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Exponential a.s. synchronization of
one-dimensional diffusions with non-regular

coefficients

Abstract

We study the asymptotic behaviour of a real-valued diffusion whose

non-regular drift is given as a sum of a dissipative term and a bounded

measurable one. We prove that two trajectories of that diffusion con-

verge a.s. to one another at an exponential explicit rate as soon as

the dissipative coefficient is large enough. A similar result in Lp is

obtained.

Keywords: stochastic differential equation (SDE); singular drift; synchro-

nization.

1 Introduction

The main object of our study is a one-dimensional stochastic differential

equation (SDE) of the typedXt = (−λXt + a(Xt)) dt+ σ(Xt) dwt, t > 0,

X0 ≡ x,

where λ is a positive real number, the drift a is measurable, the diffusion

coefficient σ is a Lipschitz continuous non-degenerate function, and (wt)t≥0

is a Wiener process.

Thanks to the celebrated transform method, Zvonkin proved in [15] that

this SDE admits a unique strong solution, which we will denote by (Xx
t )t>0.

Moreover, it was proved during the last decade that due to the presence

of noise, the family of processes (Xx
t )t≥0,x∈R shows good spatial regularity
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properties even if the drift function is discontinuous, see for example [2, 3, 4,

5, 6, 8, 11, 12, 9].

Concerning the time asymptotic stability of the process (Xx
t )t≥0 there

are much less results in the literature. In case λ is large enough, which

corresponds to a strong attraction of the dynamics towards 0 and a strong

dissipativity, it is natural to expect that, asymptotically in time, Xx
t will

forget its initial position x. Indeed, under Lipschitz continuity assumption

on the drift function a, it is proved e.g. in [10], that the Lp-distance between

Xx
t and Xy

t , y 6= x, vanishes as t tends to +∞, but no rate is available. In [7]

the stabilisation is shown as a convergence in probability of Xx
t −X

y
t towards

0, under C1-regularity assumption on the drift function via the negativity of

the associated top Lyapunov exponent. For diffusions whose drift function

is not differentiable but admits a finite variation, an explicit representation

of the Sobolev derivative of x 7→ Xx
t can be found in [2]. This representation

makes it possible to find an exponential decreasing rate for |Xx
t −X

y
t |, y 6= x

as t→∞, when a stationary distribution exists. Recently, such asymptotic

stability was obtained in a multidimensional framework, for diffusions whose

drift function admits jump discontinuities concentrated along a hyperplane,

see [1].

In the present paper, we address and solve the question of almost sure

synchronization - see the exact definition in (2) - in high dissipative regime (λ

large) for a wide class of SDEs with irregular drift functions: the function a

is only supposed to be the sum of a Lipschitz function and of a bounded mea-

surable one. Furthermore, we exhibit an explicit exponential convergence rate

to 0 for |Xx
t −X

y
t |, both almost surely (see (29) and (30)) and in Lp. To our

knowledge it is the first result of that type under such general assumptions.

Note that in absence of noise (σ ≡ 0), there is no reason to expect syn-

chronization of (Xx
t )t≥0,x∈R asymptotically in time. Indeed, consider the ODE

u′(t) = −λu(t) + sgn(u(t)) with initial condition x, whose unique solution
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is given by u(t) = sgn(x)
λ

+
(
x− sgn(x)

λ

)
e−λt. Thus limt→∞ u(t) = sgn(x)

λ
which

exhibits a clear discontinuity at the point x = 0, which corresponds in fact

to the (unique) discontinuity point of the drift function a = sgn. We are

thus in presence of a phenomena known in the literature as synchronization

by noise, see [7].

In the spirit of Zvonkin, our approach is based on an accurately chosen

space-transform in such a way that the transformed SDE - written via the new

coordinate - has a simpler structure. A similar method could theoretically

be used in more general context - multidimensional diffusions or SDEs with

Lévy-noise. However, the construction of corresponding transforms requires

the investigation of elliptic equations whose solution is a non-trivial problem.

The paper is organized as follows. The main results are formulated in

Section 2 and the proofs are presented in Section 3.

2 Main results

First we study the asymptotic behavior with respect to its initial condition of

the strong solution of an SDE with regular dissipative drift term. Though the

result seems to be well known, we failed to find an exact reference. Besides,

the proof is instructive itself.

Proposition 1. Consider the SDE

dYt = b(Yt)dt+ σ(Yt) dwt, t > 0, (1)

where (wt)t≥0 is a Wiener process. Suppose that the following assumptions

hold:

(H1) The drift b is continuous and satisfies a dissipative condition:

∃Db > 0 ∀x, y ∈ R (b(y)− b(x)) (y − x) ≤ −Db(y − x)2;
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(H2) The diffusion coefficient σ is a global Lipschitz continuous function :

∃Lσ > 0 ∀x, y ∈ R |σ(y)− σ(x)| ≤ Lσ|y − x|.

Then, denoting by (Y x
t )t≥0 the unique strong solution of (1) starting in x ∈ R,

the following almost sure synchronization at exponential rate holds: for any

c < Db,

∀x, y ∈ R, lim
t→+∞

|Y y
t − Y x

t | ect = 0 a.s. (2)

Moreover, if cp,b,σ := Db − p−1
2
L2
σ is positive, the following bound holds in

Lp, p ≥ 2:

∀x, y ∈ R, ∀t > 0, ‖ Y y
t − Y x

t ‖p≤ |y − x| e−cp,b,σt. (3)

The main result of the paper, which follows, concerns the asymptotic

behavior of the solution of an SDE generalising (1), whose drift function b is

the sum of a linear dissipative term, a globally Lipschitz term β and a non

regular bounded term α.

Theorem 1. Consider the SDEdXt = (−λXt + β(Xt) + α(Xt)) dt+ σ(Xt) dwt, t > 0,

X0 = x,
(4)

where (wt)t≥0 is a Wiener process. Suppose that the following assumptions

hold:

(A1) The function β is global Lipschitz continuous:

∃Lβ ≥ 0 ∀x, y ∈ R |β(y)− β(x)| ≤ Lβ|y − x|;

(A2) The function σ is global Lipschitz continuous:

∃Lσ ≥ 0 ∀x, y ∈ R |σ(y)− σ(x)| ≤ Lσ|y − x|
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and it is uniformly elliptic:

∃cσ > 0 ∀x ∈ R σ2(x) ≥ cσ.

Assume also that one of the following two conditions is satisfied:

(A3) the function α is bounded measurable with compact support

or

(A′3) the function α is measurable and its absolute value is a.s. bounded by

a bounded global Lipschitz function g ∈ L1(R); moreover the functions

β and σ are supposed to be bounded too.

Then, in high dissipative regime - λ large enough - the strong solutions of

(4) Xx
t and Xy

t starting at different positions x and y almost sure synchronize

at exponential rate, i.e., there exists λ0 such that for any λ > λ0 there exists

a positive constant cλ given explicitly in (28), (29), (30) such that

∀x, y ∈ R lim
t→∞
|Xy

t −Xx
t | ecλt = 0 a.s. . (5)

Moreover, the following bound holds in Lp, p ≥ 2:

∃C > 0, cλ,p > 0 ∀x, y ∈ R, ∀t ≥ 0, ‖ Xy
t −Xx

t ‖p≤ C |y − x| e−cλ,pt.
(6)

3 Proofs

Proof of Proposition 1. Notice first that, applying [14, Proposition 2.1], as-

sumptions (H1)-(H2) provide the existence of a unique global strong solution

to (1), denoted here by (Y x
t )t≥0.

Fix any y > x and define the stopping time τ := inf{t ≥ 0 | Y x
t = Y y

t }.
Due to the continuity of trajectories, one has for t ∈ [0, τ), Y y

t > Y x
t a.s.

5



So, applying Itô’s formula to ln(Y y
t − Y x

t ) we obtain

d (ln(Y y
t − Y x

t )) =(
b(Y y

t )− b(Y x
t )

Y y
t − Y x

t

− (σ(Y y
t )− σ(Y x

t ))2

2(Y y
t − Y x

t )2

)
dt+

σ(Y y
t )− σ(Y x

t )

Y y
t − Y x

t

dwt, t ∈ [0, τ).

(7)

Moreover, according to [14, Proposition 2.1] the processes (Y x
t )t≥0,x∈R

satisfy a coalescence property which means that as soon as two solutions

meet in a point then they stay together forever: Y x
t = Y y

t , t ≥ τ a.s.

Therefore, by (H1), the following inequality holds at any time:

ln(Y y
t − Y x

t ) ≤ ln(y − x)−Dbt+

∫ t

0

σ(Y y
s )− σ(Y x

s )

Y y
s − Y x

s

1s<τ dws a.s. (8)

where ln 0 := −∞. Note that the expression under the integral sign is

bounded because the function σ is Lipschitz continuous.

Further, the martingale

∫ t

0

σ(Y y
s )− σ(Y x

s )

Y y
s − Y x

s

1s<τ dws can be represented as

a Brownian motion computed at the random time

∫ t

0

(
σ(Y y

s )− σ(Y x
s )

Y y
s − Y x

s

)2

1s<τ ds

which is uniformly bounded by L2
σ t. Thus the law of iterated logarithm yields

lim
t→∞

1

t

∫ t

0

σ(Y y
s )− σ(Y x

s )

Y y
s − Y x

s

1s<τ dws = 0 a.s. (9)

Now the decreasing rate of |Y y
t − Y x

t | announced in (2) follows from (8) and

(9).

Let us now prove the Lp-bound, p ≥ 2. For any constant k, it follows
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from Itô’s formula

|Y y
t − Y x

t |pekt = |y − x|p

+

∫ t

0

(
k|Y y

s − Y x
s |2 + p (b(Y y

s )− b(Y x
s )) (Y y

s − Y x
s )

+
p(p− 1)

2
(σ (Y y

s )− σ(Y x
s ))2

)
|Y y
s − Y x

s |p−2eksds

+

∫ t

0

p (σ(Y y
s )− σ(Y x

s )) sgn(Y y
s − Y x

s )|Y y
s − Y x

s |p−1eks dws.

Using the dissipativity of b and the Lipschitzianity of σ we get

|Y y
t − Y x

t |pekt ≤ |y − x|p

+

∫ t

0

(
k − pDb +

p(p− 1)

2
L2
σ

)
|Y y
s − Y x

s |peks ds

+

∫ t

0

p (σ(Y y
t )− σ(Y x

s )) sgn(Y y
s − Y x

s )|Y y
s − Y x

s |p−1eksdws. (10)

The stochastic Gronwall lemma proved in [13] allows to deduce that - see

also the stochastic Gronwall-Lyapunov inequality in [9] which improves con-

siderably the former results -

∀T ≥ 0 ∀x, y ∈ R ∀p ≥ 2 : sup
t∈[0,T ]

E|Y y
t − Y x

t |p < +∞.

So, since σ is Lipschitz continuous, the stochastic integral in the rhs of (10) is

not only a local martingale but also an integrable centered martingale. Now,

as soon as k ≤ pDb −
p(p− 1)

2
L2
σ,

E (|Y y
t − Y x

t |p) ekt ≤ |y − x|p

which implies (3).

Proof of Theorem 1. Notice first that assumptions (A1),(A2) and the bound-

edness of α provide the existence of a unique strong solution to equation (4).
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This result follows from [15] via a localization method.

Now, since the function α appearing in the drift is not regular we can-

not apply directly Proposition 1. Our first step will then consist to follow

Zvonkin’s idea and transform the dynamics of (4) into an SDE with regu-

lar drift. Unfortunately by removing only the irregular term α, we do not

obtain a transformed dynamics satisfying the dissipative assumption (H1).

We then introduce a bounded, Lipschitz continuous, integrable intermediate

function γ, whose exact choice will be done later, see (24) and (26). A partial

Zvonkin’s transform to remove the drift α−γ will yield the SDE (18), whose

drift b̃ := −λ ĩd + β̃ + γ̃ is indeed dissipative for λ large enough, as we will

prove.

So we rewrite equation (4) as follows:dXt = (−λXt + (β(Xt) + γ(Xt)) + (α(Xt)− γ(Xt))) dt+ σ(Xt) dwt, t ≥ 0,

X0 ≡ x.

To eliminate the non-regular term α−γ, we define the (partial) scale function

s on R by

s(x) :=

∫ x

0

exp

(
−2

∫ y

0

α(z)− γ(z)

σ2(z)
dz

)
dy, x ∈ R. (11)

It is differentiable and

s′(x) = exp

(
−2

∫ x

0

α(z)− γ(z)

σ2(z)
dz

)
(12)

which is uniformly bounded from below and above as follows:

0 <
1

Ls
≤ s′(x) ≤ Ls < +∞ where Ls := exp

(
2

∫ ∞
−∞

|α(z)− γ(z)|
σ2(z)

dz

)
.

(13)
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The finiteness (resp. positivity) of Ls is due to the integrability of both

α and γ, combined with the uniform lower bound of σ.

Moreover, the second derivative of s exists for almost all x and satisfies

s′′(x) = 2
γ(x)− α(x)

σ2(x)
s′(x). (14)

Due to (13), s is a bilateral Lipschitz continuous function:

∀x, y ∈ R,
1

Ls
|y − x| ≤ |s(y)− s(x)| ≤ Ls|y − x|. (15)

Since (14) yields a uniform bound on s′′, we get that s′ is also global Lipschitz

continuous:

∀x, y ∈ R, |s′(y)− s′(x)| ≤ Ls′|y − x| where Ls′ := 2
‖γ − α‖∞

cσ
Ls. (16)

The derivative of s being positive, the function s is strictly increasing.

Moreover, since s(R) = R, it admits an inverse function s−1 defined on R
and being a bilateral Lipschitz continuous function too:

∀x, y ∈ R,
1

Ls
|y − x| ≤ |s−1(y)− s−1(x)| ≤ Ls |y − x|. (17)

The process s(Xx
t ) satisfies the following Itô’s formula:

ds(Xx
t ) = s′(Xx

t )dXx
t +

1

2
s′′(Xx

t )σ2(Xx
t )dt

= s′(Xx
t ) (−λXx

t + β(Xx
t ) + γ(Xx

t )) dt+ s′(Xx
t )σ(Xx

t ) dwt.

Note that s′′ may not exist on a negligible set. However, the applicability of

Itô’s formula is justified, see e.g. [15, Theorem 3].

Denote the process s(Xx
t ) by X̃x

t . It solves the SDE:dX̃t(x) =
(
−λ ĩd(X̃t) + β̃(X̃t) + γ̃(X̃t)

)
dt+ σ̃(X̃t) dwt, t > 0,

X̃0 ≡ s(x),
(18)
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where the coefficients are given by

ĩd := s′◦s−1 ·s−1, β̃ := s′◦s−1 ·β◦s−1, γ̃ := s′◦s−1 ·γ◦s−1, σ̃ := s′◦s−1 ·σ◦s−1.

We underline that the irregular drift term α disappeared from the dynamics.

Next step in the proof of the theorem is to check that, for λ large enough,

the new drift

b̃ := −λ ĩd+ β̃ + γ̃

appearing in the transformed SDE (18) satisfies assumption (H1) in order to

apply Proposition 1 to the process X̃t.

Regularity of the three terms composing the drift b̃.

The next lemma is straightforward.

Lemma 1. If f and g : R → R are two Lipschitz continuous functions

with respective constant Lf and Lg, their composition f ◦ g is also a con-

tinuous Lipschitz function with constant LfLg. If additionally f and g are

bounded, then the product fg is a Lipschitz continuous function too with

constant ‖f‖∞Lg + ‖g‖∞Lf .

It follows from (17) and Lemma 1 that the functions s′ ◦ s−1, β ◦ s−1, γ ◦
s−1, σ ◦ s−1 are Lipschitz continuous, with respective Lipschitz constants

Ls′Ls, LβLs, LγLs, LσLs. Then the function ĩd appearing as first term in b̃

is locally Lipschitz continuous.

Since the function γ we will construct will be bounded and Lipschitz contin-

uous, by Lemma 1 the function γ̃ is Lipschitz continuous with constant

Lγ̃ = (LsLγ + ‖γ‖∞Ls′)Ls. (19)

Let us now construct the function γ such that β̃ and σ̃ are global Lipschitz

continuous. We distinguish both cases, depending on the assumption satisfied

by the measurable function α.
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- Assumption (A′3) holds, i.e. β and σ are bounded.

Then, by Lemma 1, β̃ and σ̃ are Lipschitz continuous functions with respec-

tive constants

Lβ̃ = (LsLβ + ‖β‖∞Ls′)Ls and Lσ̃ = (LsLσ + ‖σ‖∞Ls′)Ls. (20)

- Assumption (A3) holds, i.e. α has compact support, denoted by [−Nα, Nα].

Since β and σ are not a priori bounded, one can not directly apply Lemma

1 to obtain the regularity of β̃ and σ̃. It will be possible to construct γ with

compact support included in [−Nα− 1, Nα + 1]. Since the function x 7→ s(x)

is then linear for |x| ≥ Nα + 1, by checking the increments of β̃ (resp. σ̃)

separately on the intervals (−∞, s(−Nα − 1)], [s(−Nα − 1), s(Nα + 1)] and

[s(Nα + 1),+∞) one gets that β̃ and σ̃ are global Lipschitz continuous with

respective constant

Lβ̃ = (LsLβ + ‖β‖Nα+1Ls′)Ls and Lσ̃ = (LsLσ + ‖σ‖Nα+1Ls′)Ls, (21)

where the following notation is used: ‖f‖Nα+1 := sup|x|≤Nα+1 |f(x)|.
Notice that all the above Lipschitz constants Lβ̃, Lγ̃, Lσ̃ may depend on the

intermediate drift function γ but not on the real coefficient λ.

Dissipative property of the drift b̃ for λ large enough:

We now show that for λ large enough, the function b̃ = −λ ĩd + β̃ + γ̃ is

dissipative and compute its dissipative constant denoted by Db̃. To this aim,

we will prove that the slope of the function ĩd is bounded from below by 1/2:

∀x, y ∈ R,
ĩd(y)− ĩd(x)

y − x
≥ 1

2
. (22)

With other words ĩd satisfies a one-sided Lipschitz property. As soon as (22)

is proved, it is straightforward to deduce that

Db̃ ≥
λ

2
− Lβ̃ − Lγ̃. (23)
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So, for any λ > 2(Lβ̃ + Lγ̃), the drift b̃ is dissipative.

Let us now construct a bounded, Lipschitz continuous, integrable inter-

mediate function γ in such a way that (22) holds true. It is enough to prove

that the derivative of ĩd(= s′ ◦ s−1 · s−1), which exists almost everywhere, is

bounded from below by 1
2
. In fact, for a.a. x,

(ĩd)′(x) =
s′′ ◦ s−1(x)

s′ ◦ s−1(x)
s−1(x)+s′◦s−1(x)

1

s′ ◦ s−1(x)
=

(
s′′(u)

s′(u)
u+ 1

)∣∣∣∣
u=s−1(x)

.

Recall that, since s′ is an absolutely continuous function, s′′ exists almost

everywhere on R. It follows from (15) that mappings s and s−1 push sets of

Lebesgue measure zero to sets of Lebesgue measure zero. Thus s′′(s−1(x)) is

independent of a modification of s′′ on a negligible set.

Taking into account (14), we get

s′′(u)

s′(u)
u+ 1 = 2

γ(u)− α(u)

σ2(u)
u+ 1 for a.a. u.

Let us separate both cases A3 and A′3.
- If assumption (A3) holds, we denote the compact support of the function

α as above by [−Nα, Nα]. Fix a positive number δ < ‖α‖∞ and define an

odd function γ as follows (see Figure 1):

γ(u) =



‖α‖∞
u

δ
, u ∈ [0, δ],

‖α‖∞, u ∈ [δ,Nα],

‖α‖∞(Nα + 1− u), u ∈ [Nα, Nα + 1],

0, u ∈ [Nα + 1,+∞),

− γ(−u), u ∈ R−.

(24)

Such function is clearly bounded, Lipschitz continuous and integrable.

Moreover, since by construction (γ(u) − α(u))u ≥ 0 for any |u| ≥ δ, u 7→
s′′(u)

s′(u)
u+ 1 is a.a. bounded from below by 1 on that domain.

12



Figure 1:

Inside of the interval [−δ,+δ], since γ(u)u ≥ 0, one has:

2
γ(u)− α(u)

σ2(u)
u+ 1 ≥ −2

α(u)

σ2(u)
u+ 1 ≥ −2

‖α‖∞
cσ

δ + 1. (25)

Choose δ =
cσ

4‖α‖∞
; one then obtains that u 7→ s′′(u)

s′(u)
u+ 1 is bounded from

below by 1/2 on [−δ,+δ]. To summarize, we were able to construct a function

γ such that uniformly (ĩd)′ ≥ 1/2.

- If assumption (A′3) is fulfilled, there exists a bounded integrable Lip-

schitz continuous function g such that g(u) > |α(u)|, u ∈ R. Without loss

of generality we may assume that g is an even function. In this case, set as

above δ :=
cσ

4‖α‖∞
and define the odd function γ as follows (see Figure 2):

γ(u) =


g(δ)

u

δ
, u ∈ [0, δ],

g(u), u ∈ [δ,+∞),

− γ(−u), u ∈ R−.

(26)

13



By the same argumentation as in the first case, the function (ĩd)′ is bounded

Figure 2:

from below by 1/2.

Last steps of the proof of Theorem 1.

Applying now Proposition 1 to the process (X̃t)t≥0, thanks to (23), one gets

that for λ > 2(Lβ̃ + Lγ̃), the following a.s. synchronization holds

∀x, y ∈ R, lim
t→+∞

|X̃y
t − X̃x

t | ect = 0 a.s. (27)

for any c < cλ :=
λ

2
− Lβ̃ − Lγ̃ ≤ Db̃.

To deduce the a.s. synchronization of the process (Xt)t≥0 from (27) we use

the Lipschitz continuity of the function s−1. The exponential rate of conver-

gence for both processes is then identical.

Hence, we may select

λ0 := 2(Lβ̃ + Lγ̃) and cλ :=
λ

2
− Lβ̃ − Lγ̃. (28)

14



We now compute an explicit upper bound for Lβ̃ +Lγ̃ using only the param-

eters of the SDE, and not γ.

- If assumption (A3) holds, one chooses γ as in (24). Therefore, by (13),

one has

Ls ≤ exp

(
8
‖α‖∞(Nα + 1)

c2σ

)
and by (16),

Ls′ ≤
4‖α‖∞
cσ

Ls ≤
4‖α‖∞
cσ

exp

(
8
‖α‖∞(Nα + 1)

c2σ

)
.

Therefore, using the definition (21),

Lβ̃ ≤
(
Lβ + ‖β‖Nα+1

4‖α‖∞
cσ

)
exp

(
16
‖α‖∞(Nα + 1)

c2σ

)
and

Lγ̃ ≤
(
Lγ + ‖γ‖∞

4‖α‖∞
cσ

)
exp

(
16
‖α‖∞(Nα + 1)

c2σ

)
≤ ‖α‖∞

(
1 +

4‖α‖∞
cσ

)
exp

(
16
‖α‖∞(Nα + 1)

c2σ

)
.

So

Lβ̃ + Lγ̃

≤
(
‖α‖∞ + Lβ + (‖α‖∞ + ‖β‖Nα+1)

4‖α‖∞
cσ

)
exp

(
16
‖α‖∞(Nα + 1)

c2σ

)
(29)

- If assumption (A′3) holds, one chooses γ as in (26). By (13), one has

Ls ≤ exp
(

4‖g‖1
c2σ

)
and by (16),

Ls′ ≤
4‖g‖∞
cσ

Ls ≤
4‖g‖∞
cσ

exp

(
4
‖g‖1
c2σ

)
.
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Therefore, using the definition (20),

Lβ̃ ≤
(
Lβ + ‖β‖∞

4‖g‖∞
cσ

)
exp

(
8
‖g‖1
c2σ

)
and

Lγ̃ ≤
(
Lγ + ‖γ‖∞

4‖g‖∞
cσ

)
exp

(
8
‖g‖1
c2σ

)
≤

(
Lg +

8‖g‖2∞
cσ

)
exp

(
8
‖g‖1
c2σ

)
.

So in that case,

Lβ̃ + Lγ̃ ≤
(
Lβ + Lg + (‖β‖∞ + 2‖g‖2∞)

4‖g‖∞
cσ

)
exp

(
8
‖g‖1
c2σ

)
. (30)

The Lp-synchronization of (Xt)t≥0 is a direct consequence from the fact

that (X̃t)t≥0 satisfies the Lp-bounds (3): take C = Ls and cλ,p = pcλ −
p(p−1)

2
L2
σ̃. Indeed, under assumption (A3),

Lσ̃ ≤
(
Lσ + ‖σ‖Nα+1

4‖α‖∞
cσ

)
exp

(
16
‖α‖∞(Nα + 1)

c2σ

)
and under assumption (A′3)

Lσ̃ ≤
(
Lβ + ‖σ‖∞

4‖g‖∞
cσ

)
exp

(
8
‖g‖1
c2σ

)
.

The constant cλ,p can also be estimated explicitly as function of the param-

eters of the SDE. This completes the proof.
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