Infinite branches of the Directed Spanning Forest in Euclidean and hyperbolic spaces

David Coupier - Univ. Valenciennes

Institutskolloquium - Universität Potsdam

Plan

(9) Backgrounds
(2) A motivating example: the Continuum Percolation model
(3) The Directed Spanning Forest (DSF) in \mathbb{R}^{d}
(4) The DSF in \mathbb{H}^{d}

Plan

(1) Backgrounds
(2) A motivating example: the Continuum Percolation model
(3) The Directed Spanning Forest (DSF) in \mathbb{R}^{d}
(4) The DSF in \mathbb{H}^{d}

A 1 st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.

* The half-space model ($\mathrm{H}, \mathrm{ds} \mathrm{s}_{H}^{2}$):
- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s^{2}$

- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$

A 1 st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric d_{S}^{2}

- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$

A 1st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{d_{-1}^{2}}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}$

A 1 st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{x_{-1}^{2}}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots . . . x_{x_{d-1}} d y}{y^{d}}$.

A 1 st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{d-1}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$.

A 1st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{d-1}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$.

A 1st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{d-1}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$.

A 1st model of \mathbb{H}^{d} : the half-space model $\left(H, d s_{H}^{2}\right)$

The hyperbolic space \mathbb{H}^{d} is a d-Riemannian manifold that can be defined by several isometric models.
\star The half-space model $\left(H, d s_{H}^{2}\right)$:

- $H:=\left\{\left(x_{1}, \ldots, x_{d-1}, y\right) \in \mathbb{R}^{d}, y>0\right\}$.
- The metric $d s_{H}^{2}:=\frac{d x_{1}^{2}+\ldots+d x_{d-1}^{2}+d y^{2}}{y^{2}}$.
- The volume measure μ_{H} given by $d \mu_{H}:=\frac{d x_{1} \ldots d x_{d-1} d y}{y^{d}}$.

A 2nd model of $\mathbb{H}^{d}:$ the Poincaré disk model ($D, d s_{D}^{2}$)

\star The Poincaré disk model $\left(D, d s_{D}^{2}\right)$:

- $D:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, x_{1}^{2}+\ldots+x_{d}^{2}<1\right\}$.
- The metric $d s_{D}^{2}$ $:=4 \frac{d x_{1}^{2}+\ldots+d x_{2}^{2}}{\left(1-x_{1}^{2}-\ldots x_{d}^{2}\right)^{2}}$.
- The volume measure μ_{D} given by $d \mu_{D}:=2^{d} \frac{d x_{1} \ldots d x_{d}}{\left(1-x_{1}^{2} \ldots \ldots x_{d}^{2}\right)^{d}}$

A 2nd model of \mathbb{H}^{d} : the Poincaré disk model ($D, d s_{D}^{2}$)

\star The Poincaré disk model $\left(D, d s_{D}^{2}\right)$:

- $D:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, x_{1}^{2}+\ldots+x_{d}^{2}<1\right\}$.
- The metric $d s_{D}^{2}:=4 \frac{d x_{1}^{2}+\ldots+d x_{d}^{2}}{\left(1-x_{1}^{2} \ldots x_{d}^{2}\right)^{2}}$.
- The volume measure μ_{D} given by $d \mu_{D}$

A 2nd model of $\mathbb{H}^{d}:$ the Poincaré disk model ($D, d s_{D}^{2}$)

\star The Poincaré disk model $\left(D, d s_{D}^{2}\right)$:

- $D:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, x_{1}^{2}+\ldots+x_{d}^{2}<1\right\}$.
- The metric $d s_{D}^{2}:=4 \frac{d x_{1}^{2}+\ldots+d x_{d}^{2}}{\left(1-x_{1}^{2} \ldots x_{d}^{2}\right)^{2}}$.
- The volume measure μ_{D} given by $d \mu_{D}:=2^{d} \frac{d x_{1} \ldots d x_{d}}{\left(1-x_{1}^{2} \ldots x_{d}^{2}\right)^{d}}$.

A 2nd model of $\mathbb{H}^{d}:$ the Poincaré disk model ($D, d s_{D}^{2}$)

\star The Poincaré disk model $\left(D, d s_{D}^{2}\right)$:

- $D:=\left\{\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}, x_{1}^{2}+\ldots+x_{d}^{2}<1\right\}$.
- The metric $d s_{D}^{2}:=4 \frac{d x_{1}^{2}+\ldots+d x_{d}^{2}}{\left(1-x_{1}^{2}-\ldots-x_{d}^{2}\right)^{2}}$.
- The volume measure μ_{D} given by $d \mu_{D}:=2^{d} \frac{d x_{1} \ldots d x_{d}}{\left(1-x_{1}^{2} \ldots-x_{d}^{2}\right)^{d}}$.

A crucial difference between Euclidean \& hyperbolic

Let $B_{r}:=B(\cdot, r)$ be a ball with radius r.
$\operatorname{Vol}(\cdot)$ and $\operatorname{Surf}(\cdot)$ are relative to $\operatorname{Leb}(\cdot)$ in \mathbb{R}^{d} and to $\mu(\cdot)$ in \mathbb{H}^{d}.

- In Euclidean space:

\mathbb{R}^{d} is said amenable.
- In hyperbolic space:

\mathbb{H}^{d} is said non-amenable.

A crucial difference between Euclidean \& hyperbolic

Let $B_{r}:=B(\cdot, r)$ be a ball with radius r.
$\operatorname{Vol}(\cdot)$ and $\operatorname{Surf}(\cdot)$ are relative to $\operatorname{Leb}(\cdot)$ in \mathbb{R}^{d} and to $\mu(\cdot)$ in \mathbb{H}^{d}.

- In Euclidean space:

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}=0
$$

\mathbb{R}^{d} is said amenable.

- In hyperbolic space:

\mathbb{H}^{d} is said non-amenable.

A crucial difference between Euclidean \& hyperbolic

Let $B_{r}:=B(\cdot, r)$ be a ball with radius r.
$\operatorname{Vol}(\cdot)$ and $\operatorname{Surf}(\cdot)$ are relative to $\operatorname{Leb}(\cdot)$ in \mathbb{R}^{d} and to $\mu(\cdot)$ in \mathbb{H}^{d}.

- In Euclidean space:

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}=0
$$

\mathbb{R}^{d} is said amenable.

- In hyperbolic space:

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}>0
$$

\mathbb{H}^{d} is said non-amenable.

Poisson Point Process

A homogeneous Poisson point process (PPP) \mathcal{N} with intensity $\lambda>0$ in $E=\mathbb{R}^{d}$ or \mathbb{H}^{d} is a random point set such that:

- Far any disjoint measurable sets $A, B \subset E$, the random variables $\# \mathcal{N} \cap A$ et $\# \mathcal{N} \cap B$ are independent.
- For any bounded measurable set $A \subset E, \# \mathcal{N} \cap A$ is distributed according to the Poisson law with parameter $\lambda \operatorname{Vol}(A)$.
\rightarrow The most natural process to modelize a set of points without interaction.
\rightarrow Locally finite, countable, stationary w.r.t. isomotries in E
\rightarrow Easy to simulate.

Poisson Point Process

A homogeneous Poisson point process (PPP) \mathcal{N} with intensity $\lambda>0$ in $E=\mathbb{R}^{d}$ or \mathbb{H}^{d} is a random point set such that:

- Far any disjoint measurable sets $A, B \subset E$, the random variables $\# \mathcal{N} \cap A$ et $\# \mathcal{N} \cap B$ are independent.
- For any bounded measurable set $A \subset E, \# \mathcal{N} \cap A$ is distributed according to the Poisson law with parameter $\lambda \operatorname{Vol}(A)$.
\rightarrow The most natural process to modelize a set of points without interaction.
\rightarrow Locally finite, countable, stationary w.r.t. isometries in E.
\rightarrow Easy to simulate.

Poisson Point Process

A homogeneous Poisson point process (PPP) \mathcal{N} with intensity $\lambda>0$ in $E=\mathbb{R}^{d}$ or \mathbb{H}^{d} is a random point set such that:

- Far any disjoint measurable sets $A, B \subset E$, the random variables $\# \mathcal{N} \cap A$ et $\# \mathcal{N} \cap B$ are independent.
- For any bounded measurable set $A \subset E, \# \mathcal{N} \cap A$ is distributed according to the Poisson law with parameter $\lambda \operatorname{Vol}(A)$.
\rightarrow The most natural process to modelize a set of points without interaction.
\rightarrow Locally finite, countable, stationary w.r.t. isometries in E.
\rightarrow Easy to simulate.

Poisson Point Process

A homogeneous Poisson point process (PPP) \mathcal{N} with intensity $\lambda>0$ in $E=\mathbb{R}^{d}$ or \mathbb{H}^{d} is a random point set such that:

- Far any disjoint measurable sets $A, B \subset E$, the random variables $\# \mathcal{N} \cap A$ et $\# \mathcal{N} \cap B$ are independent.
- For any bounded measurable set $A \subset E, \# \mathcal{N} \cap A$ is distributed according to the Poisson law with parameter $\lambda \operatorname{Vol}(A)$.
\rightarrow The most natural process to modelize a set of points without interaction.
\rightarrow Locally finite, countable, stationary w.r.t. isometries in E.
\rightarrow Easy to simulate.

Simulation of the PPP N in $[0 ; 10]^{2}$

Figure: Simulation of the PPP \mathcal{N} in the (Euclidean) square $[0 ; 10]^{2}$, with intensity $\lambda=1$.

Simulation of the PPP N in H

Figure: Simulation of the PPP \mathcal{N} in the half-plane H, with intensity $\lambda=5$.

Plan

(1) Backgrounds

(2) A motivating example: the Continuum Percolation model

(3) The Directed Spanning Forest (DSF) in \mathbb{R}^{d}
(4) The DSF in \mathbb{H}^{d}

Continuum Percolation in \mathbb{R}^{d}

$\mathcal{N}: \operatorname{PPP}$ in \mathbb{R}^{d} with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, 1) .
$$

\rightarrow Does Σ_{λ} contain (at least) one infinite c.c.? When this is the case, there is percolation.

TH: For any $d \geq 2$, there exists a critical intensity $0<\lambda_{c}(d)<\infty$ s.t.: $\lambda<\lambda_{c}(d) \Rightarrow$ a.s. any c.c. of Σ_{λ} is finite. $\lambda>\lambda_{c}(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.

Continuum Percolation in \mathbb{R}^{d}

$\mathcal{N}:$ PPP in \mathbb{R}^{d} with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, 1)
$$

\rightarrow Does Σ_{λ} contain (at least) one infinite c.c.?
When this is the case, there is percolation.

> TH: For any $d \geq 2$, there exists a critical intensity $0<\lambda_{c}(d)<\infty$ s.t.: $\lambda<\lambda_{c}(d) \Rightarrow$ a.s. any c.c. of Σ_{λ} is finite. $\lambda>\lambda_{c}(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.

[^0]
Continuum Percolation in \mathbb{R}^{d}

$\mathcal{N}:$ PPP in \mathbb{R}^{d} with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, 1)
$$

\rightarrow Does Σ_{λ} contain (at least) one infinite c.c.?
When this is the case, there is percolation.

TH: For any $d \geq 2$, there exists a critical intensity $0<\lambda_{c}(d)<\infty$ s.t.: $\lambda<\lambda_{c}(d) \Rightarrow$ a.s. any c.c. of Σ_{λ} is finite. $\lambda>\lambda_{c}(d) \Rightarrow$ a.s. Σ_{λ} contains a unique infinite c.c.
[Continuum Percolation, Meester, R. and Roy, R.]

Just a look in the proof

Let κ be the number of infinite c.c. in Σ_{λ} :
(1) $\exists m=m(\lambda, d) \in\{0,1,2,3 \ldots\} \cup\{\infty\}$ such that

$$
\mathbb{P}(\kappa=m)=1 .
$$

GOAL: $m \in\{0,1\}$.
(2) Excluding cases $m \in\{2,3 \ldots\}$: Easy.

- Excluding case $m=\infty$: More difficult.

Based on the famous Burton \& Keane argument using that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}=0
$$

What happens in an hyperbolic context?

Just a look in the proof

Let κ be the number of infinite c.c. in Σ_{λ} :
(1) $\exists m=m(\lambda, d) \in\{0,1,2,3 \ldots\} \cup\{\infty\}$ such that

$$
\mathbb{P}(\kappa=m)=1
$$

GOAL: $m \in\{0,1\}$.
(2) Excluding cases $m \in\{2,3 \ldots\}$: Easy.
(3) Excluding case $m=\infty$: More difficult.

Based on the famous Burton \& Keane argument using that

What happens in an hyperbolic context?

Just a look in the proof

Let κ be the number of infinite c.c. in Σ_{λ} :
(1) $\exists m=m(\lambda, d) \in\{0,1,2,3 \ldots\} \cup\{\infty\}$ such that

$$
\mathbb{P}(\kappa=m)=1
$$

GOAL: $m \in\{0,1\}$.
(2) Excluding cases $m \in\{2,3 \ldots\}$: Easy.
(3) Excluding case $m=\infty$: More difficult.

Based on the famous Burton \& Keane argument using that

What happens in an hyperbolic context?

Just a look in the proof

Let κ be the number of infinite c.c. in Σ_{λ} :
(1) $\exists m=m(\lambda, d) \in\{0,1,2,3 \ldots\} \cup\{\infty\}$ such that

$$
\mathbb{P}(\kappa=m)=1
$$

GOAL: $m \in\{0,1\}$.
(2) Excluding cases $m \in\{2,3 \ldots\}$: Easy.
(3) Excluding case $m=\infty$: More difficult.

Based on the famous Burton \& Keane argument using that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}=0
$$

What happens in an hyperbolic context?

Just a look in the proof

Let κ be the number of infinite c.c. in Σ_{λ} :
(1) $\exists m=m(\lambda, d) \in\{0,1,2,3 \ldots\} \cup\{\infty\}$ such that

$$
\mathbb{P}(\kappa=m)=1
$$

GOAL: $m \in\{0,1\}$.
(2) Excluding cases $m \in\{2,3 \ldots\}$: Easy.
(3) Excluding case $m=\infty$: More difficult.

Based on the famous Burton \& Keane argument using that

$$
\lim _{r \rightarrow \infty} \frac{\operatorname{Surf}\left(B_{r}\right)}{\operatorname{Vol}\left(B_{r}\right)}=0
$$

What happens in an hyperbolic context?

Continuum Percolation in \mathbb{H}^{d}

$\mathcal{N}:$ PPP in the Poincaré disk D with intensity $\lambda>0$.
$\Sigma_{\lambda}:=U_{x \in \mathcal{N}} B(x, R)$, where $R>0$.
κ : the number of infinite c.c. in Σ_{λ}.
Two critical intensities:
$\lambda_{c}(d):=\inf \{\lambda>0: \mathbb{P}(k>0)=1\}$.
$\lambda_{u}(d):=\inf \{\lambda>0: \mathbb{P}(k=1)=1\}$.
TH: For $d \geq 2$ and R large enough, $0 \leq \lambda_{c}(d)<\lambda_{u}(d) \leq \infty$.
TH: For $d=2$ and $P=1$ then $0<\lambda_{C}(2)<\lambda_{U}(2)<\infty$.
$\lambda<\lambda_{c}(2) \Rightarrow$ a.s. $k=0$.
$\lambda_{c}(2)<\lambda<\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=\infty$.
$\lambda>\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=1$.

Continuum Percolation in \mathbb{H}^{d}

$\mathcal{N}:$ PPP in the Poincaré disk D with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=U_{x \in \mathcal{N}} B(x, R) \text {, where } R>0 \text {. }
$$

κ : the number of infinite c.c. in Σ_{λ}.
Two critical intensities:

$$
\begin{aligned}
& \lambda_{c}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa>0)=1\} . \\
& \lambda_{u}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa=1)=1\} .
\end{aligned}
$$

TH: For $d \geq 2$ and R large enough, $0 \leq \lambda_{c}(d)<\lambda_{u}(d) \leq \infty$.
TH: For $d=2$ and $P=1$ then $0<\lambda_{C}(2)<\lambda_{U}(2)<\infty$.
$\lambda<\lambda_{c}(2) \Rightarrow$ a.s. $\kappa=0$.
$\lambda_{c}(2)<\lambda<\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=\infty$.
$\lambda>\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=1$.

Continuum Percolation in \mathbb{H}^{d}

$\mathcal{N}:$ PPP in the Poincaré disk D with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, R), \text { where } R>0 .
$$

κ : the number of infinite c.c. in Σ_{λ}.
Two critical intensities:

$$
\begin{aligned}
& \lambda_{c}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa>0)=1\} \\
& \lambda_{u}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa=1)=1\}
\end{aligned}
$$

TH: For $d \geq 2$ and R large enough, $0 \leq \lambda_{c}(d)<\lambda_{u}(d) \leq \infty$.
TH: For $d=2$ and $R=1$ then $0<\lambda_{c}(2)<\lambda_{u}(2)<\infty$.
$\lambda<\lambda_{c}(2) \Rightarrow$ a.s. $\kappa=0$.
$\lambda_{c}(2)<\lambda<\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=\infty$.
$\lambda>\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=1$.

Continuum Percolation in \mathbb{H}^{d}

$\mathcal{N}:$ PPP in the Poincaré disk D with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, R), \text { where } R>0 .
$$

κ : the number of infinite c.c. in Σ_{λ}.
Two critical intensities:

$$
\begin{aligned}
& \lambda_{c}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa>0)=1\} \\
& \lambda_{u}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa=1)=1\}
\end{aligned}
$$

TH: For $d \geq 2$ and R large enough, $0 \leq \lambda_{c}(d)<\lambda_{u}(d) \leq \infty$.
TH: For $d=2$ and $R=1$ then $0<\lambda_{c}(2)<\lambda_{u}(2)<\infty$.
$\lambda<\lambda_{c}(2) \Rightarrow$ a.s. $\kappa=0$.
$\lambda_{c}(2)<\lambda<\lambda_{u}(2) \Rightarrow$ a.s. $\kappa=\infty$.
$\lambda>\lambda_{u}(2) \Rightarrow$ a.s. $k=1$.

Continuum Percolation in \mathbb{H}^{d}

\mathcal{N} : PPP in the Poincaré disk D with intensity $\lambda>0$.

$$
\Sigma_{\lambda}:=\cup_{x \in \mathcal{N}} B(x, R), \text { where } R>0
$$

$\kappa:$ the number of infinite c.c. in Σ_{λ}.
Two critical intensities:

$$
\begin{aligned}
& \lambda_{c}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa>0)=1\} \\
& \lambda_{u}(d):=\inf \{\lambda>0: \mathbb{P}(\kappa=1)=1\}
\end{aligned}
$$

TH: For $d \geq 2$ and R large enough, $0 \leq \lambda_{c}(d)<\lambda_{u}(d) \leq \infty$.
TH: For $d=2$ and $R=1$ then $0<\lambda_{c}(2)<\lambda_{u}(2)<\infty$.

$$
\begin{aligned}
& \lambda<\lambda_{c}(2) \Rightarrow \text { a.s. } \kappa=0 . \\
& \lambda_{c}(2)<\lambda<\lambda_{u}(2) \Rightarrow \text { a.s. } \kappa=\infty . \\
& \lambda>\lambda_{u}(2) \Rightarrow \text { a.s. } \kappa=1 .
\end{aligned}
$$

Plan

(9) Backgrounds
(2) A motivating example: the Continuum Percolation model
(3) The Directed Spanning Forest (DSF) in \mathbb{R}^{d}
(4) The DSF in \mathbb{H}^{d}

Joint works with François Baccelli (INRIA Paris), Kumarjit Saha (Ashoka Univ., India), Anish Sarkar (ISI Delhi, India), Chi Tran (Univ. Paris Est - MLV).

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, x+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Direcied Spanning Forest with direction e_{2} is the graph (N, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $x \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(x, A(x)): x \in \mathbb{N}\}$.

\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit ?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.

Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.

Edge set: $\vec{E}:=\{(\mathbf{x}, A(x)): x \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked to the closest vertex, say $A(\mathbf{x})$, in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, \mathbf{A}(\mathbf{x})): \mathbf{x} \in \mathbb{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.

Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathbb{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$, in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.

Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathbb{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.

\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathbb{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.

\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence..

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence.

The Directed Spanning Forest (DSF) in \mathbb{R}^{2}

Vertex set: the PPP \mathcal{N} in $\mathbb{R}^{2}(\lambda=1)$.
$e_{2}=(0,1):$ a deterministic direction.
Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex, say $A(\mathbf{x})$,
in $\left\{z \in \mathbb{R}^{2}:\left\langle z, \mathbf{x}+e_{2}\right\rangle \geq 0\right\}$.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction e_{2} is the graph (\mathcal{N}, \vec{E}).

- Introduced by Baccelli \& Bordenave ('08) to modelize communication networks.
- Natural questions arise: Coalescence? Scaling limit?
- But long-range dependence...

A simulation of the DSF

Dependence phenomenons

(a)

(b)

Figure: (a) Dependence phenomenon within a single branch: how the previous steps may influence the next steps. (b) Dependence phenomenon between two branches: the overlap locally acts as a repulsive effect.

Coalescence in \mathbb{R}^{2}

TH: [C. \& Tran '12]

(1) A.s. all the DSF branches eventually coalesce.
(2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton \& Keane argument and amenability of \mathbb{R}^{2}.

Coalescence in \mathbb{R}^{2}

TH: [C. \& Tran '12]

(1) A.s. all the DSF branches eventually coalesce.
(2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton \& Keane argument and amenability of $\mathbb{R}^{2} \ldots$

Coalescence in \mathbb{R}^{2}

TH: [C. \& Tran '12]

(1) A.s. all the DSF branches eventually coalesce.
(2) A.s. there is no bi-infinite branch in the DSF.

Our proof used the Burton \& Keane argument and amenability of $\mathbb{R}^{2} \ldots$
\rightarrow What happens in \mathbb{H}^{d} ?

Generalizations conjectured in \mathbb{R}^{d}

With Saha, Sarkar \& Tran ('18), we have proved:
The DSF in \mathbb{R}^{2}, at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...
 \rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^{2} without Burton \& Keane argument. \rightarrow A generalization to $d \geq 3$.

(strong) CONJECTURES

(1) For $d \in\{2,3\}$, a.s. DSF is a tree.
(2) For $d \geq 4$, a.s. the DSF contains infinitely many trees.
(3) For $d \geq 2$, a.s. there is no bi-infinite branch in the DSF.

Generalizations conjectured in \mathbb{R}^{d}

With Saha, Sarkar \& Tran ('18), we have proved:
The DSF in \mathbb{R}^{2}, at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...
\rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^{2} without Burton \& Keane argument.
\rightarrow A generalization to $d \geq 3$.
(strong) CONJECTURES:
(1) For $d \in\{2,3\}$, a.s. DSF is a tree.
(2) For $d \geq 4$, a.s. the DSF contains infinitely many trees.
(3) For $d \geq 2$, a.s. there is no bi-infinite branch in the DSF.

Generalizations conjectured in \mathbb{R}^{d}

With Saha, Sarkar \& Tran ('18), we have proved:
The DSF in \mathbb{R}^{2}, at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...
\rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^{2} without Burton \& Keane argument.
\rightarrow A generalization to $d \geq 3$.
(strong) CONJECTURES:
(1) For $d \in\{2,3\}$, a.s. DSF is a tree.
(2) For $d \geq 4$, a.s. the DSF contains infinitely many trees.
(3) For $d \geq 2$, a.s. there is no bi-infinite branch in the DSF.

Generalizations conjectured in \mathbb{R}^{d}

With Saha, Sarkar \& Tran ('18), we have proved:
The DSF in \mathbb{R}^{2}, at a diffusive scale, converges in distribution to the Brownian Web.

In this work, new tools are developed...
\rightarrow A new proof of coalescence and absence of bi-infinite path for the DSF in \mathbb{R}^{2} without Burton \& Keane argument.
\rightarrow A generalization to $d \geq 3$.
(strong) CONJECTURES:
(1) For $d \in\{2,3\}$, a.s. DSF is a tree.
(2) For $d \geq 4$, a.s. the DSF contains infinitely many trees.
(3) For $d \geq 2$, a.s. there is no bi-infinite branch in the DSF.

Plan

(9) Backgrounds

(2) A motivating example: the Continuum Percolation model
(3) The Directed Spanning Forest (DSF) in \mathbb{R}^{d}
(4) The DSF in \mathbb{H}^{d}

PhD work of Lucas Flammant supervised by Chi Tran (Univ. Paris Est - MLV) and myself.
The Directed Spanning Forest in the Hyperbolic space, Lucas Flammant, 67 pages, 2020. arXiv:1909.13731

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP N in H (with $\lambda>0$).
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.

Local rule: each $x \in \mathcal{N}$ is linked
to the closest vertex (w.r.t. the metric ods ${ }_{H}^{2}$),
say $A(x)$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (N, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP N in H (with $\lambda>0$).
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.
Local rule: each $x \in N$ is linked

to the closest vertex (w.r.t. the metric $d s_{H}^{2}$),
say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

∞
Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in $H($ with $\lambda>0)$.
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.
Local rule: each $x \in \mathcal{N}$ is linked

to the closest vertex (w.r.t. the metric ods ${ }_{H}^{2}$),
say $A(x)$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (N, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

∞
Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in $H($ with $\lambda>0)$.
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.
Local rule: each $x \in \mathcal{N}$ is linked

to the closest vertex (w.r.t. the metric ds H_{H}^{2}),
say $A(x)$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (N, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the $\operatorname{PPP} \mathcal{N}$ in H (with $\lambda>0$).
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.

Local rule: each $x \in \mathcal{N}$ is linked
to the closest vertex (w.r.t. the metric $d s_{H}^{2}$),
say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space ($H, d s_{H}^{2}$)

∞
Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞.
Horospheres: spheres centered at ∞.

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
to the closest vertex (w.r.t. the metric $d s_{H}^{2}$),
say $A(x)$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space ($H, d s_{H}^{2}$)

∞
Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞. Horospheres: spheres centered at ∞.

Local rule: each $x \in N$ is linked

to the closest vertex (w.r.t. the metric $d s_{H}^{2}$), say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞. Horospheres: spheres centered at ∞.

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
 to the closest vertex (w.r.t. the metric $d s_{H}^{2}$), say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞. Horospheres: spheres centered at ∞.

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
 to the closest vertex (w.r.t. the metric $d s_{H}^{2}$), say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

The DSF in the half-space $\left(H, d s_{H}^{2}\right)$

∞
Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞. Horospheres: spheres centered at ∞.

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
 to the closest vertex (w.r.t. the metric $d s_{H}^{2}$), say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.

The DSF in the half-space ($H, d s_{H}^{2}$)

Points at infinity: $\left(\mathbb{R}^{d-1} \times\{0\}\right) \cup\{\infty\}$.
Vertex set: the PPP \mathcal{N} in H (with $\lambda>0$).
Horodistance: distance from a point to ∞. Horospheres: spheres centered at ∞.

Local rule: each $\mathbf{x} \in \mathcal{N}$ is linked
 to the closest vertex (w.r.t. the metric $d s_{H}^{2}$), say $A(\mathbf{x})$, with higher ordinate y.
Edge set: $\vec{E}:=\{(\mathbf{x}, A(\mathbf{x})): \mathbf{x} \in \mathcal{N}\}$.
\Rightarrow The Directed Spanning Forest with direction ∞ is the graph (\mathcal{N}, \vec{E}).

Simulation of the hyperbolic DSF

Simulation of the DSF in \mathbb{H}^{2}, represented in the half-plane model, with direction ∞ and intensity $\lambda=10$.

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$
(4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is $(x, 0)$.
(5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$.

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$
(4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is $(x, 0)$.
5) For any aiven asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
(6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$.

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$.
4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is ($x, 0$).
(5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
(6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$.

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$.
A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is $(x, 0)$.
5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
(6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$.
(4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is $(x, 0)$.
(5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]
For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$.
(4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is ($x, 0$).
(5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
(6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$.

Lucas's results about the hyperbolic DSF

TH: [L. Flammant ('20)]

For any $d \geq 2$ and any intensity $\lambda>0$, the following happens:
(1) A.s. the hyperbolic DSF is a tree.
(2) A.s. the hyperbolic DSF contains infinitely many bi-infinite branches.
(3) A.s. every bi-infinite branch admits an asymptotic direction in $\mathbb{R}^{d-1} \times\{0\}$.
(4) A.s. for every asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there exists a bi-infinite branch whose asymptotic direction is $(x, 0)$.
(5) For any given asymptotic direction $(x, 0)$ in $\mathbb{R}^{d-1} \times\{0\}$, there is a.s. only one bi-infinite branch whose asymptotic direction is $(x, 0)$.
(6) A.s. the (random) subset asymptotic directions in which there are (at least) two infinite branches is dense in $\mathbb{R}^{d-1} \times\{0\}$.

Heuristic for coalescence

$$
\text { Let } \mathbf{x}=\left(\cdot, e^{0}\right)
$$

At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x}
remains inside a cone.
Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$
 from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

$$
\text { Let } \mathbf{x}=\left(\cdot, e^{0}\right)
$$

At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{v} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$
 from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

$$
\begin{aligned}
& \text { Let } \mathbf{x}=\left(\cdot, e^{0}\right) . \\
& \text { At level } e^{t} \text {, with proba } \rightarrow 1 \text { as } t \rightarrow \infty \text {, } \\
& \text { the DSF path starting at } \mathbf{x} \\
& \text { remains inside a cone. }
\end{aligned}
$$

\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$
 from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

Let $\mathbf{x}=\left(\cdot, e^{0}\right)$.
At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$

from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

Let $\mathbf{x}=\left(\cdot, e^{0}\right)$.
At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime}

remain at hyperbolic dist. $O(1)$
∞
from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

Let $\mathbf{x}=\left(\cdot, e^{0}\right)$.
At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$ from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

Let $\mathbf{x}=\left(\cdot, e^{0}\right)$.
At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$ from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Heuristic for coalescence

Let $\mathbf{x}=\left(\cdot, e^{0}\right)$.
At level e^{t}, with proba $\rightarrow 1$ as $t \rightarrow \infty$, the DSF path starting at \mathbf{x} remains inside a cone.

Cone opening $=O\left(e^{t}\right)$ w.r.t. Euclidean dist. $=O(1)$ w.r.t. hyperbolic dist.
\Rightarrow Two DSF paths starting at \mathbf{x} and \mathbf{x}^{\prime} remain at hyperbolic dist. $O(1)$ from each other over time.
\Rightarrow At each step, they have a proba >0 to coalesce.
This eventually occurs!

Thank you for your attention!

Simulation of the Radial Spanning Tree, represented in the Poincaré disk D, with colors.

[^0]: [Continuum Percolation. Meester. R. and Rov. R.]

