

Hydrodynamic Limits in Particle Systems

Julian Kern
julian.kern@ens-lyon.fr

25th of April, 2022

Disclaimer

- not rigorous at all!
- mostly heuristics
- references at the end

Disclaimer

- not rigorous at all!
- mostly heuristics
- references at the end

Disclaimer

- not rigorous at all!
- mostly heuristics
- references at the end

Disclaimer

- not rigorous at all!
- mostly heuristics
- references at the end
- slides for experts...

1 The Symmetric Simple Exclusion Process

2 What Are Hydrodynamic Limits

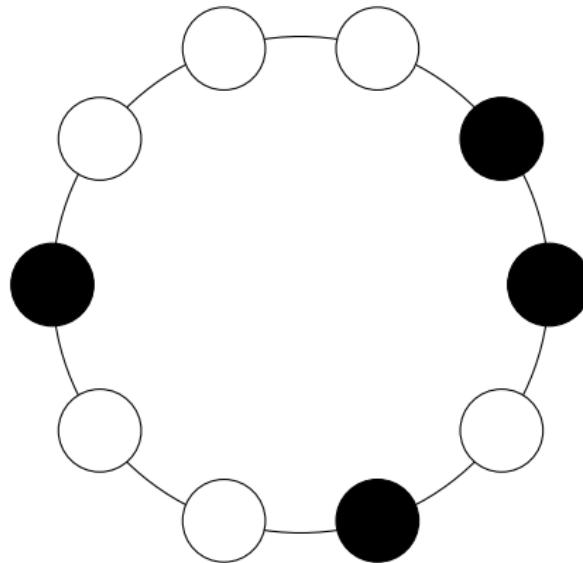
3 Extending the Model

1 The Symmetric Simple Exclusion Process

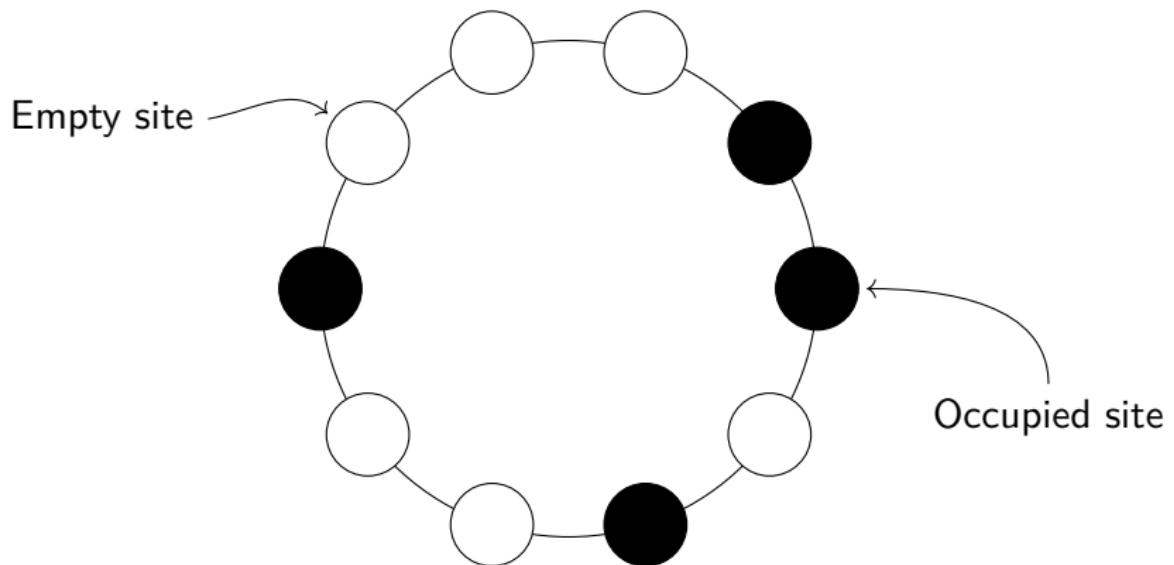
2 What Are Hydrodynamic Limits

3 Extending the Model

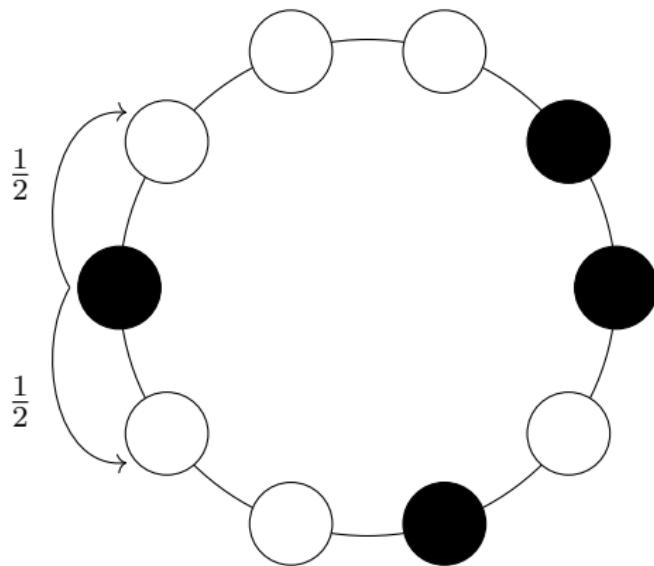
The SSEP



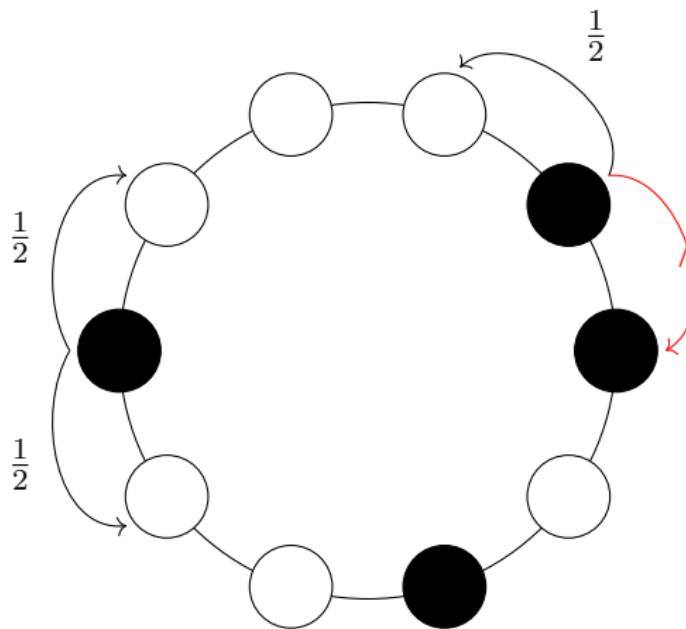
The SSEP



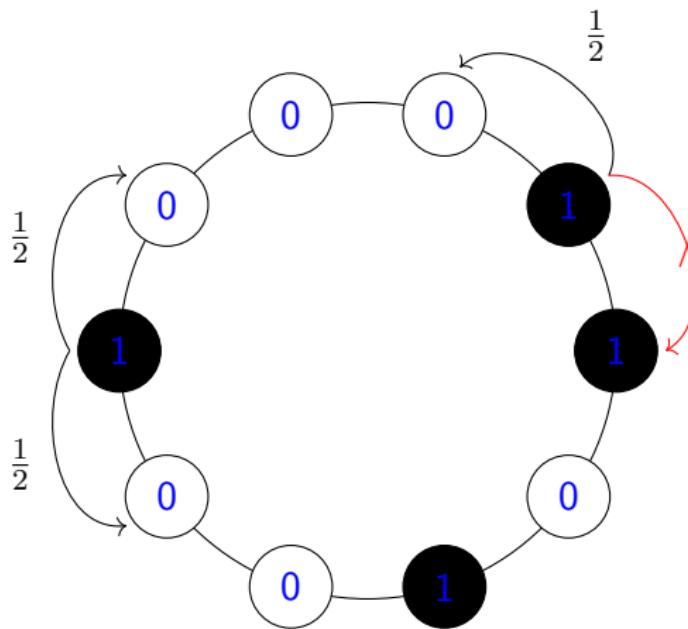
The SSEP



The SSEP



The SSEP



SSEP: Notation

- on torus $\mathbb{T}^N := \mathbb{Z}/N\mathbb{Z}$
- state space: **configurations** $\Omega^N := \{0, 1\}^{\mathbb{T}^N}$
- configuration $\eta \in \Omega^N$:

$\eta_x = 0 \Leftrightarrow$ site x is empty

$\eta_x = 1 \Leftrightarrow$ site x is occupied

- write $\eta^{x,y}$ for the configuration where sites x and y are swapped:

$$\eta_z^{x,y} = \begin{cases} \eta_y & \text{if } z = x \\ \eta_x & \text{if } z = y \\ \eta_z & \text{otherwise} \end{cases}$$

SSEP: Notation

- on torus $\mathbb{T}^N := \mathbb{Z}/N\mathbb{Z}$
- state space: **configurations** $\Omega^N := \{0, 1\}^{\mathbb{T}^N}$
- configuration $\eta \in \Omega^N$:
 - $\eta_x = 0 \Leftrightarrow$ site x is empty
 - $\eta_x = 1 \Leftrightarrow$ site x is occupied

- write $\eta^{x,y}$ for the configuration where sites x and y are swapped:

$$\eta_z^{x,y} = \begin{cases} \eta_y & \text{if } z = x \\ \eta_x & \text{if } z = y \\ \eta_z & \text{otherwise} \end{cases}$$

SSEP: Notation

- on torus $\mathbb{T}^N := \mathbb{Z}/N\mathbb{Z}$
- state space: **configurations** $\Omega^N := \{0, 1\}^{\mathbb{T}^N}$
- configuration $\eta \in \Omega^N$:
 - $\eta_x = 0 \Leftrightarrow$ site x is empty
 - $\eta_x = 1 \Leftrightarrow$ site x is occupied

- write $\eta^{x,y}$ for the configuration where sites x and y are swapped:

$$\eta_z^{x,y} = \begin{cases} \eta_y & \text{if } z = x \\ \eta_x & \text{if } z = y \\ \eta_z & \text{otherwise} \end{cases}$$

SSEP: Notation

- on torus $\mathbb{T}^N := \mathbb{Z}/N\mathbb{Z}$
- state space: **configurations** $\Omega^N := \{0, 1\}^{\mathbb{T}^N}$
- configuration $\eta \in \Omega^N$:
 - $\eta_x = 0 \Leftrightarrow$ site x is empty
 - $\eta_x = 1 \Leftrightarrow$ site x is occupied

- write $\eta^{x,y}$ for the configuration where sites x and y are swapped:

$$\eta_z^{x,y} = \begin{cases} \eta_y & \text{if } z = x \\ \eta_x & \text{if } z = y \\ \eta_z & \text{otherwise} \end{cases}$$

SSEP: Notation

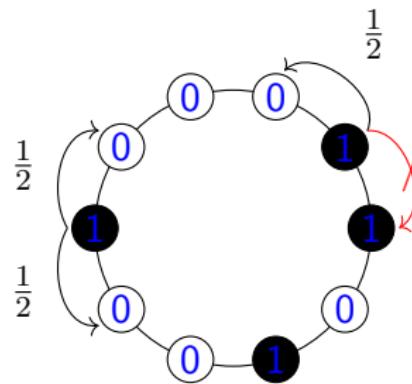
- on torus $\mathbb{T}^N := \mathbb{Z}/N\mathbb{Z}$
- state space: **configurations** $\Omega^N := \{0, 1\}^{\mathbb{T}^N}$
- configuration $\eta \in \Omega^N$:

$$\begin{aligned}\eta_x = 0 &\Leftrightarrow \text{site } x \text{ is empty} \\ \eta_x = 1 &\Leftrightarrow \text{site } x \text{ is occupied}\end{aligned}$$

- write $\eta^{x,y}$ for the configuration where sites x and y are swapped:

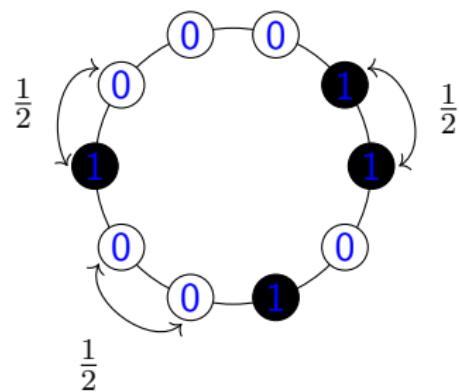
$$\eta_z^{x,y} = \begin{cases} \eta_y & \text{if } z = x \\ \eta_x & \text{if } z = y \\ \eta_z & \text{otherwise} \end{cases}$$

SSEP: The generator



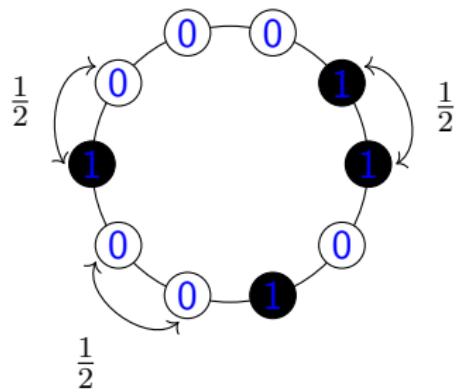
$$\mathcal{L}^N f(\eta) = \frac{1}{2} \sum_{x=1}^N (f(\eta^{x,x+1}) - f(\eta))$$

SSEP: The generator



$$\mathcal{L}^N f(\eta) = \frac{1}{2} \sum_{x=1}^N (f(\eta^{x,x+1}) - f(\eta))$$

SSEP: The generator



$$\mathcal{L}^N f(\eta) = \frac{1}{2} \sum_{x=1}^N (f(\eta^{x,x+1}) - f(\eta))$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)].$
- It holds:

$$\partial_t \rho_t^N\left(\frac{x}{N}\right) = \mathbb{E} [\mathcal{L}^N \eta_t^N(x)]$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)]$.
- It holds:

$$\partial_t \rho_t^N\left(\frac{x}{N}\right) = \mathbb{E} [\mathcal{L}^N \eta_t^N(x)]$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)]$.
- It holds:

$$\begin{aligned}\partial_t \rho_t^N\left(\frac{x}{N}\right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x+1) + \eta_t^N(x-1) - 2\eta_t^N(x)]\end{aligned}$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)]$.
- It holds:

$$\begin{aligned}\partial_t \rho_t^N\left(\frac{x}{N}\right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x+1) + \eta_t^N(x-1) - 2\eta_t^N(x)] \\ &= \frac{1}{2} \left(\rho_t^N\left(\frac{x+1}{N}\right) + \rho_t^N\left(\frac{x-1}{N}\right) - 2\rho_t^N\left(\frac{x}{N}\right) \right)\end{aligned}$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)]$.
- It holds:

$$\begin{aligned}\partial_t \rho_t^N\left(\frac{x}{N}\right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x+1) + \eta_t^N(x-1) - 2\eta_t^N(x)] \\ &= \frac{1}{2} \left(\rho_t^N\left(\frac{x+1}{N}\right) + \rho_t^N\left(\frac{x-1}{N}\right) - 2\rho_t^N\left(\frac{x}{N}\right) \right) \\ &= \frac{1}{2N^2} \cdot \Delta^N \rho_t^N\left(\frac{x}{N}\right)\end{aligned}$$

SSEP: Mean behaviour

- Set $\rho_t^N\left(\frac{x}{N}\right) := \mathbb{E}[\eta_t^N(x)]$.
- It holds:

$$\begin{aligned}\partial_t \rho_t^N\left(\frac{x}{N}\right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x+1) + \eta_t^N(x-1) - 2\eta_t^N(x)] \\ &= \frac{1}{2} \left(\rho_t^N\left(\frac{x+1}{N}\right) + \rho_t^N\left(\frac{x-1}{N}\right) - 2\rho_t^N\left(\frac{x}{N}\right) \right) \\ &= \frac{1}{2N^2} \cdot \Delta^N \rho_t^N\left(\frac{x}{N}\right)\end{aligned}$$

SSEP: Mean behaviour

$$N^2 \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_t^N \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{N^2 t}^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_{N^2 t}^N \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = \frac{1}{2} \cdot \Delta \rho$$

SSEP: Mean behaviour

$$N^2 \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_t^N \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{N^2 t}^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_{N^2 t}^N \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = \frac{1}{2} \cdot \Delta \rho$$

SSEP: Mean behaviour

$$N^2 \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_t^N \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{N^2 t}^N \left(\frac{x}{N} \right) = \frac{1}{2} \cdot \Delta^N \rho_{N^2 t}^N \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = \frac{1}{2} \cdot \Delta \rho$$

1 The Symmetric Simple Exclusion Process

2 What Are Hydrodynamic Limits

3 Extending the Model

Two descriptions of the world

A microscopic description

- atoms
- molecules
- cars
- microscopic particles

A macroscopic description

- heat diffusion
(heat equation)
- fluid dynamics
(Navier-Stokes)
- traffic flow
(Burger's equation)
- some PDE

Two descriptions of the world

A microscopic description

- atoms
- molecules
- cars
- microscopic particles

A macroscopic description

- heat diffusion
(heat equation)
- fluid dynamics
(Navier-Stokes)
- traffic flow
(Burger's equation)
- some PDE

Two descriptions of the world

A microscopic description

- atoms
- molecules
- cars
- microscopic particles

A macroscopic description

- heat diffusion
(heat equation)
- fluid dynamics
(Navier-Stokes)
- traffic flow
(Burger's equation)
- some PDE

Two descriptions of the world

A microscopic description

- atoms
- molecules
- cars
- microscopic particles

A macroscopic description

- heat diffusion
(heat equation)
- fluid dynamics
(Navier-Stokes)
- traffic flow
(Burger's equation)
- some PDE

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit:** behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit:** behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit:** behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit:** behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit:** behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

From microscopic to macroscopic

- zoom out: $x \rightsquigarrow \frac{x}{N}$
- keep the global density of particles fixed! $\rightsquigarrow \approx N$ particles
- accelerate time by $\Theta(N)$
- take $N \rightarrow +\infty$

\rightsquigarrow **Hydrodynamic Limit**: behaviour as $N \rightarrow +\infty$ of

$$\rho_t^N \left(\frac{x}{N} \right) = \text{“mean density”}$$

Instead of the mean density, use the **empirical distribution**:

$$\pi^N(\eta) = \frac{1}{N} \sum_{x=1}^N \eta_x \delta_{\frac{x}{N}}$$

Models density:

$$\langle \pi^N(\eta), G \rangle = \frac{1}{N} \sum_{x=1}^N G\left(\frac{x}{N}\right) \eta_x \approx \int G(u) \rho^N(u) \, du$$

Instead of the mean density, use the **empirical distribution**:

$$\pi^N(\eta) = \frac{1}{N} \sum_{x=1}^N \eta_x \delta_{\frac{x}{N}}$$

Models density:

$$\langle \pi^N(\eta), G \rangle = \frac{1}{N} \sum_{x=1}^N G\left(\frac{x}{N}\right) \eta_x \approx \int G(u) \rho^N(u) \, du$$

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium**!

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium**!

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium**!

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium!**

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium!**

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

What should we expect?

LLN: Inside a **small macroscopic** ball around $\frac{x}{N}$ are a lot of particles!

- ~ averaging effect
- ~ deterministic limit

Mixing: After mixing time, process is at **equilibrium!**

- ~ at time scale $\Theta(N)$: **locally at equilibrium**
- ~ smooth limit

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes: trivial: too small \rightsquigarrow no evolution

hydrodynamic: exactly right \rightsquigarrow local equilibrium

hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

The role of time scale $\Theta(N)$

Three regimes:

- trivial: too small \rightsquigarrow no evolution
- hydrodynamic: exactly right \rightsquigarrow local equilibrium
- hydrostatic: too big \rightsquigarrow global equilibrium

LLN \leftrightarrow Mixing:

- Mixing happens in microscopic box of size $\frac{\varepsilon \Theta(N)}{N}$
 \rightsquigarrow That means that

diffusive $\Theta(N) = N^2 \rightsquigarrow$ good
hyperbolic $\Theta(N) = N \rightsquigarrow$ bad

1 The Symmetric Simple Exclusion Process

2 What Are Hydrodynamic Limits

3 Extending the Model

Possible directions

- extend to \mathbb{Z} (infinite volume)
- add reservoirs (boundary problem)
- add asymmetry (subdiffusive scale)
- add long range interaction (fractional PDE)
- mix the above!

Possible directions

- extend to \mathbb{Z} (infinite volume)
- add reservoirs (boundary problem)
- add asymmetry (subdiffusive scale)
- add long range interaction (fractional PDE)
- mix the above!

Possible directions

- extend to \mathbb{Z} (infinite volume)
- add reservoirs (boundary problem)
- add asymmetry (subdiffusive scale)
- add long range interaction (fractional PDE)
- mix the above!

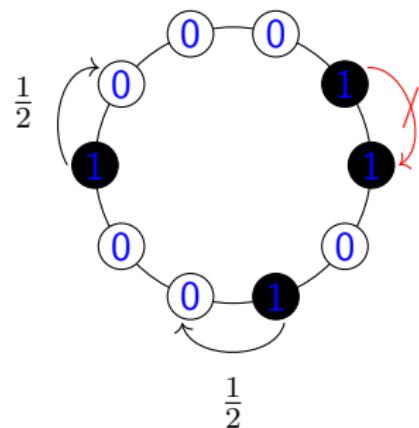
Possible directions

- extend to \mathbb{Z} (infinite volume)
- add reservoirs (boundary problem)
- add asymmetry (subdiffusive scale)
- add long range interaction (fractional PDE)
- mix the above!

Possible directions

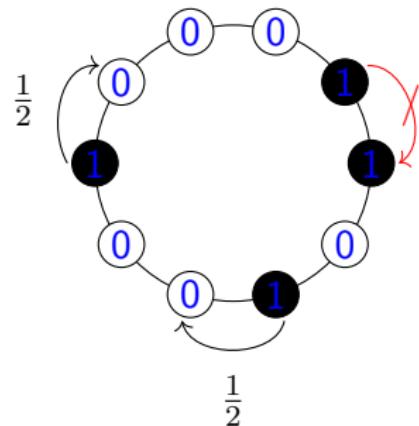
- extend to \mathbb{Z} (infinite volume)
- add reservoirs (boundary problem)
- add asymmetry (subdiffusive scale)
- add long range interaction (fractional PDE)
- mix the above!

TASEP: The generator



$$\mathcal{L}^N f(\eta) = \frac{1}{2} \sum_{x=1}^N \eta_x (1 - \eta_{x+1}) (f(\eta^{x,x+1}) - f(\eta))$$

TASEP: The generator



$$\mathcal{L}^N f(\eta) = \frac{1}{2} \sum_{x=1}^N \eta_x (1 - \eta_{x+1}) (f(\eta^{x,x+1}) - f(\eta))$$

TASEP: The hydrodynamic equation

$$\partial_t \rho_t^N \left(\frac{x}{N} \right) = \mathbb{E} \left[\mathcal{L}^N \eta_t^N(x) \right]$$

TASEP: The hydrodynamic equation

$$\begin{aligned}\partial_t \rho_t^N \left(\frac{x}{N} \right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x)(1 - \eta_t^N(x-1)) - \eta_t^N(x)(1 - \eta_t^N(x+1))]\end{aligned}$$

TASEP: The hydrodynamic equation

$$\begin{aligned}\partial_t \rho_t^N \left(\frac{x}{N} \right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x)(1 - \eta_t^N(x-1)) - \eta_t^N(x)(1 - \eta_t^N(x+1))] \\ &\stackrel{!}{=} \frac{1}{2} \left(\rho_t^N \left(\frac{x-1}{N} \right) (1 - \rho_t^N \left(\frac{x}{N} \right)) - \rho_t^N \left(\frac{x}{N} \right) (1 - \rho_t^N \left(\frac{x+1}{N} \right)) \right)\end{aligned}$$

TASEP: The hydrodynamic equation

$$\begin{aligned}\partial_t \rho_t^N \left(\frac{x}{N} \right) &= \mathbb{E} [\mathcal{L}^N \eta_t^N(x)] \\ &= \frac{1}{2} \mathbb{E} [\eta_t^N(x)(1 - \eta_t^N(x-1)) - \eta_t^N(x)(1 - \eta_t^N(x+1))] \\ &\stackrel{!}{=} \frac{1}{2} \left(\rho_t^N \left(\frac{x-1}{N} \right) (1 - \rho_t^N \left(\frac{x}{N} \right)) - \rho_t^N \left(\frac{x}{N} \right) (1 - \rho_t^N \left(\frac{x+1}{N} \right)) \right) \\ &= -\frac{1}{2N} \cdot \nabla^N (\rho_t^N(1 - \rho_t^N)) \left(\frac{x}{N} \right)\end{aligned}$$

TASEP: The hydrodynamic equation

$$\textcolor{red}{N} \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_t^N (1 - \rho_t^N) \right) \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{Nt}^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_{Nt}^N (1 - \rho_{Nt}^N) \right) \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = -\frac{1}{2} \cdot (\rho_t (1 - \rho_t))'$$

TASEP: The hydrodynamic equation

$$\textcolor{red}{N} \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_t^N (1 - \rho_t^N) \right) \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{Nt}^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_{Nt}^N (1 - \rho_{Nt}^N) \right) \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = -\frac{1}{2} \cdot (\rho_t (1 - \rho_t))'$$

TASEP: The hydrodynamic equation

$$\textcolor{red}{N} \cdot \partial_t \rho_t^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_t^N (1 - \rho_t^N) \right) \left(\frac{x}{N} \right)$$

⇓

$$\partial_t \rho_{Nt}^N \left(\frac{x}{N} \right) = -\frac{1}{2} \cdot \nabla^N \left(\rho_{Nt}^N (1 - \rho_{Nt}^N) \right) \left(\frac{x}{N} \right)$$

⇓ $N \rightarrow +\infty$

$$\partial_t \rho = -\frac{1}{2} \cdot (\rho_t (1 - \rho_t))'$$

TASEP: Difficulties

- We need something like

$$\mathbb{E}[\eta_x \eta_{x+1}] = \mathbb{E}[\eta_x] \cdot \mathbb{E}[\eta_{x+1}]$$

~~> Replacement Lemma:

$$\eta_x \eta_{x+1} \approx \overleftarrow{\eta}_x^\ell \cdot \overrightarrow{\eta}_{x+1}^\ell$$

- Problem: **hyperbolic scaling** $\Theta(N) = N$
- ~~> can't get to macroscopic boxes (easily)!

TASEP: Difficulties

- We need something like

$$\mathbb{E}[\eta_x \eta_{x+1}] = \mathbb{E}[\eta_x] \cdot \mathbb{E}[\eta_{x+1}]$$

~~> **Replacement Lemma:**

$$\eta_x \eta_{x+1} \approx \overleftarrow{\eta}_x^\ell \cdot \overrightarrow{\eta}_{x+1}^\ell$$

- Problem: **hyperbolic scaling** $\Theta(N) = N$
- ~~> can't get to macroscopic boxes (easily)!

TASEP: Difficulties

- We need something like

$$\mathbb{E}[\eta_x \eta_{x+1}] = \mathbb{E}[\eta_x] \cdot \mathbb{E}[\eta_{x+1}]$$

~~> **Replacement Lemma:**

$$\eta_x \eta_{x+1} \approx \overleftarrow{\eta}_x^\ell \cdot \overrightarrow{\eta}_{x+1}^\ell$$

- Problem: **hyperbolic scaling** $\Theta(N) = N$
- ~~> can't get to macroscopic boxes (easily)!

TASEP: Difficulties

Burger's equation is **non linear**

- ~~> need **entropy condition**
 - ~~> difficult to show microscopically
- ~~> need to work with **Young measures**
 - ~~> more difficult to show uniqueness

TASEP: Difficulties

Burger's equation is **non linear**

- ~~> need **entropy condition**
 - ~~> difficult to show microscopically
- ~~> need to work with **Young measures**
 - ~~> more difficult to show uniqueness

TASEP: Difficulties

Burger's equation is **non linear**

- ~~> need **entropy condition**
 - ~~> difficult to show microscopically
- ~~> need to work with **Young measures**
 - ~~> more difficult to show uniqueness

TASEP: Difficulties

Burger's equation is **non linear**

- ~~> need **entropy condition**
 - ~~> difficult to show microscopically
- ~~> need to work with **Young measures**
 - ~~> more difficult to show uniqueness

TASEP: Difficulties

Burger's equation is **non linear**

- ~~> need **entropy condition**
 - ~~> difficult to show microscopically
- ~~> need to work with **Young measures**
 - ~~> more difficult to show uniqueness

References I

Claude Kipnis and Claudio Landim. *Scaling limits of interacting particle systems*. Grundlehren der mathematischen Wissenschaften. Springer, 1999.

Thomas M. Liggett. *Interacting Particle System*. 1st ed. Vol. 276. Classics in Mathematics. Springer, Berlin, Heidelberg, 1985.

Sunder Sethuraman and Doron Shahar.
“Hydrodynamic limits for long-range asymmetric interacting particle systems”. In: *Electronic Journal of Probability* 23.none (2018), pp. 1–54. DOI: 10.1214/18-EJP237. URL: <https://doi.org/10.1214/18-EJP237>.

References II

Lu Xu. *Hydrodynamic limit for asymmetric simple exclusion with accelerated boundaries*. 2021. arXiv: 2108.09345 [math.PR].

Lu Xu. *Hydrodynamics for one-dimensional ASEP in contact with a class of reservoirs*. 2022. DOI: 10.48550/ARXIV.2203.15091. URL: <https://arxiv.org/abs/2203.15091>.