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Abstract

In this paper we consider the hypo-ellipticity of differential forms
on a closed manifold.The main results show that there are some topo-
logical obstruct for the existence of the differential forms with hypo-
ellipticity.
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§1 Introduction

Let L be a differential operator acts on the Schwartz distribution based
on a manifold M. The (local) hypo-ellipticity of the operator L means that
one can claim a distribution ϕ is smooth near a point p ∈ M whenever
the action of the operator L on the distribution ϕ, Lϕ is smooth near the
point . The typical examples of the hypo-elliptic differential operators are
the Laplacian, or generally the elliptical operator of constant coefficients.
An important class of hypo-elliptic operators which are not elliptical is the
Hörmander’s sum of square[9]. All of those examples are of even order. In-
deed, a differential operator of real coefficients must be order of even pro-
vided it has local hypo-ellipticity, see[14].

The first example of hypo-elliptical operator with real coefficient of or-
der one was given by S.J.Greenfield and N.R.Wallach in 1972. Of cause, we
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have a different meaning of the hypo-ellipticity this time, the global hypo-
ellipticity. For the details see definition below. After that there are many
works concerned the global hypo-ellipticity of the vector fields on manifolds,
see[1, 2, 3, 4, 6, 7, 8, 12] and references cited therein. These works shows that
the hypo-ellipticity of differential operators of first order is involved into the
Diophantine (and simultaneous Diophantine) approximation, the integrabil-
ity and ergodicity of the dynamic systems and the topological properties.

In this paper, we consider hypo-ellipticity of differential operators which
act on the current. Let Ωp be the (smooth) p−form on a manifold M of
dimension n and Dp be the dual space of Ωp. The element of Dp is called
p−current. For the theory of current see, for example [5] or [11]. Fixed a
p−form ω, we have a nature differential operator Lω from Ωn−p−1 to Ωn

given by

Lω(ϕ) = ω ∧ dϕ. (1)

Correspondingly, we have an under-determined system Lω(ϕ) = µ if p <
n− 1. The dual operator of (−1)pL is

Tω(η) = ∂η ∧ w − η ∧ dω, ∀η ∈ Dn(M) (2)

which is a differential operator of first order from Dn to Dn−p−1. We then
have an over-determined system Tω = ψ.

Definition 1 Call a form ω be hypo-elliptic if there is a smooth function
η̃ on M such that η = η̃[M] whenever Tω(η) is smooth.

Remark 1: If ω is a closed 1−form, then the definition of hypo-
ellipticity here is same as in [12].

Let us mention some examples which motivates us to consider the hy-
poellipticity of forms.

Example 1: (Greenfield and Wallach 1972) On torus T 2, let ω = dx +
Λdy with constant Λ. Then

Tω : D2 ⇒ D′.

The form ω is hypoelliptic if and only if the real number Λ is irrational and
non-Liouville, i.e. there are constant C0, N0 such that the inequality

|k + lΛ| ≥ C0

(|k|+ |l|)N0
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hold for every (k, l) ∈ Z2 \ {0}.
Example 2: (A. Bergamasco, P. Cordaro, P. Malagutti, 1993) Let α be

a closed form on N , and ω = dθ + α ∈ Ω1(S1 ×N), then ω is hypoelliptic if
and only if the form α is irrational and non-Liouville.

Example 3: Also on torus T 2, ω = dx+λ(x, y)dy. Then ω is hypoelliptic
if and only if the rotation number Λ of the system

dx

dy
= −λ(x, y)

is an irrational and non-Liouville number.
Example 4: On a contact manifold M, the contact form α is a hypoel-

liptic form because of maximal non-integrability of the form α.
We will discuss the integrability of the hypo-elliptic forms in section 2.

Some extensions of Greenfield and Wallach’s results to higher order both in
the dimension and the forms are given in section 3.
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§2 The Integrability of the Hypoelliptic Differential Form

The top order of the operator Lω or Tω is p = n − 1. In this case the
hypoelliptic theory is easier than general case. We first mention a fact that
the differential operator Lω acts on the smooth function and then the image
of Tω belongs to the Schwartz distribution. To be concise, assume that the
manifold M is oriented. Otherwise we take its double covering. Let V0 be
a n−form which is non-vanishing every where. Notice that for any n−form
ν there is a smooth function f on M such that ν = fV0 and hence the
n−current η can be written as η̃[M] with a Schwartz distribution η̃, i.e.,

η(ν) = η̃(f)
∫

M
V0. (3)

Proposition 2 Let ω be a closed hypoelliptic (n − 1)−form, then the
equation

ω ∧ df = 0 (4)

has only trivial solutions.
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Proof: Let f be a solution of (4). Take an n−current η = K(f)[M]
with K ∈ C1(R1). We then have for any smooth function ϕ

Tω(η)(ϕ) =
∫

M
K(f)ω ∧ dϕ = −

∫

M
ϕK ′(f)df ∧ ω = 0.

Hence Tω(η) = 0 but the current η smooth for any K if and only if the
function f is a constant.

The second one should be a relationship with the Lie derivative of the
form with respective to a vector field.

Let X be a (smooth) vector field on the manifold M satisfying

ω ∧ df = X(f)V0. (5)

It is easy to see that the vector field X is uniquely determined by the (n−
1)−form ω and V0.

By this corresponding, we have

Tω(η)(f) = η̃(X(f))
∫

M
V0.

Let X∗ be the dual operator which acts on the Schwartz distribution, then

Tω(η)(f) = X∗(η̃)(f)
∫

M
V0,

Choose V0 so that
∫
M V0 = 1, we obtain

Tω(η) = X∗(η̃). (6)

Remark 2: Consider the dynamical system generated by the vector field
X. Actually proposition 2 says this system is ergodic, i.e., every trajectory
of the vector field X is dense in M.

Recall the hypoellipticity of a vector field X defined by Greenfield and
Wallach [6]:

X is hypoelliptic if η̃ is smooth whenever η̃ is a Schwartz distri-
bution and X∗(η̃) is smooth.

Notice that the hypoellipticity of the form ω and the vector field X are
equivalent by (6). Hence we are able to rewrite a theorem in [6] as follow:
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Lemma 3 Let ω be a hypoelliptic (n− 1)−form, then there exists unique
n−form µ0 with

X∗(µ0) = 0;∫

M
µ0 = 1.

The uniqueness means that any other distribution µ with X∗(µ0) = 0 is dif-
ferent from µ0 by a constant factor. Furthermore the form µ0 does vanishes
everywhere.

Now we state one of main results in this section

Theorem 4 Let M be oriented and ω an n−1 form. If ω is hypoelliptic,
then there is a smooth function g which is non-zero everywhere such that gω
is closed form.

Proof: Let µ0 as in Lemma 3. By a formula of E. Cartan’s

LX(µ0) = diX(µ0) + iXdµ0 = X∗(µ0),

we see that the (n− 1)−form iXµ0 is close. On the other hand

df ∧ iXµ0 = X(f)µ0.

Let g be the function so that

µ0 = gV0,

then
df ∧ iXµ0 = X(f)µ0 = gX(f)V0 = gω ∧ df.

Integrating, this identity over the manifold M we see that
∫

M
gω ∧ df = 0.

Therefore the form gω is closed and the function g non-vanished everywhere.
Remark 3: Indeed gω = iXµ0.
Remark 4: On M2n+1 with a contact form α, i.e., α ∧ (dα)n 6= 0

everywhere. It is easy to verify that the contact form α is hypoelliptic. So
we see that above theorem does not valid in the case of p < n− 1.

A natural question is wether or not the closed hypoelliptic form is non-
trivial. We give a partial answer for this problem here. An important ingre-
dient is the solvability for the case of p = n− 1.
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Lemma 5 Let ω be a closed hypoelliptic (n−1)−form, then the equation

ω ∧ df = µ (7)

is solvable if and only if the n−form µ is exact.

Proof: As in the proof of Theorem 4, the left hand side of (7) is just
a differential operator X of first order which acts on C∞(M), the space
of smooth functions. By the theorem of Greenfield and Wallach mentioned
above, its dual operator X∗ has kernel of dimensional one. So the sufficiency
follows from the proof of theorem in [10]. The necessary is trivial.

Theorem 6 There is no hypoelliptic and exact (n− 1)−form on M pro-
vided the first Betti number of M is non-zero.

Proof: Suppose ω = dβ were a hypoelliptic (n − 1)−form. Choosing
a nontrivial 1−form α on M, we then have an exact n−form dβ ∧ α. Let
f ∈ C∞(M) satisfying

β ∧ df = β ∧ α.

Set α0 = α−df . The 1−form α0 is nontrivial, hence nonzero. Using universal
covering π : M → M̃, we can find a function G ∈ C∞(M) such that
α0 = dG and G(p1) = G(p2) + m,m ∈ Z whenever π(p1) = π(p2). Now
sin(2πG) ∈ C∞(M) and

d sin(2πG) ∧ ω = 2π cos(2πG)α ∧ ω = 0

which is a contradiction because of Proposition 2.

Theorem 7 A manifold M with a hypoelliptic (n − 1)−form has first
Betti number at most n.

Proof: Let α0 a closed, nonexact 1−form. Choose f ∈ C∞ such that

ω ∧ df = λV0 − ω ∧ α

where
λ =

∫

M
ω ∧ α.

Set α = α0 + df , then ω ∧α = λV0. Therefore iXα = λ. E. Cartan’s formula
gives

LXα = 0. (8)
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This identity means that the closed 1−form α is invariant under the 1−parameter
group induced by X. More precisely, we obtain an X−invariant representa-
tion in every cohomology. Now, by the ergodicity mentioned in Remark 2,
the form α is totally determined by the behavior of itself at any fixed point.
So the number of the X−invariant closed 1−forms is at most n.

§3. Hypoelliptic Differential Form on the Torus

On the torus Tn, we can characterize the p−form by the Fourier series
as Paley-Wiener theorem pointed. Indeed for a n−form ϕ we have following
Fourier representation

ϕ =
∑

k∈Zn

ϕk exp{√−1kx}dx1 ∧ dx2 · · · ∧ dxn

where the constants ϕk are evaluated by the Fourier formula

ϕk =
∫

T n
exp{2π

√−1kx}ϕ.

By the smoothness of the form ϕ, the Fourier coefficients satisfy the rapidly
decay condition: for any N > 0, there exists C > 0, such that

|ϕk| ≤ CN

(1 + |k|)N
, ∀k ∈ Zn.

It is easy to show that the rapidly decay condition is also sufficient for the
Fourier series converging to a form.

By the Fourier representation of n−forms, we can write an n−current η
as

η =
∑

k∈Zn

ηk exp{2π
√−1kx}[Tn] (9)

with [Tn] an n−current deduced by Tn and

ηk = η(exp{−2π
√−1kx}dx1 ∧ dx2 · · · ∧ dxn)

The coefficients ηk are slowly increasing, i.e., there are constants C0 and N0

so that
|ηk| ≤ C0(1 + |k|)N0 .
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If, in additional, the coefficients ηk satisfy the rapidly decay condition, then
the current η is smooth. Now let a p−current ζ on Tn is given by a Fourier
series

ζ =
∑

k∈Zn

exp{2π
√−1kx}ζk[Tn]

with ηk p−forms of constant coefficients, i.e.,

ζk =
∑

1≤i1<i2<···<ip≤n

Λk
i1i2···ipdxi1 ∧ dxi2 ∧ · · · ∧ dxip .

Define the normal of the p−form ζk by

|ζk| = {
∑

1≤i1<i2<···<ip≤n

|Λk
i1<i2<···<ip |2}

1
2 .

Lemma 8 (Paley-Wiener type theorem) A p−current ζ as above is smooth
if and only if the normal of the coefficients ζk satisfy the rapidly decay con-
dition, i.e., for any N > 0 there exits CN so that

|ζk| ≤ CN

(1 + |k|)N
, ∀k ∈ Zn.

The main results of this section is the following

Theorem 9 Let ω be a p−form on the torus Tn with constant coefficient,
then ω is hypoelliptic if and only if ∃C0, N0 such that

|k · dx ∧ ω| ≥ C0

(1 + |k|)N0
∀k ∈ Zn \ {0}. (10)

A form ω is said to satisfy Diophantine condition if the inequality (10)
hold.

Proof: For a closed p−form ω of constant coefficient, one has

Tω(η) = −2π
√−1

∑

k∈Zn

ηk exp{2π
√−1kx}[Tn]k · dx ∧ ω[Tn]

for any n−current η with Fourier representation. If Tω(η) is smooth then, by
Lemma 8, |ηkk ·dx∧ω| decay rapidly and |ηk| do. So the current η is smooth.
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On the other hand, if a p−form ω violates the Diophantine condition (10),
i.e., there are a subset {kj}+∞

j=1 of Zn such that

|kj · dx ∧ ω| ≤ 1
(1 + |Kj |)j

∀k ∈ Zn \ {0}. (11)

Set

ηk =

{
1, k = kj ;
0, k 6= kj .

We have an n−current given by

η =
+∞∑

j=1

exp{2π
√−1kjx}[Tn].

Hence

Tωη = −2π
√−1

+∞∑

j=1

exp{2π
√−1kjx}kj · dx ∧ ω[Tn]

which is smooth by the decay property of (11). Therefore the p−form ω is
not hypoelliptic.

Remark 5: Let

ω =
n∑

j=1

Λjdxj

be a 1−form, then

k · dx =
∑

1≤i<j≤n

{kiΛj − kjΛi}dxi ∧ dxj .

The inequality (10) becomes

{
∑

1≤i<j≤n

|kiΛj − kjΛi|2}
1
2 ≥ C0

(1 + |k|)N0
∀k ∈ Zn \ {0}.

This is the simultaneous Diophantine approximation, see [13]. So the in-
equality (10) is a general form of the simultaneous Diophantine approxima-
tion.
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Theorem 10 Suppose that ω ∈ Ωn−1(Tn) be hypoelliptic and closed, then
there is a diffeomorphism y = τ(x) of Tn to itself so that the form ω can be
written as

ω =
n∑

j=1

(−1)j+1λjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

with the constants Λj satisfy the Diophantine condition (10)

Proof: Let
Λj =

∫

M
ω ∧ dxj ,

then the equations

ω ∧ df j = λjµ0 − ω ∧ dxj

have solutions f = (f1, · · · , fn). Set yj = xj + f j then

dy1 ∧ dy2 ∧ · · · ∧ dyn = dx1 ∧ dx2 ∧ · · · ∧ dxn + dβ

for some (n− 1)−form β. Therefore the transformation of variables

τ : Tn → Tn,

τ : x 7→ y = x + f(x)

is diffeomorphism. Furthermore ω ∧ dyj = λjµ0. This means that dyj(X) =
λj . Therefore

X =
n∑

j=1

λj ∂

∂yj
. (12)

Notice that the unique n−form which satisfying Lemma 3 for the vector
field of (12) is dy1 ∧ dy2 ∧ · · · ∧ dyn. Hence

µ0 = dy1 ∧ dy2 ∧ · · · ∧ dyn

and
ω = iXµ0.
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