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Abstract

The tension-compression vibration of an elastic cusped plate is studied under
all the reasonable boundary conditions at the cusped edge, while at the non-
cusped edge displacements and at the upper and lower faces of the plate stresses
are given.
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Introduction

The present paper studies elastic plates the thickness of which may vanish on a
part of the plate projection boundary, i.e., so called cusped plates. The tension-
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compression vibration of cusped plates is considered within the framework of the
N = 1 approximation of I. Vekua’s hierarchical models. For the corresponding
degenerate static system when the thickness is given by 2h = xκ

2 , κ = const >
0, x2 ≥ 0, the homogeneous Dirichlet problem was studied in G. Devdariani, G.
Jaiani, S. Kharibegashvili, D. Natroshvili, 2000 and G. Devdariani, 2001. Now,
we investigate the vibration system (if the vibration frequency is equal to zero,
we get the static system) under all admissible nonhomogeneous Dirichlet, weighted
Neumann, and mixed boundary conditions (BCs) when the thickness satisfies the
unilateral condition 2h(x1, x2) ≤ hκx

κ
2 , hκ = const > 0, κ = const ≥ 0, x2 ≥ 0. The

bending vibration problem can be investigated in an analogous manner.
The paper is organized as follows. In Section 1 we establish the vibration system

in the first approximation and formulate some auxiliary facts. In Section 2 we
introduce and investigate some necessary weighted Sobolev spaces. Section 3 deals
with the proof of Hardy’s inequality in weighted Sobolev spaces. Section 4 is devoted
to Korn’s weighted inequaltiy. In Section 5 we formulate the admissible boundary
value problems (BVPs). In Section 6 we prove existence and uniqueness theorems.
Finally, Section 7 is devoted to some general comments. Historically, the first models
of elastic deformable bodies were 1D and 2D models, and then the 3D linear model
of elastic bodies. In the middle of the XX century attempts were made, on the one
hand to refine classical 1D and 2D models and, on the other hand, to obtain them
from the 3D linear model pre-supposing the displacement to be polynomial in the
thickness variable, transversal to the middle-surface. Such 2D models are known as
hierarchical models. First achievements in this direction can be found in I. Vekua,
1955, 1965, 1985. Existence and uniqueness theorems in Sobolev spaces for I. Vekua’s
hierarchical models in the static case were proved by D. Gordeziani, 1974a. He also
estimated the rate of approximation for these models in Ck spaces, cf. D. Gordeziani
1974b. These investigations found their logical completion in M. Avalishvili, D.
Gordeziani, 2003. In this direction Ch. Schwab’s 1996 work is also remarkable.
Various aspects of I. Vekua’s models were studied by T. Vashakmadze 1999, T.
Meunargia, 1998, V. Zhgenti, 1991, I. Khoma, 1986, V. Guliaev, V. Baganov, P.
Lizunov, 1978, A. Khvoles, 1971, etc. A new stage for models in variational form
began with the work of M. Vogelius, I. Babuška, 1981a,b. In the finite element
framework the idea of hierarchical models has been first formulated by B. Szabó, G.
Sahrmann, 1988, for isotropic domains, mathematically investigated by I. Babuška,
L. Li, 1991, 1992a,b, and generalized to laminated composites by I. Babuška, B.
Szabó, R. Actis, 1992, R. Actis, B. Szabó, Ch. Schwab, 1999. More details may be
found in a survey paper of M. Dauge, E. Faou, Z. Yosibash 2004.

1 The Resolving System of Degenerate Equations

In the N = 1 model (approximation) of I. Vekua’s hierarchical models of symmetric
prismatic shells, i.e., plates of variable thickness 2h(x1, x2) ∈ C1(ω) ∩ C(ω) the
tension-compression vibration system has the following form:

Lu = f in ω (1.1)
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where ω is a bounded open set in R2 with Lipschitz boundary (specified below),

L := (L1, L2, 3L3), u := (u1, u2, v3), f := (f1, f2, f3) := −(X1, X2, 3X3), (1.2)

L1u := (λ+ 2µ)(hu1,1),1 + µ(hu1,2),2 + λ(hu2,2),1

+ µ(hu2,1),2 + 3λ(hv3),1 + c2phu1 = −X1,

L2u := µ(hu2,1),1 + (λ+ 2µ)(hu2,2),2 + µ(hu1,2),1 + λ(hu1,1),2 (1.3)
+ 3λ(hv3),2 + c2phu2 = −X2,

L3(u) := µ(h3v3,1),1 + µ(h3v3,2),2 − λhu1,1 − λhu2,2

− 3(λ+ 2µ)hv3 + c2ph3v3 = −hX3, (x1, x2) ∈ ω.

Here u1 :=
1
v10, u2 :=

1
v20 are so called zero weighted moments, and v3 :=

1
v31 is the

so called first weighted moment (see Vekua 1965) of the corresponding components
of U(x1, x2, x3) := (U1, U2, U3) (note that in our case the displacement vector has the
form U(x1, x2, x3, t) = eictU(x1, x2, x3)); λ > 0 and µ > 0 are the Lamé constants,
Xα, α = 1, 2 are the sums of some combinations of the α-th component of the surface
forces acting on the plate faces and of the zero moments of the α-th component of the
volume forces; X3 is the sum of a combination of the third components of the surface
forces acting on the plate faces and of the first moment of the third component of
the volume forces, indices after ‘comma’ mean differentiation with respect to the
corresponding variables, p is the plate density, c is the vibration frequency, and ω is
a projection on the plane x3 = 0 of the plate Ω:

Ω := {(x1, x2, x3) ∈ R3 : (x1, x2) ∈ ω,−h(x1, x2) < x3 < h(x1, x2)}.

If c = 0, from (1.1) we get the system corresponding to the static case. We suppose
that ω has a Lipschitz boundary ∂ω = γ0 ∪ γ, where γ0 is a segment of the axis x1,
and γ lies in the upper half-plane x2 > 0. Let

2h(x1, x2) > 0 if (x1, x2) ∈ ω ∪ γ (1.4)

and
2h(x1, 0) ≥ 0 if (x1, 0) ∈ γ0. (1.5)

When h(x1, 0) = 0, the plate is called a cusped one. Note that in the latter case, on
the one hand, a 3D domain Ω occupied by the plate will be, in general, a domain
with a non-Lipschitz boundary, on the other hand, the elliptic in ω system (1.1) will
have an order degeneration on γ0.

Let
u, u∗ ∈ C2(ω) ∩ C1(ω), u∗ := (u∗1, u

∗
2, u

∗
3).

Evidently, after multiplication by u∗ and integration by parts from (1.1) we obtain,
that ∫

ω

Lu · u∗dω = −
∫
ω

Bc(u, u∗)dω −
∫
∂ω

Tnu · u∗d∂ω =
∫
ω

f · u∗dω, (1.6)
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where n := (n1, n2, n3) is the inward normal, Tn := (Xn10, Xn20, 3hXn31) with

Xn10u =
3∑

j=1

1
σ1j0nj =

2∑
β=1

1
σ1β0nβ (1.7)

= h
{[

(λ+ 2µ)u1,1 + λu2,2 + 3λv3
]
n1 + µ(u1,2 + u2,1)n2

}
,

Xn20u =
2∑

β=1

1
σ2β0nβ (1.8)

= h
{
µ(u2,1 + u1,2)n1 +

[
(λ+ 2µ)u2,2 + λu1,1 + 3λv3

]
n2

}
,

hXn31u =
2∑

β=1

h
1
σ3β1nβ = h3µ

2∑
β=1

v3,βnβ, (1.9)

1
σαβ0 and

1
σ3β1, α, β = 1, 2, denote in the N = 1 approximation the zero and first

moments, respectively, of the corresponding components of the 3D stress tensor σij ,
i, j = 1, 2, 3,

Bc(u, u∗) := (λ+ 2µ)hu1,1u
∗
1,1 + µhu1,2u

∗
1,2 + λhu2,2u

∗
1,1 (1.10)

+ µhu2,1u
∗
1,2 + 3λhv3u∗1,1 − c2phu1u

∗
1 + µhu2,1u

∗
2,1

+ (λ+ 2µ)hu2,2u
∗
2,2 + µhu1,2u

∗
2,1 + λhu1,1u

∗
2,2 + 3λhv3u∗2,2

− c2phu2u
∗
2 + 3µh3v3,1v

∗
3,1 + 3µh3v3,2v

∗
3,2 + 3λhu1,1v

∗
3 + 3λhu2,2v

∗
3

+ 9(λ+ 2µ)hv3v∗3 − 3c2ph3v3v
∗
3

= λh(u1,1 + u2,2 + 3v3)(u∗1,1 + u∗2,2 + 3v∗3)

+ µh
[
2u1,1u

∗
1,1 + 2u2,2u

∗
2,2 + (u2,1 + u1,2)(u∗2,1 + u∗1,2) + 18v3v∗3

]
+ 3µh3(v3,1v

∗
3,1 + v3,2v

∗
3,2)− c2p

[
h(u1u

∗
1 + u2u

∗
2) + 3h3v3v

∗
3

]
=: B(u, u∗)− c2p

[
h(u1u

∗
1 + u2u

∗
2) + 3h3v3v

∗
3

]
.

Note that the bilinear operators Bc(u, u∗) and B(u, u∗) correspond to the vibration
and static cases, respectively. Obviously,

B(u, u) = λh(u1,1 + u2,2 + 3v3)2

+ µh
[
2(u1,1)2 + 2(u2,2)2 + (u2,1 + u1,2)2 + 18(v3)2

]
+ 3µh3

[
(v3,1)2 + (v3,2)2

]
≥ 0 in ω. (1.11)

Non-negativeness of Bc(u, u) causes a restriction on the vibration frequency c. This
restriction is connected with the minimal eigenvalue problem for the system (1.1)
and will be clarified below.
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If we consider boundary value problems (BVPs) for the system (1.1) with homo-
geneous BCs when on ∂ω either

u = 0, (1.12)

or
Tnu = 0, (1.13)

or
uα = 0, α = 1, 2; hXn31 = 0, (1.14)

or
Xnα0 = 0, α = 1, 2; v3 = 0, (1.15)

or
u1 = 0, Xn20 = 0, hXn31 = 0, (1.16)

or
Xn10 = 0, u2 = 0, hXn31 = 0, (1.17)

or
u1 = 0, Xn20 = 0, v3 = 0, (1.18)

or
Xn10 = 0, u2 = 0, v3 = 0, (1.19)

or on different parts of ∂ω different BCs (1.12) -(1.19) are given, then in (1.6) the
integral along ∂ω will disappear and we obtain∫

ω

Bc(u, u∗)dω = −
∫
ω

f · u∗dω. (1.20)

Equality (1.20) will play crucial role in the definition of weak solutions of the
above BVPs for the systems (1.1). It is remarkable, that as it will be shown below,
u1, u2, and v3 cannot be, in general prescribed on γ0. The admissibility of Dirichlet
conditions for u1, u2, and v3 depends on the order of degeneration of the system (1.1)
or, in other words, on the geometry of the plate sharpening. For instance, when the
plate as 3D body has either a cuspidal edge (i.e., ∂Ω is non-Lipschitz boundary) or
an angular edge, then u1, u2 and v3 cannot be given on γ0.

2 Weighted Function Spaces

Let us introduce some weighted spaces.

Definition 2.1 By

W 1
2

(
ω,

ρ0

ρ1

)
(2.1)

we denote a set of all measurable functions ϕ defined on ω which have on ω gener-
alized (regular distributional) derivatives

∂(α1,α2)
x1,x2

ϕ for α1 + α2 ≤ 1, α1, α2 ∈ {0, 1}, ∂(0,0)
x1,x2

ϕ ≡ ϕ, (2.2)
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such that ∫
ω

∣∣∣∂(α1,α2)
x1,x2

ϕ|2ρα1+α2dω < +∞, (2.3)

where ρ0 and ρ1 are measurable, a.e. positive and finite on ω functions.
The space (2.1) is endowed with the norm

‖ϕ‖2
W 1

2 (ω, ρ0
ρ1

) :=
∫
ω

{
ρ0ϕ

2 + ρ1

[
(ϕ,1)2 + (ϕ,2)2

]}
dω (2.4)

and the scalar product

(ϕ,ψ)W 1
2 (ω, ρ0

ρ1
) :=

∫
ω

[ρ0ϕψ + ρ1(ϕ,1ψ,1 + ϕ,2ψ,2]dω. (2.5)

Definition 2.2 W 1
2 (ω, ρ) := W 1

2

(
ω,

ρ
ρ

)
.

According to Definitions 2.1, 2.2 we have the following sets

W 1
2

(
ω,

1
h

)
,W 1

2

(
ω, h

)
,W 1

2

(
ω,

h
h3

)
,W 1

2

(
ω,

1
xκ

2

)
,W 1

2

(
ω, xκ

2

)
,

W 1
2

(
ω,

xκ
2

x3κ
2

)
,W 1

2

(
ω, x3κ

2

)
,W 1

2

(
ω,

xκ−2
2

xκ
2

)
,W 1

2

(
ω,

xκ−2
2

h

)
, (2.6)

W 1
2

(
ω,

1
dκ

)
,W 1

2

(
ω, dκ

)
,W 1

2

(
ω, d3κ

)
,

where
κ = const > 0,

and
d(x1, x2) := dist{(x1, x2) ∈ ω, ∂ω}

is the distance between (x1, x2) ∈ ω and ∂ω, is clear.

Lemma 2.3 The sets (2.6) are Banach spaces, and moreover Hilbert spaces.

Proof. Lemma 2.3 immediately follows from a general theorem of Kufner, Opic,
1984, since

h−1, h−3, x−κ
2 , x−3κ

2 , x2−κ
2 , d−κ, d−3κ ∈ Lloc

1 (ω). (2.7)

Definition 2.4 In the set

W 1
2

(
ω,

ρ
h

)
×W 1

2

(
ω,

ρ
h

)
×W 1

2

(
ω,

h
h3

)
(2.8)
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of vector-functions u := (u1, u2, v3) such that

uα ∈W 1
2

(
ω,

ρ
h

)
, α = 1, 2; v3 ∈W 1

2

(
ω,

h
h3

)
(2.9)

we introduce two norms:

∥∥∥u∥∥∥2

W 1
2,ρ

:=
2∑

α=1

∥∥∥uα

∥∥∥2

W 1
2 (ω,ρh)

+
∥∥∥v3∥∥∥2

W 1
2 (ω,h

h3 )
, (2.10)

∥∥∥u∥∥∥2

BW 1
2,ρ

:=
∫
ω

{
ρ
[
(u1)2 + (u2)2

]
+B(u, u)

}
dω, (2.11)

and the corresponding scalar products:

(u, u∗)W 1
2,ρ

:=
2∑

α=1

(uα, u
∗
α)W 1

2 (ω,ρh) + (v3, v∗3)W 1
2 (ω,h

h3 ), (2.12)

(u, u∗)BW 1
2,ρ

:=
2∑

α=1

(
ρ1/2uα, ρ

1/2u∗α

)
L2(ω)

+
∫
ω

B(u, u∗)dω. (2.13)

The obtained spaces will be denoted by

W 1
2,ρ (2.14)

and
BW 1

2,ρ, (2.15)

respectively.

In this paper we consider the spaces (2.14) and (2.15) for

ρ = 1, ρ = xκ−2
2 , ρ = h. (2.16)

Let further
W 1

2,κ−2
:= W 1

2,xκ−2
2

, (2.17)

BW 1
2,κ−2

:= BW 1
2,xκ−2

2
. (2.18)

Evidently, from (2.17), (2.18) for κ = 2 and (2.14), (2.15) for ρ = 1, we have

W 1
2,0

= W 1
2,1, (2.19)

BW 1
2,0

= BW 1
2,1. (2.20)
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Theorem 2.5 The spaces (2.19), (2.20),

W 1
2,κ−2

, (2.21)

and
BW 1

2,κ−2
(2.22)

are Hilbert spaces, and we have

‖u‖2
BW 1

2,0
(BW 1

2,κ−2
) ≤ C‖u‖2

W 1
2,0

(BW 1
2,κ−2

), (2.23)

where
C := max{1, 9(3λ+ 2µ)}.

Proof. The vector spaces (2.14) and (2.21) are Hilbert spaces since so are the spaces

W 1
2

(
ω,

h
h3

)
and W 1

2

(
ω,

ρ
h

)
for ρ = 1 and ρ = xκ−2

2 .

Let us prove the completeness of the vector spaces (2.15), (2.22) since the scalar
products defined by (2.13) and (2.20), obviously, have all the properties of scalar
products. Let

n
u be a fundamental sequence in W 1

2,0
, i.e.,

‖ n
u − m

u ‖W 1
2,0
→ 0 as n,m→ +∞, (2.24)

then from (2.11), taking into account (1.11), we get∥∥∥ n
uα −

m
uα

∥∥∥
L2(ω)

→ 0,
∥∥∥h(n

uα,α −
m
uα,α)

∥∥∥
L2(ω)

→ 0, α = 1, 2, (2.25)∥∥∥h(n
v3 −

m
v 3)

∥∥∥
L2(ω)

→ 0,
∥∥∥h3(

n
v3,α −

m
v 3,α)

∥∥∥
L2(ω)

→ 0, α = 1, 2, (2.26)∥∥∥h(n
u2,1 −

m
u2,1) + h(

n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

→ 0, as n,m→ +∞. (2.27)

Replacing u1 in (2.11) by −u1, we obtain in a similar manner∥∥∥h(n
u2,1 −

m
u2,1)− h(

n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

→ 0, as n,m→ +∞. (2.28)

From (2.27) and (2.28) then follows∥∥∥h(n
u2,1 −

m
u2,1)

∥∥∥
L2(ω)

=
1
2

∥∥∥h(n
u2,1 −

m
u2,1) + h(

n
u1,2 −

m
u1,2)

+ h(
n
u2,1 −

m
u2,1)− h(

n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

(2.29)

≤ 1
2

∥∥∥h(n
u2,1 −

m
u2,1) + h(

n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

+
1
2

∥∥∥h(n
u2,1 −

m
u2,1)− h(

n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

→ 0
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as n,m→ +∞, and, similarly,∥∥∥h(n
u1,2 −

m
u1,2)

∥∥∥
L2(ω)

→ 0, as n,m→ +∞. (2.30)

(2.25), (2.29), (2.30), (2.26) mean that
n
uα, α = 1, 2, and

n
v3 are fundamental se-

quences in W 1
2

(
ω, 1

h

)
and W 1

2

(
ω, h

h3

)
, respectively. Since the latter spaces are com-

plete there exist elements

uα ∈W 1
2

(
ω,

1
h

)
, α = 1, 2, v3 ∈W 1

2

(
ω,

h

h3

)
such that∥∥∥ n

uα −uα

∥∥∥
W 1

2 (ω, 1
h)
→ 0, α = 1, 2,

∥∥∥ n
v3 −v3

∥∥∥
W 1

2 (ω, h
h3 )

→ 0, as n→ +∞.

Therefore, on the one hand,

u := (u1, u2, v3) ∈W 1
2,0

and, on the other hand, ∥∥∥ n
u −u

∥∥∥
W 1

2,0

→ 0, as n→ +∞.

Hence, in view of (2.8), (2.11), (2.15), (2.20),

u ∈ BW 1
2,0

and, by virtue of∥∥∥u∗∥∥∥2

BW 1
2,0

≤
∫
ω

{
(u∗1)

2 + (u∗2)
2 + 3λh

[
(u∗1,1)

2 + (u∗2,2)
2 + 9(v∗3)

2
]

+ µh
[
2(u∗1,1)

2 + 2(u∗2,2)
2 + 2(u∗2,1)

2 + 2(u∗1,2)
2 + 18(v∗3)

2
]

+ 3µh3
[
(v∗3,1)

2 + (v∗3,2)
2
]}
dω ≤ C

∥∥∥u∗∥∥∥2

W 1
2,0

, (2.31)

which is true for any
u∗ := (u∗1, u

∗
2, v

∗
3) ∈W 1

2,0
,∥∥∥n

u −u
∥∥∥

BW 1
2,0

→ 0 as n→ +∞. (2.32)

Thus, along with (2.24) we have (2.32) which means the completeness of the space
BW 1

2,0
. The arguments for the completeness of BW 1

2,κ−2
are similar. Observe that

(2.23) is a consequence of (2.31).
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In what follows we assume

h(x1, x2) ≥ hκx
κ
2 ∀(x1, x2) ∈ ω, hκ, κ = const > 0, (2.33)

where κ denotes the smallest possible exponent. If (2.33) holds for every κ > 0, i.e.,
a minimal one does not exist, then we assume κ as arbitrarily small. An example
for such a situation is the case

h(x1, x2) = h0

[
ln

(
l

x2

)]−1

, h0 = const > 0, l > max
(x1,x2)∈ω

{x2}. (2.34)

In the particular case of (2.33) when

hκxκ
2 ≥ h(x1, x2) ≥ hκx

κ
2 , hκ = const > 0, (2.35)

it is clear that κ is minimal, otherwise we would have a contradiction to the left
inequality in (2.35). If κ < 1

3 in (2.33) (for the N-th approximation 1
3 should be

replaced by 1
1+2N ), it is not necessary to find a minimal κ, since for any κ < 1

3 we
have the same result concerning the traces of u on γ0 (see below). So, in the case
(2.34) we can take any κ < 1

3 in (2.33).
Let

Ik(x1) :=

l(x1)∫
0

h−2k−1dx2 ∀(x1, 0) ∈ γ0, k = 0, 1, . . . ,

where
l(x1) := max

(x1,x2)∈ω
{x2} for a fixed (x1, 0) ∈ γ0.

Then:

(i) from κ < 1
2k+1 it follows that Ik(x1) < +∞ because of

1
h2k+1

≤ 1

hκx
(2k+1)κ
2

,

in view of (2.33);

(ii) from Ik(x2) = +∞ it follows that κ ≥ 1
2k+1 since otherwise, i.e., if κ < 1

2k+1 ,
we would have (i) and thus a contradiction.

If h vanishes logarithmically (see, e.g., (2.34)), then (2.33) holds for every κ. But
according to our assumption we can take 0 < κ < 1

2k+1 .
So, roughly speaking, convergence of Ik(x1) is equivalent to κ < 1

2k+1 and diver-
gence of Ik(x1) is equivalent to κ ≥ 1

2k+1 .
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Lemma 2.6 Under the condition (2.33) we have

W 1
2

(
ω,

1
h

)
⊂W 1

2

(
ω,

1
xκ

2

)
⊂W 1

2

(
ω,

1
dκ

)
, (2.36)

W 1
2 (ω, h) ⊂W 1

2 (ω, xκ
2) ⊂W 1

2 (ω, dκ), (2.37)

W 1
3

(
ω,

h

h3

)
⊂W 1

2

(
ω,

xκ
2

x3κ
2

)
⊂W 1

2

(
ω, x3κ

2

)
⊂W 1

2

(
ω, d3κ

)
, (2.38)

W 1
2

(
ω,

1
xκ

2

)
⊂W 1

2

(
ω,

1
x2

2

)
for 0 < κ < 2. (2.39)

Proof. Follows from (2.33) together with the following obvious inequalities:

d(x1, x2) ≤ x2 for (x1, x2) ∈ ω (2.40)

(if d(x1, x2) is a regularized distance, then in the equality (2.40) there arises a
constant factor);

xκ1
2 ≤ lκ1−κ2xκ2

2 for κ1 > κ2 (2.41)

with l being defined in (2.34). For the proof of (2.39) and the second inclusion of
(2.38) we use (2.41) for κ1 = 2, κ2 = κ and κ1 = 3κ, κ2 = κ, respectively.

Lemma 2.7 We have the following identities in the sense of equivalent norms

W 1
2 (ω, dκ) = W 1

2

(
ω,

1
dκ

)
for − 1 < κ ≤ 2, (2.42)

W 1
2

(
ω, d3κ

)
= W 1

2

(
ω,

1
d3κ

)
for − 1

3
< κ ≤ 2

3
. (2.43)

Proof. Immediately follows from Theorem 1.1.4 in Nikolskii et al., 1988.

Lemma 2.8 Let ∂ω ∈ C2. If

−1 < κ < 1
(
−1

3
< κ <

1
3

)
(2.44)

and

ϕ ∈W 1
2

(
ω,

1
dκ

) (
ϕ ∈W 1

2

(
ω,

1
d3κ

))
, (2.45)

then for the trace of ϕ on ∂ω we have

ϕ|∂ω ∈ B
1−κ

2
2 (∂ω)

(
ϕ|∂ω ∈ B

1−3κ
2

2 (∂ω)
)
, (2.46)

where B means Besov spaces.

Proof. This lemma is a particular case of Theorem 1.1.2 in Nikolskii et al., 1988.
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Lemma 2.9 Let ∂ω ∈ C2, assume (2.33), and let

ϕ ∈W 1
2

(
ω,

1
h

)
or ϕ ∈W 1

2 (ω, h) for 0 < κ < 1, i.e., I0(x1) < +∞. (2.47)

(
ϕ ∈W 1

2

(
ω,

h

h3

)
for 0 < κ <

1
3
, i.e., I1(x1) < +∞

)
. (2.48)

Then

ϕ|∂ω ∈ B
1−κ

2
2 (∂ω) ⊂ L2(∂ω) (2.49)(

ϕ|∂ω ∈ B
1−3κ

2
2 (∂ω) ⊂ L2(∂ω)

)
. (2.50)

Proof. Follows from Lemmas 2.6 - 2.8.

Note that the existence of the traces on ∂ω implies the existence of the traces
on γ0 ∈ ∂ω and γ ∈ ∂ω for κ as in (2.47) and (2.48) i.e., under the corresponding
restrictions on h. But as it follows from the following lemma for the existence of the
traces on γ the above-mentioned restrictions are unnecessary.

Lemma 2.10 Let ∂ω ∈ C2 and

ϕ ∈W 1
2

(
ω,

1
h

)
or ϕ ∈W 1

2 (ω, h) or ϕ ∈W 1
2

(
ω,

h

h3

)
. (2.51)

Then
ϕ|γ ∈W 1/2

2 (γ) ⊂ L2(γ). (2.52)

Proof. Let
ωδ :=

{
(x1, x2) ∈ ω : x2 > δ, δ = const > 0

}
. (2.53)

Evidently,

ϕ ∈ W 1
2

(
ω,

1
h

)
⊂W 1

2

(
ωδ,

1
h

)
= W 1

2 (ωδ) ,

ϕ ∈ W 1
2 (ω, h) ⊂W 1

2 (ωδ, h) = W 1
2 (ωδ) ,

ϕ ∈ W 1
2

(
ω,

h

h3

)
⊂W 1

2

(
ωδ,

h

h3

)
= W 1

2 (ωδ) ,

where W 1
2 (ωδ) is the usual Sobolev space and for any δ > 0 there exists the trace of

ϕ on

γδ :=
{

(x1, x2) ∈ γ : x2 > δ, δ = const > 0
}
.
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Lemma 2.11 Let ∂ω ∈ C2. If (2.33) holds and

u ∈W 1
2,ρ for ρ = 1 and ρ = h,

then uα, α = 1, 2, belong to the spaces (2.36), or (2.37), respectively, v3 belongs to
the space (2.38) and consequently to the space (2.43); for the the traces we have

u|γ ∈
[
W

1/2
2 (γ)

]3
⊂

[
L2(γ)

]3
, (2.54)

uα|γ0 ∈ B
1−κ

2
2 (γ0) ⊂ L2(γ0), α = 1, 2, for 0 < κ < 1, i.e., I0(x1) < +∞, (2.55)

v3|γ0 ∈ B
1−3κ

2
2 (γ0) ⊂ L2(γ0) for 0 < κ <

1
3
, i.e., I1(x1) < +∞. (2.56)

Proof. Follows from Lemmas 2.6, 2.7, 2.9, 2.10.

Finally, let us introduce the space

◦
W

1

2

(
ω,
xκ−2

2

xκ
2

)
(2.57)

as the closure of C∞0 (ω) with respect to the norm of

W 1
2

(
ω,
xκ−2

2

xκ
2

)
.

Lemma 2.12 If

ϕ ∈
◦
W

1

2

(
ω,
xκ−2

2

xκ
2

)
, (2.58)

then for the trace we have
ϕ|γ = 0.

Proof. From (2.58) we get∥∥∥xκ−2
2

2 ϕ
∥∥∥

L2(ω)
< +∞,

∥∥∥xκ
2
2 ϕ,α

∥∥∥
L2(ω)

< +∞, α = 1, 2, (2.59)

and there exist ϕn ∈ C∞0 (ω) such that∥∥∥xκ−2
2

2 (ϕn−ϕ)
∥∥∥

L2(ω)
→ 0,

∥∥∥xκ
2
2 (ϕn,α−ϕ,α)

∥∥∥
L2(ω)

→ 0 α = 1, 2, as n→∞ (2.60)

with
ϕn|γ = 0, ϕn|γ0 = 0. (2.61)

Consider the spaces defined by the following restrictions:

ϕ̃ := ϕ|ωδ
, ϕ̃n := ϕn|ωδ

.
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Then, by virtue of (2.59), (2.60),∥∥∥xκ−2
2

2 ϕ̃
∥∥∥

L2(ωδ)
< +∞,

∥∥∥xκ
2
2 ϕ̃,α

∥∥∥
L2(ωδ)

< +∞, α = 1, 2, (2.62)

0 ≤
∥∥∥xκ−2

2
2 (ϕ̃n − ϕ̃)

∥∥∥
L2(ωδ)

≤
∥∥∥xκ−2

2
2 (ϕn − ϕ)

∥∥∥
L2(ω)

→ 0, as n→∞, (2.63)

0 ≤
∥∥∥xκ

2
2 (ϕ̃n,α − ϕ̃,α)

∥∥∥
L2(ωδ)

≤
∥∥∥xκ

2
2 (ϕn,α − ϕ,α)

∥∥∥
L2(ω)

→ 0, α = 1, 2, as n→∞.

(2.64)
This implies∥∥∥xκ−2

2
2 (ϕ̃n − ϕ̃)

∥∥∥
L2(ωδ)

→ 0,
∥∥∥xκ

2
2 (ϕ̃n,α − ϕ̃,α)

∥∥∥
L2(ωδ)

→ 0, α = 1, 2, as n→∞,

and, because of the boundedness of x
κ−2

2
2 , x

κ
2
2 on ωδ,∥∥∥ϕ̃n − ϕ̃

∥∥∥
L2(ωδ)

→ 0,
∥∥∥ϕ̃n,α − ϕ̃,α

∥∥∥
L2(ωδ)

→ 0, α = 1, 2, as n→∞.

So, the set of restrictions ϕ̃n ∈W 1
2 (ωδ) and, therefore, ϕ̃ has a trace on ∂ωδ, which,

in view of the first property from (2.61), is equal to 0 on γδ, i.e.,

ϕ̃|γδ
= 0, i.e., ϕ|γδ

= 0, for any δ > 0. (2.65)

Since δ is arbitrary, from (2.65) it follows that

ϕ|γ = 0. (2.66)

The trace of ϕ on γ0 does not exist, in general.

Lemma 2.13 Let κ > 1. The space

◦
W

1

2

(
ω,
xκ−2

2

xκ
2

)
(2.67)

coincides with {
ϕ ∈W 1

2

(
ω,
xκ−2

2

xκ
2

)
: ϕ|γ = 0

}
. (2.68)

Note that both the spaces (2.67) and (2.68) consist of functions with the prop-
erties (2.59), (2.66), and the same norm; both are complete.

The proof of Lemma 2.13 is analogous to the proof of the well-known results

W 1
2

(
ω,
dκ−2

dκ

)
= W 1

2

(
ω,

1
dκ

)
=

◦
W

1

2

(
ω,

1
dκ

)
for |κ| > 1.

The traces on ∂ω do not exist, in general (see Nikolskii et.al 1988, Theorem 1.2.4
and references therein). Note as well that{

ϕ ∈
◦
W

1

2

(
ω,

1
dκ

)}
=

{
ϕ ∈W 1

2

(
ω,

1
dκ

)
: ϕ|∂ω = 0

}
for |κ| < 1

(see ibid, Theorem 1.2.1 and compare with Lemmas 2.12, 2.13 of the present paper).



Degenerate Elliptic Systems 15

Lemma 2.14 Under the condition (2.33) we have

W 1
2

(
ω,
xκ−2

2

h

)
⊂W 1

2

(
ω,
xκ−2

2

xκ
2

)
. (2.69)

Proof. Is evident.

3 Hardy’s Inequality

Lemma 3.1 If

ϕ ∈W 1
2

(
ω,
xκ−2

2

xκ
2

)
(3.1)

and
ϕ|γ = 0, (3.2)

then ∫
ω

xκ−2
2 ϕ2(x1, x2)dω ≤

4
(κ− 1)2

∫
ω

xκ
2 [ϕ,2(x1, x2)]2dω for κ > 1. (3.3)

Proof. In what follows, without loss of generality, we suppose that the domain ω lies
inside the rectangle

Π :=
{
(x1, x2) ∈ R2 : a < x1 < b, 0 < x2 < l

}
. (3.4)

Let us complete a definition of the function ϕ in Π \ Ω, assuming ϕ to be equal to
zero here. Then (3.1) obviously implies∫

Π

[
xκ−2

2 ϕ2 + xκ
2(ϕ,2)2

]
dΠ < +∞,

i.e., according to Fubini’s theorem, for almost every x1 ∈]a, b[

ϕ(x1,·) ∈W 1
2

(
]0, l[, xκ−2

2 , xκ
2

)
, (3.5)

which is a weighted Sobolev space with the norm

‖ϕ(x1,·)‖2
W 1

2 (]0,l[,xκ−2
2 ,xκ

2)
=

l∫
0

{
xκ−2

2 ϕ2(x1, ·) + xκ
2 [ϕ,2(x1, ·)]2

}
dx2.

Evidently,
W 1

2

(
]δ, l[, xκ−2

2 , xκ
2

)
= W 1

2

(
]δ, l[

)
.

Hence, since in view of (3.2), for almost every x1 ∈]a, b[

ϕ(x1, l) = 0, (3.6)
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we have
ϕ(x1, .) ∈ ACR(δ, l) (3.7)

(i.e., for almost every x1 ∈]a, b[ the function ϕ is absolutely continuous with respect
to x2 ∈ [δ, l] and satifies (3.6)). Therefore (see Opic, Kufner, 1992), for almost every
x1 ∈]a, b[,

l∫
δ

xκ−2
2 [ϕ(x1, x2)]2dx2 ≤

4
(κ− 1)2

l∫
δ

xκ
2 [ϕ,2(x1, x2)]2dx2 for κ > 1. (3.8)

Now, considering the limit procedure as δ → 0+, since the limits of the integrals in
(3.8) exist for almost every x1 ∈]a, b[ because of (3.5), we get

l∫
0

xκ−2
2 [ϕ(x1, x2)]2dx2 ≤

4
(κ− 1)2

l∫
0

xκ
2 [ϕ,2(x1, x2)]2dx2 for κ > 1 (3.9)

for almost every fixed x1 ∈]a, b[. Integrating both the sides of (3.9) by x1 over ]a, b[,
we obtain ∫

ω

xκ−2
2 ϕ2dω =

∫
Π

xκ−2
2 ϕ2dx1dx2

≤ 4
(κ− 1)2

∫
Π

xκ
2(ϕ,2)2dx1dx2

=
4

(κ− 1)2

∫
ω

xκ
2(ϕ,2)2dω for κ > 1.

Corollary 3.2 If

ϕ ∈W 1
2

(
ω,

1
x2

2

)
and (3.2) is fulfilled, then ∫

ω

ϕ2dω ≤ 4
∫
ω

x2
2(ϕ,2)2dω. (3.10)

Proof. Using the Lemma 3.1 for κ = 2, we get the Corollary 3.2.

Remark 3.3 Since

W 1
2

(
ωδ,

1
xκ

2

)
= W 1

2 (ωδ), (3.11)
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for

ϕ ∈W 1
2

(
ωδ,

1
xκ

2

)
with (3.2) from (3.8) we get∫

ωδ

xκ−2
2 ϕ2dω ≤ 4

(κ− 1)2

∫
ωδ

xκ
2(ϕ,2)2dω for κ > 1. (3.12)

As from (3.11) there follows (3.7), the assertion becomes obvious.

4 Korn’s Weighted Inequality

Lemma 4.1 (Korn’s weighted inequality). Let κ > 1, and

uα ∈
◦
W

1

2

(
ω,
xκ−2

2

xκ
2

)
, α = 1, 2, (4.1)

then ∫
ω

xκ
2

[
(u1,1)2 + (u2,2)2 + (u1,2)2 + (u2,1)2

]
dω

≤ C

∫
ω

xκ
2

[
(u1,1)2 + (u2,2)2 + (u1,2 + u2,1)2

]
dω, (4.2)

where
C := max

{
2 + κ, 2 +

4κ
(κ− 1)2

}
. (4.3)

Proof. By virtue of the definition of the space (2.57), there exist

n
uα∈ C∞0 (ω) (4.4)

such that ∥∥∥ m
uα −uα

∥∥∥
W 1

2

(
ω,

xκ−2
2
xκ
2

) −→ 0 α = 1, 2, as n→∞. (4.5)

After integration by parts, taking into account (4.4), we get∫
ω

xκ
2

m
u1,2

m
u2,1 dω = −

∫
ω

xκ
2

m
u1,12

m
u2 dω

= κ

∫
ω

xκ−1
2

m
u1,1

m
u2 dω +

∫
ω

xκ
2

m
u1,1

m
u2,2 dω. (4.6)

On the one hand,∣∣∣ ∫
ω

xκ
2

m
u1,1

m
u2,2 dω

∣∣∣ ≤ 1
2

∫
ω

xκ
2

[(
m
u1,1

)2
+

(
m
u2,2

)2
]
dω. (4.7)
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On the other hand, according to Lemma 2.13, we can use Hardy’s inequality (see
Lemma 3.1):∣∣∣ ∫

ω

xκ−1
2

m
u1,1

m
u2 dω

∣∣∣ =
∣∣∣ ∫

ω

x
κ
2
2

m
u1,1 x

κ−2
2

2

m
u2 dω

∣∣∣
≤ 1

2

[ ∫
ω

xκ
2

(
m
u1,1

)2
dω +

∫
ω

xκ−2
2

(
m
u2

)2
dω

]
(4.8)

≤ 1
2

[ ∫
ω

xκ
2

(
m
u1,1

)2
dω +

4
(κ− 1)2

∫
ω

xκ
2

(
m
u2,2

)2
dω

]
.

Substituing the estimates (4.7), (4.8) in (4.6), we obtain∣∣∣ ∫
ω

xκ
2

m
u1,2

m
u2,1 dω

∣∣∣
≤ 1 + κ

2

∫
ω

xκ
2

(
m
u1,1

)2
dω +

1
2

[
1 +

4κ
(κ− 1)2

] ∫
ω

xκ
2

(
m
u2,2

)2
dω

≤ 1
2
C1

∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2 ]
dω, (4.9)

where
C1 := max

{
1 + κ, 1 +

4κ
(κ− 1)2

}
. (4.10)

For an arbitrary ε ∈]0, 1[, in view of (4.9), we have∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+

(
m
u1,2 +

m
u2,1

)2 ]
dω

≥
∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+ ε

(
m
u1,2 +

m
u2,1

)2 ]
dω

=
∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+ ε

(
m
u1,2

)2
+ ε

(
m
u2,1

)2
+ 2ε

m
u1,2

m
u2,1

]
dω

≥
∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+ ε

(
m
u1,2

)2
+ ε

(
m
u2,1

)2
− 2ε

∣∣∣ ∫
ω

xκ
2

m
u1,2

m
u2,1 dω

∣∣∣
≥

∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+ ε

(
m
u1,2

)2
+ ε

(
m
u2,1

)2 ]
dω

−εC1

∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2 ]
dω

=
∫
ω

xκ
2

{
(1− εC1)

[ (
m
u1,1

)2
+

(
m
u2,2

)2 ]
+ ε

[ (
m
u1,2

)2
+

(
m
u2,1

)2 ]}
dω

=
1

1 + C1

∫
ω

xκ
2

[ (
m
u1,1

)2
+

(
m
u2,2

)2
+

(
m
u1,2

)2
+

(
m
u2,1

)2 ]
dω (4.11)
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if we put

ε =
1

1 + C1

in the penultimate integral.
Now, taking m → ∞ on both the sides of (4.11) under the norm of L2(ω), we

get (4.2) because of x
κ
2
2 uα,β ∈ L2(ω) and x

κ
2
2 (u1,2 + u2,1) ∈ L2(ω).

Remark 4.2 In the particular case κ = 2, i.e.,

uα ∈
◦
W

1

2

(
ω,

1
x2

2

)
(4.12)

from (4.2), (4.3) we have∫
ω

x2
2

[
(u1,1)

2 + (u2,2)
2 + (u1,2)

2 + (u2,1)
2
]
dω

≤ 10
∫
ω

x2
2

[
(u1,1)

2 + (u2,2)
2 + (u1,2 + u2,1)

2
]
dω. (4.13)

5 Weighted Boundary Value Problems

We study cos and sin vibrations

uα(x1, x2, t) = uα(x1, x2)
{

cos ct
sin ct

, α = 1, 2,

v3(x1, x2, t) = v3(x1, x2)
{

cos ct
sin ct

.

The 3D expressions for the displacement vector components Ui(x1, x2, x3, t), i =
1, 2, 3, corresponding to the N = 1 approximation have the following form

Uα(x1, x2, x3, t) =
1
2
uα(x1, x2)

{
cos ct
sin ct

,

U3(x1, x2, x3, t) =
3
2
x3v3(x1, x2)

{
cos ct
sin ct

.

The initial conditions, e.g., for t = 0, look like

uα(x1, x2, 0) = uα(x1, x2), v3(x1, x2, 0) = v3(x1, x2),

∂uα(x1, x2, 0)
∂t

= 0,
∂v3(x1, x2, 0)

∂t
= 0;

and
uα(x1, x2, 0) = 0, v3(x1, x2, 0) = 0,



20 G. Jaiani and B.-W. Schulze

∂uα(x1, x2, 0)
∂t

= uα(x1, x2),
∂v3(x1, x2, 0)

∂t
= v3(x1, x2),

for cos and sin vibrations, respectively, and they are automatically fulfilled, provided
that BVPs for u := (u1, u2, v3) are solved. Hence, we have to consider only BVPs
for u.

Problem 5.1 Let us consider for the system (1.1) the following BCs:
- on γ

u = g (5.1)

- on γ0 either

uα = u0
α, α = 1, 2 iff I0(x1) < +∞ (κ < 1), (5.2)

v3 = v0
3, iff I1(x1) < +∞ (κ <

1
3
), (5.3)

or
Xnα0 = 0, α = 1, 2, (5.4)

hXn31 = 0, (5.5)

or
(5.2), (5.5) (5.6)

or
(5.4), (5.3) (5.7)

or
(5.2) for α = 1, (5.4) for α = 2, (5.5) (5.8)

or
(5.4) for α = 1, (5.2) for α = 2, (5.5) (5.9)

or
(5.2) for α = 1, (5.4) for α = 2, (5.3) (5.10)

or
(5.4) for α = 1, (5.2) for α = 2, (5.3) (5.11)

or on different parts of γ0 different BCs

(5.2), (5.3); (5.4), (5.5); (5.6); (5.7); (5.8); (5.9); (5.10); (5.11) (5.12)

are given, where g and u0 := (u0
1, u

0
2, v

0
3) are the traces of a prescribed vector

u0 ∈

{
BW 1

2,0
for 0 < κ ≤ 2,

BW 1
2,κ−2

for κ > 2
(5.13)

on γ and γ0, respectively.
Since h ≥ 0, in view of (1.7) - (1.9), BCs (5.4), (5.5) are weighted Neumann

type BCs and they shoud be understood as limits from ω to γ0.
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Let

V 0
h :=

{
u∗ := (u∗1, u

∗
2, v

∗
3) ∈ BW 1

2,0
: u∗|γ = 0 and

u∗α|γ0 = 0, α = 1, 2, when I0(x1) < +∞ (κ < 1)
provided that uα, α = 1, 2, are prescribed on γ0 in BCs

v∗3|γ0 = 0, when I1(x1) < +∞
(
κ <

1
3

)
(5.14)

provided that v3 is presribed on γ0 in BCs in the sense of traces
}

and
V κ−2

h :=
{
u∗ ∈ BW 1

2,κ−2
: u∗|γ = 0 in the sense of traces

}
. (5.15)

Obviously, V 0
h and V κ−2

h are Hilbert spaces.

Definition 5.2 Let

fα ∈ L2(ω), α = 1, 2, h−
1
2 f3 ∈ L2(ω), (5.16)

and

κ < 2, i.e.,

l(x1)∫
0

τh−1(x1, τ)dτ < +∞. (5.17)

A function
u ∈ BW 1

2,0
(5.18)

will be called a weak solution of the Problem 5.1 (actually, there are several BVPs
indicated there) if

u− u0 ∈ V 0
h (5.19)

and (see (1.6) and (1.20))

Jc(u, u∗) :=
∫
ω

Bc(u, u∗)dω = −
∫
ω

fu∗dω ∀u∗ ∈ V 0
h . (5.20)

Definition 5.3 Let

x
2−κ

2
2 fα ∈ L2(ω), α = 1, 2, h−

1
2 f3 ∈ L2(ω), (5.21)

and
l(x1)∫
0

τh−1(x1, τ)dτ = +∞. i.e., κ ≥ 2. (5.22)

A function
u ∈ BW 1

2,κ−2
(5.23)
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will be called a weak solution of the Problem 5.1 if

u− u0 ∈ V κ−2
h (5.24)

and
Jc(u, u∗) := −

∫
ω

fu∗dω ∀u∗ ∈ V κ−2
h . (5.25)

6 Existence and Uniqueness Theorems

Theorem 6.1 If (5.17), (5.16) are fulfilled,

phα ∈ C(ω), α = 1, 2, (6.1)

and
c2 <

6µhκ

240 l2−κ max
ω

ph+ hκ max
ω

ph2
, (6.2)

then there exists a unique weak solution of the Problem 5.1 (more precisely, of each
BVP mentioned there) such that

‖u‖BW 1
2,0
≤ C1

[ 2∑
α=1

‖fα‖L2(ω) + ‖h−
1
2 f3‖L2(ω) + ‖u0‖BW 1

2,0

]
, (6.3)

where the constant C1 is independent of f and u0.

Theorem 6.2 If (5.22), (5.21) are fulfilled,

phαx2−κ
2 ∈ C(ω), α = 1, 2, (6.4)

and

c2 <
6µhκ(κ− 1)2

24C max
ω

(x2−κ
2 ph) + hκ(κ− 1)2 max

ω
(ph2)

, (6.5)

then there exists a unique weak solution of the Problem 5.1 (more precisely, of one
BVP mentioned there, when on γ0 homogeneous BCs (5.4), (5.5) are set; the other
BVPs for (5.22) are not admissible) such that

‖u‖BW 1
2,κ−2

≤ C2

[ 2∑
α=1

‖x
2−κ

2
2 fα‖L2(ω) + ‖h−

1
2 f3‖L2(ω) + ‖u0‖BW 1

2,κ−2

]
, (6.6)

where the constant C2 is independent of f and u0.

Remark 6.3 In the static case, i.e., when c = 0, conditions (6.2) and (6.5) are
evidently fulfilled. Therefore, the existence and uniqueness theorems for the static
case follow from the Theorems 6.1 and 6.2.
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Proof of Theorem 6.1: Let u∗ := (u∗1, u
∗
2, v

∗
3) and

u∗ ∈ V 0
h , (6.7)

then

u∗α ∈W 1
2

(
ω,

1
h

)
, α = 1, 2, (6.8)

and
u∗α|γ = 0. (6.9)

By virtue of (2.36), (2.39), from (6.8) it follows that

u∗α ∈W 1
2

(
ω,

1
xκ

2

)
⊂W 1

2

(
ω,

1
x2

2

)
for 0 < κ ≤ 2. (6.10)

Hence, in view of (3.10), Lemma 2.13, and the relations (4.13), (2.41), (2.33), we
obtain

∫
ω

[
(u∗1)

2 + (u∗2)
2
]
dω ≤ 4

∫
ω

x2
2

[
(u∗1,2)

2 + (u∗2,2)
2
]
dω

≤ 40
∫
ω

x2
2

[
(u∗1,1)

2 + (u∗2,2)
2 + (u∗1,2 + u∗2,1)

2
]
dω

≤ 40l2−κ

∫
ω

xκ
2

[
(u∗1,1)

2 + (u∗2,2)
2 + (u∗1,2 + u∗2,1)

2
]
dω

≤ 40l2−κ

µhκ

∫
ω

µh
[
(u∗1,1)

2 + (u∗2,2)
2 + (u∗1,2 + u∗2,1)

2
]
dω.

(6.11)

Let

T0 :=
40l2−κ

µhκ
; Tα := c2 max

ω
(phα), α = 1, 2, T3 := T1T0 +

T2

6µ
. (6.12)

Taking into account (6.12), (1.10), from (6.11) we get∫
ω

[
(u∗1)

2 + (u∗2)
2
]
dω

≤ T0µ

∫
ω

h
[
2(u∗1,1)

2 + 2(u∗2,2)
2 + (u∗1,2 + u∗2,1)

2 + 18(v∗3)
2
]
dω

≤ T0

∫
ω

B(u∗, u∗)dω. (6.13)
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From (2.11), (6.13), (1.11), (6.12), we have

‖u∗‖2
V 0

h
=

∫
ω

[
(u∗1)

2 + (u∗2)
2 +B(u∗, u∗)

]
dω ≤ (1 + T0)

∫
ω

B(u∗, u∗)dω

= (1 + T0)
∫
ω

{
Bc(u∗, u∗) + c2p

[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}
dω

≤ (1 + T0)
∫
ω

{
Bc(u∗, u∗) + T1

[
(u∗1)

2 + (u∗2)
2
]

+
T2

6µ
18µh(v∗3)

2
}
dω

≤ (1 + T0)
∫
ω

[
Bc(u∗, u∗) + T1T0B(u∗, u∗) +

T2

6µ
B(u∗, u∗)

]
dω

≤ (1 + T0)
∫
ω

〈
Bc(u∗, u∗)

+T3

{
Bc(u∗, u∗) + c2p

[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}〉

dω

≤ (1 + T0)
∫
ω

〈
Bc(u∗, u∗) + T3

{
Bc(u∗, u∗)

+T3

[
Bc(u∗, u∗) + c2p

(
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
)]}〉

dω

(repeating the same (n− 2)− times more)

≤ (1 + T0)
∫
ω

{
Bc(u∗, u∗)

1− Tn+1
3

1− T3

+Tn
3 c

2p
[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}
dω. (6.14)

It is easy to see that, by virtue of (6.12),

T3 = c2
240l2−κ max

ω
(ph) + hκ max

ω
(ph2)

6µhκ
. (6.15)

From (6.2), (6.15) we obtain
T3 < 1. (6.16)

In view of (6.16), for n→∞ in (6.14), we get

‖u∗‖2
V 0

h
≤ 1 + T0

1− T3

∫
ω

Bc(u∗, u∗)dω =
1 + T0

1− T3
Jc(u∗, u∗),

i.e.,

Jc(u∗, u∗) ≥
1− T3

1 + T0
‖u∗‖2

V 0
h

∀u∗ ∈ V 0
h . (6.17)

Thus, the bilinear form Jc(u∗, u∗) defined by (5.20) is coercive.
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Now, let us show boundedness of Jc(u∗, u∗) defined by (5.20) in V 0
h . Indeed,

from (5.20) with (1.10) for

u, u∗ ∈ BW 1
2,0

we have

|Jc(u, u∗)| ≤
∫
ω

(λh)
1
2 |u1,1 + u2,2 + 3v3|(λh)

1
2 |u∗1,1 + u∗2,2 + 3v∗3|dω

+
∫
ω

(2µh)
1
2 |u1,1|(2µh)

1
2 |u∗1,1|dω +

∫
ω

(2µh)
1
2 |u2,2|(2µh)

1
2 |u∗2,2|dω

+
∫
ω

(µh)
1
2 |u2,1 + u1,2|(µh)

1
2 |u∗2,1 + u∗1,2|dω +

∫
ω

(18µh)
1
2 |v3|(18µh)

1
2 |v∗3|dω

+
∫
ω

(3µh3)
1
2 |v3,1|(3µh3)

1
2 |v∗3,1|dω +

∫
ω

(3µh3)
1
2 |v3,2|(3µh3)

1
2 |v∗3,2|dω

+T1

∫
ω

|u1||u∗1|dω + T1

∫
ω

|u2||u∗2|dω +
T2

6µ

∫
ω

(18µh)
1
2 |v3|(18µh)

1
2 |v∗3|dω

≤
[ ∫

ω

λh(u1,1 + u2,2 + 3v3)2dω
] 1

2
[ ∫

ω

λh(u∗1,1 + u∗2,2 + 3v∗3)
2dω

] 1
2

+
[ ∫

ω

2µh(u1,1)2dω
] 1

2
[ ∫

ω

2µh(u∗1,1)
2dω

] 1
2

+
[ ∫

ω

2µh(u2,2)2dω
] 1

2
[ ∫

ω

2µh(u∗2,2)
2dω

] 1
2

+
[ ∫

ω

µh(u2,1 + u1,2)2dω
] 1

2
[ ∫

ω

µh(u∗2,1 + u∗1,2)
2dω

]
+

[ ∫
ω

18µh(v3)2dω
][ ∫

ω

18µh(v∗3)
2dω

] 1
2

+
[ ∫

ω

3µh3(v3,1)2dω
] 1

2
[ ∫

ω

3µh3(v∗3,1)
2dω

] 1
2 (6.18)

+
[ ∫

ω

3µh3(v3,2)2dω
] 1

2
[ ∫

ω

3µh3(v∗3,2)
2dω

] 1
2

+T1

[ ∫
ω

(u1)2dω
] 1

2
[ ∫

ω

(u∗1)
2dω

] 1
2 + T1

[ ∫
ω

(u2)2dω
] 1

2
[ ∫

ω

(u∗2)
2dω

] 1
2

+
T2

6µ

[ ∫
ω

18µh(v3)2dω
] 1

2
[ ∫

ω

18µh(v∗3)
2dω

] 1
2 ≤ T4‖u‖BW 1

2,0
‖u∗‖BW 1

2,0
,

where
T4 = 7 + 2T1 +

T2

6µ
.
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In particular,
|Jc(u, u∗)| ≤ T4‖u‖V 0

h
‖u∗‖V 0

h
∀u, u∗ ∈ V 0

h . (6.19)

It is easy to see that the linear functional

Fcu
∗ := −

∫
ω

fu∗dω − Jc(u0, u∗), u∗ ∈ V 0
h , (6.20)

is bounded in V 0
h . Indeed, because of (6.18) and

∣∣∣ ∫
ω

fu∗dω
∣∣∣ ≤

2∑
α=1

‖fα‖L2(ω)‖u∗α‖L2(ω) + ‖(18µh)−
1
2 f3‖L2(ω)‖(18µh)

1
2 v∗3‖L2(ω)

≤
( 2∑

α=1

‖fα‖L2(ω) + ‖(18µh)−
1
2 f3‖L2(ω)

)
‖u∗‖V 0

h
∀u∗ ∈ V 0

h ,

we have

|Fcu
∗| ≤

[ 2∑
α=1

‖fα‖L2(ω) + ‖(18µh)−
1
2 f3‖L2(ω) + T4‖u0‖BW 1

2,0

]
‖u∗‖V 0

h
. (6.21)

According to the well-known Lax-Milgram theorem, by virtue of (6.17), (6.19),
(6.21), there exists a unique z ∈ V 1

h such that

Jc(z, u∗) = Fcu
∗ ∀u∗ ∈ V 0

h (6.22)

and
‖z‖V −1

h
≤ 1 + T0

1− T3
‖Fc‖ ?

V
0

h

, (6.23)

where
?
V

0

h is dual to V 0
h .

From (6.20), (6.22) we get

Jc(u, u∗) = −
∫
ω

fu∗dω ∀u∗ ∈ V 0
h , (6.24)

where
u := u0 + z ∈ BW 1

2,0
(6.25)

So,
u− u0 = z ∈ V 0

h .

Hence, (5.19) is fulfilled. Besides, (6.24) and (5.20) are the same, i.e., (5.20) holds
as well. Thus, the existence and uniqueness of a weak solution is proved. We now
show its continuous dependence on the data.

From (6.21) it is evident that

‖Fc‖ ?
V

0

h

≤
2∑

α=1

‖fα‖L2(ω) + ‖(18µh)−
1
2 f3‖L2(ω) + T4‖u0‖BW 1

2,0
. (6.26)
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In view of (6.25), (6.23), (6.26), we have

‖u‖BW 1
2,0

≤ ‖u0‖BW 1
2,0

+ ‖z‖V 0
h

≤ 1 + T0

1− T3

[ 2∑
α=1

‖fα‖L2(ω) + ‖(18µh)−
1
2 f3‖L2(ω)

]
+

(
1 +

1 + T0

1− T3
T4

)
‖u0‖BW 1

2,0
, (6.27)

If we denote by

C1 := max
{

1 +
1 + T0

1− T3
T4, (18µ)−

1
2
1 + T0

1− T3

}
,

since T4 ≥ 7, from (6.27) we get (6.3). �

Proof of Theorem 6.2: Let

u∗ ∈ V κ−2
h , (6.28)

then

u∗α ∈W 1
2

(
ω,
xκ−2

2

h

)
, α = 1, 2, (6.29)

and (6.9) is fulfilled. From (6.29), (2.69), and Lemma 2.13 we conclude

u∗α ∈
◦
W

1

2

(
ω,
xκ−2

2

xκ
2

)
(6.30)

Hence, in view of (3.3), (4.2), (2.33), we obtain

∫
ω

xκ−2
2

[
(u∗1)

2 + (u∗2)
2
]
dω ≤ 4

(κ− 1)2

∫
ω

xκ
2

[
(u∗1,2)

2 + (u∗2,2)
2
]
dω

≤ 4C
(κ− 1)2

∫
ω

xκ
2

[
(u∗1,1)

2 + (u∗2,2)
2 + (u∗1,2 + u∗2,1)

2
]
dω

≤ 4C
µhκ(κ− 1)2

∫
ω

µh
[
(u∗1,1)

2 + (u∗2,2)
2 + (u∗1,2 + u∗2,1)

2
]
dω.

(6.31)

Let

T 0 :=
4C

µhκ(κ− 1)2
; T 1 := c2 max

ω
(x2−κ

2 ph), T 3 := T 1T 0 +
T2

6µ
. (6.32)
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Taking into account (6.32), (1.10), from (6.31) we get∫
ω

xκ−2
2

[
(u∗1)

2 + (u∗2)
2
]
dω

≤ T 0µ

∫
ω

h
[
2(u∗1,1)

2 + 2(u∗2,2)
2 + (u∗1,2 + u∗2,1)

2 + 18(v∗3)
2
]
dω

≤ T 0

∫
ω

B(u∗, u∗)dω. (6.33)

From (2.18), (2.11), (6.33), (1.11), (6.32), (6.12) we have

‖u∗‖2
V κ−2

h

=
∫
ω

{
xκ−2

2

[
(u∗1)

2 + (u∗2)
2
]

+B(u∗, u∗)
}
dω ≤ (1 + T 0)

∫
ω

B(u∗, u∗)dω

= (1 + T 0)
∫
ω

{
Bc(u∗, u∗) + c2p

[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}
dω

≤ (1 + T 0)
∫
ω

{
Bc(u∗, u∗) + T 1xκ−2

2

[
(u∗1)

2 + (u∗2)
2
]

+
T2

6µ
18µh(v∗3)

2
}
dω

≤ (1 + T 0)
∫
ω

[
Bc(u∗, u∗) + T 1T 0B(u∗, u∗) +

T2

6µ
B(u∗, u∗)

]
dω

≤ (1 + T 0)
∫
ω

〈
Bc(u∗, u∗)

+T 3
{
Bc(u∗, u∗) + c2p

[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}〉

dω

≤ (1 + T 0)
∫
ω

〈
Bc(u∗, u∗) + T 3

{
Bc(u∗, u∗)

+T 3
[
Bc(u∗, u∗) + c2p

(
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
)]}〉

dω

(repeating the same (n− 2)− times more)

≤ (1 + T 0)
∫
ω

{
Bc(u∗, u∗)

1− (T 3)n+1

1− T 3

+(T 3)nc2p
[
h(u∗1)

2 + h(u∗2)
2 + 3h3(v∗3)

2
]}
dω. (6.34)

It is easy to see that, by virtue of (6.32), (6.12),

T 3 = c2
24Cmax

ω
(x2−κ

2 ph) + hκ(κ− 1)2 max
ω

(ph2)

6µhκ(κ− 1)2
(6.35)

From (6.5), (6.35) we obtain
T 3 < 1. (6.36)
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In view of (6.36), for n→∞ in (6.34), we get

‖u∗‖2
V κ−2

h

≤ 1 + T 0

1− T 3

∫
ω

Bc(u∗, u∗)dω =
1 + T 0

1− T 3
Jc(u∗, u∗),

i.e.,

Jc(u∗, u∗) ≥
1− T 3

1 + T 0
‖u∗‖2

V κ−2
h

∀u∗ ∈ V κ−2
h . (6.37)

Thus, the bilinear form Jc(u∗, u∗) is coercive.
Similarly to the proof of (6.18), it is easy to show that

|Jc(u, u∗)| ≤ T 4‖u‖BW 1
2,κ−2

‖u∗‖BW 1
2,κ−2

∀u, u∗ ∈ BW 1
2,κ−2

, (6.38)

where
T 4 := 7 + 2T 1 +

T2

6µ
.

In particular,

|Jc(u, u∗)| ≤ T 4‖u‖V κ−2
h

‖u∗‖V κ−2
h

∀u, u∗ ∈ V κ−2
h . (6.39)

Now, let us show the boundedness of the following linear functional in V κ−2
h

Fcu
∗ := −

∫
ω

fu∗dω − Jc(u0, u∗). (6.40)

Indeed, because of (6.38) and

∣∣∣ ∫
ω

fu∗dω
∣∣∣ =

∣∣∣ ∫
ω

[ 2∑
α=1

x
2−κ

2
2 fαx

κ−2
2

2 u∗α + (18µh)−
1
2 f3(18µh)

1
2 v∗3

]
dω

∣∣∣
≤

[ 2∑
α=1

‖x
2−κ

2
2 fα‖L2(ω) + ‖(18µh)−

1
2 f3‖L2(ω)

]
‖u∗‖V κ−2

h
∀u∗ ∈ V κ−2

h ,

we have

|Fcu
∗| ≤

[ 2∑
α=1

‖x
2−κ

2
2 fα‖L2(ω) + ‖(18µh)−

1
2 f3‖L2(ω)

+ T 4‖u0‖BW 1
2,κ−2

]
‖u∗‖V κ−2

h
∀u∗ ∈ V κ−2

h . (6.41)

According to the Lax-Milgram theorem, by virtue of (6.37), (6.39), (6.41), there
exists a unique z ∈ V κ−2

h such that

Jc(z, u∗) = Fcu
∗ ∀u∗ ∈ V κ−2

h (6.42)

and

‖z‖V κ−2
h

≤ 1 + T 0

1− T 3
‖Fc‖ ?

V
κ−2

h

, (6.43)
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where
?
V

κ−2

h is dual to V κ−2
h .

From (6.40), (6.42) we get

Jc(u, u∗) = −
∫
ω

fu∗dω ∀u∗ ∈ V κ−2
h , (6.44)

where
u := u0 + z ∈ BW 1

2,κ−2
. (6.45)

So,
u− u0 = z ∈ V κ−2

h .

Hence, (5.24) is fulfilled. Besides, (6.44) and (5.25) are the same, i.e., (5.25) holds
as well. Thus, the existence and uniqueness of a weak solution is proved. We show
now its continuous dependence on the data.

From (6.41) it is evident that

‖Fc‖ ?
V

κ−2

h

≤
2∑

α=1

∥∥∥x 2−κ
2

2 fα

∥∥∥
L2(ω)

+
∥∥∥(18µh)−

1
2 f3

∥∥∥
L2(ω)

+ T 4‖u0‖BW 1
2,κ−2

. (6.46)

In view of (6.45), (6.43), (6.46), we have

‖u‖BW 1
2,κ−2

≤ ‖u0‖BW 1
2,κ−2

+ ‖z‖V κ−2
h

≤ 1 + T 0

1− T 3

[ 2∑
α=1

∥∥∥x 2−κ
2

2 fα‖L2(ω) +
∥∥∥(18µh)−

1
2 f3

∥∥∥
L2(ω)

]
+

(
1 +

1 + T 0

1− T 3
T 4

)
‖u0‖BW 1

2,κ−2
. (6.47)

Setting

C2 := max
{

1 +
1 + T 0

1− T 3
T 4, (18µ)−

1
2
1 + T 0

1− T 3

}
,

from (6.47) we get (6.6) because of T 4 ≥ 7. �

7 Some General Remarks

Let us consider the static Problem 5.1 with homogeneous BCs (5.1), (5.4), (5.5).
Obviously, for the 2D solution we have

1
v:= (

1
v10,

1
v20,

1
v31) ∈ BW 1

2,0
⊂W 1

2,0
⊂W 1

2,h for 0 < κ ≤ 1. (7.1)

On the other hand, as is shown in Jaiani, Kharibegeshvili, Natroshvili, Wendland,
2002, there exists a unique 2D solution

1
v∈ H1

1 (h,−h, ω, γ) ≡W 1
2,h for 0 < κ < 1.
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(for notation H1
1 (h,−h, ω, γ) see the above reference) with zero traces on Γ and

without any BCs on γ0. But since 3D displacement vector u ∈ H1(Ω), 3D surface
force Fn := (Xn1, Xn2, Xn3) ∈ L2(Ω), and using Fubini theorem, it is easy to show
Fn0|γ0 = 0, Fn1|γ0 = 0. Thus, for the tension-compression problem Tn|γ0 = 0.

So, both the 2D solutions coincide, and, therefore, correspond to the 3D BVP,
when on the plate face surfaces (and if 0 < κ < 1 on γ0 as well) surface forces,
i.e., stresses and on the non-cusped edge (lateral surface) zero displacements are
given. It is remarkable that the static Problem 5.1 with BCs (5.1), (5.4), (5.5) we

have solved for any κ > 1 (for κ ≥ 2,
1
v∈ BW 1

2,κ−2
⊂ W 1

2,h ≡ H1
1 (h,−h, ω, γ) in

case of the tension-compression problem). Hence, the restriction κ ≤ 1 in Jaiani,
Kharibegashvili, Natroshvili, Wendland, 2002 was caused by the method of investi-
gation used there, but a unique weak solution, as we have seen, exists for any κ > 0,
in particular, for κ > 1 as well, in the same space H1

1 (h,−h, ω, γ), i.e., also in the
case of a non-Lipschitz 3D domain Ω.

Now, let us assume the existence of the above mixed 2D problem in the space
H1

N (h,−h, ω, γ) and construct a weak solution for the corresponding (above-men-
tioned) 3D problem in the case of a non-Lipschitz Ω as a limit in some sense for
N → +∞. Such an approach seems to have a good chance for the proof of the
existence theorem for a non-Lipschitz 3D domain which is an open problem up to
now.
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