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Abstract. We consider a boundary value problem for an elliptic differential

operator of order 2m in a domain D ⊂ Rn. The boundary of D is smooth

outside a finite number of conical points, and the Lopatinskii condition is
fulfilled on the smooth part of ∂D. The corresponding spaces are weighted

Sobolev spaces Hs,γ(D), and this allows one to define ellipticity of weight γ

for the problem. The resolvent of the problem is assumed to possess rays of
minimal growth. The main result says that if there are rays of minimal growth

with angles between neighbouring rays not exceeding π(γ + 2m)/n, then the

root functions of the problem are complete in L2(D). In the case of second
order elliptic equations the results remain true for all domains with Lipschitz

boundary.

Introduction

Expansions over eigenvectors of selfadjoint operators in a Hilbert space are well
understood. After [Mar62] expansions over root vectors are also intensively elabo-
rated for weak perturbations of selfadjoint operators, cf. [Agr94a]. Although such
investigations are of independent interest in operator theory, most interesting ap-
plications are still in elliptic theory, cf. [Agr94].

The problem of completeness of the system of eigen and associated functions of
boundary value problems for elliptic operators in domains with smooth boundaries
was studied in many articles.

The study was initiated by the paper of Keldysh [Kel51] who proved a general
theorem on the completeness of the system of eigen and associated functions of
non-selfadjoint differential operators and obtained as its corollary the theorem on
the completeness for elliptic operators of second order with the Dirichlet boundary
conditions.

In a series of papers [Bro53], [Bro59a], [Bro53b], Browder obtained the theorem
for the Dirichlet problem for elliptic operators of arbitrary order with real principal
part.

Agmon [Agm62] and Schechter [Sch59] proved that the system of root functions
of an elliptic boundary problem is complete in a bounded domain D with a smooth
boundary provided that the Lopatinskii condition is fulfilled. Recently Agranovich
et al. [ADF00] improved the Agmon theorem by relaxing the regularity conditions
on the boundary.

For the Dirichlet problem for strongly elliptic differential operators of order 2m
the completeness of the system of eigen and associated functions in L2(D), where
D is an arbitrary bounded domain, was proved by Agranovich [Agr94a]. He studied
also the problem with the Neumann boundary conditions, assuming that the surface
∂D is Lipschitzian.

In the case of Neumann problem for second order elliptic systems the complete-
ness of root functions was investigated by Krukovsky [Kru76].
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All the mentioned authors actually used the methods of [Kel51]. We shall also
use them here as well as the methods of Carleman presented in [Car36].

1. Expansion of the resolvent

Let B be a Banach space and L(B) the algebra of all bounded linear operators
acting in B.

Suppose λ0 ∈ C and F (λ) is a holomorphic function in a punctured neighbour-
hood of λ0 which takes its values in L(B).

The point λ0 is called a characteristic value of F (λ) if there exists a holomorphic
function u(λ) in a neighbourhood of λ0 with values in B, such that u(λ0) 6= 0 but
F (λ)u(λ) extends to a holomorphic function near λ0 and vanishes at this point. We
call u(λ) a root function of F (λ) at λ0.

Assume that λ0 is a characteristic value of F (λ) and u(λ) a root function at λ0.
The order of λ0 as a zero of F (λ)u(λ) is called the multiplicity of u(λ), and the
vector u0 = u(λ0) an eigenvector of F (λ) at λ0. If supplemented by the zero vector,
the eigenvectors of F (λ) at λ0 form a vector space. The closure of the set of all
eigenvectors of F (λ) at λ0 is called the kernel of F (λ) at λ0, and it is denoted by
kerF (λ0).

By the rank of an eigenvector u0 ∈ B is meant the maximum of the multiplicities
of all root functions u(λ) such that u(λ0) = u0, if the set of multiplicities of these
functions is bounded. If these multiplicities are unbounded, the rank of u0 is taken
to be infinity.

Suppose that kerF (λ0) is of finite dimension I and that the ranks of all eigen-
vectors u0 ∈ kerF (λ0) are finite. By a canonical system of eigenvectors of F (λ)
at λ0 we mean any system of eigenvectors u0,1, . . . , u0,I with the property that the
rank of u0,1 is maximal among the ranks of all eigenvectors of F (λ) at λ0 and the
rank of u0,i is maximal among the ranks of all eigenvectors of F (λ) at λ0 in any
direct complement in kerF (λ0) of the linear span of the vectors u0,1, . . . , u0,i−1, for
i = 2, . . . , I.

Let ri be the rank of u0,i. It is easy to see that the rank of any eigenvector u0

corresponding to the characteristic value λ0 is equal to one of the ri. Consequently,
the numbers r1, . . . , rI are uniquely determined by the function F (λ). Note that
a canonical system of eigenvectors is not uniquely determined in general. The
numbers ri are said to be partial null multiplicities of the characteristic value λ0

of F (λ). Following [GS71], we call n(F (λ0)) = r1 + . . . + rI the null multiplicity
of the characteristic value λ0 of F (λ). If F (λ) has no root functions at λ0, we set
n(F (λ0)) = 0.

We now apply these arguments again, with F (λ) replaced by the inverse family
F−1(λ). Suppose λ0 ∈ C is a characteristic value of F−1(λ) and the kernel of F−1(λ)
at λ0 is of finite dimension J . If %1, . . . , %J are the partial null multiplicities of this
characteristic value of F−1(λ), then we call %1, . . . , %J the partial polar multiplicities
of the characteristic value λ0 of F (λ). We call n(F−1(λ0)) = %1 + . . .+%J the polar
multiplicity of the characteristic value λ0 of F (λ) and denote it by p(F (λ0)). If
F−1(λ) has no root functions at λ0, we set p(F (λ0)) = 0.

The quantity m(F (λ0)) = n(F (λ0)) − p(F (λ0)) is called the multiplicity of the
characteristic value λ0 of F (λ).

If F (λ) is holomorphic at the point λ0 and the operator F (λ0) is invertible, then
λ0 is called a regular point of F (λ). Note that the multiplicity of any regular point
of F (λ) is equal to zero.

In the scalar case it is evident that the multiplicity of a characteristic value λ0

of a function F (λ) is equal to the multiplicity of the zero if λ0 is a zero of F (λ),
and is equal to the order of the pole if λ0 is a pole.
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Assume that λ0 is a pole of the operator-valued function F (λ). In some neigh-
bourhood of λ0 we get an expansion

F (λ) =
∞∑

j=−m

Fj(λ− λ0)j , (1.1)

where Fj ∈ L(B).
If in (1.1) the operators F−1, . . . , F−m are of finite rank, then F (λ) is called

finitely meromorphic at λ0.
The operator-valued function F (λ) is said to be of Fredholm type at the point λ0

if the operator F0 in the expansion (1.1) is Fredholm. This is equivalent to saying
that the value of F at λ0 is a Fredholm operator.

A point λ0 is called a normal point of F (λ) if F (λ) is finitely meromorphic and
of Fredholm type at λ0 and if all points of some punctured neighbourhood of λ0 are
regular for F (λ).

By [GS71], each normal point λ0 of F (λ) is a normal point of F−1(λ). If, in
addition, λ0 is a pole of either F (λ) or F−1(λ), then it is a characteristic value of
finite multiplicity of the other.

Expanding F (λ) and u(λ) as Laurent series (1.1) and

u(λ) =
∞∑

k=0

uk (λ− λ0)k,

respectively, we get

F (λ)u(λ) =
r−1∑

n=−m

( ∑
j+k=n

Fjuk

)
(λ− λ0)n +O

(
|λ− λ0|r

)
close to λ0. It follows that for u(z) to be a root function of F (λ) at λ0 of multiplicity
r ≥ 1 it is necessary and sufficient that

n+m∑
k=0

Fn−kuk = 0 (1.2)

for all n = −m, . . . , r − 1.
The derivatives

uk =
1
k!
u(k)(λ0),

k = 1, . . . , r − 1, are said to be associated vectors for the eigenvector u0 = u(λ0) of
F (λ) at λ0. Any subsystem u0, u1, . . . , us with s ≤ r− 1 is called a Jordan chain of
length s+ 1 of F (λ) at λ = λ0.

Suppose u0,1, . . . , u0,I is a canonical system of eigenvectors of F (λ) at λ0, I being
the dimension of kerF (λ0). Denote by ri the rank of u0,i. If, for every i = 1, . . . , I,
the vectors u0,i, . . . , uri−1,i form a Jordan chain consisting of an eigenvectors and
associated vectors of F (λ) at λ0, then the system(

u0,i, u1,i, . . . , uri−1,i

)
i=1,...,I

is called a canonical system of Jordan chains corresponding to the characteristic
value λ0 of F (λ).

Let F (λ) be a holomorphic function in a punctured neighbourhood of λ0 with
values in L(B). Then we define the transposed family F ′(λ) with values in L(B′),
where B′ is the dual of B, by the equality 〈F ′g, u〉 = 〈g, Fu〉 for all g ∈ B′ and
u ∈ B.

The following result is proved by Gokhberg and Sigal [GS71] for meromorphic
operator-valued functions as a consequence of their normal factorisation theorem.
They refer to Keldysh [Kel51] for the case of polynomials with values in operators
on a Hilbert space.
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Theorem 1.1. Let λ0 be a characteristic value of the operator-valued function
F (λ), which is a normal point of F (λ). Then there are biorthonormal canonical
systems

(u0,i, u1,i, . . . , uri−1,i)i=1,...,I ,

(g0,i, g1,i, . . . , gri−1,i)i=1,...,I

of eigenvectors and associated vectors of F (λ) and F ′(λ) at λ0, respectively, such
that

p.p. F−1(λ) =
I∑

i=1

−1∑
j=−ri

(λ− λ0)j

ri+j∑
k=0

〈gk,i, ·〉uri+j−k,i.

Here, the abbreviation p.p. indicates the principal part of the Laurent expansion
around λ0.

2. Definitions

Let D be a bounded domain in Rn with boundary ∂D and let D denote the
closure of D. We use the standard notation x = (x1, . . . , xn) for the coordinates
in Rn and Dα = Dα1

1 . . . Dα1
n for the α th derivative, with Dj = −ı ∂/∂xj and

α = (α1, . . . , αn).
Assume that ∂D is a surface of the class C2m everywhere away from the origin

x = 0 that we will denote by O. Moreover, in a neighbourhood of the point O the
domain D is assumed to coincide with a conical domain

K =
{
x ∈ Rn :

x

|x|
∈ Ω

}
,

where Ω is a domain on the unit sphere having a boundary of the class C2m.
Consider a differential operator in D

A(x,D) =
∑

|α|≤2m

aα(x)Dα,

where aα(x) are bounded measurable functions in D. The higher order coefficients
aα(x) with |α| = 2m are required to be continuous in D \ {O}.

More precisely, the coefficients aα(x) for |α| = 2m have the form

aα(x) = aα,0

( x

|x|

)
+ aα,1(x)

in a neighbourhood of the point O, where lim
x→0

aα,1(x) = 0.
We now introduce a system of boundary operators

Bj(x,D) =
∑

|α|≤mj

bj,α(x)Dα

for j = 0, . . . ,m− 1, where mj < 2m and bj,α(x) are functions of the class C2m−j

in D \ {O}. For |α| = mj we require

bj,α(x) = bj,α,0

( x

|x|

)
+ bj,α,1(x),

where lim
x→0

bj,α,1(x) = 0.

In the sequel we assume that the operator A is elliptic, i.e., σ2m(A)(x, ξ) 6= 0
for all x ∈ D \ {O} and ξ ∈ Rn \ {0}. If n = 2 we also suppose that the condition
of regular ellipticity is fulfilled. This latter means that for x ∈ D and any pair of
linearly independent vectors ξ, η the polynomial σ2m(A)(x, ξ + zη) has exactly m
roots z with positive imaginary part. It is known, cf. for instance [ADN59], that
for n > 2 this condition is always satisfied. It also holds if the coefficients of the
principal symbol σ2m(A) are real.
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Suppose that the Lopatinskii condition is fulfilled outside of the point x = 0.
The operators

A0 =
∑

|α|=2m

aα,0(ω)Dα,

Bj,0 =
∑

|α|=mj

bj,α,0(ω)Dα,

where (r, ω) is the spherical coordinate system with center at O, satisfy the Lopatin-
skii condition on ∂K \ {O}.

We shall consider complex-valued functions defined in D. For u ∈ Cs(D), we
introduce the norm

‖u‖Hs(D) =
( ∫

D

∑
|α|≤s

|Dαu|2 dx
)1/2

.

The completion of the space Cs(D) with respect to this norm is the Banach space
Hs(D).

Given any γ ∈ R, we define the space Hs,γ(D) to consist of all functions u such
that

‖u‖2Hs,γ(D) :=
∫
D
|x|−2γ

∑
|α|≤s

|x|2|α||Dαu|2 dx

< ∞.

Consider the boundary problem

A(x,D)u = f in D,
Bj(x,D)u = 0 on ∂D (2.1)

for j = 0, . . . ,m− 1. The operator pencil

r−ıλA0

(
rıλu(ω)

)
, ω ∈ Ω ,

r−ıλBj,0

(
rıλu(ω)

)
, ω ∈ ∂Ω ,

is of crucial importance in the study of boundary value problems in domains with
a conic point on the boundary. It is well known that the spectrum of the boundary
value problem

r−ıλA0

(
rıλu(ω)

)
= 0 for ω ∈ Ω ,

r−ıλBj,0

(
rıλu(ω)

)
= 0 for ω ∈ ∂Ω (2.2)

is discrete.
The following theorem is proved in [Kon67].

Theorem 2.1. If there are no points of the spectrum of the problem (2.2) on the
line =λ = n/2− γ, then

‖u‖H2m,γ+2m(D) ≤ C
(
‖Au‖H0,γ(D) + ‖u‖L2(D)

)
for all functions u ∈ H2m,γ+2m(D) satisfying the boundary condition Bju = 0 on
∂D \ {O} for each j = 0, . . .m− 1.

3. Rays of minimal growth

Let us denote by T the unbounded linear operator L2(D) → L2(D) whose domain
is

DT = {u ∈ H2m,γ+2m(D) : Bju = 0 on ∂D \ {O} for j = 0, . . . ,m− 1}

and that maps an element u ∈ DT to Au.
Theorem 2.1 implies that T is a closed linear operator L2(D) → L2(D) and the

dimensions of his kernel and cokernel are finite. If the spectrum of T is not the
whole complex plane then it is discrete.
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Definition 3.1. A ray arg λ = θ in the complex plane λ is called a ray of minimal
growth for the resolvent R(λ) = (T − λI)−1 : L2(D) → L2(D) of the operator T
if the resolvent exists for all λ of sufficiently large modulus on this ray, and for all
such λ we have

‖R(λ)‖L(L2(D)) ≤ C |λ|−δ

with some δ > 0 and a constant C > 0.

Note that this definition is slightly different from the usual one where one assumes
that δ = 1.

We will now indicate some conditions for a ray arg λ = θ to be a ray of minimal
growth for the resolvent of T .

Theorem 3.1. The spectrum of the operator T is discrete and the ray arg λ = θ is
a ray of minimal growth for R(λ) if:

1)
A0(x, ξ)
|A0(x, ξ)|

6= eıθ for all x ∈ D and ξ ∈ Rn \ {0}.

2) For x ∈ ∂D\{O}, let ν(x) be the normal vector for ∂D at x, and ξ ∈ Rn \{0}
be orthogonal to ν(x). If z+

1 (ξ, λ), . . . , z+
m(ξ, λ) are the roots with positive imaginary

parts of A0(x, ξ+ zν(x))−λ, where λ is a complex number with arg λ = θ, then the
polynomials Bj,0(x, ξ + zν(x)), j = 0, . . . ,m − 1, are linearly independent modulo∏m

j=1(z − z+
j (ξ, λ)).

3) There is a γ ∈ (−2m, 0] with the property that the boundary value problem in
the infinite cone K

A0(ω,D)u− eıθu = f for x ∈ K,
Bj,0(ω,D)u = 0 for x ∈ ∂K (3.1)

has a unique solution in H2m,γ+2m(K) ∩H0,γ(K) for each f ∈ H0,γ(K), and

‖u‖H2m,γ+2m(K) + ‖u‖H0,γ(K) ≤ C ‖f‖H0,γ(K).

The conditions 1) and 2) were introduced by Agmon in [Agm62] where the com-
pleteness of the system of eigen and associated (root) vectors was proved for an
elliptic boundary problem in a smooth domain. These conditions appear in the
study of an elliptic boundary problem with a parameter. In the condition 2) the
existence of m roots with positive imaginary parts actually follows from the ellip-
ticity of the operator A, which also implies that their number is less than or equal
to m.

The condition 3) is difficult to check. It is met systematically in the study of
boundary value problems in domains with conic points on the boundary, cf. for
instance [MP79, NP94, Sch98]. One can show that the problem (3.1) is Fredholm,
i.e., its kernel and cokernel have finite dimensions. The condition 3) says that
these dimensions just amount to zero. This condition is actually equivalent to the
following one:

3′) For any f(t, x) satisfying∫
R

∫
K

|x|−2γ |f(t, x)|2dtdx <∞,

there is a unique solution of the boundary value problem

eıθD2m
t u−A0u = f in R×K,

Bj,0u = 0 on R× ∂K

for j = 0, . . . ,m− 1, such that∫
R

∫
K

|x|−2γ−4m |u(t, x)|2dtdx <∞.

There are some examples where this condition is fulfilled or is not.
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4. Proof of Theorem 3.1

We have to show that the estimate

‖u‖L2(D) ≤
C

|λ|δ
‖(T − λI)u‖L2(D) (4.1)

holds for any function u ∈ DT and for all λ with sufficiently large modulus on the
ray arg λ = θ, where δ > 0.

Consider the operator

L := eıθD2m
t −A.

The operator L is elliptic of order 2m in the closure of the cylindrical domain R×D
of Rn+1. One can check that 2) is equivalent to the condition that the operator L
and the system of boundary operators Bj satisfy the Lopatinskii condition at each
point of R× (∂D \ {O}).

Let u(t, x) ∈ C2m(R × D) be such that u ≡ 0 for all |t| ≥ 1 and Bju = 0 on
R× (∂D \ {O}) for each j = 0, . . . ,m− 1. Then the estimate∫

R

∫
D
r−2γ |D2m

t u|2 dtdx+
∫

R

∫
D
r−2γ−4m

∑
|α|≤2m

r2|α||Dαu|2 dtdx

≤ c
( ∫

R

∫
D
r−2γ |Lu|2 dtdx+

∫
R

∫
D
|u|2 dtdx

)
(4.2)

is true with a constant c independent of u. Estimate (4.2) can be proved with the
help of partition of unity and estimates of solutions to elliptic equations in Rn,
both in the half-space and in an unbounded dihedral angle. A detailed proof can
be found in [Kon67].

Choose a function ω(t) ∈ C∞
comp(R) with the property that ω(t) ≡ 1 for |t| < 1/2

and ω(t) = 0 for |t| > 1. Given a function u(x) ∈ C2m(D) satisfying the boundary
conditions Bju = 0 on ∂D \ {O} for j = 0, . . . ,m− 1, we put

vσ(t, x) = ω(t) eıσt u(x),

where σ is a real number.
For ρ > 0, write Cρ = (−ρ, ρ) × D. Using inequality (4.2) we readily conclude

that∫
C1

r−2γ−4m
∑

|α|≤2m

r2|α||Dα
t,xvσ|2 dtdx ≤ c

( ∫
C1

r−2γ |Lvσ|2 dtdx+
∫
C1

|vσ|2 dtdx
)
,

for all σ ∈ R, where the constant c does not depend on σ. An easy computation
shows that

Lvσ = ω(t) eıσt
(
σ2meıθu−Au

)
+ S(eıσtu), (4.3)

where S is a linear differential operator of order 2m− 1 with bounded coefficients.
Since vσ ≡ 0 for |t| > 1, (4.3) implies that∫

C1/2

r−2γ−4m
∑

|α|≤2m

r2|α||Dα
t,x(eıσtu)|2 dtdx

≤ C
(∫

D
r−2γ |σ2meıθu−Au|2dx+

∫
D
r−2γ

∑
|α|≤2m−1

σ2(2m−1−|α|)|Dαu|2dx+
∫
D
|u|2dx

)
,
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with C a constant independent of σ and u. Combining this inequality with an
obvious estimate

C ′
∫
C1/2

r−2γ−4m
∑

|α|≤2m

r2|α||Dα
t,x(eıσtu)|2 dtdx

≥
∫
D
r−2γ−4m

∑
|α|=2m

∑
j+|β|=|α|

r2|α|σ2j |Dβu|2 dx

≥ c′
( ∫

D
r−2γ

∑
|β|≤2m

σ2(2m−|β|)|Dβu|2 dx+
∫
D
σ4m+2γ |u|2 dx

)
,

we get ∫
D
σ4m+2γ |u|2 dx ≤ const

∫
D
|σ2meıθu−Au|2 dx

for all σ ∈ R of sufficiently large modulus. This just amounts to saying that

|λ|
4m+2γ

2m ‖u‖2L2(D) ≤ C ‖(A− λI)u‖2L2(D)

if arg λ = θ and |λ| is sufficiently large. Hence it follows that there are no points of
the spectrum of the operator A − λI on the ray arg λ = θ with modulus |λ| large
enough, and

‖(T − λI)−1‖L(L2(D)) ≤
√
C |λ|−1− γ

2m .

Since we assume −2m < γ ≤ 0, the ray arg λ = θ is a ray of minimal growth for
the resolvent.

In order to finish the proof of Theorem 3.1 it remains to show that the map
T − λI is a map onto the whole space L2(D). This proof is long and is based on
usual methods of the theory of elliptic boundary problems with the help of partition
of unity and construction of a parametrix.

�

5. Generalised eigenelements

Theorem 3.1 says that the spectrum of the operator T is discrete. Let us fix a
point z outside of the spectrum of the operator T and put R = (T − zI)−1. We
have

R
( 1
λ− z

,R
)

= −(λ− z)I − (λ− z)2R(λ, T ).

An element Φ ∈ L2(D) different from zero is said to be a generalised eigenelement
of the operator R corresponding to an eigenvalue µ ∈ C, if (R−µI)ιΦ = 0 for some
integer ι ≥ 0. The minimal ι, for which this relation holds is then called the index
of Φ.

It is well known that the dimension of the space of generalised eigenelements of R
corresponding to an eigenvalue µ is finite. This dimension is called the multiplicity
of µ. Let us denote by E(R) the closure in L2(D) of the linear span of all generalised
eigenelements of the operator R.

The operator-valued function R(λ,R) is a meromorphic function of λ ∈ C with
its poles at the points that are eigenvalues of the operator R. Let f ∈ L2(D).
Consider the function R(λ,R)f which is analytic everywhere except of the point
λ = 0 and the points µk which can be its poles. If λ = µk is a pole of R(λ,R)f
then in a sufficiently small neighbourhood of µk the function R(λ,R)f expands in
a Laurent series

R(λ,R)f =
Φι

(λ− µk)ι
+

Φι−1

(λ− µk)ι−1
+ . . .+

Φ1

λ− µk
+

∞∑
j=0

fj (λ− µk)j ,

where ι ≥ 1 and Φι 6= 0, the functions Φj ∈ L2(D) are generalised eigenelements of
R of index ι− j + 1, and fj ∈ L2(D) for j ≥ 0.



ON THE ROOT FUNCTIONS OF GENERAL ELLIPTIC BOUNDARY VALUE PROBLEMS 9

Similarly, a function Φ ∈ DT is said to be a generalised eigenelement of T corre-
sponding to an eigenvalue λ, if (T − λ)ιΦ = 0 for some ι ≥ 1. The minimal ι, for
which (T − λ)ιΦ = 0, is also called the index of Φ.

It is clear that the function Φ is a generalised eigenelement of T corresponding
to λ if and only if Φ is a generalised eigenelement of R(z, T ), corresponding to the
eigenvalue 1/(λ − z). The closure in L2(D) of the linear span of all generalised
eigenelements of the operator T is denoted by E(T ). Out next objective is to show
that E(T ) = L2(D). But we first prove the following result about the growth of the
resolvent.

Theorem 5.1. Suppose R is a compact operator in L2(D) with the property that
RL2(D) ⊂ H2m,γ+2m(D) for some −2m < γ < 0. Let {µι} be the sequence of
nonzero eigenvalues of R counted with their multiplicities, and R(λ,R) be the re-
solvent of R. Then

1)
∑

ι

|µι|
n

2m+γ +ε
<∞ for any ε > 0.

2) There exists a sequence ρj → 0, such that R(λ,R) is defined for |λ| = ρj and
satisfies

‖R(λ,R)‖ ≤ exp
(
|λ|−

n
2m+γ−ε

)
for |λ| = ρj, j ∈ N, with any ε > 0.

6. Completeness of root functions

To prove Theorem 5.1 we need some constructions from [Agm62]. Let Q be a
cube in Rn,

Q = {x ∈ Rn : |xj | < π, j = 1, . . . , n}.
If u ∈ L2(Q) then

u(x) =
∑

k∈Zn

ak e
ı〈k,x〉.

For any r > 0, let H(r) be the space of functions u with finite norm

||u||2H(r) = |a0|2 +
∑

k∈Zn\{0}

|k|2r |ak|2.

Put
Λsu (x) =

∑
k∈Zn

(1 + |k|2)s/2 ak e
ı〈k,x〉.

It is easy to verify that for s > 0 the operator Λ−s is selfadjoint and compact in
L2(Q). Its eigenvalues are (1 + |k|2)−s/2 and the corresponding eigenfunctions are
eı〈k,x〉.

Let z0 be a point not belonging to the spectrum of an operator A in a Hilbert
space H. Put R = (A− z0I)−1. We can certainly assume that z0 = 0.

Obviously, R∗R is a non-negative selfadjoint compact operator in H. The oper-
ator S = (R∗R)1/2 is also non-negative, selfadjoint, and compact in H. Let µj(S)
be the eigenvalues of S.

Definition 6.1. The operator R is said to be of the class Cp, with 0 < p < ∞,
provided ∑

j

|µj(S)|p <∞.

Since ∑
k∈Zn

(1 + |k|2)−ps/2 <∞

if ps > n, the operator Λ−s belongs to Cp for p > n/s. The following Lemmas are
taken from [DS63].



10 N. TARKHANOV

Lemma 6.1. Assume that R is a compact linear operator of the class Cp, with
0 < p < ∞, in a Hilbert space H. Then there exists a sequence ρj satisfying
ρj → 0, such that

‖R(λ,R)‖ ≤ C exp(c |λ|−p)

for |λ| = ρj.

Lemma 6.2. Let R be a compact linear operator of the class Cp, with 0 < p <∞,
in a Hilbert space H, and B be a bounded operator in H. Then the compositions
BR and RB belong to Cp.

The following important result goes at least as far as [Agm62].

Theorem 6.3. Let R be a compact operator in the Hilbert space H(r) for some
r ≥ 0 and RH(r) ⊂ H(r+s) for some number s > 0. Then R ∈ Cn/s+ε for any ε > 0
and

‖C(λ)R(λ,R)‖ ≤ exp(c |λ|−n/s−ε)

whenever ε > 0 and |λ| ≤ ∆ with ∆ > 0 depending on ε, where

C(λ) =
∏
j

(
1− λj

λ

)
exp

(λj

λ
+ . . .+

1
N

(λj

λ

)N)
and N is the largest integer ≤ n/s. The function C(λ) is an entire function of 1/λ
vanishing at the points λj only.

The condition RH(r) ⊂ H(r+s) for some number s > 0 can be replaced by
requiring R to be in the class Cp for certain p > 0. In this way one readily obtains
a very useful consequence of Theorem 6.3, cf. [DS63]. It is also of independent
interest.

Corollary 6.4. Assume that R is a compact operator in a Hilbert space H(r) be-
longing to the class Cp, where 0 < p < ∞. Let λj be the sequence of non-zero
eigenvalues of R counted with their multiplicities. Then there exists a sequence ρj

converging to 0, such that the resolvent R(λ,R) exists everywhere on |λ| = ρj and
it fulfills

‖R(λ,R)‖ ≤ exp(c |λ|−p)

for |λ| = ρi.

We shall show that Theorem 5.1 can be deduced from Corollary 6.4.

7. Proof of Theorem 5.1

Suppose that D is situated in the cube Q = {x : |xj | < π, j = 1, . . . , n}. As
usual, we denote by rD the restriction operator from L2(Q) to L2(D). Let us show
that there exists an extension operator eD which maps H2m,γ+2m(D) continuously
to H2m+γ(Q), where H2m+γ(Q) is the space of 2π -periodic functions on Rn with
the norm

‖u‖2Hs(Q) = |a0|2 +
∑
k∈Zn

k 6=0

|k|2s |ak|2. (7.1)

Here,

u(x) =
∑

k∈Zn

ak e
ı〈k,x〉

is the expansion of u in the Fourier series, and s = 2m+ γ.
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Consider in the infinite cone K the partitions of unity

1 =
+∞∑

i=−∞
φi(x),

1 =
i+∞∑

i=−∞
ψi(x),

where

1) φi ∈ C∞(K), 2) suppφi ⊂ K2−i−1a,2−i+1a, 3) |Dαφi| ≤ C 2i|α|;
1′) ψi ∈ C∞(K), 2′) suppψi ⊂ K2−i−2a,2−i+2a, 3′) |Dαψi| ≤ C 2i|α|

and ψ = 1 in K2−i−1a,2−i+1a, i.e., φiψi = φi holds for all i ∈ Z. Here, we define
Ka,b = {x ∈ K : a < |x| < b} and Ka = K0,a.

Let u1 = φu and u2 = (1 − φ)u, where φ ∈ C∞(Rn) satisfies φ = 1 in a
neighbourhood of the point x = 0 and φ = 0 for |x| ≥ a.

Set Ba,b = {x ∈ Rn : a < |x| < b} and let e0 be a linear bounded extension
operator from Hs(Ka/4,4a) to Hs(Ba/4,4a). The operator e0 induces an extension
operator ei from Hs(K2−i−2a,2−i+2a) to Hs(B2−i−2a,2−i+2a). Such an operator can
be defined as follows.

Let u′(x) = u(2−ix) for x ∈ Ka/4,4a, and u′′(x) = (e0u′)(x). We set

(eiu) (x) = u′′(2ix)

for x ∈ B2−i−2a,2−i+2a. It is easy to verify that

‖eiu‖2Hs(B2−i−2a,2−i+2a) ≤ C
∑
|α|≤s

∫
K2−i−2a,2−i+2a

22i (s−|α|) |Dαu|2 dx

with C > 0 a constant independent of u.
We are now in a position to construct an extension operator u 7→ e(u) from K

to Rn. Put

e(u) =
+∞∑
i=1

ψi ei(φiu),

thus obtaining a continuation of u from Ka to Ba.
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If |β| ≤ 2m then we obviously get∫
Ba

|x|−2γ−4m+2|β| |Dβe(u)|2 dx

≤ C
∞∑

i=1

∑
β1+β2=β

∫
B2−i−2a,2−i+2a

|x|−2γ−4m+2|β||Dβ1
ψi|2|Dβ2

ei(φiu)|2dx

≤ C

∞∑
i=1

∑
β1+β2=β

∫
B2−i−2a,2−i+2a

2−i(−2γ−4m+2|β|−2|β1|) |Dβ2
ei(φiu)|2dx

≤ C
∞∑

i=1

∑
β1+β2=β

∑
|α|≤|β2|

∫
K2−i−2a,2−i+2a

2−i(−2γ−4m+2|α|)) |Dα(φiu)|2dx

≤ C
∞∑

i=1

∑
|α|≤|β|

∑
α1+α2=α

∫
K2−i−1a,2−i+1a

2−i(−2γ−4m+2|α2|) |Dα2
u|2dx

≤ C
∞∑

i=1

∑
|α|≤|β|

∑
α1+α2=α

∫
K2−i−1a,2−i+1a

|x|−2γ−4m+2|α2| |Dα2
u|2dx

≤ C

∫
Ka

|x|−2γ−4m
∑

|α2|≤2m

|x|2|α
2||Dα2

u|2 dx

≤ C ‖u‖2H2m,γ+2m(K),

the constant C, depending on m, γ, β and m, may be different in diverse applica-
tions.

The function ũ, which is equal to u in D and e(u) in the punctured ball Ba,
belongs to H2m,γ+2m(D ∪ Ba). The domain D ∪ Ba is Lipschitzian, and we can
extend ũ to the cube Q = {x ∈ Rn : |xj | ≤ a, j = 1, . . . , n} in such a way that the
continuation U vanishes in a neighbourhood of ∂Q and belongs to H2m,γ+2m(Q).
Moreover,

‖U‖H2m,γ+2m(Q) ≤ c ‖u‖H2m,γ+2m(D)

with c a constant independent of u.
Put U = 0 outside of Q. Let us check that actually U belongs to Hs(Rn) with

s < γ + 2m and

‖U‖Hs(Rn) ≤ C ‖u‖H2m,γ+2m(D).

To do this, choose a partition of unity on Rn \ {0},

1 =
∞∑

i=−∞
φi(x),

such that φi ∈ C∞
comp(Rn) is supported in B2−i−1,2−i+1 and |Dαφi| ≤ C 2i|α| for all

i. Define ui = φiU .
The interpolation inequality implies that

ε2s ‖ui‖2Hs(Rn) ≤ C
(
ε4m

∑
|α|=2m

∫
Rn

|Dαui|2 dx+
∫

Rn

|ui|2 dx
)
,

or

ε2s−4m−2γ ‖ui‖2Hs(Rn)

≤ C
(
ε−2γ

∑
|α|=2m

∫
B2−i−1,2−i+1

|Dαui|2dx+ ε−4m−2γ

∫
B2−i−1,2−i+1

|ui|2dx
)
.
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Set ε = 2−i. Then

2iδ ‖ui‖2Hs(Rn)

≤ C
( ∑
|α|=2m

∫
B2−i−1,2−i+1

|x|−2γ |Dαui|2 dx+
∫

B2−i−1,2−i+1

|x|−2γ−4m|ui|2 dx
)
,

where δ = 2γ + 4m− 2s is positive. Since

‖U‖Hs(Rn) ≤
∞∑

i=−N

‖ui‖Hs(Rn)

≤
( ∞∑

i=−N

2iδ ‖ui‖2Hs(Rn)

)1/2( ∞∑
i=−N

2−iδ
)1/2

,

it follows that

‖U‖2Hs(Rn)

≤ C
∞∑

i=−N

( ∑
|α|=2m

∫
B2−i−1,2−i+1

|x|−2γ |Dαui|2dx+
∫

B2−i−1,2−i+1

|x|−2γ−4m|ui|2dx
)

≤ C
∞∑

i=−N

∫
B2−i−1,2−i+1

|x|−2γ−4m
∑

|α|≤2m

|x|2|α||Dαu|2 dx

≤ C ‖u‖2H2m,γ+2m(Rn)

which is majorised by ‖u‖2H2m,γ+2m(D).
Therefore, the operator e extends functions from H2m,γ+2m(D) continuously to

Hs(Rn), for s < γ + 2m.
A function u from H2m,γ+2m(Q) ∩ Hs(Q) vanishing in a neighbourhood of ∂Q

can be extended to all of Rn as a 2π -periodic function. The norm of u in Hs(Rn)
is equivalent to the norm (7.1), if we put u(x) = 0 outside of Q.

Let R be a bounded linear operator from H0,γ(D) to H2m,γ+2m(D). Using the
operator e constructed above we introduce an operator RQ which acts in L2(Q) by

RQu = e(RrDu),

where rD is the restriction operator from L2(Q) to L2(D). It is evident that the
operator RQ is a compact operator from L2(Q) to Hs(Q). Let us show that a λ 6= 0
belongs to the spectrum of the operator R if and only if it belongs to the spectrum
of the operator RQ. Moreover, the multiplicity of λ as a spectrum point of R is the
same as that of RQ.

We first observe that if u ∈ H2m,γ+2m(D) then RQe(u) = e(Ru). Therefore, for
any polynomial p(z), we get

p(RQ) e(u) = e(p(R)u).

Furthermore, if U ∈ H2m,γ+2m(Q), then

p(R)rDU = rD p(RQ)U.

Let λ 6= 0 be an eigenvalue of the operator R and Φ(x) ∈ L2(D) be an associated
function of index ι ≥ 1, i.e., (R− λI)ιΦ = 0 while (R− λI)ι−1Φ 6= 0. If ι = 1 then
Φ is simply an eigenfunction.

Consider the polynomial

pι−1(z, λ) =
ι−1∑
j=0

(z − λ)ι−1−j(−λ)j .
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It is clear that

− (−λ)ιΦ = ((R− λI)ι − (−λ)ιI)Φ
= Rpι−1(R, λ)Φ. (7.2)

Since R is bounded as an operator acting from L2(D) to H2m,γ+2m(D), we see that
Φ ∈ H2m,γ+2m(D).

Let us now verify that if λ 6= 0 is a regular point of the operator R, then

‖R(λ,R)‖L(H0,γ(D),H2m,γ+2m(D)) ≤ c ‖R(λ,RQ)‖L(H0,γ(Q),H2m,γ+2m(Q))

≤ C
1
|λ|

(
‖R(λ,R)‖L(H0,γ(D),H2m,γ+2m(D)) + 1

)
(7.3)

with C a constant independent of λ.
It is easy to check that

R(λ,R) rDU = rDR(λ,RQ)U (7.4)

for all U ∈ H0,γ(Q), where R(λ,R) and R(λ,RQ) are thought of as operators
H0,γ(D) → H2m,γ+2m(D) and H0,γ(Q) → H2m,γ+2m(Q), respectively. Indeed, we
obtain

R(λ,R) rDU = R(λ,R) rD (RQ − λI)R(λ,RQ)U
= R(λ,R)(R− λI) rDR(λ,RQ)U
= rDR(λ,RQ)U,

as desired.
Assuming u ∈ H2m,γ+2m(D) and substituting U = e(u) into (7.4), we readily

obtain
R(λ,R)u = rDR(λ,RQ) e(u).

This relation implies ‖R(λ,R)‖ ≤ C ‖R(λ,RQ)‖ with C a constant independent of
λ.

Inversely if U ∈ H0,γ(Q), then by the definition of the operator RQ and (7.2) we
easily get

λR(λ,RQ)U = RQR(λ,RQ)U − U

= eR rDR(λ,RQ)U − U

= eRR(λ,R)rDU − U,

whence

‖R(λ,RQ)‖L(H0,γ(Q),H2m,γ+2m(Q)) ≤
C

|λ|
(
‖R(λ,R)‖L(H0,γ(D),H2m,γ+2m(D)) + 1

)
,

where C does not depend on λ. This proves the inequalities (7.3).
The operator R = eR(λ, T )rD mapping Hs(Q) to Hs+γ+2m−ε(Q) is continuous.

Its spectrum coincides with the spectrum of the operator R(λ, T ). Moreover, the
operator R(λ, T ) = rDRe satisfies the conditions of Theorem 6.3 and Corollary 6.4
with r = γ + 2m− ε. Theorem 5.1 now follows immediately from Theorem 6.3 and
Corollary 6.4.

�

8. Main result

Now we are in a position to state our key result, i.e., the theorem on the com-
pleteness of the system of root functions of an elliptic boundary problem in a domain
with a conical point on its boundary.
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Theorem 8.1. Suppose there are rays arg λ = θj, j = 1, . . . , N , in the complex
plane which satisfy the hypotheses of Theorem 3.1 and such that the angles between
the pairs of neighbouring rays are less than π(γ+ 2m)/n. Then the spectrum of the
operator T is discrete and the root functions form a complete system in L2(D).

Proof. Theorem 3.1 implies that the spectrum of the operator T is discrete and
every ray arg λ = θj is a ray of minimal growth for the resolvent R(λ, T ) acting in
L2(D). This means, in particular, that

‖R(λ, T )‖L(L2(D)) = O(|λ|−δ) (8.1)

if |λ| → ∞, with some δ > 0.
Assume that there exists a function g ∈ L2(D) which is orthogonal to all eigen

and associated functions of the operator T . Our objective is to show that g = 0.
This will imply that the system of root functions is complete.

Suppose that the point λ = 0 is regular for the operator T . Let us consider the
function

F (λ) =
(
R

( 1
λ
,R

)
f, g

)
, (8.2)

where R = T−1, f ∈ L2(D) and (·, ·) stands for the scalar product in L2(D).
Since the resolvent of T is a meromorphic function with poles at the points of

the spectrum of T , the function F is analytic for those λ which are not eigenvalues
of T . We shall use a familiar relation between the resolvents of the operators T and
T−1, namely

R
( 1
λ
, T−1

)
= −λI − λ2R(λ, T ). (8.3)

Consider the expansion

R(λ,R)f =
Φι

(λ− λk)ι
+

Φι−1

(λ− λk)ι−1
+ . . .+

Φ1

λ− µk
+

∞∑
j=0

fj (λ− λk)j ,

in a neighbourhood of the point λ = λk, where λk is a pole of R(λ,R). Here ι ≥ 1
and Φι 6= 0, the functions Φj ∈ L2(D) form a chain of associated functions of R,
and fj ∈ L2(D) for j ≥ 0.

This expansion implies that λk is a regular point of F (λ), for g is orthogonal to
all Φj . Therefore, F (λ) is an entire function.

The relations (8.1), (8.2) and (8.3) imply that

|F (λ)| ≤ C exp(|λ|2−δ) (8.4)

for |λ| → ∞, provided that arg λ = θj for some j = 1, . . . , N . Furthermore, Theorem
5.1 implies that for any ε > 0 there is a sequence ρj →∞, such that

|F (λ)| ≤ exp
(
|λ|−

n
2m+γ−ε

)
(8.5)

for all λ ∈ C satisfying |λ| = ρj .
Consider F (λ) in the closed corner between the rays arg λ = θj and arg λ = θj+1.

Its angle is less than π(γ + 2m)/n. Since

R
( 1
λ
,R

)
= −λI − λ2R(λ, T )

and each ray arg λ = θk is a ray of minimal growth, we have inequality (8.4) on the
sides of the corner and (8.5) on a sequence of arcs tending to infinity.

Choosing ε > 0 in (8.5) sufficiently small and applying the Fragmen-Lindelöf
theorem we conclude that |F (λ)| = O(|λ|2−δ) as |λ| → ∞ in the whole complex
plane. Therefore, F (λ) is an affine function, i.e., F (λ) = c0 + c1λ. On the other
hand, we have

R(1/λ,R) = −λ I − λ2R+ . . . ,
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and therefore,
F (λ) = −λ (f, g)− λ2 (Rf, g) + . . . .

Since F (λ) is affine, we get (Rf, g) = 0 for all f ∈ L2(D). Since the range of the
operator R is dense in L2(D), we deduce that g = 0. Thus, the system of root
functions of the operator T is complete in L2(D). �

9. Some generalisations

We have proved the completeness of the system of eigen and associated functions
of T in L2(D). This theorem implies immediately the completeness in H0,γ(D) with
any γ < 0.

Indeed, let f ∈ H0,γ(D) where γ < 0. Given any ε > 0, put fε = 0 for |x| < %
and fε = f for |x| > %, where % > 0 is small enough, such that ‖f − fε‖H0,γ(D) ≤ ε.

Since fε ∈ L2(D) there exists a finite linear combination of root vectors L(x), such
that

‖fε − L‖L2(D) ≤ ε.

Then
‖fε − L‖H0,γ(D) ≤

(
sup
x∈D

|x|−γ
)
ε

and
‖f − L‖H0,γ(D) ≤

(
1 + sup

x∈D
|x|−γ

)
ε.

Now we shall state some consequences of Corollary 6.4.

Corollary 9.1. Let the conditions of Corollary 6.4 be fulfilled. Then the system of
root elements is dense in the space

H2m,γ+2m
B (D) = {u ∈ H2m,γ+2m(D) : Bu = 0 on ∂D}

for any γ ≤ 0.

Proof. Indeed, pick a u ∈ H2m,γ+2m
B (D). Then Au ∈ H0,γ

B (D). Therefore, for any
ε > 0 there is a linear combination of root elements L(x), such that

‖Au− L‖H0,γ
B (D) ≤ ε. (9.1)

We can assume without loss of generality that λ = 0 is a regular point of the
spectrum of the operator T . The function u0 = T−1(L) is also a linear combination
of root elements. It follows from (9.1) that

‖u− u0‖H2m,γ+2m(D) ≤ C ε, (9.2)

where C does not depend on u and ε. The inequality (9.2) means that the system
of eigen and associated functions is dense in H2m,γ+2m(D), as desired. �

Corollary 9.2. Let the conditions of Corollary 6.4 be fulfilled, γ ≤ γ′ ≤ 0 and
there be no spectrum points of the problem (4.3) in the strip

γ + 2m− n/2 ≤ =λ ≤ γ′ + 2m− n/2.

Then the system of root elements is dense in the space H2m,γ′+2m
B (D).

Proof. Indeed, let u ∈ H2m,γ′+2m
B (D). Then Au ∈ H0,γ′(D). Therefore, for any

ε > 0 there exists a linear combination of root elements L(x), such that

‖Au− L‖H0,γ′ (D) ≤ ε. (9.3)

Suppose λ = 0 is a regular point of the spectrum of the operator T , which we can
assume without loss of generality. The regularity theorem for solutions of elliptic
boundary value problem in domains with conical points on the boundary implies
that λ = 0 is a regular point of the spectrum of A : H2m,γ′+2m(D) → H0,γ′(D).
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The function u0 = T−1(L) is also a linear combination of root elements. It follows
from (9.3) that

‖u− u0‖H2m,γ′+2m(D) ≤ C ε, (9.4)
with C a constant independent of u and ε. The inequality (9.4) shows that the
system of eigen and associated functions is dense in H2m,γ′+2m(D). �

Since
H2m,γ′+2m(D) ↪→ H0,γ′+2m(D)

and the space C∞
comp(D) is dense in any H0,γ′+2m(D), we conclude that the system

of root functions is dense in H0,γ(D) for γ ≤ 2m.
The obtained results can be extended to the spaces Lp(D), for p ≥ 1. The details

are much the same as those in [Agm62].

Example 9.1. Consider an elliptic operator of second order

Au :=
n∑

i,j=1

ai,j(x)uxixj
+

n∑
i=1

ai(x)uxi
+ a0(x)u,

where ai,j , ai and a0 are continuous real-valued functions. We give A the domain
consisting of all C2 -functions which satisfy the homogeneous Dirichlet conditions
in a domain with a finite number of conical points on its boundary. In the case
where there are no conical points and the coefficients are smooth, the completeness
was proved in [Agm62]. In our case the completeness follows from Theorem 8.1.
It is worth pointing out that we can not apply the methods using the quadratic
form (Au, u)L2(D) as in [Agr94a] and [Kru76], since the coefficients ai,j can be not
differentiable.

10. Second order equations

In this section we study the completeness of the system of eigenfunctions and
associated functions, i.e., root functions, of the Neumann problem with zero data
for a second order elliptic operator in the divergent form

Au :=
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑
i=1

ai(x)
∂u

∂xi
+ a0(x)u

in the space H1(D).
We essentially weaken the conditions on the smoothness of the boundary of D

and the coefficients of A. Namely, ∂D is assumed to be a Lipschitz surface, and
aij , ai and a0 bounded measurable real-valued functions in D. As usual, we require
aij = aji and the uniform ellipticity

n∑
i,j=1

aij(x)ξiξj ≥ m |ξ|2

for all x ∈ D and ξ ∈ Rn, with m > 0 a constant independent of x and ξ.
The result we obtain here are new even in case A is the Helmholtz operator with

zero Neumann data.
Our basic assumption is that an estimate∫

D

( n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
−

n∑
i=1

ai
∂u

∂xi
u− a0u

2
)
dx ≥ c

∫
D

(
|∇u|2 + u2

)
dx (10.1)

is fulfilled for all u ∈ H1(D), with c a constant independent of u. This assumption
is not restrictive.

In particular, choosing u constant yields∫
D
a0dx < 0.
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A function u ∈ H1(D) is called a generalised solution of the Neumann problem
with zero data for equation

Au =
n∑

i=1

∂f

∂xi
+ f0, (10.2)

where f1, . . . , fn and f0 belong to L2(D), if for any v ∈ H1(D)∫
D

( n∑
i,j=1

aij
∂u

∂xj

∂v

∂xi
−

n∑
i=1

ai
∂u

∂xi
v − a0uv

)
dx =

∫
D

( n∑
i=1

fi
∂v

∂xi
− f0v

)
dx.

Using familiar functional methods one proves that the Neumann problem for
(10.2) is uniquely solvable.

Lemma 10.1. Let (10.1) hold. Then the homogeneous Neumann problem for (10.2)
has a unique generalised solution u ∈ H1(D) for all fi, f0 ∈ L2(D). Moreover, we
have

‖u‖H1(D) ≤ C
( n∑

i=1

‖fi‖L2(D) + ‖f0‖L2(D)

)
(10.3)

with C a constant independent of fi and f0.

The fact that the root functions of the homogeneous Neumann problem for the
operator A are dense in L2(D) is proved in [Kru76], [Agr94b].

Theorem 10.2. Under the above assumptions, the root functions of the homoge-
neous Neumann problem for the operator A are dense in H1(D).

Proof. Suppose u0 ∈ H1(D). Pick an arbitrary ε > 0 and a function uε ∈ C1(D),
such that

‖u0 − uε‖H1(D) < ε. (10.4)
Set

li(u) =
n∑

j=1

aij(x)
∂u

∂xj
,

l0(u) =
n∑

i=1

ai(x)
∂u

∂xi
+ a0(x)u,

for i = 1, . . . , n, and denote by fh the average of f with step h > 0. There exists
an h with the property that

n∑
i=1

‖li(uε)h − li(uε)‖L2(D) + ‖l0(uε)h − l0(uε)‖L2(D) < ε.

Since the root functions of the homogeneous Neumann problem for A are dense
in L2(D), there is a root function U ∈ H1(D), such that∥∥∥( n∑

i=1

∂

∂xi
li(uε)h + l0(uε)h

)
− U

∥∥∥
L2(D)

< ε.

If v ∈ H1(D) is a solution of

Av =
n∑

i=1

∂

∂xi
li(uε)h + l0(uε)h

and u ∈ H1(D) is a root function satisfying Au = U , then estimate (10.3) readily
implies that

‖v − u‖H1(D) ≤ C ε,

the constant C being as in Lemma 10.1. Moreover, it follows from (10.3) that

‖uε − v‖H1(D) ≤ C ε. (10.5)
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Combining (10.4) and (10.5) we get

‖u0 − u‖H1(D) ≤ ‖u0 − uε‖H1(D) + ‖uε − v‖H1(D) + ‖v − u‖H1(D)

< (1 + 2C) ε.

This shows that the root functions of the homogeneous Neumann problem for A
are dense in H1(D), as desired. �
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Singular Manifolds, Birkhäuser, Basel, 2000, 138–199.
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