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Abstract

In this paper, a global existence result of smooth solutions to the multidimen-
sional nonisentropic hydrodynamic model for semiconductors is proved, under the
assumption that the initial data is a perturbation of the stationary solutions for
the thermal equilibrium state. The resulting evolutionary solutions converge to the
stationary solutions in time asymptotically exponentially fast.
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1 Introduction
The multidimensional nonisentropic hydrodynamic model for semiconductors is given by
ny+ V- (nu) =0

w+ (u-V)u+2V(nT) =V — %

T,+u- VT + 3Tdiva — ZV(kVT) = Ze=leju? - 0
AD =n —b(z)

(1.1)

for (z,t) € RY x [0, +00), N = 2,3. The system is supplemented with the initial data
n(z,0) = no(z), u(z,0)=ue(z), T(z,0)=Ty(zr) =R (1.2)

where n,u = (u!,u? - - - u"),® and T denote the electron density, the electron velocity,
the electrostatic potential and the electron temperature, respectively. The coefficients
k,T, and 7, are the thermal conductivity, the momentum relaxation time and energy
relaxation time, respectively. In general, the thermal conductivity s is governed by the
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Wiedemann Franz law [21] and depends on n and T'; 7, and 7, have the form 7, = C’p(Tlo)ﬁ

and 7, = C’w(%) + %Tp, respectively. Here C, and C,, are physical constants and the
standard choice for ¢ is —1. The positive constant T is ambient device temperature. The
function b(z) stands for the density of fixed, positively charged background ions.

The system (1.1) was introduced about thirty years ago to describe the electron flow
in semiconductor devices when the transport of energy plays a crucial role, as in sub-
micron devices or in the occurrence of high field phenomena([1],[2]). These modes all
make up of a set of balance laws for the moments of the electron distribution density,
derived from the infinite hierarchy of moment equations of the semiclassical Boltzmann
equation for semiconductors, coupled with the electric potential through a Possion equa-
tion([3],[4]). If we substitute T = T'(n) = T°n* Y(T° > 0, > 1) for (1.1)3, the system
(1.1) is so-called isentropic hydrodynamic models. In the isentropic case, the system has
been extensively studied for the Cauchy problem and the initial-boundary value problem
in the one dimensional or multidimensional case by many authors(see [5]-[11],[14]-[18]).
Degond-Markowich, Gamba proved the existence and uniqueness of steady-state solu-
tion in subsonic case and in transonic case, respectively. In the dynamic case, Zhang and
Marcati-Natalini investigated the global existence of weak solutions of the one-dimensional
initial-boundary value problem and Cauchy problem, respectively, by using the tools of
compensated compactness. The corresponding results on the zero relaxation limit have
been also obtained. Luo-Natalini-Xin and Hsiao-Yang investigated the asymptotic behav-
ior of smooth solutions for the Cauchy problem and the initial-boundary value problem,
respectively, which proved the solutions converged to the unique stationary solution time
asymptotically. In the multidimensional case, it is more difficult to establish the global
existence of weak or smooth solutions than in the one dimensional case due to overcome
the geometrical structure caused by the multidimensional unbounded domain. In this
field, Hsiao-Wang et al. have already gotten many results systemically, we cite [14]-[18].

Here, we are interested in the nonisentropic case. For the one dimensional case, the
Cauchy problem and the initial boundary value problem of (1.1) have been also largely
studied by many authors in the literature (see, e.g.[22],[24]-[26]). Ali-Bini-Natalini [22]
studied the system (1.1) with k = 0 discussing that under the assumption that the initial
data was a perturbation of a stationary solution of the Drift-Diffusion equations, then
the resulting evolutionary solutions converged asymptotically in time to the unperturbed
state. Cheng-Jerome-Zhang [24] gave the existence of solutions to the initial-boundary
value problem for (1.1) and the convergence to a constant state, moreover, also discussed
the zero relaxation time problem. Hsiao-Wang [26] investigated the asymptotic behavior
of global smooth solutions to the initial-boundary problem for (1.1) and established the
exponential convergence rate of the solutions to the problem. As far as weak solutions
are concerned, Gasser and Natalini [25] studied the Cauchy problem (1.1) with £ = 0 and
the zero relaxation convergence of weak solutions to the corresponding Drift-Diffusion
equations.

Physically, it is more important and more interesting to study the system (1.1) in the
multidimensional case, but very little is known so far. One elementary difficulty is that the



one dimensional problem of (1.1) can be reduced to the wave equation of second order cou-
pled by a parabolic equation when s > 0 or the pure symmetric hyperbolic systems when
k = 0, however, these methods do not work for the multidimensional problem (1.1), which
is a strong coupled hyperbolic—elliptic (or hyperbolic-parabolic—elliptic) when x = 0 (or
k > 0). Another elementary difficulty, alike the isentropic case, is to overcome the geomet-
rical structure which is caused by the multidimensional unbounded domain. For example,
the technical one is caused by the difference of the Sobolev’'s embedding results between
the one dimension and the multidimension. Recently, Hsiao-Jiang-Zhang [27] discussed
the asymptotic behavior of the smooth solution to the initial-boundary value problem
of (1.1) and proved that the solutions of the problem converged to a constant steady
state exponentially asymptotically as time tended to infinity for small solutions. G.Ali
[23] relied essentially on the extended thermodynamic model and proved that the initial
data was a perturbation of the corresponding Drift-Diffusion equation, and the resulting
evolutionary solutions converged to the stationary solutions time asymptotically expo-
nentially fast. Hsiao-Wang [28] dealt with the large time behavior of the globally smooth
solutions to the Cauchy problem for (1.1) under the assumption b(x) = positive constant.
In present paper, we establish the global existence and asymptotic behavior of smooth
solutions to the Cauchy problem of (1.1) in RY (N = 2,3) without the restriction of
b(x) = positive constant. Consider b(x) satisfying the following general conditions:

‘ |11»I£ b(z) =B >0, (1.3)
b(x) >0, b(x) € CHRY) and Vb(z) € H}(RY). (1.4)

Which is also to extend the results in [18] for the isentropic case. We shall study the
system (1.1)-(1.2) with or without heat flux term.

For simplicity, we assume that x, 7,, 7, are all constants. In this section, we can take
K =T, = T, = 1. As for another case k = 0,7, = 7, = 1, main results are given in Section
3. Now, we consider the stationary solution (N,U, E,T) of the thermal equilibrium state
for (1.1) with & = 0 and T'= T°. That is, we want to look for the solutions of the system

TVN = NE
{ div€ = N — b(x) (1.5)
under the condition
N —b(z) € HY(RY). (1.6)

In [18], Hsiao-Ju-Wang proved the existence and uniqueness of solutions to a slightly
more general system than (1.5)-(1.6) by the standard iteration technique and Lerry —
Schauder’s fixed point principle. Here, by applying those results directly in [18], we can
obtain the following results:

Theorem 1.1

Suppose b(x) satisfies the condition (1.3),(1.4),(1.5) and (1.6), then the system (1.5)-(1.6)
has an unique classical solution (N, ).



Theorem 1.2
Suppose b(x) satisfying the condition (1.3),(1.4). Let (N, €) be the solutions of (1.5)-(1.6)
given by Theorem 1.1. Then,

inf b(z) <N < sup b(z) . (1.7)

zeRN z€RN
Furthermore, if || Vb g3 is small enough, then
IVN||ms < CIVOl s (1.8)

where C' depends on T°.
Remark 1.2.1: (1.3), (1.4) and (1.7) ensure the strict positivity of N (z).

The main purpose of this paper is to investigate the global existence and large time
behavior of smooth solutions to (1.1)-(1.2). The following results are proved in Section 2.
Theorem 1.3 (main results)

Suppose that b(z) satisfies the condition (1.3),(1.4) and n(-,0) — N € H3(RY),u(-,0) €
H3RN), V®(-,0)—€ € H3(RY) and T'(-,0) —T° € H*(RY). Then there exists sufficiently
small constant &y > 0, depending only on b(z), such that if

I(n(-,0) = N, u(-,0), VO(-,0) = &) | racey + 1T, 0) = T°| 11 ey

+|[ (e, ae, VO, T3) (-, 0) |2y + [ VO sy < do

Then the Cauchy problem (1.1)-(1.2) exists an unique global smooth solution (n(x,t), u(z,t),
O(x,t), T (x,t)) for all ¢ > 0. Moreover,

1 (- ) =N, ), VO(, ) =E) s @) HIT () =T s oy H11 (e e, VO T) (- 8) oy

< CO[H(TL(70) —N7U(',0)7V¢)(',O) - g)”%ﬁ(]RN) + ||T(’O> - T0||§-I4(RN)
—i—H(nt,ut,V@t,ﬂ)(-,O)H?{Z(RN)] exp(—aot) (1.9)

for some positive constants ag and Cj.
Remark 1.3.1
The estimate (1.9) is proved by the careful energy method. Throughout introducing an
suitable function, we can divide the nonisentropic case into two parts in energy estimates.
One part is dealt with as the isentropic case similarly; As for another part, we are to give
new estimates in order to obtain (1.9), for detail, see Section 2.

We list the following notations used in this paper: C' denotes some generic constants.
H™RYN),m € Z, U {0}, denotes the usual Sobolev space of order m equipped with the

norm
lolamamy = 3 8%l
0<lafsm
where || || = || || ;2@yy and O = 071057 - - - Ox with |a| = le\il a; and 0; = 0,,. We also
label [|(a, b, ¢, d)|[3m gy = llallZrm gy T 101 7pm gy + N llFpm gy + Al 3m iy, Where @, b, ¢,d €
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H™(RY). The Euclidean norm and inner product for RY are denoted by |- | and a - b for

a,b € RY respectively. For a vector valued function f = (f1, f2, -, fv) and a norm space
X of scalar functions with the norm ||| |||, f € X means that each component of f isin X;
we put [[[f[[[ = ([ Al + 1 f2lll+--+ | fvll] and Of = 0o f = (9 fj)wxn, Opf = 0u(05 71 ).

For instance, 0,V; = (0,V;, 0uV;, -+, OxV;), 0%V, = (02V;, 010,V, - - -, 0% V}), ete. Moreover,
[ f means fRN fdx without any ambiguity. We shall also make use of some inequalities
repeatedly as follows:

Young's inequality:
lab| < ea® + C(e)b?, e > 0,

where C/(€) is some positive constant depending on ¢;
Gagliardo — Nirenberg's inequality:

lullza < C(N, q)[Jul ¥R |¥/2 e
for u € HY(RY), ¢ > 2 when N =2 and ¢ € [2,6] when N = 3. And
e < CON [l 44| |1
for u € H*(RY). C(N,q),C(N) are some positive constants depending on N,q and N,
respectively.
2 Global existence and asymptotic behavior

In this section, we shall prove Theorem 1.3 by using the energy method. Set

n(z,t) =N+ V(x,t), (2.1)
T(z,t) =T + y(x,1), (2.2)
Vo =& +e(x,t). (2.3)

Then the function (V,u,y, e) satisfies the following system:

V; + div((NV + V)u) =0

W+ (u- V)u+ V(AN + V) = h(N)) + LW — 6y (2.4)
Yo +u- Vy+ 2(T° + y)diva — WAy—l—y —3ul?=0
dive =V

with the initial data
V(z,0) = n(x,0) = N, u(z,0) =ug(z), y(z,0)="Ty(x)—T° (2.5)

where the function h(s) = T"In s(s > 0).



To prove Theorem 1.3, we need the local solution results and a priori estimate, which
are given by Lemma 2.1 and Lemma 2.2, respectively.
Lemma 2.1 (local existence)
Suppose that b(z) satisfies the condition (1.3),(1.4) and n(-,0) — N € H3(RY),u(-,0) €
H3(RN), V®(-,0)— €& € H}(RY) and T(-,0) —T° € H*(R"). Then there exists an unique
smooth solution (n(z,t),u(x,t), ®(x,t),T(x,t)) of the system (1.1)-(1.2) satisfying

n(z,t),u(z,t), Vo(z,t) € CHRY x [0, Trmax)),

T(x,t) € CHRY x [0, Thmax)), Tee € C(RY x [0, Thnax))

and
n(z,t) =N, u(z,t), VO(z,t)—& € L>=(0,T; H*RY)), T(x,t)—T° € L>=(0,T; H*(R"Y))
defined on a maximal interval of existence [0, Tiyax). Moreover, if Tiax < +00, then

|I(n(7 t)_Nv u('? t)’ VCD(7 t)_‘c/‘)H?{?’(RN)—f—”T(U t)_TOHiI‘l(RN)JFH(nt? u, Vo, ,I;f)(a t)”%{?(RN)

t
0

+/ (I(n(.7) = N, 7), VO, 7) = E)lls @y + I1TC,7) = Ty

+[[(ne, ug, VO, Ty)(-, T)H12LI2(RN)]dT — X
as t — Tiax—.
Remark 2.1.1
Using Green’s formulation, the system (1.1) can be reduced to a strong coupled hyperbolic-
parabolic system and the proof of the local solution can be established by a standard
contraction mapping principle, which will be omitted here, see e.g. [12],[13].
Lemma 2.2 (a priori estimate)
Suppose that (V,u,y, e) satisfies the system (2.4)-(2.5) for (z,t) € RY x [0, Tipax). Then
there exists sufficiently small constant 6; > 0, depending only on b(z), such that for
0< S < Thax, if

Oiljgs(H(V, w,e)(, ) L@y Hly (s Ol g2y (Ve wes v, e0) (1) | 2@y HI VO sy < 0,
o (2.6)

then
(Vi w,e) (- )13 vy + 19 G ) Frz ey + (Ve gy, @) () |72 vy

< Ca(ll(Va, ) (- 0) s ey + 19 ( 0) [ )
HI(Vi, ur, e €) (- 0) [ 72y exp(—ent) (2.7)

for any t € [0, S] and some positive constants a; and C.
Proof: From (1.8), a priori assumption (2.6) and Sobolev’s inequality, we have

sup |(V7 8$‘/7 ‘/;57 u, a:ﬂua Uy, €, aﬁl?ea €, Y, Yt awN? ai'/\/’ﬂ

z€RN



C(l[(V,u,e)(-, )|l mseny + Iy )| 2wy (2.8)

N (Ves we, iy €0) (Ol 2wy + (VO s @ey) < Cdir.
From the equation (2.4)3, we can get

3
ny =S V) ), 29
where 5 9 .
flz,t) =y, +u-Vy+ gydivu +y+ §T0divu — §|u|2. (2.10)

Then, with the help of (2.8) and the L?—theory of elliptic operators, we have

102y 11* < CUIFII + 0. £1%) < Co

and
ly(, )17 < COF,

by using Sobolev's inequality which gives

102, Doy)|l 1 < Oy (2.11)

On the other hand, by (2.4);, (2.8) and Young's inequality, it is easy to get

i+1
o2Vl < C ) _(llgall + [0;V]) i=0,1,2. (2.12)

k=0

Take @7, 7 = 1,2,3 on both the sides of (2.4)4 and multiply the resulting equation by
d7®, then integrate it over RY to get

/|8;e|2:/aj 1V6] ! dlve /|83e|2_|_0/|8] 1v|2

i.e.
|0Ze||> < Cll2'V*, j=1,2,3. (2.13)
Similarly, we also have
e < C([[ull® + [VI*), (2.14)
lo7e®> < Y _(logull® + 105V ]7),  m=1,2. (2.15)
k=0

Now, multiplying (2.4), by Nu and integrating it over RY after integrating by parts, we
have

—|u|2 / Nlul? - / NV + V) = h(A))div(ANu)

. / VN9 pu [t Fpaa— [ xea—o. (2.16)
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First, we choose 9, is sufficiently small such that
0< %/ <N +V 2N,

then there exist positive constants Dy, Dy and D3 (depending on T°) such that
0< D <WN+V)< Dy < +o0,

0 < [W(N + V)| < D3 < o0,

for any integer k > 0.
Thus, in estimating the third integration of (2.16)

— [ (AN +V)=hN))div(Nu)
_ / ) / BN + 5) — h(N))dsda + / W + 0V)Vdiv(uV)

> %/RN/O (AN +5) —h(N))dsdx—Cél/<\u\2+ VI 4+ WV,

for some positive constant 6 : 0 < 6 < 1, with the smallness of |V| and |Vu|.
By (2.3),(2.4), and (2.8), we have

—/Neu = /eet+/Veu+/5(et+(N+V)u)

> 55 [l =t [P+ V)

where we have used the fact that
/a;ea;(et +N+V)u)=0, i=0,1,2,3.
In fact, from (2.4); and (2.4)4, we can get
dLdiv(e; + (N + V)u) = 0.

Multiply the above equality by 0¢h(N') and integrate it over R to have
/8’ N)dLdiv(e; + (N +V)u) = 0,

then integrating by parts and VA(N) = T°%X = £, (2.17) is followed.
It is easy to get

/((u V)wNu > —C5, /(|qu + V).

8
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By (2.8), we have

/WN@; — /Nydivu—C51/(\u\2+|y|2)

Therefore, (2.16) together with these estimates implies
d [N v 1
— [ [ |u? —|—/ (R(N + 5) — h(N))ds + =|e|?] + C/ lu?
<04y /(|V|2 +[VVE+ [Vul? + |y*) + /Nydivu. (2.18)

Taking 0, on both the sides of (2.4)y, then multiplying the resulting equation by N u, and
integrating it over RY, we have

%/rutﬁ + / N + / V(N +V) = h(N)):0(Nu)

[+ [ wwe = [Vew=0. 219

First, integrating by parts and (2.8) give
. / NN + V) — h(A))diva, — / YN + V) — b))y

NE(N +6V) NKW(N +6V) Vi, 2 5
o dt/ e )i + v 051/(|v;| +Jup)
NR (N +6V)

s 4 2 2 2
> 4 [ v VR = o [Vl + ),

for some the positive constant 6 : 0 < 6 < 1.
From (2.8), we have

/[M]t-/\/ut 2 _ /Nytdjvut — C(Sl /(|Vt|2 |V‘ 7t|2 _ |"t|2 |yt|2)

/((u V)N, > — 6, /(!ut|2 +Vu + [VuP),

—/Netut/ 2dt/|et|2 051/(\Vl2+|u 2 4 Jesf?).

So, (2.19) together with these estimates implies
d /[/\/’ o M +0v)
~ VYUY

1
dt 2N V) Vil* + 3ledl”] +C/|ut]2 < OO (|| (Vi w, ug) |2

9



+I(V,en w0)l1?) + /Nytdivut. (2.20)

Take dL(l = 0,1) on the both side of (2.4)3 and multiply the resulting equation by Ny,
then integrate in over RY to get

N )Nal

dt 8,fy|2 /N|8§y|2+ TD/Nﬁiyaldlvu— —/8l

2 1
—i—/@é(u -Vy + gydivu — §|u|2)/\/’8iy = 0. (2.21)
It is easy to estimate that the last integral on the left side of (2.21) is no less than

—C |[(w, ug, y, y) 5

and the fourth integral is estimated as follows:
2N
> [ o (0 + 0al?) = Co(lwa) i + [ 1)

-5 /oG v

(2.21) together the two estimates, we have

d

N 2 . :
G |5 WP 1) + Cllw )+ 570 [ (Wdiva + Nyeiva)

<ol )l + [ ViF) 222
Combining (2.18), (2.20) and (2.22), we have

& [ty [ s) = s + 2 i Ll + )

0

(|y|2 + 1y + Ul )l + /(IUII2 +[ugl))

< Ca([(V. V)l + 11(Vu, Vg, e))|[?). (2.23)

Taking div to (2.4), and multiplying divu on the both side of (2.4),, then integrating it
over RY, we have

4T0

;dtHdlquz + ||divu|* = /div(V(h(N—i— V) — h(N)))diva — /div(u - Vu)divu
—/div(wmivu—i—/divedivu. (2.24)

10



By (2.4); and (2.8), we have

_/div(V(h(/\/'+ V) — h(N)))divu = /{[V(h(,/\/+ V) — h(N))] - V(Vt + /V\/(jr; V)u>}
NN +V)

d
< o N N 2
Sodt ) 2N+ V) VY]

+ ca/ﬂvﬁ+uqﬁuvvﬁ+hm+wvmn

Using (2.8),(2.9),(2.10) and Young's inequality, we get

—/ div (W)divu

14 2 YN V)P
< sa) VY /kN+VPV( ;)

+ 6/\VVt!Q+C(€)/|V3/|2+C(51(H(V,V2,u>y)\|?p +/!yt\2)
1d
< ——— 2 L 2

with the help of the smallness of € and ;.
By the equation (2.4); and (2.4),, we have

/divedivu = —/%/(Vt%—uv./\ijdiV(uv))

v
<

By integrating by parts and (2.8) to get

+ Co /(|V!2 + [uf? 4 |Vul?).

—/div(u-Vu)divu = —/&(uj@jui)akuk

= — /(@uj@juidivu — %(divu)?))

< 051/|Vu|2

(2.24) together these estimates implies

1d WN + V) e
d 2 VQ 2 d 2
57 [ Qv+ SRV e 9V + ) + diva
AR / ) +C / Yyl (2.25)

11



Taking curl to (2.4)s and multiplying curlu on the both side of (2.4),, then integrating it
over RV, we have

V(N +V)y)

1d
§E|]curlu||2 + ||curlu||® + /curl( NV

Jeurlu = — /curl(u - Vu)curlu. (2.26)

The direct calculation gives

/ Curl(W)cuﬂu - / [V(ﬁ)xV((]\f—l—V)y)]eurlu

1
= —/ V(N +V) x Vy curlu

N+V

- / Ni V(ai(N +V)0;y — 0;(N + V)0;y)curlu

< 5 /(|vvy2 +1Vul? + [Vyl?)

and
— /curl(u -Vu)eurlu = — /(8k(uj8jui) — 0y (u? ;u")) (O’ — D)
< C(SlnquQ

Then, (2.26) with two estimates to give

1d
QEH(:urluH2 + ||curlu|]® < €6, /(]VV|2 + [Vul® + [Vy]?). (2.27)
Together with (2.25) and (2.27), we have
ld 2 WIN+V) 2 Yy 2, VI 2
sy fawar + X Dove 2w+ B s oo
< CaIV Vi)l + [(uP + 1)+ C [ 1Vl (2:29

On the other hand, multiplying VV on the both sides of (2.4), and integrating in over
RY, we can get

/[(h’(/\/+ V) — K(N)VN + N+ V)VVIVV = /evv _ /(ut I A%

—/(u-Vu)VV— /WV‘K (2.29)

It is easy to obtain the following estimates,

/evv = —/Vdive = —||V]3,

12



Jtw s wyv<e [19VEc [(uf + up)

—/(u-Vu)VV < 061/(|VV|2 +[Vul?),

—/va - —/VyVV—/A%V(NJrV)VV

< 6/\Vy\2+0(6)/\VV]2+C(51/(\VV]2+]y|2).

(2.29) together with these estimates, we have
JAVE+19VE) <GB (o 4195 + [VaP)+C [(uf +af) (230

with the help of the smallness of € and d;.
From the equation (2.4)q, we can get

lel|* < Cll(u, us, Vu, VV, y, Vy)||*. (2.31)

On the other hand, using (2.4), (2.4), and (2.17) with ¢ = 1 we have

_ / D,e0,(N1) = / d,e,e, + / 0,00, (V) + / 0,0, (61 + (N + V)
d

1
= = 5]0Ie|2+/0xe8$(‘/u),

which implies

1
& [ 5l0uel < e [(0.VE 4100 + a4 osef) + < [ 10,6+ Co) [ lorul

Therefore, combining (2.23),(2.28),(2.30) and (2.31), furthermore, noticing that (2.14),(2.12)
with ¢ = 0 and (2.13) with j = 1, we have

d
dt

NE(N +6V)

1
2 a2 2
S VI el ¢ el

14
[%Qlu? + u?) +/0 (N + s) — h(N))ds +

Yy 2 |V|2 1 2
S—— vt LS R}
s+ v VI g 5okl

NN +V)

vy 7 2
2IN+V JIVVIT+

3N, o 1 )
ooyl 4 lwl”) + S Val™ +
+CH(V7 v‘/vu ‘/;fuuu vuaut7y7 vyvyl‘nvytue? vevet)H2 g C(Sl /<|vut‘2 + |V%’2) (232)

The next step is to get the estimates of the second derivatives, due to similar to the
estimating progress of the first derivatives, so we give a brief form.
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Take 07 on the both sides of (2.4); and multiply the resulting equation by 9?(AN u), then
integrate it over RY to get

/ P52 (Nu)+ / OPud(Nu) + / P2V (RN + V) — h(N)) 2N w) + / O2(u- V)22 (A u)

/ & N + V VAN £ V)Y)) 52 Ar) — / 2602(Nu) = 0. (2.33)
The terms in (2.33) can be estimated to the following forms:
/(‘ﬁutc‘?ﬁ(/\/’u) > %/(%[|aiul2+8§Nu6§u+28$/\/8xu8§u)—051 /(|6§u|2+|ut|2+|6xut|2),

/83u8§(/\fu) > /J\/'|8§u|2 — O /(|u|2 +10,ul? + |0ul?),

/82 u-Vu)dZ(Nu) > 051/\8§u\2,
/ e (Nw) > & / Sl02el? — Ca,((0.V. 0w + / 2ef?),

[ EV(N +V) = h(N))I;(Nu)
NEW(N +V) = h(N)PV  NNN + V)52V |?
A N+V B 2N + V) )

- e [1vE - calvle + [ v,

2 (N +V)y)
J o
d Ny

> — _ Y d 192Y/12 22
Zat 2(N+V)2‘aww Cor([[(a, )3

[Vl o+ v - [ Mozt

)07 (Nu)

(2.33) together these estimates implies

d [N, 5 ) ) ) Ly n NOPRN+V)—h(N))OV
pm [?@Cu\ —i—@xj\/'uagcu—i—QamN@mu@xu%—§|8xe\ + NV
NN+ V)V ]? Ny 9 2012 <
S sl BV C [ 1 < oVl
—i—H(V},u,ut)H?p+/]8§e\2)+/./\/8§y8§(divu). (2.34)
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Similar to (2.30), we have
/ (0.V] +102V]?) < C6, / (102ul? + 10,0 + |21 + 10sy]? + [u]?)

C/(|8wu|2 10, 2). (2.35)

Taking 9,0; to (2.4), and multiplying d,(Nu;), then integrating it over R, we have

/ Dt Da(Nw) + / DO, (N ) + / 90y (h(N 1) — BNV, (M) — / Do (N )

V(N +V)y)
Employing the equation(2.4), and (2.8), we get
d [N
/8$uttax(./\/’llt) 2 E (?|&Eut|2 + (%Nut({)mut) — 0(51 /(|a$ut|2 + |utt|2>
d [N
> 5 [l + w0 — oIV w )l + [ (P +]e)

After the direct calculation, we arrive at

/ oD (N ) > / Noyw|? — €6, / (w2 + [0y, 2),

d

1
—/&Eeﬁx(/\fut) 2 E/§|8Iet|2 — 051 /(‘amet|2 + |8th|2 + \8mut|2),

/am(u V), (M) > —C6, /<|a§u|2 +10,uf? + D2 + []?),

[0V V)~ AN = [ 2,0+ VIOV N
[ 0KV + V)V (N divay)
L [NNNAV)
~ N+V
— Cd /(IVtI2 F VI + Vil + [VV? + |Vl + [V, ?)

d [NNN+V)
dt 2N+ V)

s /(|w|2 IV A+ [VVE A [ + [Vaf? + [V 2),

amv;f(arv;it + am(u : vu)t)

WV

10:Vi*

15



We deal with the last second integral in (2.36) next.

[ou T 0,00 > [avuoom + [ paevan)

AT / V).

/axVyt(axNut +Naxut) =z - /Naxytardivut —C /(|ut’2 + |aa:ut|2 + |8:cyt‘2)>
and

) d Ny 2 2 / 27712

so, combining two estimates, we arrive at

V(N +V)y d N
JouT o v > 4 [ o = oVl + [ 1020 E)

N+V 2N +V)
/ NO,y,0,divu,.
(2.36) together these estimates and noticing (2.15) with m = 1 implies
d [N 1 NKW(N +V) Ny
— [ [=]0,w]* + N0, ~|0pe]* + 2|0 Vi)? + 0.V
@i [ 10wl + 0N wdos 4 510sedl + S5 P 0l + 5 s 0Vl

c / (18owel? + 10sel?) < CO111(OaV, Vi ) s + e + / (lwl? + leul?))

e / (0. V]2 + |5,uf?) + / Noypdsdiva, (2.37)

Taking 0,0! (I =0,1) to (2.4)3 and multiplying N'9,0ly, then integrating it over RY, we
have
Ay

% %[‘a aéyP /_/\/'(9 aéy‘Q_i_ TO/Na 8£ya 8’d1vu— /a 81(

2 1
+/6Z8£(u -Vy + gydivu — §|u|2)./\/’8x8iy =0. (2.38)

It is easy to estimate that the last integral on the left side of (2.38) is no less than

81D, Dy, Do) s + / D,u,?)

16



and the fourth integral is estimated as follows:

/88l

2.38) together with two estimates and using Y oung's inequality impl
g g g y Yy

2N
=0y > /W(I&%W +102y:|*) — CoLll (Duy, Dwpe) |71 -

N 2 .
G |5 (0P 0+ C [0l + 1025 + 0. + 108 ) + 57 [ N,divudny

< C6 /(|896u|2 + [0%u? + [0,uy]?) + C’/ |0%ul?. (2.39)

Therefore, Combining (2.34),(2.35),(2.37),(2.39) and noticing that (2.12) with i = 1 and
(2.13) with j = 2, we have

% [’%ﬁ@%uﬁ + 92N ud?u + 20,N 0, ud>u + %lﬁﬁeP + %[laxuﬁ + O, Nu0,u; + %\8Iet\2
SN(W 240, + NOZ(MN +V) = h(N)FZV NN N + V)2V ]
Tapollosy =¥t N+V 2N +V)

NHW V) Ny
SwvEy)y oy

+|0: Vi[> + |02 + |0vee|” + [0:y]* + [02y]* + [02ye|” + 073 ]?)

MOV +C [Pl + o + 02V

< Corl|(Vou) |3 + OO /(IVt\2 + Il + [y + [yl + lef?)

—l—C’/(\@xu]Q +10.V|?) + /N@gyai(divu). (2.40)

We now turn to the estimates of the third derivatives. However, the above arguments in
estimating the first and second derivatives do not work for the third derivatives because
we can not obtain the smallness of |(9%V,8%u, d%e)| and |(0,V}, O,uy, Orey, O,y )|. We use
Young's inequality, Sobolev’'s inequality, Gagliardo — Nirenberg's inequality and the
smallness of [ |03N] and [ |0;N], frequently. Hence we give a detailed discussion.

Take 92 on the both sides of (2.4); and multiply the resulting equation by 92(AN u), then
integrate it over RV to get

/ O (M) + / OFudP (Nu)+ / PV (AN V) — h(N)) PN w) + / 0% (u- V)3 (A'u)

+ / 05(W)G§(Nu) - / PedP(Nu) = 0. (2.41)

17



Employing Young's inequality and Sobolev’s inequality, we can get

/ PudNw) = (%V OPuf? + 30,0206 + 3PN Dyudu + A udiu)
— 3/895/\/'8§ut8§’u — 3/8§Nﬁxut8§’u — /QgNutai’u
> % (%/ |0%u|? + 30,N0?ud’u + 30°Nd,udu + 92 Nudiu)

— oo [l + ol + o) — ¢ [ 02 - Clo)ulfye [ 1A
and
/ Pudt(Nu) > / N6Puf2 — Co, / (0,uf? + |62uf? + |5Pul?)
e [ 12l - el [ oA
By (2.17) with 7 = 3, (2.4)1 and (2.4)4, we arrive at
—/Oi’e@i’(/\/u) = /83(8+e)83et+/83(5+e)83(Vu)+/83€83(Nu)
> 2dt/|a3e|2 (]61/(|82u|2+!83u|2—|—|32V|2+|33V]2+|83e| ).

Using Young's inequality, Sobolev's inequality, (2.8) and integrating by parts, through
some tedious but straightforward calculations, we can obtain

/ PV(hN + V) — hAN)PN) > — / NN + V) — h(A)o (diva)
~ el V)l el [ 0N
— COalle +alls + VI + V1) [ AT
4 [10IN) = COiIVIEs + [ (o3P
/ag(—v(gjvv:“//m)a;(/\/u) > - /NNyVa;’;va?’ divu) +T0/N (N + V)5 - Pdivu
= Vo) — el + ) [ (oA

— (fullZe + lul) / BV — () lyl%e / (NP + [0NP2)
OOy, Py — CE 10V, 00, 1) e + ly]%e).

18



Set

J: = — /N@i’(h(/\/'+ V) — h(N))93(divu) — NNyV8§V83(d1vu)
= [+ v) - ) + vl HEE T D,

To make our calculations more explicit, we are going to expand the integrated functions
of J, for simplicity, omitting constant coefficients of terms.

J = /[N(h’(/\/ FVVEN + V) + W + VIO + VRN + V) + BN + V) @u(N + V)

! 3 " 2 " 3 Ny 3 1 3
= WNIN = KN)DNGEN = W'N)@NP) + =500V ] - [ (0
+ w-VEN+V)+0,u-VEWN +V)+ 2 Vo, N +V)+dPu- VN +V))
- H(W%Jru VRN +V)+0,u- Vo, N +V)+ 02 - VN +V))

BN +V) (N +V))?
a ((N+V)2 N4V
B <8§(J\/+ V) 0N+ V)EWN+V) N (0N +V))?
(N +V)? (N +V)3 N+ V)4

Set

)0V, +u- VI, (N +V)+d,u- VN +V))

J(Vi+u- VN +V))]

L Nh/(N+V) 31793 Ny 31793 N 3 ' 3
Jy = /[—NH/ VoV, + N1 V) VoV, + N Vﬁth(h N+ V)N

+R' (N + V)0 (N +V)EN + V) + BN + V) (O0,(N +V))?
W (N)BEN = B (NN N — K" (N)(0,N)?)],

[ NEN+V) BRN+V), Ny BV, N
nim [ BNy I e VU P

DN+ VPN + V) + 1" (N +V) (0N +V))? — (NN
—W'(N)ONOPN — h"(N) (0N )P )u - VRN + V)],

(K" (N+V)

Js = / (frfofsfs) = / (the sums of all terms without smallness of the maximum norm

of exact three multipliers),

Jr denotes the remained term integrals which are no less than:
Jr = —€l|(V, u)H?{s—C(G)UIVHZHHVH?{ﬁHWH?{zHIUHEzﬂLHuH?{s)/(!@SENIQH%W\Q)
~Co1([[(0:V. 0)ll32 + 10:Vall7p) -
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Now, we shall estimate Ji, J5, J3 as follows:

i Nh,(./v +V) Ny 312 4+ 3 / 3
J1>dt/[( SN V) + SERTE V] + V(W' (N +V)ON
+R" (N 4+ V)0, (N + V)N + V) + B (N + V)0, (N +V))
—H (NN — ' (N)ONON — 1" (N / 03V |2

0@ [l = ORIV, Vol + i

where Jip = [ 22V 93V 02,

T2 = =€Vl — (VI + [V [IZs) / N = Cle)(I[ullf2 + [lul3s)

JUONTE + 9~ e [(BAT? + 02N + o,

where Jop = [ ANy 9, (VV)O2VHV. Put

N+V

o B NNWN+V) 5, NN +V) o s .

I: = J3—|—JlR+JQR—/{[—N+V O*uvo, VoV NV PVOPV(0,V, +u-Va,V)
NW'N+V) 2, NOV _ )
NIV 0:uVI, VO, (N + V)o2V —(N+V)2(8x‘/}+u VO V)0, (N 4+ V)o;V]

Ny 300 Ny 392V )
- [N RV Ouvo,V — NV )ava V(0,V; +u- Vo, V)]}
4 /Nh N V) ey opva, v, + /W L0, (VV)OV OV

> —€l(aV, a;Z’V)H2 - C() /(\3§Vl4 +[07ul* + |0, Vi),

with the help of Young's inequality. By (2.12),(2.8),(2.6) and Gagliardo — Nirenberg's
inequality with N = 2,3, we have

N

/(|a§V|4 +10%u]* + [0, Vi) o/<|a§V|4 1 102uf) + C6]|0,ul?

Cllozul*=M|oRu]|™ + ClRV M0V [Y + Coyf|oul’?
Cllozul*="]|ozu] 2|07’

Clozv I MoV 2[10VI* + Carl|Opul?

Cor[|07ul* + Cal|0;V || + C6y [| 0z ulf*

N F NN

1.€.

I > —e|[(02V, 0;V)|I* = Corl|0ull* — Corl|azV[I* — Cor|Opul.
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Using Young's inequality and Gagliardo — Nirenberg's inequality, with the help of the
smallness of €,0; and [ |03N|?, it is easy to get

/ P (u - V)P (N) > —C6Jullp.

(2.41) combining these estimates, we can get

DN - ; s sr s Lo NHWN+V)

a4 [?qul + 30, N9*udu + 30°Nd,ud’u + S Nud’u + §|3xe\ + (W

M gve s A g - e s e - vinw s Ve )
2N+ V)2 N+Ve : ' )

+ KN+ V)0, N +V))? = (NN — b (N)ONOIN — K" (N)(8.N)?)]

o / Pul < O8IV ) s + OOl (Ve wy g, i) [ + C / (Il + 1022 + 102,

(2.42)
with the help of the smallness of €,dy, [|03N] and [ |92N]. Similar to (2.35), we have

/(|5§V|2 +RVI) < 04 /(|55Z’11|2 +105u® + |03y[* + [97y1* + 10:y/%)
e / (18, + [02ul? + 2w [ + 02u, ). (2.43)
Taking 020; to (2.4); and multiplying 0%(N u;), then integrating it over RY, we have

/ P2 (Ny) + / P 2N w) + / 2V (WA + 1) — h(N)): 02 (ANuty) — / Pe,d2(N )

\Y% V
Employing the equation(2.4), and (2.8), we get
— 051 /(]@cut\Q + ]utt\z + |3xutt\2)
d N 2 2 2 2 2

— CO(|(Viy ay g, ye) 172 + e 70)-

After the direct calculation, we arrive at
/8§ut8§(./\/'ut) > /Magutﬁ - 0(51/(|ut]2+ 0ol + [P,
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d

1
- [Bedtivu) = 5 [ Sletel - Ch(I@Vi ol + [ (02 + (0aP))

[ o2 VweRvw) >~y [Pl + 020 + i+ 0+ (02,
[ VN V) = BN

- / NN+ VIOV diva) - e(ille + [ 102VI) = COIVill + ulfe) [ 10T
— O (|[Villig= + (2, 8puy)[[7) + /Nh”(/\/+ V)02V 0,V 0y,

We dealt with the last second integral in (2.44) as follows by using Young's inequality:

/82 /\/+V )) OE(Nwy) = /ai(Vyt+ (wy)t)ai(/\/ut).

/ PV (Nwy) > / Pul? — OOl / PN

- Oy /(|8 w” + 02w + |02y )?) /Na2yt82 (divuy)

\% V
[ e R e yvaiv;a%divut) - el + [ 1o2viP)
— [ 10 - OOl + lle) [ 102N

— Cou[|(Vi, e, o)l + ||32V||H1)

+ /N V82V(9myt8§ut+/N v(‘?QV@xyt&Eut
_ /(Lagvax%agut _ /Maﬁ/a V.

N+ V)2 (N + V)2
Set
J: = — / N (N + V)02V,0%(diva,) — NN yvai‘/tOQ(dlvut)
. ' Ny orr o2 Vit VN +V)
= [ vy g tea R,

d [ NN +V) Ny 21712 / 21712
Z a ) vy Taw e v 1%Vl e f 1oV

= CO(lullze + HutH?{z)/!@iN\Q — Co (|92 Dpul [
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N N+V) N Ny
N+V (N +V)2
B /(Nh’(N+V) Ny

2
W vE T w2V

N/\_/’_yv)uaiwazwax(vv)'

+ (Vi w)lffe) +

)02V;0,u,0,(VV)

_ /(Nh’(/\/ LV +

As above estimates, we denotes I’ the sums of all integral terms without smallness of the
maximum norm of exact three multipliers, in the same way, with the help of Young's
inequality and Gagliardo — Nirenberg's inequality, which are no more than

I'< C6, / (B2VE + |2V + 102ViP + (02w + 102uil2).

(2.44) together these estimates, with the help of smallness of € and d;, we have

d N s ) ) ) Lo 1o NN +V) Ny
- — +2 -+ +-= + )2

|2Vil*)

c / 12, < CO IV, ) 2| (Ve s s 00) 1 e [3) + / No2y,02(divay). (2.45)

Taking 920! (1l = 0,1) to (2.4)3 and multiplying N'9?dly, then integrating it over RY, we
have

Ay

dt ]828@]2 //\/|828in2 + TO /N@Q(?éy@zaldlvu — —/8281(
2 0 2 Loy arq2a
+ [ 0;0,(u-Vy + gydlvu — §|u| )N 20,y = 0. (2.46)

It is easy to estimate that the last integral with [ = 0 on the left side of (2.46) is no less
than

~C5, [l + 02l + 02l + 02 + 105y,

and the last integral with [ = 1 is no less than, using Gagliardo — Nirenberg's inequality
=05, [Pl + 02l + 0.l + 102 + 02 + 102 + 0%

The last second integral with [ = 0 is estimated as follows:

2 2 Dy 2 2/ N 2 2 / 27712 2,12 3,12
_z > Z _
s [ B tonety s 5 [ i - oo [(aVE o + o)
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and the last second integral with [ = 1 is no less than, using integrating by parts and
Gagliardo — Nirenberg's inequality similarly,

2 A/ 2 2 / N 2 2 2 2 2 / 27712
_Z > Z _ .

N 2 2 N 2
+ /m%ax(ﬁy)axyt—i‘/m@c%aﬂc(Ay)@;yt
N 2 2
+ /maﬂ/ﬁyt@x@/t
2
> §/m|3ivlh\2—O5l(|!5z‘/t,3§3/78§yt)\ﬁ{1 +/|3§V’2)-

So, (2.46) together these estimates (I = 0, 1), we have

2
S [ 5 el 102u + C1@n a2, e 201 + 510 [ NoRotyRataive

< 06 /(|8§V|2 + |2Vi2 + 10 V22 + |03u]? + |02u]?

+]0,ul* + |02 + [0, us]?). (2.47)
Therefore, combining (2.42),(2.43),(2.45) and (2.47), we can get
NN +V)
2N +V)
V(RN +V)EN + "N+ V)N + V)N +V)
N

—laiutIQ

1
g [ 0P + 30N G0 + 302N D u + 02N w33l

Ny ) N 9
2N +V)? N+V

+ K'N+ V)0, N + V) = K (N)EN — B (N)ONOIN — B (N)(9.N)?) +

NN +V) N Ny
2N+ V) 2N + V)2

Ryl® + 02y )] + C/(|8§’;V\2 + |02V + |0l + 02wy | + |85y + |02y[?

+

2V I+

DIV

1
+ 20,NO,u.02u; + O:Nw, 0%, + §|8§et\2 + (

ﬂ(‘
470

+ 10;ul” + |05l /N py0; (diva) < OOy ([[(Vi, e [[72 + 1(Voae, y, w0 [30)
+C|| (agmu 82‘/257 aiua a.’ruv axutu a.’zyﬂ yt) H2 (248>
Noticing that (2.12) with i = 2, (2.13) with j = 3 and (2.15) with m = 2 and combining
(2.32),(2.40) and (2.48), we have

— [ F+CUIVou g,y €) 5 + [1(Vi, we, e [32) < 0. (2.49)
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Where

F: K1

+

v W oV 1
[%%mﬁ+m#»+é<Mwwﬂ»—MN»w+5%£%EWJMP+—ww+w#>
N 2 1 2 WN+V) Y 24 ‘V|2

Kz[%[|8§u|2 + *Nud*u + 20,No,ud*u + %|8§e|2 + %/|31;11t|2 + 0N 0,0y + §|8;Bet|2
3N NRB (N +V) Ny
NN + V) — ANV NE(N + V)92V ]?

)|0:Vi|”

)] + Ks[%/lﬁiuf + 30,N9*udu

N+V - 2N +V)
2 3 3 3 1 3 12 Nh/(N+V) N 3 2
36IN8xu8Iu+8xNu8xu+2]8366\ + ( SN+ V) + SNV 5)10: V|
N

NV V(W (N +V)EN + BN + V)0 (N + V2N +V)
W' (N + V)N + V)P = KN)PN — 1 (N )N PN
h///(N)(amN)3) + %/|8§ut|2 + 2393./\[(9mut8§ut + 82./\/'ut32ut

NN +V) Ny

1 2 2112 4
sl + (v + s v

2yl” + 107ul*)],

4T0 (|

for some positive constants K, Ky and K3. It is easy to see that F' satisfies

(Vo + Iyl + (Vi vl < [ 7

CUI(Vou,e)llis + lylze + (Ve ue, g, ed)ll72),

for some positive constants ¢ and C. Therefore, (2.49) and the above estimate imply
(2.7), which concludes the proof of Lemma 2.2. [

Based on the existence of local solutions and the a priori estimate, we can apply
the standard continuous argument such as in [19]-[20] to show the global existence and
uniqueness of smooth solutions to (1.1)-(1.2), satisfying (1.9), so Theorem 1.3 is proved. [

3 Main results for K =0

In this section, we study the system (1.1)-(1.2) without heat flux term (i.e. K = 0), so the
system (1.1)-(1.2) becomes a hyperbolic-elliptic system:

ny+ V- (nu)=0

u + (u-Vju+ 1V(nT)—V<I>—H

Ty +u- VT + 2Tdiva = 22 fuf? - 20
AD =n — b(x)

(3.1)
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for (x,t) € RY x [0, 4+00), N = 2,3. The system is supplemented with the initial data
n(z,0) = ng(z), u(z,0) =ug(z), T(x,0)=Ty(zr) xR, (3.2)

Based on the similar energy argument, we can obtain the following main results:
Theorem 3.1

Suppose that b(x) satisfies the condition (1.3),(1.4) and n(-,0) — N € H3(RY),u(-,0) €
H3(RM), V®(-,0)—& € H3RY) and T'(-,0)—T° € H*(RY). Then there exists sufficiently
small constant dp > 0, depending only on b(x), such that if

||(7”L(,0) —N,U(',O), VCI)(’ 0) - S’T("O) - TO)HH?’(RN)

+|[ (e, ag, VO, T3) (-, 0) |2y + [ VO sy < do

Then the Cauchy problem (3.1)-(3.2) exists an unique global smooth solution (n(x,t),u(z,t),
O (x,t),T(z,t)) for all t > 0. Moreover,

[(n(-, ) —N,u(-,t),Vd)(-,t) =& T(1) - TO)H?J‘Q’(RN) + || (e, u, vq)hTt)(Wt)H?ﬂ(RN)

< Colll(n(-,0) = N, u(-,0), VO(-,0) — £, T(-,0) = T) |35y
+||(nt7 u;, VO, T;e)(, 0)”?7(2(]1@’)] exp(—aot)

for some positive constants ag and Cj.

In the same way, we need the local solution results and a priori estimate in order to
prove Theorem 3.1, which are given by Lemma 3.2 and Lemma 3.3, respectively.
Lemma 3.2
Suppose that b(x) satisfies the condition (1.3),(1.4) and n(-,0) — N € H3(RY),u(-,0) €
H3(RN), V®(-,0)— €& € H}(RY) and T(-,0) —T° € H3(RY). Then there exists an unique
smooth solution (n(z,t),u(x,t), ®(x,t),T(z,t)) of the system (3.1)-(3.2) satisfying

n(x,t),u(x,t), VO(x,t), T(x,t) € CLRY x [0, Thax)),

and
n(z,t) — N, u(z,t), VO(x,t) — & T(x,t) — T € L=(0,T; H*(RY)),

defined on a maximal interval of existence [0, Tinax). Moreover, if Tiax < +00, then

”(n(at) _N7u("t)>vq)('vt) - g’T('at) - TO)H?J?’(RN) + H(nhut’ V(I)hTt)('»t)H?r{Z(RN)

+/0 [H(n(’T) —N,U(',T), VCD('?T) - 87T('>T> - TO)H?@(RN)

A (e, 0y, VO, T) (-, T)H12L12(RN)]dT — &0

as t — Tpax—-
Lemma 3.3
Suppose that (V) u,y, e) satisfies the system (2.4)-(2.5)((2.4)3 without heat flux term) for

26



(z,t) € RY x [0, Tjax). Then there exists sufficiently small constant 6; > 0, depending
only on b(x), such that for 0 < S < Thax, if

sup ([[(V,u, e, 9) (s Dl zraceey + (Ve wh, €0, ) (s )| 2y + [Vl o)) < 0,
\t\

then

||(‘/7 u7eay>('7t)||%l3(]RN) + ||(‘/t7ut7et7yt)('7t>||§{2(RN)
< Gi([(Vow e, 9) (5 0) [ Fs gy + (Vi ags e, ) (-, 0) [ 32 ) exp(—ant)

for any t € [0, S] and some positive constants a; and Cj.

Remark 3.4

Using Green’s formulation, the system (3.1) can be reduced to the pure hyperbolic system
and the proof of the local solution can be established by a standard contraction mapping
principle, see e.g. [12],[13]. As for the proof of Lemma 3.3 is similar to the proof of Lemma
2.2, the most difference is to establish the third derivatives estimate on y, we need take
02 on the both sides of (2.4)3 and multiply the resulting equation by @2y, then integrate
it over RY. Combining all estimates, we conclude the proof of Lemma 3.3. Theorem 3.1
follows from the continuous argument by using Lemma 3.2 and Lemma 3.3.

Corollary 3.5

Suppose that b(z) = N > 0 (positive constant) and n(-,0) — N € H*(RY),u(-,0) €
H3(RY), V®(-,0) € H}RY) and T(-,0) — T° € H3*(RY). Then there exists sufficiently
small constant &y > 0, depending only on N, such that if

||(7L(,0) —N,u(-,O),V(I)(-,O),T(-,O) - T0>||H3(RN)

+||(nt7 Ug, vq)ta ,I;f)(, O>||H2(RN) < (50

Then the Cauchy problem (3.1)-(3.2) exists an unique global smooth solution (n(z,t),u(z,t),
O(x,t), T(x,t)) for all ¢ > 0. Moreover,

”(n<>t) —N,u(-,t),V@(-,t),T(-,t) - TO)H%—IS(RN) + ||(nt>utvvq)taTt)('vt)H?{?(RN)

< CO[”(”(7O) —/\f,u(-,()), VCD<'>0)>T('>O> - TO)H?ﬁ(RN)
HI (e, 0, V@1, Ty) (-, 0)[7y2 )] exp(—cot)

for some positive constants g and Cj.
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