Introduction to Stochastic Processes WS2018/19

Angelo Valleriani, Tetiana Kosenkova

Exercises

- 1. Let $(Z_n)_{n\geq 0}$ describes a Bienaymé-Galton-Watson process with one ancestor and the reproduction rate of an individual given by probability distribution $\mathbf{r} = (r_j)_{j\geq 0}$. Find the probability generating function f and mean m of \mathbf{r} and the probability generating function f_2 of Z_2 , together with the probability to die out in second generation d_2 , in the following cases:
 - (a) $r_0 = 0, 7, r_3 = 0, 3,$
 - (b) $r_j = \frac{1}{3} \left(\frac{2}{3}\right)^j, j \ge 0.$
- 2. Let us assume that we observe at time t = 0 a population of N cells. Each of them can either die at the end of the cycle or divide with probability $p \in (0, 1)$. For the process $(X_n)_{n>0}$, that denotes the number of cells after n cycles find
 - (a) the mean of $X_n, n \ge 0$,
 - (b) conditions on p such that the population eventually survive and grow, and the survival probability,
 - (c) threshold for p in which the survival probability is more than 95%.