Introduction to stochastic processes, Winter term 2018/2019

Exercise 1

Modelling a probability space
Construct a sample space $\Omega \neq \emptyset$ reflecting the following experiments. Decide which information is relevant and which you may drop.

- "Throwing a numbered Octahedron (dice with eight faces) n times."
- "Flipping a coin 3 times, where we merely register if all tosses yield the same result or not."
- "All paths from A to E through stations B, C, D, passing each station exactly once. We assume that each station is directly connected with every other station."
- "Playing a slot machine (one-armed bandits) with 22 symbols and 3 rows."
- "We randomly choose an entry from a database, where each entry consists of the three fields gender, weekday of birth and zodiac sign."

Exercise 2

A machine is made from 4 different parts. We want to investigate the state of the machine using the events $A_{i}=$ "part i is broken" ($i \in\{1,2,3,4\}$). Express the following five events in terms of $A_{1}, A_{2}, A_{3}, A_{4}$ using set operations.

1) $A \hat{=}\{$ At least one part is broken. $\}$
2) $B \hat{=}\{$ All parts are broken $\}$
3) $C \hat{=}$ \{All parts are not broken. $\}$
4) $D \hat{=}\{$ At least one part is not broken. $\}$
5) $E \hat{=}\{$ At most part 1 is broken. $\}$

Exercise 3

Let $\Omega=\mathbb{R}^{2}$ and consider two subsets of Ω denoted by A and B being defined as follows:

$$
A=\{(x, y) \in \Omega: x+y \leq 1\}, \quad B=\{(x, y) \in \Omega: y \leq 2 x+2\} .
$$

Sketch the following sets: $A \cup B, A \cap B, A \backslash B, A^{c}, B^{c}, A^{c} \cap B^{c}$.

Exercise 4

Define for $A \subset \Omega$ the map $\mathbb{1}_{A}: \Omega \rightarrow\{0,1\}$ via

$$
\mathbb{1}_{A}(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { if } \omega \notin A\end{cases}
$$

Prove the following equations.

1) $\mathbb{1}_{A \cap B}=\mathbb{1}_{A} \cdot \mathbb{1}_{B}$.
2) $\mathbb{1}_{A \cup B}=\mathbb{1}_{A}+\mathbb{1}_{B}-\mathbb{1}_{A} \cdot \mathbb{1}_{B}$.
3) $\mathbb{1}_{A \Delta B}=\left|\mathbb{1}_{A}-\mathbb{1}_{B}\right| . \quad$ (Hint: $A \Delta B:=(A \backslash B) \cup(B \backslash A)$.)

Exercise 5

Let a random variable X be the number of points after one roll of a fair dice. State the range of values \mathcal{X} for X. State the range of values for a random variable

$$
Y=\left[\frac{X^{2}}{6}\right]
$$

where $[y], y \in \mathbb{R}$ is the integer part (or floor) of y. Describe the events $A=\{Y=0\}, B=\{Y<5\}$, $C=\{Y \geq 5\}$ through the events in \mathcal{X}.
Hint: The integer part of y is the maximal integer number n, such that $n \leq y$.

Exercise 6

1. Let $\Omega=\{0,1, \ldots, n\}, n \geq 1$ and

$$
\mathbb{P}(\{k\})= \begin{cases}c p(1-p), & k=0 \\ c p^{k}, & k=1, \ldots, n\end{cases}
$$

where $c \in \mathbb{R}^{+}, p \in(0,1)$. Express c in terms of p, n such that \mathbb{P} is a probability measure.
2. In some society every individual owns either $0,1,2,3,4$ or 5 flats. We denote by $\mathbb{Q}(\{k\})$ the probability that any individual owns k flats and assign:

$$
\mathbb{Q}(\{k\})= \begin{cases}\frac{c^{\prime}}{4}, & k=0 \\ \frac{c^{\prime}}{2^{k}}, & k=1, \ldots, 5\end{cases}
$$

Derive the probability that someone in this society owns at least two flats and find the appropriate c^{\prime}.
3. Now there are infinitely many flats available such that $\tilde{\Omega}=\mathbb{N}$ is a sensible choice for the sample space. Consequently,

$$
\tilde{\mathbb{Q}}(\{k\})= \begin{cases}\frac{\tilde{c}}{4}, & k=0 \\ \frac{\tilde{c}}{2^{k}}, & k \geq 1\end{cases}
$$

Derive the appropriate \tilde{c} making $\tilde{\mathbb{Q}}$ a probability measure. How big is the probability that someone owns at least two flats?

Exercise 7

Let X be the number of points after one roll of a fair Icosahedron. State the range of values for the random variable

$$
Y=\mathbb{1}_{\{\mathbf{x} \text { is divisible by } \mathbf{3}\}}
$$

and compute the probability that $Y=1$.

Exercise 8

Suppose that each morning you roll a fair dice to decide if you go to the university or not. If the number of points on the dice face is greater then 5 , you get up, if not then you stay in bed. Let X be a random variable that counts the number of days that you skipped the university out of a five days a week. State the distribution of X and compute $\mathbb{P}(X \leq 3)$, $\mathbb{P}(X \geq 4), \mathbb{P}(X=5)$, as well as $\mathbb{P}(2 \leq X<4)$.

Exercise 9

Let (X, Y) be a random vector with values in $\{1, \ldots 6\}^{2}$ and probability mass function

$$
\mathbb{P}_{(X, Y)}\{(i, j)\}= \begin{cases}c & \text { if } 2<i+j<6 \\ 0 & \text { otherwise }\end{cases}
$$

1. Draw a chart of the joint distribution.
2. Compute the value of c.
3. Compute the marginal distributions, i.e. the distributions of X and Y.

Good luck!

