Infinite branches of the Directed Spanning Forest in Euclidean and hyperbolic spaces

David Coupier - Univ. Valenciennes

Institutskolloquium - Universität Potsdam

A motivating example: the Continuum Percolation model

- 3 The Directed Spanning Forest (DSF) in \mathbb{R}^d
 - The DSF in \mathbb{H}^d

Backgrounds

2 A motivating example: the Continuum Percolation model

 ${\color{black} 3}$ The Directed Spanning Forest (DSF) in \mathbb{R}^d

The DSF in H^d

★ The half-space model (H, ds_H^2) :

•
$$H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$$

- The metric $ds_H^2 := \frac{dx_1^2 + ... + dx_{d-1}^2 + dy^2}{y^2}$.
- The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{y^d}$.

★ The half-space model (H, ds_H^2) :

•
$$H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$$

• The metric
$$ds_H^2 := \frac{dx_1^2 + ... + dx_{d-1}^2 + dy^2}{y^2}$$

• The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{y^d}$.

★ The half-space model (H, ds_H^2) :

•
$$H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$$

• The metric
$$ds_{H}^{2} := \frac{dx_{1}^{2} + ... + dx_{d-1}^{2} + dy^{2}}{y^{2}}$$

• The volume measure
$$\mu_H$$
 given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{y^d}$.

★ The half-space model (H, ds_H^2) :

•
$$H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$$

• The metric
$$ds_{H}^{2} := \frac{dx_{1}^{2} + ... + dx_{d-1}^{2} + dy^{2}}{y^{2}}$$
.

• The volume measure
$$\mu_H$$
 given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{y^d}$.

The hyperbolic space \mathbb{H}^d is a *d*-Riemannian manifold that can be defined by several *isometric* models.

- ★ The half-space model (H, ds_H^2) :
 - $H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$
 - The metric $ds_{H}^{2} := \frac{dx_{1}^{2} + ... + dx_{d-1}^{2} + dy^{2}}{y^{2}}$
 - The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{y^d}$.

The hyperbolic space \mathbb{H}^d is a *d*-Riemannian manifold that can be defined by several *isometric* models.

- ★ The half-space model (H, ds_H^2) :
 - $H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$
 - The metric $ds_{H}^{2} := \frac{dx_{1}^{2} + ... + dx_{d-1}^{2} + dy^{2}}{y^{2}}$
 - The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{v^d}$.

The hyperbolic space \mathbb{H}^d is a *d*-Riemannian manifold that can be defined by several *isometric* models.

- ★ The half-space model (H, ds_H^2) :
 - $H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$
 - The metric $ds_H^2 := \frac{dx_1^2 + ... + dx_{d-1}^2 + dy^2}{y^2}$
 - The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{v^d}$.

The hyperbolic space \mathbb{H}^d is a *d*-Riemannian manifold that can be defined by several *isometric* models.

- ★ The half-space model (H, ds_H^2) :
 - $H := \{(x_1, ..., x_{d-1}, y) \in \mathbb{R}^d, y > 0\}.$
 - The metric $ds_{H}^{2} := \frac{dx_{1}^{2} + ... + dx_{d-1}^{2} + dy^{2}}{y^{2}}$

• The volume measure μ_H given by $d\mu_H := \frac{dx_1...dx_{d-1}dy}{v^d}$.

\star The Poincaré disk model (D, ds_D^2) :

•
$$D := \{(x_1, ..., x_d) \in \mathbb{R}^d, x_1^2 + ... + x_d^2 < 1\}.$$

• The metric
$$ds_D^2 := 4 \frac{dx_1^2 + \dots + dx_d^2}{(1 - x_1^2 - \dots - x_d^2)^2}$$
.

• The volume measure
$$\mu_D$$
 given by $d\mu_D := 2^d \frac{dx_1...dx_d}{(1-x_1^2-...-x_d^2)^d}$.

- ★ The Poincaré disk model (D, ds_D^2) :
 - $D := \{(x_1, ..., x_d) \in \mathbb{R}^d, x_1^2 + ... + x_d^2 < 1\}.$
 - The metric $ds_D^2 := 4 \frac{dx_1^2 + \dots + dx_d^2}{(1 x_1^2 \dots x_d^2)^2}$.
 - The volume measure μ_D given by $d\mu_D := 2^d \frac{dx_1...dx_d}{(1-x_1^2-...-x_d^2)^d}$.

- ★ The Poincaré disk model (D, ds_D^2) :
 - $D := \{(x_1, ..., x_d) \in \mathbb{R}^d, x_1^2 + ... + x_d^2 < 1\}.$
 - The metric $ds_D^2 := 4 \frac{dx_1^2 + \dots + dx_d^2}{(1 x_1^2 \dots x_d^2)^2}$.
 - The volume measure μ_D given by $d\mu_D := 2^d \frac{dx_1...dx_d}{(1-x_1^2-...-x_d^2)^d}$.

★ The Poincaré disk model (D, ds_D^2) :

- $D := \{(x_1, ..., x_d) \in \mathbb{R}^d, x_1^2 + ... + x_d^2 < 1\}.$
- The metric $ds_D^2 := 4 \frac{dx_1^2 + ... + dx_d^2}{(1 x_1^2 ... x_d^2)^2}$.
- The volume measure μ_D given by $d\mu_D := 2^d \frac{dx_1...dx_d}{(1-x_1^2-...-x_d^2)^d}$.

Let $B_r := B(\cdot, r)$ be a ball with radius r. Vol(\cdot) and Surf(\cdot) are relative to Leb(\cdot) in \mathbb{R}^d and to $\mu(\cdot)$ in \mathbb{H}^d .

• In Euclidean space:

 \mathbb{R}^d is said amenable.

In hyperbolic space:

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}>0.$$

 \mathbb{H}^d is said non-amenable.

Let $B_r := B(\cdot, r)$ be a ball with radius r.

Vol(·) and Surf(·) are relative to Leb(·) in \mathbb{R}^d and to $\mu(\cdot)$ in \mathbb{H}^d .

• In Euclidean space:

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

 \mathbb{R}^d is said amenable.

In hyperbolic space:

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}>0.$$

 \mathbb{H}^d is said non-amenable.

Let $B_r := B(\cdot, r)$ be a ball with radius r.

Vol(·) and Surf(·) are relative to Leb(·) in \mathbb{R}^d and to $\mu(\cdot)$ in \mathbb{H}^d .

• In Euclidean space:

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

 \mathbb{R}^d is said amenable.

In hyperbolic space:

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}>0.$$

 \mathbb{H}^d is said non-amenable.

- Far any disjoint measurable sets A, B ⊂ E, the random variables #N∩A et #N∩B are independent.
- For any bounded measurable set A ⊂ E, #N∩A is distributed according to the Poisson law with parameter λVol(A).

 \rightarrow The most natural process to modelize a set of points without interaction.

 \rightarrow Locally finite, countable, stationary w.r.t. isometries in *E*.

 \rightarrow Easy to simulate.

- Far any disjoint measurable sets A, B ⊂ E, the random variables #N∩A et #N∩B are independent.
- For any bounded measurable set A ⊂ E, #N∩A is distributed according to the Poisson law with parameter λVol(A).
- \rightarrow The most natural process to modelize a set of points without interaction.
- \rightarrow Locally finite, countable, stationary w.r.t. isometries in *E*.

 \rightarrow Easy to simulate.

- Far any disjoint measurable sets A, B ⊂ E, the random variables #N∩A et #N∩B are independent.
- For any bounded measurable set A ⊂ E, #N∩A is distributed according to the Poisson law with parameter λVol(A).
- \rightarrow The most natural process to modelize a set of points without interaction.
- \rightarrow Locally finite, countable, stationary w.r.t. isometries in *E*.

 \rightarrow Easy to simulate.

- Far any disjoint measurable sets A, B ⊂ E, the random variables #N∩A et #N∩B are independent.
- For any bounded measurable set A ⊂ E, #N∩A is distributed according to the Poisson law with parameter λVol(A).
- \rightarrow The most natural process to modelize a set of points without interaction.
- \rightarrow Locally finite, countable, stationary w.r.t. isometries in *E*.
- \rightarrow Easy to simulate.

Simulation of the PPP N in $[0; 10]^2$

Figure: Simulation of the PPP N in the (Euclidean) square $[0; 10]^2$, with intensity $\lambda = 1$.

Simulation of the PPP N in H

Figure: Simulation of the PPP N in the half-plane H, with intensity $\lambda = 5$.

	~	
1 lov//d	1.011	nior
Daviu	C 3011	UIEI

Backgrounds

A motivating example: the Continuum Percolation model

3) The Directed Spanning Forest (DSF) in \mathbb{R}^d

The DSF in H^a

Continuum Percolation in \mathbb{R}^d

 \mathcal{N} : PPP in \mathbb{R}^d with intensity $\lambda > 0$.

 $\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, 1).$

 \rightarrow Does Σ_{λ} contain (at least) one infinite c.c.? When this is the case, there is percolation.

<u>TH:</u> For any $d \ge 2$, there exists a critical intensity $0 < \lambda_c(d) < \infty$ s.t.: $\lambda < \lambda_c(d) \Rightarrow$ a.s. any c.c. of Σ_{λ} is finite. $\lambda > \lambda_c(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.

[Continuum Percolation, Meester, R. and Roy, R.]

Continuum Percolation in \mathbb{R}^d

 \mathcal{N} : PPP in \mathbb{R}^d with intensity $\lambda > 0$.

 $\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, 1).$

 \rightarrow Does Σ_{λ} contain (at least) one infinite c.c.? When this is the case, there is percolation.

<u>TH:</u> For any $d \ge 2$, there exists a critical intensity $0 < \lambda_c(d) < \infty$ s.t.: $\lambda < \lambda_c(d) \Rightarrow$ a.s. any c.c. of Σ_{λ} is finite. $\lambda > \lambda_c(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.

[Continuum Percolation, Meester, R. and Roy, R.]

Continuum Percolation in \mathbb{R}^d

 \mathcal{N} : PPP in \mathbb{R}^d with intensity $\lambda > 0$.

 $\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, 1).$

→ Does Σ_{λ} contain (at least) one infinite c.c.? When this is the case, there is percolation.

<u>TH:</u> For any $d \ge 2$, there exists a critical intensity $0 < \lambda_c(d) < \infty$ s.t.: $\lambda < \lambda_c(d) \Rightarrow$ a.s. any c.c. of Σ_λ is finite.

 $\lambda > \lambda_c(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.

[Continuum Percolation, Meester, R. and Roy, R.]

Let κ be the number of infinite c.c. in Σ_{λ} :

■
$$\exists m = m(\lambda, d) \in \{0, 1, 2, 3...\} \cup \{\infty\}$$
 such that
 $\mathbb{P}(\kappa = m) = 1.$
GOAL: $m \in \{0, 1\}.$

② Excluding cases $m \in \{2, 3...\}$: Easy.

I Excluding case m = ∞: More difficult. Based on the famous Burton & Keane argument using that

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

Let κ be the number of infinite c.c. in Σ_{λ} :

●
$$\exists m = m(\lambda, d) \in \{0, 1, 2, 3...\} \cup \{\infty\}$$
 such that
 $\mathbb{P}(\kappa = m) = 1.$
GOAL: *m* ∈ {0, 1}.

2 Excluding cases $m \in \{2, 3...\}$: Easy.

I Excluding case m = ∞: More difficult. Based on the famous Burton & Keane argument using that

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

Let κ be the number of infinite c.c. in Σ_{λ} :

●
$$\exists m = m(\lambda, d) \in \{0, 1, 2, 3...\} \cup \{\infty\}$$
 such that
 $\mathbb{P}(\kappa = m) = 1.$
GOAL: *m* ∈ {0, 1}.

2 Excluding cases $m \in \{2, 3...\}$: Easy.

Excluding case $m = \infty$: More difficult. Based on the famous Burton & Keane argument using that

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

Let κ be the number of infinite c.c. in Σ_{λ} :

●
$$\exists m = m(\lambda, d) \in \{0, 1, 2, 3...\} \cup \{\infty\}$$
 such that
 $\mathbb{P}(\kappa = m) = 1.$
GOAL: *m* ∈ {0, 1}.

- 2 Excluding cases $m \in \{2, 3...\}$: Easy.
- Second Se

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

Let κ be the number of infinite c.c. in Σ_{λ} :

●
$$\exists m = m(\lambda, d) \in \{0, 1, 2, 3...\} \cup \{\infty\}$$
 such that
 $\mathbb{P}(\kappa = m) = 1.$
GOAL: *m* ∈ {0, 1}.

- 2 Excluding cases $m \in \{2, 3...\}$: Easy.
- Second Se

$$\lim_{r\to\infty}\frac{\operatorname{Surf}(B_r)}{\operatorname{Vol}(B_r)}=0\;.$$

Continuum Percolation in \mathbb{H}^d

\mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda > 0$.

$$\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, R)$$
, where $R > 0$.

 κ : the number of infinite c.c. in Σ_{λ} .

Two critical intensities:

$$\lambda_c(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa > 0) = 1\}.$$

$$\lambda_u(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa = 1) = 1\}.$$

<u>TH:</u> For $d \ge 2$ and *R* large enough, $0 \le \lambda_c(d) < \lambda_u(d) \le \infty$.

<u>TH:</u> For d = 2 and R = 1 then $0 < \lambda_c(2) < \lambda_u(2) < \infty$.

$$\lambda < \lambda_c(2) \Rightarrow \text{a.s. } \kappa = 0.$$

$$\lambda_c(2) < \lambda < \lambda_u(2) \Rightarrow \text{a.s. } \kappa = \infty.$$

$$\lambda > \lambda_u(2) \Rightarrow \text{a.s. } \kappa = 1.$$

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]

(日)

Continuum Percolation in \mathbb{H}^d

 \mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda > 0$.

$$\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, R)$$
, where $R > 0$.

 κ : the number of infinite c.c. in Σ_{λ} .

Two critical intensities:

$$\lambda_c(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa > 0) = 1\}.$$

$$\lambda_u(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa = 1) = 1\}.$$

<u>TH:</u> For $d \ge 2$ and *R* large enough, $0 \le \lambda_c(d) < \lambda_u(d) \le \infty$.

<u>TH:</u> For d = 2 and R = 1 then $0 < \lambda_c(2) < \lambda_u(2) < \infty$.

$$\lambda < \lambda_c(2) \Rightarrow \text{a.s. } \kappa = 0.$$

$$\lambda_c(2) < \lambda < \lambda_u(2) \Rightarrow \text{a.s. } \kappa = \infty.$$

$$\lambda > \lambda_u(2) \Rightarrow \text{a.s. } \kappa = 1.$$

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]

(日)

Continuum Percolation in \mathbb{H}^d

 \mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda > 0$.

$$\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, R)$$
, where $R > 0$.

 κ : the number of infinite c.c. in Σ_{λ} .

Two critical intensities:

$$\lambda_c(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa > 0) = 1\}.$$

$$\lambda_u(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa = 1) = 1\}.$$

<u>TH:</u> For $d \ge 2$ and *R* large enough, $0 \le \lambda_c(d) < \lambda_u(d) \le \infty$.

<u>TH:</u> For d = 2 and R = 1 then $0 < \lambda_c(2) < \lambda_u(2) < \infty$.

 $\lambda < \lambda_c(2) \Rightarrow \text{a.s. } \kappa = 0.$ $\lambda_c(2) < \lambda < \lambda_u(2) \Rightarrow \text{a.s. } \kappa = \infty.$ $\lambda > \lambda_u(2) \Rightarrow \text{a.s. } \kappa = 1.$

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]

く ロ ト く 同 ト く 三 ト く 三 ト
Continuum Percolation in \mathbb{H}^d

 \mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda > 0$.

$$\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, R)$$
, where $R > 0$.

 κ : the number of infinite c.c. in Σ_{λ} .

Two critical intensities:

$$\lambda_c(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa > 0) = 1\}.$$

$$\lambda_u(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa = 1) = 1\}.$$

<u>TH:</u> For $d \ge 2$ and *R* large enough, $0 \le \lambda_c(d) < \lambda_u(d) \le \infty$.

<u>TH:</u> For d = 2 and R = 1 then $0 < \lambda_c(2) < \lambda_u(2) < \lambda < \lambda_c(2) \Rightarrow a.s. \kappa = 0.$ $\lambda_c(2) < \lambda < \lambda_u(2) \Rightarrow a.s. \kappa = \infty.$ $\lambda > \lambda_u(2) \Rightarrow a.s. \kappa = 1.$

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

 \mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda > 0$.

$$\Sigma_{\lambda} := \cup_{x \in \mathcal{N}} B(x, R)$$
, where $R > 0$.

 κ : the number of infinite c.c. in Σ_{λ} .

Two critical intensities:

$$\lambda_c(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa > 0) = 1\}.$$

$$\lambda_u(d) := \inf\{\lambda > 0 : \mathbb{P}(\kappa = 1) = 1\}.$$

<u>TH:</u> For $d \ge 2$ and *R* large enough, $0 \le \lambda_c(d) < \lambda_u(d) \le \infty$.

<u>TH:</u> For d = 2 and R = 1 then $0 < \lambda_c(2) < \lambda_u(2) < \infty$.

$$\lambda < \lambda_c(2) \Rightarrow \text{a.s. } \kappa = 0.$$

$$\lambda_c(2) < \lambda < \lambda_u(2) \Rightarrow \text{a.s. } \kappa = \infty.$$

$$\lambda > \lambda_u(2) \Rightarrow \text{a.s. } \kappa = 1.$$

[The number of unbounded components in the Poisson Boolean model of continuum percolation in hyperbolic space, Tykesson, J.]

く ロ ト く 同 ト く 三 ト く 三 ト

Backgrounds

2 A motivating example: the Continuum Percolation model

3 The Directed Spanning Forest (DSF) in \mathbb{R}^d

4 The DSF in H^d

Joint works with François Baccelli (INRIA Paris), Kumarjit Saha (Ashoka Univ., India), Anish Sarkar (ISI Delhi, India), Chi Tran (Univ. Paris Est - MLV).

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

Vertex set: the PPP N in \mathbb{R}^2 ($\lambda = 1$). $e_2 = (0, 1)$: a deterministic direction. Local rule: each $\mathbf{x} \in N$ is linked to the closest vertex, say $A(\mathbf{x})$,

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

in $\{z \in \mathbb{R}^2 : \langle z, \mathbf{x} + \mathbf{e}_2 \rangle \geq 0\}$.

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest with direction e_2 is the graph (\mathcal{N}, \vec{E}) .
- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest with direction e_2 is the graph (\mathcal{N}, \vec{E}) .
- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

- \Rightarrow The Directed Spanning Forest with direction e_2 is the graph (\mathcal{N}, \vec{E}) .
- Introduced by Baccelli & Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

A simulation of the DSF

æ

э

A D > <
A P >
A

Dependence phenomenons

Figure: (a) Dependence phenomenon within a single branch: how the previous steps may influence the next steps. (b) Dependence phenomenon between two branches: the overlap locally acts as a repulsive effect.

Coalescence in \mathbb{R}^2

TH: [C. & Tran '12]

- (1) A.s. all the DSF branches eventually coalesce.
- (2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton & Keane argument and amenability of \mathbb{R}^2 ... \rightarrow What happens in \mathbb{H}^d ?

David Coupier

Coalescence in \mathbb{R}^2

TH: [C. & Tran '12]

- (1) A.s. all the DSF branches eventually coalesce.
- (2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton & Keane argument and amenability of \mathbb{R}^2 ... \rightarrow What happens in \mathbb{H}^d ?

David Coupier

Coalescence in \mathbb{R}^2

TH: [C. & Tran '12]

- (1) A.s. all the DSF branches eventually coalesce.
- (2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton & Keane argument and amenability of \mathbb{R}^2 ... \rightarrow What happens in \mathbb{H}^d ?

David Coupier

Infinite branches of the DSF

The DSF in \mathbb{R}^2 , at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...

 \rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^2 without Burton & Keane argument.

 \rightarrow A generalization to $d \ge 3$.

(STRONG) CONJECTURES:

(1) For $d \in \{2, 3\}$, a.s. DSF is a tree.

(2) For $d \ge 4$, a.s. the DSF contains infinitely many trees.

(3) For $d \ge 2$, a.s. there is no bi-infinite branch in the DSF.

The DSF in \mathbb{R}^2 , at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...

 \rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^2 without Burton & Keane argument.

 \rightarrow A generalization to $d \ge 3$.

(STRONG) CONJECTURES:

(1) For $d \in \{2, 3\}$, a.s. DSF is a tree.

(2) For $d \ge 4$, a.s. the DSF contains infinitely many trees.

(3) For $d \ge 2$, a.s. there is no bi-infinite branch in the DSF.

The DSF in \mathbb{R}^2 , at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...

 \rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^2 without Burton & Keane argument.

 \rightarrow A generalization to $d \ge 3$.

(STRONG) CONJECTURES:

(1) For $d \in \{2, 3\}$, a.s. DSF is a tree.

(2) For $d \ge 4$, a.s. the DSF contains infinitely many trees.

(3) For $d \ge 2$, a.s. there is no bi-infinite branch in the DSF.

The DSF in \mathbb{R}^2 , at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...

 \rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^2 without Burton & Keane argument.

 \rightarrow A generalization to $d \ge 3$.

(STRONG) CONJECTURES:

(1) For $d \in \{2, 3\}$, a.s. DSF is a tree.

- (2) For $d \ge 4$, a.s. the DSF contains infinitely many trees.
- (3) For $d \ge 2$, a.s. there is no bi-infinite branch in the DSF.

Backgrounds

- 2 A motivating example: the Continuum Percolation model
- 3 The Directed Spanning Forest (DSF) in \mathbb{R}^d

4 The DSF in ℍ^d

PhD work of Lucas Flammant supervised by Chi Tran (Univ. Paris Est - MLV) and myself.

The Directed Spanning Forest in the Hyperbolic space, Lucas Flammant, 67 pages, 2020. arXiv:1909.13731

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to

Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_H^2), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to

Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to

Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

 \Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}) .

 ∞

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to

Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

 \Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

 ∞

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_H^2), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to

Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

 \Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}) .

 ∞

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_H^2), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_{H}^{2}), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_H^2), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

Points at infinity: $(\mathbb{R}^{d-1} \times \{0\}) \cup \{\infty\}$.

Vertex set: the PPP N in H (with $\lambda > 0$).

Horodistance: distance from a point to ∞ . Horospheres: spheres centered at ∞ .

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex (w.r.t. the metric ds_H^2), say $A(\mathbf{x})$, with higher ordinate y.

Edge set: $\overrightarrow{E} := \{ (\mathbf{x}, A(\mathbf{x})) : \mathbf{x} \in \mathcal{N} \}.$

 \Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}) .

 ∞
Simulation of the hyperbolic DSF

Simulation of the DSF in \mathbb{H}^2 , represented in the half-plane model, with direction ∞ and intensity $\lambda = 10$.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in ℝ^{d-1} × {0}.
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there is a.s. only one bi-infinite branch whose asymptotic direction is (*x*, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in ℝ^{d-1} × {0}.
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there is a.s. only one bi-infinite branch whose asymptotic direction is (*x*, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in ℝ^{d-1} × {0}.
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there is a.s. only one bi-infinite branch whose asymptotic direction is (*x*, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times \{0\}.$
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there is a.s. only one bi-infinite branch whose asymptotic direction is (*x*, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times \{0\}.$
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there is a.s. only one bi-infinite branch whose asymptotic direction is (*x*, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times \{0\}.$
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (x, 0) in $\mathbb{R}^{d-1} \times \{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is (x, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- (1) A.s. the hyperbolic DSF is a tree.
- (2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
- (3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times \{0\}.$
- (4) A.s. for every asymptotic direction (*x*, 0) in ℝ^{d−1} × {0}, there exists a bi-infinite branch whose asymptotic direction is (*x*, 0).
- (5) For any given asymptotic direction (x, 0) in $\mathbb{R}^{d-1} \times \{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is (x, 0).
- (6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in ℝ^{d-1} × {0}.

- ⇒ Two DSF paths starting at x and x' remain at hyperbolic dist. O(1) from each other over time.
- \Rightarrow At each step, they have a proba > 0 to coalesce.

Let
$$\mathbf{x} = (\cdot, e^0)$$
.
At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$,
the DSF path starting at \mathbf{x}
remains inside a cone.
Cone opening = $O(e^t)$ w.r.t. Euclidean dist.
= $O(1)$ w.r.t. hyperbolic dist.

⇒ Two DSF paths starting at **x** and **x**' remain at hyperbolic dist. O(1) from each other over time.

 \Rightarrow At each step, they have a proba > 0 to coalesce.

This eventually occurs!

~~

At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at **x** remains inside a cone.

Cone opening = $O(e^t)$ w.r.t. Euclidean dist. = O(1) w.r.t. hyperbolic dist.

⇒ Two DSF paths starting at \mathbf{x} and \mathbf{x}' remain at hyperbolic dist. O(1) from each other over time.

 \Rightarrow At each step, they have a proba > 0 to coalesce.

Let
$$\mathbf{x} = (\cdot, e^0)$$
.
At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$,
the DSF path starting at \mathbf{x}
remains inside a cone.
Cone opening = $O(e^t)$ w.r.t. Euclidean dist.
= $O(1)$ w.r.t. hyperbolic dist.

⇒ Two DSF paths starting at \mathbf{x} and \mathbf{x}' remain at hyperbolic dist. O(1) from each other over time.

 \Rightarrow At each step, they have a proba > 0 to coalesce.

This eventually occurs!

 ∞

Let
$$\mathbf{x} = (\cdot, e^0)$$
.
At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$,
the DSF path starting at \mathbf{x}
remains inside a cone.
Cone opening = $O(e^t)$ w.r.t. Euclidean dist.

⇒ Two DSF paths starting at \mathbf{x} and \mathbf{x}' remain at hyperbolic dist. O(1) from each other over time.

 \Rightarrow At each step, they have a proba > 0 to coalesce.

= O(1) w.r.t. hyperbolic dist.

This eventually occurs!

 ∞

х

At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at **x** remains inside a cone.

Cone opening = $O(e^t)$ w.r.t. Euclidean dist. = O(1) w.r.t. hyperbolic dist.

⇒ Two DSF paths starting at **x** and **x**' remain at hyperbolic dist. O(1) from each other over time.

At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at **x** remains inside a cone.

Cone opening = $O(e^t)$ w.r.t. Euclidean dist. = O(1) w.r.t. hyperbolic dist.

- ⇒ Two DSF paths starting at **x** and **x**' remain at hyperbolic dist. O(1) from each other over time.
- \Rightarrow At each step, they have a proba > 0 to coalesce.

At level e^t , with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at **x** remains inside a cone.

Cone opening = $O(e^t)$ w.r.t. Euclidean dist. = O(1) w.r.t. hyperbolic dist.

- ⇒ Two DSF paths starting at **x** and **x**' remain at hyperbolic dist. O(1) from each other over time.
- \Rightarrow At each step, they have a proba > 0 to coalesce.

Thank you for your attention!

Simulation of the Radial Spanning Tree, represented in the Poincaré disk *D*, with colors.

David Coupier

Infinite branches of the DSF