## Graph Wavelets

F. Göbel<br>joint work with G. Blanchard, U. von Luxburg and C. Gehrke



Stochastic processes and statistical machine learning I Workshop in Potsdam 14/02/2018

## Outline

(1) Introduction - Classical Wavelets
(2) Construction of Parseval Graph Frame
(3) Way to localization
(4) Application: Denoising
(5) Simulation results

## Wavelets on $\mathbb{R}$



- Classical example: Haar wavelet, $\psi(t)=\mathbf{1}\left\{t \in\left[0, \frac{1}{2}\right)\right\}-\mathbf{1}\left\{t \in\left[\frac{1}{2}, 1\right)\right\}$
- Let $\psi_{m, n}(t):=2^{m / 2} \psi\left(2^{m} t-n\right)$
- The $\left(\psi_{m, n}\right)_{m, n \in \mathbb{Z}^{2}}$ form an orthonormal basis of $L^{2}(\mathbb{R})$

$$
f \in L^{2}(\mathbb{R}) \Rightarrow f(\cdot)=\sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}}\left\langle\psi_{m, n}, f\right\rangle \psi_{m, n}(\cdot) .
$$

## Classical wavelets: properties



- $\psi_{m, n}(t):=2^{m / 2} \psi\left(2^{m} t-n\right)$
- $\left(\psi_{m, n}\right)$ orthogonal basis
- $(\psi,, n)$ are rescaled versions of $\psi$
- $\left(\psi_{m, .}\right)$ are translations of each other


## What are wavelets good for?

- Visualization of signal in space(time)/frequency plot
- Data compression Local adaptivity Smoothing (e.g. nonlinear by thresholding)
- Denoising:
- Observe: $Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad$ with $x_{i}=\frac{i}{N}, \quad i=1, \ldots, N$
- Compute empirical/noisy wavelets coefficients:

$$
\widehat{\alpha}_{m, k}=\left\langle\mathbf{Y}, \psi_{m, k}\right\rangle_{P_{N}}=\frac{1}{N} \sum_{i=1}^{N} Y_{i} \psi_{m, k}\left(x_{i}\right)
$$

- Threshold empirical coefficients:

$$
\widetilde{\alpha}_{m, k}=\widehat{\alpha}_{m, k} \mathbf{1}\left\{\left|\widehat{\alpha}_{m, k}\right| \geq \tau\right\}
$$

- Reconstruct with thresholded coefficients:

$$
\widehat{f}(\cdot)=\sum_{m, k} \widetilde{\alpha}_{m, k} \psi_{m, k}(\cdot)
$$

## Why Wavelets?

- There exist other classical bases, for instance Fourier basis. Why use wavelets?
- Fourier functions are not localized. A truncated Fourier expansion approximates well a signal that is "uniformly smooth over the domain".
- Wavelets give better approximations for signals of inhomogeneous smoothness, e.g. piecewise smooth functions with some discontinuities.
- How to extend the wavelet approach if points $x_{i}$ are in high dimension, not uniformly distributed?


## Littlewood-Paley decomposition

- Laplace-operator
- Eigenvalues
- ONB/Eigenfunctions

$$
\begin{gathered}
-\Delta f=-\frac{\partial^{2}}{\partial x^{2}} f(x) \\
\lambda_{k}=k^{2} \pi^{2} \\
\Phi_{k}(x)=\sqrt{2} \sin (k \pi x)
\end{gathered}
$$

- Fourier decomposition

$$
f(x)=\sum_{k \geq 1}\left\langle f, \Phi_{k}\right\rangle \Phi_{k}(x)
$$



- Eigenfunctions are not localised


## Littlewood-Paley decomposition

- Take a point $x_{\ell}$ fixed, construct localized functions via

$$
\Psi_{i \ell}(x)=\sum_{k} \sqrt{\zeta\left(2^{-i} \lambda_{k}\right)} \Phi_{k}\left(x_{\ell}\right) \Phi_{k}(x)
$$



- Note: the Meyer wavelet is constructed following a similar principle
- Extend to more general case?


## Outline

## (1) Introduction - Classical Wavelets

## (2) Construction of Parseval Graph Frame

(3) Way to localization
(4) Application: Denoising
(5) Simulation results

ToY EXAMPLE


## Setting

Model nobservations,

$$
y_{i}=f\left(x_{i}\right)+\epsilon_{i}
$$

$x_{i} \in \mathbb{R}^{d}, d$ can be big, $x_{i}$ realization of $X \sim P$
$D=\left\{x_{1}, \ldots, x_{n}\right\}$
$y_{i} \in \mathbb{R}$ noisy observation
$\epsilon_{i}$ noise, iid, $\mathbb{E}[\epsilon]=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}$
Assumption $x_{i} \in M \subset \mathbb{R}^{d}$
e.g. $M$ low-dimensional compact submanifold

Task (Denoising): Estimate $\left(f\left(x_{i}\right)\right)_{i}$ given $\left(y_{i}\right)_{i}$ using the unknown geometric structure of $M$
( $f$ may have inhomogeneous regularity)

## Literature

- On constructing localised, wavelet-like frames for manifolds
(Regular manifolds) Narcowich, Petrushev, and Ward (2006): on spheres; Petrushev and Xu (2008), Baldi, Kerkyacharian, Marinucci and Picard (2009): on balls (on compact homogeneous manifolds) Geller and Mayeli (2009), Geller and Pesenson (2011): based on Laplacian operator; Kerkyacharian, Le Pennec and Picard (2011): on more general operators
Coulhon, Kerkyacharian and Petrushev (2012): Develop band limited well-localised frames
"Heat Kernel Generated Frames in the Setting of Dirichlet Spaces"
- On data-adapted wavelet-like frames

Hammond, Vandergheynst and Gribonval (2011) (graph-based)
Gavish, Nadler and Coifman (2010) (tree-based)

## WISHLIST

- Consider $f \in L^{2}(D)$
- We want a decomposition of $f$ with respect to a set of functions

$$
f(x)=\sum_{j}\left\langle f, g_{j}\right\rangle g_{j}
$$

Properties of the dictionary

- (Over)complete,
- Adapted to the structure of the domain of $f$
- Ideally: the dictionary exhibits the features of a wavelet basis (multiscale, localization, ...)
- Application in statistics:

$$
y=\sum_{j}\left\langle y, g_{j}\right\rangle g_{j}=\sum_{j}\left(\left\langle f, g_{j}\right\rangle+\left\langle\epsilon, g_{j}\right\rangle\right) g_{i}
$$

then estimating $f$ corresponds to estimate the coefficients $\left\langle f, g_{j}\right\rangle$ given $\left\langle y, g_{j}\right\rangle$

- We want to use a "Fourier analysis" adapted to the domain of $f$ (and possibly to the covariate distribution)
- Fourier analysis exists on manifolds, but the manifold containing the data is unknown a priori
- Solution: use approximation by a neighborhood graph constructed on the data + graph Laplacian (principle underlying Laplacian Eigenmaps).
- Then apply the "frequency decomposition" device to the obtained spectral decomposition
Approach mainly based on work of Coulhon et al. (2012)
Similar approach: Hammond et al. (2011) (general frame)
Different approach: Gavish et al. (2010) (hierarchical tree, Haar-like basis)


## Steps of the construction

We need:

- Neighborhood graph A:
- Finite undirected (weighted) graph
- represented by symmetric adjacency matrix $A=\left(a_{i j}\right)$
- Degree of a vertex $v_{i}: d_{i}=\sum_{j} a_{i j}, G:=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$
- Graph types: (weighted) k-NN, (weighted) $\epsilon$, complete weighted


## Steps of the construction

We need:

- Neighborhood graph $A$
- Graph Laplacian:

Unnormalized

$$
L_{u}=G-A
$$

Normalized

$$
L_{\text {norm }}=I-G^{-1 / 2} A G^{-1 / 2}
$$

- Properties of $L$ : symmetric, positive semi-definite
- Spectral theorem for matrices:

The eigenvectors $\Phi_{i}$ of $L$ are an orthonormal basis of $L^{2}(D)=\mathbb{R}^{n}$ and the eigenvalues $\lambda_{i}$ are $\geq 0$

## LAPLACIAN EIGENMAPS



Figure: Swiss roll data: eigenvectors $\Phi_{j}$ for $j=10,30,50,100$.

## Steps of the construction

We need:

- Neighborhood graph $A$
- Graph Laplacian: $L,\left\{\Phi_{i}\right\}_{i},\left\{\lambda_{i}\right\}_{i}$
- Function system (decomposition of unity):
$\left\{\zeta_{k}\right\}_{k \in \mathbb{N}}$ is a sequence of functions $\zeta_{k}: \mathbb{R}_{+} \rightarrow[0,1]$ satisfying
(DoU) $\quad \sum_{j \geq 0} \zeta_{j}(x)=1$ for all $x \geq 0$;
(FD) $\#\left\{\zeta_{k}: \zeta_{k}\left(\lambda_{i}\right) \neq 0\right\}<\infty$ for $i=1, \ldots, n$.


## DEFINITION OF THE DICTIONARY

## Definition

The dictionary $\left\{\Psi_{k \ell} \in \mathbb{R}^{n}, 0 \leq k \leq Q, 1 \leq \ell \leq n\right\}$ is defined by

$$
\begin{equation*}
\Psi_{k \ell}=\sum_{i=1}^{n} \sqrt{\zeta_{k}\left(\lambda_{i}\right)} \Phi_{i}\left(x_{\ell}\right) \Phi_{i} . \tag{1}
\end{equation*}
$$

with $Q:=\max \left\{k: \exists i \in\{1, \ldots, n\}\right.$ with $\left.\zeta_{k}\left(\lambda_{i}\right)>0\right\}$.

## Result: tight frame

## Theorem

The dictionary $\left\{\Psi_{k \ell}\right\}_{k, \ell}$ is a Parseval frame for $\mathbb{R}^{n}$, that is:
(a) For all $x \in \mathbb{R}^{n}$ :

$$
\|x\|^{2}=\sum_{k, \ell}\left|\left\langle x, \Psi_{k \ell}\right\rangle\right|^{2} .
$$

(b) For all $y \in \mathbb{R}^{n}(y: D \rightarrow \mathbb{R})$ the recovery formula holds:

$$
\begin{equation*}
y=\sum_{k, \ell}\left\langle y, \Psi_{k \ell}\right\rangle \Psi_{k \ell} . \tag{2}
\end{equation*}
$$

(c) $\forall k, \ell:\left\|\Psi_{k \ell}\right\| \leq 1$

## Choice of $\left\{\zeta_{k}\right\}_{k}-\operatorname{Multiscale~bandpass~filter~}$

Choice corresponds to Coulhon et al. (2012) (smooth Littlewood-Paley decomposition)

## Definition (Multiscale bandpass filter)

Let $g \in C^{\infty}\left(\mathbb{R}_{+}\right)$, Suppg $\subset[0,1], 0 \leq g \leq 1, g(u)=1$ for $u \in[0,1 / b]$ (for some constant $b>1$ ). For $k \in \mathbb{N}=\{0,1, \ldots\}$ the functions
$\zeta_{k}: \mathbb{R}_{+} \rightarrow[0,1]$ are defined by

$$
\zeta_{k}(x):= \begin{cases}g(x) & \text { if } k=0  \tag{3}\\ g\left(b^{-k} x\right)-g\left(b^{-k+1} x\right) & \text { if } k>0\end{cases}
$$

The sequence $\left\{\zeta_{k}\right\}_{k \geq 0}$ is called multiscale bandpass filter.

## Choice of $\left\{\zeta_{k}\right\}_{k}$ - Multiscale bandpass filter



Properties: $\quad \zeta_{k} \in C^{\infty}\left(\mathbb{R}_{+}\right), 0 \leq \zeta_{k} \leq 1$, $\zeta_{k}(x)=\zeta_{1}\left(b^{-(k-1)} x\right)$ for $k \geq 1$ Supp $\zeta_{0} \subset[0,1], \operatorname{Supp} \zeta_{k} \subset\left[b^{k-2}, b^{k}\right]$ for $k \geq 1$

## Outline

## (1) Introduction - Classical Wavelets

## (2) Construction of Parseval Graph Frame

(3) Way to localization
(4) Application: Denoising
(5) Simulation results

## LOCALIZATION



Figure: Swiss roll data: eigenvectors $\Phi_{j}$ for $j=10,30,50,100$; frame elements $\Psi_{k l}$ for $/ f$ fixed and $k=0,2,5,7$.

## LOCALIZATION



Figure: Swiss roll data: eigenvectors $\Phi_{j}$ for $j=10,30,50,100$; frame elements $\Psi_{k l}$ for $/ f$ fixed and $k=0,2,5,7$.

## Why Doubling Condition and Poincaré INEQUALITY

- in [CKP12]: heat kernel bounds important ingredient for localization in their setting: DC+ Poincare $\leftrightarrow$ Harnack inequality $\leftrightarrow$ Gaussian estimate for heat kernel
- for graph setting: Delmotte (1997), Barlow and Chen (2016) - similar results
- Question: If manifold satisfies DC, does the graph satisfy a DC as well?
When does the graph satisfy a local Poincaré inequality?


## Spatial localization?

Coulhon et al. (2012): the almost exponential localization of $\Psi_{k \ell}$ follows from 2 sufficient geometrical conditions:
If $M$ compact and $\mu$ finite and

- Doubling measure:

$$
\mu(B(x, 2 r)) \leq 2^{d} \mu(B(x, r)) \text { for all } x \text { and } r>0
$$

- Local Poincaré inequality:

$$
\int_{B(x, r)}\left(f(y)-f_{B}\right)^{2} d \mu(y) \leq C r \int_{B(x, r)}\|\nabla f\|^{2} d \mu \text { for all } x \text { and } r>0
$$

with $f_{B}$ mean of $f$ over $B(x, r)$
Do we have an appropriate discrete analogue on a geometrical graph based on $X_{1}, \ldots, X_{n} \stackrel{\text { i.i.d. }}{\sim} \mu$ ?

## Assumptions

## Assumption

(B1) choose $\lambda_{1}, \lambda_{2} \in(0,1), q \in(0,1)$
(B2) $\mathcal{M} \subset \mathbb{R}^{k}$ compact submanifold (with parameters $\left.r_{0}, s_{0}\right),\left(\mathcal{M}, d_{\mathcal{M}}, \mu\right)$
(B3) $\mathcal{M}$ is geodesically convex
(B4) (finite sample of $\mathcal{M}$ as vertex set of an $\epsilon$-graph)
(B5) $\epsilon$-graph with parameter $\epsilon>0$ such that $\epsilon<s_{0}$ and $\epsilon \leq(2 / \pi) r_{0} \sqrt{24 \lambda_{1}}$
(B6) choose sample size $n=n\left(q, \lambda_{2}, \epsilon, \mu\right)$ such that

$$
n \geq \frac{\ln \left(q \inf _{y \in \mathcal{M}} \mu\left(B\left(y, \epsilon \lambda_{2} / 16\right)\right)\right)}{\ln \left(\left(1-\inf _{z \in \mathcal{M}} \mu\left(B\left(z, \epsilon \lambda_{2} / 8\right)\right)\right.\right.}
$$

minimum radius of curvature $r_{0}=r_{0}(\mathcal{M}):=\left(\max _{\gamma, t}\|\ddot{\gamma}(t)\|\right)^{-1}(\gamma$ unit-speed geodesics $)$ minimum branch separation
$s_{0}:=\max \left\{s: s>0\right.$ and $\|x-y\|<s \Rightarrow d_{\mathcal{M}}(x, y) \leq \pi r_{0}$ for $\left.x, y \in \mathcal{M}\right\}$.

## Doubling Condition

## Theorem

Under (B1-B6), with $\lambda_{1}=\lambda_{2}=0.5$, with prob at least $1-2 q$, for all $x \in V$ and for all $r \geq 2$ with $\hat{\mu}_{n}\left(B_{G, S P}(x, r)\right) \geq 2\left(\sqrt{\frac{-\ln q+\ln 3 n^{2}}{n}}+\frac{2}{n}\right)^{2}$ it holds for $n$ large enough

$$
\hat{\mu}_{n}\left(B_{G, S P}(x, 2 r)\right) \leq 2^{3.2+6 v} \hat{\mu}_{n}\left(B_{G, S P}(x, r)\right) .
$$

The proof is based on

- approximation of distances $d_{M}, d_{G, E}, d_{S P}$ (using $d_{M} \approx d_{E}$ by [BSLT00]),
- Lemma: uniform bound

$$
\mathbf{P}\left(\sup _{i=1 . . n} \sup _{r>0}\left|\sqrt{\hat{\mu}_{n}\left(B_{\mathcal{M}}\left(X_{i}, r\right)\right)}-\sqrt{\mu\left(B_{\mathcal{M}}\left(X_{i}, r\right)\right)}\right|>\delta\right) \leq \alpha .
$$

- and volume doubling on the manifold.


## SKETCH OF PROOF

Distance approximation (see [BSLT00, Main Theorem B])

$$
\left(1-\lambda_{1}\right) d_{\mathcal{M}}(x, y) \leq d_{G, E}(x, y) \leq\left(1+\lambda_{2}\right) d_{\mathcal{M}}(x, y) \text { whp }
$$

and

$$
\frac{1}{4} \epsilon\left(d_{G, S P}(x, y)-1\right) \leq d_{G, E}(x, y) \leq \epsilon d_{G, S P}(x, y)
$$

Then, for fixed $s \geq 0$, we can derive the inequalities

$$
\begin{aligned}
\hat{\mu}_{n}\left(B_{G, S P}(x, 2 r)\right) & \leq \hat{\mu}_{n}\left(B_{\mathcal{M}}\left(x,\left(1-\lambda_{1}\right)^{-1} \epsilon 2 r\right)\right) \\
& \leq \frac{3}{2} \mu_{n}\left(B_{\mathcal{M}}\left(x,\left(1-\lambda_{1}\right)^{-1} \epsilon 2 r\right)\right)+3 \delta^{2} \\
& \leq \frac{3}{2} 2^{\lceil s\rceil v} \mu_{n}\left(B_{\mathcal{M}}\left(x, \frac{\left(1-\lambda_{1}\right)^{-1}}{2^{s}} \epsilon 2 r\right)\right)+3 \delta^{2} \\
& \leq \frac{3}{2} 2^{\lceil s\rceil v}\left(\frac{3}{2} \hat{\mu}_{n}\left(B_{\mathcal{M}}\left(x, \frac{\left(1-\lambda_{1}\right)^{-1}}{2^{s}} \epsilon 2 r\right)\right)+3 \delta^{2}\right)+3 \delta^{2} \\
& \leq \frac{3}{2} 2^{\lceil s\rceil v}\left(\frac{3}{2} \hat{\mu}_{n}\left(B_{G, S P}\left(x, \frac{4\left(1+\lambda_{2}\right)\left(1-\lambda_{1}\right)^{-1}}{2^{s}} 2 r+1\right)\right)+3 \delta^{2}\right)+3 \delta^{2}
\end{aligned}
$$

which holds with high probability.

## SkTECH OF PROOF - LEMMA

key words: conditioning on center point and radius, reduction to random radii: ordered/non-ordered, Okamoto's inequality

$$
\begin{aligned}
& \mathbf{P}\left(\sup _{i=1 . . n} \sup _{r>0}\left|\sqrt{\hat{\mu}_{n}\left(B_{\mathcal{M}}\left(X_{i}, r\right)\right)}-\sqrt{\mu\left(B_{\mathcal{M}}\left(X_{i}, r\right)\right)}\right|>\delta\right)=\mathbf{P}\left(\sup _{i=1 . . n r>0} \sup _{i r}\left|T_{i r}\right|>\delta\right) \\
& =\mathbf{P}\left(\bigcup_{i=1}^{n}\left\{\sup _{r>0}\left|T_{i r}\right|>\delta\right\}\right) \leq \sum_{i=1}^{n} \mathbf{P}\left(\sup _{r>0}\left|T_{i r}\right|>\delta\right)=\sum_{i=1}^{n} \mathbf{E}_{X_{i}}\left(\mathbf{P}\left(\sup _{r>0}\left|T_{i r}\right|>\delta \mid X_{i}\right)\right)
\end{aligned}
$$

decompose for fixed $i$ the set

$$
\{r>0\}=\left\{r_{i}^{(j)}: r_{i j} \neq 0, j \leq n\right\} \cup \bigcup_{j=1}^{n}\left(r_{i}^{(j)}, r_{i}^{(j+1)}\right)
$$

upper bound $\sup _{r>0}\left|T_{i r}\right|$ by $\max \left\{E_{1, i}, E_{2, i}, E_{3, i}\right\}$ for fixed $i$ where

$$
E_{1, i}:=\max _{j=1 . \ldots: r_{i j}>0}\left|T_{i_{i j}}\right|, E_{2, i}:=\max _{j=1 . . n} \bar{T}_{i_{i j}} \text { and } E_{3, i}:=\max _{j=1 . . n+1, j \neq i}-T_{i_{r_{j}}}
$$

## Sketch of proof II - Lemma

Introduce non-biased random variable $\tilde{\mu}_{n}$

$$
\begin{aligned}
\mathbf{P}\left(\left|T_{i_{i j}}\right|>\delta \mid x_{i}, X_{j}\right) & =\mathbf{P}\left(\left|\sqrt{\hat{\mu}_{n}\left(B_{\mathcal{M}}\left(X_{i}, r_{i j}\right)\right)}-\sqrt{\mu_{n}\left(B_{\mathcal{M}}\left(X_{i}, r_{i j}\right)\right.}\right|>\delta \mid x_{i}, X_{j}\right) \\
& \leq \mathbf{P}\left(\left.\left|\sqrt{\tilde{\mu}_{n}\left(B_{\mathcal{M}}\left(X_{i}, r_{i j}\right)\right)}-\sqrt{\mu_{n}\left(B_{\mathcal{M}}\left(X_{i}, r_{i j}\right)\right.}\right|>\delta-\frac{1}{\sqrt{n}} \right\rvert\, x_{i}, x_{j}\right) \\
& \leq 2 \exp \left(-(n-2)\left(\delta-\frac{1}{\sqrt{n}}\right)^{2}\right)
\end{aligned}
$$

## using

## Lemma (Okamoto Inequality)

Let $Y_{i} \sim B(p)$ iid with $\mathbf{E}\left(Y_{i}\right)=p$ and set $\hat{p}=\frac{1}{m} \sum_{i=1}^{m} Y_{i}$. Then, for $\delta>0$,

$$
\mathbf{P}(|\sqrt{p}-\sqrt{\hat{p}}|>\delta) \leq 2 \exp \left(-m \delta^{2}\right)
$$

## Local Poincaré Inequality

additional assumption: Ahlfors-regularity of $\mu$

## Definition (k-Ahlfors)

A measure $\mu$ on $\left(\mathcal{M}, d_{\mathcal{M}}\right)$ is said to be $k$ - Ahlfors if

$$
\exists c_{l}>0, c_{u}>0 \forall B_{\mathcal{M}}(x, r): c_{l} r^{k} \leq \mu\left(B_{\mathcal{M}}(x, r)\right) \leq c_{u} r^{k}
$$

holds.

## Theorem (main theorem - lpi in $d_{S P}$-version $1 / n$ )

Assumptions: Ahlfors regular $\mu$, existence of Bi-lipschitz homeomorphism, connected unweighted $\epsilon$-graph, measures $\pi_{x}=1 / n$ on $V(G)$ and $\tilde{\pi}_{X}=1 / n_{A}$ for some $A=B_{\mathcal{M}}(r) \subset V(G)$, lower bound on edge weights (a).
Under B1-B6, then, whp, $\forall f, \forall x_{i} \in V(G)$,

$$
\sum_{x \in \bar{B}_{G, S P}\left(x_{0}, r_{S P}\right)}\left(f_{x}-\bar{f}_{B}\right)^{2} 1 / n \leq C r_{S P}^{2} \sum_{x, y \in \bar{B}_{G, S P}\left(x_{0}, \lambda r_{S P}\right)}\left(f_{x}-f_{y}\right)^{2} 1 / n .
$$

Assumptions for results:

- existence of bi-Lipschitz homeomorphism: A compact, $\exists h: A \rightarrow[0,1]^{k}$ bi-Lipschitz-homeomorphism the existence of the bi-lip homeo is ensured by the condition $r<r_{\text {max }}$ in $d_{\mathcal{M}}$ distance
- $\exists 0<L_{\min }<L_{\max }<\infty$ Lipschitz-constants, they should be global (independent of $A$ ), including factor $1 / r_{\mathcal{M}}$


## SKETCH OF PROOF

- general structure of the inequality [DS91]

$$
\left.\sum_{x \in A}\left(f_{x}-\bar{f}_{A}\right)^{2} \tilde{\pi}_{x}\right) \leq \kappa_{A} \frac{1}{2} \sum_{x \in A} \sum_{y \in A, y \sim x} a_{x y}\left(f_{x}-f_{y}\right)^{2} \tilde{\pi}_{x}
$$

with $\tilde{\pi}_{x}:=\frac{\pi_{x}}{\mu(A)}=\frac{\pi_{x}}{\sum_{y \in A} \pi_{y}}$ and $\bar{f}_{A}=\sum_{x \in A} f_{x} \tilde{\pi}_{x}$

$$
\kappa_{A}:=\max _{e=(a, b), a, b \in A} \sum_{\gamma_{x y} \ni e, \gamma_{x y} \in A} Q_{x y}^{A} \tilde{\pi}_{x} \tilde{\pi}_{y} \text { with } Q_{x y}^{A}:=\sum_{e \in \gamma_{x y}^{A}} \frac{1}{a_{k \mid} \tilde{\pi}_{k}} .
$$

- Ipi for $d_{M}$ given bound on kappa: assume $\kappa_{A}$ can be bounded by $C \cdot r^{2}$ whp for $A=\bar{B}_{\mathcal{M}}(r)$,
- lpi for $d_{S P}$


## SKETCH OF PROOF II

- bound on kappa given existence of bi-lip: for $\pi_{x}=1 / n$ and unweighted graph: $c_{A}=C_{A}=1 / n_{A}, a_{A}=1$

$$
Q_{x y}^{A} \leq \frac{1}{C_{A} \cdot a_{A}} I_{\max }(A) \quad \text { and } \quad \kappa_{A} \leq \frac{C_{A}^{2}}{C_{A} \cdot a_{A}} I_{\max }(A) b_{\max }(A)
$$

with

$$
I_{\max }(A):=\max _{x, y \in A} \operatorname{NE}\left(\gamma_{x y}^{A}\right) \quad \text { and } \quad b_{\max }(A):=\max _{e \in G_{A}} \sum_{\gamma_{x y}^{A} \ni e} 1 .
$$

bound $I_{\max }(A)$ and $b_{\max }(A)$ using random Hamming pathes [vLRH14]

- existence of bi-lip: upper bound for radius $r$


## Outline

## (1) Introduction - Classical Wavelets

(2) Construction of Parseval Graph Frame
(3) Way to localization
(4) Application: Denoising
(5) Simulation results

## Denoising - Approach

- Observe $y_{i}=f\left(x_{i}\right)+\epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$
- Use recovery formula for $y$ and $f$

$$
\begin{gathered}
f=\sum_{k, l} a_{k l} \Psi_{k l} \text { with } a_{k l}=\left\langle\Psi_{k l}, f\right\rangle \\
y=\sum_{k, l} b_{k l} \Psi_{k l} \text { with } b_{k l}=\left\langle\Psi_{k l}, y\right\rangle=a_{k l}+\left\langle\Psi_{k l}, \epsilon\right\rangle
\end{gathered}
$$

- Apply thresholding method to the coefficients $b_{k l}$ :

$$
\hat{a}_{k l}=\operatorname{Thr}\left(b_{k l}\right)
$$

- Define estimate:

$$
\hat{f}:=\sum_{k, l} \hat{a}_{k l} \Psi_{k l}
$$

## Theorem (Oracle-type inequality)

With soft-thresholding $S_{S}$ and threshold $t_{k l}=\sigma^{2}\left\|\Psi_{k \|}\right\| \sqrt{2 \log n}$

$$
\mathbb{E}\left[\|\hat{f}-f\|^{2}\right] \leq(1+2 \log n)\left(\sigma^{2}+\sum_{k, l} \min \left(\sigma^{2}\left\|\Psi_{k \mid}\right\|^{2},\left\langle f, \Psi_{k \prime}\right\rangle^{2}\right)\right)
$$

(See also Candes (2006))
Class of reference estimators: linear projection estimators (keep-or-kill)

$$
\tilde{f}_{J}=\sum_{(k, l) \in J} b_{k l} \Psi_{k l}
$$

Then

$$
\inf _{J} \mathbb{E}\left[\left\|\tilde{f}_{J}-f\right\|^{2}\right] \leq \sum_{k, l} \min \left(\sigma^{2}\left\|\Psi_{k l}\right\|^{2},\left\langle f, \Psi_{k \mid}\right\rangle^{2}\right)
$$

## Proof Ingredients

- Property of Parseval frame

$$
\begin{equation*}
\left\|\sum_{i} a_{i} z_{i}\right\|^{2} \leq\|a\|^{2}=\sum_{i} a_{i}^{2} \tag{3}
\end{equation*}
$$

- Property of denoising model

$$
\begin{equation*}
\frac{\left\langle y, \Psi_{k \mid}\right\rangle}{\sigma\left\|\Psi_{k \|}\right\|} \sim \mathcal{N}\left(\frac{a_{k l}}{\sigma\left\|\Psi_{k \|}\right\|}, 1\right) . \tag{4}
\end{equation*}
$$

- Result from Donoho and Johnstone (1994): For $0 \leq \delta \leq 1 / 2, t=\sqrt{2 \log \left(\delta^{-1}\right)}$ and $X \sim \mathcal{N}(\mu, 1)$

$$
\begin{equation*}
\mathbb{E}\left[\left(S_{s}(X, t)-\mu\right)^{2}\right] \leq\left(t^{2}+1\right)\left(\exp \left(-\frac{t^{2}}{2}\right)+\min \left(1, \mu^{2}\right)\right) \tag{5}
\end{equation*}
$$

- and $\sum_{k, l}\left\|\Psi_{k \|}\right\|^{2}=n$


## Outline

## (1) Introduction - Classical Wavelets

## (2) Construction of Parseval Graph Frame

(3) Way to localization
(4) Application: Denoising
(5) Simulation results

## Simulations - Basics

- simulations based on empirical mean squared error (MSE) $\operatorname{MSE}(\hat{f}, f)=\frac{1}{n}\|\hat{f}-f\|_{2}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{f}\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2}$
- every method depends on one tuning parameter
- so far no prediction for our method
- optimize MSE wrt tunig parameter ( $t_{o}=\operatorname{Arg} \operatorname{Min} \operatorname{MSE}\left(\hat{f}_{t}, f\right)$ ) and compare the "optimal" MSEs


## Comparison Frame Thr vs ONB Thr and ONB EMBEDDING I

Question: Does the frame lead to better results than ONB-based methods?

| Example: sphere, jump function, $\sigma^{2}=1, n=500, m=50$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Graph | L |  | FrTh |  | LETh |  | LETr |
| kNN | U | 0.510 | (0.050) | 0.693 | (0.061) | 0.905 | (0.108) |
| kNN | N | 0.538 | (0.046) | 0.712 | (0.055) | 0.931 | (0.094) |
| WkNN | U | 0.521 | (0.049) | 0.652 | (0.050) | 0.800 | (0.097) |
| WkNN | N | 0.530 | (0.049) | 0.674 | (0.057) | 0.749 | (0.091) |
| CGK | U | 0.520 | (0.055) | 0.638 | (0.065) | 0.821 | (0.107) |
| CGK | N | 0.530 | (0.052) | 0.670 | (0.050) | 0.725 | (0.081) |
| $\epsilon \mathrm{G}$ | U | 0.505 | (0.058) | 0.650 | (0.068) | 0.865 | (0.115) |
| $\epsilon \mathrm{G}$ | N | 0.557 | (0.052) | 0.710 | (0.059) | 0.902 | (0.106) |
| $\mathrm{W} \epsilon \mathrm{G}$ | U | 0.482 | (0.055) | 0.622 | (0.064) | 0.787 | (0.111) |
| W $\in \mathrm{G}$ | N | 0.530 | (0.049) | 0.674 | (0.057) | 0.749 | (0.091) |

Smoothing Kernel Regression: min. MSE $=0.612$ (0.066)
Kernel Ridge Regression: min. MSE $=0.594$ (0.051)

## Comparison Frame Thr vs ONB Thr and ONB Embedding II

Example: swiss roll, jump function, $\sigma^{2}=1, n=500, m=50$

| Graph | $L$ |  | FrTh |  | LETh |  | LETr |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| kNN | U | 0.462 | $(0.043)$ | 0.647 | $(0.039)$ | 0.876 | $(0.079)$ |
| kNN | N | 0.494 | $(0.043)$ | 0.676 | $(0.043)$ | 0.902 | $(0.071)$ |
| WkNN | U | 0.443 | $(0.045)$ | 0.600 | $(0.050)$ | 0.790 | $(0.102)$ |
| WkNN | N | 0.500 | $(0.043)$ | 0.659 | $(0.045)$ | 0.775 | $(0.079)$ |
| CGK | U | 0.491 | $(0.053)$ | 0.625 | $(0.057)$ | 0.844 | $(0.096)$ |
| CGK | N | 0.520 | $(0.047)$ | 0.648 | $(0.049)$ | 0.713 | $(0.079)$ |
| $\epsilon \mathrm{G}$ | U | 0.459 | $(0.049)$ | 0.610 | $(0.053)$ | 0.872 | $(0.095)$ |
| $\epsilon \mathrm{G}$ | N | 0.532 | $(0.045)$ | 0.681 | $(0.050)$ | 0.884 | $(0.089)$ |
| W $\epsilon \mathrm{G}$ | U | 0.441 | $(0.049)$ | 0.574 | $(0.049)$ | 0.793 | $(0.113)$ |
| W $\epsilon \mathrm{G}$ | N | 0.503 | $(0.045)$ | 0.643 | $(0.051)$ | 0.744 | $(0.089)$ |

Smoothing Kernel Regression: min. MSE $=0.589$ (0.082)
Kernel Ridge Regression: min. MSE $=0.779$ (0.052)

## Comparison Frame and ONB Thresholding






## Comparison to Total variation denoising

Setup: test functions (not normalized) with specific sigmas, 1d, Total variation denoising:

$$
\hat{f}_{T V} \in \underset{f \in \mathbb{R}^{n}}{\operatorname{Arg} \operatorname{Min}} \frac{1}{n}\|f-y\|_{2}^{2}+\lambda\|W f\|_{1}
$$

with $W$ incidence matric: $L_{u n}=W^{t} W=D-A$ (undir. unw. graph)


## Threshold - Universal or scale dependent?

Q: How does $\sup _{l}\left|\left\langle\Psi_{k l}, \epsilon\right\rangle\right|$ behave for various $k$ ? Consider expectation




- try scale-dependent threshold


## Comparision of different thresholding STRATEGIES AND THRESHOLDS





## Soft, HARD, SCAD, ...



## Summary and Outlook

- Method to construct a Parseval frame exhibiting wavelet-like properties (multiscale, localised) while adapting to the instrinsic geometry of the data.
- This frame can be used in the denoising setting: simple coefficient thresholding method which satisfies an oracle-type inequality
(with superior performance in simulations for denoising as compared to usual (spectral and non spectral) approaches)
- Doubling Condition and LPI hold whp for random $\epsilon$-graph (under some assumptions)
- Extension of this methodology to semi-supervised learning setting?
- Proof of spatial localization?


## Thank you.

圊 Mira Bernstein, Vin De Silva, John C. Langford, and Joshua B. Tenenbaum.
Graph approximations to geodesics on embedded manifolds, 2000.
Thierry Coulhon, Gerard Kerkyacharian, and Pencho Petrushev. Heat kernel generated frames in the setting of dirichlet spaces.
June 2012.
Persi Diaconis and Daniel Stroock.
Geometric bounds for eigenvalues of Markov chains.
The Annals of Applied Probability, 1(1):36-61, Feb 1991.
囯 Ulrike von Luxburg, Agnes Radl, and Matthias Hein.
Hitting and commute times in large random neighborhood graphs. Journal of Machine Learning Research, 15(1):1751-1798, 2014.

