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p-Adic numbers

Let p be a prime number. The field of p-adic numbers is the completion
Q, of the field Q of rational numbers, with respect to the absolute value
|x|, defined by setting |0|, = 0,

[y = p ifx = o,

where v, m,n € 7, and m, n are prime to p.
Q, is a locally compact topological field

Note that by Ostrowski’s theorem there are no absolute values on Q,
which are not equivalent to the “Euclidean” one, or one of | - |,,.
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Ultra-metric / Non-Archimedian property

The absolute value |x|,, x € Q,, has the following properties:

|x|, = 0 if and only if x = 0;

‘x)’|p = ’x|p : |)’|p§
x + [, < max(|x|,, |y[,)-

The latter property called the ultra-metric inequality (or the non-Archi-
medean property) implies the total disconnectedness of @, in the topol-
ogy determined by the metric |x — y|,, as well as many unusual geomet-
ric properties. Note also the following consequence of the ultra-metric
inequality:

x + y|, = max(|x|,, |)’|p)7 if |x|p # [ylp-

The absolute value |x|, takes the discrete set of non-zero values p",
N € Z.
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Some unusual properties

For some a € Z, the p-adic ball is
By(a)={x€Z,: |x—al,<p™}, N=>0.
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Historical notes

Starting point is the article of Kurt Hensel’ 1897 (1861-1941), introduc-
ing the notion of p-adic numbers (part of algebraic number theory).
Kronecker’ 1882 (in Berlin, supervisor of Hensel) published famous
memoir on the foundations of this new branch of mathematics.
However, Hensel’s idea was so novel and unexpected that it remains
in the history of mathematics as a famous example of work developed
in almost complete isolation.
Only fifteen years later the situation begin to change, with the intro-
duction of simple topological notions in the field of p-adic numbers.
Let us consider the formal sum:

o0
Zaipi, with 0<aq; <p-—1, a, #0,
i=0
where the number p and the coefficients a; are natural integers. Such
a sum represents an integer too.



Hensel’s idea was to include negative exponents, and this represents not
only integers, but also rational numbers:

Zaipi, with 0 <a; <p—1,

i=r

where r may be negative integer. Moreover such a representation is
unique!

Q, — the set of all formal sums, and it is called the field of p-adic num-
bers. It contains Q.
Given a fixed prime number p, for any relative integer x, x # 0, let

—r

|x|, = p~", where p" is the highest power of p dividing x.



Invasion of many branches of mathematics by the language of ge-
ometry = M. Fréchet’ 1906 introduced the notion of metrics d(x, y) for
x,teE:

() d(x,y) =0 x=y;

(if) d(x,y) = d(y,x);

(i) d(x,z) < d(x,y) +d(y,2).
Let us recall that an absolute value on a field K is a function ¢, with
non-negative values, such that

(i) p(x) =0 x=0;
(ii) p(x - y) = p(x) - p(y);
(iii) p(x +y) < o(x) + ©(y).

©(x) = |x|, satisfy all the condition of the absolute value, even more
strong:

(iii") P + yl, < max (|x,, [y],)-
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non-Archimedean

In the case of the classical absolute value
|x| = max(x, —x), one has |x + x| > |x|, if x # 0

which constitutes the principle of Archimedes.

For p-adic absolute value:

x + y|, < max (\X\m ’y’p>’

or
e+l < fxly,

which violates the principle of Archimedes.
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Structure of the p-adic tree

If x|, = p", then x admits a (unique) canonical representation
x=p N(xo+xipt+xp +---), (D

where xg, x1,x,... € {0,1,...,p — 1}, xy # 0. The series converges
in the topology of Q,,.

Forsome a € Z,,a = ap = aip + ap* + - - -, the ball
By(a)={x€Z,:]x—a|,<p™}, n>0
consists of the points

x=ao+ap+...+ayp" + xyo p"t! +xN+2pN+2+..;, )

Vv
something




A path, possibly infinite, on a rooted p-tree may be identified with a
p-adic number x € Z, given by its canonical representation

x=xg+xip+xp*+---, x,€{0,1,....p—1}
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TAXONOMY

The classification can be represented as a dendrogram, or hierarchy,
generally pictured as an inverted tree.

Going from the bottom up,
several leaves (species)
merge into a branch
(genus); several such
branches merge into a

: . R
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'The numbers of amino acid differences between the hemoglobin a chains of each pair
of these animals
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Protein folding

How proteins are made?
* polymer of repeated subunits: amino acids (amiHokucnoTn)
are the building blocks of proteins

* information about the sequence of amino acids for each
specific protein is coded in the DNA

» from 100 to several thousand of amino acids in each protein

| 2

Primary structure
amino acid sequence

12/45



Amino acids

alpha-carbon

amine
group

H

R

carboxylic
acid group

side chain
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How amino acids are linked?

Amino acid (1) H Amino acid (2) H

Dipeptide
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Primary Structure

* Peptide bond is rigid and planar: C—N cannot rotate

* N—Ca and Ca—C bonds can rotate to define the dihedral
angles @ and ¥, respectively

mmmp BACKBONE=series of rigid plane, Ca as points of rotation

Carboxyl
terminus
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Secondary Structure
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Quaternary Structure

Quaternary structure results from interactions between several
protein molecules of multisubunit proteins (eg. hemoglobin)

Primary
structure Quaternary

Secondary Tertiary
structure structure

EEEERE
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Amino acid Polypeptide chain Assembled subunits
residues
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Molecular Mechanics

Potential Energy Function (PES) =
multi-dimension energy function of
molecular system coordinates

Objective: reach the global minimum
of the PES, which is associated with
the native state of a protein {various
method and algorithms)

coordinate
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FORCE-FIELD

FORCE-FIELD = equations and parameters used to describe the

Potential Energy Function

+ each atom is simulated using a single particle, characterized
by a charge and a radius

* bonded interaction {(covalent bonds, angles, dihedrals)

* non-bonded interactions (van de Waals, -electrostatic
interaction, hydrogen bond)

V( ) V(n,nyry)= Z k![l 10]2 Z ke[g 9]2

bond ang.'e.r

+ > k¢[1+cos(ngo—6)]+i i[ 94,  AG.))_CG J’ﬂ

12 6
dihedrals i=l =i+l

4meer,) r Y U
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Folding of Proteins

It corresponds to a thermodynamic
path down to the most favourable
energy configuration (decrease of
entropy)

Energy

Beginning of helix formation and collapse

2
UREaTNn!
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Discrete folding
intermediates

Native
structure

in native conformation

Percentage of residues of protein

£ 100
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Spin Glass

In condensed matter physics, a spin glass is a disordered magnet,
where the magnetic spins of the component atoms (the orientation of
the north and south magnetic poles in three-dimensional space) are not
aligned in a regular pattern.

The term "glass" comes
from an analogy between
the magnetic disorder in a
spin glass and the positional
disorder of a conventional,
chemical glass, e.g., a
window glass.
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Sherrington-Kirkpatrick Model of Spin Glass

Sherrington&Kirkpatrick’ 1975 The Hamiltonian is a random function
of the N spins taking values +1: 0 = (0y,...0y) € {—1,+1}" given
by the quadratic form

HN(O'> = Z J,']'O'l'O'j,

1<i<j<N

where the interaction parameters J;; are independent random variables.
If we consider a probability measure m on a bounded subset 2 C IR?
then the free energy is defined by:

F = —log/ exp BHy(0) du®N = —log Z(J)
QN
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Replication Technique

Parisi’ 1979 proposed to introduce the function

1
Z, = — / Z"(du®N
n Jjonv
and {
OF =~ lim (2.~ )

Z, is called the partition function of n identical replications. Parisi in-
troduced as an order parameter the n X n matrix and an order parameter:

0’ = (ofa]), a#p
1 N
- 2
= — 0i)°).
7= ?:1 {{o:)7)
where the internal bracket indicates the thermodynamic expectation value

at fixed J, while the external bracket indicates the mean value over J.
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Parisi Matrix

1 0 9 a1 ¢v 2 92 ¢ @

. 2
nl;noqo p Z Onp < 00; 9 0 a1 9 9@ ¢ ¢ ¢
a,8 @ a1 0 q ¢ 4@ ¢ ¢
N N @ @ 9 0 @ @ ¢ @
ZQaﬁzszB’ aF @ 9 @ ¢ 0 g g1 ¢
p=1 p=1 9 9@ @ 9 9 0 q q

_hleQiﬁzo‘ @2 ¢ @ ¢ g g 0 qo
n0n s @ 9 9 ¢ ¢ ¢ g0 0

Avetisov, Bikulov, Kozyrev’ 1999 The action of the replica matrix in the
space of functions on p~"Z/7Z takes the form:

0= [ ol sl ) i)

24/45



]
Model of hierarchical diffusion

Stochastic dynamics of a system with a countable space of states. Tran-
sitions between states are thermally activated with rates determined by
the (free) energy barriers separating the states.

Let us consider 2V points (more general case p" points, where p > 0
is prime), separated by energy barriers. The energy barriers have the
following form. Let us enumerate the points by integer numbers starting
from 0 to 2V — 1 (analogously, from 0 to p" — 1).

Let us consider the increasing sequence of energy levels (non-negative
numbers) 0 = Ag < A1 < - <A, < -+

We define the energy barriers on the set of p" points according to the
following rule: if a — b is divisible by p* then the barrier between the
a-th and b-th points is equal to A,.



The hierarchical diffusion is described by the ensemble of particles that
jump over the above-described set of p" points.
Px

Py

Prs

)
>
\

(i)

L
_ By ,_ Bya
By, By, By, By,

\] 2 By.i

Probability of transition (or jump) over the energy barrier A;: ¢g; =
exp(—4;), i = 1,... Then, the transition probability matrix will be
equal (up to additive constant) to matrix Q.

Dynamics of the model:

d
Ef(t) = (0 — NI)f(2)

f(¢) is a vector of equal to the densities at all points.
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Avetisov, Bikulov, Kozyrev’ 1999

Mater equation:

% fle.) = /(fty 20)o(x = yl,) duly)

For example, for the above-considered ¢; = exp(—4;),i =1,2,... and
for the linear dependence on i of the barrier energy: A; = i(1 4+ «)Inp
we have p(|x[,) = |x[,'~* and

_ftx / fty |1+o¢) M(y)
p~NZ)Z

Right-hand side is the Vladimirov operator.
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VDE

The theory of linear partial pseudo-differential equations for complex-
valued functions over non-Archimedean fields is well-established.

In contrary very little is known about nonlinear p-adic equations. In
[A. Khrennikov and A. Kochubei, J. Fourier Anal. Appl.” 2018] it
was considered a non-Archimedean analogue of the classical porous
medium equation:

%+Da(¢(u)) =0, u=u(t,x), t>0, xcQ, 3)

where D, o > 0 is the Vladimirov’s fractional differentiation opera-
tor, i.e. WDO with symbol |£|%, or in terms of hypersingular integral
representation:

(Du) (x) L=p / ulx = y) = ulx) dy, uecDQ,).

1 _pfozfl , b,’gzﬂ




]
Crandall & Pierre’ 1982

Abstract theory of the equation

ou

57 TApw) =0, 4)

based on the theory of stationary equations
u+Ap(u) =f,

developed by [Brézis & Strauss’ 1973].

Here A is a linear m-accretive operator in L!(Q), Q is o-finite measur-
able space. Under some natural assumptions, the nonlinear operator
Ap = Ao is accretive and admits an m-accretive extension A, the
generator of a contraction semigroup. = solvability of (4).
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Chacon-Cortes and Zuniga-Galindo operator

Definition 1 (Radial Weight Function)
Let us fix a function

w: Q) — Ry,
which satisfies the following properties:

(i) wis radial, i.e. depending on ||y||, w(y) = w(||y||,), continuous
and increasing function of |y||,;

(i) w(y) =0,ify = 0;
(ii1) there exist such constants C > 0, M € Z and « > n that

Clvlly < w(llyllp), for [lyll, > p*. )

Remark.

111 = /
||y||,,

Iyllp=>pM
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Non-local operator W

_ [Py —el) "
W) = [ P A iy for €D, ©

n
P

where s is some positive constant.
Lemma 2

For p € D(Qy) and some constant M = M(yp) operator W has the
Jfollowing representation:

(W) (x) = 56 —BB 4 o) — o) / )

w([lxll»)

S Ty
Ylp =P




Lemma 2 implies that function Oy (x), x € Q) is an indicator of the set
By = {xe Qy : lxll, §pN}, r ez,

is an eigenfunction of the operator Wy corresponding to the
eigenvalue s \y with \y defined by

_ d'y
v = / w(blh)

Iyllp > PV

W : D(Q)) to L4(Q}), is linear bounded operator for each g € [1,0)
and has the representation:

(W) (x) = —3F, (Au(€) Fine p), for o € D(Q),  (8)

_ [1=xb-9)
Anlo) "/ Wbl 4 ©

where
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Remark also that Wy € C(Q)) N L(Qy) for each g € [1,00) and ¢ €
D(Qy) and operator W may be extended to a densely defined operator
in L*(Q;) with the domain
Dom(W) = {p € L*(Q}) : Aw(&)Fcep € L(Q)}.
The operator ( - W, Dom(W)) is essential self-adjoint and positive and
generates Co-semigroup of contraction 7'(r) in space L*(Qy):

Zixu= [ Z(t,x —yu(y)dy, t>0;

T(tu = Q (10)
u, t=0.
Here Z,(x) = Z(t, x)
Z(t,x) = / e &)y (—x - £)d"¢, for t > 0. (11)
Q@

is the heat kernel or fundamental solution of the corresponding Cauchy
problem, x (& - x) = x(&1x1) - - - x(&:x,), where x(x) is an additive char-
acter of the field Q,,.

33/45



Properties of the fundamental soution Z(t, x)

1) Z(t,x) > 0;  Z(x) € L'(Q)), fort >0
2 Z(t,x)d"x =1,
) [zt

3) Z(t + s,x) = /Z(t,x —y)Z(s,y)d"y, t,;5 >0, x € Qp;
@
4) Z(t,x) = F;!

E—x

[e7©] € C(Qp; R) N LY(Q)) NLA(QL);

5) Z(t,x) < max{2°‘C1,2aC2}t<HxH,, + zﬁ) >0, xeQ;

6) D, Z(t,x) = — / A e Oy (x- &) d'¢, for t>0, x € QL.
o
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Properties of the operator W in B.S. L! Q)

Lemma 3

T(t) is strongly continuous semigroup in L'(Q%).

Let us define operator 2 as a generator of semigroup 7'(¢) in space
L'(Qp) and let Dom(2) be its domain.

Lemma 4

Any test function u € D(Qy) belongs to the domain of the operator
in L'(Qp): D(Q;) C Dom(2).

Moreover, on the test functions the operator 2l coincides with the
representation of operator W of the form (8):

(W) (x) = —3F: L, (Au(§) Fanse ), for o € D(QL)
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The Markov process in

[Z.-G.book] = Z(t, x) is the transition density of a time and space ho-
mogeneous Markov process & which is bounded, right-continious and
has no discontinuities other than jumps. Moreover the associated semi-

group
(T(0)u) (x) = / Z(t,x — €y ul€) de (12)
Q

is Feller one. The transition probability of the process & is

pr(t,)@y)d”y, fort >0; x,ycQy, B€EE
15(x), forr =0,

P(t,x,B) = {

p(t,x,y) :=Z(t,x—y), fort >0, x,y € Q7
£ =(Qz |- ) - complete non-Archimedean metric space.



-
The Markov process in the ball

Let & be the Markov process on Q) constructed above.

Suppose that § € By. Denote by é}(N) the sum of all jumps of the
process &, 7 € [0, 7], whose absolute values exceed p”. Since ¢, is right
continuous process with left limits, 5,(N) is finite a.s. Moreover f(()N) =0.
Let us consider process

mo=& - (13)

Since the jumps of 7, never exceed p" by absolute value, this process
remain a.s. in ball By.

Lemma 5

For any z € Q,

Ex(z-&) =exp ( — 13¢A,(2)). (14)
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Generator Wy of process never exceeding the ball

Theorem 6
If i|i=o = x and ¢ € D(By), then

d

LB )]y = ()W) + om0

where operator Wy is defined by restricting W to the function
supported in the ball By and the resulting function W is considered
only on the ball By, i.e.

(Wyp)(x) = (W) gy, for ¢ € D(By).

Remark that actually the generator of the stochatic process 7, located
in the ball By equals:

an = WN — %>\N- (16)
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Unexpected property

Lemma 7
Let the support of a function u € L'(Q}) be contained in Q\By.
Then the restriction to By of the distribution Wu € D'(Q})) coincides

with the constant:

Ry = | w(lylh)’

Qp\Bn

i.e. foru € L'(Qp), suppu C Qp\By:
(WM) rXEBN: RN(I/[)

u(y)d"y (17)
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Semigroup on the p-adic ball

Consider on the ball By, r € Z the following Chauchy problem
Ou(t, x)
ot
u(0,x) = ¢(x), x € By, (18)
where 20, = Wy — »)\y and (WNuN)(x) = (WMN) Iy, for uy €
D(By).

+ W, u(t,x) =0, x € By, t>0;

Theorem 8

The solution of the problem (18) is given by the formula

un(t,x) = / Zultx—y) o) d'y, t>0, x€By,  (19)

By

where
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Zy(t,x) = ™' Z(t,x) + c(t), x € By, (20)
1 e%)\Nt .
c(t) = w(By) ~ m(By) /BN Z(t,x)d"x. (21)

and Z(t, x) is given by (11). Moreover

/ _ )Nt Z(I,f) 4"
clf)=—e ”/@\Bqume) 3

(1) = e”)‘N’/ e~ Aw(E) [Aw(f) — %)\N] d'¢.
By

Z

Lemma 9
The function Zy(t.x) is non-negative, and

/ Zn(t,x)d'x = 1. (22)

By
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Strong continuity of the semigroup on the ball

On a ball By, N € Z the fundamental solution Zy (¢, x) for the Chauchy
problem

Ou(t, x)

ot
u(0,x) = ¢(x), x € By,

+ W, u(t,x) =0, x€By, t>0;

defines a contraction semigroup

(Tw(0)u) () = / Zu(t,x — E)ul€) '€

By
on L'(By).
Lemma 10

The semigroup Ty(t) is strongly continuous in L'(By).
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Generator of the contraction semigroup Ty (¢)

Let 2(y denote the generator of the contraction semigroup Ty () in L' (By).

Theorem 11

If Y € Dom () in L'(Qy), then the restriction {y of the function 1) to
By belongs to D(2ly) and

Avtoy = (Wy — 2Ay) ¢,

where Wyt is understood in the sense of D'(By), that is \y is
extended by zero to a function on Q7, Wy is applied to it in the
distribution sense, and the resulting distribution is restricted to By.




Let us consider equation

@
ot

and interpret it as an equation in sense of Crandall and Pierre theory

+ Ql(ap(u)) =0, u=u(tx), t>0xecQ,

ou —~
— +Ap(u) =0, on L'(Q"
at _'_ (70( ) ) (Qp)7
where operator A = 2L is a generator of semigroup 7'(r) in L' (Q}).
Let ¢ is a strictly monotone increasing continuous real function such
that
p(s)] < Cls|", m > 1.
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Theorem 12 (A., Khrennikov, Kochubei)

The operator Qfltp is m-accretive, so that for any initial function
uo € L'(Q7) the Cachy problem for the equation

lp(s)] < Cls|™, m>1.

has a unique mild solution, i.e. the solution which is given as limit,
uniformly on compact time interval, of solutions of the problem for the
difference equations approximating the differential one.




