of all pseudodifferential operators of the form
A=rTPet +8

whereP € U7 (2X;V,V)andS € ¥~=(X°;V,V).

Clearly, operators in?*(X;V, f/) are much more general than those in the subspelte (X;V, f/) of
operators with the transmission property.

If Siie (T X\ {0}, Hom(V, V)) denotes the set of all smooth bundle homomorphisms 7% V — 7% V that
are positively homogeneous of degreeén the covariable, everyl € ¥™(X; V, V) has a well-defined principal
homogeneous symbol

op(A) :=0y(P)

T*X\{0}>

whereP € ¥ (2X;V, f/) is any operator with the property that — r+ Pet belongs to¥—>°(X°; V, V).
Moreover, there is a (non-canonical) linear map

op: SIL(T*X \ {0}, Hom(V, V) — ¥"(X;V,V) (3.1)

with oy (op(a.,)) = an,,. It can be generated by a standard procedure in terms of local charts and local represen-
tatives of operators with given principal symbols.

Using the spaceB *(R?, 7* H*7 (R, C*)) as a local model near the boundary, it is straightforward to intro-
duce weighted Sobolev spacks” (X, V') on X for any vector bundl&” over X. As mentioned, the embedding
H*Y(X,V) — H{_(X° V) holds for alls,y € R.

By [Sch98], for everyA € v(X;V, f/) and eachy € R there is an operataR, € ¥~ >°(X°;V, f/) such
thatA, := A — R, induces a family of continuous operators

A, H (X, V) — HS ™7™ ™(X, V) (3.2)

forall s € R.

There are many ways to find suitable operai@ss Any choice of a correspondenge— A, may be regarded
as an operator convention that maps a complete symha] oé., a system of local symbols corresponding to a
covering of X' by coordinate charts, to a continuous operator (3.2). Setiinga) := (op(am)),, cf. (3.1),
we get a map

op. : Si(T*X \ {0}, Hom(V,V)) — ‘ﬂR,C(HSﬁ(X, V), Hs=m=m(X V).

In the rest of this paper we construct an operator algehyd X'; v; w) of boundary value problems

HY(X,V) Hs™m~™(X, V)

A
A= g
( H (Y, Q) HE™(Y, Q)

P.
T Q)

for arbitrary A € ¥™(X;V,V) and certain operator®, T andQ. The space®(*(Y, Q) andH* (X, Q) are
the same as in (2.9).

Every o -elliptic operatorA € ¥™(X;V,V) occurs up to a stabilisation as an upper left corner of an
elliptic (and then Fredholm) operator (3.3) for a suitable choicePpfl’, Q and dataQ, Q. The algebra
¥,,(X;v;w) should contain parametrices of elliptic elements. We obtgin(X'; v; w) as an extension of the
algebra?; (X; v; w) that plays a similar role agy;,,(X; v) in connection with its Toeplitz extensioh, , (X; v).

3.2 Edge algebra

Recall the calculus of boundary value problemsXrnwhich need not satisfy the transmission property with
respect to the boundaiy, cf. [Sch94].
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This algebra is denoted by, (X ; v; w) with v = (V, V; W, W) and weight datas = (v, — m). It consists
of block matrix operators 3
ngmp(X°7V) C®(X,V)

A: o — S
C>®(Y, W) C>®(Y,W)

of the form

A=( o)rore (3.4)
the components of (3.4) being as follows.

By A is meant a classical pseudodifferential operator of ondand typel’ — V in the interior ofX. When
localised to a coordinate chart at the boundaris the pull-back of an operatop(a) whose amplitude function
ais a(k x k) -matrix with entries fromS77 (U x R"~', ¥™(R.;; w)), wherek andk are the fibre dimensions of
V andV, respectively.

The operatog is a(2 x 2) -block matrix with entriess,;, whereG1; has aC'> kernel onX° x X°, G152 has
aC> kernel onX° x Y, Go; has aC kernel onY” x X° andGas is a classical pseudodifferential operator of
orderm and typel’ — W onY. When localised to a coordinate chart close to the boundacgrresponds to
an operatoop(g) with a Green symbgy € S7(U x R, ¥e(R4; C*, C*; C!, Clw)).

Finally, the operato€ on the right-hand side of (3.4) is assumed to belong to the space(X;v; w), i.e.,
it is a smoothing Green operator in the edge calculus aveBSuch operators are globally characterised by the
continuity properties

H(X,V) H®~m+e(X V)
C: D — ® )
H(Y,W) C>(Y, W)
HS™7(X, V) H>® (X, V)
C*: @ — @
H (Y, W) C>=(Y, W)

for all s € R and some > 0 depending or§j. Here,C* is the formal adjoint o€ in the sense

(Cuag)HOvU(X,V)@HO(Y,W) = (UaC*g)HQO(X,v)@HO(Y,W)

for all
u € CZ. (X, V)®C2(Y,W),

comp

g € CXup(X°, V)@ C=(Y,W).
Every operatotd € ¥"(X; v;w) is known to induce a family of continuous mappings

H*(X,V) HS™™MY~™m(X V)
AN) @ - ® , (3.5)
H(Y, W) H™(Y, W)

wheres € R. If A is elliptic then the operator (3.5) is Fredholm for alle R. In this case a parametrix
P € v;™(X;v " w™t), can be chosen in such a way that the compact remainders are projections of finite
rank. Namely,P A — I projects onto the null-space gf while AP — I onto a complement of the range 4f for
each fixeds. In fact, ker A is independent of as well as the dimension obker A4, i.e., the index of4 does not
depend ors.
The constructions of this section can easily be generalised to the case of lower order operators, i.e., one can
introduce classe® 7 (X;v;w) with j € Z>( and weight datav = (v, — m). Forj > 1, we requireA
to belong to?} 7 (X°; V, V) the local amplitude function to S 7 (U x R"*~!, #™ /(R ;v;w)), andg to
belong taS! /(U x R, ¥e(R.y;v;w)).
By S/ /(U x R*~1, w™J(R,;v;w)) is meant the set of all operator families of the form

aw.m) = (U0 ety
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10 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

whereo is a(k x k) -block matrix family with entriesp (ao(y, 1) + @ (y, 1)) ¢, ande(y, ) is a symbol of
SH7(U x R" ! ¥g(R,;v;w)). The expressiong, anda., stem from a Mellin quantisation, now related to
asymbolp € 8777 ((U x Ry) x R™, £(CF, CF)), andyp, ¢ are cut-off functions.

The corresponding subclass of Green operators is denote@”j@/(X; v;w) and the spaces of upper left
corners by?™=J(X:V, V; w) and W:fgj(X; V,V: w). respectively. Furthermore, instead of Mellin operators
Vi vra(XsV, Viw) = w(X;V,Viw) N @~ (X°;V,V;w) we have

UG (X5 V,Viw) = 0 (X V, Viw) 0 (X% V, Viw)

forj > 1.

For A € ¥ J(X;v;w), we introduce the pais™ 7 (A) = (o7 7 (A),o5 7 (A)) of principal interior
symbol and boundary symbol. The scheme is the same gs=fof. Then, ¥/~ (X v;w) just amounts to
the space of ald € V™7 (X;v;w) satisfyinge™ 7 (A) = 0.

Composition of operators induces a map

WM (X wn) X PR (X vgswg) <o WM TR (X 0y 0 vy wp 0 wy)

where for
vo= (VLVEWLW?), wy = (71,71 —m),
vy = (VAR VW2 W3); wy = (1 —mi,m —mg—my)
we setvy o vy = (VL V3, W W3) andws, o wy = (71,71 — m1 — ma). On the level of principal symbols we
get
O_m1+m2—(j+k)(A2A1) — 0_7712—k(A2)0,m1—j(A1)

with componentwise multiplication. For a thorough treatment we refer the reader to [ST99].

3.3 Constructions for boundary symbols
Lety € R. Combining (3.1) with the operator convention of [Sch98], we get a map

op., : SI(T*X \ {0}, Hom(V, V) — ¥™(X;V,V;w) (3.6)

for w = (v, — m), such thatoy (op ., (an)) = an. Clearly, such a construction is not canonical and not
necessarily linear, but it yields a right inverse of the principal symbolic mnap
Denote bySys (7Y \ {0}, ¥™(R4; Vy, Vy;w)) the space of all principal homogeneous boundary symbols

op(A) : my H*'(R1) @ Vy —» 75 HS7™T ™ (Ry) @ Vy

belonging to elementd € V™ (X;V,V;w).

Moreover, letS[; 5, o(T*Y\{0}, ¥™(Ry; V:y7 Vy; w)) be the space of all principal homogeneous boundary
symbolsos(A) of elementsd € ¥y, o (X;V,V;w).

In a similar manner we defing]; (7Y \ {0}, ¥™(R4; Vy, Vy;w)) in terms of the space of Green opera-
tors U (X3 V, Vi w).

Note that operators;(A) are pointwise elements of the cone algebrdRonwith weight control of breadth
¢ for somee > 0 relative to the weights and~ — m, respectively. From the cone theory we have an interior
symbolic structure irfr, 9) € T*R \ {0} which is the standard one of classical pseudodifferential operators on

R, the exit symbolic structure that is responsiblefor +o0, and the principal conormal symbolic structure
for r — 0. This latter is given by the family

O—JV]O-({)(A)(yvz) : ‘/y - ‘/y

fory e Yandz e I'yp_,.
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SetTy X = T X |y and writeSy; (73 X \ {0}, Hom(Vy, Vy)) for the space of all restrictions of elements
in S (T*X \ {0}, Hom(V,V)) to Ty X \ {0}. Given anya,, € S(T*X \ {0}, Hom(V,V)), we form
A = op_,(am). The operator family(A)(y, n) allows one to recover

am |7z x\{0} € Sia(Ty X \ {0}, Hom(Vy, Vy))
in a unique way, which yields a linear map
owy : SI(TY \ {0}, v™(Ry; Vo, Vs w)) — SIE(Ty X \ {0}, Hom(Vy, Vy))
with
kerowy =S vpa(T*Y \ {0}, ¥ (R Vy, Vysw)). (3.7)
Remark 3.1 For a pair

(pw,pa) € Sig(T*X \ {0}, Hom(V, V) x S (T*Y \ {0}, ¥ (Ry; Vy, Vy; w))

there exists aml € ¥™(X;V,V;w) satisfyingo(4) = (pw, po) ifand only if ¢y (ps) = pw T3 X\{0}-
It is worth pointing out that for every choice op ., the compositionry op ., induces a linear map

Sig(T*Y \ {0}, o™ (Ry; Vy, Vysw))
Ste m+a(T*Y \ {0}, #™(Ry; Vy, Vs w))

09 op,, ¢ Spe(T*X \ {0}, Hom(V, f/)) —

An element oSy (7% X \ {0}, Hom(V, V)) is called elliptic if it defines an isomorphisai, V — 7% V.

Theorem 3.2 Suppose there is a nowhere vanishing vector field on the boundafen, for everyy € R,
the mapop ., cf. (3.6), can be chosen in such a way that the ellipticity,ofe S, (7*X \ {0}, Hom(V, V)
entails the Fredholm property of

om(Y;n) = 09 op (am)(y,n) : H*(Ry) @ Vy — H™™T7(Ry) @V, (3.8)

forall (y,n) € T*Y \ {0}.

Note that for generak a similar result holds up to stabilisation. By this we mean an elliptic symjpokE
Sie(T* X\ {0}, Hom(V @ B,V @ B)) for some vector bundI& on X, such that

A = Gy D Ifr}B

onS*X.

Theorem 3.3 Supposey € R. For any elliptica,, € SJi; (7% X \ {0}, Hom(V, V)) there is a smooth vector
bundleB over X, such that for a suitable choice of the map.,

(Y. 1) = 00 0P, (@m)(y,n) : H*'(Ry) ® (V & B), — H*™7™(Ry) @ (V& B),
is a Fredholm operator for ally, ) € T*Y \ {0}.

Theorems 3.2 and 3.3 will be proved in Section 4.3a,jf is elliptic, the operator (3.8) is Fredholm for any
s = sp € R andn # 0 if and only if the principal conormal symbol

om0 op ,(am) (y,2) 1 Vy — f/y

is a family of isomorphisms for att € I'; »_.. In this caser,,(y,n) is actually Fredholm for alk € R, the
null-space ofr,, (y, ) does not depend on and it is a finite-dimensional subspaceXf<(R..) x V,, for some
¢ > 0. Moreover, there is a finite-dimensional subspac§6f”™*¢(R., ) x V, for somez > 0, which is a direct
complement of the range of,, (y,7) in H*~""~™(R) ® V,, for all s € R.. This is true for ally € Y.
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12 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

3.4 Lopatinskii ellipticity
Leto,, € Spp (1Y \ {0}, ™ (Ry; Vy, Vy; w)) be such that the operator

Tm(y,m) s H(Ry) @V, — H ™™ (Ry) @V,

is Fredholm for every € R and(y,n) € T*Y \ {0}, cf. (3.8). Sincer,, is homogeneous, i.es,,,(y, \n) =
A" Kaom (Y, n)n;1 for all A > 0, it is often sufficient to consider,, on the unit cosphere bundi& Y. It will
cause no confusion if we use the same letter to designatand its restriction t&5*Y. We then get an index
element

indg«y o, € K(S*Y)

If 7,,, € Sg’é(T*Y\{O}, U (Ry; Vy, Vys w)) is another element withy y (7,,,) = 0w y (o), then relation
(3.7) gives
Om = Tm € Shg m+c(TY \ {0}, ¥ (Ry; Vy, Vs w)).

Clearly, 7,,,(y,n) is not necessarily a Fredholm family in the above setting, cf. (3.8). Moreover, if this is the
case, it may happen thatdg-y ,,, # indg«y 7p,.

Fixv = (V,V;W,W). LetA € ¥ (X;v;w) be a Lopatinskii elliptic boundary value problem with an upper
left cornerd € ¥™(X;V,V;w). If o,, = 05(A) we then have a Fredholm family (3.8) and

indg-y 0o(A) = [s5 W] — [s5 W], (3.9)

wheresy : S*Y — Y is the canonical projection. Thus, as in the calculus of boundary value problems with the
transmission property, we have
inds*y Ua(A) € S*YK(Y),
cf. relation (0.1). Hence, this is a necessary condition4do be Lopatinskii elliptic.
Given an elliptic symbok,,, € Sj(7*X \ {0}, Hom(V, V)), we may ask whether to any € R there
corresponds a Lopatinskii elliptic operatdre ¥ (X; v; w) for a suitable choice of bundlé§ andW overY’,
such that,, = oy (A).

Theorem 3.4 Lety € R. Supposer,, € SiL(T*X \ {0}, Hom(V,V)) is elliptic and A := op , (ay,) is
chosen in such a way that (3.8) is a family of Fredholm operators. Then the following are equivalent:

1) there is a Lopatinskii elliptic boundary value problefne ¥ (X;v;w) such thata,, = oy (A);
2) indg«y O'a(A) € S*YK(Y)

Proof. It remains to show the implicatid) = 1). By assumption, there are vector bundi&sand 1/
onY, such that (3.9) holds. It is actually a general property of Fredholm families that there existsca
S}%G(T*Y \ {0}, #™(R4; Vy, Vy; w)) with the property that under notation (3.8)

ker (o + gm) (y,m) = Wy,
coker (o + gm) (y,m) = W,

for all (y,n) € T*Y \ {0}, independently of the specific choice af We can fill up the family of Fredholm
operator§o,, + gm)(y,n) to a smooth family of isomorphisms

HYR) eV,  HTTIR,) @V,
( g 0 )(y,n) : &) — &) , (3.10)

tm
W, W,

first for all (y,n) € S*Y and then for al(y,n) € T*Y by twisted homogeneity of ordenr. In addition, since
C*° functions of compact support dR, are dense irH*7(R..) for all s,y € R, the potential park,, can be
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chosentobeamag, W — 7} C, (R4) ® Vi, while the trace part,, may be represented by an element in

comp

e W ® (C2,,(Ry) ® Vi) through integration

comp

u»—>/ (Kt cyom) (1), u(r)) v, dr
0

forallu € H*7(Ry) ® V,. Here,(-,-)y, denotes the pairing betweéfy and its dualV,’. Let us now restrict
Im, km andt,, to a coordmate nelghbourhocﬁl7 onY and interpret the variableg as local coordinates in
U c R"~! with respect to a cha®; — U. Choosing a zero excision functigf(n) we obtain operator-valued
symbols

9=Xgm € SHU xR LH(Ry,Cr), H¥I"™(R,,CF)),

k=xkn € ST(U xR "1 L(ClH®""™R,,Ck)),

t=xtm € S™(U xR L(H*(Ry,CF),C))

for all s € R, wherek = k andl, [ are the fibre dimensions of the bundiés V and W, W, respectively.
Denote byG;, K; andT) the pull-backs obp(g), op(k) andop(t) from U to {2; with respect to the charts and
trivialisations of the bundles involved. Pick a covering,, .. ., 25} of Y by such coordinate neighbourhoods, a
subordinate partition of unityg,, ..., ¢}, and afamily{+s, . .., } of functionsy; € Cs5,,,(2;) satisfying
¢;v%; = ¢;. We can then pass in a familiar way to an operator

N
G K . gpb¢j 0 Gj Kj (ﬁb’lﬁj 0
(7 o) =207 o7 W) )
whereyp, andg,, are cut-off functions supported close to the boundary. It follows that

Ao (Pl TE D)

belongs to?™ (X; v;w) forv = (V, V; W, W) ando  (A) is equal to (3.10), while s (A) = o (0p ., (am)+G)
just amounts ta, . O

Remark 3.5 Under the hypothese of Theorem 3.4 it is even possible to construtte ¥ (X;v;w) in
such a way thatl = op _ (a,,) is equal to the upper left corner gf.

To verify this, it is sufficient to seti’ = Y x C! for | € N large enough, and to choose some homogeneous
potential symbok,,, : 73 W — 75 H5~™7~™(R) ® Vi such that

H7"(R4) @ Wy 3
(om km): 7y @ — 7y H7™7T MRy ) @ Vy (3.11)
w

is surjective. For sufficiently largkthis is possible, and then the null-spacd®f, k,,) can be taken as a copy
of . Finally, (3.11) can be filled up by a second réty, ¢,,) to a block matrix isomorphism which plays the
role ofo5(.A). Then we can pass to a desired boundary value probléust as in the proof of Theorem 3.4.

The following lemma states that the topological obstruction for the existence of a Lopatinskii elliptic boundary
value problem is not affected by the choice of the operator conveation

Lemma 3.6 Assume that,,, € Spp(7*X \ {0}, Hom(V, V)) is a homogeneous elliptic symbol of order
m andop ., : Sf(T*X \ {0}, Hom(V,V)) — ¥*(X;V,V;w) be another choice of operator convention
(3.6). Iffor A = op_ (a,) and A = op ,(an) bothoy(A) and o5(A 1) are families of Fredholm operators
HY(R4)QV, — H*=™7 "Ry )@V, forall (y,n) € T*Y \ {0}, theninds-y o5(A) belongs tosy, K (Y)
if and only ifindg-y o5(A) does.
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14 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

Proof. The symbols,(A) andoy(A) can be written in the form

oo(A
O'a(A

~—

os(a) + op(m) +Ga(g)7

os(a) + oa(m) + 0a(9),

~—

the terms on the right-hand side having standard meaning in the cone theory.ocginge= o5(a) modulo
Stevra(T*Y \ {0}, (R Vy, Vy;w)), we may assume without loss of generality thgta) = o5(a).
Furthermore, since the elements&f, (7Y \ {0}, ¥™(R4; Vy, Vy;w)) are families of compact operators,
the property ofindg+y o9(A) or indg+y aa(fl) to belong tos}, K (Y) is not affected by a Green summand.
Thereforepy(g) andoy(g) may be ignored.

There isl € N and a monomorphisth,, : s3-(Y x C!) — st H*~™7~"(R,) ® Vi pointwise mapping to
CoSmp(R4) ® V,, such that both

H*(Ry) ® Vyr

(0a(A) kn): sy @ — sy H7™TM(Ry) @ Vy
Y x C!
and
) H*Y(Ry) @ Vy )
(%(A) k’m) DSy ® — sy ™M (Ry) @ Vy
Y x C!

are surjective. As usual, the choicesof unessential.

Setb,, = (65(A) ky) andb,, = (0a(A) k). Observe that the propertyids-y og(A) € s3K(Y) is
equivalent to saying that fdrlarge enough the bundler b,, over S*Y may be represented by a system of
trivialisations with transitions isomorphisms depending onlyypmot on the covariablg. Clearly, we have
indg~y 09(A4) € s3 K(Y) if and only if indg-y by, € s3 K(Y'), and similarly for the operator families with
tilde.

Let E,—nl be a right inverse ob,,. It can be calculated within our class of boundary symbols. In fact, in the
casem = v = 0 the right inverse is equal t@;(l}mf);l)—l which possesses the required structure due to the
algebra property of boundary symbols. The general case can then be treated by using order reducing operators,
cf. [ST99].

sinceb,, — by, = (o(m —m) 0) it follows that

bmbyt = I+ (0a(m —mm) 0)b;}
= I+o0a(mo)+ g0

belongs tQS}?g,MﬁLG(T*Y\{O}, 7™ (R ; Vy, Vy; wtow)) restricted to the cosphere bundleY . Herem is a
smoothing Mellin family which consists of a single term containing the zero powerasfd the familyy, belongs
0 S o (T*Y \ {0}, #™(R; Vy, Vy;w™! ow)) restricted taS*Y'. Sinceoy(my) is actually independent of
on S*Y andg, takes values in compact operators, we get

indg«y (I +05(mg) +go) = indg«y (I + ga(mg))
e myK(Y).
From
indg«y Z;m =indg+y b,, — inds*y(l + O’a(mo) + go)
we then immediately obtain the assertion. O

The obstruction for the existence of Lopatinskii elliptic conditions is also not affected by the choice of the
parametety € R in the operator conventiosp ..

Copyright line will be provided by the publisher



mn header will be provided by the publisher 15

Lemma 3.7 Leta,, € S (T"X \ {0}, Hom(V V)) be elliptic. If for A, = op . (am) and As = op s(am)
both
oo(Ay)(y,n): H*Y'(R4)QV, — H* ™7 "™(R4)® f/y and
oo(As)(y,n) : H*°(Ry) @V, — H™ "™ (Ry) @V,

are Fredholm operators for ally,n) € T*Y \ {0}, thenindg-y 05(A) belongs tos} K (Y) if and only if
indg«y og(As) does.

Proof. Starting with the operators

A, HSV(X,V)— H=™7™(X,V),
As Hs—fy-l—é,é(X’ V) N Hs—’y+5—m,6—m(X7 f/)

which are continuous for all € R, we pass to
-1
it - -5
A, = (pr?) aspy
e WMX;V,Viw)

by using the order reducing operators from [ST99]. We then obviously obtai!,) = ow(4,) = am,
and so the boundary symbols df = A, andA = A, satisfy tpe assumptions of Lemma 3.6. In order to

complete the proof it is now sufficient to observe thats-y 05(A4,) € sy K(Y) is equivalent to saying that
indg~y 0o(4s) € s3- K(Y), since bothind gy a@(D‘Y/"s)*l andindg-y oa(D&";) are equal to zero. O

4 Boundary value problems with projection conditions

4.1 Projection data

In the previous section we have seen that Lopatinskii elliptic conditions for a given opdrafo¥ (X ; v; w)
may only exists under conditiod) of Theorem 3.4. If this is not the case, one might pass to another kind
conditions that we call global projection conditions.

Let us fix some vector space data= (V,V;Q, Q) with Q = (F, W, P) andQ = (F, W, P) asin§ 2.2.

Definition 4.1 Forw = (v, — m), the spacel,; (X; v; w) is defined to consist of all operators

HY(X,V) Hs™MY~™(X V)
A: @ - & , (4.1)
H(Y,Q) HT™(Y, Q)

s € R, such that
1) the upper left corned of the operator block matrix is assumed to be i#!*(X; V, v, w);

2) thereisand € ¥ (X;V,V; W, W;w) such thatd = P.AE, whereP and€ have the same meaning as in
§2.2.

Denote by¥,: 1/, o (X;v;w) the subspace of,; (X; v; w) consisting of alld such thatd = P.AE for some
A€ Uit (X5 V.V W, Wiw). Inasimilar way we introduc g’;G(X; v;w).

Itis now clear that the principal symbolic structure®f; (X ; v; w) consists of pairs (A) = (o (A), 0a(A)),
whereo y (A) : 7%V — 7%V is the principal interior symbol angl; (A) the principal boundary symbol which
is a bundle homomorphism

w H(Ry) @ Vy  ay H™ ™ (Ry) @ Vy
oo(A): @ — @ (4.2)

F F
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16 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

given by

o D@ = (o s )o@ (o oy )

wheree : F' — 73, W is the canonical embedding apdhe principal homogeneous symbol Bfe I20E W).
Theorem 4.2 Composition of operators induces a map

Uap' (X5 015w1) X Pgp? (X025 wa) — W$1+"”2(X;v2 0 v1;Wg 0 W)

where for
U1 = (V13V2;Q17Q2)7 w1 - (71771 7ml)a
vy = (VEV3Q%Q%); wy = (y —my,7—mi—mg)
we sets o vy = (V1 V3,QY, Q%) andws o wy = (y1,71 — mq — ma).
For the principal symbols we get

O_m1+m2—(j+k) (AQAl) = g7712_k(A2)0'm1_j (.Al)

with componentwise multiplication.
If A' or A2 belongs to one of the subspaces with subsdript G or G, the same is true for the composition.

Proof. This assertion is an immediate consequence of Definition 4.1 and of what has been pfo®& in
O

Note that ¥ (X;v;w) can be identified with the set of all compositiods= P.AP with operatorsd €
v(X;V, VW, W;w) as in Definition 4.1. Hence/;;(X; v; w) survives under taking the formal adjoiAt"
with respect to the scalar productshff-° (X, V) @ L?(X, W) andH* (X, V) & L*(X, W), for the larger class
v (X;-;w) does.

Theorem 4.3 Assume thatl € ¥ (X;v;w). Then A* € ¥ (X;v*; w*) wherev* = (V,V;Q*, Q*) for
Q* = (og(P*)ny W, W, P*) andQ* of a similar form, andv* = (—y + m, 7).

Let
A € WQ)(X;U.A;U)))
B e Vg (X;vpw)

for B ~
va = (VaVaiQaQa),  Qu = (Fa,Wa, Pa),
vg = (VB,Vs;QB,QB); Qa = (Fa,Wa,Pa),
and similarly@g, QB. Then one defines the direct suind B € @g’g(X; v4 G vp;w) of AandB in a canonical

way, where
vadvg = (VA@V&VA@VB;QA@QB,QA@QB),
Qa®Qp = (Fa®Fg,Wy4®Wp,Py® Pp)

and, similarly,Q 4 ® Q. For alls € R, the direct sum induces a continuous linear operator

H*(X,Va® Vp) Hm =M (X, Vg @ Vi)
AaoB: ® - b 3
H(Y,Qa ® QB) HT(Y,Qa @ QpB)

Using in Definition 4.1 the classeg” 7 (X;v;w) defined at the end df ??, we also introduce the sub-
spaces¥;”~J(X;v;w) with j € Z>,. For any operatortd € ¥7'~/(X;v;w), we have a corresponding
pair ™I (A) = (o 7 (A), 05 7 (A)) of principal interior and boundary symbols of order— j. Then,
wn=I1(X; v, w) is easily seen to coincide with the space ofdle ¥.7 =7 (X; v; w) satisfyinge™ 7 (A) = 0.

Theorem 4.4 Let A € ¥2(X;v;w) ando(A) = 0. Then, A € ¥~ (X;v;w) and the operator (4.1) is
compact for alls € R.
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Proof. Letus writed in the form A = PAE foran A € v™(X;V,V; W, W;w). If we set

= I 0N/ 1 O

“4'_(0 P)A(o P>’
we also getd = PAE, ando(A) = 0 impliesa(A) = 0, the latter symbol refers t@™(X; V, V; W, W; w).
This gives usd € ¥"~1(X;V,V; W, W;w), which entails4 € ¥2~!(X;v;w). The compactness of (4.1)

follows from the compactness of in usual Sobolev spaces. O

Theorem 4.5 Let A; € 9,77 (X;v;w) be a sequence of boundary value problems, such thattiveight
in the Green operators involved id; does not depend on Then there exists ad € ¥, (X; v;w), which is
unique moduloZ, ° (X; v; w), such that

ANiAj,

7=0
N-1
e, A— Z A; e Wg;;N(X;U;w) forall N € N.
j=0
The proof is an easy consequence of a corresponding result for the operato@gpakeV, VW, W; w).

4.2 Ellipticity under projection data

As usual, a boundary value probleme ;" (X;v;w) is called elliptic if botho » (A) andoy(A) are isomor-
phisms.

The condition that (4.2) is an isomorphism does not depend dfrit is satisfied for ansg € R then so is for
all s € R.

Let us now show that in contrast to Lopatinskii conditions there is no obstruction for the existence of elliptic
global projection conditions.

Theorem 4.6 Leta,, € Sy (77X \ {0}, Hom(V, V) be an arbitrary elliptic element. Then there is a vector
bundleB over X, such that for each € R there are triplesQ = (F, W, P), Q = (F, W, P) depending ony,
and an elliptic operatotd € Vg1 (X;0;w) witho = (V @ B, V @ B;Q,Q) andw = (v,7 — m), satisfying
ow(A) = a,, in the notation of Theorem 3.3.

Proof. For notational convenience let us assume that 0. The construction in the general case with
replaced bya,, is completely analogous. According to Theorem 3.3 we find an operhfor op . (a,) in
@ (X;V,V;w) with the property that

om(y,m) == 00(A))(y,n) : H(Ry) @V, — H ™" (Ry) @V,
is a family of Fredholm operators parametrisedpy;) € 7Y\ {0}.

Choose vector bundleB and F' over S*Y, such thafF'] — [F] = indg-y o,,,. By a familiar property of

Fredholm families, there is a

gm € Sty c(T*Y \ {0}, U (R; Vy, Vi w)),

such that under notation (3.8) -
ker (om + gm) (¥, 1) Flymys
coker (0 + gm) (¥, 1) (y,m)

for all (y,n) € T*Y \ {0}, independently of the specific choice af As usual, we can fill up the family of
Fredholm operator&s,,, + g, )(y, n) to a family of isomorphisms

~
~

HYRy)®V,  H ™ "R 0T,

(onom g SR g

F(ym) F(y,n)
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first for all (y,n) € S*Y and then for al(y, n) € T*Y by twisted homogeneity of ordex.

To shorten notation, the bundlésand F over $*Y will be identified with their pull-backs oveF*Y \ {0}
under the canonical projectidy, n) — (y,7/|n|). Choose any bundld§” and1¥ overY’, such that? and ¥
are subbundles of; W andw*YW, respectively. From (4.3) we can pass to a homomorphism

- H*(Ry) ® Vy H™ ™Ry ) @ Vy
(o Em ) ® o ® (4.4)

by extendingk,,, to k,, by zero on a complementary bundfe- to F in 5. W, while t,, is defined by composing
t,, with the embedding” — 7% W.

In the same way as in the proof of Theorem 3.4 we construct an opettaﬁtoﬂ?m(X V,V: W, W; w) whose
principal boundary symbol just amounts to (4.4). In addition, the projectignd” — F andwYW — F along
complementary bundleB* of F in Ty W and FL of Fin 7t W can be interpreted as principal symbols of
certain projections? ¢ ¥4(Y,W) andP € w4(Y,W), respectively, cf. Remark 2.1. Then, formingby
formulaA = PAE yields an elliptic boundary value probles € ¥ (X;v;w) for v = (V,V;Q, Q) and
Q= (F,W,P),Q = (F,W,P), satisfyingo y (A) = a,,. O

To some extent, elliptic problems with global projection conditions are complemented to Lopatinskii elliptic
boundary value problems.

Theorem 4.7 For any elliptic boundary value probletd € ¥ (X; v 4; w) Withvg = (V,V;Q4, Q.4) there
is an elliptic boundary value problel§ € ¥ (X;vs;w) Wlth vg = (V,V; Q&QB), such that4d @ B ¢
(X ;v;w) forv = (V @ V; CN) is Lopatinskii elliptic.

Proof. The upper left corned of A belongs to?*(X;V, V; w). Its formal adjointA* is an element of
v X;V,Viw*) for w* = (—vy + m,—v). The definition ofA* is based on the relation

(AU g)HO 0(X, V) T (U A* g)HOO(X V)

forall uw € C°(X, V) andg € C*(X, V) of compact support in the interior 6f. This is compatible with the
pointwise formal adjoint on the level of principal boundary symbols

(0a(A) (Y, M, 9) goom, .ciy = (4, 00(A%) (Y, M)g) Hoo R, ,cr)s

k and k being the rans o/ and V, respectively. The symbaly(A*) defines a bundle homomorphism
my HS7 7T "(Ry) @ Vy — 75 HS7™~7(R4) ® Vi which is Fredholm for alk € R, and

inds*y U@(A*) = — indS*Y U@(A)'

Pick a sufficiently largeV € N, such that both'4 and FA have complementary bundldg; and Fy in
S*Y x CV e,
Fi®Fz = S*Y xCN,
Fy&Fg = S*Y xCNV.
Then, -
indg*y Ua(A*) = [FB] — [FB]

By [ST99], we have order and weight reducing isomorphisms
D‘”;*QW . H* (X, Y) N Hs—m+2%vfm(‘z(’ V),
DI HA WYX, V) HOTE(XL V),
which are continuous for ali € R. Using them we pass from* to the operatoB := Dy'~*7 A* (D7 ~7)~!
which obviously belongs t@&@*(X; V', V; w) and has the property
indg«y 0o(B) = indg~y og(A").
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As in Theorem 4.6 we find an elemeny, € Sif; (7Y \ {0}, ¥ (R Vv, Vy;w)), such that

FB,(ym)’
FB,(W})

ker (ca(B) + gm) (y,1)
coker (05(B) + gm) (y,1)

1R

forall (y,n) € T*Y \ {0}. Set
Qs = (Fs,Y xCV, Pg),
Qs = (I Y xCN, Pg),
where P and Py are pseudodifferential projections #f)(Y; CV), whose principal symbols are the projections

Y x CN — FgandY x CVN — Fg alongF4 and F 4, respectively. Analysis similar to that in the proof of
Theorem 4.6 then gives us an elliptic operafoe ¥, (X; vs; w) with the desired properties. O

The boundary value problep can be recovered frord = A & B by the formulad = P4 A & 4 with

(o g Pa=(y 5,)

whereE 4 is the canonical embeddirtg® (Y, Q.a) — H*(Y, Cc), and similarly for3.
Let A € V0 (X;v;w) wherev = (V,V;Q, Q) andw = (v,y —m). An operator/l € ¥ ™ (X; v hwth)
with o= = (V,V;Q,Q) andw™! = (y — m, v) is called a parametrix ofl if

HA-1 € V. % (X;v tovswtow),

All =1 € V7% (X;vov Hhwow™?).

(4.5)
Theorem 4.8 Every elliptic boundary value probled € ¥, (X;v;w) possesses a parametriX in the
space?, " (X; v~ w™h).
Proof. Let us apply Theorem 4.7 té and formA = A @ B ¢ v (X;0;w) with some complementary

elliptic operator3. By [ST99],.4 has a parametri® ¢ ¥;™(X;5~';w '), wheres(P) = o(A)~'. Define a

soft left parametrix fotd by
i
Hoz(é 1(1)7)<0 2’)

whereE : H*~"(Y,Q) — H*~™(Y,W) is the canonical embedding involved @ andP ¢ 9 (Y, W) the
projection involved inQ). Then we get

I 0 -1 0 ~¢ 1 0
mA=(y p)P(o 7)Ao £)
It follows that the remaindes; = I — IIA belongs to¥? (X;v™! o v;w™! o w) and satisfiesr(S;) = 0.
By Theorem 4.4 we deduce th&t !Pg—pl(X; v=towv;w™! o w). Applying Theorem 4.5 we find an operator

Cr € P (X507 ovyw™t ow) satisfying(I + Ci)(I — ;) = I modulo ¥, °2,(X;v™" o v;w™! ow). To do
this, it suffices to form the asymptotic sum
a=Y 8.
j=1

This immediately yield$/ + C;) Ilo.A = 1 modulo ¥, ¢ (X; v~tov;w™t ow), and therefore
]Yl = (I + Cl) HO
€ Wg;)m(X;v_l;w_l)
is a left parametrix ofd. In a similar manner we find a right parametrix, and so we may take I7;. O

As usual, the existence of a parametrix implies the Fredholm property of elliptic problems with global projec-
tion conditions.
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Theorem 4.9 Let A € S, (X;v; w) be elliptic. Then

H(X,V) HS~m™7=m(X V)
A: @ — &
H (Y, Q) HT™(Y,Q)
is a Fredholm operator for alk € R, cf. (2.7). Moreover, the null-space dfis independent of as well as the
codimension of the range df, i.e.,ind A is independent of.

The parametriXI of Theorem 4.8 can be chosen in such a way that the smoothing remainders are projections
of finite rank. In fact,l — IT A projects ontcer A while I — AII projects onto a complement ofi A, for every
S.

Proof. The Fredholm property is a direct consequence of the fact that the remdindéfsd andl — AIT
in (4.5) are compact operators, which is due to Theorem 4.4. The second part of Theorem 4.9 is a consequence
of general facts on elliptic operators that are always satisfied when we have elliptic regularity in the respective
scales of spaces. O

As a converse statement for Theorem 4.9 we prove that ellipticity is not only sufficient but also necessary for
the Fredholm property.

Theorem 4.10 Supposed € ¥ (X;v;w) forv = (V,V;Q,Q) andw = (0,0). If the operator

LY(X,V) LY(X,V)
A: @ — ® (4.6)
HUY,Q) HO(Y, Q)

is Fredholm, ther4 is elliptic.

Proof. Write

(1)

T Q
in (4.6) and seQ+ = (o ¢ (I — P)W,W,I — P).Then

LAY, W) =H(Y,Q) ® H°(Y, Q1)

and we defings € ¥O(X;V,V; W, W & W;(0,0)) by

L*(X,V) L*(X,V) L3(X,V)
L*(X,V) ® c ® @ L*(X,V)
B: & = H(Y,Q = H(Y,Q) — L(Y,W) = ® )
L2(Y, W) ® ® o LAY, Wa W)
HY,QY)  H(V,QY)  LAYV,W)

where the mapping is given by

A K 0
T Q o).
0 I

c(o

Itis clear thatdim ker B = dim ker A < co. Moreover,

ker B*B = kerB
= (imB*B)*
andB*B has closed range, far*C has. It follows that3*B € ¥2(X;V;W;(0,0)) is a Fredholm operator. By
the above3* is an elliptic element of the calculus. This implies that beth(.4) andos(A) are injective. By

passing to adjoint operators we can show in an analogous manner that the symbdlsandoy(.A) are also
surjective. 0
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4.3 Operators of order zero

Here we study operatord € ¥2(X;V,V;(0,0)) and associated boundary symbols in more detail and prove
Theorems 3.2 and 3.3. Note that by setting

A DIT"ADY

one obtains an isomorphis#™ (X; V,V; (y,v —m)) — ¥(X;V,V;(0,0)).

A direct computation shows that for every e v9(2X;V, f/) the operator*+ Ae™ belongs to the space
v9(X;V,V;(0,0)). Moreover, for anydA € w9(X;V,V;(0,0)) there exists an operatet € ¥4 (2X;V, V),
such thatd = r* Ae* + M + G holds for suitable\/ + G € 9, (X;V,V;(0,0)). For the principal boundary
symbol of A we actually have

oo(A)(y,n) = rtao(y,0,n, Dr)et + 0a(M +G)(y,n) : L*(Ry) @V, = L*Ry) @V, (4.7)

whered, is the principal homogeneous symbol &f

Note that in contrast to the usual domainogf{ A) we now preferL? -spaces, because in the case of violated
transmission property the standard Sobolev spaces or Schwartz spaces with smoothness up to the boundary do
not survive under the action of pseudodifferential operators.

SetSy X = S*X |y and denote bﬁﬁg(S;X, Hom(Vy, V) the space of all restrictions|s; x fora €
S9,(T* X \ {0}, Hom(V, V),

GivenanyA € W2(X;V,V;(0,0)), such thatry (A) € S, (T* X \ {0}, Hom(V, V)) is elliptic, we consider

a = Olp(A) IS;‘,X
and ask whether the family
opT(a)(y,n) = rTa(y,n, Dy)et : L*(Ry)® Vy — L*R;)® Vy (4.8)

is Fredholm for all(y, ) € S*Y.

Write N for the[—1, 1] -bundle ovet” induced by the conormal bundle ¥f, i.e., N is a trivial bundle whose
fibres are interval§-1, 1] connecting the south pole, ¢) = (0, —1) with the north pol€, o) = (0, 1) of S} X,
wherey varies over all ofY".

Let us recall a criterion for the Fredholm property of (4.8) in terms of Mellin symbols

1

+ —
g (Z) - 1 _e:FQTrZ’

the functiong;* (z) being meromorphic in € C with simple poles at the poinig, wherej € Z. Thus the lines
Iy = {z € C: 3z =~} do not contain poles provided thatZ Z.

Choose a diffeomorphism : (—1,1) — I/, with the property thafitz(¢) — +oo for o — £1. Setting
a®(y) := a(y, 0, +1) we introduce a family of homomorphisnig — V4~ by

aly, 0) = a” (y)g* (2(0)) + a~ (y)g~ (2(0)). (4.9)

This is well defined for al-1 < ¢ < 1, sinceg™ (z) + g~ (2) = 1 andg™(z) tends tol when®z — 4oc along
the line I’ /,.
More precisely, the family (4.9) is a convex combination of the homomorphishg) : Vy — f/y.
Theorem 4.11 The operators (4.8) are Fredholm for &l}, n) € S*Y if and only if

iy, o) :{ Z;((yzfl(;(f))+a‘(y)g‘(2(9))» ][g: 77;9‘07:9176 [~1,1], (4.10)

is a family of isomorphismg, — V,, for all (y,7, 0) € S X U N.

Copyright line will be provided by the publisher



22 B.-W. Schulze and N. Tarkhanov: Boundary value problems with Toeplitz conditions

Theorem 4.11 is known from the theory of singular integral operators, cf. [Esk80]. An explicit proof of the
necessity may be found in [RS82b].

Mention that ifop™ (a) stems from a symbet ; (A) with the transmission property, we havé(y) = a™ (y),
and hence the criterion of Theorem 4.11 is automatically satisfied as sean ds is elliptic.

In general, each family of isomorphisms (4.10) represents an eleni@hin the relativeK -group of the pair
(By X, Sy X UN), whereB*X is the unit coball bundle ok andB3 X = B*X |y.

By K(By X, S+ X UN) = K(R? x S*Y) and the Bott periodicity theorem there is an isomorphism

i K(ByX,Sp X UN) — K(S*Y).

Theorem 4.12Let oy (A) be elliptic of order0. Supposery(A)|s; x extends to a family of isomor-
phisms (4.10) o3 X U N, ando(a) € K(By X, Sy X U N) is the associated element. Then, the equality
inds-y op™(a) = «(o(@)) holds fora = o ¢ (A) |7 x\ 0} -

For symbols with the transmission property Theorem 4.12 goes at least as far as [BAM71]. A related statement
for symbols of elliptic differential operators is owed to [AB64]. The general case not assuming the transmission
property is treated in [RS82b].

It is clear that any other extensian: Vy — Vy of ow(A) \S;X to 53 X U N also represents an element
o(a) € K(B$X, 5% XUN) and hence a certaifio(a)) € K (S*Y). Itis not obvious at first glance howo (a))
can be interpreted dadgs-y o for a family o(y, ) : L*(Ry) ® V,, — L*(R;) ® V, of Fredholm operators
parametrised byy,n) € S*Y. But the pointwise analytic information from [Esk80] combined with that on the
structure of pseudodifferential boundary value problems not requiring the transmission property from [RS82b]
gives us the following scenario. Let(Vy, Vy) denote the set of all families of homomorph|stLs -V,
continuously parametrised ly, 7, o) € Si X U N, that vanish ors;, X . Every element ofF(Vy-, Vy') can be
canonically identified with a continuous famlly of homomorphlsms parametriségd.loy € N =Y x [—1, 1],
vanishing ont” x §[—1,1]. We then havé"a (y,7, 0) = 1 + f(y, o) for somef € F(Vy, Vy'), 0

a(y,me) = aly.n0)(L+ f(y,0)
= aly,n0) + f(y,0)

foranf € F(Vy,Vy). It suffices to consider elemenisof the above kind, such that the pull- -back iy, o)
underp = o(z) is a Schwartz function of € F1/2 In fact, we can obviously construct such(aatartlng with an

arbitrary famllya of isomorphisms, satisfying — a € F(Vy, Vv ), by a small change c&‘|N nearY x d[—1,1]
within the homotopy class of families of isomorphisms representesd W¥e then obtaiw (@) = o(a) and hence
vo(a) = vo(a).

Using the space€> (U, M™ (I'; 2, Hom(C¥, C’g))) as local models, it is straightforward to define spaces
M™(Y x I' 5, Hom(Vy, Vy)) for vector bundled’y andVy overY'.

Theorem 4.13 Leto y (A) be elliptic of order zero and(y, £) the restriction oty (A) to 77 X'\ {0}. Suppose
m is an element oM/ ~*°(Y" x I' 5, Hom(Vy-, Vy')), such that

= _f at(y)gT(2(0) +a (v)g™ (2(0)) +m(y, 2(0)), if n=0, o€ [-1,1],
ay.m )‘{ o5 (A) 55 x, it .ol = 1. (4-11)

defines a family of isomorphisn§ — f/y for all (y,n,0) € Sy X U N. Then, for arbitrary cut-off functions
w(r) ando(r),
op*(a)(y, ) +w(rlnl) opyr (m)a(rln]) : L*(Ry) @V, — L*(R4) @V,
is a family of Fredholm operators parametrised tyn) € 7Y \ {0}, and for its restriction taS*Y" we have
indg«y(-) =to(a).
This theorem generalises Theorems 4.11 and 4.12. The Fredholm property is shown in [Esk80] in a slightly
modified form withoutv. The present formulation is given in [Sch94].

Proof of Theorem 3.2It suffices to treat the case = v = 0. Indeed, the reduction to order and weight zero
as at the beginning df 4.3 can also be done on the level of interior and boundary symbols. In other words, we
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can first pass to a symbol of order zero by setting= o w (Dg’m)amag, (D7), carry out our construction that
yields a Fredholm family(y,n) as asserted in (3.8), where it is sufficient to consider
oo(y,n) : L*(Ry) @V, — L*(Ry) @V,

Then we may set,, (y,n) := aa(D‘T/”m)(y, n) oo(y,n) oa(D})(y,n). As the boundary symbol can be repre-

sented in the form (4.7), it suffices to show thatz, §) |s; x for an elliptic principal symbot : 75V — w}ff
admits an extension to an isomorphism

wherers: (x)un @ S5-(X)UN — Y stands for the canonical projection. In fact, having granted this, we apply
an approximation argument of [RS82b] to obtain an element

m(y,z) € M_OO(Y X Fl/QaHom(VYa VY))7

such that (4.11) witlr y (A) SpX replaced byug S5X is also an extension efy |S;X to an isomorphism over
all of S5 X U N, which is homotopic t@ through isomorphisms. By assumption, there is a nowhere vanishing
vector fieldv onY". Without loss of generality we can assume théy)| = 1 for ally € Y. Pick an isomorphism
TY — T*Y. Itinduces a diffeomorphism : SY — S*Y between the respective unit sphere bundles. Consider
the compositiord o v : Y — S*Y. For everyy € Y there is a unique haIf—circIéfy on .Sy X containing the
pointsA o v (y) and(y, 0,0, £1), north and south poles of the sphere. This yields a trivial buitten Y with
fibre Ny overy. There is a projection of;- X to the conormal bundI&’, given by(y, 0,7, 0) — (y, ), which
induces an isomorphisia : N — N as fibre bundles in the set-up of fibre homeomorphisms. To construct an
extension of [s; x to an isomorphism (4.12) it suffices to 8y, 0) == ao(y,0,7, 0), for hy (7, 0) = o.

Q.E.D.

Proof of Theorem 3.3Similarly to the preceding proof it suffices to consider the case of any fixed ordeR
and~y = 0. In the present case it is convenient to take= 1. Leta; € Sﬁg(T*X \ {0}, Hom(V, V)) be elliptic.
Seta) := a1 |r; x, thus obtaining a symbol iSﬁg(T;;X \ {0}, Hom(V4-, Vy-)). Using a familiar difference
construction we get an element ] € K (75 X), the latter group just amounts 16(7*Y x R). Every element
in K(T*Y x R) can be represented by a homomorphism

o(y,n) +w: B— B, (4.13)

with B a smooth vector bundle dfi*Y x R whose restriction td™Y is 7y, By for a vector bundleBy onY’,

ando : 7} By — w3 By a self-adjoint elliptic symbol of orderonY’, cf. [APS75, |lI]. Sinces (y, ) is elliptic,

(4.13) is an isomorphism between corresponding fibrep fer 0. Moreover, sincer(y,n) is self-adjoint, all
eigenvalues are real. Hence, (4.13) is an isomorphism far allR. Passing to stabilisations af and (4.13),
we see that for a suitabl®/ € N the homomorphisna; @ Icv between the pull-backs dfy & C* and
Vy & CM to Sy X has an extension to an isomorphism

a: g xon(Vy @ cY) — 7TE;,XUN(VY @ CM).
Similarly to the proof of Theorem 3.2 we find an element
m(y,z) € M=®(Y x I'; o, Hom(Vy @ CM, V3 @ CM)),

such that (4.11) withry (A) |s; x replaced bya) @ Icwm |s; x defines an extension af, © Icwm [s; x to an
isomorphism over all o5 X U N, homotopic toaz through isomorphisms. By analogy with Theorem 4.13 we
now form

op™(a1)(y,n) +w(rlnl)r~opp(m)(y) @(rlnl) = H'(Ry) @ (V, ® CM)
— H"YRy)®(V,®CM).

To complete the proof, it suffices to apply a reduction of order and weight in much the same way as in the proof
of Theorem 3.2.
Q.E.D.
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