Adaptive Strategies for Nonparametric Active Learning

Andrea Locatelli

(Uni Magdeburg)

Based on works with Alexandra Carpentier and Samory Kpotufe

Pb: Classification $X \to Y \in \{0, 1\}$ when **labels are expensive**. **Goal:** Return a good classifier using **few label queries**.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0, 1\}$ when **labels are expensive**. **Goal:** Return a good classifier using **few label queries**.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0, 1\}$ when **labels are expensive**. **Goal:** Return a good classifier using **few label queries**.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Pb: Classification $X \to Y \in \{0, 1\}$ when **labels are expensive**. **Goal:** Return a good classifier using **few label queries**.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ... **Science:** Medical imaging, Personalized medicine, Drug design ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $f \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.

- Let $f \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $<\infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in **parametric** settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's] A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world):

noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Performance measure:

- Let f^* minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f}) - R(f^*)$ be in terms of n?

Most results are in parametric settings (e.g. VC dim. $< \infty$): [Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]

A-L rates $\equiv \sqrt{R(f^*)/n} + e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R(f^*)/n} + 1/n$ $R(f^*) > 0$: both rates are $\equiv 1/\sqrt{n}$ (no significant gain).

But $R(f^*)$ is often > 0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

We want to understand which gains are possible over passive learning under general conditions, and for reasonable procedures.

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Let $\eta(x) \doteq \mathbb{P}(Y = 1 \mid x)$, and note that $f^* = \mathbf{1} \{\eta \ge 1/2\}$. So $R(f^*)$ depends on how η behaves.

A natural direction:

Parametrize η on a **continuum** from **easy** to **hard** problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1/2$, else it's easy! **How typical** \implies existing noise conditions (e.g. Tsybakov, Massart)

Initial insights ... different regularity conditions [Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]

[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):

Show considerable gains over passive learning even with label noise!

However:

- Assume bounded disagreement coefficient: Mostly known for toy distributions (U(interval), U(sphere)).
- Procedures are **not implementable** (search over infinite \mathcal{F}).

[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However: **Needs full knowledge** of boundary regularity and noise decay.

[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However: **Needs full knowledge** of boundary regularity and noise decay.

[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However:

Needs full knowledge of boundary regularity and noise decay.

[Minsker, 2012] (η is smooth):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient, Adaptive!

However: Needs quite restrictive technical conditions on $P_{X,Y}$.

[Minsker, 2012] (η is smooth):

Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient, Adaptive!

However:

Needs quite restrictive technical conditions on $P_{X,Y}$.

Can reasonable A-L procedures (implementable + adaptive) attain considerable gains over P-L for general distributions?

Some of our recent results:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η is a smooth function with A. Carpentier and S.Kpotufe, COLT 2017
- η defines a smooth decision-boundary with S.Kpotufe and A. Carpentier, ALT 2018

Outline:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

- η is a smooth function
 with A. Carpentier and S.Kpotufe, COLT 2017
- η defines a smooth decision-boundary with S.Kpotufe and A. Carpentier, ALT 2018

η is a smooth function

Setup:

- η(x) ≐ E[Y|x] has Hölder smoothness α (e.g. all derivatives up to order α are bounded)
 Example: α = 1 ⇒ η is Lipschitz.
- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau > 0$:

$$\mathbb{P}_X\left(x: \left|\eta(x) - \frac{1}{2}\right| \le \tau\right) \le c\tau^{\beta},$$

η is a smooth function

Setup:

- η(x) ≐ E[Y|x] has Hölder smoothness α (e.g. all derivatives up to order α are bounded)
 Example: α = 1 ⇒ η is Lipschitz.
- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau > 0$:

$$\mathbb{P}_X\left(x: \left|\eta(x) - \frac{1}{2}\right| \le \tau\right) \le c\tau^{\beta},$$

η is a smooth function

Setup:

- η(x) ≐ E[Y|x] has Hölder smoothness α

 (e.g. all derivatives up to order α are bounded)

 Example: α = 1 ⇒ η is Lipschitz.
- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau > 0$:

$$\mathbb{P}_X\left(x: \left|\eta(x) - \frac{1}{2}\right| \le \tau\right) \le c\tau^{\beta},$$

lpha,eta capture continuum between easy and hard problems

α,β capture continuum between easy and hard problems

[Audibert-Tsybakov 07]

Passive rates : $n^{-(\beta+1)/(2+rac{d}{lpha})}$

The above implies:

- Slow rates of $\Omega(n^{-1/d})$ for small α, β .
- Fast rates of o(1/n): for large α, β .

α,β capture continuum between easy and hard problems

[Audibert-Tsybakov 07] Passive rates : $n^{-(\beta+1)/(2+rac{d}{lpha})}$

The above implies:

- Slow rates of $\Omega(n^{-1/d})$ for small α, β .
- Fast rates of o(1/n): for large α, β .

We'll see that: interaction between $\alpha\text{, }\beta$ and d control A-L rates

• • •

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{lpha(eta+1)}{2lpha+d-lphaeta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)

Theorem: $\alpha \leq 1$, $\alpha\beta < d$

There exists an active strategy \hat{f}_n such that:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$$
 (rate is tight)

Passive rate: replace $d - \alpha\beta$ by d [AT07]

For $\alpha > 1$ Minsker conjectures a transition:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

We'll present both new statistical and algorithmic results:

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η .
- \mathbb{P}_X uniform (new transitions):
 - No (exponential) dependence on d when $\min\{\alpha, 1\}\beta = 1$.
 - Verify rate transition for $\alpha > 1$:

For
$$\beta = 1$$
: $\inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \gtrsim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Active :
$$\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right)$$
 vs. Passive : $\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)$

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η .
- \mathbb{P}_X uniform (new transitions):
 - No (exponential) dependence on d when $\min\{\alpha, 1\}\beta = 1$.
 - Verify rate transition for $\alpha > 1$:

For
$$\beta = 1$$
: $\inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \gtrsim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Active :
$$\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right)$$
 vs. Passive : $\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)$

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η .
- \mathbb{P}_X uniform (new transitions):
 - No (exponential) dependence on d when $\min\{\alpha, 1\}\beta = 1$.
 - Verify rate transition for $\alpha > 1$:

For
$$\beta = 1$$
: $\inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \gtrsim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Active :
$$\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right)$$
 vs. Passive : $\Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)$

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η .
- \mathbb{P}_X uniform (new transitions):
 - No (exponential) dependence on d when $\min\{\alpha, 1\}\beta = 1$.
 - Verify rate transition for $\alpha > 1$:

For
$$\beta = 1$$
: $\inf_{\hat{f}_n} \sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \gtrsim n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

$$\mathsf{Active}: \Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}\right) \text{ vs. Passive}: \Theta\left(n^{-\frac{\alpha(\beta+1)}{2\alpha+d+\alpha\beta}}\right)$$

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3

Optimal CBs require strong conditions on η (e.g. self-similarity) New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3 Optimal CBs require strong conditions on η (e.g. self-similarity) New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$)

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_2 but not at x_1, x_3 Optimal CBs require strong conditions on η (e.g. self-similarity) New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).

Outline

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds

Suppose we know η is α -smooth ($\alpha \leq 1$)

- We know η changes on C by at most r^α
- Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

$$\implies \forall x \in C, \quad |\widehat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^{\alpha}$$

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

- We know η changes on C by at most r^α
- Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

$$\implies \forall x \in C, \quad |\widehat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^{\alpha}$$

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

- We know η changes on C by at most r^α
- Query t labels at x_C and estimate $\eta(x_C)$:

w.h.p.
$$|\widehat{\eta}(x_C) - \eta(x_C)| \lesssim \sqrt{\frac{1}{t}}$$

$$\implies \forall x \in C, \quad |\widehat{\eta}(x_C) - \eta(x)| \lesssim \sqrt{\frac{1}{t}} + r^{\alpha}$$

 \therefore Let $t \approx r^{-2\alpha}$, we can safely label C if

$$|\widehat{\eta}(x_C) - 1/2| \gtrsim 2r^{\alpha}$$

Otherwise partition C and repeat over smaller regions.

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x : |\eta(x) 1/2| \le \Delta_{\alpha,\beta}(n)\}.$

 $\Delta_{\alpha,\beta}(n)$ is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$: Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x : |\eta(x) 1/2| \le \Delta_{\alpha,\beta}(n)\}.$

 $\Delta_{\alpha,\beta}(n)$ is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$: Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Suppose we know η is α -smooth ($\alpha \leq 1$)

Implement previous intuition over hierarchical partition of $[0, 1]^d$.

Final output given budget n:

- Correctly labeled subset of $[0,1]^d$
- Abstention region contained in $\{x : |\eta(x) 1/2| \le \Delta_{\alpha,\beta}(n)\}.$

 $\Delta_{\alpha,\beta}(n)$ is "optimal" under different \mathbb{P}_X regimes.

Case $\alpha > 1$: Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Outline

• Upper-bounds

- Non-adaptive Subroutine
- Adaptive Procedure
- Lower-bounds

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α ... **Cost:** (optimal rate) + $1/\sqrt{n}$

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α ... Cost: (optimal rate) + $1/\sqrt{n}$

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α ... Cost: (optimal rate) + $1/\sqrt{n}$

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α ... Cost: (optimal rate) + $1/\sqrt{n}$

Key idea: η is α' -Hölder for any $\alpha' \leq \alpha$

 \implies Subroutine(α') returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine(α') for $\alpha' = \alpha_1 < \alpha_2 < \dots$

Correctness: at $\alpha_i = \alpha$ labeling has optimal error At $\alpha_i > \alpha$, we never overwrite previous labels (error remains small) **Implementation:** $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \forall \alpha_i$

Key idea: η is α' -Hölder for any $\alpha' \leq \alpha$

 \implies Subroutine(α') returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine(α') for $\alpha' = \alpha_1 < \alpha_2 < \dots$

Correctness: at $\alpha_i = \alpha$ labeling has optimal error At $\alpha_i > \alpha$, we never overwrite previous labels (error remains small) **Implementation:** $\alpha_i \in \left[\frac{1}{\log n} : \frac{1}{\log n} : \log n\right]$, use budget $\frac{n}{\log^2 n} \forall \alpha_i$

Without self-similarity assumptions adaptive \hat{f}_n satisfies:

Theorem (unrestricted \mathbb{P}_X)

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform)

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d - (\alpha \wedge 1)\beta}}$$

which are all tight rates.

Without self-similarity assumptions adaptive \hat{f}_n satisfies:

Theorem (unrestricted \mathbb{P}_X)

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform)

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha(\beta+1)}{2\alpha+d - (\alpha \wedge 1)\beta}}$$

which are all tight rates.

Outline

• η is a smooth function

with A. Carpentier and S.Kpotufe, COLT 2017

- Upper-bounds
 - Non-adaptive Subroutine
 - Adaptive Procedure
- Lower-bounds
- η defines a smooth decision-boundary

with S.Kpotufe and A. Carpentier, ALT 2018

Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $lpha>1,\ eta=1$) For any active learner \widehat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).

Lower-bounds

Theorem (unrestricted \mathbb{P}_X)

For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d}}$$

Theorem (\mathbb{P}_X uniform and $\alpha > 1$, $\beta = 1$) For any active learner \hat{f}_n we have:

$$\sup_{\eta} \mathbb{E}[R(\hat{f}_n)] - R(f^*) \ge Cn^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$$

This confirms a transition in the rate (at least for $\beta = 1$).

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates: $\alpha \leq 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$ $\alpha > 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$, $\beta = 1$: η changes linearly in 1 direction, but oscillates in d-1 directions

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates: $\alpha \leq 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$ $\alpha > 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$, $\beta = 1$: η changes linearly in 1 direction, but oscillates in d - 1 directions

...d - eta now acts as the effective degrees of freedom

Lower-bound construction for \mathbb{P}_X uniform, $\alpha > 1$, $\beta = 1$

Remember difference in rates: $\alpha \leq 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\alpha\beta}}$ $\alpha > 1: n^{-\frac{\alpha(\beta+1)}{2\alpha+d-\beta}}$

Hard case for $\alpha > 1$, $\beta = 1$: η changes linearly in 1 direction, but oscillates in d-1 directions

 $...d-\beta$ now acts as the effective degrees of freedom

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha > 1$, $(\alpha \wedge 1)\beta = d$, unrestricted \mathbb{P}_X .
- Introduced a generic adaptation framework for nested classes.

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha > 1$, $(\alpha \wedge 1)\beta = d$, unrestricted \mathbb{P}_X .
- Introduced a generic adaptation framework for nested classes.

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha > 1$, $(\alpha \wedge 1)\beta = d$, unrestricted \mathbb{P}_X .
- Introduced a generic adaptation framework for nested classes.

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha > 1$, $(\alpha \wedge 1)\beta = d$, unrestricted \mathbb{P}_X .
- Introduced a generic adaptation framework for nested classes.

Our recent result:

We consider various regularity conditions on $\eta = \mathbb{E}[Y|X]$:

η is a smooth function with A. Carpentier and S. Kpotufe, COLT 2017
η defines a smooth decision-boundary

with S.Kpotufe and A. Carpentier, ALT 2018

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa-1}$, $\kappa \geq 1$.

Problem gets easier as $\kappa \to 1, \alpha \to \infty$.

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa-1}$, $\kappa \geq 1$.

Problem gets easier as $\kappa \to 1, \alpha \to \infty$.

η defines a smooth decision-boundary

- $\mathcal{D} \equiv \{x : \eta(x) = 1/2\}$ is given by α -Hölder function g.
- Noise condition: $|\eta(x) 1/2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa-1}$, $\kappa \geq 1$.

Problem gets easier as $\kappa \to 1, \alpha \to \infty$.

If we know α, κ , then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha\kappa}{2\alpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

If we know α, κ , then:

 $R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{\alpha\kappa}{2\alpha(\kappa-1)+d-1}}$ (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

If we know α, κ , then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{lpha\kappa}{2lpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

If we know α, κ , then:

$$R(\hat{f}_n) - R(f^*) \lesssim n^{-\frac{lpha\kappa}{2lpha(\kappa-1)+d-1}}$$
 (rate is tight)

Passive rate: Replace $\kappa - 1$ with $\kappa - 1/2$.

Existing adaptive results:

Dimension d = 1, $\mathcal{D} \equiv$ threshold on the line

Binary search strategies are adaptive to κ ... (fixed $\alpha = \infty$) [Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Intuition: If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha$!

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for lpha
earrow

Main difficulty:

- Subroutine must **adapt** to κ in \mathbb{R}^d ...
- Subroutine must estimate boundary optimally...
- Use α to **abstain** from labeling when unsure...

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must **adapt** to κ in \mathbb{R}^d ...
- Subroutine must estimate boundary optimally...
- Use α to **abstain** from labeling when unsure...

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must **adapt** to κ in ${\rm I\!R}^d$...
- Subroutine must estimate boundary optimally...
- Use α to **abstain** from labeling when unsure...

Intuition:

If \mathcal{D} is α -smooth, then it's α' -smooth for $\alpha' \leq \alpha!$

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must **adapt** to κ in ${\rm I\!R}^d$...
- Subroutine must estimate boundary optimally...
- Use α to **abstain** from labeling when unsure...

We get the first fully **adaptive** and **optimal** A-L for the setting!

In summary: Further gains in A-L emerge as we parametrize from easy to hard.

Next directions:

- Better aggregation?
- Draw links with Contextual Bandits, Nonlinear Optimization.

Thanks!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard.

Next directions:

- Better aggregation?
- Draw links with Contextual Bandits, Nonlinear Optimization.

Thanks!