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Abstract

We study (pseudo-)differential operators on a manifold with edge Z, locally
modelled on a wedge with model cone that has itself a base manifold W with
smooth edge Y . The typical operators A are corner degenerate in a specific
way. They are described (modulo ‘lower order terms’) by a principal symbolic
hierarchy σ(A) = (σψ(A), σ∧(A), σ∧∧∧(A)), where σψ is the interior symbol and
σ∧(A)(y, η), (y, η) ∈ T ∗Y \ 0, the (operator-valued) edge symbol of ‘first gener-
ation’, cf. [15]. The novelty here is the edge symbol σ∧∧∧ of ‘second generation’,
parametrised by (z, ζ) ∈ T ∗Z \ 0, acting on weighted Sobolev spaces on the
infinite cone with base W . Since such a cone has edges with exit to infinity,
the calculus has the problem to understand the behaviour of operators on a
manifold of that kind.
We show the continuity of corner-degenerate operators in weighted edge Sobolev
spaces, and we investigate the ellipticity of edge symbols of second generation.
Starting from parameter-dependent elliptic families of edge operators of first
generation, we obtain the Fredholm property of higher edge symbols on the
corresponding singular infinite model cone.
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Introduction

This paper studies (pseudo-)differential operators on manifolds with conical exit to
infinity whose cross section is a (compact) manifold W with smooth edge Y . More
precisely, ‘at infinity’ such a manifold is modelled on a cylinder R+ ×W , and the
metric is assumed to be conical for large t ∈ R+, i.e., of the form dt2 + t2gW for a
wedge metric gW on the cross section W (cf. Definition 1.2 and Section 2.1 below).

The cone W4 := (R+×W )/({0}×W ) itself is interesting as well because of specific
corner effects also for t → 0 (near the tip, represented by {0} ×W , identified with
a point v). A calculus for corners of that type is developed in [18]. Operators on
a manifold Z with higher edge, modelled on a wedge W4 × Ξ with edge Ξ ⊆ Rp,
have a so called principal edge symbol which consists of a family of operators on
W4 parametrised by (z, ζ) ∈ T ∗Ξ \ 0, with information both for t→ 0 and t→∞.
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The main objective of the present paper is the investigation of such edge symbols
for t→∞.

The general background is as follows. Operators on manifolds with ‘higher singular-
ities’ (e.g., of edge or corner type) may be studied by an iterative approach, parallel
to the process of repeatedly forming cones and wedges, combined with global con-
structions. The cones and wedges are based on already constructed manifolds of
lower singularity order. By order zero we understand the smooth case, by order one
the case of cones with smooth cross sections or of wedges with such model cones,
etc. The program of the (pseudo-differential) analysis is to iterate suitable symbolic
hierarchies, associated with the strata of the configuration and to establish corre-
sponding operator algebras. The symbols should be responsible for the ellipticity (or
parabolicity) of operators, parametrices, Fredholm property (or invertibility), and
regularity and asymptotics of solutions. The problem with higher singularities is to
really manage the iteration and to achieve a transparent formalism. Our paper is
devoted to one of the typical elements of this approach, namely, the analysis of edge
symbols taking values in operators on an infinite non-smooth cone, here of second
generation (which means singularities of second order).

In order to illustrate the idea, we first recall some aspects of the simpler case of
a smooth manifold with boundary. The operators are identified with boundary
value problems. They have a two-component principal symbolic hierarchy (σψ, σ∂),
consisting of the interior and the boundary symbol (indicated by subscripts ‘ψ’ and
‘∂’, respectively). Boundary value problems are connected with many analytical
and topological details (e.g., the transmission or violated transmission property, cf.
Boutet de Monvel [4], Vishik and Eskin [25], [9], the Atiyah-Bott obstruction for the
existence of Shapiro-Lopatinskij boundary conditions, cf. Atiyah and Bott [1], and
APS or global projection conditions, cf. Atiyah, Patodi and Singer [2]). Smooth
manifolds M with boundary are a subcategory of manifolds W with smooth edges;
in the general case the model cones of local wedges may be non-trivial, i.e., of the
form X4 := (R+ × X)/({0} × X), for a (smooth compact) base X of non-zero
dimension (rather than R+, the inner normal to the boundary of M). As is known
from [15] for a manifold W with smooth edge Y , the principal symbolic hierarchy
of operators A in the ‘edge algebra’ consists of two components (σψ, σ∧), where σ∧
is the homogeneous principal edge symbol, a generalisation of σ∂ . The edge symbol
is a family of operators

σ∧(A)(y, η) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (1)

on the infinite open stretched model cone X∧ := R+ ×X 3 (r, x), parametrised by
(y, η) ∈ T ∗Y \ 0; here Ks,γ(X∧) is a scale of weighted Sobolev spaces of smoothness
s ∈ R and weight γ ∈ R, cf. Section 1.2 below. The operators in the edge algebra
have a 2 × 2 block matrix structure which is analogous to that of boundary value
problems (without the transmission property, see, e.g., [19]), with all the features
such as extra edge conditions of Shapiro-Lopatinskij type if an analogue of the
Atiyah-Bott obstruction vanishes, see [8], [15], [16], or global projection conditions
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in the opposite case, see [20]. The latter effects are governed by the operators (1).

The interior ellipticity of A, i.e., the ellipticity of the operator with respect to σψ
(in a suitable edge-degenerate sense) entails the Fredholm property of the operators
(1) for every (y, η) ∈ T ∗Y \ 0, and for all weights γ ∈ R \ D(y) for a discrete set
D(y) of reals, cf. [16].

The manifold X∧ has a conical exit to infinity (for r → ∞). It turns out that
certain subordinate exit symbols, that are usually responsible for the compactness
of remainders in a parametrix construction up to ∞, are automatically elliptic, see,
e.g., [11, Chapter 3]. In other words, ellipticity ‘in the finite’ of an operator on a
manifold with edge is connected with a specific background information on ellipticity
on the manifold X∧ with conical exit.

A similar result is necessary for operators on manifolds with singularities of second
(and higher) order. In the present paper we investigate this phenomenon for the
case of second order singularities. This is far from being straightforward, compared
with the first order case. Formally, we replace X from the discussion before by
a compact manifold W with edge Y . Then W∧ = R+ ×W has a conical exit to
infinity; however, also the edge Y ∧ of W∧ has an exit. This requires corresponding
new elements of the edge calculus. Also the analogues of the spaces Ks,γ(X∧) with
W∧ instead of X∧ have to be introduced as a next generation of weighted Sobolev
spaces, now with two axial weights, one for the inner cone axis direction r ∈ R+ near
zero and one for the corner axis direction t ∈ R+ near zero, and with an additional
control for t→∞.

Starting from differential operators A onW∧×Ξ, Ξ ⊆ Rp open, with a corresponding
edge-corner degeneracy in stretched coordinates (cf. the formulas (32) and (33)
below), we introduce parameter-dependent edge symbols σ∧∧∧(A)(z, ζ) in a pseudo-
differential set-up. Under a natural ellipticity condition, in Section 3.3 we show the
Fredholm property on W∧ between weighted corner Sobolev spaces Ks,γγγ(W∧) (cf.
Definition 2.2) for every (z, ζ) ∈ T ∗Ξ \ 0; here W denotes the stretched manifold
associated with W , and γγγ = (γ, θ) is a pair of weights with γ ∈ R belonging to the
inner cone axis variable r ∈ R+ and θ ∈ R to the corner axis variable t ∈ R+.

More generally, the ellipticity of A suggests additional edge conditions on Y ×
Ξ, satisfying an analogue of the Shapiro-Lopatinskij condition, expressed by an
operator family σ∧∧∧(A)(z, ζ) belonging to a 2 × 2 block matrix A with A as the
upper left corner. In place of Ks,γγγ(W∧) we then have a direct sum of spaces with
Ks−

n+1
2
,θ−n+1

2 (Y ∧) as the second component (here n+ 1 is the codimension of Y in
W ).

As noted before, the new aspect is the control of such an edge ellipticity on Y ∧ up to
∞, connected with edge-corner degenerate operators on wedges of the form W∧×Ξ.
This requires a systematic approach in terms of operator-valued amplitude functions
taking values in the edge algebra on W and with a typical degeneracy in t from the
corner singularity. The surprising observation is that the corner degeneracy from
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t → 0 automatically causes the desired exit effects for t → ∞ when the operators
contain a parameter ζ 6= 0 in degenerate form tζ and an extra weight factor t−µ.

The paper is organised as follows. In Chapter 1 we introduce the notion of a manifold
with edge and conical exit to infinity, including a new variant of weighted edge
Sobolev spaces, cf. Definition 1.8. Moreover, we develop the necessary tools on edge
amplitude functions and the so called edge algebra, here with parameters, cf. [7].

Chapter 2 is devoted to edge symbols of second generation, acting on weighted
Sobolev spaces Ks,γγγ(W∧) on the infinite stretched cone W∧ with base W. The
spaces themselves encode specific information both for t → 0 and t → ∞. The
neighbourhood of t = 0 corresponds to the corner situation of [18], while t → ∞ is
the novelty from the geometry of a manifold with edge and conical exit. One of the
main issues is to see the continuity of edge symbols of second generation in those
spaces up to infinity. This is checked first for the case of typical ‘corner-degenerate’
differential operators. After that we pass to the pseudo-differential case, cf. Theorem
2.14 and Corollary 2.15.

In Chapter 3 we consider (t, τ)-depending amplitude functions a(t, τ, ζ) = ã(tτ, tζ)
that take values in the edge algebra on a compact (stretched) manifold W with edge.
We show that the parameter-dependent ellipticity of ã(τ̃ , ζ̃), (τ̃ , ζ̃) ∈ R1+p, entails
the exit ellipticity of opt(t−µa(t, τ, ζ)) for ζ 6= 0, which is a necessary information for
additional elliptic edge conditions, provided that an analogue of the above mentioned
topological obstruction vanishes. In the final section we return to the behaviour of
corner symbols at infinity and give a proof of Theorem 2.14.

Operators on non-compact manifolds with a control of amplitude functions up to
corresponding ‘exits to infinity’ have been studied by many authors in different con-
texts before. Let us mention here the papers of Nirenberg and Walker [12], Parenti
[13] and Cordes [5]; they emphasize the role of mapping properties in standard
Sobolev spaces globally in the Euclidean space, connected with suitable symbolic
estimates at infinity. By changing the nature of the spaces and the symbols at infin-
ity we may obtain, of course, calculi with completely different properties. However,
this is not the main point of our paper, although, for instance, operators of Fuchs
type on manifolds with conical singularities can be seen from such a point of view.
The aspect that standard Sobolev spaces on cones X∧ at infinity are natural for
manifolds with smooth edges is essential also for our calculus.

1 The edge calculus with parameters

1.1 Manifolds with edge and conical exit

A manifold W with edge Y can be described by its associated stretched manifold W
as follows. W is a C∞ manifold with boundary, and ∂W is an X bundle over Y , for
a compact C∞ manifold X and a C∞ manifold Y . Let π : ∂W → Y be the bundle
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projection. Then W is the image under the map p : W → W defined by p|∂W = π
and p|W\∂W = idW\∂W.
An example is W = X4 × Y (cf. the notation in the introduction) with Y and X
as before; then we have W = R+×X ×Y , and ∂W is just the trivial bundle X ×Y .
We set Wsing := ∂W, Wreg := W \ ∂W.
Let Diffµdeg(W) denote the space of all differential operators on W \ ∂W of order
µ with smooth coefficients, which are locally near Y in the splitting of variables
(r, x, y) ∈ R+ ×X × Ω, Ω j Rq open, of the form

r−µ
∑

j+|α|≤µ

ajα(r, y)(−r∂r)j(rDy)α (2)

with coefficients ajα ∈ C∞
(
R+×Ω,Diffµ−(j+|α|)(X)

)
(with Diffν(X) being the space

of all differential operators of order ν on X with smooth coefficients); in the latter
notation the C∞ manifold X is not necessarily compact. We will call the operators
in Diffµdeg(W) edge-degenerate.
The manifolds in this paper are assumed to be countable unions of compact sets.
Then Diffµdeg(W) is a Fréchet space in a natural way.
The manifolds with edge form a category with natural morphisms. In particular,
isomorphisms W → W̃ can be described on the level of the corresponding stretched
manifolds, namely as diffeomorphisms W → W̃ in the category of C∞ manifolds
with boundary, the restrictions of which to ∂W induce isomorphisms ∂W→ ∂W̃ as
X-bundles over the edges Y and Ỹ , respectively.

Remark 1.1 Let χ : W→ W̃ be an isomorphism between the (stretched) manifolds
W and W̃ with edges Y and Ỹ , respectively. Then the operator push forward under
χint : Wreg → W̃reg induces an isomorphism χ∗ : Diffµdeg(W) −→ Diffµdeg(W̃).

Definition 1.2 A Riemannian metric on intW is said to be a wedge metric if it has,
locally near ∂W in the splitting of variables (r, x, y) ∈ R+ ×X × Ω, the form dr2 +
r2gX(r, y) + gΩ(r, y) for Riemannian metrics gX and gΩ on X and Ω, respectively,
smoothly depending on the variables (up to r = 0).

Let W be a (stretched) compact manifold with edge Y and consider the cylinder
R×W in the splitting variables (t, w). We want to identify R×W with a manifold
with conical exit.

Let W be a manifold with edge Y and W its associated stretched manifold. Then
W ×D, for any C∞ manifold D, is a manifold with edge Y ×D, and W×D is the
associated stretched manifold.

Definition 1.3 A manifold M with edge and conical exit to infinity is defined as a
manifold with edge which contains a submanifold (1,∞)×W for a compact manifold
W with edge such that M \ {(1,∞) ×W} is compact, and (1,∞) ×W is endowed
with a metric of the form dt2 + t2gW for a wedge metric gW on W (cf. Definition
1.2).
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Example 1.4 If W is a manifold with egde, the cylinder R ×W can be endowed
with the structure of a manifold with edge and conical exit for t → ±∞ when we
endow (−∞,−1)×W and (1,∞)×W with the metrics dt2 + t2g±W for wedge metrics
g±W. Let W� denote the corresponding manifold with conical exits; then W� is the
associated stretched manifold.

Far from the edge a manifold in the sense of Definition 1.3 belongs to the category
of C∞ manifolds with conical exit.
A C∞ manifold Γ is called a manifold with conical exit to infinity if there exists a
C∞ submanifold N of codimension 1 such that (1,∞)×N is a C∞ submanifold of
Γ, endowed with a cone metric dt2 + t2gN for some Riemannian metric gN on N .
We then interpret t→∞ as a conical exit. In future, for simplicity, we will assume
that N can be regarded as a submanifold of a closed C∞ manifold Ñ and Γ as a
submanifold of a manifold Γ̃ such that

Γ̃ \ {(1,∞)× Ñ} is compact, (3)

and (1,∞)× Ñ is endowed with a Riemannian metric of the form dt2 + t2g
Ñ

for a
Riemannian metric g

Ñ
on Ñ which restricts to gN on N . Let us say that a manifold

Γ̃ with conical exit is closed if it has the property (3).
By a function which is homogeneous of order ν ∈ R in the large, we understand any
χ ∈ C∞(Γ̃) such that χ∞ := χ|

(1,∞)×Ñ satisfies the relation χ∞(λt, n) = λνχ∞(t, n)

for all (t, n) ∈ (1,∞) × Ñ and all λ ≥ 1. In a similar manner we define the
homogeneity of order ν in the large for functions of C∞(Γ).
On a C∞ manifold Γ̃ with conical exit to infinity satisfying the condition (3), we
have a natural notion of weighted Sobolev spaces Hs;δ(Γ̃), s, δ ∈ R, cf. [17]. In order
to define analogous spaces on Γ, we specify a kind of cut-off functions. We say that
an element χ ∈ C∞(Γ) is a conical cut-off function on Γ if it is homogeneous of order
0 in the large and if both suppχ ∩ (Γ \ {(1,∞) × N}) and suppχ ∩ ({1} × N) are
compact sets.

Definition 1.5 Let Hs;δ
loc(Γ) denote the subspace of all u ∈ Hs

loc(Γ) such that for
every conical cut-off function χ on Γ we have χu ∈ Hs;δ(Γ̃) (the latter function is
interpreted as the extension by zero of χu from Γ to Γ̃).

Remark 1.6 Let W be a manifold with conical exit to infinity in the sense of Defi-
nition 1.3. Then W \ Y and Y are C∞ manifolds with conical exit.

The stretched manifold W associated with a manifoldW with edge Y and conical exit
to infinity in the sense of Definition 1.3 has similar natural properties as stretched
manifolds in general. W is a C∞ manifold with boundary ∂W and conical exit to
infinity, ∂W is an X bundle over Y , and we have a canonical projection W→W as
explained in Section 1.1. However, also Y itself is a closed C∞ manifold with exit
in the usual sense.
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Remark 1.7 Let X be a closed C∞ manifold; then similarly as in Example 1.4 we
have the manifoldf X� modelled on R × X and endowed with a metric dt2 + t2gX
for |t| > 1, where gX is a Riemannian metric for every µ ∈ Ron X. We then have
the weighted Sobolev spaces Hs;δ(X�). We will apply this to the case X = 2W for a
compact (stretched) manifold W with edge.

1.2 Weighted Sobolev spaces

In the following consideration we fix an Rµ(λ) ∈ Lµcl(X; Rl) which is parameter-
dependent elliptic of order µ ∈ R that induces isomorphisms Rµ(λ) : Hs(X) →
Hs−µ(X) for all λ ∈ Rl and all s ∈ R. As is well known, such operator families
for every µ ∈ R, exist. In the following definition we employ the Mellin transform
Mf(v) :=

∫∞
0 rv−1f(r) dr, first for f ∈ C∞0 (R+) (which gives us an entire function

in v ∈ C) and then for other distributions (also vector-valued ones). Then v will
vary on a weight line Γβ = {v ∈ C : Re v = β}.
In this paper by a cut-off function on the half-axis we understand any ω(r) ∈
C∞0 (R+) that is equal to 1 in a neighbourhood of r = 0. Let us now fix some
notation on weighted spaces on a (stretched) cone with base X.

The space Hs,γ(X∧) for s, γ ∈ R is defined as the completion of C∞0 (X∧) with

respect to the norm
{

1
2πi

∫
Γn+1

2 −γ

‖Rs(Im v)Mf(v)‖2L2(X) dv
} 1

2 for n = dimX and

for any choice of an order reducing family Rs(λ) ∈ Lscl(X; R) in the above sense.

The space Hs
cone(X

∧) for s ∈ R is defined as the subspace of all f ∈ Hs
loc(R ×

X)|R+×X , such that for every cut-off function ω(r) on R+ and every ϕ ∈ C∞0 (X)
supported in a coordinate neighbourhood U in X we have (1−ω)ϕf ∈ χ∗Hs(Rn+1),
where χ : R+ × U → R+ × V for any open set V ⊂ Sn has the form idR+ × χ1 for a
diffeomorphism χ1 : U → V .

Finally, we set

Ks,γ(X∧) := {ωf + (1− ω)g : f ∈ Hs,γ(X∧), g ∈ Hs
cone(X

∧)}

for any cut-off function ω(r), and Sγ(X∧)ε :=
⋂
k∈N〈r〉−kK

k,γ+ε− 1
k+1 (X∧) for any

ε > 0.

Note that there is another equivalent definition of the spaces Hs,γ(X∧) in terms of
a mixture between the Mellin and the Fourier transform. Namely, Hs,γ(R+×Rn) is
the completion of the space C∞0 (R+ × Rn) with respect to the norm

‖u‖Hs,γ(R+×Rn) :=
{ 1

2πi

∫
Γn+1

2 −γ

∫
Rn

〈v, ξ〉2s|(Mr→vFx→ξu)(v, ξ)|2 dv dξ
} 1

2
. (4)

Moreover, if X is a closed compact C∞ manifold, {U1, . . . , UN} an open covering by
coordinate neighourhoods, {ϕ1, . . . , ϕN} a subordinate partition of unity, χj : Uj →
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Rn a system of charts, the expression
{∑N

j=1 ‖(ϕjf)(r, χ−1
j (x))‖2Hs,γ(R+×Rn)

} 1
2 is a

norm equivalent to (4).

Our next objective is to introduce a class of weighted Sobolev spaces on a manifold
with edge and conical exit. The notion is based on the so-called abstract edge
Sobolev spaces on Rq, modelled by means of a Hilbert space E endowed with a
group κ = {κλ}λ∈R+ of isomorphisms κλ : E → E, λ ∈ R+, which is strongly
continuous in λ and satisfies κλκλ′ = κλλ′ for all λ, λ′ ∈ R+ (in this case we simply
say that E is endowed with a group action). Then the space Ws(Rq, E) for s ∈ R is
defined as the completion of S(Rq, E) (the Schwartz space of E-valued functions in
Rq) with respect to the norm{∫

〈η〉2s‖κ−1
〈η〉û(η)‖

2
E dη

} 1
2

, (5)

with û(η) being the Fourier transform of u in Rq. Note that when we replace 〈η〉
in the expression (5) by any other strictly positive function p(η) which satisfies an
estimate c1〈η〉 ≤ p(η) ≤ c2〈η〉 for certain constants c1 ≤ c2, we obtain an equivalent
norm. Below we use, for instance, p(η) = [η] which is definded as any strictly positive
C∞ function satisfying [η] = |η| for |η| ≥ c for some constant c > 0.
As an example (and for purposes below) observe that, when we set E = Hs(Rn+1

x̃ )
with (κλv)(x̃) = λ

n+1
2 v(λx̃), λ ∈ R+, we have Hs(Rn+1 × Rq) =Ws(Rq,Hs(Rn+1

x̃ ))
for every s ∈ R.
Another example are the weighted edge Sobolev spaces based on E = Ks,γ(X∧) with
the group action κλu(r, x) = λ

n+1
2 u(λr, x), λ ∈ R+. In this case we set

Ws,γ(X∧ × Rq) :=Ws(Rq,Ks,γ(X∧)). (6)

Observe that for W∞,γ(X∧ × Rq) :=
⋂
s∈RWs,γ(X∧ × Rq) we have

ω(r)rβW∞,γ(X∧ × Rq) = ω(r)W∞,γ+β(X∧ × Rq)

for every cut-off function ω; however, a similar relation for Ws,γ(X∧×Rq) for finite
s is not true.

Let W be a (stretched) manifold with edge Y and assume that W is compact. Ac-
cording to the definition of W, there is a finite open covering of W by coordinate
neighbourhoods U which do not intersect ∂W and (relatively) open sets V diffeo-
morphic to [0, 1) × X × Ω 3 (r, x, y) for some open Ω ⊂ Rq, q = dimY , where X
is the base of the local model cone for W near ∂W. We then define the scale of
weighted Sobolev spaces

Ws,γ(W) (7)

as the set of all u ∈ Hs
loc(Wreg) such that locally near ∂W in the splitting of coordi-

nates (r, x, y) the function ωu belongs to Ws,γ(X∧ × Rq) for any cut-off function ω
which is equal to 1 near ∂W and zero outside a small neighbourhood of ∂W.
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A slight modification of the global definition allows us to define spaces of the kind
Ws,γ(Rp ×W) for any p ∈ N and a compact (stretched) manifold W with edge.

We need weighted edge Sobolev spaces also on other non-compact manifolds with
edge. In order to avoid lenghtly generalities, we content ourselves with the case
W∧ = R+ ×W 3 (t, ·) for a compact (stretched) manifold W with edge. If (ϕι)ι∈N
is a (countable) locally finite partition of unity on R, then we form the space

Ws,γ
loc (R+ ×W) (8)

to be the set of all sums u =
∑

ι∈N ϕιuι for arbitrary uι ∈ Ws,γ(R ×W) supported
in R+ with respect to r. Moreover, let

Ws,γ
comp(R+ ×W) (9)

denote the subspace of elements of (8) of compact support.

We now pass to the definition of spaces on a manifold W� as in Example 1.4, for
the case that ∂W is a trivial X bundle over the edge Y ; the simple generalisation to
arbitrary W is left to the reader. Since W is a C∞ manifold with boundary, there is a
collar neighbourhood V of ∂W, V ∼= R+×∂W. Let us choose a partition of unity on
W of the form (ω, (1−ω)) for a function ω ∈ C∞(W) which is equal to 1 near ∂W and
supported in ∂W×

[
0, 2

3

)
. By notation the manifold W� is modelled on a cylinder

such that there is a diffeomorphism ϑ : R×W→W� which is compatible with the
dilation, i.e. ϑ(λt,m) = λϑ(t,m) for all |t| ≥ C, λ ≥ 1, where the multiplication
on the right means the dilation on the cones (1,∞) ×W and (−∞,−1) ×W in a
natural way. Let {G1, . . . , GN} be a covering of Y by coordinate neighbourhoods
(as Y is compact) and let {ϕ1, . . . , ϕN} be a subordinate partition of unity.
Let Vj,reg ⊂ V denote the preimages of R+ ×X ×Gj under V ∼= R+ × ∂W (∂W =
X × Y ) and choose corresponding ‘charts’ νj : Vj,reg → R+ × X × Rq defined as
the composition of Vj,reg → R+ × X × Gj with R+ × X × Gj → R+ × X × Rq,
(r, x, ỹ) 7→ (r, x, αj(ỹ)), for a corresponding chart αj : Gj → Rq on Y . Moreover,
let us form χj : R × Vj,reg → R × R+ × X × Rq by χj(t, w) := (t, νj(w)). Finally,
consider the map β : R× R+ ×X × Rq → R× R+ ×X × Rq defined by

β(t, r, x, y) := (t, [t]r, x, [t]y). (10)

We now turn to a crucial definition of weighted edge Sobolev spaces on the (stretched)
manifold W� with edge and exit to infinity. Similarly as in Remark 1.7, the manifold
W� is diffeomorphic to R ×W. Let 2W denote the double of W consisting of two
copies W± of W, glued together along the common boundary ∂W = Wsing (usually
we identify W with W+). Since 2W is a closed compact C∞ manifold, we have the
spaces Hs,δ((2W)�), cf. Remark 1.7. Distributions u on (Wreg)� that vanish near
(Wsing)� will tacitly be regarded as distributions on (2W)� as the zero extension of
u to (W−)�. In particular, if ω is a cut-off function on W as before (i.e., ω ≡ 1 near
Wsing), then 1−ω, defined on W and vanishing near Wsing, is also extended by zero
to 2W. The functions ω, (1−ω), etc., will also be regarded as functions on W� and
(2W)�, respectively.
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Definition 1.8 The space Ws,γ;δ(W�) for s, γ, δ ∈ R is defined as the restriction to
W� of the completion of C∞0 (R×Wreg) with respect to the norm{
‖(1− ω)u

∥∥2

Hs;δ((2W)�)
+

N∑
j=1

∥∥ωϕju ◦ χ−1
j ◦ β

−1‖2〈t,ỹ〉−δWs(Rt×Rq
ỹ ,Ks,γ(R+,r̃×X))

} 1
2

.

1.3 Edge amplitude functions

We now establish some tools on pseudo-differential operators on a compact (stretched)
manifold W with edge Y , here in parameter-dependent form. Concerning the basics
we refer to the monograph [17].
The main information is coming from edge-degenerate symbols of the form

r−µb̃(r, x, y, ρ̃, ξ, η̃, λ̃)|ρ̃=rρ,η̃=rη,λ̃=rλ (11)

with symbols b̃(r, x, y, ρ̃, ξ, η̃, λ̃) ∈ Sµcl(R+ × Σ × Ω × R1+n+q+l

ρ̃,ξ,η̃,λ̃
), the Hörmander’s

space of classical symbols in the covariables (ρ̃, ξ, η̃, λ̃), where Σ ⊂ Rn, Ω ⊂ Rq

are open sets, n = dimX, q = dimY . The covariable λ ∈ Rl plays the role of a
parameter. Note that the differential operators of the form (2) have local symbols
of the form (11) (where l = 0); here x ∈ Σ corresponds to local coordinates on X.
With symbols (11) we can associate families of pseudo-differential operators globally
on X by forming

r−µp̃(r, y, ρ̃, η̃, λ̃) = r−µ
M∑
k=1

δk(κ−1
k )∗ opx(b̃k)(r, y, %̃, η̃, λ̃)ϑk (12)

where {b̃k}k=1,...,M is a system of symbols of the kind (11) (up to the weight factor
r−µ), corresponding to a system of charts κk : Xk → Σ on X, with {Xk}k=1,...,M be-
ing an open covering, {δ1, . . . , δM} a subordinate partition of unity, and {ϑ1, . . . , ϑM}
a set of functions ϑk ∈ C∞0 (Xk) such that ϑk ≡ 1 on supp δk, k = 1, . . . ,M . More-
over, opx(b̃) denotes the pseudo-differential action with respect to the Fourier trans-
form in Rn 3 x.
If X is a C∞ manifold (not necessarily compact), Lµcl(X; Rm) will denote the space
of all classical pseudo-differential operators A(ν) on X with parameters ν ∈ Rm (the
local amplitude functions b(x, ξ, ν) with the covariables (ξ, ν)), while L−∞(X; Rm) =
S(Rm, L−∞(X)). Note that Lµcl(X; Rm) is a Fréchet space in a natural way.
For the operator function p̃ in (12) we then have

p̃(r, y, ρ̃, η̃, λ̃) ∈ C∞(R+ × Ω, Lµcl(X; R1+q+l

ρ̃,η̃,λ̃
)). (13)

We call the operator family p̃(r, y, ρ̃, η̃, λ̃) parameter-dependent elliptic if the ho-
mogeneous principal part of the local amplitude functions bk do not vanish for
(ρ̃, η̃, λ̃) 6= 0 up to r = 0 (we tacitly assume the invariance under the symbol push
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forwards belonging to coordinate diffeomorphisms for the manifold X). An example
is the system of local amplitude functions

r−µ〈rρ, ξ, rη, rλ〉µ. (14)

An essential aspect of the edge calculus is that pseudo-differential operators with
respect to r and y are defined by means of certain adequate quantisations, mainly
the Mellin quantisation with respect to r. We define the Mellin pseudo-differential
operator of weight γ ∈ R by

opγM (f)u(r) =
∫ ∞∫

0

( r
r′

)−( 1
2
−γ+iρ)

f
(
r, r′,

1
2
− γ + iρ

)
u(r′)

dr′

r′
d̄ρ,

where f(r, r′, v) is a ‘double’ Mellin symbol depending on (r, r′) ∈ R+ × R+ and
the covariable v ∈ Γ 1

2
−γ . More precisely, the imaginary part of v is regarded as

the covariable; in this sense we also use a notation like Sµcl(R+ × R+ × Γ 1
2
−γ) for

the corresponding space of scalar symbols; in general, our symbols will be operator-
valued. More generally, we will employ Mellin symbols of the kind

f(r, r′, v, ν) ∈ C∞(R+ × R+, L
µ
cl(X; Γ 1

2
−γ × Rm))

with covariables (v, ν). As before v ∈ C varies on Γ 1
2
−γ , i.e., the covariable itself

is (Re v, ν) ∈ R1+m. In the following, if E is a Fréchet space, U ⊂ C an open set,
then A(U,E) denotes the space of all holomorphic functions in U with values in E
(note that A(U,E) = A(U)⊗̂πE where ⊗̂π means the (completed) projective tensor
product).
Let Lµcl(X; C×Rm) denote the subspace of all h(v, ν) ∈ A(Cv, L

µ
cl(X; Rm)) such that

h(β + iρ, ν) ∈ Lµcl(X; R1+m
ρ,ν ) for every β ∈ R, uniformly in intervals c ≤ β ≤ c′ for

arbitrary c ≤ c′. We will employ the following Mellin quantisation result, combined
with a so called kernel cut-off procedure.

Theorem 1.9 Let p̃(r, y, ρ̃, η̃, λ̃) be as in the formula (13), with y varying in an open
set Ω ⊂ Rq, and let

p(r, y, ρ, η, λ) := p̃(r, y, rρ, rη, rλ).

Then there exists h̃(r, y, v, η̃, λ̃) ∈ C∞(R+ × Ω, Lµcl(X; C× Rq+l

η̃,λ̃
)) such that

h(r, y, v, η, λ) := h̃(r, y, v, rη, rλ)

satisfies

opr(p)(y, η, λ) = opβM (h)(y, η, λ) mod C∞(Ω, L−∞(X∧; Rq+l
η,λ )) (15)

for every β ∈ R, and h̃ is unique mod C∞(R+ × Ω, L−∞(X; C × Rq+l

η̃,λ̃
)) (both

sides of (15) are interpreted as pseudo-differential families on X, regarded as maps
C∞0 (X∧)→ C∞(X∧)).
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A proof of this theorem may be found in [8], see also [7] for the case with parameters.
From the construction we have the following observation:

Remark 1.10 For p0(r, y, ρ, η, λ) := p̃(0, y, rρ, rη, rλ), h0(r, y, v, η, λ) := h̃(0, y, v,
rη, rλ), we have opr(p0)(y, η, λ) = opβM (h0)(y, η, λ) mod C∞(Ω, L−∞(X∧; Rq+l

η,λ )) for

every β ∈ R. For κδu(r, x) := δ
n+1

2 u(δr, x), δ ∈ R+, we obtain the homogeneity

opr(p0)(y, δη, δλ) = κδopr(p0)(y, η, λ)κ−1
δ ,

opβM (h0)(y, δη, δλ) = κδopβM (h0)(y, η, λ)κ−1
δ

for all δ ∈ R+.

Let us now choose cut-off functions ω1, ω2, ω3 on R+ such that

ω2 ≡ 1 on supp ω1, ω1 ≡ 1 on supp ω3, (16)

and cut-off functions σ and σ̃. We then form the family of operators

a(y, η, λ) := σ(r){r−µω1(r[η, λ])op
γ−n

2
M (h)(y, η, λ)ω2(r′[η, λ])

+ r−µ(1− ω1(r[η, λ]))opr(p)(y, η, λ)(1− ω3(r′[η, λ]))}σ̃(r′);
(17)

a(y, η, λ) is an operator-valued symbol in the sense of the following definition.

Definition 1.11 Let E and Ẽ be Hilbert spaces with group actions {κδ}δ∈R+ and
{κ̃δ}δ∈R+, respectively. Moreover, let µ ∈ R and U ⊂ Rp an open set. Then Sµ(U ×
Rq;E, Ẽ) is defined as the subset of all a(y, η) ∈ C∞(U × Rq,L(E, Ẽ)) such that

sup
(y,η)∈K×Rq

〈ξ〉−µ+|β|‖κ̃−1
〈η〉{D

α
yD

β
ηa(y, η)}κ〈η〉‖L(E,Ẽ)

is finite for all (y, η) ∈ K × Rq for every K b U and all multi-indices α ∈ Np,
β ∈ Nq.

The dimensions p and q in the latter definition are independent; so we can replace
the covariable by (η, λ) ∈ Rq+l.

As is known from the local pseudo-differential calculus on manifolds with edge, we
have

a(y, η, λ) ∈ Sµ(Ω× Rq+l
η,λ ;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) (18)

for every s ∈ R. Recall that the group action on the spaces Ks,γ(X) has been defined
in connection with the edge Sobolev spaces (6).
In the following discussion, to make the operators more concrete, we can imagine
local symbols (11) to be of the form (14).

Proposition 1.12 Let p̃(η̃, λ̃) ∈ Lµcl(X; Rq+l), and set

a(η, λ) := r−µ(1− ω1(r[η, λ])) opr(p)(η, λ)(1− ω3(r′[η, λ]))
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for p(r, η, λ) := p̃(r, rη, rλ). Then for every fixed λ ∈ Rl \ {0} we have

a(η, λ) ∈ Sµcl(R
q
η;Ks,γ(X∧),Ks−µ,γ−µ(X∧)) (19)

for every s, γ ∈ R. Moreover, if p̃j , j ∈ N, is a sequence tending to zero in
Lµcl(X; Rq+l), the associated symbols aj(η, λ), j ∈ N, tend to zero in Sµcl(R

q
η; Ks,γ(X∧),

Ks−µ,γ−µ(X∧)) for every fixed λ ∈ Rl \ {0} and s, γ ∈ R.

Proof. In [6] it is shown that when χ(η, λ) is an excision function in (η, λ) ∈ Rq+l

(i.e., C∞ and χ(η, λ) = 0 for |η, λ| < c̃, χ(η, λ) = 1 for |η, λ| > c for some 0 < c̃ < c),
the function χ(η, λ)a(η, λ) belongs to Sµ(Rq+l

η,λ ;Ks,γ(X∧), Ks−µ,γ−µ(X∧)). Since
p̃(η̃, λ̃) is independent of r, it is even classical in (η, λ). The choice of χ is not
essential. For every fixed λ it follows that χ(η, λ)a(η, λ) is a classical symbol of η
alone. Moreover, for λ 6= 0 we have |λ| ≥ c for some c > 0 and hence |η, λ| ≥ c for
all η ∈ Rq. Thus χ(η, λ)a(η, λ) is equal to a(η, λ) for our fixed λ 6= 0. This gives us
the relation (19). The second assertion of Proposition 1.12 is also a consequence of
[6].

For our calculus we need other essential ingredients, namely the so called smoothing
Mellin plus Green operators which we first explain on the level of corresponding
(operator-valued) amplitude functions. Let us first specify Definition 1.11 to classical
operator-valued symbols.

An element a(y, η) ∈ Sµ(U×Rq;E, Ẽ) is said to be classical, if there are homogeneous
components

a(µ−j)(y, η) ∈ C∞(U × (Rq \ {0}),L(E, Ẽ))

(i.e., a(µ−j)(y, δη) = δµ−j κ̃δa(µ−j)(y, η)κ
−1
δ for all δ ∈ R+), j ∈ N, such that for any

excision function χ(η) we have a(y, η) − χ(η)
∑N

j=0 a(µ−j)(y, η) ∈ Sµ−(N+1)(U ×
Rq;E, Ẽ) for every N ∈ N. Let Sµcl(U × Rq;E, Ẽ) denote the space of classi-
cal symbols. If we talk about classical or non-classical symbols we also write
‘(cl)’ as subscript. All notions in connection with operator-valued symbols have
a straightforward extension to the case when E or Ẽ are Fréchet spaces with
group action. That means, e.g., for Ẽ that this space is written as a projective
limit of Hilbert spaces lim←−k∈N Ẽ

k with continuous embeddings Ẽk+1 ↪→ Ẽk ↪→
. . . ↪→ Ẽ0, where Ẽ0 is endowed with a group action which restricts to group
actions on Ẽk for every k. We then say that the Fréchet space Ẽ is endowed
with a group action. Now, if E is a Hilbert space, Ẽ a Fréchet space, both
equipped with group actions, we have the spaces Sµ(cl)(U × Rq;E, Ẽk) with con-

tinuous embeddings Sµ(cl)(U ×Rq;E, Ẽk+1) ↪→ Sµ(cl)(U ×Rq;E, Ẽk) for all k, and we

set Sµ(cl)(U × Rq;E, Ẽ) =
⋂
k∈N S

µ
(cl)(U × Rq;E, Ẽk).

Concerning the definition when both E and Ẽ are Fréchet spaces with group action,
cf. [17].
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Let M−∞(X; Γβ × Rq) for any β ∈ R denote the space of all f(v, η) ∈ S(Γβ ×
Rq, L−∞(X)) such that there is an ε > 0 (depending on f) and an h(v, η) ∈ A({β−
ε < Re v < β + ε},S(Rq, L−∞(X)) such that h|Γβ×Rq = f and h(γ + iρ, η) ∈
S(Γβ×Rq, L−∞(X)) for every γ ∈ (β− ε, β+ ε), uniformly in compact subintervals.
The subspace M−∞(X; Γβ × Rq)ε of all f ∈ M−∞(X; Γβ × Rq) with fixed ε > 0 is
a Fréchet space, and M−∞(X; Γβ ×Rq) itself is the union over all ε. This allows us
to speak about C∞ functions with values in M−∞(X; Γβ ×Rq). The dimension q is
arbitrary; so we can apply this for (η, λ) ∈ Rq+l in place of η ∈ Rq.
Let

f(y, v) ∈ C∞
(
Ω,M−∞(

X; Γn+1
2
−γ

))
, (20)

Ω ⊆ Rq open, and form the operator function

m(y, η, λ) := r−µ+jω̃1(r[η, λ])op
γ−n

2
M (f)(y)(η, λ)αω̃2(r′[η, λ]), (21)

α ∈ Nq+l, where ω̃1(r) and ω̃2(r) are arbitrary cut-off functions. Then we have

m(y, η, λ) ∈ Sµ−j+|α|cl (Ω× Rq+l;E, Ẽ) (22)

for E = Ks,γ(X∧), Ẽ = K∞,γ−µ+j(X∧), s ∈ R.

Symbols of the type (21) for j = 0 and α = 0 will be called smoothing Mellin
symbols of the edge calculus, while for |α| ≤ j and j > 0 we obtain examples of so
called Green symbols. The definition of the latter kind of symbols is as follows.

Definition 1.13 A family of continuous operators g(y, η, λ) ∈ C∞(Ω×Rq+l,L(E, Ẽ))
for Ω ⊂ Rq open, E = Ks,γ(X∧) ⊕ Cj−, Ẽ = K∞,δ(X∧) ⊕ Cj+ with certain j± ∈ N
is called a Green symbol of order µ, if

g0(y, η, λ) := diag(1, 〈η, λ〉−
n+1

2 )g(y, η, λ) diag(1, 〈η, λ〉
n+1

2 )

has the properties

g0(y, η, λ) ∈ Sµcl(Ω× Rq+l;Ks,γ(X∧)⊕ Cj− ,Sδ(X∧)ε ⊕ Cj+)

and
g∗0(y, η, λ) ∈ Sµcl(Ω× Rq+l;Ks,−δ(X∧)⊕ Cj+ ,S−γ(X∧)ε ⊕ Cj−)

for some ε > 0 and all s ∈ R. Here g∗0 means (g0u, v)K0,0⊕Cj+ = (u, g∗0v)K0,0⊕Cj−

pointwise (in the sense of formal adjoints) for all u ∈ C∞0 (X∧)⊕Cj−, v ∈ C∞0 (X∧)⊕
Cj+.

Local edge amplitude functions of the calculus with edge Y of dimension q and
including parameters λ ∈ Rk will have the form

diag(a+m, 0)(y, η, λ) + g(y, η, λ), (23)
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where a(y, η, λ) is of the form (17), moreover

m(y, η, λ) = r−µω1(r[η, λ]) op
γ−n

2
M (f)(y)ω2(r′[η, λ]) (24)

is given in terms of a smoothing Mellin symbol (20), and g(y, η, λ) is a 2× 2 block
matrix Green symbol as in Definition 1.13. The cut-off functions ω1, ω2 in (24) are
arbitrary; the specific choice does not change (24) up to a Green symbol of the type
of an upper left corner. Therefore, instead of ω̃1, ω̃2 in (21), we simply take the same
cut-off functions as in (17).

Theorem 1.14 The operator-valued amplitude function a(y, η, λ) given by (17) ad-
mits a representation of the form

a(y, η, λ) = σ(r){r−µω1(r)op
γ−n

2
M (h)(y, η, λ)ω2(r′)

+ r−µ(1− ω1(r))opr(p)(y, η, λ)(1− ω3(r′))}σ̃(r′) + g(y, η, λ),

where g(y, η, λ) is a Green symbol in the sense of Definition 1.13 with j− = j+ = 0
and ε =∞.

A proof of this result may be found in [10].

1.4 The edge algebra

In this section we prepare some necessary material on (pseudo-)differential operators
on a (stretched) compact manifolfd W with edge Y . The calculus consists of 2 × 2
block matrix operators of the form

A :Ws,γ(W)⊕Hs−n+1
2 (Y, J−) −→Ws−µ,γ−µ(W)⊕Hs−n+1

2
−µ(Y ; J+) (25)

for an order µ ∈ R, a weight γ ∈ R and J−, J+ ∈ Vect(Y ) (here Vect(·) denotes
the set of all smooth complex vector bundles over the space in the brackets). The
global Sobolev spaces Ws,γ(W) are defined in Section 1.2, cf. the formula (7), and
Hs(Y, J) for J ∈ Vect(Y ) denotes the standard Sobolev space of smoothness s of
distributional sections in J .

The operators (25) are connected with weight and bundle data, denoted by

g = (γ, γ − µ), v = (J−, J+). (26)

Those are assumed to be known and fixed in any concrete case. We also could
consider operators that refer to distributional sections in bundles E,F ∈ Vect(W);
the corresponding generalisation is straightforward and will not be discussed here.

We are interested in operators (25) depending on an additional parameter λ ∈ Rl

that is formally involved in the local definition as an extra edge covariable. In
addition we have to define the class of smoothing parameter-dependent operators.
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In the spacesW0,0(W)⊕H0(Y, J), J ∈ Vect(Y ), we fix natural scalar products (from
corresponding L2 spaces, with measures belonging to fixed Riemannian metrics on
the manifolds and Hermitian metrics in the bundles). We then have non-degenerate
sesquilinear pairings

(·, ·) : {Ws,γ(W)⊕Hs(Y, J)} × {W−s,−γ(W)⊕H−s(Y, J)} −→ C. (27)

Now Y−∞(W) (for the fixed data (26)) is defined to be the set of all operators G
which are continuous in the sense G : Ws,γ(W) ⊕ Hs′(Y, J−) −→ W∞,γ−µ+ε(W) ⊕
H∞(Y, J+) for some ε = ε(G) > 0, for all s, s′ ∈ R, such that the formal adjoint G∗
with respect to the pairing (27) induces continuous operators G∗ : Ws,−γ+µ(W) ⊕
Hs′(Y, J+) −→W∞,−γ+ε(W)⊕H∞(Y, J−) for all s, s′ ∈ R. If we want to indicate ε
we write for the moment Y−∞(W)ε which is a Fréchet space in a natural way. We
then set Y−∞(W; Rl) :=

⋃
ε>0 S(Rl,Y−∞(W)ε), which is the space of all smoothing

parameter-dependent edge operators associated with (26).

Definition 1.15 The space Yµ(W; Rl) (belonging to weight and bundle data (26))
is defined to be the set of all operator families of the form

A(λ) =
L∑
j=1

diag(σϕj , ϕj)Aj(λ) diag(σ̃ψj , ψj)

+ diag(1− σ, 0)Aint(λ) diag(1− ˜̃σ, 0) + C(λ)

with the following ingredients:

(i) σ, σ̃, ˜̃σ are functions in C∞(W) supported in a collar neighbourhood of ∂W
and equal to 1 near ∂W, σ̃ ≡ 1 on suppσ, σ ≡ 1 on supp ˜̃σ; furthermore,
ϕj , ψj are elements of C∞0 (Vj) where (Vj)j=1,...,L is a system of neighbourhoods
Vj
∼= [0, 1) × X × Ωj on W, Ωj ⊆ Rq open, and the sets Ωj correspond to

charts on Y belonging to an open covering of Y by coordinate neighbourhoods;
moreover,

∑L
j=1 ϕj = 1 in a neighbourhood of ∂W and ψj ≡ 1 on suppϕj for

all j;

(ii) Aj(λ) = (χ−1
j )∗Op(aj)(λ), where (χ−1

j )∗ is the operator push forward under
χ−1
j : [0, 1)×X×Ωj → Vj, with the pseudo-differential action Op(·) := Opy(·)

in y ∈ Ωj, and aj(y, η, λ) an amplitude function of the form

aj(y, η, λ) := diag(aj(y, η, λ) +mj(y, η, λ), 0) + gj(y, η, λ), (28)

where aj(y, η, λ) is of the form (17), mj(y, η, λ) of the form (21) for j = 0,
α = 0, and gj(y, η, λ) is a Green symbol in the sense of Definition 1.13 for
δ = γ−µ, with the fibre dimensions j± of J± (the operator push forwards also
take into account the transition maps of the bundle);

(iii) Aint(λ) ∈ Lµcl(int W; Rl ) and C(λ) ∈ Y−∞(W; Rl).
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As a consequence of the definition, the operators A(λ) are continuous in the sense
of (25) for every λ ∈ Rl, s ∈ R.

The principal symbolic structure

σ(A) = (σψ(A), σ∧(A))

of A = (Aij)i,j=1,2 ∈ Yµ(W; Rl) consists of the (parameter-dependent) homogeneous
principal symbol σψ(A11) of A11 of order µ as a function on T ∗(Wreg) × Rl \ 0
(using that A11 ∈ Lµcl(Wreg; Rl)), σψ(A) := σψ(A11) and the parameter-dependent
homogeneous principal edge symbol is a family of continuous operators

σ∧(A)(y, η, λ) : Ks,γ(X∧)⊕ J−,y −→ Ks−µ,γ−µ(X∧)⊕ J+,y (29)

for all s ∈ R, parametrised by (y, η, λ) ∈ T ∗Y × Rl \ 0.

The homogeneity of σψ(A) is as usual, while the homogeneity of σ∧(A) means

σ∧(A)(y, δη, δλ) = δµ diag(κδ, 0)σ∧(A)(y, η, λ) diag(κ−1
δ , 0)

for all δ ∈ R+ and (η, λ) 6= 0.

Theorem 1.16 Let A ∈ Yµ(W; Rl), B ∈ Yν(W; Rl) (with weight and bundle data
such that the composition makes sense) implies AB ∈ Yµ+ν(W; Rl), and we have
σ(AB) = σ(A)σ(B) (in the sense of componentwise composition).

The proof of this result is similar to that of the corresponding composition property
in the case without parameters, see, e.g., [10] which also explains the role of Theorem
1.14.

Let us set Yµ;0(W; Rl) := Yµ(W; Rl) and Yµ;−1(W; Rl) := {A ∈ Yµ(W; Rl) : σ(A) =
0}. The elements A−1 ∈ Yµ;−1(W; Rl) have again a pair of principal symbols
σ(A−1) = (σψ(A−1), σ∧(A−1)), now of order µ− 1. More generally, for every k ∈ N
we can define Yµ;−(k+1)(W; Rl) to be the set of all A−(k+1) ∈ Yµ;−k(W; Rl) such that
σψ(A−(k+1)) = 0 and σ∧(A−(k+1)) = 0.

Remark 1.17 (i) A ∈ Yµ;−1(W; Rl) implies that the operator (25) is compact for
every λ ∈ Rl, s ∈ R;

(ii) let A ∈ Yµ;−k(W; Rl), B ∈ Yν;−m(W; Rl) satisfy the conditions of Theorem
1.16. Then we have AB ∈ Yµ+ν;−(k+m)(W; Rl) and σ(AB) = σ(A)σ(B);

(iii) let Aj ∈ Yµ;−j(W; Rl), j ∈ N, be an arbitrary sequence, where the weight strip
with ε > 0 that is involved in the smoothing Mellin symbols and in the Green
symbols is independent of j (cf. the formulas (20), (24) and Definition 1.13).
Then there is A ∈ Yµ(W; Rl) such that A−

∑N
j=1Aj ∈ Yµ;−(N+1)(W; Rl) for

every N ∈ N, and A is unique modY−∞(W; Rl).
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2 Operators near exits to infinity

2.1 Sobolev spaces on a cone with singular cross section

In this section we study a new scale of Sobolev spaces on an infinite stretched cone
R+ ×W for a compact (stretched) manifold W with edge Y , with multiple weights
coming from the interior model cone half-axis R+ 3 r of W and the axial variable
t ∈ R+ on our infinite cone. In this paper a cut-off function on R+ is any real-valued
ω(r) ∈ C∞0 (R+) which is equal to 1 for 0 ≤ r < ε for some ε > 0.
Let us first formulate a kind of weighted L2 spaces on the local wedge R+×X ×Rq

for a closed compact C∞ manifold X. Let us set K0,γ(X∧) := r−
n
2 (ωrγ + (1 −

ω))L2(R+×X) for some cut-off function ω(r), γ ∈ R, with L2(R+×X) being taken
with the measure drdx and dx is associated with a Riemannian metric on X. On the
space K0,γ(X∧) we fix the group action {κλ}λ∈R+ , given by κλu(r, x) = λ

n+1
2 u(λr, x),

λ ∈ R+ and form, according to the general definition of Section 1.3, the edge Sobolev
space W0(Rq,K0,γ(X∧)).

Now for W we choose a finite covering of neighbourhoods {U1, . . . , UL, UL+1, . . . , UN}
such that Uj ∩ ∂W 6= ∅ for 1 ≤ j ≤ L, Uj ∩ ∂W = ∅ for L+ 1 ≤ j ≤ N . Moreover,
let {ϕ1, . . . , ϕN} be a subordinate partition of unity. Let

χj : Uj → R+ ×X × Rq, 1 ≤ j ≤ L, χj : Uj → R1+n+q, L+ 1 ≤ j ≤ N

be charts on W (the notation ‘chart’ for 1 ≤ j ≤ L is used here in a generalised
sense). Then we define the space W0,γ(W) as the space of all sums u =

∑N
j=1 ϕjuj

such that uj ∈ χ∗jW0(Rq,K0,γ(X∧)) for j = 1, . . . , L, and uj ∈ χ∗jL2(R1+n+q) for
j = L+ 1, . . . , N . Let us endow the space W0,γ(W) with a scalar product

(u, v)W0,γ(W) :=
L∑
j=1

(fj , gj)W0(Rq ,K0,γ(X∧)) +
N∑

j=L+1

(fj , gj)L2(R1+n+q) (30)

for fj := (χ−1
j )∗ϕjuj and gj := (χ−1

j )∗ϕjvj belonging to W0(Rq,K0,γ(X∧)) for
1 ≤ j ≤ L and to L2(R1+n+q) for L+ 1 ≤ j ≤ N . Then W0,γ(W) is a Hilbert space.
We will take (30) for γ = 0 as the reference scalar product for formal adjoints with
respect to the non-degenerate sesquilinear pairing (·, ·) :Ws,γ(W)×W−s,−γ(W)→ C
for every s, γ ∈ R.
For purposes below we set

Ws,γ(W)ε :=
⋂
k∈N
Wk,γ+ε− 1

k+1 (W)

with the Fréchet topology of the projective limit. We now form parameter-depending
pseudo-differential operators

a(λ) := Opy(a+m+ g)(λ)
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with amplitude function a(y, η, λ) +m(y, η, λ) + g(y, η, λ), where a(y, η, λ) is of the
form (17), m(y, η, λ) of the form (21) for j = 0 and α = 0, and g(y, η, λ) is a
Green symbol in the sense of Definition 1.13 with j− = j+ = 0. Such operators
act continuously between ‘comp’ and ‘loc’ versions of edge Sobolev spaces for every
λ ∈ Rl, namely

a(λ) :Ws,γ
comp(y)(X

∧ × Ω) −→Ws−µ,γ−µ
loc(y) (X∧ × Ω) (31)

for all s ∈ R.

Given a compact stretched manifold W with edge, by Yµ(W; Rl), for µ ∈ R, g =
(γ, γ − µ), γ ∈ R, we denote the space of all operator families a(λ) + c(λ) :
C∞0 (Wreg) → C∞(Wreg) which belong to Lµcl(Wreg; Rl

λ), where A(λ) is locally near
∂W in a splitting of variables (r, x, y) ∈ X∧ × Ω of the form (31), while c(λ) is a
Schwartz function in λ ∈ Rl with values in the space of smoothing operators. Here
an operator c is called smoothing if

c :Ws,γ(W) −→W∞,γ−µ(W)ε, c∗ :Ws,−γ+µ(W) −→W∞,−γ(W)ε

are continuous for a certain ε > 0 and all s ∈ R, with C∗ being the formal adjoint
with respect to the scalar product of W0,0(W).

Theorem 2.1 For every µ, γ ∈ R the space Yµ(W; Rl), associated with the weight
data g = (γ, γ − µ), contains an order reducing family r

µ
γ(λ) which induces isomor-

phisms r
µ
γ(λ) :Ws,γ(W) −→Ws−µ,γ−µ(W) for all s ∈ R, λ ∈ Rl.

A proof of this result is given in [3]. The ideas of the proof may also be found in
[21] in the more special case of boundary value problems without the transmission
property.

Definition 2.2 By Hs,γγγ(W∧) for s ∈ R, γγγ = (γ, θ) ∈ R2, we denote the completion
of C∞0 (R+ ×Wreg) with respect to the norm

{ 1
2πi

∫
ΓdimW

2 −θ

‖rsγ(Imw)(Mu)(w)‖2W0,γ−s(W) dw
} 1

2
.

Here M = Mt→w is the Mellin transform on R+ 3 t with covariable w ∈ C. More-
over, we define

Ks,γγγ(W∧) := {ωu+ (1− ω)v : u ∈ Hs,γγγ(W∧), v ∈ Ws,γ;0(W�)|R+×W},

cf. Definition 1.8, where ω(t) is any cut-off function.

Remark 2.3 The spaces in Definition 2.2 are independent of the specific choice of
order reductions or cut-off functions.
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Observe that there is another equivalent definition of the space Hs,γγγ(W∧).

Let {U1, . . . , UL, UL+1, . . . , UN} be a covering of W by open sets such that Uj ∩
Wsing 6= ∅ for 1 ≤ j ≤ L, Uj ∩Wsing = ∅ for L+ 1 ≤ j ≤ N . Let us choose the sets
Uj in such a way that there are stretched wedge ‘coordinates’ (r, x, y) ∈ X∧ × Rq

for 1 ≤ j ≤ L, and let

χj : Uj → X∧ × Rq, 1 ≤ j ≤ L, χj : Uj → Rm, L+ 1 ≤ j ≤ N,

be corresponding ‘charts’, for m = dimWreg. Then Hs,γγγ(W∧) is the completion of
C∞0 (R×Wreg) with respect to the norm

{ L∑
j=0

‖(ϕju)(t, χ−1
j (r, x, y))‖2Vs,θ(R+×Rq ,Ks,γ(X∧))

+
N∑

j=L+1

‖(ϕju)(t, χ−1
j (x̃))‖2Hs,θ(R+×Rm)

} 1
2

.

The space Vs,θ(R+ × Rq, E) for a Hilbert space E with group action {κλ}λ∈R+ is
defined to be the completion of C∞0 (R+ × Rq, E) with respect to the norm

{
1

2πi

∫
Γ e+1

2 −θ

∫
Rq

〈w, η〉2s‖κ−1
〈w,η〉(Mt→wFy→ηu)(w, η)‖2E dw dη

} 1
2

.

Here e is a natural number which is given as an extra information in connection
with the specific space E; for E = Ks,γ(X∧) we take e = dim(X∧×Rq) = n+1+ q.

Lemma 2.4 Let Mϕ, ϕ ∈ C∞0 (R+), denote the operator of multiplication by ϕ.
Then we have Mϕ ∈ L(Ks,γγγ(W∧),Ks,γγγ(W∧)), and the map ϕ→Mϕ is continuous
on C∞0 (R+) with values in the corresponding space of operators, for all s ∈ R,
γγγ = (γ, θ) ∈ R2.

2.2 Corner-degenerate differential operators

Let W be a (stretched) compact manifold with edge Y , and let Ξ ⊂ Rp be an open
set. An element of Diffµ(R+ ×Wreg × Ξ) is called corner-degenerate if it has the
form A := Opz(a) for an amplitude

a(z, ζ) = t−µ
∑

k+|β|≤µ

bkβ(t, z)(−t∂t)k(tζ)β (32)

with coefficients bkβ(t, z) ∈ C∞(R+×Ξ,Diffµ−(k+|β|)
deg (W)), cf. the notation in Section

1.1.
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Observe that the operators of the kind (32) are locally near R+ ×Wsing × Ξ in the
splitting of variables (t, r, x, y, z) of the form

A = t−µr−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(t, r, y, z)(−rt∂t)k(−r∂r)j(rDy)α(rtDz)β (33)

with coefficients cjα,kβ ∈ C∞(R+×R+×Ω×Ξ,Diffµ−(j+|α|+k+|β|)(X)). Analogously
as in the calculus of edge-degenerate operators, we have a ‘higher’ edge symbol of
A, namely,

σ∧∧∧(A)(z, ζ) = t−µ
∑

k+|β|≤µ

bkβ(0, z)(−t∂t)k(tζ)β. (34)

This is a family of differential operators on R+×W with parameters (z, ζ) ∈ T ∗Ξ\0.
Setting

(κλu)(t, w) := λ
2+n+q

2 u(λt, w), (35)

we have
σ∧∧∧(A)(z, λζ) = λµκλσ∧∧∧(A)(z, ζ)κ−1

λ (36)

for all λ ∈ R+. The operators (34) for every fixed (z, ζ) can be interpreted first as
a mapping on C∞0 (R+ ×Wreg).

Theorem 2.5 Assume that the coefficients bkβ in (32) are independent of t for large
t. Then the operators a(z, ζ) : C∞0 (R+ ×Wreg) −→ C∞0 (R+ ×Wreg) extend to a
family of continuous operators

a(z, ζ) : Ks,γγγ(W∧) −→ Ks−µ,γγγ−µ(W∧)

for all s ∈ R and γγγ = (γ, θ) where γγγ − µ := (γ − µ, θ − µ), (z, ζ) ∈ T ∗Ξ \ 0.

Proof. For convenience we consider the z-independent case a(ζ). Let us choose a
cut-off function σ(t), and set a0(ζ) := a(ζ)σ,a∞(ζ) := a(ζ)(1− σ). Then it suffices
to show that

a0(ζ) : Hs,γγγ(W∧) −→ Hs−µ,γγγ−µ(W∧) (37)

and

a∞(ζ) : Ws,γ;0(W�) −→Ws−µ,γ−µ;0(W�) (38)

are continuous. In the second relation, the coefficients are extended by zero for
t ≤ 0; because of the locality of the operators, the support in the image is contained
in R+ ×W. The continuity of (37) is a result of [18]. Thus it remains to consider
a∞(ζ). As in Definition 1.8, we choose a cut-off function ω(r) and functions ϕl,
1 ≤ l ≤ N ; then the proof reduces to the continuity of

a∞(ζ)(1− ω) : Ks,θ((2W)∧) −→ Ks−µ,θ−µ((2W)∧) (39)
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and, for β as in the formula (10):

(β ◦ χl)∗ϕla∞(ζ)ω : (40)
Ws(Rt × Rq

ỹ,K
s,γ(R+,r̃ ×X)) −→Ws−µ(Rt × Rq

ỹ,K
s−µ,γ−µ(R+,r̃ ×X)).

In the local variables (t, r, x, y) ∈ R×R+×X ×Rq the operators (χl)∗ϕla∞ω (with
(χl)∗ being the push forward under χl) have the form

t−µr−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ;l(t, r, y)(−rt∂t)k(−r∂r)j(rDy)α(rtζ)β (41)

with coefficients cjα,kβ;l(t, r, y) = ϕl(y)ω(r)cjα,kβ(t, r, y), where cjα,kβ as in (33)
(with Rq instead of Ω). The choice of the cut-off function σ is unessential. So
we may assume that [t] = t on supp(1− σ). Thus, applying the push forward under
(10) to the operators (41), it follows that

(β ◦ χl)∗ϕla∞(ζ) = r̃−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ;l

(
t,
r̃

t
,
ỹ

t

)
(−r̃∂t)k(−r̃∂r̃)j(r̃Dỹ)α(r̃ζ)β ,

for r̃ := tr, ỹ := ty.

Corollary 2.6 The operator function (34) extends to a family of continuous oper-
ators

σ∧∧∧(A)(z, ζ) : Ks,γγγ(W∧)→ Ks−µ,γγγ−µ(W∧)

for all s ∈ R and γγγ = (γ, θ) ∈ R2, and all (z, ζ) ∈ T ∗Ξ \ 0.

Let us discuss the principal symbolic structure of operators (32) from the point of
view of ellipticity. First we have σψ, the standard homogeneous principal symbol of
order µ which is a function on T ∗(R+ ×Wreg × Ξ) \ 0. In the splitting of variables
(t, r, x, y, z) (locally close to the edge Y of W ) and covariables (τ, %, ξ, η, ζ), we have

σψ(A)(t, r, x, y, z, τ, %, ξ, η, ζ)

= t−µr−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(t, r, y, z;x, ξ)(−rtiτ)k(−ri%)j(rη)α(rtζ)β ,

where cjα,kβ(t, r, y, z;x, ξ) is the homogeneous principal symbol of cjα,kβ(t, r, y, z) in
(x, ξ) ∈ T ∗X \ 0 of order µ− (j + |α|+ k + |β|).
Let us set

σ̃ψ(A)(t, r, x, y, z, τ̃ , %̃, ξ, η̃, ζ̃) (42)

:= tµrµσψ(A)(t, r, x, y, z, (rt)−1τ̃ , r−1%̃, ξ, r−1η̃, (rt)−1ζ̃).

By definition σ̃ψ(A) is smooth up to (t, r) = (0, 0). The operator A is said to be
corner degenerate elliptic (of order µ) with respect to σψ(A) if

σ̃ψ(A) 6= 0 for (τ̃ , %̃, ξ, η̃, ζ̃) 6= 0 and all (t, r, x, y, z) up to (t, r) = (0, 0).
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In order to define the next principal symbolic level of A, we observe that (32) for ev-
ery fixed (z, ζ) is an edge-degenerate family of differential operators on the stretched
manifold R+ ×W with edge R+ × Y . There are the principal symbols in the edge
variables (t, y) ∈ R+ × Y and covariables (τ, η). By virtue of the formalism for our
higher corner calculus, we treat ζ as an extra edge covariable. Thus the parameter-
dependent principal edge symbol of (32) in the splitting of variables (t, r, x, y, z)
takes the form

σ∧(A)(t, y, z, τ, η, ζ) (43)

= t−µr−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(t, 0, y, z)(−rtiτ)k(−r∂r)j(rη)α(rtζ)β

which is a family

σ∧(A)(t, y, z, τ, η, ζ) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧)

of continuous operators for every (t, y, τ, η, ζ) ∈ T ∗(R+×Y )×Rp
ζ \ 0, for every fixed

z ∈ Ξ(\0 stands for (τ, η, ζ) 6= 0).

Similarly as (42), from (43) we want to pass to the ‘reduced’ edge symbol

σ̃∧(A)(t, y, z, τ̃ , η, ζ̃) = tµσ∧(A(z, t−1ζ̃))(t, y, t−1τ̃ , η) (44)

= r−µ
∑

j+|α|+k+|β|≤µ

cjα,kβ(t, 0, y, z)(−riτ̃)k(−r∂r)j(rη)α(rζ̃)β.

Since the main issue of our investigation is the behaviour of the edge symbol of A of
second generation, i.e., of operators on W∧ when the coefficients bkβ(t, z) of (32) are
frozen at t = 0, we assume that the coefficients cjα,kβ do not depend on t for t > T
for some T > 0. Nevertheless, it is natural to admit (non-trivial) dependence on
t ≤ T and smoothness up to t = 0, according to the behaviour of the corresponding
coefficients of the operator for small t.

Proposition 2.7 Let A be corner degenerate elliptic. Then for every fixed (t, y, z)
there is a discrete set D(t, y, z) ⊂ R such that

σ̃∧(A)(t, y, z, τ̃ , η, ζ̃) : Ks,γ(X∧) −→ Ks−µ,γ−µ(X∧) (45)

is a family of Fredholm operators for all γ ∈ R \D(t, y, z), all (τ̃ , η, ζ̃) 6= 0, and all
s ∈ R.

Although this result is well known, we want to briefly recall some more background,
since for the infinite (stretched) cone X∧ of ‘first generation’ this is just a phe-
nomenon that also plays a role for the cone W∧ of second generation, with W being
our compact manifold with edge Y .

The Fredholm property of (45) is governed by the ellipticity of the principal symbolic
structure (σψ, σM , σE) of operators on X∧. Here σψ denotes the homogeneous prin-
cipal symbol as usual, σM is the principal conormal symbol and σE the tuple of exit
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symbols. The corner degenerate ellipticity of A has the consequence that σψ(σ̃∧(A))
(as a Fuchs type symbol in the splitting of variables (r, x) onX∧ = R+×X) is elliptic
and that also σE(σ̃∧(A)) is elliptic as soon as the covariables (τ̃ , η, ζ̃) are non-zero.

In the present case we have

σψ(σ̃∧(A))(t, y, z; r, x, %, ζ) = r−µ
µ∑
j=0

cj0,00(t, 0, y, z;x, ξ)(−ir%)j , (46)

where cj0,00(t, 0, y, z;x, ζ) is the homogeneous principal symbol of cj0,00(t, 0, y, t) as
an operator on X of order µ− j. Moreover, the exit symbol has three components,
locally in every cone Y := R+×U1 for a coordinate neighbourhood U1 ⊂ X as follows:
let us choose a diffeomorphism U1 → V1 to an open set V1 ⊂ Sn (n = dimX) and
form the cone V := {x̃ ∈ Rn+1\{0} : x̃/|x̃| ∈ V1}. We then obtain a diffeomorphisms
U → V when we extend U1 → V1 by homogeneity of order 1 in the axial variable
to U . Now we can push forward σ̃∧(A)(t, y, z, τ̃ , η, ζ̃) as a differential operator in
(r, x) ∈ U to a differential operator A1(t, y, z, τ̃ , η, ζ̃) in the Euclidean coordinates
x̃ ∈ V . Let

a(t, y, z, τ̃ , η, ζ̃; x̃, ξ̃) (47)

denote the complete symbol of A1 in the variables and covariables (x̃, ξ̃) ∈ V ×Rn+1

\{0} depending on the parameters (t, y, z, τ̃ , η, ζ̃).

Writing for the moment a(x̃, ξ̃) in place of (47), we obtain a polynomial in ξ̃ of
order µ, namely, a(x̃, ξ̃) =

∑
|β|≤µ cβ(x̃)ξ̃

β with coefficients cβ ∈ C∞(V ) such that
χ(x̃)cβ(x̃) ∈ S0

cl(Vx̃) for any excision function χ(x̃) (the coefficients also depend on
(t, y, z, τ̃ , η, ζ̃)). Let cβ,(0)(x̃) denote the homogeneous principal part of cβ of order
zero in x̃. We then have σψ(a)(x̃, ξ̃) =

∑
|β|=µ cβ(x̃)ξ̃

β, and

σe(a)(x̃, ξ̃) =
∑
|β|≤µ

cβ,(0)(x̃)ξ̃
β , σψ,e(a)(x̃, ξ̃) =

∑
|β|=µ

cβ,(0)(x̃)ξ̃
β.

The pair (σe(a), σψ,e(a)) is just what we call the exit symbol σE(σ̃∧(A)), locally in
the cone V .

Now for (τ̃ , η, ζ̃) 6= 0 we have the exit ellipticity, i.e., (apart from σψ(a)(x̃, ξ̃) 6= 0 for
all ξ̃ 6= 0) the properties

σe(a)(x̃, ζ̃) 6= 0 for all x̃ ∈ V and ξ̃ ∈ Rn+1

and

σψ,e(a)(x̃, ξ̃) 6= 0 for all x̃ ∈ V and ξ̃ ∈ Rn+1 \ {0}.

The principal conormal symbol has the form

σM (σ̃∧(A))(t, y, z; v) =
µ∑
j=0

cj0,00(t, 0, y, z)vj : Hs(X) −→ Hs−µ(X) (48)
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that is independent of the covariables (τ̃ , η, ζ̃), with v ∈ C being the Mellin covariable
which substitutes −r∂r, cf. the formula (46). The operator function (48) is a
holomorphic Fredholm family belonging to Lµcl(X; Γn+1

2
−γ) for every fixed γ ∈ R

(and every (t, y, z)). It is also parameter-dependent elliptic with the parameter
Im v ∈ R. These properties together show that (45) is a family of isomorphisms for
all v ∈ C \ D1(t, y, z) for a discrete set D1(t, y, z) ⊂ C that intersects every strip
of finite width parallel to the imaginary axis in a finite set. Now the ellipticity of
(45) with respect to the weight γ is just the condition that (45) is bijective for all
v ∈ Γn+1

2
−γ (this is independent of s ∈ R). Thus, the discrete set has the form

D(t, y, z) = {γ ∈ R : Γn+1
2
−γ ∩D1(t, y, z) 6= ∅}.

Let us now assume that there is a γ ∈ R such that (48) is bijective for all (t, y, z) ∈
R+ × Ω × Ξ (this only concerns a compact t-interval because by assumption the
coefficients stabilise for large t) and all v ∈ Γn+1

2
−γ .

We want to fill up the family of Fredholm operators (45) by additional finite-
dimensional entries to a 2× 2 block matrix family of isomorphisms.

Setting (κδu)(r, x) = δ
n+1

2 u(δr, x), δ ∈ R+, we first have

σ̃∧(A)(t, y, z, δτ̃ , δη, δζ̃) = δµκδσ̃∧(A)(t, y, z, τ̃ , η, ζ̃)κ−1
δ

for all δ ∈ R+. This gives us

σ̃∧(A)
(
t, y, z,

τ̃ , η, ζ̃

|τ̃ , η, ζ̃|

)
= |τ̃ , η, ζ̃|µκ|τ̃ ,η,ζ̃|σ̃∧(A)(t, y, z, τ̃ , η, ζ̃)κ−1

|τ̃ ,η,ζ̃|. (49)

Since dim ker σ̃∧(A) and dim coker σ̃∧(A) only depend on (τ̃ , η, ζ̃)/|τ̃ , η, ζ̃|, it suffices
to generate the entries for (τ̃ , η, ζ̃) ∈ Sq+p (the unit sphere in R1+p+q) and then to
extend them by homogeneity to all (τ̃ , η, ζ̃) ∈ R1+p+q \ {0}, in a similar manner
as (49). Moreover, we may assume that (t, y, z) only vary over a compact subset of
R+×B×Ξ, because both y and z play the role of local coordinates on corresponding
compact edges Y and Z, respectively, and since the coefficients are independent of
t for t > T for some T > 0. Globally on M := I × Y × L, for I := [0, T ] and
any compact L ⊂ Ξ (say, a closed ball), we interpret (45) as a family of Fredholm
operators, parametrised by

S∗M = S∗(R+ × Y × Ξ)|M

(the cosphere bundle over M). Let K(·) denote the K-group over the space in the
brackets. Then, as is well known, cf [1], there is an index

indS∗M σ̃∧(A) ∈ K(S∗M) (50)

of the Fredholom family (45) in the K-group over S∗M . Let π1 : S∗M → M be
the canonical projection (from the projection of the cotangent bundle to the base),
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and let π∗1 : K(M) → K(S∗M) be the map induced by the bundle pull back. An
assumption on the given operator is now the relation

indS∗M σ̃∧(A) ∈ π∗1(M). (51)

It is satisfied in many cases (e.g., Laplace-Beltrami operators belonging to corner
metrics). The relation (51) is an analogue of the Atiyah-Bott condition for the
existence of Shapiro-Lopatinskij elliptic boundary conditions for the given operator
in the special case of boundary value problems, cf. [1]. For edge singularities the
condition (51) plays an analogous role for the existence of edge conditions, cf. [16]
and [20]. We want to impose edge conditions along M . They will first refer to
the edge covariables (τ̃ , η, ζ̃); then we insert the original covariables in the ‘corner
degenerate’ combination (tτ, η, tζ). At the same time we will have edge conditions
for t→∞. As announced before, we do that in terms of a family of isomorphisms

σ̃∧(A) :=
(
σ̃∧(A) σ̃∧(K)
σ̃∧(T ) σ̃∧(Q)

)
:
Ks,γ(X∧)
⊕

J−,(t,y,z)

−→
Ks−µ,γ−µ(X∧)

⊕
J+,(t,y,z)

(52)

parametrised by (t, y, z, τ̃ , η, ζ̃) ∈ T ∗M \ 0, for vector bundles J± ∈ Vect(M).

The additional entries are locally with respect to y nothing other than homogeneous
principal parts of Green symbols in the sense of Definition 1.13, with (y, η, λ) re-
placed by (t, y, z, τ̃ , η, ζ̃). In addition we impose smoothness in t up to t = 0 which is
possible, since the upper left corner is smooth up to zero. The way of constructing
(52) is to first choose a corresponding isomorphism for points on S∗M and then to
extend it by homogeneity according to

σ̃∧(A)(t, y, z, δτ̃ , δη, δζ̃)δµ diag(κδ, λ
n+1

2 id)σ̃∧(A)(t, y, z, τ̃ , η, ζ̃) diag(κδ, λ
n+1

2 id)−1.

2.3 Tools on operators with exit conditions at infinity

By abstract calculus we understand elements of the pseudo-differential machinery
with operator-valued symbols (cf. Definition 1.11), here globally in Rq

y with |y| →
∞ being interpreted as a conical exit of Rq to infinity. Let E and Ẽ be Hilbert
spaces with group actions {κλ}λ∈R+ and {κ̃λ}λ∈R+ , respectively. Let µ, ν, ν ′ ∈ R, an
element a(y, y′, η) ∈ C∞(Rq

y×Rq
y′ ×Rq

η,L(E, Ẽ)) is said to be a symbol of the space

Sµ;ν,ν′(Rq × Rq × Rq;E, Ẽ) (53)

if
‖κ̃−1

〈η〉{D
α
yD

α′
y′D

β
ηa(y, y

′, η)}κ〈η〉‖L(E,Ẽ)
≤ c〈η〉µ−|β|〈y〉ν−|α|〈y′〉ν′−|α′| (54)

for all multi-indices α, α′, β ∈ Nq and all (y, y′, η) ∈ R3q, with constants c =
c(α, α′, β) > 0.
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Remark 2.8 If a ∈ Sµ;ν,ν′ and b ∈ Sµ̃;ν̃,ν̃′ then ab ∈ Sµ+µ̃;ν+ν̃,ν′+ν̃′ (in the sense of
pointwise composition of operators, under the assumption that the involved spaces fit
together). In particular, if a is independent of y, y′, i.e., a ∈ Sµ(Rq

η;E, Ẽ), it follows
also that a ∈ Sµ;0,0(R3q;E, Ẽ) and ab ∈ Sµ+µ̃;ν̃,ν̃′(R3q;E, Ẽ).

Let us consider operators with ‘double’ symbols a(y, y′, η) in the space (53),

Op(a)u(y) =
∫∫

ei(y−y
′)ηa(y, y′, η)u(y′)dy′d̄η. (55)

Operators (55) can be equivalently written in terms of ‘left’ or ‘right’ symbols
aL(y, η) and aR(y′, η), respectively. They satisfy similar estimates as (54) with
the exception, for instance, in the case of left symbols, that there is no dependence
of y′; this allows us to set ν ′ = 0 and to omit it. In other words, we have the spaces
Sµ;ν(Rq×Rq;E, Ẽ) of symbols of that kind. Similarly as for scalar operators, there is
a one-to-one correspondence aL(y, η)→ Op(a) between left symbols and associated
operators. The same is true in the case of right symbols. Then for every a(y, y′, η)
in the space (53) there are unique left (or right) symbols aL(y, η) (or aR(y′, η)) in
Sµ;ν+ν′(Rq × Rq;E, Ẽ) such that Op(a) = Op(aL) (or = Op(aR)).

Let us set
Ws;δ(Rq, E) := 〈y〉−δWs(Rq, E),

s, δ ∈ R. The continuity results below are based on the following theorem, proved
in different generality in [16] or [23].

Theorem 2.9 Let a(y, η) ∈ Sµ;ν(Rq × Rq;E, Ẽ). Then Op(a) induces continuous
operators Op(a) :Ws;δ(Rq, E)→Ws−µ;δ−ν(Rq, Ẽ) for all s, δ ∈ R.

In order to localise our amplitude function close to the diagonal, we employ the
following result:

Lemma 2.10 There exists a double symbol ω(t, t′) in the exit calculus on the real
t-axis (independent of the covariable τ), ω(t, t′) ∈ S0;0,0(R+ × R+ × Rτ ) with the
property

ω(t, t′) = 1 for |t− t′| < 1, ω(t, t′) = 0 for |t− t′| > 2.

The function ω exists in the form ω(t, t′) = ψ

(
(t− t′)2

1 + (t− t′)2

)
for any ψ ∈ C∞0 (R+)

such that ψ(t) = 1 for t < 1
2 , ψ(t) = 0 for t > 2

3 .

A proof may be found in [11, Section 3.3.3].

Let us now give some examples. In our applications the variable y is replaced by
(t, y), and the space E has the form

E = Ks,γ(X∧) for any fixed s, γ ∈ R. (56)
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Lemma 2.11 Let ϕ(t, y, r) ∈ C∞(R1+q
t,y × R+,r) have the properties

ϕ(t, y, r) = 0 for −∞ < t < c0, and ϕ(t, y, r) is independent of t for t > c1 (57)

for certain constants 0 < c0 < c1 independent of (y, r), and let

ϕ(t, y, r) = 0 for |y| ≥ c2 or r ≥ c2 (58)

for some c2 > 0, independent of t. Set ϕ̃(t, ỹ, r̃) := ϕ
(
t,
ỹ

t
,
r̃

t

)
, and letMϕ̃ denote the

operator of multiplication by ϕ̃ in the space E = Ks,γ(X∧), X∧ = R+ ×X 3 (r̃, x).
Then we have

Mϕ̃ ∈ S0;0(R1+q
t,ỹ × R1+q

τ,η ;E,E). (59)

Moreover, let (ϕj)j∈N be a sequence in the space C∞(R1+q × R+) for which the
constants c0, c1 and c2 are independent of j, and let ϕj → 0 for j → ∞. Then we
haveMϕ̃j → 0 in the space S0;0(R1+q

t,ỹ ×R1+q
τ,η ;E,E). This is valid for every s, γ ∈ R.

Proof. In order to show the relation (59), we have to verify the symbolic estimates

‖κ−1
〈τ,η〉

{
Dα
t,ỹD

β
τ,ηa(t, ỹ, τ, η)

}
κ〈τ,η〉‖L(E,E) ≤ c〈τ, η〉−|β|〈t, ỹ〉−|α| (60)

for all α, β ∈ N1+q, with constants c = c(α, β) > 0, for all (t, ỹ, τ, η) ∈ R1+q × R1+q.
In the present case we have a =Mϕ̃ which is independent of the covariables. Thus
it suffices to look at the case β = 0. We have

κ−1
〈τ,η〉D

α
t,ỹMϕ̃κ〈τ,η〉 = Dα

t,yϕ̃(t, ỹ, 〈τ, η〉−1r̃) = Dα
t,ỹϕ

(
t,
ỹ

t
,
〈τ, η〉−1r̃

t

)
. (61)

For the case α = 0 we have to show the uniform boundedness of ‖Mϕ‖L(Ks,γ(X∧))

as an operator of multiplication in r̃ ∈ R+, where ϕ depends on the parameters
t, ỹ and 〈τ, η〉. Concerning the dependence with respect to the first variables t and
ỹ

t
=: y, only a compact set in (t, y) ∈ R1+q is important, cf. the assumption (57).

Then the estimate (60) for α = 0 reduces to the following result, known from the
properties of the Ks,γ(X∧)-spaces: if we choose any ψ(t, y, r̃) ∈ C∞0 (R1+q×R+), the
operator of multiplication by ψ(t, y, cr̃) for c varying in an interval (0, c̃), c̃ > 0, is
uniformly bounded in Ks,γ(X∧) for every fixed s, γ ∈ R. In the present case we have
c = (t〈η〉)−1 for t > c1, (τ, η) ∈ R1+q. For the derivatives (61) for α 6= 0 it suffices
to note that we only produce factors proportional to t−|α| for t > c1 which can be
estimated (up to a constant) by 〈t, y〉 on the support of ψ.

To complete the proof, we employ the known fact that the operators of multiplication
in Ks,γ(X∧) tend to zero as soon as the function itself tends to zero. It is trivial
that this remains true for the case of an extra parameter-dependence as is the case
in the present situation.

By a similar technique we can prove the following assertions.
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Lemma 2.12 Let ω(t, t′) be as in Lemma 2.10, and set ϕ(r̃, t, t′) := ω(t, t′)σ̃
( r̃′
t

)
.

Then for the operator Mϕ of multiplication by ϕ we have Mϕ ∈ S0;0,0(R1+q ×
R1+q;E,E) for the spaces (56).

Lemma 2.13 Let ψ(r, t, t′, ỹ, ỹ′) ∈ C∞(R+,r, C
∞(R×B×R×B)) for the open unit

ball B in Rq, and assume that the support of ψ in ỹ ∈ B as well as the support of ψ
in ỹ′ ∈ B is compact; moreover, let

ψ = 0 for −∞ < t < c0, and ψ independent of t for t > c1,

and, similarly, for the dependence with respect to t′, for constants 0 < c0 < c1. Then,

setting ψ̃ = ψ
( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t

)
ω(t, t′) we have Mψ̃ ∈ S

0;0,0(R1+q × R1+q;E,E) for the

spaces (56). In addition, ψj → 0 in the space of the above mentioned functions with
c0, c1 independent of j entails Mϕj → 0 in the symbol space.

2.4 Connections between cylindrical and conical representations

From the shape of corner degenerate differential operators (33) for r near zero (i.e.,
near ∂W, where the variables on W split into (r, x, y)), we see that the operator-
valued (also in the pseudo-differential case) have corner-degenerate form, i.e., the
covariables %, τ, η, ζ (with ζ ∈ Rp being the extra parameter) are involved in the
combination

(r%, rtτ, rη, rtζ). (62)

We will drop for a while the z-variable, because we are discussing operators on W∧

for fixed (z, ζ), ζ 6= 0. Moreover, let the coefficients also depend on (t, t′) and (y, y′).
The starting point is an operator-valued amplitude function

P (r, t, t′, y, y′, %, τ, η, ζ) := P̃ (r, t, t′, y, y′, r%, rtτ, rη, rtζ) (63)

for some

P̃ (r, t, t′, y, y′, %̃, τ̃ , η̃, ζ̃) ∈ C∞(R+ × R+ × R+ ×B ×B,Lµcl(X; R2+p+q

%̃,τ̃ ,η̃,ζ̃
)). (64)

Here B := {y ∈ Rq : |y| < 1} plays the role of a chart on the edge Y ; double symbols
appear in localisations in terms of a partition of unity on Y . The double symbols in
t are motivated later on by certain localisations also in the corner axis direction.

Then the upper left corners of the local edge symbols (23) are to be replaced by
amplitude functions of the form

a(t, t′, y, y′, τ, η, ζ) = (aM + aψ +m+ g)(t, t′, y, y′, τ, η, ζ) (65)

which are defined as follows. First we fix cut-off functions σ, σ̃, ω1, ω2, ω3 of the same
kind as in the formula (17) and set χ1 := 1− ω1, χ2 := 1− ω3.

30



Then

aM (t, t′, y, y′, τ, η, ζ)

:=σ(r)r−µt−µω1(r[tτ, η, tζ]) op
γ−n

2
M (H)(t, t′, y, y′, τ, η, ζ)ω2(r′[tτ, η, tζ])σ̃(r′), (66)

aψ(t, t′, y, y′, τ, η, ζ)
:=σ(r)r−µt−µχ1(r[tτ, η, tζ]) opr(P )(t, t′, y, y′, τ, η, ζ)χ2(r′[tτ, η, tζ])σ̃(r′), (67)

for an operator-valued Mellin amplitude function

H(r, t, t′, y, y′, v, τ, η, ζ) := H̃(r, t, t′, y, y′, v, rtτ, rη, rtζ), (68)

for some

H̃(r, t, t′, y, y′, v, τ̃ , η̃, ζ̃) ∈ C∞(R+ × R+ × R+ ×B ×B,Lµcl(X; C× R1+p+q

τ̃ ,η̃,ζ̃
)), (69)

where (68) is associated with (64) in a similar manner as H with P in Theorem 1.9.

Moreover, analogously as (24) we set

m(t, t′, y, y′, τ, η, ζ) = r−µt−µω1(r[tτ, η, tζ]) op
γ−n

2
M (F )(t, t′, y, y′)ω2(r′[tτ, η, tζ])

(70)

for an element

F (t, t′, y, y′, v) ∈ C∞(R+ × R+ ×B ×B,M−∞(X; Γn+1
2
−γ)). (71)

Finally, according to Green symbols of Definition 1.13, the Green summand in (65)
has the form of an upper left corner of

g(t, t′, y, y′, τ, η, ζ) :=t−µG(t, t′, y, y′, tτ, η, tζ) = diag(1, 〈tτ, η, tζ〉
n+1

2 )

t−µG0(t, t′, y, y′, tτ, η, tζ) diag(1, 〈tτ, η, tζ〉−
n+1

2 )
(72)

for

G(t, t′, y, y′, τ̃ , η, ζ̃) = diag(1, 〈τ̃ , η, ζ̃〉
n+1

2 )G0(t, t′, y, y′, τ̃ , η, ζ̃) diag(1, 〈τ̃ , η, ζ̃〉−
n+1

2 ),

where

G0(t, t′, y, y′, τ̃ , η, ζ̃)

∈ Sµcl(R+ × R+ ×B ×B × R1+q+p

τ̃ ,η,ζ̃
;Ks,γ(X∧)⊕ Cj− ,Sγ−µ(X∧)2ε ⊕ Cj+)

(73)

satisfies

G∗0(t, t
′, y, y′, τ̃ , η, ζ̃)

∈ Sµcl(R+ × R+ ×B ×B × R1+p+q

τ̃ ,η,ζ̃
;Ks,−γ+µ(X∧)⊕ Cj+ ,S−γ(X∧)2ε ⊕ Cj−),

(74)
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s ∈ R, for some ε(g) > 0.

From the definition of the operator function (65), we see that a has the form

a(t, t′, y, y′, τ, η, ζ) = ã(t, t′, y, y′, tτ, η, tζ) (75)

for an operator-valued symbol

ã(t, t′, y, y′, τ̃ , η, ζ̃) ∈ Sµ(R+×R+×B×B×R1+q+p

τ̃ ,η,ζ̃
;Ks,γ(X∧),Ks−µ,γ−µ(X∧)). (76)

The property (76) follows from (18), (22) and Definition 1.13. The meaning of
symbols in the variables (t, t′, y, y′) with (t, t′) varying on R+ × R+ is as usual,
namely that the symbolic estimates hold uniformly in (t, t′) up to (0, 0).

From (75) we can pass to the corresponding operator families

Opt,y(a)(ζ) = Opt,y(ωa)(ζ) + Opt,y((1− ω)a)(ζ), (77)

where ω(t, t′) is as in Lemma 2.10. From now on we ignore the second summand in
(77) because 1 − ω(t, t′) cuts out a neighbourhood of the diagonal in all variables
and so contributes smoothing operators.

In order to show the continuity of operators in weighted Sobolev spaces on the
stretched cone W∧ up to infinity, analogously as (39) we look at the localisation for
t → ∞ (the behaviour for t → 0 is encoded in Mellin terms later on as a part of
the corner calculus of [18]). We also take into account localisations on the edge Y
on charts from coordinate neighbourhoods to the ball B combined with a partition
of unity in local y-variables. In other words, our amplitude functions (75) occur in
combination with localising factors, i.e., we have to consider

(1− σ1(t))ϕ(y)a(t, t′, y, y′, τ, η, ζ)ψ(y′)(1− σ2(t′)) (78)

with cut-off functions σ1, σ2 on the t-half axis, ϕ,ψ ∈ C∞0 (B), ψ ≡ 1 on suppϕ.
However, since we admitted from the very beginning smooth dependence of t, t′ and
y, y′, we may subsume the factors under the dependence on those variables and
return again to the notation (75) by assuming

a ≡ 0 for all y, y′ in a neighbourhood of ∂B
and for all t, t′ when t < T0 or t′ < T0

(79)

for some T0 > 0. In addition, since we are mainly interested in principal edge
symbols from the higher corner calculus, we assume that

ã(t, t′, y, y′, τ̃ , η, ζ̃) is independent of t for t > T1 and of t′ for t′ > T1, (80)

for some T1 > 0. As explained before, the main point in this section is to show that

a(ζ) := Opt,y(ωa)(ζ) for ζ 6= 0
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induces continuous operators

a(ζ) : Ks,γγγ(W∧)→ Ks−µ,γγγ−µ(W∧) (81)

for all s ∈ R. By construction, our amplitude function a(t, t′, y, y′, τ, η, ζ) refers to the
variables in the cylinder R+ ×B 3 (t, y) with the support conditions (79) and (80).
The operator function a takes values in pseudo-differential operators on X∧ 3 (r, x),
with r ∈ R+ being the inner cone axis direction. To simplify the explanations, we
often suppress the action on X and interpret a(ζ) as a pseudo-differential operator
on R+ × R+ ×B 3 (t, r, y) for any fixed ζ 6= 0.

Now the specific aspect for the continuity of (81) is to show, analogously as (40),
that

β∗a(ζ) :Ws(Rt×Rq
ỹ,K

s,γ(R+,r̃×X)) −→Ws−µ(Rt×Rq
ỹ,K

s−µ,γ−µ(R+,r̃×X)) (82)

is continuous, where β is the diffeomorphism

β : R+ × R+ ×B → R+ × R+ × Rq, β(t, r, y) = (t, tr, ty).

Since at the moment we are considering the local situation with respect to the
edge variable y, the map χl in (40) can be ignored, and the localising functions
ϕl(y) and ω(r) may also be subsumed under the amplitude function itself (cf. the
explanation after the formula (78)). Let us write β = α2 ◦ α1 for α1(t, r, y) :=
(t, tr, y), α2(t, r̃, y) := (t, r̃, ty), such that β∗ = α2∗ ◦ α1∗. By definition we have
α1 = idR+,t ×β1 × idB for

β1(r) = tr,

and α2 = idR+,t × idR+,r ×β′2 for β′2(y) = ty. Set

β2 := idR+,t ×β′2 : R+,t ×B → R+,t × Rq.

From (77) we have β∗a(ζ) = β2∗Opt,y(ωβ1∗a)(ζ). It follows that

β2∗Opt,y(ωβ1∗a)(ζ)) = Opt,ỹ(ωβ2∗(β1∗a))(ζ), (83)

where β2∗ on the right hand side has the meaning of a corresponding push forward
of symbols,belonging to y 7→ ỹ = ty, applied to (β1∗a)(t, t′, y, y′, τ, η, ζ).

Theorem 2.14 Let a be an amplitude function of the form (65) with the summands
(66), (67), (70) and (72). Then for every fixed ζ 6= 0 we have

ω(t, t′)β2∗(β1∗a)(t, t′, ỹ, ỹ′, τ, η̃, ζ) ∈ Sµ;0,0(R1+q
t,ỹ × R1+q

t′,ỹ′ × R1+q
τ,η̃ ;E, Ẽ) (84)

for the spaces E := Ks,γ(X∧), Ẽ = Ks−µ,γ−µ(X∧), s ∈ R.

Corollary 2.15 For every ζ 6= 0 the operator (81) is continuous for all s ∈ R.

In fact, (83) generates continuous operators between the spaces in (82), i.e., (82)
holds for β∗a(ζ) itself. This yields immediately the assertion.

Theorem 2.14 will be proved in Section 3.4 below.
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3 Ellipticity

3.1 Parametrices in the case of non-compact edges

Let ã(t, τ̃ , ζ̃) ∈ C∞(R,Yµ(W; Rτ̃ × Rp

ζ̃
)) be an element that is independent of t for

|t| > T for some T > 0. The weight and bundle data in ã are assumed to be

g := (γ, γ − µ), w := (J−, J+), (85)

respectively, cf. the notation of Section 1.4.

Definition 3.1 An operator function of the form a(t, τ, ζ) := ã(t, tτ, tζ) is called
elliptic if

(i) ã(t, τ̃ , ζ̃) is parameter-dependent elliptic for every t, with parameters τ̃ , ζ̃;

(ii) a(t, τ, ζ) is parameter-dependent elliptic for every t, with parameters τ, ζ.

Note that the property (i) entails the parameter-dependent ellipticity of a(t, τ, ζ) for
|t| > ε for every ε > 0. In other words, (ii) is an extra requirement only for t close
to zero.

Theorem 3.2 Let ã(t, τ̃ , ζ̃) ∈ C∞(R,Yµ(W; R1+p

τ̃ ,ζ̃
)) satisfy the condition (i) of Def-

inition 3.1. Then there exists p̃(t, τ̃ , ζ̃) ∈ C∞(R,Y−µ(W; R1+q

τ̃ ,ζ̃
)) (associated with

g−1 = (γ − µ, γ) and w−1 = (J+, J−) when a belongs to (85)), satisfying the anal-
ogous condition, i.e. p̃(t, τ̃ , ζ̃) is independent of t for |t| > T for some T > 0,
and

1− p̃(t, τ̃ , ζ̃)ã(t, τ̃ , ζ̃), 1− ã(t, τ̃ , ζ̃)p̃(t, τ̃ , ζ̃) ∈ C∞(R,Y−∞(W; R1+q

τ̃ ,ζ̃
)).

This result is known from the general (parameter-dependent) calculus on a compact
(stretched) manifold W with edges.

We now choose a partition of unity on R 3 t of the form χ−1 + ϕ1 + χ+
1 = 1 for a

function ϕ1 ∈ C∞0 (R), which is equal to 1 in an interval −T −ε ≤ t ≤ T +ε for some
T > 0 and ε > 0; then we find unique χ±1 ∈ C∞(R), supported in (−∞,−T ) and
(T,+∞), respectively. Moreover, choose functions χ±2 ∈ C∞(R) and ϕ2 ∈ C∞0 (R+)
such that ϕ2 ≡ 1 on suppϕ1, χ±2 ≡ 1 on suppχ±1 , where χ±2 are also supported in
(0,+∞) and (−∞, 0), respectively.

Given an operator function a(t, τ, ζ) = ã(t, tτ, tζ) for ã(t, τ̃ , ζ̃) ∈ C∞(R,Yµ(W; R1+q

τ̃ ,ζ̃
)),

we form the operator functions

a±(t, t′, τ, ζ) := χ±1 (t)ω(t[ζ], t′[ζ])a(t, τ, ζ)χ±2 (t′)

and a0(t, t′, τ, ζ) := ϕ1(t)a(t, τ, ζ)ϕ2(t′), where ω(t, t′) is the cut-off function from
Lemma 2.10. We then write

opt(a)(ζ) := opt(a
−)(ζ) + opt(a0)(ζ) + opt(a

+)(ζ). (86)
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Remark 3.3 Let χ̃±j , ϕ̃j, j = 1, 2, ω̃ be another choice of functions with the above
mentioned properties and write õpt(a)(ζ) in analogy with (86) when we use the
functions with tilde. Then for every fixed ζ 6= 0 the operators õpt(a)(ζ)− opt(a)(ζ)
have an integral kernel in S(Rt × Rt′ ,Y−∞(W)).

Theorem 3.4 Let a(t, τ, ζ) = ã(t, tτ, tζ) for ã(t, τ̃ , ζ̃) ∈ C∞(R,Yµ(W; R1+q

τ̃ ,ζ̃
)) be

elliptic (in the sense of Definition 3.1). Then for every ζ 6= 0 the operator

opt([t]
−µa)(ζ) :

Ws,γ;δ(W�)
⊕

Ws−n+1
2
,γ−n+1

2
;δ(Y�, J−)

−→
Ws−µ,γ−µ;δ(W�)

⊕
Ws−n+1

2
−µ,γ−n+1

2
−µ;δ(Y�, J+)

(87)

is Fredholm for every s, δ ∈ R. Furthermore, there exists a p̃(t, τ̃ , ζ̃) ∈ C∞(R,
Y−µ(W; R1+q)) such that for p(t, τ, ζ) := p̃(t, tτ, tζ) for every fixed ζ 6= 0 both

1− opt([t]
−µa)(ζ)opt([t]

µp)(ζ), and 1− opt([t]
µp)(ζ)opt([t]

−µa)(ζ)

belong to S(R× R,Y−∞(W)), i.e., opt([t]µp)(ζ) is a parametrix of opt([t]−µa)(ζ).

Proof. We cover the space W� by finitely many open sets of the form W0,� and
Wj,�, j = 1, . . . , N , for a submanifold W0 ⊂Wreg and sets Wj ⊂W such that Wj ∩
∂W 6= ∅, where Wj in the splitting of variables (r, x, y) is of the form [0, 1)×X×Yj ,
for coordinate neighbourhoods Yj on Y diffeomorphic to the open unit ball B ⊂ Rq.
To show the Fredholm property of (87), it suffices to construct local parametrices of
the operators opt([t]−µa(ζ))

∣∣
Wj,�

for all j = 0, . . . , N , such that the remainders are
compact operators (after the globalisation process, with a partition of unity, etc.).

The local parametrix construction for j = 0 corresponds to the case of manifolds
with conical exits to infinity and smooth cross section W0, where our operators
come from edge-degenerate families with smooth model cone, axial variable t and
edge covariable ζ 6= 0. This case is known and treated in [11, Chapter 3]. Thus
it remains to consider the localised operators over Wj,� for j > 0. These can be
expressed in the splitting of variables

(t, r, x, y) ∈ R× [0, 1)×X ×B.

Because t→ +∞ and t→ −∞ are similar, we may content ourselves with the case
t → +∞. Since local parametrices over finite intervals in t easily yield the desired
contributions, it remains to study the localisations over (T,∞)× [0, 1)×X ×B for
some T > 0. This corresponds exactly to the local situation that was studied in
Chapter 2.

3.2 Edge symbols of second generation

Let us consider the space of all operator families

ã(t, z, τ̃ , ζ̃) ∈ C∞(R+ × Ξ, Yµ(W; R1+p

τ̃ ,ζ̃
)), (88)
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where the values for every (t, z, τ̃ , ζ̃) as operators in Yµ(W) are connected with
chosen weight and bundle data

g := (γ, γ − µ) and w := (J−, J+), (89)

respectively. Let
Yµ(W; C× Rp

ζ̃
)

denote the space of all operator functions h̃(w, ζ̃) ∈ A(C,Yµ(W; Rp

ζ̃
)) such that

h̃(α+ iτ, ζ̃) ∈ Yµ(W; R1+p

τ,ζ̃
) for every α ∈ R, uniformly in compact α-intervals.

Given elements (88) and

h̃(t, z, w, ζ̃) ∈ C∞(R+ × Ξ,Yµ(W; C× Rp

ζ̃
)), (90)

we set

a(t, z, τ, ζ) := ã(t, z, tτ, tζ), a0(t, z, τ, ζ) := ã(0, z, tτ, tζ), (91)

and

h(t, z, w, ζ) := h̃(t, z, w, tζ), h0(t, z, w, ζ) := h̃(0, z, w, tζ). (92)

With a(t, z, τ, ζ) and h(t, z, w, ζ) we can associate families of operators

opδM (h)(z, ζ), opt(a)(z, ζ) :
C∞0 (R+ × int W)

⊕
C∞0 (Y ∧, J−)

−→
C∞(R+ × int W)

⊕
C∞(Y ∧, J+)

which z-wise belong to the parameter-dependent edge calculus of the class Yµ(W; Rp
ζ)

on the (stretched) manifold R+×W = W∧ with the non-compact edge R+×Y = Y ∧;
here the bundles over Y ∧ are tacitly identified with those over Y by pull back with
respect to the projection Y ∧ → Y .

Theorem 3.5 For every operator of the form (88), there exists an element (90)
such that

opδM (h)(z, ζ) = opt(a)(z, ζ) mod C∞(Ξ,Y−∞(W∧; Rp
ζ))

for every δ ∈ R.

Remark 3.6 If p and h are as in Theorem 3.5, we also have

opδM (h0)(z, ζ) = opt(a0)(z, ζ) mod C∞(Ξ,Y−∞(W∧; Rp
ζ))

for every δ ∈ R.
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We now choose cut-off functions ω1, ω2, ω3 on R+ satisfying the condition (16), and
set χ1(t) := 1−ω1(t), χ2(t) := 1−ω3(t). Moreover, we fix cut-off functions σ(t) and
σ̃(t). Let us form

a(z, ζ) := σ(t)t−µ
{
ω1(t[ζ]) op

θ−dim W
2

M (h)(z, ζ)ω2(t′[ζ]) (93)

+ χ1(t[ζ])ω(t[ζ], t′[ζ]) opt(a)(z, ζ)χ2(t′[ζ])
}
σ̃(t′)

and

σ∧∧∧(a)(z, ζ) = t−µ
{
ω1(t|ζ|) op

θ−dim W
2

M (h0)(z, ζ)ω2(t′|ζ|) (94)

+ χ1(t|ζ|)ω(t|ζ|, t′|ζ|) opt(a0)(z, ζ)χ2(t′|ζ|)
}
.

Let us set

E :=
Ks,γγγ(W∧)
⊕

Ks−
n+1

2
,θ−n+1

2 (Y ∧, J−)
, Ẽ :=

Ks−µ,γγγ−µ(W∧)
⊕

Ks−
n+1

2
−µ,θ−n+1

2
−µ(Y ∧, J+)

, (95)

with γγγ = (γ, θ) and for every s ∈ R; the group action in these spaces is defined by

κλ := diag(κW
λ , κ

Y
λ )

for (κW
λ u)(t, w) := λ

1+dim W
2 u(λt, w), (κYλ v)(t, y) := λ

1+dim Y
2 v(λt, y), λ ∈ R+, with u

and v being in the respective spaces.

Remark 3.7 The operators (94) define a family of continuous operators

σ∧∧∧(a)(z, ζ) : E → Ẽ

between the spaces (95), for all s ∈ R, (z, ζ) ∈ T ∗Ξ \ 0, and we have

σ∧∧∧(a)(z, λζ) = λµκλσ∧∧∧(a)(z, ζ)κ−1
λ

for all λ ∈ R+, (z, ζ) ∈ T ∗Ξ \ 0.

Theorem 3.8 We have

a(z, ζ) ∈ Sµ(Ξ× Rp;E, Ẽ), (96)

for the spaces E, Ẽ given by (95) for every s ∈ R.

Proof. The dependence of a(z, ζ) on z is not the essential difficulty; so we consider
the z-independent case. Set δ := θ − dim W

2 and write a(ζ) = a0(ζ) + a1(ζ) for

a0(ζ) := σ(t)t−µω1(t[ζ]) opδM (h)(ζ)ω2(t′[ζ])σ̃(t′),
a1(ζ) := σ(t)t−µχ1(t[ζ])ω(t[ζ], t′[ζ]) opt(a)(ζ)χ2(t′[ζ])σ̃(t′).
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We show that ai(ζ) ∈ Sµ(Rp;E, Ẽ) for i = 0, 1. Let us first consider i = 1. Moreover,
for convenience, we concentrate on the upper left corner of the block matrices; then
E = Ks,γγγ(W∧), Ẽ = Ks−µ,γγγ−µ(W∧). We verify that

a1(ζ) ∈ C∞(Rp
ζ ;L(E, Ẽ)). (97)

In fact, let a1(t, t′, τ, ζ) := ω(t[ζ], t′[ζ])a(t, τ, ζ). Then we know that

opt(a1)(ζ) :Ws,γ
comp(W∧)→Ws−µ,γ−µ

loc (W∧)

is a C∞ family of continuous operators, cf. the formulas (8) and (9). Moreover,
the operators of multiplication by C∞0 functions in t (or t′) ∈ R+ define continuous
operators

σ̃(t′)χ2(t′[ζ]) : Ks,γγγ(W∧)→Ws,γ
comp(W∧),

σ(t)tµχ1(t[ζ]) :Ws−µ,γ−µ
loc (W∧)→ Ks−µ,γγγ−µ(W∧)

that smoothly depend on ζ. This holds for all s, γ, θ ∈ R, i.e., we obtain altogether
the relation (97). Next we choose an excision function χ(ζ) and write a1(ζ) =
χ(ζ)a1(ζ) + (1− χ(ζ))a1(ζ). Then, because of (1− χ(ζ))a1(ζ) ∈ C∞0 (Rp

ζ ,L(E, Ẽ)),
cf. the relation (97), we get

(1− χ(ζ))a1(ζ) ∈ S−∞(Rp
ζ ;E, Ẽ).

Thus it remains to characterise χ(ζ)a1(ζ). Setting

b1(ζ) := χ(ζ)t−µχ1(t[ζ])ω(t[ζ], t′[ζ]) opt(a)(ζ)χ2(t′[ζ])

we have χ(ζ)a1(ζ) = σ(t)b1(ζ)σ̃(t′). Using Lemma 2.4 it suffices to consider b1(ζ).
Let us assume for the moment that ã(τ̃ , ζ̃) is independent of t. From the results
of Section 3.4 below we know that b1(ζ) ∈ C∞(Rp

ζ ,L(E, Ẽ)). In addition we have
b1(ζ)→ 0 in that space when ã(τ̃ , ζ̃)→ 0 in the space Yµ(W; R1+p

τ̃ ,ζ̃
). Moreover, there

is a C > 0 such that b1(λζ) = λµκW
λ b1(ζ)(κ

W
λ )−1 for all λ ≥ 1, |ζ| ≥ C. This yields

b1(ζ) ∈ Sµcl(R
p;E, Ẽ), and hence, a1(ζ) ∈ Sµ(Rp;E, Ẽ). Moreover, a(τ̃ , ζ̃) → 0 in

Yµ(W; R1+p

τ̃ ,ζ̃
) entails a1(ζ)→ 0 in Sµ(Rp;E, Ẽ).

Let us now consider the general case. Because of the factor σ(t) from the left, we
may assume that ã(t, τ̃ , ζ̃) vanishes for t > c for some c > 0. Let C∞([0, c]0) denote
the Fréchet subspace of elements of C∞(R+) that vanish for t ≥ c. Then ã(t, τ̃ , %̃)
can be written as a convergent sum ã(t, τ̃ , ζ̃) =

∑∞
j=0 λjϕj(t)ãj(τ̃ , ζ̃) with λj ∈ C,∑

|λj | < ∞ and ϕj ∈ C∞([0, c]0), ãj(τ̃ , ζ̃) ∈ Yµ(W; R1+p

τ̃ ,ζ̃
) tending to zero in the

respective spaces for j →∞.

It follows that

b1(ζ) =
∞∑
j=0

λjϕkpj (98)
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for pj := χ(ζ)t−µχ1(t[ζ])ω(t[ζ], t′[ζ]) opt(aj)(ζ)χ2(t′[ζ]), aj(t, τ, ζ) := ãj(tτ, tζ). As
we saw, pj ∈ Sµcl(R

p;E, Ẽ) tends to zero in the symbol space; moreover, by Lemma
2.4 the operators of multiplication by ϕj tend to zero in S0(Rp; Ẽ, Ẽ). This gives us
immediately the convergence of (98) in Sµ(Rp;E,E).

In order to treat a0(ζ) we first observe that

a0(ζ) ∈ C∞(Rp
ζ ,L(E, Ẽ)). (99)

The pointwise continuity of the operator a0(ζ) : E → Ẽ for every s, γ, θ ∈ R is
known from [18, Theorem 3.3.6]. In this case, because of the cut-off factors ω1 and
ω2, there is no exit effect for t → ∞. The smoothness in ζ is an easy consequence
of the continuity of the correspondence between (operator-valued) Mellin symbols
and associated operators and of the C∞ dependence of the Mellin symbols on ζ.
From such arguments we also know that when h(t, w, ζ̃) ∈ C∞(R+,Yµ(W; C×Rp

ζ̃
))

tends to zero in that space, also the associated C∞ function of operators (99) tends
to zero. Let us now assume that h̃ is independent of t. Then we have a0(λζ) =
λµκW

λ a0(ζ)(κW
λ )−1 for all λ ≥ 1, |ζ| ≥ c for some c > 0. This gives us immediately

a0(ζ) ∈ Sµcl(R
p;E, Ẽ). In addition we also see that a0(ζ) tends to zero in the symbol

space as soon as h̃(w, ζ̃) tends to zero in Yµ(W; C×Rp

ζ̃
). For the case of t-dependent

h̃ we can apply a tensor product argument of a similar structure as before and then
finally obtain a0(ζ) ∈ Sµ(R;E, Ẽ).

3.3 The Fredholm property of edge symbols

Theorem 3.9 Let a(z, τ̃ , ζ̃) ∈ C∞(Ξ,Yµ(W; R1+p

τ̃ ,ζ̃
)) be an operator family connected

with (89), and assume that a is parameter-dependent elliptic with the parameters
(τ̃ , ζ̃) ∈ R1+p, for every fixed z ∈ Ξ. Then there exists a discrete set D(z) ⊂ R such
that the family of operators (94)

σ∧∧∧(a)(z, ζ) : E → Ẽ

is a Fredholm operator for every θ ∈ R \D(z) and every z ∈ Ξ, ζ ∈ Rp \ {0}, s ∈ R.

Proof. For convenience, we first consider the case when there are no extra edge
conditions, i.e., the bundles J± are both of fibre dimension zero. For every fixed
(z, ζ), ζ 6= 0, the operator σ∧∧∧(a)(z, ζ) is elliptic in the edge calculus on the non-
compact (stretched) manifold R+ × W with edge R+ × Y . As such there exists
a parametrix in this calculus. In order to obtain the Fredholm property in our
spaces, we need a control of the parametrix for t → 0 and t → ∞, such that the
corresponding local remainders are compact. For t→ 0 this problem is discussed in
[18] in a corresponding corner calculus with base W. In this theory the Fredholm
property requires the bijectivity of the corner conormal symbol

h(0, z, w, 0) :Ws,γ(W)→Ws−µ,γ−µ(W) (100)
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for all w ∈ Γdim W+1
2

−θ, cf. [18, Definition 3.4.1]. As is known, the operators (100) are
bijective for every w ∈ D1(z) for a certain discrete set D1(z) ⊂ C which intersects
every finite strip c ≤ Rew ≤ c′ in a finite set. Then we have D(z) = {θ ∈ R :
Γdim W+1

2
−θ ∩D1(z) = ∅}.

To finish the proof we have to construct a local parametrix for t→∞. However, this
is contained in Theorem 3.4 as an information on R×W ∼= W� locally for t→∞.
The case with additional edge conditions of trace and potential type along the edge
is completely analogous; the local parametrices in R+×W as well as those for t→ 0
and t→∞ are given by [18] and Theorem 3.4, respectively.

3.4 The exit behaviour of corner symbols

Let us consider b(t, t′, y, y′, τ, η, ζ) := (β1∗a)(t, t′, y, y′, τ, η, ζ), cf. the formula (84),
and compute the symbol c(t, t′, ỹ, ỹ′, τ, η̃, ζ) := (β2∗b)(t, t′, ỹ, ỹ′, τ, η̃, ζ) which will
have the property

β2∗Opt,y(b)(ζ) = Opt,ỹ(β2∗b)(ζ)

(without any remainders). A straightforward computation gives us

(β2∗Opt,y(b))v(t, ỹ) = (β∗2)−1[Opt,y(b)((β
∗
2)v)(t, y)]

=
∫∫

ei(t−t
′)τ+i(ỹ−ỹ′)η̃b(t, t′,

ỹ

t
,
ỹ′

t
, τ, tη̃, ζ)v(t′, ỹ′)dt′dỹ′d̄τ d̄η̃

for any v(t, ỹ) ∈ C∞0 (R+×Rq, E), such that c(t, t′, ỹ, ỹ′, τ, η̃, ζ) = b(t, t′,
ỹ

t
,
ỹ′

t
, τ, tη̃, ζ).

In order to show Theorem 2.14, we consider the summands from the representation
(65) separately. We have c(t, t′, ỹ, ỹ′, τ, η̃, ζ) = β2∗(bM+bψ+m1+g1)(t, t′, ỹ, ỹ′, τ, η̃, ζ)
for

bM = β1∗aM , bψ = β1∗aψ, m1 = β1∗m, g1 = β1∗g. (101)

We then set

cM := β2∗bM , cψ := β2∗bψ, m2 := β2∗m1, g2 := β2∗g1. (102)

Let us now compute the symbols (101). By definition we have

(β1∗aψ)(t, t′, y, y′, τ, η, ζ)u(r̃) = (β∗1)−1(opr(aψ)(t, t′, y, y′, τ, η, ζ)(β∗1u)(r)) (103)
= opr̃(bψ)(t, t′, y, y′, τ, η, ζ)u(r̃)

for

aψ(r, r′, t, t′, y, y′, %, τ, η, ζ)

:= σ(r)r−µt−µχ1(r[tτ, η, tζ])P̃ (r, t, t′, y, y′, r%, rtτ, rη, rtζ)χ2(r′[tτ, η, tζ])σ̃(r′),

cf. the formulas (63) and (67). This gives us

bψ(t, t′, y, y′, τ, η, ζ) = opr̃(bψ)(t, t′, y, y′, τ, η, ζ) (104)
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for

bψ(r̃, r̃′, t, t′, y, y′, %, τ, η, ζ)

:= r̃−µσ
( r̃
t

)
χ1

( r̃
t
[tτ, η, tζ]

)
P̃

( r̃
t
, t, t′, y, y′, r̃%, r̃τ,

r̃

t
η, r̃ζ

)
χ2

( r̃′
t
[tτ, η, tζ]

)
σ̃
( r̃′
t

)
.

Analogously, we obtain

bM (t, t′, y, y′, τ, η, ζ)u(r̃) = (β1∗aM )(t, t′, y, y′, τ, η, ζ)u(r̃)

= (β∗1)−1(op
γ−n

2
M (aM ))(t, t′, y, y′, τ, η, ζ)(β∗1u)(r)

= op
γ−n

2
M (bM )u(r̃)

(105)

for

aM (r, r′, t, t′, y, y′, v, τ, η, ζ)

:= σ(r)r−µt−µω1(r[tτ, η, tζ])H̃(r, t, t′, y, y′, v, τ, η, ζ)ω2(r′[tτ, η, tζ])σ̃(r′),

cf. the formulas (66) and (69), and

bM (r̃, r̃′, t, t′, y, y′, v, τ, η, ζ)

:= r̃−µσ
( r̃
t

)
ω1

( r̃
t
[tτ, η, tζ]

)
H̃(r, t, t′, y, y′, v, r̃τ,

r̃

t
η, r̃ζ)ω2

( r̃′
t
[tτ, η, tζ]

)
σ̃
( r̃′
t

)
.

Moreover, we have

m1(t, t′, y, y′, τ, η, ζ)u(r̃) = (β1∗m)(t, t′, y, y′, τ, η, ζ)u(r̃)

= (β∗1)−1 op
γ−n

2
M,r (m)(t, t′, y, y′, τ, η, ζ)(β1∗u)(r)

= op
γ−n

2
M,r̃ (m1)u(r̃)

(106)

for

m(r, r′, t, t′, y, y′, τ, η, ζ) = r−µt−µω1(r[tτ, η, tζ])F (t, t′, y, y′, v)ω2(r′[tτ, η, tζ])

and

m1(r̃, r̃′, t, t′, y, y′, v, τ, η, ζ) = r̃−µω1

( r̃
t
[tτ, η, tζ]

)
F (t, t′, y, y′, v)ω2

( r̃′
t
[tτ, η, tζ]

)
.

Finally, we consider the push forward of the Green operator family g(t, t′, y, y′, τ, η, ζ)
under β1. We employ the following characterisation by kernels.

Proposition 3.10 The conditions (73) and (74) are equivalent to the existence of
a function

K(t, t′, y, y′, τ̃ , η, ζ̃; r, r′) ∈ Sµ+1
cl (R1+q

t,y ×R1+q
t′,y′×R1+q+p

τ̃ ,η,ζ̃
)⊗̂πSγ−µ(X∧

r,x)ε⊗̂πS−γ(X∧
r′,x′)ε,
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such that

G(t, t′, y, y′, τ̃ , η, ζ̃)v(r) =

∞∫
0

K(t, t′, y, y′, τ̃ , η, ζ̃; r[τ̃ , η, ζ̃], r′[τ̃ , η, ζ̃])v(r′)dr′ (107)

for all v ∈ Ks,γ(X∧
r′,x′).

A pointwise kernel characterisation of such a type for Green operators in a cone is
obtained by Seiler [24]; this gives rise to a corresponding characterisation of corre-
sponding edge Green symbols on the lines of [22]. In the relation (107) we suppressed
the dependence of functions on (x, x′) or x′, both in K and in the argument func-
tions v ∈ Ks,γ(X∧

r′,x′); clearly, in formulas of the kind (107) we have to integrate
over x′ ∈ X. We hope that our shorter notation will not cause confusion.

By definition we have the relation (72), i.e.,

g(t, t′, y, y′, τ, η, ζ)v(r) = t−µ
∞∫
0

K(t, t′, y, y′, tτ, η, tζ; r[tτ, η, tζ], r′[tτ, η, tζ])v(r′)dr′

which gives us

g1(t, t′, y, y′, τ, η, ζ)u(r̃) = (β1∗g)(t, t′, y, y′, τ, η, ζ)u(r̃)

= (β∗1)−1g(t, t′, y, y′, τ, η, ζ)(β∗1u)(r)

= t−(µ+1)

∞∫
0

K(t, t′, y, y′, tτ, η, tζ;
r̃

t
[tτ, η, tζ],

r̃′

t
[tτ, η, tζ])u(tr̃′)dr̃′.

(108)

Proof of Theorem 2.14. Using the form (65) of the symbol a = aM + aψ +m+ g
in the variables (t, t′, y, y′, τ, η, ζ), we have to compute

b = β1∗(a) = bM + bψ +m1 + g1

in the variables (t, t′, y, y′, τ, η, ζ), cf. the expressions (103), (104), (105), (106) and
(108).

We first observe that in our calculations the choice of the cut-off functions ω1(r),
ω2(r) and χ1(r), χ2(r) is not essential. Since ζ 6= 0 is fixed, we may assume
[tτ, tη̃, tζ] = |tτ, tη̃, tζ| for all t ≥ T . Thus, if ω(r) is any cut-off function and
χ(r) = 1− ω(r), we have

χ(
r̃

t
[tτ, η, tζ]) = χ(

r̃

t
[tτ, tη̃, tζ]) = χ(r̃|τ, η̃, ζ|) (109)

for t ≥ T , η̃ :=
η

t
, and, similarly, for ω. Since it is known from [6] (cf. also [14] for

the case of boundary value problems) that the operator functions (102) are elements
of

Sµ(R1+q
t,ỹ × R1+q

t′,ỹ′ × R1+q;E, Ẽ),
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then we may concentrate on the exit effects for large |(t, ỹ)| and |(t′, ỹ′)|.
Using (109), it follows that

ω(t, t′)cψ(t, t′, ỹ, ỹ′, τ, η̃, ζ) = ω(t, t′)bψ
(
t, t′,

ỹ

t
,
ỹ′

t
, τ, tη̃, ζ

)
=opr̃

{
r̃−µσ

( r̃
t

)
χ1(r̃|τ, η̃, ζ|)ω(t, t′)

P̃
( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t
, r̃%, r̃τ, r̃η̃, r̃ζ

)
χ2(r̃′|τ, η̃, ζ|)σ̃

( r̃′
t

)}
is equal to ω(t, t′)cψ modulo a term with compact support in t which is of sim-
pler structure and can easily be identified as an element of Sµ;−∞,0(E, Ẽ), cf. the
condition (80).

We now apply a modification of the method of [14] in order to prove that our
operator functions are operator-valued symbols of the desired classes. Our case
is even simpler than the one in [14], because we do not consider boundary value
problems but operators on a closed compact C∞ manifold X. On the other hand,
in the present case we have to observe the extra exit properties with respect to
|t, y| → ∞.

The function (64) can be written as a convergent sum

P̃ (r, t, t′, y, y′, %̃, τ̃ , η̃, ζ̃) =
∞∑
j=0

λjϕj(r, t, t′, y, y′)Pj(%̃, τ̃ , η̃, ζ̃) (110)

with λj ∈ C,
∑∞

j=0 |λj | < ∞, and ϕj ∈ C∞(R+ × R+ × R+ × B × B), Pj ∈
Lµcl(X; R2+q+p) tending to zero in the respective spaces for j → ∞. Because of the
assumption on P , we may choose ϕj in such a way that

ϕj ≡ 0 for y, y′ in a neighbourhood of ∂B, (111)

moreover,
ϕj ≡ 0 for t < T0 or t′ < T0, for some T0 > 0, (112)

and

ϕj independent of t for t > T1 and of t′ for t′ > T1, for some T > 0, (113)

cf. the relations (79) and (80).

Let ω̃(t, t′) be another function as in Lemma 2.10 such that ω̃ ≡ 1 on suppω.

We obtain (first formally, and then, including convergence)

cψ(t, t′, ỹ, ỹ′, τ, η̃, ζ) =
∞∑
j=0

λjσ
( r̃
t

)
ϕj

(
r, t, t′,

ỹ

t
,
ỹ′

t

)
bj(τ, η̃, ζ)ω̃(t, t′)σ̃

( r̃′
t

)
(114)
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for

bj(τ, η̃, ζ) := opr̃
(
r̃−µχ1(r̃[τ, η̃, ζ])Pj(r̃%, r̃τ, r̃η̃, r̃ζ)χ2(r̃′[τ, η̃, ζ])

)
. (115)

From Proposition 1.12 we know that bj(τ, η̃, ζ) belongs to

Sµcl(R
1+q
τ,η̃ ;Ks,γ(X∧),Ks−µ,γ−µ(X∧))

for ζ 6= 0, and tends to zero in that space for j → ∞. In addition, the operator of

multiplication by σ(
r̃

t
)ϕj(

r̃

t
, t, t′,

ỹ

t
,
ỹ′

t
)ω(t, t′) belongs to S0;0,0(R3(1+q); ·, ·) (where

dots stand for Ks,γ(X∧) for any s, γ) and tends to zero for j → ∞, cf. Lemma

2.11 below. The operator of multiplication by ω̃(t, t′)σ̃(
r̃′

t
) can also be treated as

a symbol of the class S0;0,0(R3(1+q); ·, ·) by Lemma 2.12 (which includes the vari-
ables ỹ, ỹ′ because of the assumption on the support of the amplitude functions).
Thus, by virtue of Remark 2.8 below, the factors at λj in the sum (114) belong
to Sµ;0,0(R3(1+q);E, Ẽ) and tend to zero for j → ∞. Thus (114) converges in this
space.

Concerning analogous calculations for scalar symbols, see [11, Section 3.3.8].

Let us now analyse the non-smoothing Mellin contribution of ωc which is of the form

ω(t, t′)cM (t, t′, ỹ, ỹ′, τ, η̃, ζ) = ω(t, t′)bM
(
t, t′,

ỹ

t
,
ỹ′

t
, τ, tη̃, ζ

)
= op

γ−n
2

M,r̃

{
r̃−µω1(r̃|τ, η̃, ζ|)ω(t, t′)H̃

( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t
, v, r̃τ, r̃η̃, r̃ζ

)
ω2(r̃′|τ, η̃, ζ|)

}
.

Here, for simplicity, we omitted the factors σ
( r̃
t

)
and σ̃

( r̃′
t

)
which occur in (69),

using the fact that the specific choice of σ and σ̃ is unessential: so without loss of
generality we assume σ ≡ 1 on suppω1, σ̃ ≡ 1 on suppω2.

The function H̃ can be written as a convergent sum

H̃(r, t, t′, y, y′, v, τ̃ , η̃, ζ̃) =
∞∑
j=0

λjϕj(r, t, t′, y, y′)Hj(v, τ̃ , η̃, ζ̃)

with λj ∈ C,
∑∞

j=0 |λj | < ∞, and ϕj ∈ C∞(R+ × R+ × R+ × B × B), Hj ∈
Lµcl(X; C × R1+q+p

τ̃ ,η̃,ζ̃
), tending to zero in the respective spaces for j → ∞. We still

have the support properties of the kind (79), (80). Then, analogously as for ωcψ
before, we obtain in the present case

ω(t, t′)cM (t, t′, ỹ, ỹ′, τ, η̃, ζ) =
∞∑
j=0

λjcj(t, t′, ỹ, ỹ′, τ, η̃, ζ) (116)

44



for

cj(t, t′, ỹ, ỹ′, τ, η̃, ζ)

:= op
γ−n

2
M,r̃

{
ϕj

( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t

)
ω(t, t′)ω1(r̃|τ, η̃, ζ|)r̃−µHj(v, r̃τ, r̃η̃, r̃ζ)ω2(r̃′|τ, η̃, ζ|

)}
.

This gives us

ω(t, t′)cM (t, t′, ỹ, ỹ′, τ, η̃, ζ) =
∞∑
j=0

λjϕj
( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t

)
ω(t, t′)bj(τ, η̃, ζ)

for bj(τ, η̃, ζ) := op
γ−n

2
M,r̃

{
r̃−µω1(r̃|τ, η̃, ζ|)Hj(v, r̃τ, r̃η̃, r̃ζ)ω2(r̃′|τ, η̃, ζ|)

}
.

Similarly as before, the operators of multiplication by ϕj
( r̃
t
, t, t′,

ỹ

t
,
ỹ′

t

)
ω(t, t′) be-

long to the space S0;0,0(R3(1+q);E,E) and tend to zero in that space for j → ∞.
Moreover, from [6] and [14] we know that the operator-valued symbols bj belong
to Sµ;0,0(R3(1+q);E, Ẽ) and also tend to zero as j → ∞. Thus (116) converges in
Sµ;0,0(R3(1+q);E, Ẽ), which shows the assertion for ωcM .

The next expression to be analysed is the smoothing Mellin summand of ωc. We
have (cf. the notations (70) and (71))

ω(t, t′)m2(t, t′, ỹ, ỹ′, τ, η̃, ζ) = ω(t, t′)m1(t, t′,
ỹ

t
,
ỹ′

t
, τ, tη̃, ζ)

= op
γ−n

2
M,r̃

{
r̃−µω1(r̃|τ, η̃, ζ|)ω(t, t′)F (t, t′,

ỹ

t
,
ỹ′

t
, v)ω2(r̃′|τ, η̃, ζ|)

}
.

The arguments for m2 ∈ Sµ;0,0(R3(1+q);E, Ẽ) are analogous to those for the non-
smoothing Mellin term, using again a tensor product argument for the function
F (t, t′, y, y′, v).

The last summand in ω(t, t′)c(t, t′, ỹ, ỹ′, τ, η̃, ζ) to be characterised is the Green term
defined by

ω(t, t′)g2(t, t′, ỹ, ỹ′, τ, η̃, ζ)u(r̃)

= ω(t, t′)t−(µ+1)

∞∫
0

K(t, t′,
ỹ

t
,
ỹ′

t
, tτ, tη̃, tζ; r̃|τ, η̃, ζ|, r̃′|τ, η̃, ζ|)u(r̃′)dr̃′,

for all u ∈ Ks,γ(X∧
r′,x′). Similarly as before, since ζ 6= 0 is fixed and t is sufficiently

large on the support of the amplitude function, we could replace [·] by | · |. Recall
that the integration with respect to the variables x ∈ X is automatically carried out.
Let us represent the kernel function K of Proposition 3.10 as a convergent series

K(t, t′, y, y′, τ̃ , η, ζ̃; r, r′) =
∞∑
i=0

λjkj(t, t′, y, y′, τ̃ , η, ζ̃)Kj(r, r′)
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for sequences λj ∈ C,
∑∞

j=0 |λj | <∞, kj ∈ Sµ+1
cl (R1+q

t,y ×R1+q
t′,y′×R1+q+p

τ̃ ,η,ζ̃
), Kj(r, r′) ∈

Sγ−µ(X∧
r,x)ε⊗̂πS−γ(X∧

r′,x′)ε tending to zero in the respective spaces as j →∞. Since
the conditions (79) and (80) are valid in analogous form for the function K with
respect to the variables (t, t′, y, y′), we can obviously choose the elements kj in such
a way that they also satisfy these conditions.

We then obtain

g2(t, t′, ỹ, ỹ′, τ, η̃, ζ)u(r̃) (117)

=
∞∑
j=0

λjω(t, t′)t−(µ+1)kj(t, t′,
ỹ

t
,
ỹ′

t
, tτ, tη̃, tζ)

∞∫
0

Kj(r̃|τ, η̃, ζ|, r̃′|τ, η̃, ζ|)u(r̃′)dr̃′.

The factors ω(t, t′)t−(µ+1)Kj(t, t′,
ỹ

t
,
ỹ′

t
, tτ, tη̃, tζ) are scalar symbols in Sµ;0,0(R3(1+q))

tending to zero as j →∞. Moreover,

Gj(τ, η̃, ζ) : u(r̃) 7→
∞∫
0

Kj(r̃|τ, η̃, ζ|, r̃′|τ, η̃, ζ|)u(r̃)dr̃

represent symbols in Sµ(R1+q;E, Ẽ) tending to zero as j → ∞. This shows that
the series (117) converges in the space Sµ;0,0(R3(1+q);E, Ẽ) which completes the
proof.

We have studied so far the upper left corners (75) of local edge symbols. Additional
edge conditions up to infinity are encoded by the 12-, 12-, and 22-entries of the Green
contributions in general form, cf. the expressions (72) and (73). Finally, the spaces
E and Ẽ are to be replaced by E⊕Cj− and Ẽ⊕Cj+ . The details are straightforward
after the proof for the case of upper left corners and will be omitted; so we only
formulate the corresponding generalisation of Theorem 2.14 (with the same notation
for the spaces E and Ẽ):

Theorem 3.11 For every fixed ζ 6= 0 the entries

ω(t, t′)β2∗(β1∗g)(t, t′, ỹ, ỹ′, τ, η̃, ζ) =: (gij)i,j=1,2(t, t′, ỹ, ỹ′, τ, η̃, ζ)

are symbols of the kind

g12 ∈ Sµ−
n+1

2
;0,0(R3(1+q); Cj− , Ẽ), g21 ∈ Sµ+n+1

2
;0,0(R3(1+q);E,Cj+),

and g22 ∈ Sµ;0,0(R3(1+q); Cj− ,Cj+) (the upper left corner g11 was characterised in
Theorem 2.14).
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