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A 1st model of Hd : the half-space model (H, ds2
H
)

The hyperbolic space Hd is a d-Riemannian manifold that can be defined

by several isometric models.

⋆ The half-space model (H, ds2
H
):

H :=
{

(x1, ..., xd−1, y) ∈ R
d , y > 0

}

.

The metric ds2
H
:=

dx2
1
+...+dx2

d−1
+dy2

y2 .

The volume measure µH given by dµH := dx1...dxd−1dy

yd .
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A 2nd model of Hd : the Poincaré disk model (D, ds2
D
)

⋆ The Poincaré disk model (D, ds2
D
):

D :=
{

(x1, ..., xd) ∈ R
d , x2

1
+ ...+ x2

d
< 1
}

.

The metric ds2
D
:= 4

dx2
1
+...+dx2

d

(1−x2
1
−...−x2

d
)2 .

The volume measure µD given by dµD := 2d dx1...dxd

(1−x2
1
−...−x2

d
)d .
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A crucial difference between Euclidean & hyperbolic

Let Br := B(·, r) be a ball with radius r .

Vol(·) and Surf(·) are relative to Leb(·) in Rd and to µ(·) in Hd .

In Euclidean space:

lim
r→∞

Surf(Br)

Vol(Br)
= 0 .

R
d is said amenable.

In hyperbolic space:

lim
r→∞

Surf(Br)

Vol(Br)
> 0 .

H
d is said non-amenable.
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Poisson Point Process

A homogeneous Poisson point process (PPP) N with intensity λ > 0 in

E = Rd or Hd is a random point set such that:

Far any disjoint measurable sets A ,B ⊂ E, the random variables

#N∩A et #N∩B are independent.

For any bounded measurable set A ⊂ E, #N∩A is distributed

according to the Poisson law with parameter λVol(A).

→ The most natural process to modelize a set of points without interaction.

→ Locally finite, countable, stationary w.r.t. isometries in E.

→ Easy to simulate.
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Simulation of the PPP N in [0; 10]2

Figure: Simulation of the PPP N in the (Euclidean) square [0; 10]2, with intensity

λ = 1.
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Simulation of the PPP N in H

Figure: Simulation of the PPPN in the half-plane H, with intensity λ = 5.
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Continuum Percolation in Rd

N : PPP in Rd with intensity λ > 0.

Σλ := ∪x∈NB(x , 1).

→ Does Σλ contain (at least) one infinite c.c.?

When this is the case, there is percolation.

TH: For any d ≥ 2, there exists a critical intensity 0 < λc(d) < ∞ s.t.:

λ < λc(d)⇒ a.s. any c.c. of Σλ is finite.

λ > λc(d)⇒ a.s. Σλ contains a unique infinite c.c.

[Continuum Percolation, Meester, R. and Roy, R.]
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Just a look in the proof

Let κ be the number of infinite c.c. in Σλ:

1 ∃m = m(λ, d) ∈ {0, 1, 2, 3 . . .} ∪ {∞} such that

IP(κ = m) = 1.

GOAL: m ∈ {0, 1}.

2 Excluding cases m ∈ {2, 3 . . .}: Easy.

3 Excluding case m = ∞: More difficult.

Based on the famous Burton & Keane argument using that

lim
r→∞

Surf(Br)

Vol(Br)
= 0 .

What happens in an hyperbolic context?
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Continuum Percolation in Hd

N : PPP in the Poincaré disk D with intensity λ > 0.

Σλ := ∪x∈NB(x ,R), where R > 0.

κ : the number of infinite c.c. in Σλ.

Two critical intensities:

λc(d) := inf{λ > 0 : IP(κ > 0) = 1}.

λu(d) := inf{λ > 0 : IP(κ = 1) = 1}.

TH: For d ≥ 2 and R large enough, 0 ≤ λc(d) < λu(d) ≤ ∞.

TH: For d = 2 and R = 1 then 0 < λc(2) < λu(2) < ∞.

λ < λc(2)⇒ a.s. κ = 0.

λc(2) < λ < λu(2)⇒ a.s. κ = ∞.

λ > λu(2)⇒ a.s. κ = 1.

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]
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Joint works with François Baccelli (INRIA Paris), Kumarjit Saha (Ashoka Univ.,

India), Anish Sarkar (ISI Delhi, India), Chi Tran (Univ. Paris Est - MLV).
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The Directed Spanning Forest (DSF) in R2

x

Vertex set: the PPP N in R2 (λ = 1).

e2 = (0, 1): a deterministic direction.

Local rule: each x ∈ N is linked

to the closest vertex, say A(x),
in {z ∈ R2 : 〈z, x + e2〉 ≥ 0}.

Edge set:
−→
E := {(x,A(x)) : x ∈ N}.

⇒ The Directed Spanning Forest with direction e2 is the graph (N ,
−→
E ).

Introduced by Baccelli & Bordenave (’08) to modelize communication

networks.

Natural questions arise: Coalescence? Scaling limit ?

But long-range dependence...
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networks.

Natural questions arise: Coalescence? Scaling limit ?

But long-range dependence...
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A simulation of the DSF
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Dependence phenomenons

z

y

x x

y

(a) (b)

Figure: (a) Dependence phenomenon within a single branch: how the previous

steps may influence the next steps. (b) Dependence phenomenon between two

branches: the overlap locally acts as a repulsive effect.
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Coalescence in R2

TH: [C. & Tran ’12]

(1) A.s. all the DSF branches eventually coalesce.

(2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton & Keane argument and amenability of R2...

→What happens in Hd?
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Generalizations conjectured in Rd

With Saha, Sarkar & Tran (’18), we have proved:

The DSF in R2, at a diffusive scale,

converges in distribution to the Brownian Web.

In this work, new tools are developed...

→ A new proof of coalescence and absence of bi-infinite path

for the DSF in R2 without Burton & Keane argument.

→ A generalization to d ≥ 3.

(strong) CONJECTURES:

(1) For d ∈ {2, 3}, a.s. DSF is a tree.

(2) For d ≥ 4, a.s. the DSF contains infinitely many trees.

(3) For d ≥ 2, a.s. there is no bi-infinite branch in the DSF.
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Plan

1 Backgrounds

2 A motivating example: the Continuum Percolation model

3 The Directed Spanning Forest (DSF) in Rd

4 The DSF in Hd

PhD work of Lucas Flammant supervised by Chi Tran (Univ. Paris Est - MLV)

and myself.

The Directed Spanning Forest in the Hyperbolic space,

Lucas Flammant, 67 pages, 2020. arXiv:1909.13731
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The DSF in the half-space (H, ds2
H
)

R
d−1

yPoints at infinity:
(

R
d−1 × {0}

)

∪ {∞}.

Vertex set: the PPP N in H (with λ > 0).

Horodistance: distance from a point to ∞.

Horospheres: spheres centered at ∞.

Local rule: each x ∈ N is linked

to the closest vertex (w.r.t. the metric ds2
H

),

say A(x), with higher ordinate y.

Edge set:
−→
E := {(x,A(x)) : x ∈ N}.

⇒ The Directed Spanning Forest with direction ∞ is the graph (N ,
−→
E ).
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Simulation of the hyperbolic DSF

Simulation of the DSF in H2, represented in the half-plane model,

with direction ∞ and intensity λ = 10.
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Lucas’s results about the hyperbolic DSF

TH: [L. Flammant (’20)]

For any d ≥ 2 and any intensity λ > 0, the following happens:

(1) A.s. the hyperbolic DSF is a tree.

(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.

(3) A.s. every bi-infinite branch admits an asymptotic direction in

R
d−1 × {0}.

(4) A.s. for every asymptotic direction (x , 0) in Rd−1 × {0}, there exists a

bi-infinite branch whose asymptotic direction is (x , 0).

(5) For any given asymptotic direction (x , 0) in Rd−1 × {0}, there is a.s.

only one bi-infinite branch whose asymptotic direction is (x , 0).

(6) A.s. the (random) subset asymptotic directions in which there are (at

least) two infinite branches is dense in Rd−1 × {0}.
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Heuristic for coalescence

R
d−1

y

∞

e0

et

x

Let x = (·, e0).

At level et , with proba→ 1 as t → ∞,

the DSF path starting at x

remains inside a cone.

Cone opening = O(et) w.r.t. Euclidean dist.

= O(1) w.r.t. hyperbolic dist.

⇒ Two DSF paths starting at x and x
′

remain at hyperbolic dist. O(1)
from each other over time.

⇒ At each step, they have a proba > 0 to coalesce.

This eventually occurs!
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⇒ At each step, they have a proba > 0 to coalesce.

This eventually occurs!
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Thank you for your attention!

Simulation of the Radial Spanning Tree,

represented in the Poincaré disk D, with colors.
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