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The Symmetric Simple Exclusion Process

SSEP: Notation

e on torus TV := Z/NZ
o state space: configurations OV := {0,1}T"

o configuration n € QV:

Ny, =0 <& site x is empty
Ny =1 < site x is occupied

o write ™Y for the configuration where sites x and y are
swapped:
ny ifz=uzx
nyY = Ny ifz=y
1, otherwise
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SSEP: The generator

N 1 al :va:+1
£Vfn) =5 (£ f()
=1
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SSEP: Mean behaviour

o Set p}' (%) = Eln}(x)].
@ It holds:

ol () = E [£n (@)

= %E [ (z + 1) + 0 (z = 1) — 20" ()]
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The Symmetric Simple Exclusion Process

SSEP: Mean behaviour

o Set pi’ (&) = E[n}(2)].
@ It holds:
ol () =E [0} (@)]

E
= SB[ 4 1) 0l (2~ 1) — 29 ()]
1
=3

ot (57) o (57) =2 (7))
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The Symmetric Simple Exclusion Process

SSEP: Mean behaviour

o Set ) (%) == Eln (x)].
@ It holds:

dip (%) =E [£Vn) (2))
_ %E (¥ (2 +1) + 0¥ (2 — 1) — 20 ()]
() o () ()
N

- g ()
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The Symmetric Simple Exclusion Process

SSEP: Mean behaviour

o Set ) (4) == Eln (2)).

@ It holds:
ol (5) =E[£Vnl (@)
= B [ 4 1) 0l 2~ 1) — 20 ()]
= (o () (57) -2 ()

o 1 N N
—oNz AP (N)
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What Are Hydrodynamic Limits

From microscopic to macroscopic

@ zoom out: T ~~ %

@ keep the global density of particles fixed! ~~ = N particles

@ accelerate time by O(N)

@ take N — +oo

~ Hydrodynamic Limit: behaviour as N — +oo of

PN (%) = “mean density”
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Instead of the mean density, use the empirical distribution:

1 N
7TN(77) = N Z 10 :
=1

2ls
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Instead of the mean density, use the empirical distribution:

1 N
N _
™ (U)—NZ%fS

—
2ls
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What Are Hydrodynamic Limits

What should we expect?

LLN: Inside a small macroscopic ball around & are a lot
of particles!

~ averaging effect
~ deterministic limit

Mixing: After mixing time, process is at equilibrium!

~ at time scale ©(N): locally at equilibrium
~+ smooth limit
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The role of time scale O(N)

Three regimes: trivial: too small ~» no evolution
hydrodynamic: exactly right ~~ local equilibrium
hydrostatic: too big ~» global equilibrium

LLN « Mixing:
€O(N)

@ Mixing happens in microscopic box of size =
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What Are Hydrodynamic Limits

The role of time scale O(N)

Three regimes: trivial: too small ~» no evolution
hydrodynamic: exactly right ~~ local equilibrium
hydrostatic: too big ~» global equilibrium

LLN « Mixing:
.. . . . .__gO(N)
@ Mixing happens in microscopic box of size =
~~ That means that

diffusive O(N) = N? ~~ good
hyperbolic O(N) =N~ bad
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Possbile directions

extend to Z (infinite volume)

add reservoirs (boundary problem)

add asymmetry (subdiffusive scale)

(]

add long range interaction (fractional PDE)
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Extending the Model

Possbile directions

@ extend to Z (infinite volume)
@ add reservoirs (boundary problem)
@ add asymmetry (subdiffusive scale)

@ add long range interaction (fractional PDE)

@ mix the above!
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TASEP: The hydrodynamic equation

ol (%) =E [V ()
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Extending the Model

TASEP: The hydrodynamic equation

N o (%) = —% VY (p (L= 1)) (%)

4

atp%t <%) = —% v (P%t(l - P%t)) (%)
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Extending the Model

TASEP: The hydrodynamic equation

N o (%) = —% VY (p (L= 1)) (%)

U
1
atp%t <%) =73 vV (P%t(l - P%t)) (%)
U N — 400
1 /
dip = —5 - (pe(1 = p1))

2
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TASEP: Difficulties

@ We need something like

E[nzn:v—i-l] = E[%] ’ E[%H]

Julian Kern Hydrodynamic Limits



Extending the Model

TASEP: Difficulties

@ We need something like

E[nzn:v—i-l] = E[%] ’ E[%H]

~> Replacement Lemma:

NeNz41 = ?i ) 7i+1
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Extending the Model

TASEP: Difficulties

@ We need something like

E[nzn:v—i-l] = E[%] ’ E[%H]

~> Replacement Lemma:

NeNz41 = ?i ) 7i+1

e Problem: hyperbolic scaling O(N) = N

~~ can't get to macroscopic boxes (easily)!
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TASEP: Difficulties
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Extending the Model

TASEP: Difficulties

Burger's equation is non linear

~+ need entropy condition
~ difficult to show microscopically

~ need to work with Young measures
~~ more difficult to show uniqueness
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