Adaptive Strategies for Nonparametric Active Learning

Andrea Locatelli

(Uni Magdeburg)

Based on works with Alexandra Carpentier and Samory Kpotufe

Active Classification

Pb: Classification $X \rightarrow Y \in\{0,1\}$ when labels are expensive. Goal: Return a good classifier using few label queries.

Applications:
Industrial: Document categorization, Vision/Audio, IoT security Science: Medical imaging, Personalized medicine, Drug design

Active Classification

Pb: Classification $X \rightarrow Y \in\{0,1\}$ when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:
Industrial: Document categorization, Vision/Audio, lo T security Science: Medical imaging, Personalized medicine, Drug design

Active Classification

Pb: Classification $X \rightarrow Y \in\{0,1\}$ when labels are expensive. Goal: Return a good classifier using few label queries.

Applications:
Industrial: Document categorization, Vision/Audio, IoT security ... Science: Medical imaging, Personalized medicine, Drug design ...

Active Classification

Pb: Classification $X \rightarrow Y \in\{0,1\}$ when labels are expensive. Goal: Return a good classifier using few label queries.

Applications:
Industrial: Document categorization, Vision/Audio, IoT security ... Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

$$
\text { How small can } R(\hat{f})-R\left(f^{*}\right) \text { be in terms of } n ?
$$

Most results are in parametric settings (e.g. VC dim. $<\infty$):
[I anoford Dasounta Hanneke Balcan et al since early 200n's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$
$R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

But $R\left(f^{*}\right)$ is often >0 (imperfect world):

noisy images or speech, adversarial spam, variable drug response

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $f \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?

Most results are in parametric settings (e.g. VC dim. < $<\infty$)

A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates \equiv both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

But $R\left(f^{*}\right)$ is often >0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(f)-R\left(f^{*}\right)$ be in terms of n ?

Most results are in parametric settings (e.g. VC dim. $<\infty$).

both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

But $R\left(f^{*}\right)$ is often >0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):

A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$ $R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$ $R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$

But $R\left(f^{*}\right)$ is often >0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$
$R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).

But $R\left(f^{*}\right)$ is often >0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$
$R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).
But $R\left(f^{*}\right)$ is often >0 (imperfect world):

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$
$R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).
But $R\left(f^{*}\right)$ is often >0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

Gains in active learning

Performance measure:

- Let f^{*} minimize $R(f) \doteq \mathbb{P}(Y \neq f(X))$.
- Let $\hat{f} \leftarrow$ classifier returned after querying n labels.

How small can $R(\hat{f})-R\left(f^{*}\right)$ be in terms of n ?
Most results are in parametric settings (e.g. VC dim. $<\infty$):
[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000's]
A-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+e^{-\sqrt{n}}$, vs P-L rates $\equiv \sqrt{R\left(f^{*}\right) / n}+1 / n$
$R\left(f^{*}\right)>0$: both rates are $\equiv 1 / \sqrt{n}$ (no significant gain).
But $R\left(f^{*}\right)$ is often >0 (imperfect world): noisy images or speech, adversarial spam, variable drug response ...

We want to understand which gains are possible over passive learning under general conditions, and for reasonable procedures.

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$.

A natural direction:

Parametrize on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1 / 2$, else it's easy! How typical \Longrightarrow existing noise conditions (e.g. Tsybakov, Massart)
(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$. So $R\left(f^{*}\right)$ depends on how η behaves.

A natural direction:

Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1 / 2$, else it's easy! How typical \Longrightarrow existing noise conditions (e.g. Tsybakov, Massart)
(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$. So $R\left(f^{*}\right)$ depends on how η behaves.

A natural direction:

Parametrize η on a continuum from easy to hard problems.

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$. So $R\left(f^{*}\right)$ depends on how η behaves.

A natural direction:

Parametrize η on a continuum from easy to hard problems.

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$. So $R\left(f^{*}\right)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1 / 2$, else it's easy! How typical \Longrightarrow existing noise conditions (e.g. Tsybakov, Massart)
(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class

General Conditions:

Let $\eta(x) \doteq \mathbb{P}(Y=1 \mid x)$, and note that $f^{*}=\mathbf{1}\{\eta \geq 1 / 2\}$. So $R\left(f^{*}\right)$ depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if $\eta(x)$ is typically $\approx 1 / 2$, else it's easy! How typical \Longrightarrow existing noise conditions (e.g. Tsybakov, Massart)
(ii). Combine with regularity or complexity conditions: smoothness of η or class-boundary, complexity of hypothesis class ...

Initial insights ... different regularity conditions
[Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]
[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):
Show considerable gains over passive learning even with label noise!
However:

- Assume bounded disagreement coefficient: Mostly known for toy distributions (\mathcal{U} (interval), \mathcal{U} (sphere)).
- Procedures are not implementable (search over infinite \mathcal{F}).
[Castro-Nowak 08] (smooth decision boundary):
Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However:
Needs full knowledge of boundary regularity and noise decay.
[Castro-Nowak 08] (smooth decision boundary):
Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However:
Needs full knowledge of boundary regularity and noise decay.
[Castro-Nowak 08] (smooth decision boundary):
Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient!

However:
Needs full knowledge of boundary regularity and noise decay.
[Minsker, 2012] (η is smooth):
Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient, Adaptive!

However:
Needs quite restrictive technical conditions on $P_{X, Y}$
[Minsker, 2012] (η is smooth):
Show considerable gains over passive learning even with label noise! Implementable, no conditions on Disagreement Coefficient, Adaptive!

However:
Needs quite restrictive technical conditions on $P_{X, Y}$.

Can reasonable A-L procedures (implementable + adaptive) attain considerable gains over P-L for general distributions?

Some of our recent results:

We consider various regularity conditions on $\eta=\mathbb{E}[Y \mid X]$:

- η is a smooth function with A. Carpentier and S.Kpotufe, COLT 2017
- η defines a smooth decision-boundary with S.Kpotufe and A. Carpentier, ALT 2018

Outline:

We consider various regularity conditions on $\eta=\mathbb{E}[Y \mid X]$:

- η is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017
- η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018

η is a smooth function

Setup:

- $\eta(x) \doteq \mathbb{E}[Y \mid x]$ has Hölder smoothness α
(e.g. all derivatives up to order α are bounded)

Example: $\alpha=1 \Longrightarrow \eta$ is Lipschitz.

- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau>0$:

η is a smooth function

Setup:

- $\eta(x) \doteq \mathbb{E}[Y \mid x]$ has Hölder smoothness α
(e.g. all derivatives up to order α are bounded)

Example: $\alpha=1 \Longrightarrow \eta$ is Lipschitz.

- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau>0$:

η is a smooth function

Setup:

- $\eta(x) \doteq \mathbb{E}[Y \mid x]$ has Hölder smoothness α
(e.g. all derivatives up to order α are bounded)

Example: $\alpha=1 \Longrightarrow \eta$ is Lipschitz.

- Tsybakov noise condition: $\exists c, \beta \geq 0$ such that $\forall \tau>0$:

$$
\mathbb{P}_{X}\left(x:\left|\eta(x)-\frac{1}{2}\right| \leq \tau\right) \leq c \tau^{\beta}
$$

α, β capture continuum between easy and hard problems

α, β capture continuum between easy and hard problems

$$
\begin{gathered}
\text { [Audibert-Tsybakov 07] } \\
\text { Passive rates: } n^{-(\beta+1) /\left(2+\frac{d}{\alpha}\right)}
\end{gathered}
$$

- Slow rates of $\Omega\left(n^{-1 / d}\right)$ for small α, β.
- Fast rates of $o(1 / n)$: for large α, β.
α, β capture continuum between easy and hard problems

$$
\begin{gathered}
\text { [Audibert-Tsybakov 07] } \\
\text { Passive rates: } n^{-(\beta+1) /\left(2+\frac{d}{\alpha}\right)}
\end{gathered}
$$

The above implies:

- Slow rates of $\Omega\left(n^{-1 / d}\right)$ for small α, β.
- Fast rates of $o(1 / n)$: for large α, β.

We'll see that: interaction between α, β and d control A-L rates

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition.

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

Open: Unrestricted \mathbb{P}_{X} ?

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

Open: Unrestricted \mathbb{P}_{X} ? General η ?

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

Open: Unrestricted \mathbb{P}_{X} ? General η ? $\alpha \beta=d$?

Previous work Minsker (2012): \mathbb{P}_{X} uniform

Self-similarity of η : smoothness is tight $\forall x$ (never better than α)
Theorem: $\alpha \leq 1, \alpha \beta<d$
There exists an active strategy \hat{f}_{n} such that:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \quad \text { (rate is tight) }
$$

Passive rate: replace $d-\alpha \beta$ by d [AT07]
For $\alpha>1$ Minsker conjectures a transition:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

Open: Unrestricted \mathbb{P}_{X} ? General η ? $\alpha \beta=d$? $\alpha>1$?

We'll present both new statistical and algorithmic results:

Statistical contributions

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η.
- \mathbb{P}_{X} uniform (new transitions):
- No (exponential) dependence on d when $\min \{\alpha, 1\} \beta=1$
- Verify rate transition for $\alpha>1$:
- Unrestricted \mathbb{P}_{X} : different minimax rate

Statistical contributions

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η.
- \mathbb{P}_{X} uniform (new transitions):
- No (exponential) dependence on d when $\min \{\alpha, 1\} \beta=1$.
- Verify rate transition for $\alpha>1$:
- Unrestricted \mathbb{P}_{X} : different minimax rate

Statistical contributions

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η.
- \mathbb{P}_{X} uniform (new transitions):
- No (exponential) dependence on d when $\min \{\alpha, 1\} \beta=1$.
- Verify rate transition for $\alpha>1$:

$$
\text { For } \beta=1: \quad \inf _{\hat{f}_{n}} \sup _{\eta} \mathbb{E}\left[R\left(\hat{f}_{n}\right)\right]-R\left(f^{*}\right) \gtrsim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

- Unrestricted \mathbb{P}_{X} : different minimax rate

Statistical contributions

Significantly milder conditions, new rate regimes:

- Recover all rates without self-similarity conditions on η.
- \mathbb{P}_{X} uniform (new transitions):
- No (exponential) dependence on d when $\min \{\alpha, 1\} \beta=1$.
- Verify rate transition for $\alpha>1$:

$$
\text { For } \beta=1: \quad \inf _{\hat{f}_{n}} \sup _{\eta} \mathbb{E}\left[R\left(\hat{f}_{n}\right)\right]-R\left(f^{*}\right) \gtrsim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

- Unrestricted \mathbb{P}_{X} : different minimax rate

$$
\text { Active : } \Theta\left(n^{-\frac{\alpha(\beta+1)}{2 \alpha+d}}\right) \text { vs. Passive : } \Theta\left(n^{-\frac{\alpha(\beta+1)}{2 \alpha+d+\alpha \beta}}\right)
$$

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_{2} but not at x_{1}, x_{3}
Optimal CBs require strong conditions on η (e.g. self-similarity)
New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$
\square

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_{2} but not at x_{1}, x_{3}
Optimal CBs require strong conditions on η (e.g. self-similarity)

> New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x_{2} but not at x_{1}, x_{3} Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes $\{\Sigma(\alpha)\}_{\alpha>0}$ Aggregate \hat{Y} estimates from non-adaptive subroutines (over $\alpha \nearrow$).

Outline

- Upper-bounds
- Non-adaptive Subroutine
- Adaptive Procedure
- Lower-bounds

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$

- We know η changes on C by at most r^{α}
- Query t labels at x_{C} and estimate $\eta\left(x_{C}\right)$:

$$
\text { w.h.p. }\left|\widehat{\eta}\left(x_{C}\right)-\eta\left(x_{C}\right)\right| \lesssim \sqrt{\frac{1}{t}}
$$

Let $t \approx r^{-2 \alpha}$, we can safely label C if

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$

- We know η changes on C by at most r^{α}
- Query t labels at x_{C} and estimate $\eta\left(x_{C}\right)$:

$$
\begin{aligned}
& \text { w.h.p. }\left|\widehat{\eta}\left(x_{C}\right)-\eta\left(x_{C}\right)\right| \lesssim \sqrt{\frac{1}{t}} \\
& \Longrightarrow \forall x \in C, \quad\left|\widehat{\eta}\left(x_{C}\right)-\eta(x)\right| \lesssim \sqrt{\frac{1}{t}}+r^{\alpha}
\end{aligned}
$$

Let $t \approx r^{-2 \alpha}$, we can safely label C if

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$

- We know η changes on C by at most r^{α}
- Query t labels at x_{C} and estimate $\eta\left(x_{C}\right)$:

$$
\begin{aligned}
& \text { w.h.p. }\left|\widehat{\eta}\left(x_{C}\right)-\eta\left(x_{C}\right)\right| \lesssim \sqrt{\frac{1}{t}} \\
& \Longrightarrow \forall x \in C, \quad\left|\widehat{\eta}\left(x_{C}\right)-\eta(x)\right| \lesssim \sqrt{\frac{1}{t}}+r^{\alpha}
\end{aligned}
$$

\therefore Let $t \approx r^{-2 \alpha}$, we can safely label C if

$$
\left|\widehat{\eta}\left(x_{C}\right)-1 / 2\right| \gtrsim 2 r^{\alpha}
$$

Otherwise partition C and repeat over smaller regions.

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$
Implement previous intuition over hierarchical partition of $[0,1]^{d}$.

Final output given budget n :

- Correctly labeled subset of $[0,1]^{d}$
- Abstention region contained in $\left\{x:|\eta(x)-1 / 2| \leq \Delta_{\alpha, \beta}(n)\right\}$.

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$

Implement previous intuition over hierarchical partition of $[0,1]^{d}$.

Final output given budget n :

- Correctly labeled subset of $[0,1]^{d}$
- Abstention region contained in $\left\{x:|\eta(x)-1 / 2| \leq \Delta_{\alpha, \beta}(n)\right\}$.
$\Delta_{\alpha, \beta}(n)$ is "optimal" under different \mathbb{P}_{X} regimes.

Labeled regions
\square Class 1 Class 0

Non-adaptive Subroutine

Suppose we know η is α-smooth $(\alpha \leq 1)$
Implement previous intuition over hierarchical partition of $[0,1]^{d}$.

Final output given budget n :

- Correctly labeled subset of $[0,1]^{d}$
- Abstention region contained in $\left\{x:|\eta(x)-1 / 2| \leq \Delta_{\alpha, \beta}(n)\right\}$.
$\Delta_{\alpha, \beta}(n)$ is "optimal" under different \mathbb{P}_{X} regimes.

Labeled regions
\square Class 1 Class 0

Case $\alpha>1$:
Same intuition, but higher order interpolation (for $\hat{\eta}$) on cells C

Outline

- Upper-bounds
- Non-adaptive Subroutine
- Adaptive Procedure
- Lower-bounds

Adaptive Procedure (α unknown)

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α Cost: (optimal rate) $+1 / \sqrt{n}$

So cannot get fast rates

Adaptive Procedure (α unknown)

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of $\alpha \ldots$ Cost: (optimal rate)

So cannot get fast rates

Adaptive Procedure (α unknown)

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of $\alpha \ldots$ Cost: (optimal rate) $+1 / \sqrt{n}$

Adaptive Procedure (α unknown)

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of $\alpha \ldots$ Cost: (optimal rate) $+1 / \sqrt{n}$

> So cannot get fast rates ...

Adaptive Procedure (α unknown)

Key idea: η is α^{\prime}-Hölder for any $\alpha^{\prime} \leq \alpha$
\Longrightarrow Subroutine $\left(\alpha^{\prime}\right)$ returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine $\left(\alpha^{\prime}\right)$ for $\alpha^{\prime}=\alpha_{1}<\alpha_{2}<\ldots$

Labeled regions for α_{1}

Labeled regions for α_{2}

Correctness: at $\alpha_{i}=\alpha$ labeling has optimal error At $\alpha_{i}>\alpha$, we never overwrite previous labels (error remains small) Implementation: \square
\square

Adaptive Procedure (α unknown)

Key idea: η is α^{\prime}-Hölder for any $\alpha^{\prime} \leq \alpha$
\Longrightarrow Subroutine $\left(\alpha^{\prime}\right)$ returns correct labels (red or blue)

Procedure:

Aggregate labelings of Subroutine $\left(\alpha^{\prime}\right)$ for $\alpha^{\prime}=\alpha_{1}<\alpha_{2}<\ldots$

Labeled regions for α_{1}

Labeled regions for α_{2}

Correctness: at $\alpha_{i}=\alpha$ labeling has optimal error At $\alpha_{i}>\alpha$, we never overwrite previous labels (error remains small)
Implementation: $\alpha_{i} \in\left[\frac{1}{\log n}: \frac{1}{\log n}: \log n\right]$, use budget $\frac{n}{\log ^{2} n} \forall \alpha_{i}$

Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive \widehat{f}_{n} satisfies:
Theorem (unrestricted \mathbb{P}_{X})

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d}}
$$

Theorem $\left(\mathbb{P}_{X}\right.$ uniform)

$$
\frac{R\left(\hat{f}_{n}\right)-}{\text { it rates. }}
$$

Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive \widehat{f}_{n} satisfies:
Theorem (unrestricted \mathbb{P}_{X})

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d}}
$$

Theorem $\left(\mathbb{P}_{X}\right.$ uniform)

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-(\alpha \wedge 1) \beta}}
$$

which are all tight rates.

Outline

- η is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017
- Upper-bounds
- Non-adaptive Subroutine
- Adaptive Procedure
- Lower-bounds
- η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018

Lower-bounds

Theorem (unrestricted \mathbb{P}_{X})
For any active learner \hat{f}_{n} we have:

$$
\sup \mathbb{E}\left[R\left(\hat{f}_{n}\right)\right]-R\left(f^{*}\right) \geq C n^{-\frac{\alpha(\beta+1)}{2 \alpha+d}}
$$

Theorem $\left(\mathbb{P}_{X}\right.$ uniform and $\left.\alpha>1, \beta=1\right)$
For any active learner \hat{f}_{n} we have:

This confirms a transition in the rate (at least for $\beta=1$).

Lower-bounds

Theorem (unrestricted \mathbb{P}_{X})
For any active learner \hat{f}_{n} we have:

$$
\sup _{\eta} \mathbb{E}\left[R\left(\hat{f}_{n}\right)\right]-R\left(f^{*}\right) \geq C n^{-\frac{\alpha(\beta+1)}{2 \alpha+d}}
$$

Theorem (\mathbb{P}_{X} uniform and $\alpha>1, \beta=1$)
For any active learner \hat{f}_{n} we have:

$$
\sup _{\eta} \mathbb{E}\left[R\left(\hat{f}_{n}\right)\right]-R\left(f^{*}\right) \geq C n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
$$

This confirms a transition in the rate (at least for $\beta=1$).

Lower-bound construction for \mathbb{P}_{X} uniform, $\alpha>1, \beta=1$

```
Remember difference in rates:
\alpha<1: n
\alpha>1: n
Hard case for \alpha>1,\beta=1:
\eta changes linearly in 1 direction,
but oscillates in d-1 directions
```


Remember difference in rates:
$\alpha \leq 1: n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}}$
$\alpha>1: n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}$

Hard case for $\alpha>1, \beta=1$:
η changes linearly in 1 direction,
 but oscillates in $d-1$ directions $\ldots d-\beta$ now acts as the effective degrees of freedom

Remember difference in rates:

$$
\begin{aligned}
& \alpha \leq 1: n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\alpha \beta}} \\
& \alpha>1: n^{-\frac{\alpha(\beta+1)}{2 \alpha+d-\beta}}
\end{aligned}
$$

Hard case for $\alpha>1, \beta=1$:
η changes linearly in 1 direction,
 but oscillates in $d-1$ directions
$\ldots d-\beta$ now acts as the effective degrees of freedom

Summary

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha>1,(\alpha \wedge 1) \beta=d$, unrestricted \mathbb{P}_{X}.
- Introduced a generic adaptation framework for nested classes.

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)

Summary

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha>1,(\alpha \wedge 1) \beta=d$, unrestricted \mathbb{P}_{X}.
- Introduced a generic adaptation framework for nested classes

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)

Summary

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha>1,(\alpha \wedge 1) \beta=d$, unrestricted \mathbb{P}_{X}.
- Introduced a generic adaptation framework for nested classes.

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)

Summary

- We recover rates in A-L under more natural assumptions
- Different transitions: $\alpha>1,(\alpha \wedge 1) \beta=d$, unrestricted \mathbb{P}_{X}.
- Introduced a generic adaptation framework for nested classes.

Extension: our framework yields the first adaptive procedure in the smooth boundary setting of Castro and Nowak (2008)

Our recent result:

We consider various regularity conditions on $\eta=\mathbb{E}[Y \mid X]$:

- η is a smooth function with A. Carpentier and S. Kpotufe, COLT 2017
- η defines a smooth decision-boundary with S.Kpotufe and A. Carpentier, ALT 2018

η defines a smooth decision-boundary

- $\mathcal{D} \equiv\{x: \eta(x)=1 / 2\}$ is given by α-Hölder function g.
- Noise condition:

η defines a smooth decision-boundary

- $\mathcal{D} \equiv\{x: \eta(x)=1 / 2\}$ is given by α-Hölder function g.
- Noise condition: $|\eta(x)-1 / 2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa-1}, \kappa \geq 1$.

η defines a smooth decision-boundary

- $\mathcal{D} \equiv\{x: \eta(x)=1 / 2\}$ is given by α-Hölder function g.
- Noise condition: $|\eta(x)-1 / 2| \approx \operatorname{dist}(x, \mathcal{D})^{\kappa-1}, \kappa \geq 1$.

Problem gets easier as $\kappa \rightarrow 1, \alpha \rightarrow \infty$.

Previous work [Castro, Nowak 07], $P_{X} \equiv \mathcal{U}[0,1]^{d}$

If we know α, κ, then:

Passive rate: Replace $\kappa-1$ with $\kappa-1 / 2$.

Previous work [Castro, Nowak 07], $P_{X} \equiv \mathcal{U}[0,1]^{d}$

If we know α, κ, then:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha \kappa}{2 \alpha(\kappa-1)+d-1}} \quad(\text { rate is tight })
$$

Previous work [Castro, Nowak 07], $P_{X} \equiv \mathcal{U}[0,1]^{d}$

If we know α, κ, then:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha \kappa}{2 \alpha(\kappa-1)+d-1}} \quad(\text { rate is tight })
$$

Passive rate: Replace $\kappa-1$ with $\kappa-1 / 2$.

Previous work [Castro, Nowak 07], $P_{X} \equiv \mathcal{U}[0,1]^{d}$

If we know α, κ, then:

$$
R\left(\hat{f}_{n}\right)-R\left(f^{*}\right) \lesssim n^{-\frac{\alpha \kappa}{2 \alpha(\kappa-1)+d-1}} \quad(\text { rate is tight })
$$

Passive rate: Replace $\kappa-1$ with $\kappa-1 / 2$.
Can these gains be achieved by an adaptive procedure?

Existing adaptive results:

Dimension $d=1, \mathcal{D} \equiv$ threshold on the line Binary search strategies are adaptive to $\kappa \ldots$ (fixed $\alpha=\infty$) [Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]

Intuition:

If \mathcal{D} is α-smooth, then it's α^{\prime}-smooth for $\alpha^{\prime} \leq \alpha$!

> So use the same strategy as before:
> Aggregate estimates from non-adaptive subroutine for α

Main difficulty:

- Subroutine must adapt to κ in \mathbb{R}^{d}
- Subroutine must estimate boundary optimally...
- Use α to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search

Intuition:

If \mathcal{D} is α-smooth, then it's α^{\prime}-smooth for $\alpha^{\prime} \leq \alpha$!
So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must adapt to κ in \mathbb{R}^{d}
- Subroutine must estimate boundary optimally...
- Use α to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search

Intuition:

If \mathcal{D} is α-smooth, then it's α^{\prime}-smooth for $\alpha^{\prime} \leq \alpha$!
So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must adapt to κ in $\mathbb{R}^{d} \ldots$
- Subroutine must estimate boundary optimally...
- Use α to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search

Intuition:

If \mathcal{D} is α-smooth, then it's α^{\prime}-smooth for $\alpha^{\prime} \leq \alpha$!
So use the same strategy as before:
Aggregate estimates from non-adaptive subroutine for $\alpha \nearrow$

Main difficulty:

- Subroutine must adapt to κ in \mathbb{R}^{d}...
- Subroutine must estimate boundary optimally...
- Use α to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search

We get the first fully adaptive and optimal A-L for the setting!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard.
Next directions:

- Better aggregation?
- Draw links with Contextual Bandits, Nonlinear Optimization.
Thanks!

In summary:

Further gains in A-L emerge as we parametrize from easy to hard.
Next directions:

- Better aggregation?
- Draw links with Contextual Bandits, Nonlinear Optimization.

Thanks!

