Basics about Markov Chains

We consider processes on a finite set 2. Each element w € ) is called a state and  is called state
space. Let us denote the set of all probability distributions on the measurable space (Q, Kz (Q)) by
A1 (), whereby the o-algebra &2(Q)) represents the power set on . In our framework, we examine
discrete-time Markov chains on a finite state space 2. Such a process moves along the elements of {2

such that the probability of the next state only depends of the current state. Hence, we define:

Definition 1.1. A sequence of random variables (Xy)i>o is called a discrete-time Markov chain with
finite state space Q if for all w,w’ € Q, allt > 1, and all events Ey_1 := ﬂf;é{Xl = w®Y that satisfy
P(E;—1 N{X; = w}) > 0, we have

P(Xt+1 = w’ | Et—l N {Xt = W}) = P(Xt+1 = w’ | Xt = (,U) .

Since the probability of moving from w to w’ does not depend on the past, i.e. on the sequence

w@ w1 an |Q| x |Q| matrix P suffices to describe the transitions of the process:

Definition 1.2. Let (X;)i>0 be a discrete-time Markov chain with finite state space Q. Then the

matriz P € RICXIC with entries
Plw,w) =P(Xp1 = | Xy =w)
18 called transition matrix and its entries are called transition probabilities.

Due to the simplicity of such a process, we can compute the distribution of the Markov chain at each
time ¢ > 1 by simple matrix multiplication if we know the initial distribution o € .#1(Q2), as stated

in the following theorem:

Theorem 1.3. Let (X;)i>0 be a discrete-time Markov chain with finite state space Q@ and transition
matriz P. Let Xy be distributed according to p; € A1(Q) for all t > 0. Then

pe = poPt fort>0.

For further contemplations we introduce two important properties of Markov chains, namely irre-
ducibility and aperiodicity. Definitions are given below and some additional explanations will be given

in the presentation.

Definition 1.4. A transition matriz P of a Markov chain is called irreducible if for all w,w’ € Q
there exists t € N such that P*(w,w’) > 0.

Definition 1.5. An irreducible Markov chain (Xi)i>o with state space € is called aperiodic if
ged{t € N| PY(w,w) > 0} =1 for all w € Q. Otherwise, the chain will be called periodic.



For our purpose, we also are interested in so-called stationary distributions that have an interesting

property:

Definition 1.6. Let (X;);>0 be a Markov chain with state space 2 and transition matriz P. Then
m € M1(Q) is called stationary distribution for P if

T=7P.

If we start a Markov chain in a stationary distribution 7, then we have yu; = 7P! = 7 for all t > 0 ac-
cording to Theorem 1.3. Therefore, we call 7 stationary. The following proposition provides a criteria

for a given distribution to be stationary:

Proposition 1.7. Let (X;)¢>0 be an irreducible Markov chain with state space 2 and transition matriz
P. If m € #1(Q) satisfies the detailed balance equations

(w)P(w,w') = (W) P, w) foral w,w €,

then 7 is stationary for P.

Definition 1.8. A Markov chain (X;)i>o0 with state space 2 and transition matriz P that satisfies the

detailed balance equations is called reversible with respect to m € #1(Q).

In order to talk about convergence of measures, we will define a distance between two probability

measures. This distance will be based on the total variation distance:

Definition 1.9. Let u,v € #1(Q). Then the total variation distance between u and v is defined by

ln = vllry = max |u(A) — v(A4)].

The above definitions are primarily taken from the book “Markov Chains and Mixing Times” by Levin

et al. (2009). For further explanations, see chapter 1 of this book.



