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Abstract

Let S̃(n) be a random walk which behaves as a symmetric random walk every-
where except for the point 0. Upon hitting 0 the random walk is arrested there
for a random amount of time ηi ≥ 0 (i.i.d.); and then continues its way as usual.
We study the limit behaviour of this process scaled as in the Donsker theorem.
In case of Eηi <∞, it is proved convergence towards a Wiener process. We also
consider a sequence of processes whose arrest times are geometrically distributed
and grow with n. We prove that possible limits for the last model are a Wiener
process, a Wiener process stopped at 0 and a Wiener process with a sticky point.

1 Introduction

Let {S(n), n ∈ Z} be a random walk on Z and S(0) = 0 with centred and
square integrable jumps with variance equals to σ2. We linearly interpolate the
sequence S for all t ≥ 0. Set

Xn(t) =
S(nt)

σ
√
n
, n ∈ N.

A well-known Donsker theorem (e.g. [1]) states weak convergence of stochas-
tic processes in C([0, T ])

Xn(t)
w→ W (t), n→∞,

where W is a Wiener process.
Upon changing transition probabilities at one point or a set of points (e.g.

[2, 3, 4]) one could obtain limit processes connected to Brownian motion, for ex-
ample, skew Brownian motion, Brownian motion with a sticky point, Brownian
motion with bouncing.

Semi-Markov random walks with continuous-time and non-exponential ar-
rests give rise to equations with fractional derivatives [5, 6, 7]. For example, a
process with jumps in R and lagged at each point for a random amount of time
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with a “heavy tail” distribution constitutes a sub-diffusion model. As remarked
in [8] the processes with a sticky point could be used for modelling behaviour
on a financial market with governmental control. Sticky Brownian motion also
arises while discussing storage processes that have different intensities in and
out of zero, [9].

We consider a modified discrete random walk which is arrested for a random
amount of time at each visit of zero. We show that if an expectation of the arrest
time is finite then naturally the limiting process is a Brownian motion. We
also consider a triangular array of random walks with geometrically distributed
times of arrest whose expectations depend on n. This construction let Brownian
motion with a sticky point to appear. For further discussion of this process
check [8, 9, 10, 11, 12].

2 Problem statement and results

Let {S(n)} be a random walk generated by independent identically distributed
random variables {ξn}∞n=1

S(n) =
n∑
i=1

ξi, n ∈ N and S(0) = 0.

Moreover Eξ1 = 0 and Eξ2
1 = σ2 <∞.

Extend S for all positive t > 0 by linearity:

S(t) = S(n) + (t− n)(S(n+ 1)− S(n)), t ∈ [n, n+ 1].

Let also {ηn}∞n=1 be a sequence of non-negative integer-valued i.i.d. that is
independent of {ξi}.

We construct a modified random walk {S̃(n)} as follows. Let the excursions
of S̃(·) be equal to those of S(·). Insert ηi amount of time between i-th and
i+ 1-st excursion of S̃(·). Check pictures 1, 2.
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Figure 1: S(t)

Figure 2: S̃(t)

The modification {S̃(n)} could be defined more formally. Define firstly α(t):

α(t) = t+

τ0(t)∑
i=1

ηi, t ≥ 0.

where τ0(t) = #{k : S(k) = 0, 1 ≤ k ≤ t} is a number of visits to zero of the
random walk S(·) before the time t.

Set a generalised inverse

α(−1)(t) = Inv[α(·)](t) = inf{x : α(x) ≥ t}, t ≥ 0.
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Figure 3: Plots of α(t) and α(−1)(t)

The process S̃(t) is defined by

S̃(t) = S(α(−1)(t)).

Our goal is to study the limit behaviour of a sequence
{
S̃(nt)√

n

}
as n → ∞.

Denote by C[0,∞) a space of continuous functions endowed with a topology of
uniform convergence on finite intervals.

Theorem 1. Let {S̃(n)} be a modified random walk, where Eη1 < ∞. For a

sequence of processes {X̃n(·) = S̃(n·)
σ
√
n
, n ≥ 1} weak convergence in C[0,∞) holds:

X̃n(·)
w→ W (·), n→∞,

where W is a Wiener process.

Remark 1. Consider a Markov chain

pij = P(ξ = j − i) and p00 = p, p0j = (1− p)P(ξ = j),

where Eξ = 0,Eξ2 <∞. Theorem 1 may be applied to this case for {ηi} being
independent geometrically distributed random variables with Eηi = 1

p .

Let us consider more closely the random walk from the remark above. De-
note it as S(p)(·). The sequence of processes

X(pn)
n (t) =

S(pn)(nt)

σ
√
n

with
pn =

ρ

nγ
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has different limits with respect to γ. Theorem 2 describes all possible modes.
Denote by Wβ-sticky(t) a Brownian motion with a sticky point defined by

Wβ-sticky(t) = W (A
(−1)
β (t)),

where
Aβ(t) = t+ βL(t), A

(−1)
β (t) is a generalised inverse

and

L(t) = P- lim
ε→0

1

2ε

∫ t

0

1{W (s)∈[−ε,ε]}ds

a local time of a Brownian motion at zero. As opposed to a usual Brownian
motion, this one stays at zero for a positive amount of time, yet there is no
interval of positive length that it is there.

Theorem 2. Convergence in distribution in C[0,∞) holds:

if 0 ≤ γ < 0.5, then X(pn)
n (t)

w→ W (t), n→∞,
if γ > 0.5, then X(pn)

n (t)
w→ 0, n→∞,

if γ = 0.5, then X(pn)
n (t)

w→ Wρ−1-sticky(t), n→∞.

3 Proofs

The following two lemmas may be found in [13] (proposition 3.2).

Lemma 1. Let {ξn(t)}n≥1, t ∈ [0, T ] be a sequence of random processes such
that

(a) for each n the process ξn(t) is monotonous a.s.;

(b) for every t

ξn(t)
P→ ξ(t), n→∞;

(c) the limiting process ξ(t) is continuous a.s.

Then uniform convergence in probability holds

sup
t∈[0,T ]

|ξn(t)− ξ(t)|
P→ 0, n→∞.

Lemma 2. Let {ξn(t)}n≥1, t ∈ [0, T ] be a sequence of random processes such
that (a), (b), (c) are satisfied and

(d) for each n
ξn(0) = 0, ξn(∞) =∞.

Then for any T > 0 uniform convergence in probability holds

sup
t∈[0,T ]

|ξ(−1)
n (t)− ξ(−1)(t)| P→ 0, n→∞.
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3.1 Proof of Theorem 1

Set

hn(t) =
α(−1)(nt)

n
.

From the definition of S̃(n) one has

X̃n(t) =
S̃(nt)√

n
=
S(α(−1)(nt))

σ
√
n

=
S(nα

(−1)(nt)
n )

σ
√
n

= Xn(hn(t)).

Hence we prove that

Xn(hn(·))
w→ W (·), n→∞. (1)

We are interested in the behaviour of hn(t) as n → ∞. Note that the

function α(nt)
n is a generalised inverse for hn(t). That is because for any a 6= 0

one has

Inv[ah(·)](t) = Inv[h(·)](t/a),

Inv[h(a·)](t) =
1

a
Inv[h(·)](t).

(2)

Let us show that for any t ≥ 0 :

α(nt)

n

P→ t, n→∞. (3)

This is obvious if t = 0. For t > 0

α(nt)

n
= t+

1

n

τ0(nt)∑
i=1

ηi = t+
τ0(nt)

n

1

τ0(nt)

τ0(nt)∑
i=1

ηi. (4)

For a fixed t > 0 one has P{τ0(nt) →
n→∞

∞} = 1, thus due to the law of large

numbers

1

τ0(nt)

τ0(nt)∑
i=1

ηi → Eη1 <∞, n→∞, a.s.

It is well known that τ0(nt)√
n

converges weakly towards an absolute value of a

Gaussian random variable as n→∞. So

τ0(nt)

n

P→ 0, n→∞.

And thus
α(nt)

n

P→ t, n→∞. (5)
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Since {α(n·)
n }n≥1 are monotonous and converge towards the continuous limit,

we invoke Lemmas 1 and 2 to see that

sup
t∈[0,T ]

|hn(t)− t| = sup
t∈[0,T ]

∣∣∣α(−1)(nt)

n
− t
∣∣∣ P→ 0, n→∞. (6)

The following is well-known, e.g. theorem 4.4 in [1].

Lemma 3. Let E be a Polish space, {Xn, n ≥ 1}, X, {hn, n ≥ 1} be random

elements with values in E, and h ∈ E be non-random. Assume that Xn
w→ X

and hn
w→ h. Then the pairs of random variables converge weakly

(Xn, hn)
w→ (X, h), n→∞.

As Xn(·)
w→ W (·) and hn(·)

P→ h(·) for any finite interval and, furthermore,

the function h is non-random, Lemma 3 yields (Xn, hn)
w→ (W,h). Due to

the Skorokhod representation theorem [1] there exist a probability space and
random elements X̄n, h̄n there such that in C[0,∞):

(X̄n, h̄n)
w
= (Xn, hn),

and for any T > 0 uniform convergence on [0, T ] holds

X̄n(t) ⇒ W̄ (t) and h̄n(t) ⇒ t as n→∞, a.s.

Thus X̄n(h̄n(·))→ W̄ (·), n→∞, a.s. So

Xn(hn(·))
w→ W̄ (·).

3.2 Proof of Theorem 2

As previously we introduce αn(t), α
(−1)
n (t),

hn(t) =
α

(−1)
n (nt)

n
,

and

X(pn)
n (t) =

S(pn)(nt)√
n

=
S(α

(−1)
n (nt))

σ
√
n

=
S(nα

(−1)
n (nt)
n )

σ
√
n

= Xn(hn(t)).

Let us start with discussing the behaviour of

αn(nt)

n
= t+

1

n

τ
(n)
0 (nt)∑
i=1

η
(n)
i , (7)
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where η
(n)
i are geometrically distributed with parameter pn and τ

(n)
0 (t) is the

number of visits to zero of S(pn) before the time t.
The last expression may be rewritten

t+
nγ√
n

τ
(n)
0 (nt)√

n

1

τ
(n)
0 (nt)

τ
(n)
0 (nt)∑
i=1

η
(n)
i

nγ
. (8)

Theorem 3 ([14]). Let W (t) be a Brownian motion in R, L(t) be its local time.
Then in C[0,∞) (τ0(nt)√

n
,
S(nt)

σ
√
n

)
w→ (L(t), W (t)), n→∞.

With this and the Skorokhod theorem we construct a probability space and
random variables there such that in C[0,∞):

( τ̄ (n)
0 (nt)√

n
,
S̄(n)(nt)√

n

)
t≥0

w
=
(τ (n)

0 (nt)√
n

,
S(n)(nt)√

n

)
t≥0
, (9)

and for any T > 0 uniform convergence on [0, T ] holds

τ̄
(n)
0 (nt)√

n
⇒ L̄(t) and

S̄(n)(nt)√
n

⇒ W̄ (t) as n→∞, a.s. (10)

To ease notation we omit the upper index. We define {η(n)
i }i independently

of τ̄0(·) and L̄(·) on the same probability space.

Theorem 4. For every T > 0

sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞, (11)

where
∑x

i=1 means
∑[x]

i=1.

Proposition 1. For any fixed t ≥ 0 we have

1√
n

√
nt∑

i=1

η
(n)
i

nγ
P→ t

ρ
, n→∞.

Proof. Since

E
1√
n

√
nt∑

i=1

η
(n)
i

nγ
=
t

ρ
,
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it suffices to check that the variance of the sequence converges to 0. The sum-
mands are independent, thus

V

(
1√
n

√
nt∑

i=1

η
(n)
i

nγ

)
=

1

n

√
nt∑

i=1

Vη(n)
i

n2γ
.

Recall that {η(n)
i } are geometrically distributed random variables. So

1

n

√
nt∑

i=1

1− ρ
nγ

ρ2

n2γn2γ
=

t√
n

1− ρ
nγ

ρ2
.

This proves that for γ > 0 one has convergence towards 0 of the mentioned.
�

Proposition 2. For every interval [0, T ] and for any ε > 0 we have

lim
n→∞

P

(
sup
t∈[0,T ]

∣∣∣ 1√
n

√
nt∑

i=1

η
(n)
i

nγ
− t

ρ

∣∣∣ > ε

)
= 0.

Proof. The sum is monotonous in t and due to proposition 1 it has a continuous
limit. Thus this proposition follows from lemma 1. �

Proof of the theorem 4. Let δ > 0 be a fixed number. Find T ′ such that the set
Ωδ = {L̄(T ) < T ′} satisfies P(Ωδ) > 1− δ. Note that for any t ∈ [0, T ] it holds
that L̄(t) ≤ L̄(T ). Hence on the set Ωδ

sup
t∈[0,T ]

∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣ ≤ sup
y∈[0,T ′]

∣∣∣ 1√
n

√
ny∑

i=1

η
(n)
i

nγ
− y

ρ

∣∣∣.
Denote by

An,ε =

{
sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

√
nL̄(t)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ > ε

}

And write
P(An,ε) = P(An,ε ∩ Ωδ) + P(An,ε ∩ Ω̄δ).

From proposition 2
lim
n→∞

P(An,ε) ≤ 0 + δ.

As δ and ε were arbitrary, the last inequality proves the theorem. �
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Now suppose that Ω is a set where (10) holds with probability 1. Let ε be
fixed, then for N large enough find the set Ωδ ⊂ Ω such that the event

sup
t∈[0,T ]

∣∣∣L̄(t)− τ̄0(nt)√
n

∣∣∣ < ε

holds for each n > N and P(Ωδ) > 1− δ.
Consider the difference

sup
t∈[0,T ]

1√
n

∣∣∣
√
nL̄(t)∑
i=1

η
(n)
i

nγ
−

τ̄0(nt)∑
i=1

η
(n)
i

nγ

∣∣∣. (12)

We show that (12) converges to 0 and so the limits of the summands should

coincide. Since {η(n)
i } are independent of (L̄, τ̄0), the last expression is equal in

distribution to

1√
n

√
n supt∈[0,T ] |L̄(t)− τ̄0(nt)√

n
|∑

i=1

η
(n)
i

nγ
.

Now on the set Ωδ for n > N this is less or equal to

1√
n

√
nε∑

i=1

η
(n)
i

nγ
.

Proposition 2 entails its convergence to ε
ρ . Since the probability of the com-

plement of Ωδ is small and ε was arbitrary, one sees that (12) converges in
probability to 0. Now due to Theorem 4

sup
t∈[0,T ]

∣∣∣∣∣ 1√
n

τ̄0(nt)∑
i=1

η
(n)
i

nγ
− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞. (13)

3.2.1 Proof of the theorem in case γ < 0.5

Recall (8):

αn(nt)

n
= t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
. (14)

In case γ < 0.5 the right hand side of (14) converges to t in probability.
Now lemmas 1 and 2 assure that for every T > 0:

sup
t∈[0,T ]

|hn(t)− t| = sup
t∈[0,T ]

∣∣∣α(−1)
n (nt)

n
− t
∣∣∣ P→ 0, n→∞. (15)
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The last limit is non random, thus we use Lemma 3 and the Skorokhod
theorem to construct a probability space and random variables there such that
in C[0,∞):

( τ̄ (n)
0 (nt)√

n
,
S̄(n)(nt)√

n
,
h̄n(nt)

n

)
t≥0

w
=
(τ (n)

0 (nt)√
n

,
S(n)(nt)√

n
,
hn(nt)

n

)
t≥0
,

and for every T > 0 uniform convergence on [0, T ] holds

τ̄
(n)
0 (nt)√

n
⇒ L̄(t),

S̄(n)(nt)√
n

⇒ W̄ (t) and
h̄n(nt)

n
⇒ t as n→∞, a.s.

Recall that in Theorem 1 we had the similar situation. So analogously one
obtains that the limit is a Brownian motion

X(pn)
n (·) w→ W (·), n→∞.

3.2.2 Proof of the theorem in case γ > 0.5

In case γ > 0.5 the expression (14) converges to ∞ in probability for every

t > 0. Since for any n ≥ 1 functions αn(n·)
n are monotonous, we have

∀δ > 0 ∀M ∃N ∀t ∈ [δ,∞) ∀n > N P
(αn(nt)

n
> M

)
> 1− δ.

This ensures that uniform convergence on [0,∞) in probability holds

hn(t) =
α

(−1)
n (nt)

n

P
⇒ 0, n→∞.

Once again this limit is non random. By Lemma 3 and the Skorokhod
theorem we construct a probability space and random variables there such that
in C[0,∞):

( τ̄ (n)
0 (nt)√

n
,
S̄(n)(nt)√

n
, h̄n(t)

)
t≥0

w
=
(τ (n)

0 (nt)√
n

,
S(n)(nt)√

n
, hn(t)

)
t≥0
,

and uniform convergence on [0,∞) holds

τ̄
(n)
0 (nt)√

n
⇒ L̄(t),

S̄(n)(nt)√
n

⇒ W̄ (t) and
h̄n(nt)

n
⇒ 0 as n→∞, a.s.

Thus
Xn(hn(t))

w→ 0, n→∞.
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3.2.3 Proof of the theorem in case γ = 0.5

In this case nγ√
n

= 1 and so from (13) one sees that (14) has a non-trivial limit

hn(t) =
αn(nt)

n

w→ t+ L(t)/ρ, n→∞.

Furthermore, we may consider the copies of random variables that we con-
structed after stating Theorem 3 and for which we proved (13). For them
convergence towards the limit is uniform for any T > 0

sup
t∈[0,T ]

∣∣∣∣∣ᾱn(nt)n
− t− L̄(t)

ρ

∣∣∣∣∣ P→ 0, n→∞. (16)

For each n the functions ᾱn(n·)
n are monotone and their limit is continuous

(because the local time is continuous). Thus from Lemma 2 we have

sup
t∈[0,T ]

∣∣∣∣∣ᾱ(−1)
n (nx)

n
− Inv[t+ L̄(t)/ρ](x)

∣∣∣∣∣ P→ 0, n→∞. (17)

And hence convergence in C[0,∞) is proved

X̄n(h̄n(·))
w→ W̄ (Inv[t+ L(t)/ρ](·)), n→∞.
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