Graph Wavelets

F. Göbel joint work with G. Blanchard, U. von Luxburg and C. Gehrke

Stochastic processes and statistical machine learning I Workshop in Potsdam 14/02/2018

OUTLINE

1 Introduction – Classical Wavelets

- 2 Construction of Parseval Graph Frame
- 3 Way to localization
- 4 Application: Denoising
- 5 Simulation results

WAVELETS ON $\mathbb R$

- ► Classical example: Haar wavelet, $\psi(t) = \mathbf{1}\{t \in [0, \frac{1}{2})\} \mathbf{1}\{t \in [\frac{1}{2}, 1)\}$
- Let $\psi_{m,n}(t) := 2^{m/2} \psi(2^m t n)$
- ▶ The $(\psi_{m,n})_{m,n\in\mathbb{Z}^2}$ form an orthonormal basis of $L^2(\mathbb{R})$

$$f \in L^2(\mathbb{R}) \Rightarrow f(\cdot) = \sum_{m \in \mathbb{Z}} \sum_{n \in \mathbb{Z}} \langle \psi_{m,n}, f \rangle \psi_{m,n}(\cdot) .$$

CLASSICAL WAVELETS: PROPERTIES

- ▶ $\psi_{m,n}(t) := 2^{m/2} \psi(2^m t n)$
- $(\psi_{m,n})$ orthogonal basis
- $(\psi_{\cdot,n})$ are rescaled versions of ψ
- $(\psi_{m,\cdot})$ are translations of each other

WHAT ARE WAVELETS GOOD FOR?

- Visualization of signal in space(time)/frequency plot
- Data compression Local adaptivity Smoothing (e.g. nonlinear by thresholding)
- Denoising:
 - Observe: $Y_i = f(x_i) + \varepsilon_i$, with $x_i = \frac{i}{N}$, i = 1, ..., N
 - Compute empirical/noisy wavelets coefficients:

$$\widehat{\alpha}_{m,k} = \langle \mathbf{Y}, \psi_{m,k} \rangle_{P_N} = \frac{1}{N} \sum_{i=1}^{N} Y_i \psi_{m,k}(x_i)$$

• Threshold empirical coefficients:

$$\widetilde{\alpha}_{m,k} = \widehat{\alpha}_{m,k} \mathbf{1}\{|\widehat{\alpha}_{m,k}| \geq \tau\}$$

Reconstruct with thresholded coefficients:

$$\widehat{f}(\cdot) = \sum_{m,k} \widetilde{\alpha}_{m,k} \psi_{m,k}(\cdot)$$

WHY WAVELETS?

- There exist other classical bases, for instance Fourier basis. Why use wavelets?
- Fourier functions are not localized. A truncated Fourier expansion approximates well a signal that is "uniformly smooth over the domain".
- Wavelets give better approximations for signals of inhomogeneous smoothness, e.g. piecewise smooth functions with some discontinuities.
- How to extend the wavelet approach if points x_i are in high dimension, not uniformly distributed?

LITTLEWOOD-PALEY DECOMPOSITION

- Laplace-operator
- Eigenvalues
- ONB/Eigenfunctions
- ► Fourier decomposition

$$-\Delta f = -\frac{\partial^2}{\partial x^2} f(x)$$
$$\lambda_k = k^2 \pi^2$$
$$\Phi_k(x) = \sqrt{2} \sin(k\pi x)$$

$$f(x) = \sum_{k\geq 1} \langle f, \Phi_k \rangle \, \Phi_k(x)$$

Eigenfunctions are not localised

LITTLEWOOD-PALEY DECOMPOSITION

▶ Take a point x_{ℓ} fixed, construct localized functions via

$$\Psi_{i\ell}(x) = \sum_k \sqrt{\zeta(2^{-i}\lambda_k)} \Phi_k(x_\ell) \Phi_k(x)$$

Note: the Meyer wavelet is constructed following a similar principle
 Extend to more general case?

OUTLINE

Introduction – Classical Wavelets

2 Construction of Parseval Graph Frame

3 Way to localization

4 Application: Denoising

5 Simulation results

TOY EXAMPLE

SETTING

Model n observations,

$$y_i = f(x_i) + \epsilon_i$$

 $x_i \in \mathbb{R}^d$, *d* can be big, x_i realization of $X \sim P$

$$D = \{x_1, \ldots, x_n\}$$

 $y_i \in \mathbb{R}$ noisy observation

$$\epsilon_i$$
 noise, iid, $\mathbb{E}\left[\epsilon
ight]=$ 0, Var $(\epsilon_i)=\sigma^2$

Assumption $x_i \in M \subset \mathbb{R}^d$

e.g. M low-dimensional compact submanifold

Task (Denoising): Estimate $(f(x_i))_i$ given $(y_i)_i$ using the unknown geometric structure of *M* (*f* may have inhomogeneous regularity)

Literature

► On constructing localised, wavelet-like frames for manifolds

(Regular manifolds) Narcowich, Petrushev, and Ward (2006): on spheres; Petrushev and Xu (2008), Baldi, Kerkyacharian, Marinucci and Picard (2009): on balls (on compact homogeneous manifolds) Geller and Mayeli (2009), Geller and Pesenson (2011): based on Laplacian operator; Kerkyacharian, Le Pennec and Picard (2011): on more general operators

Coulhon, Kerkyacharian and Petrushev (2012): Develop band limited well-localised frames

"Heat Kernel Generated Frames in the Setting of Dirichlet Spaces"

On data-adapted wavelet-like frames

Hammond, Vandergheynst and Gribonval (2011) (graph-based) Gavish, Nadler and Coifman (2010) (tree-based)

WISHLIST

• Consider $f \in L^2(D)$

▶ We want a decomposition of *f* with respect to a set of functions

$$f(x) = \sum_{j} \langle f, g_j
angle \, g_j$$

Properties of the dictionary

- (Over)complete,
- Adapted to the structure of the domain of f
- Ideally: the dictionary exhibits the features of a wavelet basis (multiscale, localization, ...)
- Application in statistics:

$$y = \sum_{j} \langle y, g_j \rangle g_j = \sum_{j} (\langle f, g_j \rangle + \langle \epsilon, g_j \rangle) g_i$$

then estimating *f* corresponds to estimate the coefficients $\langle f, g_j \rangle$ given $\langle y, g_j \rangle$

PLAN OF ATTACK

- We want to use a "Fourier analysis" adapted to the domain of f (and possibly to the covariate distribution)
- Fourier analysis exists on manifolds, but the manifold containing the data is unknown a priori
- Solution: use approximation by a neighborhood graph constructed on the data + graph Laplacian (principle underlying Laplacian Eigenmaps).
- Then apply the "frequency decomposition" device to the obtained spectral decomposition

Approach mainly based on work of Coulhon et al. (2012) Similar approach: Hammond et al. (2011) (general frame) Different approach: Gavish et al. (2010) (hierarchical tree, Haar-like basis)

STEPS OF THE CONSTRUCTION

We need:

- Neighborhood graph A:
 - Finite undirected (weighted) graph
 - represented by symmetric adjacency matrix $A = (a_{ij})$

 - Degree of a vertex v_i:d_i = ∑_j a_{ij}, G := diag(d₁,...,d_n)
 Graph types: (weighted) k-NN, (weighted) ϵ, complete weighted

STEPS OF THE CONSTRUCTION

We need:

- Neighborhood graph A
- Graph Laplacian: Unnormalized

$$L_u = G - A$$

Normalized

$$L_{norm} = I - G^{-1/2} A G^{-1/2}$$

- Properties of L: symmetric, positive semi-definite
- Spectral theorem for matrices: The eigenvectors Φ_i of *L* are an orthonormal basis of *L*²(*D*) = ℝⁿ and the eigenvalues λ_i are ≥ 0

LAPLACIAN EIGENMAPS

Figure: Swiss roll data: eigenvectors Φ_j for j = 10, 30, 50, 100.

STEPS OF THE CONSTRUCTION

We need:

- ► Neighborhood graph A
- Graph Laplacian: L, $\{\Phi_i\}_i$, $\{\lambda_i\}_i$
- ► Function system (decomposition of unity): $\{\zeta_k\}_{k \in \mathbb{N}}$ is a sequence of functions $\zeta_k : \mathbb{R}_+ \to [0, 1]$ satisfying

(DoU)
$$\sum_{j>0} \zeta_j(x) = 1$$
 for all $x \ge 0$;

(FD) $\#{\zeta_k : \zeta_k(\lambda_i) \neq 0} < \infty$ for $i = 1, \dots, n$.

DEFINITION OF THE DICTIONARY

Definition

The dictionary $\{\Psi_{k\ell} \in \mathbb{R}^n, 0 \le k \le Q, 1 \le \ell \le n\}$ is defined by

$$\Psi_{k\ell} = \sum_{i=1}^{n} \sqrt{\zeta_k(\lambda_i)} \Phi_i(x_\ell) \Phi_i.$$
(1)

with $Q := \max\{k : \exists i \in \{1, \ldots, n\} \text{ with } \zeta_k(\lambda_i) > 0\}.$

RESULT: TIGHT FRAME

Theorem

The dictionary $\{\Psi_{k\ell}\}_{k,\ell}$ is a Parseval frame for \mathbb{R}^n , that is: (a) For all $x \in \mathbb{R}^n$: $\|x\|^2 = \sum_{k,\ell} |\langle x, \Psi_{k\ell} \rangle|^2$. (b) For all $y \in \mathbb{R}^n$ ($y : D \to \mathbb{R}$) the recovery formula holds: $y = \sum_{k,\ell} \langle y, \Psi_{k\ell} \rangle \Psi_{k\ell}$. (2) (c) $\forall k, \ell : \|\Psi_{k\ell}\| \le 1$

Choice of $\{\zeta_k\}_k$ - Multiscale bandpass filter

Choice corresponds to Coulhon et al. (2012) (smooth Littlewood-Paley decomposition)

Definition (Multiscale bandpass filter)

Let $g \in C^{\infty}(\mathbb{R}_+)$, Supp $g \subset [0, 1]$, $0 \le g \le 1$, g(u) = 1 for $u \in [0, 1/b]$ (for some constant b > 1). For $k \in \mathbb{N} = \{0, 1, \ldots\}$ the functions $\zeta_k : \mathbb{R}_+ \to [0, 1]$ are defined by

$$\zeta_k(x) := \begin{cases} g(x) & \text{if } k = 0\\ g(b^{-k}x) - g(b^{-k+1}x) & \text{if } k > 0 \end{cases}$$
(3)

The sequence $\{\zeta_k\}_{k\geq 0}$ is called multiscale bandpass filter.

Choice of $\{\zeta_k\}_k$ - Multiscale bandpass filter

Properties:
$$\zeta_k \in C^{\infty}(\mathbb{R}_+), 0 \le \zeta_k \le 1,$$

 $\zeta_k(x) = \zeta_1(b^{-(k-1)}x) \text{ for } k \ge 1$
 $\operatorname{Supp}\zeta_0 \subset [0, 1], \operatorname{Supp}\zeta_k \subset [b^{k-2}, b^k] \text{ for } k \ge 1$

OUTLINE

1 Introduction – Classical Wavelets

- 2 Construction of Parseval Graph Frame
- 3 Way to localization
- 4 Application: Denoising

5 Simulation results

LOCALIZATION

Figure: Swiss roll data: eigenvectors Φ_j for j = 10, 30, 50, 100; frame elements Ψ_{kl} for *l* fixed and k = 0, 2, 5, 7.

LOCALIZATION

Figure: Swiss roll data: eigenvectors Φ_j for j = 10, 30, 50, 100; frame elements Ψ_{kl} for *l* fixed and k = 0, 2, 5, 7.

WHY DOUBLING CONDITION AND POINCARÉ INEQUALITY

- ▶ in [CKP12]: heat kernel bounds important ingredient for localization in their setting: DC+ Poincare ↔ Harnack inequality ↔ Gaussian estimate for heat kernel
- for graph setting: Delmotte (1997), Barlow and Chen (2016) similar results
- Question: If manifold satisfies DC, does the graph satisfy a DC as well?

When does the graph satisfy a local Poincaré inequality?

SPATIAL LOCALIZATION?

Coulhon et al. (2012): the almost exponential localization of $\Psi_{k\ell}$ follows from 2 sufficient geometrical conditions:

If M compact and μ finite and

Doubling measure:

 $\mu(B(x,2r)) \leq 2^d \mu(B(x,r))$ for all x and r > 0.

Local Poincaré inequality:

$$\int_{B(x,r)} (f(y)-f_B)^2 d\mu(y) \leq Cr \int_{B(x,r)} \left\| \nabla f \right\|^2 d\mu \text{ for all } x \text{ and } r>0,$$

with f_B mean of f over B(x, r)Do we have an appropriate discrete analogue on a geometrical graph based on $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} \mu$?

ASSUMPTIONS

Assumption

- (B1) choose $\lambda_1,\lambda_2\in(0,1)$, $q\in(0,1)$
- (B2) $\mathcal{M} \subset \mathbb{R}^k$ compact submanifold (with parameters r_0, s_0), $(\mathcal{M}, d_{\mathcal{M}}, \mu)$
- (B3) \mathcal{M} is geodesically convex
- (B4) (finite sample of M as vertex set of an ϵ -graph)
- (B5) ϵ -graph with parameter $\epsilon > 0$ such that $\epsilon < s_0$ and $\epsilon \le (2/\pi)r_0\sqrt{24\lambda_1}$
- (B6) choose sample size $n = n(q, \lambda_2, \epsilon, \mu)$ such that

$$n \geq \frac{\ln(q \inf_{y \in \mathcal{M}} \mu(B(y, \epsilon \lambda_2/16)))}{\ln((1 - \inf_{z \in \mathcal{M}} \mu(B(z, \epsilon \lambda_2/8)))}$$

minimum radius of curvature $r_0 = r_0(\mathcal{M}) := (\max_{\gamma,t} \|\ddot{\gamma}(t)\|)^{-1}$ (γ unit-speed geodesics) minimum branch separation

 $s_0 := \max\{s : s > 0 \text{ and } \|x - y\| < s \Rightarrow d_{\mathcal{M}}(x, y) \le \pi r_0 \text{ for } x, y \in \mathcal{M}\}.$

DOUBLING CONDITION

Theorem

Under (B1-B6), with $\lambda_1 = \lambda_2 = 0.5$, with prob at least 1 - 2q, for all $x \in V$ and for all $r \ge 2$ with $\hat{\mu}_n(B_{G,SP}(x,r)) \ge 2(\sqrt{\frac{-\ln q + \ln 3n^2}{n}} + \frac{2}{n})^2$ it holds for n large enough

$$\hat{\mu}_n(B_{G,SP}(x,2r)) \le 2^{3.2+6\nu}\hat{\mu}_n(B_{G,SP}(x,r)).$$

The proof is based on

- ▶ approximation of distances d_M, d_{G,E}, d_{SP} (using d_M ≈ d_E by [BSLT00]),
- Lemma: uniform bound

$$\mathbf{P}\left(\sup_{i=1..n}\sup_{r>0}\left|\sqrt{\hat{\mu}_n(\boldsymbol{B}_{\mathcal{M}}(\boldsymbol{X}_i,r))}-\sqrt{\mu(\boldsymbol{B}_{\mathcal{M}}(\boldsymbol{X}_i,r))}\right|>\delta\right)\leq\alpha.$$

▶ and volume doubling on the manifold.

SKETCH OF PROOF

Distance approximation (see [BSLT00, Main Theorem B])

$$(1-\lambda_1)d_{\mathcal{M}}(x,y)\leq d_{G,\mathcal{E}}(x,y)\leq (1+\lambda_2)d_{\mathcal{M}}(x,y)$$
 whp

and

$$\frac{1}{4} \epsilon \ (d_{G,SP}(x,y)-1) \leq d_{G,E}(x,y) \leq \epsilon \ d_{G,SP}(x,y).$$

Then, for fixed $s \ge 0$, we can derive the inequalities

$$\begin{split} \hat{\mu}_n(\mathcal{B}_{G,SP}\left(x,2r\right)) &\leq \hat{\mu}_n\left(\mathcal{B}_{\mathcal{M}}\left(x,(1-\lambda_1)^{-1}\epsilon^2 r\right)\right) \\ &\leq \frac{3}{2}\mu_n\left(\mathcal{B}_{\mathcal{M}}\left(x,(1-\lambda_1)^{-1}\epsilon^2 r\right)\right) + 3\delta^2 \\ &\leq \frac{3}{2}2^{\lceil s\rceil v}\mu_n\left(\mathcal{B}_{\mathcal{M}}\left(x,\frac{(1-\lambda_1)^{-1}}{2^s}\epsilon^2 r\right)\right) + 3\delta^2 \\ &\leq \frac{3}{2}2^{\lceil s\rceil v}\left(\frac{3}{2}\hat{\mu}_n\left(\mathcal{B}_{\mathcal{M}}\left(x,\frac{(1-\lambda_1)^{-1}}{2^s}\epsilon^2 r\right)\right) + 3\delta^2\right) + 3\delta^2 \\ &\leq \frac{3}{2}2^{\lceil s\rceil v}\left(\frac{3}{2}\hat{\mu}_n\left(\mathcal{B}_{G,SP}\left(x,\frac{4(1+\lambda_2)(1-\lambda_1)^{-1}}{2^s}2r + 1\right)\right) + 3\delta^2\right) + 3\delta^2 \end{split}$$

which holds with high probability.

SKTECH OF PROOF - LEMMA

key words: conditioning on center point and radius, reduction to random radii: ordered/non-ordered, Okamoto's inequality

$$\mathbf{P}\left(\sup_{i=1..n}\sup_{r>0}\left|\sqrt{\hat{\mu}_n(\mathcal{B}_{\mathcal{M}}(X_i,r))} - \sqrt{\mu(\mathcal{B}_{\mathcal{M}}(X_i,r))}\right| > \delta\right) = \mathbf{P}\left(\sup_{i=1..n}\sup_{r>0}\left|T_{ir}\right| > \delta\right)$$
$$= \mathbf{P}\left(\bigcup_{i=1}^n \{\sup_{r>0}|T_{ir}| > \delta\}\right) \le \sum_{i=1}^n \mathbf{P}\left(\sup_{r>0}|T_{ir}| > \delta\right) = \sum_{i=1}^n \mathbf{E}_{X_i}\left(\mathbf{P}\left(\sup_{r>0}|T_{ir}| > \delta \mid X_i\right)\right)$$

decompose for fixed *i* the set

$$\{r > 0\} = \{r_i^{(j)} : r_{ij} \neq 0, j \le n\} \cup \bigcup_{j=1}^n \left(r_i^{(j)}, r_i^{(j+1)}\right)$$

upper bound $\sup_{r>0} |T_{ir}|$ by $\max\{E_{1,i}, E_{2,i}, E_{3,i}\}$ for fixed *i* where

$$E_{1,i} := \max_{j=1..n:r_{ij}>0} \left| T_{ir_{ij}} \right|, E_{2,i} := \max_{j=1..n} \overline{T}_{ir_{ij}} \text{ and } E_{3,i} := \max_{j=1..n+1, j \neq i} - T_{ir_{ij}}.$$

SKETCH OF PROOF II - LEMMA

Introduce non-biased random variable $\tilde{\mu}_n$

$$\begin{split} \mathbf{P}\left(\left|T_{ir_{ij}}\right| > \delta \mid X_{i}, X_{j}\right) &= \mathbf{P}\left(\left|\sqrt{\hat{\mu}_{n}(\mathcal{B}_{\mathcal{M}}\left(X_{i}, r_{ij}\right))} - \sqrt{\mu_{n}(\mathcal{B}_{\mathcal{M}}\left(X_{i}, r_{ij}\right))}\right| > \delta \mid X_{i}, X_{j}\right) \\ &\leq \mathbf{P}\left(\left|\sqrt{\tilde{\mu}_{n}(\mathcal{B}_{\mathcal{M}}\left(X_{i}, r_{ij}\right))} - \sqrt{\mu_{n}(\mathcal{B}_{\mathcal{M}}\left(X_{i}, r_{ij}\right))}\right| > \delta - \frac{1}{\sqrt{n}} \mid X_{i}, X_{j}\right) \\ &\leq 2\exp\left(-(n-2)\left(\delta - \frac{1}{\sqrt{n}}\right)^{2}\right) \end{split}$$

using

Lemma (Okamoto Inequality)

Let $Y_i \sim B(p)$ iid with $\mathbf{E}(Y_i) = p$ and set $\hat{p} = \frac{1}{m} \sum_{i=1}^{m} Y_i$. Then, for $\delta > 0$,

$$\mathbf{P}\left(\left|\sqrt{p}-\sqrt{\hat{p}}\right|>\delta
ight)\leq 2\exp(-m\delta^2).$$

additional assumption: Ahlfors-regularity of μ

Definition (k-Ahlfors)

A measure μ on $(\mathcal{M}, d_{\mathcal{M}})$ is said to be k - Ahlfors if

$$\exists c_l > 0, c_u > 0 \ \forall B_{\mathcal{M}}(x, r) : \ c_l r^k \leq \mu(B_{\mathcal{M}}(x, r)) \leq c_u r^k$$

holds.

Theorem (main theorem - lpi in d_{SP} -version 1/n)

Assumptions: Ahlfors regular μ , existence of Bi-lipschitz homeomorphism, connected unweighted ϵ -graph, measures $\pi_x = 1/n$ on V(G) and $\tilde{\pi}_x = 1/n_A$ for some $A = B_{\mathcal{M}}(r) \subset V(G)$, lower bound on edge weights (a).

Under B1-B6, then, whp, $\forall f, \forall x_i \in V(G)$,

$$\sum_{x\in\overline{B}_{G,SP}(x_0,r_{SP})} (f_x-\overline{f}_B)^2 1/n \leq Cr_{SP}^2 \sum_{x,y\in\overline{B}_{G,SP}(x_0,\lambda r_{SP})} (f_x-f_y)^2 1/n.$$

Assumptions for results:

- ► existence of bi-Lipschitz homeomorphism: *A* compact, $\exists h : A \rightarrow [0, 1]^k$ bi-Lipschitz-homeomorphism the existence of the bi-lip homeo is ensured by the condition $r < r_{max}$ in d_M distance
- ∃ 0 < L_{min} < L_{max} < ∞ Lipschitz-constants, they should be global (independent of A), including factor 1/r_M

SKETCH OF PROOF

general structure of the inequality [DS91]

$$\sum_{x \in A} (f_x - \overline{f}_A)^2 \widetilde{\pi}_x) \le \kappa_A \frac{1}{2} \sum_{x \in A} \sum_{y \in A, y \sim x} a_{xy} (f_x - f_y)^2 \widetilde{\pi}_x$$

with $\widetilde{\pi}_x := \frac{\pi_x}{\mu(A)} = \frac{\pi_x}{\sum_{y \in A} \pi_y}$ and $\overline{f}_A = \sum_{x \in A} f_x \widetilde{\pi}_x$
 $\kappa_A := \max_{e=(a,b), a, b \in A} \sum_{\gamma_{xy} \ni e, \gamma_{xy} \in A} Q_{xy}^A \widetilde{\pi}_x \widetilde{\pi}_y$ with $Q_{xy}^A := \sum_{e \in \gamma_{xy}^A} \frac{1}{a_{k/} \widetilde{\pi}_k}.$

- ▶ lpi for d_M given bound on kappa: assume κ_A can be bounded by $C \cdot r^2$ whp for $A = \overline{B}_M(r)$,
- ► lpi for *d*_{SP}

SKETCH OF PROOF II

► bound on kappa given existence of bi-lip: for $\pi_x = 1/n$ and unweighted graph: $c_A = C_A = 1/n_A$, $a_A = 1$

$$Q_{xy}^A \leq rac{1}{c_A \cdot a_A} I_{max}(A)$$
 and $\kappa_A \leq rac{C_A^2}{c_A \cdot a_A} I_{max}(A) b_{max}(A)$ with

- 0

$$M_{max}(A) := \max_{x,y \in A} \operatorname{NE}(\gamma_{xy}^{A})$$
 and $b_{max}(A) := \max_{e \in G_{A}} \sum_{\gamma_{xy}^{A} \ni e} 1.$

bound *I_{max}(A)* and *b_{max}(A)* using random Hamming pathes [vLRH14]
► existence of bi-lip: upper bound for radius *r*

OUTLINE

1 Introduction – Classical Wavelets

- 2 Construction of Parseval Graph Frame
- 3 Way to localization
- 4 Application: Denoising
- 5 Simulation results

DENOISING - APPROACH

• Observe $y_i = f(x_i) + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$

Use recovery formula for y and f

$$f = \sum_{k,l} a_{kl} \Psi_{kl} \text{ with } a_{kl} = \langle \Psi_{kl}, f \rangle$$
$$y = \sum_{k,l} b_{kl} \Psi_{kl} \text{ with } b_{kl} = \langle \Psi_{kl}, y \rangle = a_{kl} + \langle \Psi_{kl}, \epsilon \rangle$$

► Apply thresholding method to the coefficients *b_{kl}*:

 $\hat{a}_{kl} = Thr(b_{kl})$

Define estimate:

$$\hat{f} := \sum_{k,l} \hat{a}_{kl} \Psi_{kl}$$

Theorem (Oracle-type inequality)

With soft-thresholding S_S and threshold $t_{kl} = \sigma^2 \|\Psi_{kl}\| \sqrt{2 \log n}$

$$\mathbb{E}\left[\left\|\hat{f}-f\right\|^{2}\right] \leq (1+2\log n)\left(\sigma^{2}+\sum_{k,l}\min(\sigma^{2}\|\Psi_{kl}\|^{2},\langle f,\Psi_{kl}\rangle^{2})\right)$$

(See also Candes (2006))

Class of reference estimators: linear projection estimators (keep-or-kill)

$$\widetilde{f}_J = \sum_{(k,l)\in J} b_{kl} \Psi_{kl}$$

Then

$$\inf_{J} \mathbb{E}\left[\left\|\tilde{f}_{J} - f\right\|^{2}\right] \leq \sum_{k,l} \min(\sigma^{2} \left\|\Psi_{kl}\right\|^{2}, \left\langle f, \Psi_{kl}\right\rangle^{2})$$

PROOF INGREDIENTS

Property of Parseval frame

$$\left\|\sum_{i} a_{i} z_{i}\right\|^{2} \leq \|a\|^{2} = \sum_{i} a_{i}^{2},$$
(3)

Property of denoising model

$$\frac{\langle \mathbf{y}, \Psi_{kl} \rangle}{\sigma \|\Psi_{kl}\|} \sim \mathcal{N}\left(\frac{\mathbf{a}_{kl}}{\sigma \|\Psi_{kl}\|}, 1\right).$$
(4)

▶ Result from Donoho and Johnstone (1994): For $0 \le \delta \le 1/2$, $t = \sqrt{2 \log(\delta^{-1})}$ and $X \sim \mathcal{N}(\mu, 1)$

$$\mathbb{E}\left[\left(S_{s}(X,t)-\mu\right)^{2}\right] \leq \left(t^{2}+1\right)\left(\exp\left(-\frac{t^{2}}{2}\right)+\min(1,\mu^{2})\right).$$
 (5)

• and $\sum_{k,l} \|\Psi_{kl}\|^2 = n$

OUTLINE

1 Introduction – Classical Wavelets

- 2 Construction of Parseval Graph Frame
- 3 Way to localization
- 4 Application: Denoising

5 Simulation results

- ► simulations based on empirical mean squared error (*MSE*) $MSE(\hat{f}, f) = \frac{1}{n} \left\| \hat{f} - f \right\|_{2}^{2} = \frac{1}{n} \sum_{i=1}^{n} (\hat{f}(x_{i}) - f(x_{i}))^{2}$
- every method depends on one tuning parameter
- ▶ so far no prediction for our method
- ► optimize MSE wrt tunig parameter $(t_o = \underset{t}{\operatorname{Arg Min}} MSE(\hat{f}_t, f))$ and compare the "optimal" MSEs

COMPARISON FRAME THR VS ONB THR AND ONB EMBEDDING I

Question: Does the frame lead to better results than ONB-based methods?

Example: sphere, jump function, $\sigma^2 = 1, n = 500, m = 50$										
Graph	L		FrTh		LETh		LETr			
kNN	U	0.510	(0.050)	0.693	(0.061)	0.905	(0.108)			
kNN	Ν	0.538	(0.046)	0.712	(0.055)	0.931	(0.094)			
WkNN	U	0.521	(0.049)	0.652	(0.050)	0.800	(0.097)			
WkNN	Ν	0.530	(0.049)	0.674	(0.057)	0.749	(0.091)			
CGK	U	0.520	(0.055)	0.638	(0.065)	0.821	(0.107)			
CGK	Ν	0.530	(0.052)	0.670	(0.050)	0.725	(0.081)			
ϵG	U	0.505	(0.058)	0.650	(0.068)	0.865	(0.115)			
ϵG	Ν	0.557	(0.052)	0.710	(0.059)	0.902	(0.106)			
W∈G	U	0.482	(0.055)	0.622	(0.064)	0.787	(0.111)			
W∈G	Ν	0.530	(0.049)	0.674	(0.057)	0.749	(0.091)			

Smoothing Kernel Regression: min. MSE = 0.612 (0.066) Kernel Ridge Regression: min. MSE = 0.594 (0.051)

COMPARISON FRAME THR VS ONB THR AND ONB EMBEDDING II

Example: swiss roll, jump function, $\sigma^2 = 1, n = 500, m = 50$											
Graph	L		FrTh		LETh		LETr				
kNN	U	0.462	(0.043)	0.647	(0.039)	0.876	(0.079)				
kNN	Ν	0.494	(0.043)	0.676	(0.043)	0.902	(0.071)				
WkNN	U	0.443	(0.045)	0.600	(0.050)	0.790	(0.102)				
WkNN	Ν	0.500	(0.043)	0.659	(0.045)	0.775	(0.079)				
CGK	U	0.491	(0.053)	0.625	(0.057)	0.844	(0.096)				
CGK	Ν	0.520	(0.047)	0.648	(0.049)	0.713	(0.079)				
ϵG	U	0.459	(0.049)	0.610	(0.053)	0.872	(0.095)				
ϵG	Ν	0.532	(0.045)	0.681	(0.050)	0.884	(0.089)				
W∈G	U	0.441	(0.049)	0.574	(0.049)	0.793	(0.113)				
W∈G	Ν	0.503	(0.045)	0.643	(0.051)	0.744	(0.089)				

Smoothing Kernel Regression: min. MSE = 0.589 (0.082) Kernel Ridge Regression: min. MSE = 0.779 (0.052)

COMPARISON FRAME AND ONB THRESHOLDING

COMPARISON TO TOTAL VARIATION DENOISING

Setup: test functions (not normalized) with specific sigmas, 1d, Total variation denoising:

$$\hat{f}_{TV} \in \underset{f \in \mathbb{R}^{n}}{\operatorname{Arg\,Min}} \frac{1}{n} \left\| f - y \right\|_{2}^{2} + \lambda \left\| Wf \right\|_{1}$$

THRESHOLD - UNIVERSAL OR SCALE DEPENDENT?

Q: How does $\sup_{l} |\langle \Psi_{kl}, \epsilon \rangle|$ behave for various k? Consider expectation

try scale-dependent threshold

COMPARISION OF DIFFERENT THRESHOLDING STRATEGIES AND THRESHOLDS

Soft, hard, SCAD, ...

SUMMARY AND OUTLOOK

- Method to construct a Parseval frame exhibiting wavelet-like properties (multiscale, localised) while adapting to the instrinsic geometry of the data.
- This frame can be used in the denoising setting: simple coefficient thresholding method which satisfies an oracle-type inequality (with superior performance in simulations for denoising as compared)
 - (with superior performance in simulations for denoising as compared to usual (spectral and non spectral) approaches)
- ► Doubling Condition and LPI hold whp for random *ϵ*-graph (under some assumptions)
- Extension of this methodology to semi-supervised learning setting?
- Proof of spatial localization?

Thank you.

Mira Bernstein, Vin De Silva, John C. Langford, and Joshua B. Tenenbaum.

Graph approximations to geodesics on embedded manifolds, 2000.

- Thierry Coulhon, Gerard Kerkyacharian, and Pencho Petrushev. Heat kernel generated frames in the setting of dirichlet spaces. June 2012.
- Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of Markov chains. The Annals of Applied Probability, 1(1):36–61, Feb 1991.
- Ulrike von Luxburg, Agnes Radl, and Matthias Hein.
 Hitting and commute times in large random neighborhood graphs.
 Journal of Machine Learning Research, 15(1):1751–1798, 2014.