Post hoc inference via multiple testing

Pierre Neuvial

Institut de Mathématiques de Toulouse

Joint work with Gilles Blanchard and Etienne Roquain Arxiv preprint: https://arxiv.org/abs/1703.02307

SPSML, Potsdam 2018-02-14

Outline

Introduction

- Differential expression studies in cancer research
- Post hoc inference

Post hoc bounds from JER control

- JER control: definition and associated bounds
- JER control based on Simes' inequality
- Limitations of Simes-based JER control

Adaptive JER control

- Calibration of a rejection template
- Numerical experiments for Gaussian equi-correlation
- Application: Leukemia data set

Example: Leukemia data set

- Expression measurements (mRNA) of *m* = 12625 genes in *n* = 79 cancer patients:
- Two groups of patients:
 - BCR/ABL: 37 patients
 - NEG: 42 patients

Question: find genes whose average expression differs between the two groups

Large-scale inference

- Setup: one statistical test for each gene g
 - e.g. Student's t test of $H_{0,g}$: no difference between group means
- Goal: select a subset S of genes with a "small" number V(S) of false positives (genes in S but for which H_{0,g} is true)

Step 1 (user): choose a (multiple testing) risk of interest

- $\mathbb{P}(V(S) > 0)$: Family-Wise Error Rate
- **2** $\mathbb{E}(V(S)/(|S| \lor 1))$: False Discovery Rate

and an acceptable target level for this risk: α

Step 2 (statistician): select S satisfying the desired guarantee

- Bonferroni, Bonferroni-Holm, Hommel, ...
- Benjamini-Hochberg, Storey, ...

Example: FWER and FDR thresholding

State of the art answer

With $\alpha = 0.05$,

- FWER control: |S₁| = 20: 1635_at, 1636_g_at, 1674_at... 41815_at
- FDR control: |S₂| = 163: 1000_at, 1001_at, 1002_f_at... 1148_s_at

Post hoc questions

can we incorporate prior biological knowledge: fold change, gene pathways

• inference on
$$S = S_1 \cup S'_1$$
?

• inference on
$$S=S_2\setminus S_2'$$

User-defined selection 1: volcano plot

User-defined selection 2: top k genes

rank

User-defined selection 3: gene pathways

Pierre Neuvial (IMT)

User-defined selection: toy example

How can JER control be achieved?

Pierre Neuvial (IMT)

100

The need for post hoc inference

Challenges

- large-scale multiple testing is exploratory in nature
- no formal statistical guarantee on such user-defined selections

Proposal: post hoc confidence bounds

- $\mathcal{H} = \{1, \dots m\}$: *m* null hypotheses to be tested
- $\mathcal{H}_0 \subset \mathcal{H}$: true null hypotheses, $m_0 = |\mathcal{H}_0|$

•
$$\mathcal{H}_1 = \mathcal{H} \setminus \mathcal{H}_0$$

• $V(S) = |S \cap \mathcal{H}_0|$: number of false postives in $S \subset \mathcal{H}$

Goal: find \overline{V}_{α} such that

$$\mathbb{P}\left(\forall S \subset \{1 \dots m\}, \ V(S) \leq \overline{V}_{\alpha}(S)\right) \geq 1 - \alpha$$

Related works: selective inference

for a specific selection rule

Inference for a specific selection rule S

• Lockhart et al. (2014), Fithian et al. (2014)

for an arbitrary, pre-decided selection rule

Inference for an arbitrary selection rule, to be chosen before looking at the data

• Benjamini and Yekutieli (2005)

Omnibus

Inference simultaneously over all $S \subset \{1, \dots, m\}$, possibly chosen after looging at the data

• Genovese and Wasserman (2006), Goeman and Solari (2011), Berk et al. (2013)

Pierre Neuvial (IMT)

Basic idea: reference family

Reference set

Assume that we *know* an upper bound for $V(R) := |R \cap \mathcal{H}_0|$ for some $R \subset \mathcal{H}$

Then for any $S \subset \mathcal{H}$, we have $V(S) \leq |S \cap R^c| + V(R)$

Proof: simply note that $V(S) = |S \cap \mathcal{H}_0| = |S \cap \mathcal{H}_0 \cap R^c| + |S \cap \mathcal{H}_0 \cap R|$

Reference family

Idea: build a family of sets (R_1, \ldots, R_K) for which we have an upper bound on $V(R_k)$ for each k.

Post hoc bound via JER control

Definition (Joint Family-Wise Error Rate control) Let $\mathfrak{R} = (R_k)_k$ be a *reference family* of subsets of \mathcal{H} .

 $\mathsf{JER}(\mathfrak{R}) := \mathbb{P}(\exists k, V(R_k) \geq k) \leq lpha$

That is, $\mathcal{E} = \{ orall k : V(R_k) \leq k-1 \}$ is of probability $\geq 1-lpha$

Proposition: post hoc upper bound on the number of false positives On the event \mathcal{E} , for any set $S \subset \{1, \dots m\}$,

$$V(S) \leq |S| \wedge \min_{k} \{|S \cap R_k^c| + k - 1\}$$

Recall: $V(S) \leq |S \cap R^c| + V(R)$

Applicable to any number of possibly data-driven sets!

Pierre Neuvial (IMT)

Post hoc inference: toy example

How can JER control be achieved?

100

Simes-based¹ JER control and post hoc bound

Simes' inequality

• If the *p*-values (p_i) , $1 \le i \le m$, are independent then

$$\mathbb{P}(\exists k \in \{1,\ldots,m_0\} : p_{(k:\mathcal{H}_0)} \leq \alpha k/m_0) = \alpha$$

• Under some forms of positive dependence $(PRDS(H_0)): \leq \alpha$ (PRDS = Positive Regression Dependency on a Subset)

Corollary: Simes-based JER control and post hoc bound Under PRDS, the Simes reference family $(R_k)_k$, with

$$R_k = \{1 \le i \le m : p_i \le \alpha k/m\}$$

achieves JER control at level α and thus provides a post hoc bound

¹ R.	J.	Simes.	Biometrika	73.3	(1986),	pp.	751–754.
-----------------	----	--------	------------	------	---------	-----	----------

Pierre Neuvial (IMT)

Simes-based JER control and post hoc bound

Post hoc bound for the Simes family

Under PRDS, with probability larger than $1 - \alpha$, for any *S*,

$$V(S) \leq |S| \wedge \min_{k} \left\{ \sum_{i \in S} \mathbf{1} \left\{ p_i > \alpha k/m \right\} + k - 1 \right\}$$

Comments

- Recovers the closed testing bound of Goeman and Solari (2011)
- JER: a generic device to build post hoc bounds
- Independence/PRDS assumption:
 - can we obtain dependence-free JER control?
 - how sharp is the Simes inequality under PRDS?

Application: Leukemia data set

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1 – α , for any S,

$$V(S) \leq |S| \wedge \min_{k} \left\{ \sum_{i \in S} \mathbf{1} \left\{ p_i > \alpha / C_m k / m \right\} + k - 1 \right\}$$

 $C_m = \sum_{k=1}^m k^{-1} \sim \log(m)$: Hommel's correction factor for dependency²

Dependence-free adjustment is not a sensible objective

- implies adjusting to a worst case dependency
- very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

 $^2{\rm G}$ Hommel. "Tests of the overall hypothesis for arbitrary dependence structures". Biometrische Zeitschrift 25.5 (1983), pp. 423–430.

Pierre Neuvial (IMT)

Sharpness and conservativeness of the Simes family

Simes' equality is sharp under independence, but conservative under positive dependence.

Conservativeness of JER control under PRDS

Example: Gaussian equi-correlation, white setting $(m_0 = m = 1, 000)$: Test statistics $\sim \mathcal{N}(0, \Sigma)$ with $\Sigma_{ii} = 1$ and $\Sigma_{ij} = \rho$ for $i \neq j$.

Equi-correlation level: ρ	0	0.1	0.2	0.4	0.8
Achieved JER $ imes lpha^{-1}$	0.99	0.85	0.72	0.42	0.39

Can we build a family achieving sharper JER control? We want to be adaptive to dependency

JER control with λ -calibration

Rejection template

Consider a reference family $\mathfrak{R}_{\alpha} = (R_k(\alpha))_k$, where

$$R_k(\alpha) = \{1 \le i \le m : p_i \le t_k(\alpha)\}$$

where $t_k(0) = 0$ and $t_k(\cdot)$ is non-decreasing and left-continuous on [0,1]

• Example (Simes family): $t_k(\alpha) = \alpha k/m$

Associated **rejection template**: collection $(t_k(\lambda))_k$ for all $0 \le \lambda \le 1$

Single-step λ -calibration

$$\lambda(\alpha) = \max\left\{\lambda \ge 0 \ : \ \mathbb{P}\bigg(\min_{k}\left\{t_{k}^{-1}\left(p_{(k:\mathcal{H}_{0})}\right)\right\} \le \lambda\bigg) \le \alpha\right\}$$

The family $\mathfrak{R}_{\lambda(\alpha)}$ controls JER at level α .

Example: Gaussian location model

Setting: $X \sim \mathcal{N}(\mu, \Sigma)$, $p_i = 2\overline{\Phi}(|X_i|)$

$$\lambda(\alpha) = \max\left\{\lambda \ge 0 \ : \ \mathbb{P}_{Z \sim \mathcal{N}(0, \Sigma)}\left(\min_{k} \left\{t_{k}^{-1}\left(2\overline{\Phi}(|Z_{(k)}|)\right)\right\} \le \lambda\right) \le \alpha\right\}$$

yields $\mathsf{JER}(\mathfrak{R}_{\lambda(\alpha)}) \leq \alpha$

Choice of the template

- Linear template: $t_k(\lambda) = \lambda k/m$ (generalizes Simes)
- Balanced template: $t_k(\lambda)$ such that $t_k^{-1}(2\overline{\Phi}(|X_{(k)}|)) \sim \mathcal{U}[0,1]$

λ -calibration

- If Σ is known, $\lambda(\alpha)$ can be calibrated by Monte-Carlo
- If Σ is unknown, $\lambda(\alpha)$ can be calibrated by sign-flipping

JER control with λ -calibration for the linear template

32

With probability $\geq 1 - \alpha = 75\%$:

$$\begin{array}{c|c} t_k(\alpha) & \text{Lower bound on } |S \cap \mathcal{H}_1| \\ \hline \alpha k/m & |S \cap \mathcal{H}_1| \ge 2 \text{ and } |S' \cap \mathcal{H}_1| \ge 1 \\ \hline \lambda(\alpha)k/m & |S \cap \mathcal{H}_1| \ge 3 \text{ and } |S' \cap \mathcal{H}_1| \ge 2 \end{array}$$
Pierre Neuvial (IMT) Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 22 /

Linear template, known dependence (calibration by Monte-Carlo)

• $X_i \sim \mathcal{N}(0,1)$ under H_0

• $X_i \sim \mathcal{N}(\bar{\mu}, 1)$ under H_1

•
$$\operatorname{cor}(X_i, X_j) = \rho$$
 for $i \neq j$

α = 0.25

Linear template, unknown dependence (calibration by sign-flipping)

• $X_i \sim \mathcal{N}(0,1)$ under H_0

• $X_i \sim \mathcal{N}(\bar{\mu}, 1)$ under H_1

•
$$\operatorname{cor}(X_i, X_j) = \rho$$
 for $i \neq j$

α = 0.25

Balanced template, known dependence (calibration by Monte-Carlo)

• $X_i \sim \mathcal{N}(0,1)$ under H_0

• $X_i \sim \mathcal{N}(ar{\mu}, 1)$ under H_1

•
$$\operatorname{cor}(X_i, X_j) = \rho$$
 for $i \neq j$

Balanced template, unknown dependence (calibration by sign-flipping)

- $X_i \sim \mathcal{N}(0,1)$ under H_0
- $X_i \sim \mathcal{N}(ar{\mu},1)$ under H_1

•
$$\operatorname{cor}(X_i, X_j) = \rho$$
 for $i \neq j$

Estimation power for under independence

- $X_i \sim \mathcal{N}(\bar{\mu}, 1)$ under H_1
- $\operatorname{cor}(X_i, X_j) = 0$ for $i \neq j$
- $\bar{\mu} = 2$
- Estimation power: $E(\overline{S}(\mathcal{H}_1))/m_1$

λ -Calibration by permutations

For two sample tests, the distribution of

$$\min_{k}\left\{t_{k}^{-1}\left(p_{\left(k:\mathcal{H}_{0}\right)}\right)\right\}$$

can be sampled from using permutations of the group labels

Improved confidence envelope using permutations

Improved confidence envelope using permutations

Improved confidence envelope using permutations

Conclusions

Summary

- JER control induces post hoc bounds
- Existing bounds recovered from probabilistic inequalities (Simes)
- Framework to build adaptive JER control

Results not discussed here

- Step-down procedures (adaptation to $|\mathcal{H}_0|$)
- Detection power: connection to "higher criticism" in a sparse setting

Ongoing/future works

- Choice of the template and its size
- Applications (GWAS, differential expression, neuro-imaging)
- Structured rejection sets: algorithms and statistical results
- Software (R package sansSouci) and visualization tools