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SSEP: Notation

on torus TN := Z/NZ

state space: configurations ΩN := {0, 1}TN

configuration η ∈ ΩN :

ηx = 0 ⇔ site x is empty
ηx = 1 ⇔ site x is occupied

write ηx,y for the configuration where sites x and y are
swapped:

ηx,y
z =


ηy if z = x
ηx if z = y
ηz otherwise
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SSEP: The generator

1
2

1
2

1
2

/1
2

1
2

1
2

00
0

0
0

0

1

1

1

1

LN f (η) = 1
2

N∑
x=1

(
f (ηx,x+1)− f (η)

)
Julian Kern Hydrodynamic Limits



8/26

The Symmetric Simple Exclusion Process
What Are Hydrodynamic Limits

Extending the Model
References

SSEP: The generator

1
2

1
2

1
2

/1
2

1
2

1
2

00
0

0
0

0

1

1

1

1

LN f (η) = 1
2

N∑
x=1

(
f (ηx,x+1)− f (η)

)
Julian Kern Hydrodynamic Limits



8/26

The Symmetric Simple Exclusion Process
What Are Hydrodynamic Limits

Extending the Model
References

SSEP: The generator

1
2

1
2

1
2

/1
2

1
2

1
2

00
0

0
0

0

1

1

1

1

LN f (η) = 1
2

N∑
x=1

(
f (ηx,x+1)− f (η)

)
Julian Kern Hydrodynamic Limits



9/26

The Symmetric Simple Exclusion Process
What Are Hydrodynamic Limits

Extending the Model
References

SSEP: Mean behaviour

Set ρN
t
( x

N
)
:= E[ηN

t (x)].
It holds:

∂tρ
N
t

( x
N

)
= E

[
LNηN

t (x)
]
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Two descriptions of the world

A microscopic description A macroscopic description

atoms

molecules

cars

microscopic particles

heat diffusion
(heat equation)
fluid dynamics
(Navier-Stokes)
traffic flow
(Burger’s equation)
some PDE
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From microscopic to macroscopic

zoom out: x  x
N

keep the global density of particles fixed!  ≈ N particles

accelerate time by Θ(N )

take N → +∞

 Hydrodynamic Limit: behaviour as N → +∞ of

ρN
t

( x
N

)
= “mean density”
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Instead of the mean density, use the empirical distribution:

πN (η) =
1
N

N∑
x=1

ηxδ x
N

Models density:

〈πN (η),G〉 = 1
N

N∑
x=1

G
( x

N

)
ηx ≈

∫
G(u)ρN (u) du
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What should we expect?

LLN: Inside a small macroscopic ball around x
N are a lot

of particles!
 averaging effect
 deterministic limit

Mixing: After mixing time, process is at equilibrium!
 at time scale Θ(N ): locally at equilibrium
 smooth limit
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The role of time scale Θ(N )

Three regimes: trivial: too small  no evolution
hydrodynamic: exactly right  local equilibrium

hydrostatic: too big  global equilibrium

LLN ↔ Mixing:
Mixing happens in microscopic box of size εΘ(N)

N
 That means that

diffusive Θ(N ) = N 2  good
hyperbolic Θ(N ) = N  bad
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Possbile directions

extend to Z (infinite volume)

add reservoirs (boundary problem)

add asymmetry (subdiffusive scale)

add long range interaction (fractional PDE)

mix the above!
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TASEP: The hydrodynamic equation

∂tρ
N
t

( x
N

)
= E

[
LNηN

t (x)
]
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TASEP: Difficulties

We need something like

E[ηxηx+1] = E[ηx ] · E[ηx+1]

 Replacement Lemma:

ηxηx+1 ≈ ←−η `
x · −→η `

x+1

Problem: hyperbolic scaling Θ(N ) = N
 can’t get to macroscopic boxes (easily)!
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TASEP: Difficulties

Burger’s equation is non linear

 need entropy condition
 difficult to show microscopically

 need to work with Young measures
 more difficult to show uniqueness
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