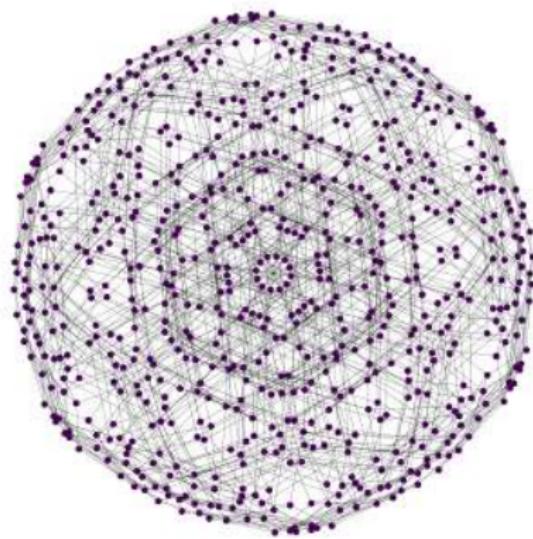


Consensus Dynamics and Exclusion processes

Jens Fischer

Université Toulouse III - Paul Sabatier;
University of Potsdam

December 2, 2020



What does symmetry teach us about exclusion processes?

Consensus Dynamics

Consensus Dynamics

Let $V = \{1, \dots, n\}$ be a population of n individuals with initial opinions $X^0 = (X_i^0)_{i \in V}$. Opinions may be

- fixed, constant;

Consensus Dynamics

Let $V = \{1, \dots, n\}$ be a population of n individuals with initial opinions $X^0 = (X_i^0)_{i \in V}$. Opinions may be

- fixed, constant;
- initially fixed and may change;

Consensus Dynamics

Let $V = \{1, \dots, n\}$ be a population of n individuals with initial opinions $X^0 = (X_i^0)_{i \in V}$. Opinions may be

- fixed, constant;
- initially fixed and may change;
- initially random and may change.

Consensus Dynamics

Let $V = \{1, \dots, n\}$ be a population of n individuals with initial opinions $X^0 = (X_i^0)_{i \in V}$. Opinions may be

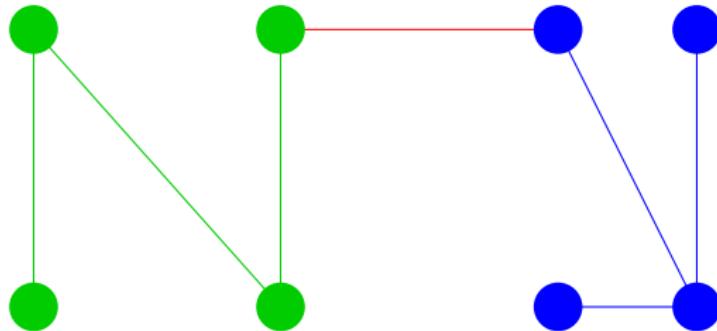
- fixed, constant;
- initially fixed and may change;
- initially random and may change.

Change over time $t \in \mathbb{N}$ is induced by interaction of individuals defined by **interaction graphs** $G_t = (V, E_t)$ and some **rule**.

Consensus in Networks

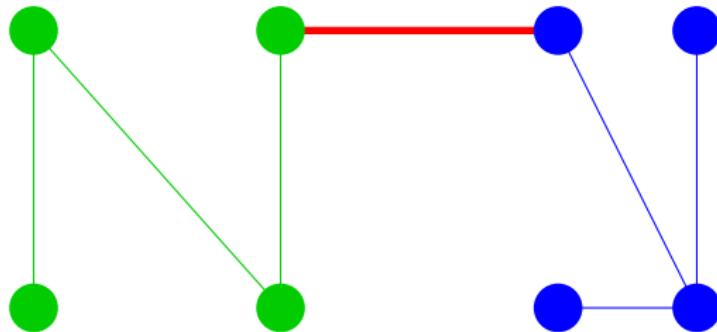
Inspired by Henry, Prałat and Zhang (2011)

Consensus in Networks



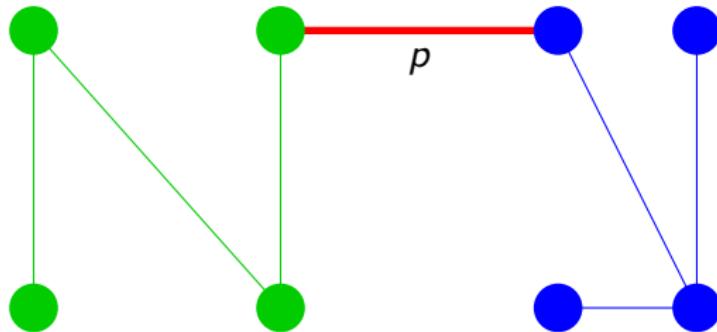
Inspired by Henry, Prałat and Zhang (2011)

Consensus in Networks



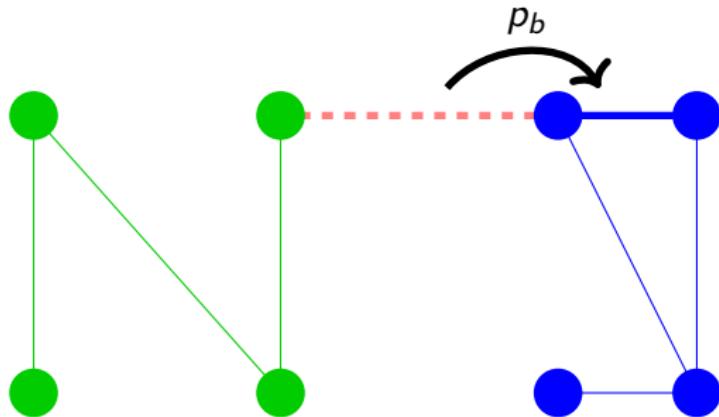
Inspired by Henry, Prałat and Zhang (2011)

Consensus in Networks



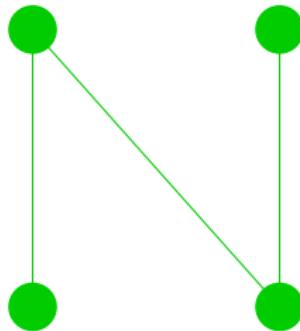
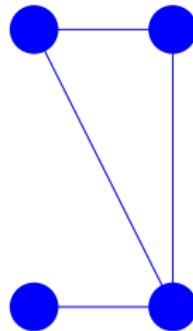
Inspired by Henry, Prałat and Zhang (2011)

Consensus in Networks



Inspired by Henry, Prałat and Zhang (2011)

Consensus in Networks



Inspired by Henry, Prałat and Zhang (2011)

Goal: Consensus in Networks

Find formalism for arbitrary opinions and graphs!

Goal: Consensus in Networks

Find formalism for arbitrary opinions and graphs!

(Assume edges move always for now.)

Line graph as state space

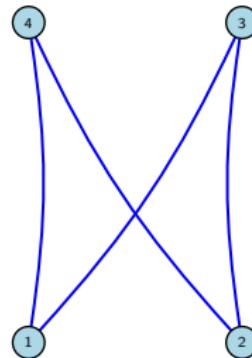


Figure: Translation of existing edges (blue) in G into occupied sides (blue) in the line graph L_{G_c} .

Line graph as state space

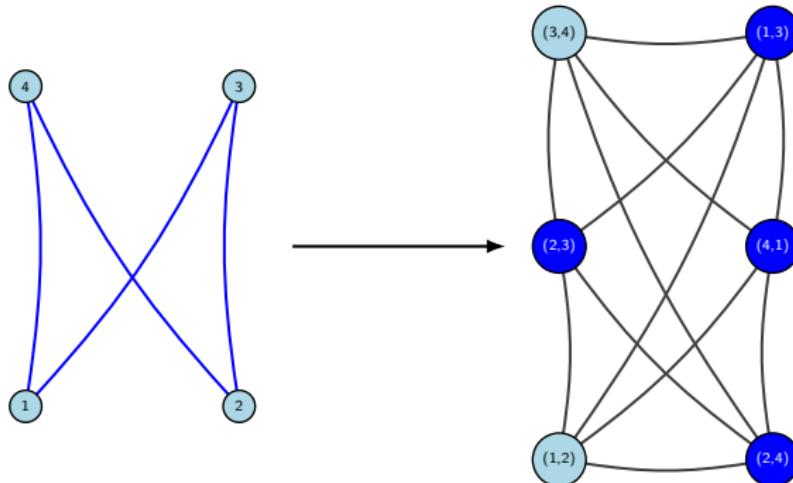


Figure: Translation of existing edges (blue) in G into occupied sides (blue) in the line graph L_{G_c} . Existing edges are interpreted as particles occupying sides on L_{G_c} .

Strongly regular graphs

Definition

Let $\bar{n}, \bar{d}, \alpha, \beta \in \mathbb{N}$. A graph $L = (V, E)$ is called $(\bar{n}, \bar{d}, \alpha, \beta)$ strongly regular iff

- $|V| = \bar{n}$,
- $\forall v \in V : \deg(v) = \bar{d}$,

Strongly regular graphs

Definition

Let $\bar{n}, \bar{d}, \alpha, \beta \in \mathbb{N}$. A graph $L = (V, E)$ is called $(\bar{n}, \bar{d}, \alpha, \beta)$ strongly regular iff

- $|V| = \bar{n}$,
- $\forall v \in V : \deg(v) = \bar{d}$,
- for $v, w \in V$ with $\{v, w\} \in E$ there are $u_1, \dots, u_\alpha \in V$ s.t. $\{v, u_i\} \in E, \{w, u_i\} \in E$ for all $i = 1, \dots, \alpha$,

Strongly regular graphs

Definition

Let $\bar{n}, \bar{d}, \alpha, \beta \in \mathbb{N}$. A graph $L = (V, E)$ is called $(\bar{n}, \bar{d}, \alpha, \beta)$ strongly regular iff

- $|V| = \bar{n}$,
- $\forall v \in V : \deg(v) = \bar{d}$,
- for $v, w \in V$ with $\{v, w\} \in E$ there are $u_1, \dots, u_\alpha \in V$ s.t. $\{v, u_i\} \in E, \{w, u_i\} \in E$ for all $i = 1, \dots, \alpha$,
- for $v, w \in V$ with $\{v, w\} \notin E$ there are $p_1, \dots, p_\beta \in V$ s.t. $\{v, p_i\} \in E, \{w, p_i\} \in E$ for all $i = 1, \dots, \beta$.

Example: Strongly regular graphs

Consider a complete graph $G_c = (V_c, E_c)$ with $|V_c| = n$. Then its line graph $L(G)$ is a $\left(\frac{n(n-1)}{2}, 2(n-2), n-2, 4\right)$ strongly regular graph.

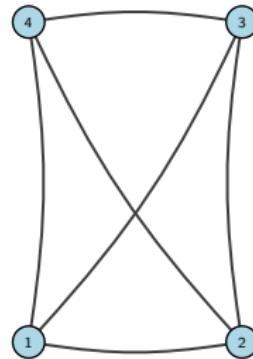


Figure: From complete graph on 4 vertices to its line graph.

Example: Strongly regular graphs

Consider a complete graph $G_c = (V_c, E_c)$ with $|V_c| = n$. Then its line graph $L(G)$ is a $\left(\frac{n(n-1)}{2}, 2(n-2), n-2, 4\right)$ strongly regular graph.

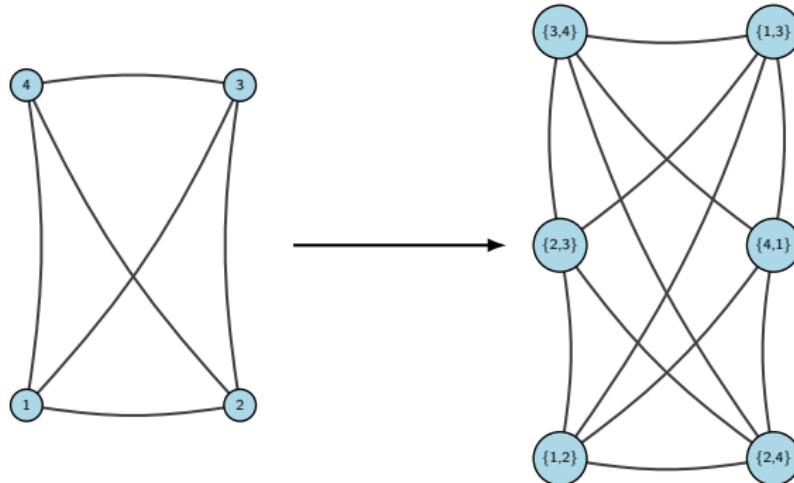


Figure: From complete graph on 4 vertices to its line graph.

Exclusion process on strongly-regular graphs

Consider a graph $L = (V, E)$. Define for $v \in V$ its neighborhood N_v as

$$N_v := \{w \in V \mid \{w, v\} \in E\}.$$

Exclusion process on strongly-regular graphs

Consider a graph $L = (V, E)$. Define for $v \in V$ its neighborhood N_v as

$$N_v := \{w \in V \mid \{w, v\} \in E\}.$$

Definition

Let $L = (V, E)$ be a strongly regular connected graph with parameters $(\bar{n}, \bar{d}, \alpha, \beta)$. Then we define the exclusion process $\eta_k := (\eta_{k;t})_{t \in \mathbb{N}}$ containing $k \in \{1, \dots, \bar{n} - 1\}$ particles on L as follows.

- $\forall t \in \mathbb{N} : \eta_{k;t} \subset V$,
- at any time $t \in \mathbb{N}$ do:
 - 1 draw uniformly $U_t \in \eta_{k;t}$ and $W_t \in (N_{U_t} \setminus \eta_{k;t}) \cup \{U_t\}$
 - 2 set $\eta_{k;t+1} = (\eta_{k;t} \setminus \{U_t\}) \cup \{W_t\}$.

What is the actual state space of η_k ?

Goal

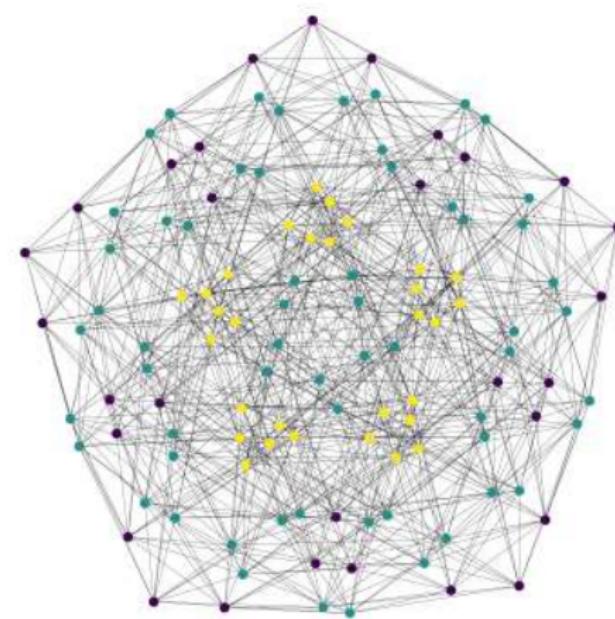
Construct a graph $\tilde{\mathcal{H}}_k^r = (\tilde{\mathcal{V}}_k^r, \tilde{\mathcal{E}}_k^r)$ which satisfies the following conditions:

- $\mathfrak{v} \in \tilde{\mathcal{V}}_k^r$ satisfies $|\mathfrak{v}| = k$
(k particles),

Goal

Construct a graph $\tilde{\mathcal{H}}_k^r = (\tilde{\mathcal{V}}_k^r, \tilde{\mathcal{E}}_k^r)$ which satisfies the following conditions:

- $\mathfrak{v} \in \tilde{\mathcal{V}}_k^r$ satisfies $|\mathfrak{v}| = k$
(k particles),
- if $\{\mathfrak{v}, \mathfrak{w}\} \in \tilde{\mathcal{E}}_k^r$, then $\mathfrak{v} \triangle \mathfrak{w} = \{v, w\} \in E$
(one particle moves at a time.).

Goal: State space $\tilde{\mathcal{H}}_k^r$ for $n = 5, k = 3$ Figure: State space of a Markov chain associated to η_k .

Cartesian Product of graphs

Definition (Cartesian Product of Graphs)

Let G_1, \dots, G_k be connected graphs with $G_i = (V(G_i), E(G_i))$. Then their Cartesian product $H_k = (V_k, E_k)$ is the graph

$$H_k := G_1 \times \dots \times G_k$$

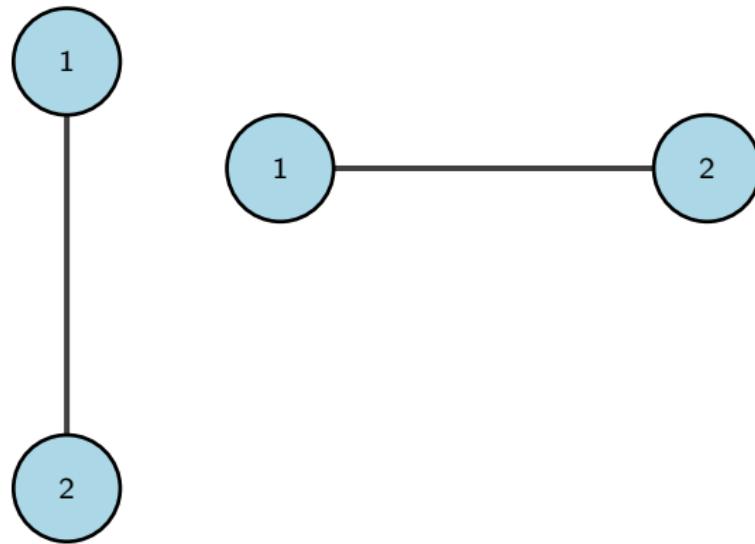
with vertex set $V_k = \{v = (v_1, \dots, v_k) \mid v_i \in V(G_i)\}$. Two vertices v, v' are adjacent, whenever there is exactly one index $1 \leq i \leq k$ such that $\{v_i, v'_i\} \in E(G_i)$ and $v_j = v'_j$ for $j \neq i$.

Example: Cartesian Product of graphs

Consider the path graph P_2 . We construct the Cartesian product $P_2 \times P_2$.

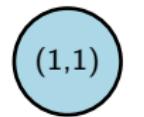
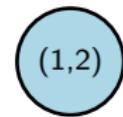
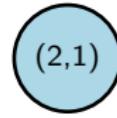
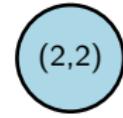
Example: Cartesian Product of graphs

Consider the path graph P_2 . We construct the Cartesian product $P_2 \times P_2$.



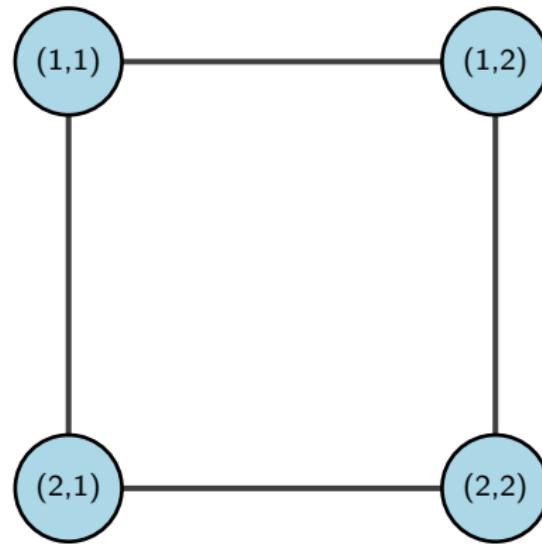
Example: Cartesian Product of graphs

Consider the path graph P_2 . We construct the Cartesian product $P_2 \times P_2$.



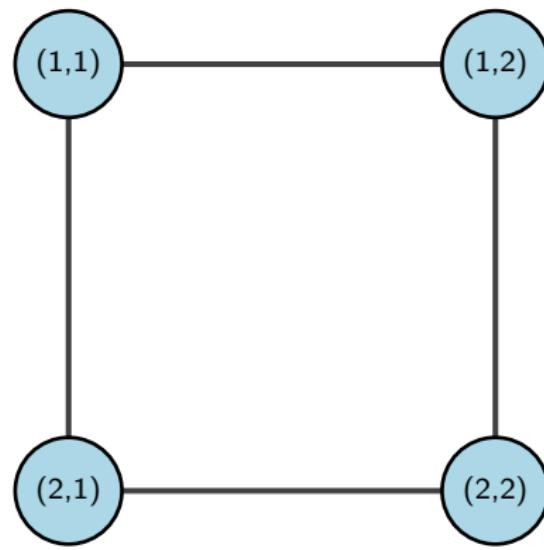
Example: Cartesian Product of graphs

Consider the path graph P_2 . We construct the Cartesian product $P_2 \times P_2$.



Example: Cartesian Product of graphs

Consider the path graph P_2 . We construct the Cartesian product $P_2 \times P_2$.



Remark: $(1, 2) \neq (2, 1)!$

Quotient graphs

Let $G = (V, E)$ be a graph and \leftrightarrow an equivalence relation on V . The quotient graph $G/\leftrightarrow = G^{\leftrightarrow} = (V^{\leftrightarrow}, E^{\leftrightarrow})$ is defined as

- $V^{\leftrightarrow} = \{[v]^{\leftrightarrow} \mid v \in V\}$;
- $\{[v]^{\leftrightarrow}, [w]^{\leftrightarrow}\} \in E^{\leftrightarrow} \Leftrightarrow \exists \hat{v} \in [v]^{\leftrightarrow}, \hat{w} \in [w]^{\leftrightarrow} : \{\hat{v}, \hat{w}\} \in E$.

Quotient graphs

Let $G = (V, E)$ be a graph and \leftrightarrow an equivalence relation on V . The quotient graph $G/\leftrightarrow = G^{\leftrightarrow} = (V^{\leftrightarrow}, E^{\leftrightarrow})$ is defined as

- $V^{\leftrightarrow} = \{[v]^{\leftrightarrow} \mid v \in V\}$;
- $\{[v]^{\leftrightarrow}, [w]^{\leftrightarrow}\} \in E^{\leftrightarrow} \Leftrightarrow \exists \hat{v} \in [v]^{\leftrightarrow}, \hat{w} \in [w]^{\leftrightarrow} : \{\hat{v}, \hat{w}\} \in E$.

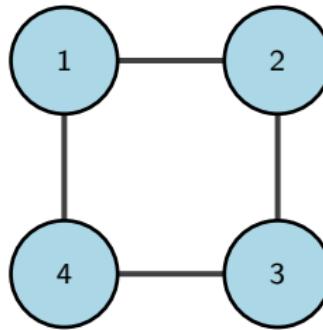
Example C_2 and identify even vertices and odd vertices.

Quotient graphs

Let $G = (V, E)$ be a graph and \leftrightarrow an equivalence relation on V . The quotient graph $G/\leftrightarrow = G^{\leftrightarrow} = (V^{\leftrightarrow}, E^{\leftrightarrow})$ is defined as

- $V^{\leftrightarrow} = \{[v]^{\leftrightarrow} \mid v \in V\}$;
- $\{[v]^{\leftrightarrow}, [w]^{\leftrightarrow}\} \in E^{\leftrightarrow} \Leftrightarrow \exists \hat{v} \in [v]^{\leftrightarrow}, \hat{w} \in [w]^{\leftrightarrow} : \{\hat{v}, \hat{w}\} \in E$.

Example C_4 and identify even vertices and odd vertices.



Quotient graphs

Let $G = (V, E)$ be a graph and \leftrightarrow an equivalence relation on V . The quotient graph $G/\leftrightarrow = G^{\leftrightarrow} = (V^{\leftrightarrow}, E^{\leftrightarrow})$ is defined as

- $V^{\leftrightarrow} = \{[v]^{\leftrightarrow} \mid v \in V\}$;
- $\{[v]^{\leftrightarrow}, [w]^{\leftrightarrow}\} \in E^{\leftrightarrow} \Leftrightarrow \exists \hat{v} \in [v]^{\leftrightarrow}, \hat{w} \in [w]^{\leftrightarrow} : \{\hat{v}, \hat{w}\} \in E$.

Example C_2 and identify even vertices and odd vertices.

State space $\tilde{\mathcal{H}}_k^r$ for η_k

Consider $L = (V, E)$. For fixed $k \in \{1, \dots, \bar{n} - 1\}$ denote by S_k the symmetric group of order k . Let $\mathfrak{R}_k = \{\tilde{v} \in V^k \mid \exists i \neq j : v_i = v_j\}$.

State space $\tilde{\mathcal{H}}_k^r$ for η_k

Consider $L = (V, E)$. For fixed $k \in \{1, \dots, \bar{n} - 1\}$ denote by S_k the symmetric group of order k . Let $\mathfrak{R}_k = \{\tilde{v} \in V^k \mid \exists i \neq j : v_i = v_j\}$. Define $\mathcal{H}_k = (V^k, E_k) := L^{\times k}$, $V_k^r := V^k \setminus \mathfrak{R}_k$ and

$$\begin{aligned} E_k^r &= \{\{u, w\} \in E_k \mid u, w \in V_k^r\}, \\ \mathcal{H}_k^r &:= (V_k^r, E_k^r). \end{aligned}$$

State space $\tilde{\mathcal{H}}_k^r$ for η_k

Consider $L = (V, E)$. For fixed $k \in \{1, \dots, \bar{n} - 1\}$ denote by S_k the symmetric group of order k . Let $\mathfrak{R}_k = \{\tilde{v} \in V^k \mid \exists i \neq j : v_i = v_j\}$. Define $\mathcal{H}_k = (V^k, E_k) := L^{\times k}$, $V_k^r := V^k \setminus \mathfrak{R}_k$ and

$$\begin{aligned} E_k^r &= \{\{u, w\} \in E_k \mid u, w \in V_k^r\}, \\ \mathcal{H}_k^r &:= (V_k^r, E_k^r). \end{aligned}$$

Finally set $\tilde{\mathcal{H}}_k^r = \mathcal{H}_k^r / S_k$.

Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5$, $k = 3$

Start with complete graph K_5 .

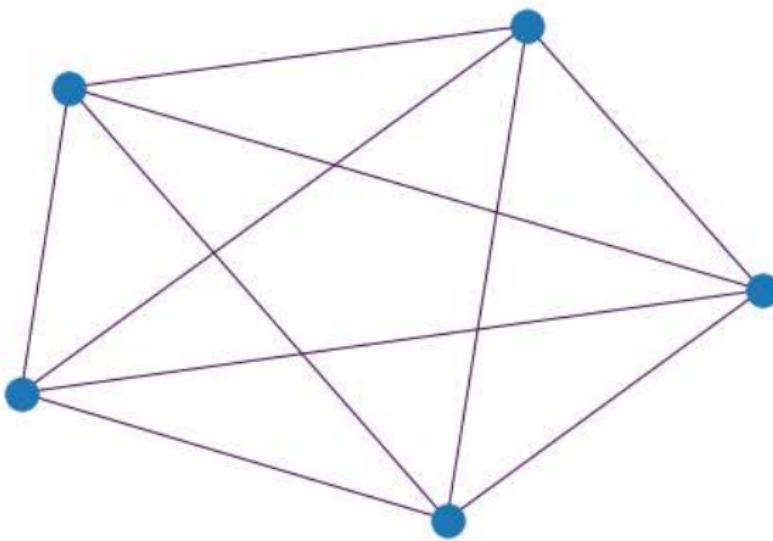
Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$ 

Figure: Complete graph on 5 vertices.

Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5$, $k = 3$

Start with complete graph K_5 . Consider the line graph $L = (V, E)$ of G_5 .

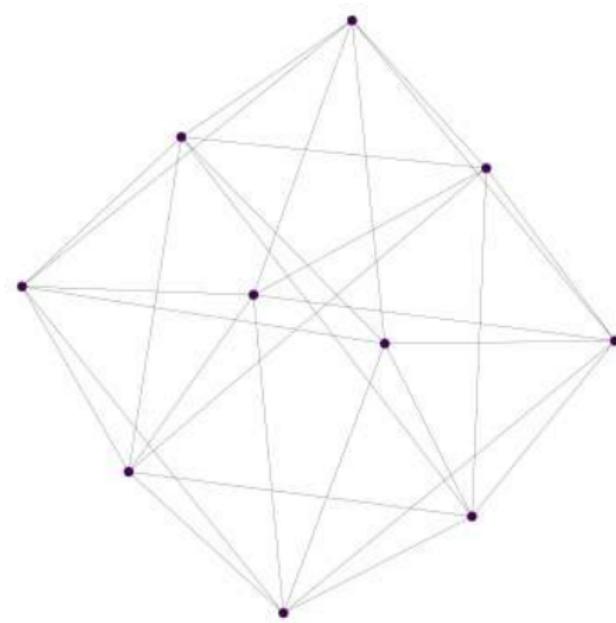
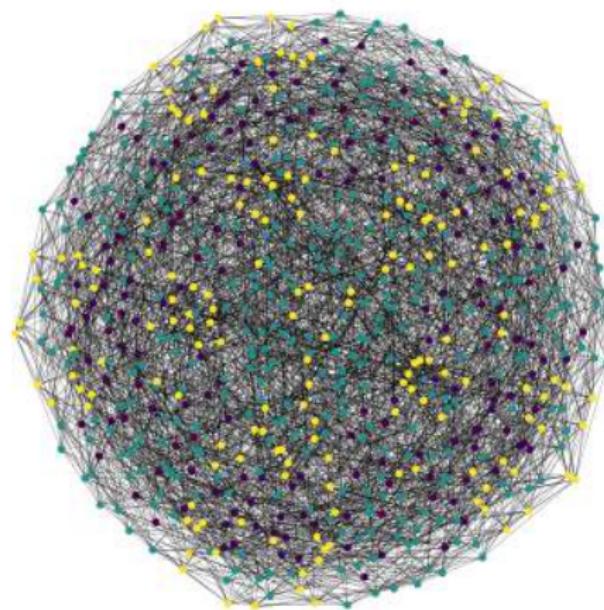
Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$ 

Figure: Line graph of complete graph on 5 vertices.

Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$

Start with complete graph K_5 . Consider the line graph $L = (V, E)$ of G_5 .
 Recall $\mathfrak{R}_3 = \{\tilde{v} \in V^3 \mid \exists i \neq j : v_i = v_j\}$, $\mathcal{H}_3 = (V^3, E_3) := L^{\times 3}$,
 $V_3^r := V^3 \setminus \mathfrak{R}_3$ and

$$\begin{aligned} E_3^r &= \{\{u, w\} \in E_3 \mid u, w \in V_3^r\}, \\ \mathcal{H}_3^r &:= (V_3^r, E_3^r). \end{aligned}$$

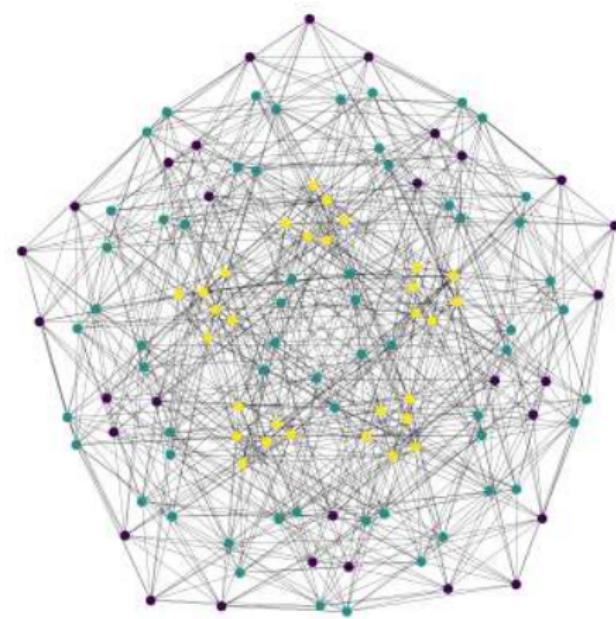
Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$ Figure: Associated graph \mathcal{H}_k^r .

Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$

Start with complete graph K_5 . Consider the line graph $L = (V, E)$ of G_5 . Recall $\mathfrak{R}_3 = \{\tilde{v} \in V^3 \mid \exists i \neq j : v_i = v_j\}$, $\mathcal{H}_3 = (V^3, E_3) := L^{\times 3}$, $V_3^r := V^3 \setminus \mathfrak{R}_3$ and

$$\begin{aligned} E_3^r &= \{\{u, w\} \in E_3 \mid u, w \in V_3^r\}, \\ \mathcal{H}_3^r &:= (V_3^r, E_3^r). \end{aligned}$$

Set $\tilde{\mathcal{H}}_3^r = \mathcal{H}_3^r / \mathcal{S}_3$.

Example: State space $\tilde{\mathcal{H}}_k^r$ for η_k ; $n = 5, k = 3$ Figure: Quotient graph $\tilde{\mathcal{H}}_k^r$ of \mathcal{H}_k^r .

η_k as a Markov chain on $\tilde{\mathcal{H}}_k^r$

η_k as a Markov chain on $\tilde{\mathcal{H}}_k^r$

Theorem

Let $k \in \{1, \dots, \bar{n} - 1\}$, L a strongly regular and η_k the k particle exclusion process on L . Then there is a Markov chain \mathfrak{S}_k with transition Matrix P_k^\triangleleft on $\tilde{\mathcal{H}}_k^r$ such that for any $\mathfrak{v} \subset V$ and $t \in \mathbb{N}$ the equation

$$\mathbb{P}[\eta_{k;t} = \mathfrak{v} | \eta_{k;0}] = \mathbb{P}[\mathfrak{S}_{k;t} = \mathfrak{v} | \mathfrak{S}_{k;0} = \eta_{k;0}]$$

is satisfied.

η_k as a Markov chain on $\tilde{\mathcal{H}}_k^r$

Theorem

Let $k \in \{1, \dots, \bar{n} - 1\}$, $\mathfrak{v} \subset V$, $|\mathfrak{v}| = k$ denote by $L_{\mathfrak{v}}$ the vertex induced sub-graph of \mathfrak{v} in L and for $v \in \mathfrak{v}$ write $\deg^{L_{\mathfrak{v}}}(v)$ the degree of v in $L_{\mathfrak{v}}$.

The transition matrix P_k^{\triangle} of \mathfrak{S}_k satisfies

$$p_{k;\mathfrak{v},\mathfrak{w}}^{\triangle} = \begin{cases} \frac{1}{k} \frac{1}{\bar{d} - \deg^{L_{\mathfrak{v}}}(v) + 1}, & \mathfrak{v} \triangle \mathfrak{w} = \{v, w\} \text{ with } v \sim^L w, \\ \sum_{v \in \mathfrak{v}} \frac{1}{k} \frac{1}{\bar{d} - \deg^{L_{\mathfrak{v}}}(v) + 1}, & \mathfrak{v} = \mathfrak{w}, \\ 0, & \text{otherwise.} \end{cases}$$

Properties of \mathfrak{S}_k

The Markov chain \mathfrak{S}_k is irreducible, aperiodic and, therefore, ergodic.

Reversibility of \mathfrak{S}_k

Reversibility of \mathfrak{S}_k

Lemma

Define for $\mathfrak{v}, \mathfrak{w} \in \tilde{\mathcal{V}}_k^r$ the value

$$\Psi_{\mathfrak{v}}(\mathfrak{w}) = \begin{cases} \prod_{\substack{v \in \mathcal{N}^{\mathfrak{v}}(\bar{v}) \setminus \mathcal{N}^{\mathfrak{w}}(\bar{w}) \\ v \neq \bar{v}}} \frac{\bar{d} - \deg^{L_{\mathfrak{v}}}(v) + 2}{\bar{d} - \deg^{L_{\mathfrak{v}}}(v) + 1}, & \mathfrak{v} \sim^r \mathfrak{w}, \bar{v} \sim^L \bar{w} \\ 0, & \text{otherwise,} \end{cases} \quad (1)$$

and $\pi(\mathfrak{v}) = \prod_{v \in \mathfrak{v}} (\bar{d} - \deg^{L_{\mathfrak{v}}}(v) + 1)$. Then for any $\mathfrak{v}, \mathfrak{w} \in \tilde{\mathcal{V}}_k^r$ the following property holds true.

$$\pi(\mathfrak{v}) p_{k; \mathfrak{v}, \mathfrak{w}}^{\triangle} \Psi_{\mathfrak{v}}(\mathfrak{w}) = \pi(\mathfrak{w}) p_{k; \mathfrak{w}, \mathfrak{v}}^{\triangle} \Psi_{\mathfrak{w}}(\mathfrak{v}). \quad (2)$$

Reversibility of \mathfrak{S}_k

The Markov chain $\mathfrak{S}_k^{\leftrightarrow}$ is in general not reversible. \downarrow Apply Kolmogorov's criterion for reversibility.

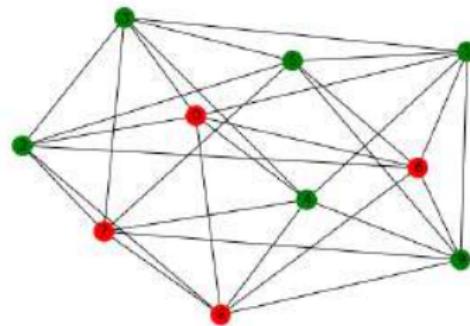


Figure: Graph L with assigned labels between 0 and 9. A vertex colored in red represents a vertex occupied by a particle.

Reversibility of \mathfrak{S}_k

The Markov chain $\mathfrak{S}_k^{\leftrightarrow}$ is in general not reversible. \downarrow Apply Kolmogorov's criterion for reversibility.

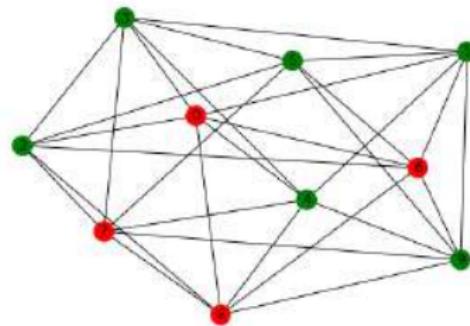


Figure: Graph L with assigned labels between 0 and 9. A vertex colored in red represents a vertex occupied by a particle.

Reversibility of \mathfrak{S}_k

The Markov chain $\mathfrak{S}_k^{\leftrightarrow}$ is in general not reversible. \downarrow 2- \downarrow Apply Kolmogorov's criterion for reversibility.

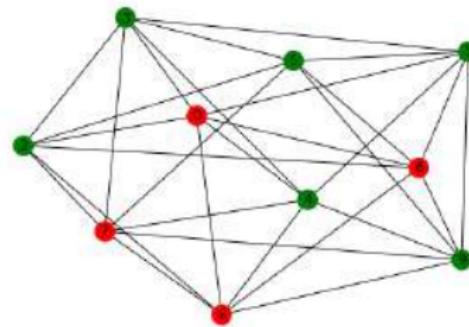


Figure: Graph L with assigned labels between 0 and 9. A vertex colored in red represents a vertex occupied by a particle.

Consider the following closed path

$$\phi = (\{0, 6, 7, 8\}, \{0, 6, 7, 9\}, \{6, 7, 8, 9\}, \{5, 6, 7, 8\}, \{0, 5, 7, 8\}, \{0, 6, 7, 8\}).$$

Reversibility of \mathfrak{S}_k

The Markov chain \mathfrak{S}_k is reversible for $k \in \{1, 2, \bar{n} - 2, \bar{n} - 1\}$.

Conjecture: \mathfrak{S}_k is reversible if and only if $\mathfrak{S}_{\bar{n}-k}$ is reversible.

Outlook

Outlook

- Find covering time of G with respect to η_k .

Outlook

- Find covering time of G with respect to η_k .
- Reintroduce labels and rule for erasing edges.

Outlook

- Find covering time of G with respect to η_k .
- Reintroduce labels and rule for erasing edges.
- Characterize time to absorption under suitable conditions.

Outlook

- Find covering time of G with respect to η_k .
- Reintroduce labels and rule for erasing edges.
- Characterize time to absorption under suitable conditions.
- Examine exclusion process in random environments.

Outlook

Why stop there?

Outlook

Why stop there?

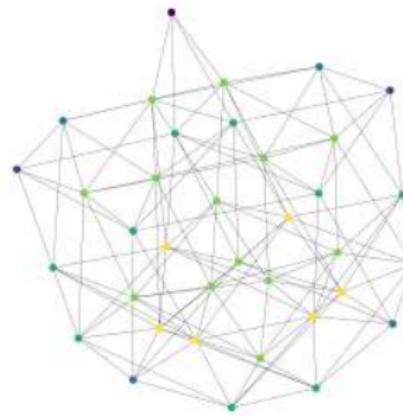


Figure: Quotient graph $\tilde{\mathcal{H}}_2^r$ when underlying graph is line graph of a $\mathcal{G}(6, 0.5)$.