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Abstract

For an irreducible continuous time Markov chain, we derive the distribution
of the first passage time from a given state i to another given state j and the
reversed passage time from j to i, each under the condition of no return to
the starting point. When these two distributions are identical, we say that
i and j are in time duality. We introduce a new condition called permuted
balance that generalizes the concept of reversibility and provides sufficient
criteria, based on the structure of the transition graph of the Markov chain.
Illustrative examples are provided.
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1. Introduction

In living cells transport molecules and molecular motors play a crucial role
to support the survival and proper function of the organism. By exploiting
an out of equilibrium condition of a chemical compound, like ATP, these
molecules are able to change their conformation and to perform mechanical
work. Justified by experiments and physical properties, continuous time
Markov chains with discrete state space provide a very successful framework
for the study of the dynamics of such molecules, see e.g. [DRJ+10, LL07,
Sei12, KlV13].

In this framework each state of the Markov chain represents a certain
conformation of the molecule. For molecular motors involved in transport
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(e.g. kinesin) some of the transitions are also related to a directed change of
position along a support structure by a thermodynamically driven conforma-
tion change, see [SSSB93, LLV09].

Recent studies [LW07, VLL08] have emphasized that certain first passage
times in relatively complex models of kinesin’s steps have the same distribu-
tion. More precisely, a passage without return from one state to another has
been shown to take the same amount of time in distribution as the reversed
passage.

In the simpler framework of birth and death processes, “time duality”
is a consequence of the inherent reversibility of these processes since every
path can be identified with its reversed path without changing its statistical
properties. As there is only one possible passage way from any state i to
another state j, any path from i to j has a unique counterpart, the reversed
path, with the same distributional properties.

There are some generalizations made to processes with mirror symmetry
and loop-free transition graphs, see e.g. [Pol01, Kij88]. In more complicated
situations, however, reversibility is a property that seldom holds. Therefore,
in this article, we depart from the simple linear structure of birth and death
processes and investigate the properties of arbitrary (finite state) Markov
chains to gain some criteria for time duality. We note that time duality, as
we define it in the following, must not be confused with the duality notion
known in the literature, see for example the above mentioned article by
Pollett. We introduce it here merely in the sense of equality in distribution
of certain absorption times. The main tool is here the calculus of phase type
distributions that allows to derive simple conditions that involve submatrices
of the original infinitesimal generator.

The article is organized as follows. In section 2 we formalize time duality,
characterize the distribution of the first passage times without return and
derive a sufficient criterion for time duality by comparing certain conditional
moment generating functions. In section 3 we introduce permuted balance
as a new generalization of reversibility and show that under some simple
conditions time duality is implied. In section 4 we show how additional
bottlenecks can simplify the criterion for time duality and treat the general
case by relaxing the previously introduced conditions.
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2. Time duality

Let X := (Xt)t≥0 be a continuous time Markov chain on a finite state
space E with cardinality m + 2. We assume that its infinitesimal generator
Q := (qkl)k,l∈E is irreducible. Therefore each state is recurrent and there
exists a unique stationary distribution π = (πk)k∈E solution of

πQ = 0, π1⊤ = 1 , (1)

where 1 := (1, 1, 1, . . . , 1) is a vector of length m + 2.

2.1. Pure passage time

Fix two arbitrary states i 6= j ∈ E. The stopping time

τij := inf {t ≥ 0 : Xt = j | X0 = i}

is the usual first passage time from i to j. We now define another meaningful
random time,

ρij := sup {t < τij : Xt = i} ,

the time of the last departure from i before reaching j.

Definition 2.1. We call the difference

τ ∗
ij := τij − ρij

the pure passage time from i to j.

An illustration is provided in Figure 1.

Remark 2.2. When the transition rate qij is non-zero, the pure passage
time τ ∗

ij can take the value zero with positive probability since

P(τ ∗
ij = 0) =

qij
∑

k 6=i qik

.

In the case that qij , qji > 0, we therefore must assume qij = qji as a necessary
condition for time duality. Hereafter we assume for simplicity that

qij = qji = 0,

such that the distributions of τ ∗
ij and τ ∗

ji have no atom at zero.
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Figure 1: A path from i to j, which returns to i two times before reaching state j. The
pure passage time is the time duration between the last departure from i and the arrival
at state j.

Note that qij = qji = 0 is a feasible assumption that is met in the appli-
cation to reaction pathways we originally had in mind. In this framework,
the states between carefully chosen i, j of the Markov Chain represent inter-
mediate, non-skippable steps of a complicated multi-step reaction. For an
example of the complexity of these reactions, we refer to [LL07].

�

2.2. Pure passage time as phase type distribution

Hereinafter it will be useful to rearrange the states of E in the sequence
i, E \ {i, j}, j in such a way that the infinitesimal generator Q decomposes
into the following block matrices:

Q :=





qii ∗ ∗
R⊤

i S R⊤
j

∗ ∗ qjj



 , (2)

where S is a m × m-matrix containing all transition rates between the m
states in E \ {i, j} while Ri and Rj are vectors of length m that contain the
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transition rates from E \{i, j} to i and j, respectively (∗ replaces expressions
that are not relevant for us).

To compute the distribution of the pure passage time of X from i to j, we
first slightly modify X to transform the states i and j into absorbing states.
Then, the modified Markov chain, say X̃, admits as infinitesimal generator
Q̃ a matrix which decomposes into

Q̃ :=





0 0 0
R⊤

i S R⊤
j

0 0 0



 . (3)

Now, the paths of X̃ which are of interest for us are those which reach
j without return to i, starting from the direct neighbours of i. We then
describe below the dynamics of the process X̃ conditioned to be absorbed
in j in terms of its unconditioned version via a Doob h-transform. It is
an adaptation of an idea that appeared for discrete time Markov chains in
[KS76].

Proposition 2.3. Define the Markov chain X̄ on E \ {i} by

P(X̄t ∈ ·|X̄0 = l) := P(X̃t ∈ ·|X̃0 = l, X̃∞ = j).

Then its transition probabilities are given by

P(X̄t = k|X̄0 = l) =
hj(k)

hj(l)
P(X̃t = k|X̃0 = l), k, l ∈ E \ {i}, t > 0, (4)

where hj(k) = −ek S−1R⊤
j is the probability for X̃ to be absorbed in j

starting from k ∈ E \ {i}.
Thus X̄ admits as infinitesimal generator the following (m + 1) × (m + 1)-
matrix Q̄ (the last row and column concern the state j):

Q̄ :=

(

H−1
j SHj H−1

j R⊤
j

0 0

)

where Hj := −diag(S−1R⊤
j ). (5)

For a vector V , diag(V ) denotes the square matrix whose diagonal entries
are the entries of V and which vanishes elsewhere.
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Proof: The Markov property of X̃ yields

P(X̃t = k|X̃0 = l, X̃∞ = j) = P(X̃t = k|X̃0 = l, ∃s ≥ 0 : X̃t+s = j)

=
P(∃s ≥ 0 : X̃t+s = j|X̃t = k)

P(∃s ≥ 0 : X̃t+s = j|X̃0 = l)
P(X̃t = k|X̃0 = l)

=
P(∃s ≥ 0 : X̃s = j|X̃0 = k)

P(∃s′ ≥ 0 : X̃s′ = j|X̃0 = l)
P(X̃t = k|X̃0 = l).

Furthermore

hj(k) := P(∃s ≥ 0 : X̃s = j|X̃0 = k) = ek

∫ ∞

0

exp(St)dt R⊤
j

= −ekS
−1R⊤

j .

�

Now, the pure passage time for X from i to j can be interpreted as the
absorption time for X̄ starting from the direct neighbours of i and is therefore
a phase type distribution in the framework introduced by Neuts in [Neu94].

At this point the phase-type calculus allows to compute the moment
generating function of the absorption time of X̄ in j. Since the proof is
classical (see [Neu94, Ch. 2]), we refer to the given reference for details.
Recall that τ ∗

ij does not have any atom in 0, see Remark 2.1, and therefore,
as phase-type distribution, is absolutely continuous with respect to Lebesgue-
measure.

Proposition 2.4. Let X be a continuous time Markov chain on E with
infinitesimal generator given by (2). The pure passage time τ ∗

ij from a given
state i to another state j admits as moment generating function

M(u) := IE(exp(u τ ∗
ij)) = −νiH

−1
j (uId + S)−1R⊤

j , u ≤ 0,

where the matrices S, Rj and Hj are defined in (2) resp. in (5). The proba-
bility distribution νi on E \ {i, j} is given by

νi(l) :=
1

Z
qil with Z :=

∑

l∈E\{i,j}

qil.

Note that the l-th entry of the initial distribution νi is non-zero only if l
can be reached in a single transition from i.
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2.3. Time duality

We now define time duality between two states of E with respect to a
given Markov chain as a binary relation, by comparing the two pure passage
times between them.

Definition 2.5. Let i, j ∈ E. We say that i and j are in time duality with
respect to X, if

τ ∗
ij

(d)
= τ ∗

ji. (6)

We denote this property with i
TD
↔ j.

We note that time duality between two disjoint sets of states can be
defined in a completely analogous way. We treat here only the case of time
duality between single states as the computations are the same for the more
general case, except for very minor changes demanding to lump temporarily
each set into a single (absorbing) state.

2.4. An algebraic condition for time duality

Due to Proposition 2.4, a reformulation of the equality (6) characterizing
time duality is the following:

∀u ≤ 0, νiH
−1
j (uId + S)−1R⊤

j = νjH
−1
i (uId + S)−1R⊤

i . (7)

Let us now describe a particular situation.

Definition 2.6. We say that the state i has a simple neighbourhood if there
is a unique state ni ∈ E\{i, j} which is reachable from i in a single transition
and the only state in E \ {i, j} from which i can be reached.

The case in which both i and j have simple neighbourhoods is illustrated in
Figure 2.

In this particular situation, two simplifications occur in the identity (7).
First, the vectors νi and νj , introduced in Proposition 2.4, are in fact m-
dimensional unit vectors, which we denote with eni

and enj
, with zero entries

everywhere except at ni and nj , respectively. Secondly, the vectors Ri and
Rj reduce to Ri = qnii eni

and Rj = qnjj enj
. Therefore the identity (7)

becomes

∀u ≤ 0,
eni

(uId + S)−1e⊤nj

eni
S−1e⊤nj

=
enj

(uId + S)−1e⊤ni

enj
S−1e⊤ni

⇐⇒ ∀u ≤ 0,
eni

(uId + S)−1e⊤nj

enj
(uId + S)−1e⊤ni

=
eni

S−1e⊤nj

enj
S−1e⊤ni

. (8)
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E \ {i, j}

i ni nj j

Figure 2: The states i and j have simple neighbourhoods: each passage between i and j is
forced to pass through ni as well as nj .

Note that the exact value of the transition rates qnii and qnjj does not
appear in the different terms of (8). This property will be important also for
the general case of non-simple neighbourhoods. Also note that the rhs of (8)
does not need to be equal to one.

Remark 2.7. All the previous computations can be carried out for discrete
time Markov chains, with only small changes. The non-conservative infinites-
imal generator S is replaced by a sub-stochastic matrix S ′ and (Id − S ′)−1

plays the same role as (−S)−1 in the continuous case, see [DS67, DS65] for
details. We only mention the distribution of the discrete pure passage time
denoted by τ ∗

ij,d:

∀k ≥ 1, P(τ ∗
ij,d = k) = νiH

−1
j (S ′)k−1R⊤

j

with Hj := diag((Id − S ′)−1R⊤
j ) (9)

In this discrete time framework, time duality has to be interpreted as path
length equality.

�

3. Permuted Balance

It is well known that the detailed balance equations are a local character-
ization of the reversibility of a Markov chain: X is reversible if there exists
a distribution π such that

∀k, l ∈ E, πk qkl = πl qlk.

In that case, π is stationary. One can reformulate the above condition as the
matrix equation

ΠQ = Q⊤Π (10)
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where Π := diag(π) is the diagonal matrix built on π.
As we mentioned in the introduction, under some assumptions, reversibil-

ity is sufficient to guarantee time duality. Indeed, we will show in Theorem
3.5 that even a weaker form of reversibility is enough to guarantee time du-
ality. Let us introduce this new property in its local formulation.

Definition 3.1. Let X be an irreducible continuous time Markov chain on
E and let σ be a permutation of the elements of E. The process X is in
permuted balance for σ if there exists a probability distribution π which is
invariant under σ, i.e. πσ(k) = πk, k ∈ E, and such that

∀k, l ∈ E, πk qkl = πσ(l) qσ(l)σ(k) . (11)

Obviously, if the permutation σ is the identity, one recovers the detailed
balance equations.

If we associate a permutation matrix Pσ = (δkσ(l))k,l∈E to the permutation
σ, we can rewrite (11) as

PσΠQ = Q⊤PσΠ. (12)

In fact, the matrix Pσ acts by multiplication from the left as row permu-
tation with respect to σ−1 and by multiplication from the right as column
permutation with respect to σ.

To verify if permuted balance holds, is in general not straightforward and
often computationally intense. But for graphs with a simple structure the
verification is easy, as we now see.

Example 3.2. Let the Markov chain X be defined on E := {1, 2, 3, 4} by
its infinitesimal generator

Q :=









−α α 0 0
0 −β β 0
0 0 −γ γ
β 0 0 −β









, with α, β, γ > 0.

The associated transition graph is given in Figure 3.
Permuted balance holds for the transposition σ = (24). Indeed

π1 q12 = π4 q41 and π2 q23 = π3 q34
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1

2

3

4

α β

γβ

Figure 3: A Markov chain obeying permuted balance but not detailed balance.

where the (stationary) distribution π is given by

π =
1

2αγ + (α + γ)β
(γβ, αγ, αβ, αγ).

Remark that detailed balance can not hold since q12 > 0 but q21 = 0.
�

Let us analyse some meaningful properties satisfied by a Markov chain in
permuted balance.

Proposition 3.3. Let X be an irreducible continuous time Markov chain
on E in permuted balance for a permutation σ. Then

(i) the solution of (11) is its unique stationary distribution.

(ii) for all states k ∈ E

∑

l∈E\{k}

πk qkl =
∑

l∈E\{σ(k)}

πk qσ(k)l

resp.
∑

l∈E\{k}

πl qlk =
∑

l∈E\{σ(k)}

πl qlσ(k),

i.e. for each k ∈ E, k and σ(k) are indistinguishable in terms of in and
out going probability fluxes.
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(iii) for every loop (k0, k1, k2, . . . , kn, k0) (n ≥ 1) of the transition graph

qk0k1
qk1k2

. . . qknk0
= qσ(k0)σ(kn)qσ(kn)σ(kn−1) . . . qσ(k1)σ(k0), (13)

i.e. the cumulated transition rate of each loop is equal to the cumulated
transition rate of the image by σ of its reversed.

(iv) for every T ≥ 0, (σ ◦ XT−t)0≤t≤T

(d)
= (Xt)0≤t≤T ,

the Markov chain has the same law as the image by σ of its reversed.

Proof:

(i) We have for arbitrary but fixed k:

∑

l∈E

πlqlk = πk

∑

l∈E

qσ(k)σ(l) = 0

which implies the stationarity of π. The assumed irreducibility of X
ensures the uniqueness of π.

(ii) Since π is stationary it satisfies the global balance equations

∑

l∈E\{k}

πkqkl =
∑

l∈E\{k}

πlqlk. (14)

We thus gain

∑

l∈E\{k}

πkqkl
glob. bal.

=
∑

l∈E\{k}

πlqlk
π stationary

= −πkqkk

perm. bal.
= − πσ(k)qσ(k)σ(k)

π stationary
=

∑

l∈E\{σ(k)}

πσ(k)qσ(k)l

=
∑

l∈E\{σ(k)}

πkqσ(k)l.

The second statement follows directly from these computations and the
application of the global balance equation

∑

l∈E\{k}

πlqlk
gl.b.
=

∑

l∈E\{k}

πkqkl =
∑

l∈E\{σ(k)}

πkqσ(k)l
gl.b.
=

∑

l∈E\{σ(k)}

πlqlσ(k)
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(iii) Let π be in permuted balance. Then (11) implies that, for any two
consecutive states in the loop (k0, k1, . . . , kn, k0),

πk0
qk0k1

= πk1
qσ(k1)σ(k0)

πk1
qk1k2

= πk2
qσ(k2)σ(k1)

...

πknqknk0
= πk0

qσ(k0)σ(kn).

Multiplying all left hand sides and all right hand sides together and
canceling the π′

is leads to (13).

(iv) It follows from successive iterations of the permuted balance equations
that

πk0
qk1k2

. . . qkn−1kn = πknqσ(kn)σ(kn−1) . . . qσ(k2)σ(k1).

�

Remark 3.4. In [Kol36] Kolmogoroff shows how to characterize reversibility
avoiding to use the explicit form of the stationary distribution. His now well
known criterion (see for e.g. [Kel79, sec. 1.5, Th. 1.7] for a version for
time continuous chains) states that reversibility holds if and only if for every
loop (i, i1, i2, . . . , in, i) forward and backwards cumulated transition rates are
identical, i.e.

qii1qi1i2 . . . qini = qiinqinin−1
. . . qi1i.

In Proposition 3.3 (iii) we have shown that permuted balance implies
a modified loop criterion. However, the reverse assertion is no more true.
We can only assure that the permuted loop criterion (13) together with a
restrictive lumpability condition on the cycles of the permutation σ (for every
n ≥ 1 and i, j ∈ E, qij = qiσn(j) and qji = qσn(j)i ) implies permuted balance.
In that case the lumped chain is even reversible.

�

We now prove that if permuted balance holds and two states i, j have

simple neighbourhoods, i
TD
↔ j.

Theorem 3.5. Let i, j be two distinct states in E with simple neighbour-
hoods ni resp. nj . If the Markov chain X is in permuted balance for a
permutation σ which leaves ni and nj invariant, then the states i and j are

in time duality, i.e. i
TD
↔ j.
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Proof: We use the matrix form (12) to characterize permuted balance.
Then noting that Pσ and Π are always invertible, we get S = (PσΠ)−1S⊤PσΠ
(after an obvious adaptation to the dimension of S). This leads to

eni
(uId + S)−1e⊤nj

enj
(uId + S)−1e⊤ni

=
eni

(uId + (PσΠ)−1S⊤(PσΠ))−1e⊤nj

enj
(uId + S)−1e⊤ni

=
eni

(PσΠ)−1(uId + S⊤)−1(PσΠ)e⊤nj

enj
(uId + S)−1e⊤ni

=
πnj

πσ(ni)

eσ(ni)(uId + S⊤)−1e⊤
σ−1(nj)

enj
(uId + S)−1e⊤ni

=
πnj

πni

eni
(uId + S⊤)−1e⊤nj

enj
(uId + S)−1e⊤ni

numerator
=

transposed

πnj

πni

which implies (8), as the last term is independent of u.
�

Example 3.6. Let X be the Markov chain defined on E := {0, 1, 2, 3, 4, 5}
by the infinitesimal generator

Q :=

















−1 1 0 0 0 0
1 −2 1 0 0 0
0 0 −β β 0 0
0 0 0 −2 1 1
0 β 0 0 −β 0
0 0 0 1 0 −1

















.

The associated transition graph is drawn in Figure 4. It is an enlargement
of Example 3 with α = γ = 1. The stationary distribution is given by
π = 1

4β+2
(β, β, 1, β, 1, β). As in Example 3, permuted balance holds for the

transposition σ = (24). Therefore, by Theorem 3.5, the states 0 and 5 are in
time duality.

A direct comparison of the pure passage times between i = 0 and j = 5
would have been more tedious. We should first identify

R⊤
0 =









1
0
0
0









, S =









−2 1 0 0
0 −β β 0
0 0 −2 1
β 0 0 −β









, R⊤
5 =









0
0
1
0









,
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Figure 4: A Markov chain where 0 and 5 have simple neighbourhoods and are in time
duality.

and compute the inverse matrix of uId + S. Then the left hand side of
Equation (8) equals

(1, 0, 0, 0)(uId + S)−1(0, 0, 1, 0)⊤

(0, 0, 1, 0)(uId + S)−1(1, 0, 0, 0)⊤
=

β(u − β)

β(u − β)
≡ 1

for any u ≤ 0, which indeed does not depend on u.
�

4. Bottleneck and non-simple neighbourhood

4.1. Bottlenecks and transitivity of the time duality relation

Time duality is a binary relation, which is here automatically symmetric
and reflexive, but it is not immediate whether this relation is also transitive
or not. In fact, there is no answer in a general framework. However, if
the state space is decomposable into two disjoint subsets E1, E2, and, in
between, one bottleneck state y satisfying that every passage from E1 to E2

goes through y, then we obtain a representation of the pure passage time
from any i ∈ E1 to any j ∈ E2 as a sum of two independent phase-type
distributed random variables. We give here the proof only for the case where
i, j and y have simple neighbourhoods, as the more general case with non-
simple boundaries yields the same result. The situation of a bottleneck with
simple neighbourhoods is depicted in figure 5.

Note that the notion of simple neighbourhood for the bottleneck y means
in fact that it has only two direct neighbours, ny1 in E1 and ny2 in E2.
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E1 \ {i} E2 \ {j}

i ni ny1 y ny2 nj j

Figure 5: The structure of the graph forces any path from i to j through the state y and
vice versa.

Theorem 4.1. Let E = E1 ⊔ {y} ⊔ E2 where y is a bottleneck and i ∈ E1,
j ∈ E2 have simple neighbourhoods. Assume the transition graph has the
form drawn in Figure 5. Then,

i
TD
↔ y and y

TD
↔ j =⇒ i

TD
↔ j.

Proof: We further decompose the matrix S introduced in (2). Assuming
that the states are ordered in the sequence y, E1 \ {i} , E2 \ {j} we obtain

S =





qyy qyny1
eny1

qyny2
eny2

qny1ye
⊤
ny1

S1 0

qny2ye
⊤
ny2

0 S2.



 (15)

As the states i and j have simple neighbourhoods, it is enough to check if (8)
is satisfied. To compute the relevant entries of the inverse of S we use the
Banachiewicz inversion formula for block matrices, see e.g. [Gan86],(86)-(89):

(

M11 M12

M21 M22

)−1

=

(

K−1 −K−1M12M
−1
22

−M−1
22 M21K

−1 M−1
22 + M−1

22 M21K
−1M12M

−1
22

)

(16)

=

(

M−1
11 + M−1

11 M12L
−1M21M

−1
11 −M−1

11 M12L
−1

−L−1M21M
−1
11 L−1

)

(17)

with L := M22 − M21M
−1
11 M12, K := M11 − M12M

−1
22 M21.

The matrices L and K, called Schur complements, see e.g. [Zha05], have a
probabilistic interpretation, see [LR99, sec. 5.3]. To simplify the notations
we write Au := uId + A for any square matrix A (if the matrix has an index
we add the small u after a comma). We apply (16) for M11 = qyy + u. The
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quantity K is in this case a real number, thus

(Su)
−1 =





∗ ∗

∗ T−1 + 1
K

T−1

(

qny1ye
⊤
ny1

qny2ye
⊤
ny2

)

(qyny1
eny1

, qyny2
eny2

)T−1





where

T =

(

S1,u 0
0 S2,u

)

.

The ∗ replace expressions that are not relevant for us.

We now compute the lhs of (8):

eni
S−1

u e⊤nj

enj
S−1

u e⊤ni

=
qny1yeni

S−1
1,ue

⊤
ny1

qyny2
eny2

S−1
2,ue

⊤
nj

qny2yenj
S−1

2,ue
⊤
ny2

qyny1
eny1

S−1
1,ue

⊤
ni

=
qny1yeni

S−1
1,ue

⊤
ny1

qyny1
eny1

S−1
1,ue

⊤
ni

·
qyny2

eny2
S−1

2,ue
⊤
nj

qny2yenj
S−1

2,ue
⊤
ny2

and conclude that the moment generating function of the pure passage time
τ ∗
ij is indeed the product of two moment generating functions.

�

4.2. The case of non-simple neighbourhoods

Simple neighbourhoods simplify the comparison of paths connecting i and
j, but this assumption is quite restrictive. One can circumvent the difficulties
arising when the neighbourhoods are not simple by introducing new states to
mimic the simple neighbourhood case as we will discuss now. Note that this
extension does not necessarily leave permuted or detailed balance invariant,
see Remark 4.3 for an explanation.

Define an enlargement of the state space E by E ′ := {i′} ∪ E ∪ {j′} and
construct on it the following modification and extension of Q:

Q′ =





−1 ei 0
e⊤i S ′ e⊤j
0 ej −1



 with S ′ :=





q′ii RiS 0
R⊤

i S R⊤
j

0 RjS q′jj



 . (18)
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The matrix S ′ is equal to Q except for a modification of the input vectors
from i to E \ {i, j} resp. from j to E \ {i, j}. They are now called RiS and
RjS and are given by

RiS := νiH
−1
j , RjS := νjH

−1
i

with the same notations as in Proposition 2.4. (The (i, i) and (j, j) entries
of Q are also modified in order to lead to a proper infinitesimal generator Q′

on E ′. They become q′ii and q′jj.) The associated extended transition graph
is represented in Figure 6.

E \ {i, j}i′ i j j′

1

1 1

1

RiS

Ri RjS

Rj

Figure 6: Non-simple neighbourhoods of i and j in E reformulated in the flavour of simple
ones by enlargement of the state space.

Theorem 4.2. Suppose that X is a continuous time Markov chain on E
with irreducible infinitesimal generator and consider i and j, two states of E
with non-simple neighbourhoods. After enlarging the state space by i′ and
j′ as indicated in Figure 6, the following holds:

i′
TD
↔ j′ =⇒ i

TD
↔ j.

Proof: The states i′ and j′ have simple neighbourhoods. Thus, since time
duality holds between them, by (8)

∀u ≤ 0,
ei(uId + S ′)−1e⊤j
ej(uId + S ′)−1e⊤i

=
ei(S

′)−1e⊤j

ej(S ′)−1e⊤i
. (19)

Again, we use the notation Au = uId + A for a square matrix A. We now
compute the upper right (i, j)-th entry of (S ′

u)
−1 using (16) and then by (17)

17



we obtain:

−
1

K
(RiS, qij)

(

Su R⊤
j

RjS s

)−1

= −
1

LK
(RiS, 0)

(

S−1
u + S−1

u R⊤
j RjSS−1

u −S−1
u R⊤

j

RjSS−1
u 1

)

=
1

LK
(∗, RiSS−1

u R⊤
j )

with the scalar coefficients

K = q′ii + u − (RiS, qij)

(

Su R⊤
j

RjS u

)−1 (

R⊤
i

qji

)

and L = u − RjSS−1
u R⊤

j .

Now the (i, j)-th entry of (S ′
u)

−1 is 1
LK

RiSS−1
u R⊤

j . In a similar way, the
(j, i)-th entry is equal to 1

LK
RjSS−1

u R⊤
i .

Thus the identity (19) now reads (the scalar numbers L and K cancel
out):

RiS(uId + S)−1R⊤
j

RjS(uId + S)−1R⊤
i

=
RiSS−1R⊤

j

RjSS−1R⊤
i

=
νiH

−1
j Hj1

⊤

νjH
−1
i Hi1⊤

= 1, (20)

which implies RiS(uId + S)−1R⊤
j = RjS(uId + S)−1R⊤

i . This is equivalent to
(7). Therefore time duality holds between i and j.

�

Remark 4.3. One could think that the extension of the state space by i′ and
j′ has no influence on an existing permuted balance with respect to a permu-
tation since, by construction of the extension, there are no additional loops,
except the trivial loops (i, i′, i) and (j, j′, j), that contain i′ or j′. Neverthe-
less the necessary introduction of the new vectors RiS and RjS destroys this
false intuition. Indeed, it is possible to construct an example of reversible
chain without time duality as in Figure 7. In particular, the constructed
extension is not reversible anymore, and even not permuted balanced.

�

We give an example to illustrate Theorem 4.2.

Example 4.4. Let E := {1, 2, 3, 4} and X the Markov chain on E with
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1

2

3

4

2
2

1
1

1
1

1
1

1′ 1

2

3

4 4′

2
2

1
3
4

1
1

1

2
3

1

11

1

Figure 7: To check time duality between 1 and 4 in the left model, we extend the model
according to Theorem 4.2. Although the initial model is reversible, the modification (right)
is not.

infinitesimal generator

Q :=









−3 2 1 0
1 −2 0 1
1 0 −2 1
0 2 1 −3









Its transition graph is given in the top of Figure 8. It contains a unique non
trivial loop, with length 4, equal to (1,2,4,3,1). The cumulated transition
rate of this loop is equal to q12q24q43q31 = 2. The cumulated transition
rate of its reversed q13q34q42q21 takes also the value 2. Therefore X satisfies
Kolmogoroff’s criterion and is reversible. However, we may not use Corollary
3.5 to conclude time duality between 1 and 4, since the neighbourhoods of 1
and 4 are not simple.

We therefore need to extend the state space E. Define E ′ := {1′}∪E∪{4′}
and construct on it an extended modified Markov chain as described above,
see Figure 6. Here, we compute

R1S = ν1H
−1
4 =

1

3
(2, 1)

(

2 0
0 2

)

=

(

4

3
,
2

3

)

= R4S

and thus

S ′ =









∗ 4/3 2/3 0
1 −2 0 1
1 0 −2 1
0 4/3 2/3 ∗









.
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1

2

3

4

2

1

1

2

1

11

1

1′ 1

2

3

4 4′
1

1

4/3

1

1

4/3

1

2/31

2/3

1

1

Figure 8: The transition graph of the example (top) and its extended version (bottom).

We get for the new Markov chain the transition graph drawn at the bottom
of Figure 8. It is reversible too, but the cumulated transition rate of the loop
(1, 2, 4, 3, 1) is now equal to 8/9. By Corollary 3.5, we conclude that time
duality holds between 1′ and 4′. Finally, Theorem 4.2 implies time duality
between the states 1 and 4.

�

5. Discussion

In this article we introduce the notion of time duality, which can be
useful in several frameworks, e.g. to analyse dynamics of molecular motors,
see [KlV13],[LW07],[VLL08]. We present an algebraic criterion that allows
to check time duality between two arbitrary states of a finite state Markov
chain. It is well adapted to be treated by computers as it contains only
matrix multiplication and inversion, which can be done efficiently with any
modern computer algebra system, even if the state space is large. We show in
Theorem 3.5 that permuted and thus detailed balance implies time duality,
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if the neighbourhoods of the states are simple. For the more complex case
of non-simple boundary we provide a simple construction to “reduce” the
general case to the simple boundary case.

However, time duality is not completely exploited by permuted balance,
as the application in [VLL08] shows. The model introduced there is neither
in detailed nor in permuted balance, but still shows time duality. Following
Proposition 3.3, iv, we can understand time duality under permuted balance
and simple neighbourhood on the path level, since we assign to every path its
unique time reversed and possibly permuted counterpart. But in the general
case this no longer holds true. To fully clarify this issue is beyond the scope
of this paper and is left for future research.
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