
Basics about Markov Chains

We consider processes on a finite set Ω. Each element ω ∈ Ω is called a state and Ω is called state

space. Let us denote the set of all probability distributions on the measurable space
(
Ω,P(Ω)

)
by

M1(Ω), whereby the σ-algebra P(Ω) represents the power set on Ω. In our framework, we examine

discrete-time Markov chains on a finite state space Ω. Such a process moves along the elements of Ω

such that the probability of the next state only depends of the current state. Hence, we define:

Definition 1.1. A sequence of random variables (Xt)t≥0 is called a discrete-time Markov chain with

finite state space Ω if for all ω, ω′ ∈ Ω, all t ≥ 1, and all events Et−1 :=
⋂t−1

i=0{Xi = ω(i)} that satisfy

P(Et−1 ∩ {Xt = ω}) > 0, we have

P(Xt+1 = ω′ | Et−1 ∩ {Xt = ω}) = P(Xt+1 = ω′ | Xt = ω) .

Since the probability of moving from ω to ω′ does not depend on the past, i.e. on the sequence

ω(0), . . . , ω(t−1), an |Ω| × |Ω| matrix P suffices to describe the transitions of the process:

Definition 1.2. Let (Xt)t≥0 be a discrete-time Markov chain with finite state space Ω. Then the

matrix P ∈ R|Ω|×|Ω| with entries

P (ω, ω′) := P(Xt+1 = ω′ | Xt = ω)

is called transition matrix and its entries are called transition probabilities.

Due to the simplicity of such a process, we can compute the distribution of the Markov chain at each

time t ≥ 1 by simple matrix multiplication if we know the initial distribution µ0 ∈M1(Ω), as stated

in the following theorem:

Theorem 1.3. Let (Xt)t≥0 be a discrete-time Markov chain with finite state space Ω and transition

matrix P . Let Xt be distributed according to µt ∈M1(Ω) for all t ≥ 0. Then

µt = µ0P
t for t ≥ 0 .

For further contemplations we introduce two important properties of Markov chains, namely irre-

ducibility and aperiodicity. Definitions are given below and some additional explanations will be given

in the presentation.

Definition 1.4. A transition matrix P of a Markov chain is called irreducible if for all ω, ω′ ∈ Ω

there exists t ∈ N such that P t(ω, ω′) > 0.

Definition 1.5. An irreducible Markov chain (Xt)t≥0 with state space Ω is called aperiodic if

gcd{t ∈ N | P t(ω, ω) > 0} = 1 for all ω ∈ Ω. Otherwise, the chain will be called periodic.



For our purpose, we also are interested in so-called stationary distributions that have an interesting

property:

Definition 1.6. Let (Xt)t≥0 be a Markov chain with state space Ω and transition matrix P . Then

π ∈M1(Ω) is called stationary distribution for P if

π = πP .

If we start a Markov chain in a stationary distribution π, then we have µt = πP t = π for all t ≥ 0 ac-

cording to Theorem 1.3. Therefore, we call π stationary. The following proposition provides a criteria

for a given distribution to be stationary:

Proposition 1.7. Let (Xt)t≥0 be an irreducible Markov chain with state space Ω and transition matrix

P . If π ∈M1(Ω) satisfies the detailed balance equations

π(ω)P (ω, ω′) = π(ω′)P (ω′, ω) for all ω, ω′ ∈ Ω ,

then π is stationary for P .

Definition 1.8. A Markov chain (Xt)t≥0 with state space Ω and transition matrix P that satisfies the

detailed balance equations is called reversible with respect to π ∈M1(Ω).

In order to talk about convergence of measures, we will define a distance between two probability

measures. This distance will be based on the total variation distance:

Definition 1.9. Let µ, ν ∈M1(Ω). Then the total variation distance between µ and ν is defined by

‖µ− ν‖TV := max
A⊂Ω
|µ(A)− ν(A)| .

The above definitions are primarily taken from the book “Markov Chains and Mixing Times” by Levin

et al. (2009). For further explanations, see chapter 1 of this book.


