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Active Classification

Pb: Classification X → Y ∈ {0, 1} when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?



, , , , , , , , , ,

Active Classification

Pb: Classification X → Y ∈ {0, 1} when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?



, , , , , , , , , ,

Active Classification

Pb: Classification X → Y ∈ {0, 1} when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?



, , , , , , , , , ,

Active Classification

Pb: Classification X → Y ∈ {0, 1} when labels are expensive.
Goal: Return a good classifier using few label queries.

Applications:

Industrial: Document categorization, Vision/Audio, IoT security ...
Science: Medical imaging, Personalized medicine, Drug design ...

Q: Can active outperform passive learning? When? By how much?



, , , , , , , , , ,

Gains in active learning

Performance measure:
- Let f∗ minimize R(f)

.
= P (Y 6= f(X)).

- Let f̂ ← classifier returned after querying n labels.

How small can R(f̂)−R(f∗) be in terms of n?

Most results are in parametric settings (e.g. VC dim. <∞):

[Langford, Dasgupta, Hanneke, Balcan, et al ... since early 2000’s]

A-L rates ≡
√
R(f∗)/n+ e−

√
n, vs P-L rates ≡

√
R(f∗)/n+ 1/n

R(f∗) > 0: both rates are ≡ 1/
√
n (no significant gain).

But R(f∗) is often > 0 (imperfect world):
noisy images or speech, adversarial spam, variable drug response ...

Are there no gains in these practical settings?
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We want to understand which gains are possible over passive
learning under general conditions, and for reasonable procedures.
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General Conditions:

Let η(x)
.
= P (Y = 1 | x), and note that f∗ = 1 {η ≥ 1/2}.

So R(f∗) depends on how η behaves.

A natural direction:
Parametrize η on a continuum from easy to hard problems.

Capturing such continuum:

(i). Classification is hard if η(x) is typically ≈ 1/2, else it’s easy!
How typical =⇒ existing noise conditions (e.g. Tsybakov,
Massart)

(ii). Combine with regularity or complexity conditions:
smoothness of η or class-boundary, complexity of hypothesis class ...
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Initial insights ... different regularity conditions
[Hanneke 09], [Koltchinskii 10], [Castro-Nowak 08], [Minsker 12]
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[Hanneke 09], [Koltchinskii 10] (ERM + low metric entropy):

Show considerable gains over passive learning even with label noise!

However:

• Assume bounded disagreement coefficient:
Mostly known for toy distributions (U(interval), U(sphere)).

• Procedures are not implementable (search over infinite F).
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[Castro-Nowak 08] (smooth decision boundary):

Show considerable gains over passive learning even with label noise!
Implementable, no conditions on Disagreement Coefficient!

However:
Needs full knowledge of boundary regularity and noise decay.
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[Minsker, 2012] (η is smooth):

Show considerable gains over passive learning even with label noise!
Implementable, no conditions on Disagreement Coefficient,
Adaptive!

However:
Needs quite restrictive technical conditions on PX,Y .
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Can reasonable A-L procedures (implementable + adaptive)
attain considerable gains over P-L for general distributions?
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Some of our recent results:

We consider various regularity conditions on η = E [Y |X]:

• η is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017

• η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018
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Outline:

We consider various regularity conditions on η = E [Y |X]:

• η is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017

• η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018
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η is a smooth function

Setup:

• η(x)
.
= E[Y |x] has Hölder smoothness α

(e.g. all derivatives up to order α are bounded)

Example: α = 1 =⇒ η is Lipschitz.

• Tsybakov noise condition: ∃c, β ≥ 0 such that ∀τ > 0:

PX
(
x :

∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ τ) ≤ cτβ,
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...

α, β capture continuum between easy and hard problems
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...

α, β capture continuum between easy and hard problems

[Audibert-Tsybakov 07]

Passive rates : n−(β+1)/(2+ d
α)

The above implies:

• Slow rates of Ω(n−1/d) for small α, β.

• Fast rates of o(1/n): for large α, β.
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We’ll see that: interaction between α, β and d control A-L rates
...
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Previous work Minsker (2012): PX uniform

Self-similarity of η: smoothness is tight ∀x (never better than α)

Theorem: α ≤ 1, αβ < d

There exists an active strategy f̂n such that:

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−αβ (rate is tight)

Passive rate: replace d− αβ by d [AT07]

For α > 1 Minsker conjectures a transition:

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−β

Open: Unrestricted PX? General η? αβ = d? α > 1?
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We’ll present both new statistical and algorithmic results:
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Statistical contributions

Significantly milder conditions, new rate regimes:

• Recover all rates without self-similarity conditions on η.

• PX uniform (new transitions):
• No (exponential) dependence on d when min{α, 1}β = 1.
• Verify rate transition for α > 1:

For β = 1 : inf
f̂n

sup
η

E[R(f̂n)]−R(f∗) & n−
α(β+1)
2α+d−β

• Unrestricted PX : different minimax rate

Active : Θ

(
n−

α(β+1)
2α+d

)
vs. Passive : Θ

(
n
− α(β+1)

2α+d+αβ

)



, , , , , , , , , ,

Statistical contributions

Significantly milder conditions, new rate regimes:

• Recover all rates without self-similarity conditions on η.

• PX uniform (new transitions):
• No (exponential) dependence on d when min{α, 1}β = 1.
• Verify rate transition for α > 1:

For β = 1 : inf
f̂n

sup
η

E[R(f̂n)]−R(f∗) & n−
α(β+1)
2α+d−β

• Unrestricted PX : different minimax rate

Active : Θ

(
n−

α(β+1)
2α+d

)
vs. Passive : Θ

(
n
− α(β+1)

2α+d+αβ

)



, , , , , , , , , ,

Statistical contributions

Significantly milder conditions, new rate regimes:

• Recover all rates without self-similarity conditions on η.

• PX uniform (new transitions):
• No (exponential) dependence on d when min{α, 1}β = 1.
• Verify rate transition for α > 1:

For β = 1 : inf
f̂n

sup
η

E[R(f̂n)]−R(f∗) & n−
α(β+1)
2α+d−β

• Unrestricted PX : different minimax rate

Active : Θ

(
n−

α(β+1)
2α+d

)
vs. Passive : Θ

(
n
− α(β+1)

2α+d+αβ

)



, , , , , , , , , ,

Statistical contributions

Significantly milder conditions, new rate regimes:

• Recover all rates without self-similarity conditions on η.

• PX uniform (new transitions):
• No (exponential) dependence on d when min{α, 1}β = 1.
• Verify rate transition for α > 1:

For β = 1 : inf
f̂n

sup
η

E[R(f̂n)]−R(f∗) & n−
α(β+1)
2α+d−β

• Unrestricted PX : different minimax rate

Active : Θ

(
n−

α(β+1)
2α+d

)
vs. Passive : Θ

(
n
− α(β+1)

2α+d+αβ

)



, , , , , , , , , ,

Algorithmic contribution

Naive strategy: suppose we have a Confidence Band on η

Request new label at x2 but not at x1, x3

Optimal CBs require strong conditions on η (e.g. self-similarity)

New generic adaptation strategy for nested classes {Σ(α)}α>0

Aggregate Ŷ estimates from non-adaptive subroutines (over α↗).
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Outline

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds
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Non-adaptive Subroutine

Suppose we know η is α-smooth (α ≤ 1)

• We know η changes on C by at most rα

• Query t labels at xC and estimate η(xC):

w.h.p. |η̂(xC)− η(xC)| .
√

1

t

=⇒ ∀x ∈ C, |η̂(xC)−η(x)| .
√

1
t +rα

∴ Let t ≈ r−2α, we can safely label C if

|η̂(xC)− 1/2| & 2rα

Otherwise partition C and repeat over smaller regions.
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Non-adaptive Subroutine

Suppose we know η is α-smooth (α ≤ 1)

Implement previous intuition over
hierarchical partition of [0, 1]d.

Final output given budget n:

• Correctly labeled subset of [0, 1]d

• Abstention region contained in
{x : |η(x)− 1/2| ≤ ∆α,β(n)}.

∆α,β(n) is “optimal” under
different PX regimes.

Case α > 1:
Same intuition, but higher order interpolation (for η̂) on cells C
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Outline

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds
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Adaptive Procedure (α unknown)

Difficulty: Collected labels depend on parameters of A-L algorithm

First idea: Split budget and cross-validate over values of α ...
Cost: (optimal rate) + 1/

√
n

So cannot get fast rates ...
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Adaptive Procedure (α unknown)

Key idea: η is α′-Hölder for any α′ ≤ α
=⇒ Subroutine(α′) returns correct labels (red or blue)

Procedure:
Aggregate labelings of Subroutine(α′) for α′ = α1 < α2 < . . .

Correctness: at αi = α labeling has optimal error
At αi > α, we never overwrite previous labels (error remains small)

Implementation: αi ∈
[

1
logn : 1

logn : log n
]
, use budget n

log2 n
∀αi
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Adaptive Procedure (α unknown)

Without self-similarity assumptions adaptive f̂n satisfies:

Theorem (unrestricted PX)

R(f̂n)−R(f∗) . n−
α(β+1)
2α+d

Theorem (PX uniform)

R(f̂n)−R(f∗) . n
− α(β+1)

2α+d−(α∧1)β

which are all tight rates.
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Outline

• η is a smooth function
with A. Carpentier and S.Kpotufe, COLT 2017

• Upper-bounds
• Non-adaptive Subroutine
• Adaptive Procedure

• Lower-bounds

• η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018
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Lower-bounds

Theorem (unrestricted PX)

For any active learner f̂n we have:

sup
η

E[R(f̂n)]−R(f∗) ≥ Cn−
α(β+1)
2α+d

Theorem (PX uniform and α > 1, β = 1)

For any active learner f̂n we have:

sup
η

E[R(f̂n)]−R(f∗) ≥ Cn−
α(β+1)
2α+d−β

This confirms a transition in the rate (at least for β = 1).
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Lower-bound construction for PX uniform, α > 1, β = 1

Remember difference in rates:

α ≤ 1 : n
− α(β+1)

2α+d−αβ

α > 1 : n
− α(β+1)

2α+d−β

Hard case for α > 1, β = 1:
η changes linearly in 1 direction,
but oscillates in d− 1 directions

...d− β now acts as the effective degrees of freedom
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Summary

• We recover rates in A-L under more natural assumptions

• Different transitions: α > 1, (α ∧ 1)β = d, unrestricted PX .

• Introduced a generic adaptation framework for nested classes.

Extension: our framework yields the first adaptive procedure
in the smooth boundary setting of Castro and Nowak (2008)
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Our recent result:

We consider various regularity conditions on η = E [Y |X]:

• η is a smooth function
with A. Carpentier and S. Kpotufe, COLT 2017

• η defines a smooth decision-boundary
with S.Kpotufe and A. Carpentier, ALT 2018



, , , , , , , , , ,

η defines a smooth decision-boundary

• D ≡ {x : η(x) = 1/2} is given by α-Hölder function g.

• Noise condition: |η(x)− 1/2| ≈ dist(x,D)κ−1, κ ≥ 1.

Problem gets easier as κ→ 1, α→∞.
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Previous work [Castro, Nowak 07], PX ≡ U [0, 1]d

If we know α, κ, then:

R(f̂n)−R(f∗) . n
− ακ

2α(κ−1)+d−1 (rate is tight)

Passive rate: Replace κ− 1 with κ− 1/2.

Can these gains be achieved by an adaptive procedure?
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Existing adaptive results:

Dimension d = 1, D ≡ threshold on the line

Binary search strategies are adaptive to κ ... (fixed α =∞)
[Hanneke, 09], [Ramdas, Singh 13], [Yan, Chaudhuri, Javidi, 16]
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Intuition:
If D is α-smooth, then it’s α′-smooth for α′ ≤ α!

So use the same strategy as before:

Aggregate estimates from non-adaptive subroutine for α↗

Main difficulty:

• Subroutine must adapt to κ in IRd ...

• Subroutine must estimate boundary optimally...

• Use α to abstain from labeling when unsure...

Our subroutine builds on a known reduction to line search
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We get the first fully adaptive and optimal A-L for the setting!
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In summary:

Further gains in A-L emerge as we parametrize from easy to hard.

Next directions:

• Better aggregation?

• Draw links with Contextual Bandits, Nonlinear Optimization.

Thanks!
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