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WAVELETS ON R
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I Classical example: Haar wavelet, ψ(t) = 1{t ∈ [0, 1
2 )} − 1{t ∈ [ 1

2 ,1)}
I Let ψm,n(t) := 2m/2ψ(2mt − n)

I The (ψm,n)m,n∈Z2 form an orthonormal basis of L2(R)

f ∈ L2(R) ⇒ f (·) =
∑
m∈Z

∑
n∈Z
〈ψm,n, f 〉ψm,n(·) .
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CLASSICAL WAVELETS: PROPERTIES
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I ψm,n(t) := 2m/2ψ(2mt − n)

I (ψm,n) orthogonal basis
I (ψ·,n) are rescaled versions of ψ
I (ψm,·) are translations of each other
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WHAT ARE WAVELETS GOOD FOR?

I Visualization of signal in space(time)/frequency plot
I Data compression

Local adaptivity
Smoothing (e.g. nonlinear by thresholding)

I Denoising:
• Observe: Yi = f (xi ) + εi , with xi = i

N , i = 1, . . . ,N
• Compute empirical/noisy wavelets coefficients:

α̂m,k = 〈Y, ψm,k 〉PN
=

1
N

N∑
i=1

Yiψm,k (xi )

• Threshold empirical coefficients:

α̃m,k = α̂m,k 1{|α̂m,k | ≥ τ}

• Reconstruct with thresholded coefficients:

f̂ (·) =
∑
m,k

α̃m,kψm,k (·)

• Technical details: compact support/finite sampling effects: need
to consider appropriate maximal and minimal scale (parameter
m), appropriate number of translates per scale (parameter n)
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WHY WAVELETS?

I There exist other classical bases, for instance Fourier basis. Why
use wavelets?

I Fourier functions are not localized. A truncated Fourier expansion
approximates well a signal that is “uniformly smooth over the
domain”.

I Wavelets give better approximations for signals of inhomogeneous
smoothness, e.g. piecewise smooth functions with some
discontinuities.

I How to extend the wavelet approach if points xi are in high
dimension, not uniformly distributed?
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LITTLEWOOD-PALEY DECOMPOSITION

I Laplace-operator −∆f = − ∂2

∂x2 f (x)

I Eigenvalues λk = k2π2

I ONB/Eigenfunctions Φk (x) =
√

2 sin(kπx)

I Fourier decomposition

f (x) =
∑
k≥1

〈f ,Φk 〉Φk (x)

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5

0.00 0.25 0.50 0.75 1.00
x

φ k
(x

)

I Eigenfunctions are not localised
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LITTLEWOOD-PALEY DECOMPOSITION

I Take a point x` fixed, construct localized functions via

Ψi`(x) =
∑

k

√
ζ(2−iλk )Φk (x`)Φk (x)
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I Note: the Meyer wavelet is constructed following a similar principle
I Extend to more general case?
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TOY EXAMPLE
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SETTING

Model n observations,
yi = f (xi ) + εi

xi ∈ Rd , d can be big, xi realization of X ∼ P
D = {x1, . . . , xn}
yi ∈ R noisy observation
εi noise, iid, E [ε] = 0,Var (εi ) = σ2

Assumption xi ∈ M ⊂ Rd

e.g. M low-dimensional compact submanifold
Task (Denoising): Estimate (f (xi ))i given (yi )i using the unknown

geometric structure of M
(f may have inhomogeneous regularity)
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Literature
I On constructing localised, wavelet-like frames for manifolds

(Regular manifolds) Narcowich, Petrushev, and Ward (2006): on spheres; Petrushev
and Xu (2008), Baldi, Kerkyacharian, Marinucci and Picard (2009): on balls
(on compact homogeneous manifolds) Geller and Mayeli (2009), Geller and Pesenson
(2011): based on Laplacian operator; Kerkyacharian, Le Pennec and Picard (2011):
on more general operators
Coulhon, Kerkyacharian and Petrushev (2012): Develop band limited well-localised
frames
"Heat Kernel Generated Frames in the Setting of Dirichlet Spaces"

I On data-adapted wavelet-like frames

Hammond, Vandergheynst and Gribonval (2011) (graph-based)
Gavish, Nadler and Coifman (2010) (tree-based)
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WISHLIST

I Consider f ∈ L2(D)

I We want a decomposition of f with respect to a set of functions

f (x) =
∑

j

〈f ,gj〉gj

Properties of the dictionary
• (Over)complete,
• Adapted to the structure of the domain of f
• Ideally: the dictionary exhibits the features of a wavelet basis

(multiscale, localization, ...)
I Application in statistics:

y =
∑

j

〈y ,gj〉gj =
∑

j

(〈f ,gj〉+ 〈ε,gj〉) gi

then estimating f corresponds to estimate the coefficients 〈f ,gj〉
given 〈y ,gj〉
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PLAN OF ATTACK

I We want to use a “Fourier analysis” adapted to the domain of f (and
possibly to the covariate distribution)

I Fourier analysis exists on manifolds, but the manifold containing the
data is unknown a priori

I Solution: use approximation by a neighborhood graph constructed
on the data + graph Laplacian (principle underlying Laplacian
Eigenmaps).

I Then apply the “frequency decomposition” device to the obtained
spectral decomposition

Approach mainly based on work of Coulhon et al. (2012)
Similar approach: Hammond et al. (2011) (general frame)
Different approach: Gavish et al. (2010) (hierarchical tree, Haar-like basis)
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STEPS OF THE CONSTRUCTION

We need:
I Neighborhood graph A:

• Finite undirected (weighted) graph
• represented by symmetric adjacency matrix A = (aij )
• Degree of a vertex vi :di =

∑
j aij , G := diag(d1, . . . ,dn)

• Graph types: (weighted) k-NN, (weighted) ε, complete weighted
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STEPS OF THE CONSTRUCTION

We need:
I Neighborhood graph A
I Graph Laplacian:

Unnormalized
Lu = G − A

Normalized
Lnorm = I −G−1/2AG−1/2

• Properties of L: symmetric, positive semi-definite
• Spectral theorem for matrices:

The eigenvectors Φi of L are an orthonormal basis of
L2(D) = Rn and the eigenvalues λi are ≥ 0
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LAPLACIAN EIGENMAPS
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Figure: Swiss roll data: eigenvectors Φj for j = 10, 30, 50, 100.
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STEPS OF THE CONSTRUCTION

We need:
I Neighborhood graph A
I Graph Laplacian: L, {Φi}i , {λi}i

I Function system (decomposition of unity):
{ζk}k∈N is a sequence of functions ζk : R+ → [0,1] satisfying

(DoU)
∑

j≥0 ζj (x) = 1 for all x ≥ 0;

(FD) #{ζk : ζk (λi ) 6= 0} <∞ for i = 1, . . . ,n.
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DEFINITION OF THE DICTIONARY

Definition
The dictionary {Ψk` ∈ Rn,0 ≤ k ≤ Q,1 ≤ ` ≤ n} is defined by

Ψk` =
n∑

i=1

√
ζk (λi )Φi (x`)Φi . (1)

with Q := max{k : ∃i ∈ {1, . . . ,n} with ζk (λi ) > 0}.
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RESULT: TIGHT FRAME

Theorem

The dictionary {Ψk`}k,` is a Parseval frame for Rn, that is:
(a) For all x ∈ Rn:

‖x‖2 =
∑
k,`

|〈x ,Ψk`〉|2 .

(b) For all y ∈ Rn (y : D → R) the recovery formula holds:

y =
∑
k,`

〈y ,Ψk`〉Ψk`. (2)

(c) ∀k , ` : ‖Ψk`‖ ≤ 1
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CHOICE OF {ζk}k - MULTISCALE BANDPASS FILTER

Choice corresponds to Coulhon et al. (2012)
(smooth Littlewood-Paley decomposition)

Definition (Multiscale bandpass filter)

Let g ∈ C∞(R+), Suppg ⊂ [0,1], 0 ≤ g ≤ 1, g(u) = 1 for u ∈ [0,1/b] (for
some constant b > 1). For k ∈ N = {0,1, . . .} the functions
ζk : R+ → [0,1] are defined by

ζk (x) :=

{
g(x) if k = 0
g(b−k x)− g(b−k+1x) if k > 0

(3)

The sequence {ζk}k≥0 is called multiscale bandpass filter.
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CHOICE OF {ζk}k - MULTISCALE BANDPASS FILTER

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
x

ζ k
(x

)

ζ0

ζ1

ζ2

ζ3

ζ4

ζ5

Properties: ζk ∈ C∞(R+), 0 ≤ ζk ≤ 1,
ζk (x) = ζ1(b−(k−1)x) for k ≥ 1
Suppζ0 ⊂ [0,1], Suppζk ⊂ [bk−2,bk ] for k ≥ 1
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LOCALIZATION
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Figure: Swiss roll data: eigenvectors Φj for j = 10, 30, 50, 100; frame elements
Ψkl for l fixed and k = 0, 2, 5, 7.
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LOCALIZATION
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Figure: Swiss roll data: eigenvectors Φj for j = 10, 30, 50, 100; frame elements
Ψkl for l fixed and k = 0, 2, 5, 7.
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WHY DOUBLING CONDITION AND POINCARÉ

INEQUALITY

I in [CKP12]: heat kernel bounds important ingredient for localization
in their setting: DC+ Poincare↔ Harnack inequality↔ Gaussian
estimate for heat kernel

I for graph setting: Delmotte (1997), Barlow and Chen (2016) - similar
results

I Question: If manifold satisfies DC, does the graph satisfy a DC as
well?
When does the graph satisfy a local Poincaré inequality?
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SPATIAL LOCALIZATION?

Coulhon et al. (2012): the almost exponential localization of Ψk` follows
from 2 sufficient geometrical conditions:
If M compact and µ finite and
I Doubling measure:

µ(B(x ,2r)) ≤ 2dµ(B(x , r)) for all x and r > 0.

I Local Poincaré inequality:∫
B(x,r)

(f (y)− fB)2dµ(y) ≤ Cr
∫

B(x,r)
‖∇f‖2 dµ for all x and r > 0,

with fB mean of f over B(x , r)

Do we have an appropriate discrete analogue on a geometrical graph
based on X1, . . . ,Xn

i.i.d.∼ µ?
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ASSUMPTIONS

Assumption
(B1) choose λ1, λ2 ∈ (0,1) , q ∈ (0,1)

(B2) M⊂ Rk compact submanifold (with parameters r0, s0), (M,dM, µ)

(B3) M is geodesically convex
(B4) (finite sample ofM as vertex set of an ε-graph)
(B5) ε-graph with parameter ε > 0 such that ε < s0 and ε ≤ (2/π)r0

√
24λ1

(B6) choose sample size n = n(q, λ2, ε, µ) such that

n ≥
ln(q infy∈M µ(B(y , ελ2/16)))

ln((1− infz∈M µ(B(z, ελ2/8))

minimum radius of curvature r0 = r0(M) :=
(
maxγ,t ‖γ̈(t)‖

)−1
(γ unit-speed geodesics)

minimum branch separation
s0 := max{s : s > 0 and ‖x − y‖ < s ⇒ dM(x , y) ≤ πr0 for x , y ∈M}.
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DOUBLING CONDITION

Theorem
Under (B1-B6), with λ1 = λ2 = 0.5, with prob at least 1− 2q, for all x ∈ V
and for all r ≥ 2 with µ̂n(BG,SP (x , r)) ≥ 2(

√
− ln q+ln 3n2

n + 2
n )2 it holds for n

large enough

µ̂n(BG,SP (x ,2r)) ≤ 23.2+6v µ̂n(BG,SP (x , r)).

The proof is based on
I approximation of distances dM ,dG,E ,dSP (using dM ≈ dE by

[BSLT00]),
I Lemma: uniform bound

P
(

sup
i=1..n

sup
r>0

∣∣∣∣√µ̂n(BM (Xi , r))−
√
µ(BM (Xi , r))

∣∣∣∣ > δ

)
≤ α.

I and volume doubling on the manifold.
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SKETCH OF PROOF

Distance approximation (see [BSLT00, Main Theorem B])

(1 − λ1)dM(x , y) ≤ dG,E (x , y) ≤ (1 + λ2)dM(x , y) whp

and
1
4
ε (dG,SP(x , y) − 1) ≤ dG,E (x , y) ≤ ε dG,SP(x , y).

Then, for fixed s ≥ 0, we can derive the inequalities

µ̂n(BG,SP (x , 2r)) ≤ µ̂n

(
BM

(
x , (1− λ1)

−1ε2r
))

≤
3
2
µn

(
BM

(
x , (1− λ1)

−1ε2r
))

+ 3δ2

≤
3
2

2dsevµn

(
BM

(
x ,

(1− λ1)
−1

2s
ε2r

))
+ 3δ2

≤
3
2

2dsev
(

3
2
µ̂n

(
BM

(
x ,

(1− λ1)
−1

2s
ε2r

))
+ 3δ2

)
+ 3δ2

≤
3
2

2dsev
(

3
2
µ̂n

(
BG,SP

(
x ,

4(1 + λ2)(1− λ1)
−1

2s
2r + 1

))
+ 3δ2

)
+ 3δ2

which holds with high probability.
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SKTECH OF PROOF - LEMMA

key words: conditioning on center point and radius, reduction to random
radii: ordered/non-ordered, Okamoto’s inequality

P

(
sup

i=1..n
sup
r>0

∣∣∣√µ̂n(BM (Xi , r))−
√
µ(BM (Xi , r))

∣∣∣ > δ

)
= P

(
sup

i=1..n
sup
r>0
|Tir | > δ

)

= P

( n⋃
i=1

{sup
r>0
|Tir | > δ}

)
≤

n∑
i=1

P

(
sup
r>0
|Tir | > δ

)
=

n∑
i=1

EXi

(
P

(
sup
r>0
|Tir | > δ

∣∣∣∣∣ Xi

))

decompose for fixed i the set

{r > 0} = {r (j)i : rij 6= 0, j ≤ n} ∪
n⋃

j=1

(
r (j)i , r (j+1)

i

)
upper bound supr>0 |Tir | by max{E1,i ,E2,i ,E3,i} for fixed i where

E1,i := max
j=1..n:rij>0

∣∣∣Tirij

∣∣∣ ,E2,i := max
j=1..n

T irij and E3,i := max
j=1..n+1,j 6=i

−Tirij .
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SKETCH OF PROOF II - LEMMA

Introduce non-biased random variable µ̃n

P
(∣∣∣Tirij

∣∣∣ > δ
∣∣∣ Xi ,Xj

)
= P

(∣∣∣∣√µ̂n(BM
(
Xi , rij

)
)−

√
µn(BM

(
Xi , rij

)
)

∣∣∣∣ > δ

∣∣∣∣ Xi ,Xj

)
≤ P

(∣∣∣∣√µ̃n(BM
(
Xi , rij

)
)−

√
µn(BM

(
Xi , rij

)
)

∣∣∣∣ > δ −
1
√

n

∣∣∣∣ Xi ,Xj

)
≤ 2 exp

(
−(n − 2)

(
δ −

1
√

n

)2
)

using

Lemma (Okamoto Inequality)
Let Yi ∼ B(p) iid with E (Yi ) = p and set p̂ = 1

m

∑m
i=1 Yi . Then, for δ > 0,

P
(∣∣∣√p −

√
p̂
∣∣∣ > δ

)
≤ 2 exp(−mδ2).
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LOCAL POINCARÉ INEQUALITY

additional assumption: Ahlfors-regularity of µ

Definition (k-Ahlfors)
A measure µ on (M,dM) is said to be k − Ahlfors if

∃cl > 0, cu > 0 ∀BM (x , r) : cl r k ≤ µ(BM (x , r)) ≤ cur k

holds.
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LPI

Theorem (main theorem - lpi in dSP -version 1/n)
Assumptions: Ahlfors regular µ, existence of Bi-lipschitz
homeomorphism, connected unweighted ε-graph, measures πx = 1/n on
V (G) and π̃x = 1/nA for some A = BM(r) ⊂ V (G), lower bound on edge
weights (a).
Under B1-B6, then, whp, ∀f ,∀xi ∈ V (G),∑

x∈BG,SP(x0,rSP)

(fx − f B)21/n ≤ Cr2
SP

∑
x,y∈BG,SP(x0,λrSP)

(fx − fy )21/n.

Assumptions for results:
I existence of bi-Lipschitz homeomorphism: A compact,
∃h : A→ [0,1]k bi-Lipschitz-homeomorphism
the existence of the bi-lip homeo is ensured by the condition r < rmax
in dM distance

I ∃ 0 < Lmin < Lmax <∞ Lipschitz-constants, they should be global
(independent of A), including factor 1/rM
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SKETCH OF PROOF

I general structure of the inequality [DS91]∑
x∈A

(fx − f A)2π̃x ) ≤ κA
1
2

∑
x∈A

∑
y∈A,y∼x

axy (fx − fy )2π̃x

with π̃x := πx
µ(A) = πx∑

y∈A πy
and f A =

∑
x∈A fx π̃x

κA := max
e=(a,b),a,b∈A

∑
γxy3e,γxy∈A

QA
xy π̃x π̃y with QA

xy :=
∑

e∈γA
xy

1
akl π̃k

.

I lpi for dM given bound on kappa: assume κA can be bounded by
C · r2 whp for A = BM(r),

I lpi for dSP
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SKETCH OF PROOF II

I bound on kappa given existence of bi-lip:
for πx = 1/n and unweighted graph: cA = CA = 1/nA, aA = 1

QA
xy ≤

1
cA · aA

lmax (A) and κA ≤
C2

A
cA · aA

lmax (A)bmax (A)

with

lmax (A) := max
x,y∈A

NE (γA
xy ) and bmax (A) := max

e∈GA

∑
γA

xy3e

1.

bound lmax (A) and bmax (A) using random Hamming pathes [vLRH14]
I existence of bi-lip: upper bound for radius r
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DENOISING - APPROACH

I Observe yi = f (xi ) + εi εi ∼ N(0, σ2)

I Use recovery formula for y and f

f =
∑
k,l

akl Ψkl with akl = 〈Ψkl , f 〉

y =
∑
k,l

bkl Ψkl with bkl = 〈Ψkl , y〉 = akl + 〈Ψkl , ε〉

I Apply thresholding method to the coefficients bkl :

âkl = Thr(bkl )

I Define estimate:
f̂ :=

∑
k,l

âkl Ψkl
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Theorem (Oracle-type inequality)
With soft-thresholding SS and threshold tkl = σ2 ‖Ψkl‖

√
2 log n

E
[∥∥∥f̂ − f

∥∥∥2
]
≤ (1 + 2 log n)

σ2 +
∑
k,l

min(σ2 ‖Ψkl‖2
, 〈f ,Ψkl〉2)


(See also Candes (2006))
Class of reference estimators: linear projection estimators (keep-or-kill)

f̃J =
∑

(k,l)∈J

bkl Ψkl

Then

inf
J
E
[∥∥∥f̃J − f

∥∥∥2
]
≤
∑
k,l

min(σ2 ‖Ψkl‖2
, 〈f ,Ψkl〉2)
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PROOF INGREDIENTS

I Property of Parseval frame∥∥∥∥∥∑
i

aizi

∥∥∥∥∥
2

≤ ‖a‖2 =
∑

i

a2
i , (3)

I Property of denoising model

〈y ,Ψkl〉
σ ‖Ψkl‖

∼ N
(

akl

σ ‖Ψkl‖
,1
)
. (4)

I Result from Donoho and Johnstone (1994):
For 0 ≤ δ ≤ 1/2 ,t =

√
2 log(δ−1) and X ∼ N (µ,1)

E
[
(Ss(X , t)− µ)2

]
≤ (t2 + 1)

(
exp

(
− t2

2

)
+ min(1, µ2)

)
. (5)

I and
∑

k,l ‖Ψkl‖2 = n
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SIMULATIONS - BASICS

I simulations based on empirical mean squared error (MSE)

MSE(f̂ , f ) = 1
n

∥∥∥f̂ − f
∥∥∥2

2
= 1

n

∑n
i=1(f̂ (xi )− f (xi ))2

I every method depends on one tuning parameter
I so far no prediction for our method
I optimize MSE wrt tunig parameter (to = Arg Min

t
MSE(f̂t , f )) and

compare the "optimal" MSEs

Franziska Göbel Graph Wavelets 37 /47



COMPARISON FRAME THR VS ONB THR AND ONB
EMBEDDING I

Question: Does the frame lead to better results than ONB-based
methods?

Example: sphere, jump function,σ2 = 1, n = 500,m = 50
Graph L FrTh LETh LETr
kNN U 0.510 (0.050) 0.693 (0.061) 0.905 (0.108)
kNN N 0.538 (0.046) 0.712 (0.055) 0.931 (0.094)
WkNN U 0.521 (0.049) 0.652 (0.050) 0.800 (0.097)
WkNN N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)
CGK U 0.520 (0.055) 0.638 (0.065) 0.821 (0.107)
CGK N 0.530 (0.052) 0.670 (0.050) 0.725 (0.081)
εG U 0.505 (0.058) 0.650 (0.068) 0.865 (0.115)
εG N 0.557 (0.052) 0.710 (0.059) 0.902 (0.106)
WεG U 0.482 (0.055) 0.622 (0.064) 0.787 (0.111)
WεG N 0.530 (0.049) 0.674 (0.057) 0.749 (0.091)

Smoothing Kernel Regression: min. MSE = 0.612 (0.066)
Kernel Ridge Regression: min. MSE = 0.594 (0.051)
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COMPARISON FRAME THR VS ONB THR AND ONB
EMBEDDING II

Example: swiss roll, jump function,σ2 = 1, n = 500,m = 50
Graph L FrTh LETh LETr
kNN U 0.462 (0.043) 0.647 (0.039) 0.876 (0.079)
kNN N 0.494 (0.043) 0.676 (0.043) 0.902 (0.071)
WkNN U 0.443 (0.045) 0.600 (0.050) 0.790 (0.102)
WkNN N 0.500 (0.043) 0.659 (0.045) 0.775 (0.079)
CGK U 0.491 (0.053) 0.625 (0.057) 0.844 (0.096)
CGK N 0.520 (0.047) 0.648 (0.049) 0.713 (0.079)
εG U 0.459 (0.049) 0.610 (0.053) 0.872 (0.095)
εG N 0.532 (0.045) 0.681 (0.050) 0.884 (0.089)
WεG U 0.441 (0.049) 0.574 (0.049) 0.793 (0.113)
WεG N 0.503 (0.045) 0.643 (0.051) 0.744 (0.089)

Smoothing Kernel Regression: min. MSE = 0.589 (0.082)
Kernel Ridge Regression: min. MSE = 0.779 (0.052)
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COMPARISON FRAME AND ONB THRESHOLDING
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COMPARISON TO TOTAL VARIATION DENOISING

Setup: test functions (not normalized) with specific sigmas, 1d,
Total variation denoising:

f̂TV ∈ Arg Min
f∈Rn

1
n
‖f − y‖2

2 + λ ‖Wf‖1

with W incidence matric: Lun = W tW = D − A (undir. unw. graph)
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THRESHOLD - UNIVERSAL OR SCALE DEPENDENT?

Q: How does supl |〈Ψkl , ε〉| behave for various k? Consider expectation
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I try scale-dependent threshold
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COMPARISION OF DIFFERENT THRESHOLDING

STRATEGIES AND THRESHOLDS

●

● ●

●

●

●

●

● ● ●

●

●

●

● ●

● ●
● ● ●

●

●

●
●

●

●

●

● ●
●

●

● ●

● ●

●

●
●

●
●

Jump1 Sqrt

FirstCoord HatL1 HeaviSine

Cont CosProd Doppler

500 1000 1500 2000 500 1000 1500 2000

500 1000 1500 2000

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

0.000

0.005

0.010

0.015

0.020

0.025

sample_size

m
se

type
● est_mse

supp_add_mse

test1_mse

univ_mse

bigThres  − fix sigma=0.3

●
● ●

●

●

●

●

●● ● ● ●

●

●

●● ●
●

●

●

●

●● ● ● ● ● ●

●● ● ●
●

● ●

●● ● ●
●

● ●

●● ●
●

●

●

●

●● ●
●

●
●

●

Jump1 Sqrt

FirstCoord HatL1 HeaviSine

Cont CosProd Doppler

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.0 0.2 0.4 0.6 0.8

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.06

sigma

m
se

type
● est_mse

supp_add_mse

test1_mse

univ_mse

bigThres  − fix n=800

Franziska Göbel Graph Wavelets 43 /47



HeaviSine Jump1 Sqrt

Doppler FirstCoord HatL1

Cont Contc CosProd

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

4

8

12

0

4

8

12

0

4

8

12

x

va
lu

e
test functions − normalized

Franziska Göbel Graph Wavelets 44 /47



SOFT, HARD, SCAD, ...

n=100
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SUMMARY AND OUTLOOK

I Method to construct a Parseval frame exhibiting wavelet-like
properties (multiscale, localised) while adapting to the instrinsic
geometry of the data.

I This frame can be used in the denoising setting:
simple coefficient thresholding method which satisfies an oracle-type
inequality
(with superior performance in simulations for denoising as compared
to usual (spectral and non spectral) approaches)

I Doubling Condition and LPI hold whp for random ε-graph (under
some assumptions)

I Extension of this methodology to semi-supervised learning setting?
I Proof of spatial localization?
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Thank you.
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