Basics about Markov Chains

We consider processes on a finite set Ω . Each element $\omega \in \Omega$ is called a *state* and Ω is called *state* space. Let us denote the set of all probability distributions on the measurable space $(\Omega, \mathscr{P}(\Omega))$ by $\mathscr{M}_1(\Omega)$, whereby the σ -algebra $\mathscr{P}(\Omega)$ represents the power set on Ω . In our framework, we examine discrete-time Markov chains on a finite state space Ω . Such a process moves along the elements of Ω such that the probability of the next state only depends of the current state. Hence, we define:

Definition 1.1. A sequence of random variables $(X_t)_{t\geq 0}$ is called a discrete-time Markov chain with finite state space Ω if for all $\omega, \omega' \in \Omega$, all $t \geq 1$, and all events $E_{t-1} := \bigcap_{i=0}^{t-1} \{X_i = \omega^{(i)}\}$ that satisfy $\mathbb{P}(E_{t-1} \cap \{X_t = \omega\}) > 0$, we have

$$\mathbb{P}(X_{t+1} = \omega' \mid E_{t-1} \cap \{X_t = \omega\}) = \mathbb{P}(X_{t+1} = \omega' \mid X_t = \omega).$$

Since the probability of moving from ω to ω' does not depend on the past, i.e. on the sequence $\omega^{(0)}, \ldots, \omega^{(t-1)}$, an $|\Omega| \times |\Omega|$ matrix P suffices to describe the transitions of the process:

Definition 1.2. Let $(X_t)_{t\geq 0}$ be a discrete-time Markov chain with finite state space Ω . Then the matrix $P \in \mathbb{R}^{|\Omega| \times |\Omega|}$ with entries

$$P(\omega, \omega') := \mathbb{P}(X_{t+1} = \omega' \mid X_t = \omega)$$

is called transition matrix and its entries are called transition probabilities.

Due to the simplicity of such a process, we can compute the distribution of the Markov chain at each time $t \ge 1$ by simple matrix multiplication if we know the initial distribution $\mu_0 \in \mathcal{M}_1(\Omega)$, as stated in the following theorem:

Theorem 1.3. Let $(X_t)_{t\geq 0}$ be a discrete-time Markov chain with finite state space Ω and transition matrix P. Let X_t be distributed according to $\mu_t \in \mathscr{M}_1(\Omega)$ for all $t \geq 0$. Then

$$\mu_t = \mu_0 P^t \quad for \ t \ge 0 \,.$$

For further contemplations we introduce two important properties of Markov chains, namely *irre-ducibility* and *aperiodicity*. Definitions are given below and some additional explanations will be given in the presentation.

Definition 1.4. A transition matrix P of a Markov chain is called irreducible if for all $\omega, \omega' \in \Omega$ there exists $t \in \mathbb{N}$ such that $P^t(\omega, \omega') > 0$.

Definition 1.5. An irreducible Markov chain $(X_t)_{t\geq 0}$ with state space Ω is called aperiodic if $gcd\{t \in \mathbb{N} \mid P^t(\omega, \omega) > 0\} = 1$ for all $\omega \in \Omega$. Otherwise, the chain will be called periodic.

For our purpose, we also are interested in so-called *stationary distributions* that have an interesting property:

Definition 1.6. Let $(X_t)_{t\geq 0}$ be a Markov chain with state space Ω and transition matrix P. Then $\pi \in \mathscr{M}_1(\Omega)$ is called stationary distribution for P if

$$\pi = \pi P$$
.

If we start a Markov chain in a stationary distribution π , then we have $\mu_t = \pi P^t = \pi$ for all $t \ge 0$ according to Theorem 1.3. Therefore, we call π stationary. The following proposition provides a criteria for a given distribution to be stationary:

Proposition 1.7. Let $(X_t)_{t\geq 0}$ be an irreducible Markov chain with state space Ω and transition matrix P. If $\pi \in \mathcal{M}_1(\Omega)$ satisfies the detailed balance equations

$$\pi(\omega)P(\omega,\omega') = \pi(\omega')P(\omega',\omega) \quad for \ all \quad \omega,\omega' \in \Omega$$

then π is stationary for P.

Definition 1.8. A Markov chain $(X_t)_{t\geq 0}$ with state space Ω and transition matrix P that satisfies the detailed balance equations is called reversible with respect to $\pi \in \mathscr{M}_1(\Omega)$.

In order to talk about convergence of measures, we will define a distance between two probability measures. This distance will be based on the *total variation distance*:

Definition 1.9. Let $\mu, \nu \in \mathscr{M}_1(\Omega)$. Then the total variation distance between μ and ν is defined by

$$\left\|\mu - \nu\right\|_{\mathrm{TV}} := \max_{A \subset \Omega} \left|\mu(A) - \nu(A)\right|.$$

The above definitions are primarily taken from the book "Markov Chains and Mixing Times" by Levin et al. (2009). For further explanations, see chapter 1 of this book.