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Abstract

In this article we study the geometry associated with the sub-elliptic
operator (X7 + X3), where X; = 9, and X, = %(?y are vector fields
on R?. We show that any point can be connected with the origin by
at least one geodesic and we provide an approximate formula for the
number of the geodesics between the origin and the points situated
outside of the y-axis. We show there are infinitely many geodesics
between the origin and the points on the y-axis.
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1 Introduction

Consider the following vector fields on R?
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and construct the Grushin operator (see [13])

1 1,02 a2t 92
Ao=5(Xt+XD) =5(55+ T52)
Note that X; and X, are linearly independent everywhere except on the
y-axis, where X9 vanishes. Consequently, the operator Aq is elliptic except
on the y-axis. On the other hand, [X1, [X1, X2]] = a% which is step 3 on
the line = 0. Therefore, Chow’s theorem [11] holds and every two points
on the x,y-plane can be connected by a piecewise differentiable horizontal
curve. A horizontal curve is a curve whose tangents are linear combinations
of X1 and X,. More precisely, given any two points P and @ in R?, there
exists a curve C connecting these two points such that

C=a1 X1+ axXo.

= ’ CL18 CL%S S
) /0\/ 2(s) + a3(s)d

is the length of C. By minimizing the lengths of horizontal curves between
P and @, we obtain the distance between these two points. Furthermore, we
may apply Hormander’s theorem [14] to conclude that A is hypoelliptic.
There is a significant difference between the elliptic and non-elliptic cases.
As we can see from Riemannian geometry (which corresponds to elliptic
theory), every point is connected to all nearby points by a unique geodesic.
This is no longer true in the sub-elliptic case. A very careful study of the
subRiemannian geometry on Heisenberg groups [6] shows that every point
in the center of the group is connected to the origin by an infinite number
of geodesics of different lengths. A similar situation happens in some other
cases, see e.g., [8], [9], and [10]. This strange phenomenon was first pointed
out by Gaveau [12] and Strichartz [16], and it brings up the question of
what “local” means in subRiemannian geometry. Control theorists studying
subRiemannian exampls noticed that the Riemannian concepts of cut locus
and conjugate locus behave badly in a subRiemannian context.

In this article, we shall use Hamilton-Jacobi theory of bicharacteristics
to study some geometric properties induced by the operator Ag (see [1], [2],
[3], [5] and [7]). We obtain the following results:

Then

Theorem 1.1 Given a point P(0,y), there are infinity many geodesics be-
tween the origin and P. Their lengths are given by

2 4
/3 :SIY‘m ~F<1> , m=1,2,... (1.2)

m A7 4

2



Theorem 1.2 Let y/x3 > 0. There are finitely many geodesics between the
origin and the point (x,y) with x # 0.

If y/x3 is small enough there is only one geodesic.

If y/x3 is large enough the number N of geodesics is approzimated by

3y 1

Nwx2|— Y
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These theorems generalize the results of [6] and [9] to the step 3 Grushin
operator Ag. Moreover, our case is quite different from the Heisenberg
group. For a step 2 case, one needs only elementary functions. However, it
requires the use of elliptic functions in our case which makes the calculation
much more complicated.

Part of this article is based on a lecture presented by the second au-
thor during the Spring School of EU Research and Training Network on
“Geometric Analysis” which was held on March 1-6, 2004 at Institute of
Mathematics, Universitat of Potsdam, Germany. The second author would
like to thank the organizing committee, especially Professor B.-Wolfgang.
Schulze for his warm hospitality during his visit to Germany.

2 Elliptic functions

The Hamiltonian of the operator Ag can be considered as follows

1/1

H(z,y,0,6) =5 | 720" +€* ),
2 \4

where £ and 6 are the dual variables of x and y. The geodesics between the

origin O and the point P(z,y) are the projections on the (x,y)-plane of the

solutions of the Hamilton’s system of equations

#=He=¢

g'/:nglZCLle

é:: _Hm :4 _%1.302 (2-3)
f=—H,=0,

with the boundary conditions

z(0) = x0, y(0) =yo, z(1)=x1, y(1) =y1. (2.4)

In order to solve the system (2.3) with boundary values (2.4), one needs
to use elliptic functions. Before we go further, let us recall some basic



properties of elliptic functions which will be used in this paper. For detailed
discussions, readers may consult the book by Lawden [15].
The integral

<1

Z_/w dt "
o =21 k22

is called an elliptic integral of the first kind. The integral exists if w is real
and |w| < 1. Using the substitution ¢t = sinf and w = sin ¢

/¢> db
z = _—
0 \1—k2sin?40

If k =0, then z = sin”™' w or w = sinz. By analogy, the above integral is
denoted by sn~!(w; k), where k # 0. k is called the modulus. Thus

it " dt
o /o JI-B)i-re)

The function w = sn z is called a Jacobian elliptic function.
By analogy with the trigonometric functions, it is convenient to define
other elliptic functions

cnz =+/1—sn?z, dnz =+/1—k2%sn?z.

A few properties of this functions are

sn(—z) = sn(z), cn(—z) = cn(z),
—snz=cnzdnz, —cnz=—-snzdnz, —dnz=—k*nzcnz,
dz dz dz
—1<cnz<1l, —-1<snz<1l, 0<dnz<1

Let

(2.5)

1 dt /2 db
KZK(k):/O VA =21 - k) :/0 m

be the complete elliptic integral. Then, as real functions, the elliptic func-
tions sn and cn are periodic functions of principal period 4K.



1

sn(z, k) en(z, k) dn(z, k)
Figure 1: The graphs of functions sn(z,k), en(z,k) and dn(z, k) for k =0.3 and 0.7

X

3 Solving the Hamiltonian system

In this section we find explicit formulas for the geodesics between the origin
and the point (z,y). Similar formulas are obtained by Agrachev, Bonnard,
Chyba and Kupka in the Martinet case on R3, see [1]. We make use of
elliptic functions which can be found for instance in Lawden [15]. From
(2.3), we know that § = H, = 0. Hence the momentum 6 is a constant
which can be considered as a Lagrange multiplier. We have the following
theorem.

Theorem 3.1 For any two points P(Xo,yo) and Q(x1,y0) on the same
horizontal line y = yq, there is only one geodesic

z(s) = s(x1 — Xo) + Xo, y(s) = yo, s € [0,1] (3.6)
connecting them. The length of the geodesic is |x1 — Xo|.

Proof:  From the Hamiltonian system we have y(s) = 0, 4(s) =constant.
Hence the geodesic should have the form (3.6). Moreover, from the the

second equation of (2.3), one has y = %91’4. Then

(1) y is increasing if 6 > 0,

(1) y is decreasing if 6 < 0,

(19i) y = constant = 0, if § = 0.

The cases (i) and (ii) are not possible because y(0) = y(1) = yo. Hence
the y-component is fixed and the momentum 6 must be zero. Then & =
—32302 = 0 and x(s) = s(x1 — Xo) + xo. Therefore, the length of the
geodesic is |z(1) — z(0)| = |x1 — xo- |
As a consequence, given a point P(x,0), x # 0, there is a unique geodesic
joining the origin and the point P. This geodesic is a straight segment line



with length equal to |x|. Now let us turn to the case 6 # 0. The Hamilton’s
system is invariant by the symmetries

(z,y;0) — (—z,y;0), (z,y;0) — (z,—y; —0).

These symmetries will sent geodesics into geodesics. For this reason we shall
study only the case x > 0, y > 0 and 6 > 0, unless otherwise stated. Since
the operator is translation invariant along the y-axis, we may assume the
boundary conditions along the y direction are y(0) = yo = 0 and y(1) =
y1 — Yo =y. Moreover, in this paper we just study geodesics start from the
origin, i.e., xo = 0. Hence (2.4) can be rewritten as

z(0) =y(0) =0, z(1)=x, y(1)=y1—-yo=Yy.

3.1 The r—component.

e Conservation of energy. The first equation of (2.3) yields # = He = &.
: 1
Hence & = ¢ =—-H, = —502303. Then z(s) satisfies

1
&= —§x392, (3.7)
with boundary conditions z(0) = 0, z(1) = x. We have # = constant,

because § = — y = 0. Let V = %92 be the potential. Then (3.7) can

be written as a Newton equation & = —V’(z). The law of conservation of
energy is

1 4
§¢2 + %92 = F (the constant of energy). (3.8)

e The arc length parametrization. Consider the metric in which the vector
fields X; and Xo are orthonormal. Let C = (z(s),y(s)) be a curve. The
velocity is

. 9%
C = &0, +90, = iX1 + xi;XQ.

The square of the length in the above metric is

) 472 192
yC|2:¢2+l4:a;«2+xT:2E,
e



where we have used the second equation of (2.3) and (3.8). Let s be the arc
length parameter. Then E = % and

x(s) is defined by the integral

/r(s) du
_— =5,
0 /1 — %492

0 2
Making the substitution v = \[214, du = \/;dv, and
s)

/V 2 dv _ /e,

0 V(1= v2)(1 +02) 2

This can be written in terms of Jacobi elliptic functions as follows (see
Lawden [15] p.53)

1 Vo 1 0
Esd 1 (\/5 ﬁx(s), \/§> = \/;S,

where sd(z) = S?l((z)) Solving for z(s), yields

2(s) = \}gsd (\/és, é) .

Following [15], p.28, one has cn(u + K) = —k/sd u, where k2 + k' = 1. In

our case k = k' = —, and hence
V2
z(s) = —\/icn (\/és +K 1) (3.9)
- 9 ) \/i ) *
where K = K (%) is the complete elliptic integral defined by (2.5). From

Lawden [15], p.103,

() [ e =t ()




3.2 The y-component

1
Integrating the Hamiltonian equation ¢(s) = Hy = Zaf*(s)@ yields

y(s) = Z/{)sx4(u)du:;/oscn4 (\/§u+K)du

1 VOs+K 1 1 VOs+K
= / entw —dw = 3/ entw dw,
0k Vo 03 Jk

where we used the substitution w = Vu + K. Following Lawden [15], p.87

1
/Cn4w dw = 3 [(2 - 3k*)k” w+ 2(2k* — 1)E(w) + k*snw - cnw - dnw] .

(3.11)
Here E(w, k) is the Jacobi’s epsilon function defined by
d Ew
E =—( ==
where 01(0)
E=|1- 27 K
9§(0)94(0)}
with #3 and 6,4 are Euler’s theta functions and K is defined by (3.10). When
k= L = k', 2k? —1 =0, the above formula yields
V2
1 4 1
/cn4(w, E)dw = 3 {Z + 5Snw-enw - dnfw}
1

= 3[w+28nw-cnw-dnw].

It follows that

1 VOs+K
y(s) = 3<w+25nw‘cnw-dnw>
302 X
= ;3 <\/§S+2SH(\/§S+K)'CH(\/§.9+K)-dn(\/éerK))
302
and hence 5 /1
y(s) = — (\/@S—i— snu-cnu-dnu), (3.12)
302 \2
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where u = v/fs + K. With this notation, relation (3.9) becomes

x(s) = —\/gcnu. (3.13)

Formulas (3.13) and (3.12) depend on two parameters s and 6, the first
being the arc length and the second a momentum. Each solution (s,0) of
the system
x(s,0) =x

{ y(s,0) =y (3.14)
defines a geodesic between (0,0) and (x,y). In the following sections we
describe the number of solutions (s, 6) of the system (3.14). There are two
cases: x =0 and x # 0.

4 The geodesics in the case x =0

In this section we shall obtain infinitely many geodesics of distinct lengths.
It is known that the period of the function cn is 4K. We also know that
cn(dmK) =1 and ecn(2mK + K) =0 for m =0,1,2,.... If x = 0, formula
(3.13) yields K + Vs = K + 2mK, or

Vs = 2mK. (4.15)
As enu = 0, relation (3.12) yields
2 2mK  2mK

305 2 305

2 1
s) = - =V0s =

Hence
2mK

302
from where we obtain the parameter 6 as the following

@:(M)é,

3y

y:

where K = K <%> The parameter s, which is the arc length, follows from

equation (4.15)
2mK

(3

N L
Using the expression for K = K(1/4/2) in terms of Gamma functions given
by (3.10) we get the following result.

- (2mK)s3.

W=

! =



Theorem 4.1 Giveny # 0, there are infinitely many geodesics between the
origin and (0,y). Their lengths are given by

1\* 3ly|m?
3 — . =
Em—F(4> e m=12,...

5 The geodesics in the case x # 0

In this section we investigate the number of geodesics between the origin
and any point (x,y) with y # 0. The study will be done in two steps.
First we make the computations under the assumption 2K > u > K. We
shall reduce the system (3.14) to an equation of one variable which can be
analyzed by standard techniques. Let o = v/. Then (3.12) and (3.13) can
be written as

X0
cnuy=———, 5.16
= (5,10
3 1
7}’03 = ias—l—snu-cnu-dnu (5.17)
& 3y0® = (0s+ K) —K +2snu - cnu - dnu. (5.18)
——

=Uu

Case u € [K,2K)

As u=o0s+ K, then u > K. Assuming 2K > u > K, then equation (5.16)
can be inverted using a formula from Lawden [15] p.52,

u—/l dz _/1 dz
o (L=2)h - (2 + 02208 Sz (1 (34 4

h=K <\}§> B /01 (1 —22);(25 +32)%

using the substitution % =0, dz = v/2dv, we get

K — /)\(/% dz
0 Ja-2) (i)

7 dv
h VG- G+
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Using the formula for u we get

Z dz
u—K—S\/a—sa—/O \/(%_zQ).(%_Fzﬁ). (5.19)

1
Make the substitution v = ?. Then0 <~ < \ﬁ Equation (5.16) becomes

cnu = —% = —V2. (5.20)

As 2K > u > K, then snu > 0 and

snu = V1-—cn2u=+/1- 272,

1 V' 1+ 292
dnu = VE?2+E2em?u=4/-+2=Y——.
Va7 NG

Then

v/ 14272
2snucnudnu = —2v2yy/1 — 242 \_27 = —29y/1—4~%  (5.21)

Substituting (5.19) and (5.21) in formula (5.22) yields

— 27/ 1 —4y% (5.22)

3vod v dz
S A ey

1/2 1
Let g(z) = / = Vi We shall write the equation
1 1 —
\/(5—22) (3 +2%) ?
3
(5.22) in function of v only. As 2y = xo, then o = 8% and (5.22) becomes
X
3y - 893 K
% - 2/ g(2)dz — 29/T — 42, (5.23)
0
12 1 [
& X—gVQ = 7/ g9(2)dz — /1 — 4~4, (5.24)
0

which is an equation of the variable v, with v € [0,1/+/2]. To each solution
v of the equation (5.24) corresponds an unique o and hence an unique pa-
rameter . From (5.19) we obtain an unique parameter s. Hence to each

11



solution ~ corresponds an unique pair (s,6) solution for the system (3.14)
i.e., a geodesic between the origin and (x,y).

In the following we discuss the existence of the solutions of equation
(5.24). Denote by

1 [
1) == [ gtz = V= (5.25)
The function f is increasing and f(0) = g(0) —1 = 0. Indeed, differentiating

7(9(7)—51(»2))6&'@r 8~?

fliy) = =2
) ok V1= 492
1 /'y / 8')/3
= —-[| 29 (2)dz+ ———
7 Jo V1 — 494
8 /7 24 s+ 83
_= —_— z —_—
Y Jo (1—424)32 V1—4y2
> 0.
As
(;y Z4 3 74 3
lim — (202 gy 2002
v—0 Y ¥—0 2’}/

1
then f’(0) = 0. Next, we shall find f <\/§>
() g f
V2 0 1— 424 0 1— %
From Lawden [15], p.85

and hence
()L (o) ()

K
)-%

Then
(5.26)

~
—
Sl



where

1
K=K|—)~1.85,
<J§>

1
and hence f 7 > 1. In the following we shall compute the second
derivative of f at zero. The first derivative is
8 [V 24 83
ff(v)=—= / dz + .
2Jo (1—4z4)3 V14t

Differentiate each term of f’(y) and take v = 0.

' 2 a4 3. =8
3 - VN1 =4yt =y vy
VI—4r ) 1 — 4y
B 3v2(1 — 4~*) + 845 B 372 — 1276 4+ 846
(1—47%)> (1—47%)>

2_46 2 _44
= 37 7 :7(3 73)20, when v = 0.

(1—49M)2 (14993

= -2— dz.
(1—4vH3 P Jo (1 -429)3
4
Iy (1— 434% (1—:1/ ay3 I
T L TR 7 =0.
~v—0 y v—0 3’}’ v—0 3 (1 _ 4’}/ )§
Hence f”(0) = 0.
12
Set h(vy) = gVQ The equation (5.24) becomes h(y) = f(y). We

shall choose x > 0 y > 0. The other cases follow from this case using the
Lagrangian symmetries. We have

24y

n"(0) = o 0.

2
1 r(:
If h( ) < f ( ) ,i.e., 6—33] < (4) ~ 1.31, then there is a solution
V2 X 4+/27
1
7%

for the equation h(y) = f(v). See Figure 1.

13



1
, there are no solutions + in <0, >, see Figure 1. We note

x3 7 42rm V2
that
1
1 vz 24 4/v/2
f,<):16/f dz + /V2 = +o0

V2 0 /(1 —222)3(1 4 222)3 1-1
——

=400 =400

. 6t/y°

K/\2

0o Uz
Figure 1: The graphs of f(v) and h(7).

Considering the solutions +u + 4mKk

Starting with the solution u € [K,2K) for cnu = _%7 we have arrived at
the equation in

12y

?’YQ =f(),

where f(v) is increasing on the interval (0,1/v/2).
We consider now all the solutions of (5.16) which are of the form +u+4mK,
with u € [K,2K), and we shall derive similar equations for ~.

e Considering the solutions u + 4mK, relation (5.18) becomes

3yo® = (u+4mK) — K +2sn(u + 4mK) en(u + 4mK) dn(u + 4mK)
& 3y0c® = u—K+2snucnudnu+4mK , m=0,1,2,...

14



Using (5.19) yields

=7
~ =
X0
3y0_3 — /2 dv

0 GG )

T d
& 3yod = 2/ 724—27m+4mf(
0

4+ 2snucnudnu + 4mK

1—4z
@%72 = i/gwldi%— 1_474+2m7K.
:}?7)
Denote by
fm(v)zf(v)ﬂtz?:[(, m=0,1,2,...

12
Y2 p(), m=0,1,2,...

Now we shall study the function f,,,(y) and sketch its graph. One has

oK
fm(0) = f(0)+%ig})mT:+oo.

= ?K+2\/§mK: (%+2m)\f2K7
/ 1 / 1 . —2mK
————
+o0

15



The graph of the function f,, is given in Figure 2.

Figure 2: The graph of fm(7).
We still need to show that there is a unique critical point =, (which is
a minimum). Indeed, considering the equation f], (v) = 0, one has

2mK
flly = >
8 / 83 2mK 72
2 Jo (1- 4z4 3/2 V11— 4yt 72 8
/ dep 2 mE
1—424 3/2 VIi—4t 4
x(v)./
Hence the critical points are solutions of the equation
mK
xX() == (5.:27)

The function x(7) is strictly increasing and unbounded, with

x(0) =0, x(1/v2)=



Its graph is given in Figure 3.

Figure 3: The graph of x(7).

Hence there is an unique critical point 7, € (0,1/v/2), f/.(7m) = 0.
From Figure 3 we note that
< li _ 1
Ym < Tm+1 mgnoo Tm = \/5

The function f,,, has a minimum value equal to fp,(vm), which tends to
infinity

1
fm(ym) = f(ym) +2mo.z( P — 400 as m — oo.
_ 1 - ~—
—f(1/V2)=F5K NG
e Considering the solutions —u+4mK, m = 1,2,... relation (5.18) becomes
3yo® = (—u+4mK)— K + 2sn(—u + 4mK) en(—u + 4mK) dn(—u + 4mK)
& 3yo® = (K —u)+4mK — 2K —2snucnudnu
& 3yo® = —((u - K)+ 2snucnudnu) +22m - 1)K
12y 2m —1
G2 = ) - K,
X 2
:fm('Y)
which can be written as
12y 5 &

—fn(y), m=1,2,3...
5 fm(), m 3

17



We shall study the function fm and sketch its graph.

N B . (@2m-1)K

e

5 o . (2m-1K B

L R
-1 1 2m —1 V2
fm(ﬁ) = f(\ﬁ)— V3 —7K—(2m—1)\/§K

= \@K(% —om 1) = \/EK@ - 2m) <0,
T U Lo @m-DKE
fm(ﬁ) - f(\/i)—i_’y—l»l/\ﬁ ’)/2
janeng

V2 k(5 -2m)

2 K (5 -2m)

Figure 4: The graphs of fm and —fm.

The graphs of f,, and — f,, are given in Figure 4. One may observe that

Fn(1/V2) = = frs1(1/V2).

18



Indeed,

Liom = —2iomao
p T T Ty
1 3
& (G+mVeK = —(5-2m+1))veK

~ fm(l/\/i) = _fm+1(1/\/§)'

Hence the graphs of f, and — f,,+1 match at 1 /V/2. See Figure 5. The first
few values for m = 0,1,2 are

K

RN = fapE =L
9K
f(1/V2) = %7
1 13K
L5 = 5

Hence for any y > 0 at least one of the equations

12y
F’f = fm(’Y)y

12 ~
Xigy 2= _fm(’)/)

has a sﬁolution.
If —}3’ is small enough (for instance smaller than K/4/2 ), then there is
x

an unique solution. The complete picture is given by Figure 5.

19



-

0

Figure 5: The graphs of (fo,ffl), (f1, ff~2), (fg,*fg) match at 1/ﬁ

As

_ 4K

AA/V2)=fo(1/V2) = f2(1/V2)= f1(1/V2) = -+ = fur1(1/V2)= fa(1/V2) 7

the number of intersections will be

6y K
2[xﬂ] :2[3.y_1]
4K 3 )

where [x] denotes the greatest integer smaller than x.
We arrived at the following result.
Theorem 5.1 Let y/x3 > 0. There are finitely many geodesics between the

origin and (x,y) with x # 0.
If y/x3 is small enough there is only one geodesic.

20



If y/x3 is large enough, the number N of geodesics is approzimated by
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