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A 1st model of H?: the half-space model (H, ds?)

The hyperbolic space HY is a d-Riemannian manifold that can be defined
by several isometric models.
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The hyperbolic space HY is a d-Riemannian manifold that can be defined
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A 1st model of H?: the half-space model (H, ds?)

The hyperbolic space HY is a d-Riemannian manifold that can be defined
by several isometric models.

* The half-space model (H, ds?):
o H:= {(x1, s Xd_1,y) €ERY,y > 0}.
2 2 2
® The metric ds?, := w.

@ The volume measure uy given by duy := dX1~~-(;);d—1dy.
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A 1st model of H?: the half-space model (H, ds?)

The hyperbolic space HY is a d-Riemannian manifold that can be defined
by several isometric models.

* The half-space model (H, dsZ):

o H:= {(x1, s Xd_1,y) €ERY,y > 0}_
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® The metric ds?, := 1y—2d4”
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A 1st model of H?: the half-space model (H, ds?)

The hyperbolic space HY is a d-Riemannian manifold that can be defined
by several isometric models.

* The half-space model (H, dsZ):

o H:= {(x1, s Xd_1,y) €ERY,y > 0}.
. ax?+...+dx2_ +dy?
® The metric ds? := W
@ The volume measure uy given by duy :

_dxq...dXg_1dy
ye :

b 44
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A 2nd model of H?: the Poincaré disk model (D, ds3)

* The Poincaré disk model (D, ds3):

o D= {(x1,...,xd) € Rd,x12 + ... +x§ < 1}.
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A 2nd model of H?: the Poincaré disk model (D, ds3)

* The Poincaré disk model (D, ds3):
o D= {(x1, s Xg) € Rd,x12 + ...+ xg < 1}.
dx2+..+adx3

(1-x2-..—x2)2"

® The metric ds? := 4
d

David Coupier Infinite branches of the DSF 5/25



A 2nd model of H?: the Poincaré disk model (D, ds3)

* The Poincaré disk model (D, ds3):
o D= {(x1, s Xg) € Rd,x12 + ...+ xg < 1}.

dx2+..+adx3

T P
@ The metric ds; := 4(1_X12_.”_X3)2-
dX1...dXd

2 2Yd -
(1-x¢—..—x3)?

@ The volume measure up given by dup := 29

David Coupier Infinite branches of the DSF 5/25



A 2nd model of H?: the Poincaré disk model (D, ds3)

* The Poincaré disk model (D, ds3):
e D:= {(x1,...,xd) eRI, X2+ .. +x3< 1}.
dx2+..+adx3

2 2Y2
(1-x§—..—x5)?

@ The volume measure up given by dup := 2¢

@ The metric dsg =4

dX1...dXq

2 2d
(1-xG-..-x5)?
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A crucial difference between Euclidean & hyperbolic

Let B, := B(-, r) be a ball with radius r.
Vol(-) and Surf(-) are relative to Leb(-) in R and to u(-) in HC.
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A crucial difference between Euclidean & hyperbolic

Let B, := B(-, r) be a ball with radius r.
Vol(-) and Surf(-) are relative to Leb(-) in R and to u(-) in HC.

@ In Euclidean space:
Surf(B;)

0% Vol(B,)

R% is said amenable.
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A crucial difference between Euclidean & hyperbolic

Let B, := B(-, r) be a ball with radius r.
Vol(-) and Surf(-) are relative to Leb(-) in R and to u(-) in HC.
@ In Euclidean space:
Surf(Br)
im ———= =
r—eo Vol(By)
RY is said amenable.

@ In hyperbolic space:
Surf(Br)

% Vol(B,)

HY is said non-amenable.
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Poisson Point Process

A homogeneous Poisson point process (PPP) N with intensity 4 > 0 in
E =R9 or HY is a random point set such that:

@ Far any disjoint measurable sets A, B C E, the random variables
#NNA et #NNB are independent.

@ For any bounded measurable set A ¢ E, # N NA is distributed
according to the Poisson law with parameter AVol(A).
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Poisson Point Process

A homogeneous Poisson point process (PPP) N with intensity 4 > 0 in
E =R9 or HY is a random point set such that:

@ Far any disjoint measurable sets A, B C E, the random variables
#NNA et #NNB are independent.

@ For any bounded measurable set A ¢ E, # N NA is distributed
according to the Poisson law with parameter AVol(A).

— The most natural process to modelize a set of points without interaction.

— Locally finite, countable, stationary w.r.t. isometries in E.
— Easy to simulate.
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Simulation of the PPP A in [0; 10]?
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Figure: Simulation of the PPP N in the (Euclidean) square [0; 10]2, with intensity

A=1.
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Simulation of the PPP N in H
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Figure: Simulation of the PPP N in the half-plane H, with intensity 2 = 5.
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e A motivating example: the Continuum Percolation model
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Continuum Percolation in R¢

o
N: PPP in RY with intensity 1 > 0. )
2= UxeNB(Xa 1) @
° o€
e O
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Continuum Percolation in R¢

o
N: PPP in RY with intensity 4 > 0. o )
2= UxeNB(Xa 1) §

— Does X, contain (at least) one infinite c.c.?
When this is the case, there is percolation. )
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Continuum Percolation in R¢

N: PPP in R? with intensity A > 0. oo QQ @
Y= UxenB(X,1). § @
@
O
©

— Does X, contain (at least) one infinite c.c.? @
When this is the case, there is percolation. )

TH: For any d > 2, there exists a critical intensity 0 < A¢(d) < oo s.t.:
A < A¢(d) = a.s. any c.c. of X is finite.
A > Ac(d) = a.s. X, contains a unique infinite c.c.

[Continuum Percolation, Meester, R. and Roy, R.]
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Just a look in the proof

Let k be the number of infinite c.c. in X ;:
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Just a look in the proof

Let k be the number of infinite c.c. in X ;:

@ Im=m(1,d) €{0,1,2,3...} U {oo} such that
P(k =m) =1.
GOAL: me {0, 1}.
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Just a look in the proof

Let « be the number of infinite c.c. in X,:

@ Im=m(1,d) €{0,1,2,3...} U {oo} such that
P(k=m)=1.
GOAL: me {0, 1}.
@ Excluding cases m € {2,3...}): Easy.

© Excluding case m = co: More difficult.
Based on the famous Burton & Keane argument using that

i Surf(Br)
r—e Vol(B;)
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Just a look in the proof

Let « be the number of infinite c.c. in X,:

@ Im=m(1,d) €{0,1,2,3...} U {oo} such that
P(k=m)=1.
GOAL: me {0, 1}.
@ Excluding cases m € {2,3...}): Easy.

© Excluding case m = co: More difficult.
Based on the famous Burton & Keane argument using that

i Surf(Br)
r—e Vol(B;)

What happens in an hyperbolic context?
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Continuum Percolation in H¢

N: PPP in the Poincaré disk D with intensity 1 > 0.
Y1 := UxenB(X, R), where R > 0.
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Continuum Percolation in H¢

N: PPP in the Poincaré disk D with intensity 1 > 0.
Y1 := UxenB(X, R), where R > 0.
k : the number of infinite c.c. in X ;.
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Continuum Percolation in H¢

N: PPP in the Poincaré disk D with intensity 1 > 0.
Y1 := UxenB(X, R), where R > 0.

k : the number of infinite c.c. in .

Two critical intensities:
Ac(d) :==inffa>0:P(x >0) =1}
Au(d) :==infla>0: Pk =1) =1}.
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Continuum Percolation in H¢

N: PPP in the Poincaré disk D with intensity 1 > 0.
Y1 := UxenB(X, R), where R > 0.

k : the number of infinite c.c. in .

Two critical intensities:
Ac(d) :==inffa>0:P(x >0) =1}
Au(d) :==infla>0: Pk =1) =1}.

TH: For d > 2 and R large enough, 0 < 2,(d) < 24(d) < .
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Continuum Percolation in H¢

N: PPP in the Poincaré disk D with intensity 1 > 0.
Y1 := UxenB(X, R), where R > 0.

k : the number of infinite c.c. in .

Two critical intensities:
Ac(d) :==inffa>0:P(x >0) =1}
Au(d) :==infla>0: Pk =1) =1}.

TH: For d > 2 and R large enough, 0 < 2,(d) < 24(d) < .

TH:Ford =2and R = 1 then 0 < 1¢(2) < 4,4(2) < 0.
A< 2:(2)=as. k=0.
2:(2) <1< 24(2) = a.s. k = .
A>(2)=>as. k=1.

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]
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© The Directed Spanning Forest (DSF) in R?

Joint works with Frangois Baccelli (INRIA Paris), Kumarjit Saha (Ashoka Univ.,
India), Anish Sarkar (ISI Delhi, India), Chi Tran (Univ. Paris Est - MLV).
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The Directed Spanning Forest (DSF) in R?

Vertex set: the PPP NV in R? (1 = 1). . .
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The Directed Spanning Forest (DSF) in R?

T
Vertex set: the PPP A in R? (1 = 1). 2. ..
e> = (0,1): a deterministic direction. ° . .
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The Directed Spanning Forest (DSF) in R?

!
Vertex set: the PPP A in R? (1 = 1). 2. ..
e> = (0,1): a deterministic direction. ° . .
Local rule: each x € A is linked ' .

to the closest vertex, say A(x),
in{z eR?:(z,x+ e2) > 0}.
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The Directed Spanning Forest (DSF) in R?

T
Vertex set: the PPP A in R? (1 = 1). 2. ..
e> = (0,1): a deterministic direction. ° . .
Local rule: each x € N is linked ,,.f‘(*)'"*{ *
to the closest vertex, say A(x), . \ 7777777 Ve

in{zeR?:(z,x+ &) > 0}.

David Coupier Infinite branches of the DSF 15/25



The Directed Spanning Forest (DSF) in R?

Vertex set: the PPP NV in R? (1 = 1). .

e> = (0,1): a deterministic direction. ° . .

Local rule: each x € N is linked
to the closest vertex, say A(x), : \ .
in{zeR?:(z,x+ ) > 0}.
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The Directed Spanning Forest (DSF) in R?

t ‘
Vertex set: the PPP A in R? (1 = 1). 2. .
e> = (0,1): a deterministic direction. ° .
Local rule: each x € N is linked °
to the closest vertex, say A(x), : .

in{zeR?:(z,x+ &) > 0}.
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The Directed Spanning Forest (DSF) in R?

PR ‘
Vertex set: the PPP N in R2 (1 = 1). . L
e> = (0,1): a deterministic direction.
Local rule: each x € N is linked !
to the closest vertex, say A(x), I
in{z€R?:(z,x + ) > 0}. x

Edge set: E = {(x,A(x)) : x e N}.
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The Directed Spanning Forest (DSF) in R?

T \
Vertex set: the PPP A in R? (1 = 1). . L
e> = (0,1): a deterministic direction.

Local rule: each x € N is linked !
to the closest vertex, say A(x),
in{z eR?:(z,x+ e2) > 0}. x

Edge set: E = {(x,A(x)) : x e N}.

= The Directed Spanning Forest with direction e; is the graph (N,_E)).

David Coupier Infinite branches of the DSF 15/25



The Directed Spanning Forest (DSF) in R?

T \
Vertex set: the PPP A in R? (1 = 1). . L
e> = (0,1): a deterministic direction.

Local rule: each x € N is linked !
to the closest vertex, say A(x),
in{z eR?:(z,x+ e2) > 0}. x

H
Edge set: E := {(x,A(x)) : x e N'}.
= The Directed Spanning Forest with direction e; is the graph (N,_E)).

@ Introduced by Baccelli & Bordenave (’08) to modelize communication
networks.
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The Directed Spanning Forest (DSF) in R?

T \
Vertex set: the PPP A in R? (1 = 1). . L
e> = (0,1): a deterministic direction.

Local rule: each x € N is linked !
to the closest vertex, say A(x),
in{z eR?:(z,x+ e2) > 0}. x

H
Edge set: E := {(x,A(x)) : x e N'}.
= The Directed Spanning Forest with direction e; is the graph (N,_E)).

@ Introduced by Baccelli & Bordenave (’08) to modelize communication
networks.

@ Natural questions arise: Coalescence? Scaling limit ?
@ But long-range dependence...
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Dependence phenomenons

(a) (b)

Figure: (a) Dependence phenomenon within a single branch: how the previous
steps may influence the next steps. (b) Dependence phenomenon between two
branches: the overlap locally acts as a repulsive effect.
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Coalescence in R?

TH: [C. & Tran '12]
(1) A.s. all the DSF branches eventually coalesce.
(2) A.s. there is no bi-infinite branch in the DSF.
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(2) A.s. there is no bi-infinite branch in the DSF.
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Our proof used the Burton & Keane argument and amenability of R?...
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Coalescence in R?

TH: [C. & Tran '12]
(1) A.s. all the DSF branches eventually coalesce.
(2) A.s. there is no bi-infinite branch in the DSF.
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Our proof used the Burton & Keane argument and amenability of R?...
— What happens in H?

David Coupier Infinite branches of the DSF 18/25



Generalizations conjectured in R?

With Saha, Sarkar & Tran ('18), we have proved:

The DSF in R?, at a diffusive scale,
converges in distribution to the Brownian Web.
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— A new proof of coalescence and absence of bi-infinite path
for the DSF in R? without Burton & Keane argument.
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Generalizations conjectured in R?

With Saha, Sarkar & Tran ('18), we have proved:

The DSF in R?, at a diffusive scale,
converges in distribution to the Brownian Web.

In this work, new tools are developed...

— A new proof of coalescence and absence of bi-infinite path
for the DSF in R? without Burton & Keane argument.

— A generalization to d > 3.
(strona) CONJECTURES:
(1) Ford e {2,3}, a.s. DSF is a tree.

(2) For d > 4, a.s. the DSF contains infinitely many trees.
(3) Ford > 2, a.s. there is no bi-infinite branch in the DSF.

David Coupier Infinite branches of the DSF 19/25



@ The DSFin 1

PhD work of Lucas Flammant supervised by Chi Tran (Univ. Paris Est - MLV)
and myself.

The Directed Spanning Forest in the Hyperbolic space,
Lucas Flammant, 67 pages, 2020. arXiv:1909.13731
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y

RA-1
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y
Vertex set: the PPP N in H (with 4 > 0). .

RA-1
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The DSF in the half-space (H, ds?)

o
Points at infinity: (R‘H X {0}) U {oo}. y
Vertex set: the PPP N in H (with 4 > 0). .
Horodistance: distance from a point to . .

RA-1
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Vertex set: the PPP N in H (with 4 > 0). B e

Horodistance: distance from a point to . o o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Horospheres: spheres centered at .
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y
Vertex set: the PPP N in H (with 4 > 0).

Horodistance: distance from a point to .

Horospheres: spheres centered at .

Local rule: each x € N is linked RO
to the closest vertex (w.r.t. the metric dsf,),
say A(x), with higher ordinate y.
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Vertex set: the PPP N in H (with 4 > 0).

Horodistance: distance from a point to .

Horospheres: spheres centered at .

Local rule: each x € N is linked RO
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y
Vertex set: the PPP N in H (with 4 > 0).

Horodistance: distance from a point to .

Horospheres: spheres centered at .

Local rule: each x € N is linked RO
to the closest vertex (w.r.t. the metric dsf,),
say A(x), with higher ordinate y.

Edge set: E = {(x,A(x)) : x € N}
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The DSF in the half-space (H, ds?)

Points at infinity: (R‘H X {0}) U {oo}. y
Vertex set: the PPP N in H (with 4 > 0).

Horodistance: distance from a point to .

Horospheres: spheres centered at .

Local rule: each x € N is linked RO
to the closest vertex (w.r.t. the metric dsf,),
say A(x), with higher ordinate y.

Edge set: E = {(x,A(x)) : x € N}

= The Directed Spanning Forest with direction o is the graph (N,T:')).
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Simulation of the hyperbolic DSF

-300 -200 -100 0 100

Simulation of the DSF in H?, represented in the half-plane model,
with direction co and intensity 4 = 10.
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Lucas’s results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any d > 2 and any intensity 2 > 0, the following happens:
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For any d > 2 and any intensity 2 > 0, the following happens:

(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.

(3) A.s. every bi-infinite branch admits an asymptotic direction in
R x {0}.

(4) A.s. for every asymptotic direction (x,0) in R%~" x {0}, there exists a
bi-infinite branch whose asymptotic direction is (x, 0).
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Lucas’s results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any d > 2 and any intensity 2 > 0, the following happens:

(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.

(3) A.s. every bi-infinite branch admits an asymptotic direction in
R x {0}.

(4) A.s. for every asymptotic direction (x,0) in R%~" x {0}, there exists a
bi-infinite branch whose asymptotic direction is (x, 0).

(5) For any given asymptotic direction (x,0) in R%~" x {0}, there is a.s.
only one bi-infinite branch whose asymptotic direction is (x, 0).

(6) A.s. the (random) subset asymptotic directions in which there are (at
least) two infinite branches is dense in R~ x {0}.
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Heuristic for coalescence

(o0)
Let x = (-, e9). ,
ot .
&0 . .
X
i
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Heuristic for coalescence

Letx = (-, €°). ,

At level e!, with proba — 1 as t — oo, O
the DSF path starting at x
remains inside a cone.

David Coupier Infinite branches of the DSF 24/25



Heuristic for coalescence

Letx = (-, €°). ,

At level !, with proba — 1 as t — oo, o -
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Heuristic for coalescence

Letx = (-, €°).

At level e!, with proba — 1 as t — oo,

the DSF path starting at x
remains inside a cone.

Cone opening = O(e') w.r.t. Euclidean dist.
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Heuristic for coalescence

Letx = (-, €°).

At level e!, with proba — 1 as t — oo,
the DSF path starting at x
remains inside a cone.

Cone opening = O(e') w.r.t. Euclidean dist.
= O(1) w.r.t. hyperbolic dist.
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Heuristic for coalescence

Letx = (-, €°).

At level e!, with proba — 1 as t — oo,
the DSF path starting at x
remains inside a cone.

Cone opening = O(e') w.r.t. Euclidean dist.
= O(1) w.r.t. hyperbolic dist.

el -

= Two DSF paths starting at x and x’
remain at hyperbolic dist. O(1)
from each other over time.
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Heuristic for coalescence

Letx = (-, €°).

At level e!, with proba — 1 as t — oo,
the DSF path starting at x
remains inside a cone.

el -

Cone opening = O(e!) w.r.t. Euclidean dist. o
= O(1) w.r.t. hyperbolic dist. x

= Two DSF paths starting at x and x’ -
remain at hyperbolic dist. O(1) “
from each other over time.

= At each step, they have a proba > 0 to coalesce.
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Heuristic for coalescence

Letx = (-, €°).

At level e!, with proba — 1 as t — oo,
the DSF path starting at x
remains inside a cone.

Cone opening = O(e') w.r.t. Euclidean dist.
= O(1) w.r.t. hyperbolic dist.

el -

= Two DSF paths starting at x and x’
remain at hyperbolic dist. O(1)
from each other over time.

= At each step, they have a proba > 0 to coalesce.

This eventually occurs!
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Thank you for your attention!

Simulation of the Radial Spanning Tree,
represented in the Poincaré disk D, with colors.

David Coupier Infinite branches of the DSF 25/25



	Backgrounds
	A motivating example: the Continuum Percolation model
	The Directed Spanning Forest (DSF) in Rd
	The DSF in Hd

