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Abstract

For a pair potential Φ in a general underlying space X satisfying some natural
and sufficiently general conditions in the sense of Penrose [29] and Poghosyan and
Ueltschi [30] together with a locally finite measure ρ on X we define by means
of the socalled Ursell kernel a function r which is shown to be the correlation
function of a unique process G, the limiting Gibbs process for (Φ,ρ) with empty
boundary conditions. This process is exhibited as a Gibbs process in the sense
of Dobrushin, Lanford and Ruelle for a class of pair potentials, which contains
classical stable and hard-core potentials that are called Penrose potentials here.
Particularly, a class of positive potentials is included. Finally, for some class of
Penrose potentials we show that G is the unique Gibbs process for Φ. We use the
classical method of Kirkwood-Salsburg equations. A decisive role is played by a
generalization of Ruelle’s estimate for correlation functions.

Introduction
The main impetus for this paper is the development of Ruelle’s approach to the unique-
ness of Gibbs processes in [34], which was done under assumptions of superstability
and lower regularity, in the framework of Penrose-stable pair potentials.1 Moreover,
Ginibre’s uniqueness theorem (Proposition 3.5 in [6]), already presented under assump-
tions of Penrose-stability, strengthened our motivation.

This is done in a general framework of point process theory. Both works had been
published around 1970. Another motivation is the development of these topics follow-
ing Minlos’ approach to Gibbsian theory [22] from 1967. Minlos, like Ruelle, used
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already tools of cluster expansions and Kirkwood-Salsburg equations. The two quan-
tum mechanical models presented below are inspired by Ginibre’s work in [4, 6].

Let X denote an underlying Polish space together with some locally finite measure
ρ on X , M ··(X) the collection of all locally finite particle configurations and X the
subset of finite configurations. Φ is a stable, regular pair potential on X in the sense as
specified later in Section 3. EΦ denotes the associated energy, B = e−EΦ the Boltzmann
factor and Dξ B(ν) = B(ν + ξ ) its algebraic derivative. B is an element of a function
algebra (A ,?) having an inverse with respect to the ?-multiplication, which is denoted
by B−1

? .
We define by means of Φ the Ursell kernel

G(ξ ,η) =
(
B−1
? ?Dξ B

)
(η), ξ ,η ∈ X,

and consider the function (cf. [33], Section 4.4.5)

r(ξ ) =
∫
X

G(ξ ,η)Λρ(dη), ξ ∈ X.

Here Λρ is the measure ρ lifted to X and defined in Part I, Section 1. If X is replaced
by the set X(A) of configurations in some bounded Borel set A, then the right hand side
is the well defined correlation function of the Gibbs process in A specified by (Φ,ρ).

Our first effort in Chapter 2 leads to Theorem 1 which shows that r is the well de-
fined limiting correlation function. It satisfies a Ruelle bound, which will play a funda-
mental role in the sequel. This chapter is based on the work of Minlos and Poghosyan
[24] and Poghosyan and Ueltschi [30] and contains tools from the theory of cluster
expansions. Here we use the notion of weak P-stable pair potentials which is used
systematically in this paper.2

The next aim is Theorem 2, which contains the construction of a (point) process
G in X for which r is the correlation function. This process G is the limiting Gibbs
process in the sense of Minlos [22] with empty boundary conditions. Theorem 1 and
Theorem 2 are proved under so called standard conditions (denoted below by (Wρ))
on weak P-stable potentials Φ. For its construction we do not use the work of Lenard
[15] because it is not clear how to verify his positivity condition. We instead use a
theorem of Zessin (cf. [39], Theorem 2.2.) and have to restrict the class of underlying
spaces X to locally, compact, second countable Hausdorff topological spaces. Under
the conditions made on (Φ,ρ), the process G is uniquely determined by r on account of
Ruelle’s bound. Recently Sabine Jansen gave in [8] a construction of Gibbs processes
in the case of positive pair potentials.

For a subclass (W]
ρ) of the standard conditions we then show in Theorem 3 that

G is a Gibbs process in the DLR3-sense. Minlos’ work on limiting Gibbs processes
foreshadowed the probabilistic nature of Gibbs processes discovered shortly after in
the works of Dobrushin [1] and Lanford and Ruelle [13] in 1968 and 1969. For the
proof of Theorem 3 we do not use the DLR-approach but the one of Nguyen Xuan
Xanh and Zessin [28] from 1976. The difficult proof of this result uses basic ideas of
Benjamin Nehring [26] as main tools.

We then investigate the problem under which assumptions on (Φ,ρ) the process
G is the unique Gibbs process for (Φ,ρ). This is done for a slightly smaller class
of (W]

ρ) of Penrose-stable interactions and within a collection Gt(Φ,ρ) of tempered

2This notion is weaker than Penrose-stability and stronger than the classical notion of stability.
3i.e. Dobrushin, Lanford and Ruelle
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Gibbs processes. Since the work of Ruelle [34] one knows that a description of an
infinite volume equilibrium state P, i.e. a process described by correlation functions
satisfying the Kirkwood-Salsburg equations and interacting via some potential Φ which
is not completely repulsive but has also an attractive part, requires a temperedness
condition. This means that P is supported by some collection of tempered locally finite
configurations. Our approach to the temperedness problem is different from the one of
Ruelle.

To obtain uniqueness we need to work under Penrose-stability. This means that
there exists a measurable function c : X → [0,+∞) such that

WΦ(x,ξ )≥−c(x), x ∈ X ,ξ ∈VΦ.

Here WΦ(x,ξ ) denotes the conditional energy of a particle in x given the surrounding
particles ξ and VΦ the set of all finite configurations having finite energy. Tempered-
ness of P has the following meaning here:

(t1) for every x the conditional energy WΦ(x,µ) is well defined P-almost surely with
respect to µ;

(t2) P is visible, i.e. P is supported by configurations of locally finite energy.

In view of P-stability for c this implies that P-almost surely

WΦ(x,µ)≥−c(x).

This infinite extendability of Penrose-stability to some full set for the process P is of
central importance for our approach to uniqueness of Gibbs processes. In this connec-
tion we present the sufficient condition (15) for property (t1) and a general exclusion
principle which implies property (t2).

In this context we show in Theorem 5 that the collection of tempered Gibbs pro-
cesses is a singleton given by the limiting Gibbs process G. Historically the first who
considered conditions of P-stability (with constant stability function) under which
one-dimensional classical systems show no phase transition were Van Hove [38] (cf.
also Ruelle [33], Theorem 5.6.7) and Gallavotti, Miracle-Sole and Ruelle [2, 3]. A
more-dimensional version has been presented by Ruelle in [34] in the setting of super-
stable and lower regular pair potentials. In the case of quantum systems in Rd Ginibre
[5, 6] gives a proof that under P-stability there is no phase transition. We also mention
the important recent paper of Sabine Jansen [8] which contains a uniqueness result for
positive pair potentials.

The results are applied to examples of classical and quantum statistical mechanics.
Classical systems are given by interacting particles in Euclidean space and quantum
systems by interacting finite clusters of particles in Euclidean space.
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Part I

Preliminaries: Methods, assumptions
and examples
1 Notations.
We use the notations and tools of point process theory from the books of Krickeberg
[12] and J. Mecke [21]. (Cf. also [10, 18]) The underlying space (X ,B(X),B0(X)) is
assumed to be Polish, where B(X) denotes its Borel σ -field and B0(X) its bounded
Borel sets. M (X) is the space of positive Radon measures on X , i.e. positive measures
being finite on B0(X). Here we use this term in a more general setting. 4 M (X) is
Polish with respect to vague convergence, i.e. the topology generated by all mappings
ζ f : µ → µ( f ), where f is non-negative, continuous with bounded support. M ··(X) is
the closed subspace of point measures and the space M ·(X) of simple point measures
on X is a Gδ -set in M ··(X). Point measures are Radon measures µ with µ(B) ∈ N for
all B ∈B0(X). Simple point measures may be considered as locally finite subsets of
X . If R > 0 the subset M ·

R(X) of µ having the property

(x,y ∈ µ,x 6= y⇒ d(x,y)> R)

is a Gδ -set in M ·(X). Here d denotes some metric in X which generates the topology.
We assume that o ∈M ·

R(X) and all singletons εx. (o is the zero-measure and εx the
Dirac measure.) X or X(X) denotes the set of finite point measures on X . X′ is the
collection of all ξ ∈ X with ξ 6= o. If R > 0 then X′R = X′∩M ·

R.
Probability laws P on M ,M ··,M · or X are called random measures, (point) pro-

cesses, simple and finite processes in X respectively. M ··
n is the collection of all n-

particle configurations µ ∈M ·· with |µ| = n, where |µ| = µ(X) denotes the number
of particles in µ . ∆o denotes the Dirac measure on M in o.

Function spaces. F or F(X) is the space of [0,+∞]-valued measurable functions on
X . U denotes the subspace of non-negative, bounded functions with bounded support
and K the collection of continuous functions with compact support; K+ the subset of
non-negative functions. The decomposition of a function f into positive and negative
part is f = f+− f−.

Integration with respect Radon measures. If f ∈ F then the following notations are
used for the integral of f with respect to µ ∈M : ζ f (µ) = µ( f ). If µ ∈M ·· we also
write µ( f ) = ∑x∈µ∗ f (x)µ(x). Here µ∗ is the support of µ .

Configurations and subconfigurations. A point measure µ ∈M ··(X) is called a
configuration of particles in the space X . µ can be represented by means of a sequence
(x j) j∈J of particles x j ∈ X as

µ = ∑
j∈J

εx j .
5

Here J = [n(µ)] := {1, . . . ,n(µ)} is a subset of the natural numbers augmented by +∞

and n(·) is measurable; also the x j are measurable maps of µ . This representation of

4Usually Radon measures are considered on locally compact and second countable Hausdorff topological
spaces.

5This can be realized by the 1−1 correspondence µ ↔ κ = ∑x∈µ∗ ∑
µ{x}
i=1 ε(x,i) between µ ∈M ··(X) and

κ ∈M ·(X×N).
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µ , called measurable indexing relation, is unique up to the ordering of the particles.
(Cf. [18], Section 5.1.5., or also [10], Lemma 1.6) A (finite) subconfiguration ν of
µ corresponds to a finite subset I ⊆ J by ν = ∑i∈I εxi . The empty configuration o
corresponds to I = /0. We then write ν � µ and y ∈ µ if εy � µ . For ξ ∈ X and x ∈ X
we define ξx = ξ − εx if x ∈ ξ and ξx = ξ else.

Potentials, Mayer functions, energy etc. A measurable and symmetric function
Φ : X×X→]−∞,+∞] is a pair potential in X . Φ denotes the truncated potential which
equals 1 on {Φ =+∞} and coincides with Φ outside.

ω(x,y) = e−Φ(x,y)−1 is the associated Mayer function and

K(x,o) = 1, K(x,ξ ) = ∏
y∈ξ

ω(x,y), x ∈ X ,ξ ∈ X,ξ 6= o.

EΦ(ξ ) =
n

∑
j=1

E(x j)+ ∑
1≤i< j≤n

Φ(xi,x j)

denotes the energy of ξ = εx1 + · · ·+ εxn . We set EΦ(o) = 0. Here the self potential E
is a measurable function with values in (−∞,+∞]. We abbreviate the second term on
the right hand side by the symbol for the usual energy:

EΦ(ξ ) = ∑
1≤i< j≤n

Φ(xi,x j), if |ξ | ≥ 2, EΦ(ξ ) = 0, if |ξ | ∈ {0,1}.

Note that
2 ·EΦ(ξ ) =

∫
X

∫
X

Φ(x,y)ξx(dy)ξ (dx).

The conditional energy of x in the environment η is

WΦ(x,η) = E(x)+
∫

X
Φ(x,y)η(dy),

where the second term on the right hand side is denoted by WΦ(x,η). The conditional
energy of the configuration ξ = εx1 + · · ·+ εxn in the environment η is defined by

WΦ(ξ ,η) =WΦ(x1,η)+WΦ(x2,η + εx1)+ · · ·+WΦ(xn,η + εx1 + · · ·+ εxn−1).

Note also that the energy of ξ is the conditional energy of ξ in the empty environ-
ment, i.e. EΦ(ξ ) = WΦ(ξ ,o) and EΦ(ξ ) = WΦ(ξ ,o). We normalize the conditional
energy by WΦ(o, ·)≡ 0.

Given a pair potential Φ we call

VΦ = {ξ ∈ X : EΦ(ξ )<+∞}

the collection of all Φ-visible configurations. Particularly all configurations which are
singletons are visible. 6

Reference measure on X. If ρ ∈M (X) we consider the measure ρ lifted to the
space of finite configurations defined by

Λρ ϕ =
∞

∑
n=0

1
n!

∫
X
· · ·
∫

X
ϕ(εx1 + · · ·+ εxn)ρ(dx1) . . .ρ(dxn), ϕ ∈ F,

defines a locally finite measure on X. The term for n = 0 is ϕ(o).

6This notion will play a role in the definition of P-stability and in the proof of Lemma 14.
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Local Gibbs processes. If (X ,ρ ′) is a measure space and Φ a pair potential in X ,
then the Gibbs process in a bounded Borel set A of X is formally defined by

QA(dξ ) =
1

Ξ(A)
e−EΦ(ξ ) .Λρ ′A

(dξ ),

provided Ξ(A)<+∞. We make throughout the following convention: If there is a non-
trivial self energy E then it is included in the reference measure. Thus the local Gibbs
measures have the form of classical statistical mechanics for the interaction Φ, namely

QA(dξ ) =
1

Ξ(A)
e−EΦ(ξ ) .ΛρA(dξ ),

where ρ(dx) = e−E(x) .ρ ′(dx) and ρA = 1A.ρ the restriction of ρ onto A. Here Ξ(A) is
the normalizing factor and 1A denotes the indicator function of the set A.

Laplace transform and modified Laplace transform. If P is a process in X its
Laplace transform is defined by

LP f =
∫

M ··(X)
e−µ( f ) P(d µ), f ∈ F.

This concept is well defined for any finite positive measure. For infinite measures the
right hand side may become infinite. Such measures, which are even signed, appear
below as so called cluster measures L on X. (Cf. p. 23) If they satisfy the condition

KL f = L
(

1− e−ζ f
)
<+∞, f ∈U,

KL is called the modified Laplace transform of L. (Cf. [21])

2 Methods

Elementary relations for the Mayer function
For 0 ≤ α+ ≤ +∞, 0 ≤ α− < +∞, α = α+−α− and |α| = α++α− the following
relations hold:

(1) |e−α−1|= eα−(1− e−|α|)≤ α
− eα−+

(
1− e−α+

)
≤ |α|eα− .

Compound factorial measures
Define for a given configuration µ ∈M ·· the following measure on X.

Λ
′
µ(h) =

∞

∑
n=0

1
n!

∫
Xn

h(εx1 + · · ·+ εxn) µ̃
n(dx1 . . .dxn), h ∈ F, where

µ̃
n(dx1 . . .dxn) = µ(dx1)(µ− εx1)(dx2) · · ·(µ− εx1 −·· ·− εxn−1)(dxn).

µ̃n is called the factorial measure of µ of order n, and Λ′µ the compound factorial
measure built on µ . For n = 0 the inner integral is understood as h(o), where o ∈ X
denotes the vacuum, i.e. the 0-measure. If n = 1 we set µ̃1 = µ . Also Λ′o(h) = h(o). In
the case where µ ∈ X we assume that µ̃n = o for all n > |µ|.

Integration with respect to Λ′µ means summation over all (finite) subconfigurations
of µ , i.e.

Λ
′
µ(h) = ∑

ν�µ

h(ν).
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Mecke’s and Minlos’ Formula
Lemma 1. ([23, 20]) For every ρ ∈M (X)∫

X

∫
X

h(ξ ,ν−ξ )Λ
′
ν(dξ )Λρ(dν) =

∫
X

∫
X

h(ξ ,ν)Λρ(dξ )Λρ(dν), h ∈ F.

This formula is also valid for all h which are integrable with respect to the measure on
the left hand or the right hand side of this equation.

If h depends only on singletons in the first variable we speak of Mecke’s Formula
otherwise of Minlos’ Formula.

Campbell measures and Gibbs measures
Let P be a process in X and n≥ 1. The Campbell measure of P of order n is the measure
on Xn×M ··(X) defined by

Cn
P (h) =

∫
M ··(X)

∫
Xn

h(x,µ)µ
⊗n(dx)P(d µ), h ∈ F.

If n = 1 we write CP and call it the Campbell measure of P. We’ll also use the notion of
Campbell measure of higher order for locally finite signed measures instead processes.
They are defined analogously.

Let Φ be a pair potential for which the conditional energy WΦ(x,µ) is well defined
for all x and infinitely extended configurations µ ∈M ··. A process P in X is called a
Gibbs process for (Φ,ρ), we then write P ∈ G (Φ,ρ), if P is of first order, i.e. ν1

P( f )<
+∞ for all f ∈K (X), and P is a solution of the equation

(Σρ) CP(h) =
∫

M ··

∫
X

h(x,µ + εx)e−WΦ(x,µ)
ρ(dx)P(d µ), h ∈ F.

Here ν1
P denotes the first moment measure of P defined below. An equivalent compound

version of (Σρ) is: For all h ∈ F∫
M ··

∫
X

h(ξ ,µ) Λ
′
µ(dξ )P(d µ) =

∫
M ··

∫
X

h(ξ ,µ +ξ )e−WΦ(ξ ,µ)
Λρ(dξ )P(d µ).

It is well known (cf. Theorem 2 in [28]) that this is equivalent to saying that P satisfies
the DLR-equations as well as Ruelle’s equilibrium equation (cf. Equations (5.12) in
[34]).

The method of moments
If we use this method in the sequel we assume throughout that the underlying space
X is a locally compact, second countable Hausdorff topological space, a lcsc-space for
short.

The moment measure of P of order k is the measure on Xk defined by

ν
k
P f =

∫
M ··

µ
⊗k( f )P(d µ), f ∈K (Xk),

whereas the correlation measure7 of P of order k is the measure given by

ν̃
k
P( f ) =

∫
M ··

µ̃
k( f )P(d µ), f ∈K (Xk).

7also called factorial moment measure
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The Campbell measure determines all moment measures and all factorial moment mea-
sures.

If ν̃k
P has a density rk

P with respect to some product measure ρ⊗k, where ρ is a
Radon measure on X , then we say that rk

P is a correlation function of P of kth order
with respect to ρ . Note that correlation measures and thereby correlation functions are
symmetric and thus functions on X. The process P is called of order k if νk

P is a Radon
measure. P is called of infinite order if it is of order k for every k.

If P ∈ G (Φ,ρ) then the compound version of the Gibbs property immediately im-
plies that P has a correlation function given by

rP(ξ ) =
∫

M ··
e−WΦ(ξ ,µ) P(d µ), ξ ∈ X,

where

WΦ(εx1 +· · ·+εxn ,µ)=WΦ(x1,µ)+WΦ(x2,µ+εx1)+· · ·+WΦ(xn,µ+εx1 +· · ·+εxn−1).

This representation is due to Nguyen X.X. and Zessin. (Cf. [28], Formula (4.3)) It
exhibits the correlation function of an infinitely extended Gibbs process as a function
of all finite configurations.

The following basic lemma reduces the study of moment measures to the study of
correlation measures.

Lemma 2. (Krickeberg’s decomposition, cf. [12]; [27], Theorem 4.1; and [26], Theo-
rem 4.1.1) Let P be a point process in X of order k. Then the collection ν̃`

P, `= 1, . . . ,k,
of correlation measures of P is the unique family of symmetric Radon measures, de-
composing νk

P in the following way:

ν
k
P( f1⊗·· ·⊗ fk) = ∑

J∈℘[k]
ν̃
|J |
P (⊗J∈J fJ), f1, . . . , fk ∈K (X).

Here |J | is the cardinality of J , the sum is taken over all partitions of [k] := {1, . . . ,k}
into non-empty subsets J, and fJ = ∏ j∈J f j.

The next result is a continuity theorem for moment measures which can be found
in [39]. (Cf. Theorem 2.2.)

Lemma 3. Let (Pn)n be a sequence of processes in X of infinite order satisfying the
following conditions

for each k the limits

ν
k( f ) = lim

n→∞
ν

k
Pn( f ), f ∈K (Xk), exist and satisfy

∞

∑
k=1

ν
k(Ak)−

1
2k =+∞, A ∈B0(X).

Then there exists one and only one process P in X of infinite order such that

Pn⇒ P and ν
k
P = ν

k for each k ∈ N.

Here ”⇒” means the weak convergence.
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Algebraic method
We need a method which goes back to Ruelle [33]. If ξ ∈ X, integration with respect
to Λ′

ξ
gives rise to some commutative algebra which plays an important role in the

analysis of quantities like the Boltzmann factor or the Ursell function.
Let A be the set of all measurable, complex valued functions ϕ on X and define a

?-multiplication of two functions by

ϕ ?ψ(ξ ) =
∫
X

ϕ(ν)ψ(ξ −ν)Λ
′
ξ
(dν), ξ ∈ X,ϕ,ψ ∈A .

In this way A becomes a commutative algebra with unit 1, defined by 1(ξ ) = 1 if
ξ = o and 1(ξ ) = 0 else. In general, if ϕ1, . . . ,ϕn ∈A ,

(ϕ1 ? · · ·?ϕn)(ξ ) = ∑
(ξ1,...,ξn):ξ1,...,ξn�ξ

ξ1+···+ξn=ξ

ϕ1(ξ1) · · ·ϕn(ξn), ξ ∈ X.

Let Ao = {ϕ ∈ A | ϕ(o) = 0}. The algebraic exponential is defined as the mapping
Γ : Ao→ 1+Ao by

Γϕ = 1+
∞

∑
k=1

1
k!

ϕ
?k, ϕ ∈Ao.

We introduce the operation of differentiation in A by

Dxϕ(ξ ) = ϕ(ξ + εx), x ∈ X ,ξ ∈ X.

It satisfies
Dx(Γϕ) = Dxϕ ?Γϕ, ϕ ∈Ao.

More generally Dξ ϕ = Dx1 · · ·Dxnϕ if ξ = εx1 + · · ·+ εxn . By Minlos formula

Λρ(ϕ1 ?ϕ2) = Λρ(ϕ1) ·Λρ(ϕ2), ϕ1,ϕ2 ∈A ∩L1(Λρ).

3 Conditions on the underlying potential
Consider the underlying space (X ,B,B0,ρ), where ρ ∈M (X), and a pair potential Φ

in X . Throughout the paper we assume stability, regularity and integrability conditions
on Φ. These properties may vary depending on the problem considered. We consider
three different stability conditions.

(A1) (stability) There exists a non-negative, measurable function c : X→ [0,+∞), such
that

EΦ(ξ )≥−ξ (c), ξ ∈ X.

Recall that ξ (c) = ∑x∈ξ c(x).

(A2) (weak P- or wP-stability) There exists a measurable function c : X → [0,+∞)
such that for every ξ ∈ X\{o} there exists x ∈ ξ with

WΦ(x,ξx)≥−c(x).
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(A3) (P-stability8) There exists a measurable function c : X → [0,+∞) such that for
every x ∈ X

WΦ(x,ξ )≥−c(x), ξ ∈VΦ.

If c is given, the two regularity conditions are

(B1) (c-regularity) There exists a non-negative, measurable function a : X → [0,+∞)
such that ∫

X
|ωx|(y)e(c+a)(y)

ρ(dy)≤ a(x), x ∈ X .

(B2) (modified c-regularity) There exists a non-negative, measurable function a : X→
[0,+∞) such that∫

X
|Φx|(y)e(c+a)(y) eΦ−x (y)

ρ(dy)≤ a(x), x ∈ X .

(B2) implies (B1) in view of the elementary equalities (1).
Finally, we need integrability conditions: If (c,a) are given, the conditions are

(C1) (weak local (c,a)-integrability)

e(c+a) e−Φ+
x .ρ ∈M (X), x ∈ X .

(C2) (local (c,a)-integrability)
e(c+a) .ρ ∈M (X).

(C3) (strong local (c,a)-integrability)

e(c+a) eΦ−x .ρ ∈M (X).

Obviously (C3) =⇒ (C2) =⇒ (C1) .

Lemma 4. If Φ is c-regular for some a then (C1) implies (C3). In this case the three
local integrability conditions are equivalent.

Proof. We show that e(c+a) eΦ−x .ρ is a Radon measure and thereby also e(c+a) ρ .
Indeed, if g ∈U,∫

X
g(y)e(c+a)(y) eΦ−x (y)

ρ(dy)

≤
∫

X
g(y)|ωx|(y)e(c+a)(y)

ρ(dy)+
∫

X
g(y)e(c+a)(y) e−Φ+

x (y)
ρ(dy)

<+∞. �

If Φ is non-negative then it is P-stable. Moreover, P-stable potentials for c are
wP-stable potentials for c, whereas wP-stable potential for c are c-stable. We need to
show that wP-stability for c implies stability for c. Indeed, given ξ ∈ X, |ξ |= n≥ 1,
weak P-stability implies that there exists x1 ∈ ξ with WΦ(x1,ξx1)≥−c(x1). Iterating
this step we obtain a numbering ξ = εx1 + εx2 + · · ·+ εxn such that for all j = 1, . . . ,n

WΦ(x j,ξx1x2...x j)≥−c(x j).

8This notion goes back to Oliver Penrose [29]. (Cf. also Charles B. Morrey [25] and J. Groeneveld [7])
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Here ξx1x2...x j = ξ − (εx1 + · · ·+ εx j). On the other hand

EΦ(ξ ) =
n

∑
j=1

WΦ(x j,ξx1x2...x j)≥−ξ (c).

Finally, stability for c implies wP-stability for 2c.
The following estimate will be used below: If Φ is wP-stable for c then Φ(x,y)≥

−c(x)∧ c(y),x,y ∈ X , and thereby

(2) Φ
−(x,y)≤ c(x)∧ c(y), x,y ∈ X .

This inequality is equally valid for all P-stable potentials.
c-regularity (which is an extension of a criterion of Kotecký and Preiss [11]) and

the condition of local integrability are due to Ueltschi [36]. The concept of modified
regularity, used here with the additional factor eΦ−x , is due to Poghosyan and Ueltschi
[30] and was inspired by Procacci [32].

Algebraic method (continued)
Consider the Boltzmann factor B = e−EΦ . B is an element of the algebra A with
B(o) = 1. It has an inverse within A , denoted by B−1

? . Another important element κ
of the algebra A is called the Ursell function and given by κ(o) = 0,κ(εx) = 1 and for
n≥ 2

κ(εx1 + · · ·+ εxn) = ∑
γ∈Cn

∏
{i, j}∈γ

ω(xi,x j),

where Cn denotes the set of all simple, unoriented, connected graphs γ with n vertices,
and the product is taken over all edges in γ . We remark that κ ∈Ao and B = Γκ .

We also need the improved tree-graph estimate of Ueltschi [37]:

Lemma 5. If Φ is c-stable then

|κ|(ξ )≤ eξ (c)
∑

γ∈T (ξ )
∏
{x,y}∈γ

(
1− e−|Φ|(x,y)

)
, ξ ∈ X.

Here T (ξ ) denotes the family of trees with vertex set ξ .

4 Examples

Classical interactions
Example 1. (Stable pair potentials in Euclidean space) Let (X ,λz) be the d-dimensional
Euclidean space E =Rd with measure λz = z`,z > 0. Here `(du) = du is the Lebesgue
measure on E. ϕ denotes a pair potential in E of the type ϕ(u,v) = ψ(u− v), where
ψ is an even measurable function on E, stable with some constant stability function.
The c-regularity and modified c-regularity conditions for any constant c≥ 0 with a≡ 1
take the form

z ·
∫

E
|e−ψ(v)−1| dv≤ e−(c+1), z ·

∫
E
|ψ|(v)eψ−(v) dv≤ e−(c+1) .

These conditions are satisfied if the integrals are finite and z is chosen small enough.
For concrete examples we refer to the book of Ruelle [33].
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Example 2. (P-potentials in Euclidean space) As before the underlying space is E =
Rd with Lebesgue measure z`. 0 < R is a constant and ϕ a hard-core potential of the
following type: If |u−v| ≤R then ϕ(u,v)=+∞; ϕ is real-valued outside the hard-core,
and if |u− v|> R then

|ϕ|(u,v)≤ ψ(|u− v|),

where ψ is some positive, decreasing function on ]R,+∞] such that∫
∞

R
ψ(r) · rd−1 dr <+∞.

ϕ is called a Penrose potential or P-potential. (Cf. [29]; see also [25, 7])
It is well known ([25, 29]) that a P-potential is P-stable, and thereby wP-stable, for
some stability constant B depending on ψ and R.

We discuss next the modified regularity condition for a P-potential ϕ for a constant
stability function B > 0 and a constant function a≡ A > 0:

z
∫

E
|ϕu|(v)eB+A eϕ−u (v) dv≤ zeB+A

(
τd(R)+ eB

∫
∞

R
ψ(t)td−1 d t

)
.

Here τd(R) denotes the volume of the d-dimensional ball of radius R. Since the right
hand side is finite, modified B-regularity holds true if z is small enough.

Examples of ψ are ψ(t) ≡ 0, ψ(t) = δ e−γt , and ψ(t) = δ

td+ε
, where ε,δ ,γ are

positive constants. The first leads to purely hard-core, the second to Kac-type (cf. [9])
and the last one to Penrose-type potentials.

Quantum interactions
Let ϕ be a pair potential in Euclidean space E =Rd with Lebesgue measure zdx,z > 0.
Assume that ϕ is weakly positive definite, i.e. y⊗2 ϕ ≥ 0 for all y ∈ X. Particularly
ϕ(u,u)≥ 0 for all u. Since

y⊗2
ϕ = ∑

u,v∈y
ϕ(u,v) = 2Eϕ(y)+ ∑

u∈x
ϕ(u,u)≥ 0

we obtain that ϕ is stable with stability function B(u) = 1
2 ϕ(u,u). ϕ induces a pair

potential in X= X(E) by

Φ(x,y) = (x⊗ y) ϕ, x,y ∈ X.

Φ is weakly positive definite. Indeed, for all finite configurations κ in the space X,
which we denote by X,

κ
⊗2

Φ =
∫ ∫

ϕ(a,b)(χκ)(da)(χκ)(db)≥ 0,

because ϕ is weakly positive definite. The elements of κ ∈ X have the form κ =
εy1 + · · ·+εyn , y j ∈X and χκ = y1 + · · ·+yn is the cluster dissolution of κ . In view of

κ
⊗2

Φ = 2EΦ(κ)+ ∑
y∈κ

Φ(y,y) = 2

(
EΦ(κ)+ ∑

y∈κ

(ζB(y)+Eϕ(y))

)

this implies that Φ is stable with stability function c = ζB +Eϕ , 0≤ c <+∞. Note that
here the self energy EΦ(εx) = Eϕ(x),x ∈ X, is not trivial.
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On the other hand if the classical potential ϕ is P-stable with a constant B then Φ

is P-stable with c = ζB. Indeed, for all x ∈ X′R and κ ∈VΦ = {κ|χκ ∈ X′R}

WΦ(x,κ) =
∫
X

Φ(x,y) κ(dy) =
∫
X

∫
X

ϕ(a,b) χκ(db)x(da)≥−B · |x|.

The following examples are inspired by the work of Ginibre [4, 6] and describe classes
of interactions for quantum gases, i.e. systems of clusters in Euclidean space interact-
ing via the potential Φ.

Below we choose as the basic space the space F′ = F′(E) of all nonempty closed
subsets in E = Rd . This set is topologized by means of the Fell topology which is
generated by the maps

F → d(u,F), u ∈ E,

where d(u,F) = infv∈F d(u,v) and d is the Euclidean metric. F′ then is a lcsc Hausdorff
topological space, in which X′, the collection of nonempty finite sets in E, is dense. (Cf.
[17] Theorem 1-2-1 and Corollary 2 of Theorem 1-2-2)

The collection B0(F
′) of bounded Borel sets in F′ is generated by the collection of

all
FB = {F ∈ F′|F ∩B 6= /0}, B ∈B0(E),

In the following two examples Φ(x,y) is the interaction potential between clusters x
and y. The energy of a finite configuration κ of clusters is then given by

EΦ(κ) = ∑
x∈κ

Eϕ(x)+EΦ(κ);

and we consider the following locally finite measures λz = e−Eϕ .λ ′z on F′. Here

λ
′
z( f ) =

∞

∑
m=1

zm

m

∫
E

∫
Em−1

f (εu + εu2 + · · ·+ εum) Bu
m(du2 . . .dum) du, f ∈ F,

where the first term of the series is z
∫

E f (u) du;

Bu
m(du2 . . .dum) = γ(u,u2) · · ·γ(um,u) du2 . . .dum, m≥ 2,

and

γ(u,v) =
1

(2πβ )d/2 exp
(
−|u− v|2

2β

)
is a Gaussian kernel with positive parameter β . Note that λz is supported by X′. Thus
quantum models are given by pair potentials Φ on the space (X′,λz).

Example 3. (Positive potentials in spaces of finite clusters) Let ϕ be of the type
ϕ(u,v)=ψ(u−v). Assume that ψ is non-negative and integrable. ϕ thus is wP-stable
with stability constant B≡ 0. The associated pair potential Φ is also non-negative and
stable for c = 0. We discuss the condition of c-modified regularity and thereby of c-
regularity of Φ, which amounts to∫

X′
Φ(x,y)ea(y)

λz(dy)≤ a(x), x ∈ X′.

It had been remarked in [30] for functions a(x) = A · |x|,A > 0, that this is true if

‖ψ‖1

(2πβ )d/2

∞

∑
m=1

zm eAm

md/2 ≤ A.
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This holds for z sufficiently small. (‖ψ‖1 denotes the L1-norm.) (Cf. Section 4.3 of
[36].)

Unfortunately we are not able to show regularity or modified regularity in the case
when the potential is stable and has an attractive part. The next example shows that
this is the case if we consider P-potentials.

Example 4. (P-potentials in spaces of finite clusters) Let ϕ be a P-potential in E =
Rd for some stability constant B from Example 2. This implies that Φ is P-stable on
X′R with stability function c = ζB.

We next show along the lines of [4, 30] that Φ is strongly modified c-regular for
the parameter 0 < p < 1 and the function a(y) = |SR/2(y)|+ |y|,y ∈ X′R, if z is small
enough.9 Here SR/2(y) =

⋃
u∈y BR/2(u) denotes the sausage around the cluster y. The

range of a is contained in the interval [1,+∞).
If y ∈ X′R then a(y) = (τd(R/2)+1) · |y|, because `(SR/2(y)) = τd(R/2) · |y|. Note

also that λz is supported by X′R.
We shall show below that for z small enough and p < 1

(?)
∫
X′R

|Φx|(y)e(ζB+a)(y) eΦ−x (y)
λz(dy)≤ p · a(x), x ∈ X′R.

Since Eϕ(y) ≥ −B|y|,y ∈ X′R, and Φ−x (y) ≤ c(y) for every x, the integral on the left
hand side can be estimated from above by

∞

∑
m=1

(ze3B+τd(R/2)+1)m

m

∫
E

∫
Em−1
|Φ|(x,εu + εu2 + · · ·+ εum) Bu

m(du2 . . .dum) du

Using the device, that for all f ∈ F∫
f (u,u2, . . . ,um) Bu

m(du2 . . .dum) =
∫

f (u,u2 +u, . . . ,um +u) B0
m(du2 . . .dum),

we obtain
∞

∑
m=1

(ze3B+τd(R/2)+1)m

m

∫
Em−1

[∫
E
|Φ|(x,εu + εu2+u + · · ·+ εum+u)du

]
B0

m(du2 . . .dum)

The inner integration with respect to du is now decomposed into the region
S(x,ε0 +εu2 + · · ·+εum) of all u ∈ E where |Φ|(x,εu +εu2+u + · · ·+εum+u)≡ 1 and its
complement. One obtains for the inner integral

`(S(x,ε0 + εu2 + · · ·+ εum))+m · |x| · ‖ψ‖1.

where ‖ψ‖1 =
∫
|u|>R ψ(u) du. It is easy to see that

S(x,ε0 + εu2 + · · ·+ εum) = SR(x)∪
m⋃

j=2

SR(x−u j),

so that
`(S(x,ε0 + εu2 + · · ·+ εum))≤ m2d · `(SR/2(x)).

Here x−u j denotes the translation of x by −u j. Thus condition (?) is valid if

1
(2πβ )d/2

∞

∑
m=1

(ze3B+τd(R/2)+1)m

md/2 ≤ p
2d ∨‖ψ‖1

.

This inequality holds true if z is small enough. Local (c,a)-integrability is obvious.
9The definition of this regularity condition can be found at the beginning of Section 10.
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Part II

Construction of a limiting process
by the method of moments
In this part we present elements of the method of cluster expansions, construct the
limiting Gibbs process and exhibit its Gibbsian character.

5 Tools from cluster expansion
Lemma 6. The function G(ξ , ·), defined by G(ξ , ·) = B−1

? ?Dξ B,ξ ∈X, is an element
of the algebra A and, as a function of both variables, the unique solution of the non-
integrated Kirkwood-Salsburg equation: For each choice of x in ξ{

G(o,η) = δo,η ,

G(ξ ,η) = e−WΦ(x,ξx)
∫
X K(x,ν) ·G(ξx +ν ,η−ν)Λ′η(dν) ξ 6= o.

Particularly, the right hand side of this equation does not depend on the choice of x∈ ξ .

This lemma is well known [33, 24, 30]. G is called the (classical) Ursell kernel. (Cf.
[24]) It is well defined inductively by this equation and thereby uniquely determined.
Moreover, G(o,o) = G(εx,o) = 1.

We next estimate the function G by means of another function Hc that satisfies a
similar equation and is accessible to detailed analysis. If we assume that Φ is a wP-
stable pair potential in X with stability function c then the Ursell kernel can then be
estimated from above by

(3) |G|(ξ ,η)≤ ec(x) ·
∫
X
|K|(x,ν) · |G|(ξx +ν ,η−ν)Λ

′
η(dν)

for all x ∈ ξ with WΦ(x,ξx)≥−c(x).
Observation (4) is taken to define Hc(ξ ,η) as the unique solution H of the equation

(4)
{

H(o,η) = δo,η ,

H(ξ ,η) = ec(x) ∫
X |K|(x,ν) ·H(ξx +ν ,η−ν)Λ′η(dν), ξ 6= o.

Under the assumption of weak c-stability of Φ

(5) |G|(ξ ,η)≤ Hc(ξ ,η), ξ ,η ∈ X.

Our next step is to write the function Hc explicitly in terms of rooted forests. An
unoriented simple graph is called rooted forest if its connected components are rooted
trees. Here a rooted tree is a tree in which one vertex is specified as a root. F (ξ ,η)
denotes the collection of forests with the set of vertices ξ +η and roots ξ .

Lemma 7. (Minlos, Poghosyan [24]) For ξ 6= o the function Hc(ξ ,η) is given by

(6) Hc(ξ ,η) = e(ξ+η)(c)
∑

γ∈F (ξ ,η)
∏
{x,y}∈γ

|ω|(x,y).

Since Hc is uniquely determined as a solution of the equation (4) it is enough to
check that this ansatz of Hc satisfies the equation (4). (For details see [24], Lemma 1
and Lemma 2 as well as Lemma 6.2 and Lemma 6.3 in [30].)
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Lemma 8. If ξ = εx1 + · · ·+ εxn , then for all η ∈ X

(7) Hc(ξ ,η) = Hc(x1, ·)? · · ·?Hc(xn, ·) (η).

Proof. Consider the relation

F (ξ ,η)≡T (x1,η1)×·· ·×T (xx,ηn),

where on the right hand side one has an n-fold Cartesian product of sets of trees. This
establishes a 1−1 correspondence between forests γ rooted in ξ with vertex set ξ +η

and n-tuples of disjoint trees τ j ∈ T (x j,η j), j = 1, . . . ,n, rooted in x j with vertex set
εx j +η j, where η1, . . . ,ηn � η with η1 + · · ·+ηn = η . Therefore the right hand side
of (6) can be written as

∑
(η1,...,ηn):η1,...,ηn�η

η1+···+ηn=η

Hc(x1,η1) · · ·Hc(xn,ηn),

which equals the right hand side of (7) by definition of the ?-product.

The Ruelle estimate
Ruelle’s estimate of the (correlation) function r is in the center of all classical statistical
mechanics. r(ξ ),ξ ∈ X, is estimated by means of the kernel Hc from Lemma 7. In the
case of singletons |ξ | = 1 we obtain Ruelle’s estimate in terms of the Ursell function
under a weaker condition.

Below we use the following version of equation (2.9) of Theorem 2.1 in [30], which
provides important upper bounds for the integrals appearing in the lemma.

Lemma 9. Suppose that Φ is c-regular for some function a. Then

(8)
∫
X

eη(c) · ∑
γ∈T (x,η)

∏
{y,y′}∈γ

|ω|(y,y′) Λρ(dη)≤ ea(x), x ∈ X .

If Φ is c-stable and satisfies the condition

(9)
∫

X
(1− e−|Φ(x,y)|)e(c+a)(y)

ρ(dy)≤ a(x),

which is weaker than c-regularity, then

(10)
∫
X
|κ|(ξ + εx) Λρ(dξ )≤ e(a+c)(x), x ∈ X .

The proof of Lemma 9 follows the same lines as in [30]. The reasoning for the
estimate (10) uses the tree-graph estimate in Lemma 5. Lemma 9 is an instance of the
following estimate of Ruelle.

Corollary 1. Let Φ be a wP-stable pair potential with stability function c and c-
regular for some a. Then the function

r(ξ ) =
∫
X

G(ξ ,η)Λρ(dη), ξ ∈ X.

is a well defined element of 1+Ao and satisfies the Ruelle estimate

(ℵa
c) |r|(ξ )≤ eξ (c+a), ξ ∈ X.
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Proof. Inequality (5) combined with Lemma 7 and Lemma 8 imply∫
X
|G|(ξ ,η) Λρ(dη)≤

∫
X

Hc(ξ ,η) Λρ(dη)

= ∏
x∈ξ

∫
X

Hc(x,η)Λρ(dη)

≤ eξ (c+a) .

We remark here that for the proof of the estimate for r(x) that

G(x, ·) = B−1
? ?Dx(Γκ) = Dxκ.

Thus, using (9) and (10), we obtain (ℵa
c) under weaker conditions. To summarize:

Theorem 1. If Φ is wP-stable for c and c-regular for some a then the function
r(ξ ), |ξ | ≥ 2 satisfies the Ruelle estimate (ℵa

c). The same estimate for r(x) is valid
under the weaker conditions of c-stability combined with the regularity condition (9).

6 Ursell kernel expansion of correlation functions
In the sequel we assume that Φ satisfies the following conditions called standard con-
ditions.

(Wρ) Φ is wP-stable with stability function c, c-regular for some a and weak locally
(c,a)-integrable.

Given A∈B0(X) define the Gibbs process in A with empty boundary conditions as the
probability QA on X(A) which is absolutely continuous with respect to ΛρA and given
by

QA(dξ ) =
1

Ξ(A)
e−EΦ(ξ ) ·ΛρA(dξ ).

This process is well defined for all c-stable potentials Φ, which are locally c-integrable,
particularly for wP- and P-stable potentials.

Lemma 10. The correlation function of QA is

(11) rA(ξ ) =
1

Ξ(A)

∫
X(A)

e−EΦ(ξ+η)
Λρ(dη), ξ ∈ X(A).

This follows immediately from the calculation of correlation measures by means of
Mecke’s formula. Obviously rA is supported by the visibility set VΦ.

Proposition 1. The correlation function of QA has the following expansion in terms of
the Ursell kernel:

(12) rA(ξ ) =
∫
X(A)

G(ξ ,η)Λρ(dη), ξ ∈ X(A).

Proof. Note that the integrand in Formula (11) is Dξ B. Minlos’ Formula implies

ΛρA(Dξ B) = ΛρA(B?B−1
? ?Dξ B) = Ξ(A)ΛρA(G(ξ , ·)).

This is due to the integrability of B and B−1
? ?Dξ B with respect to ΛρA , where the latter

follows from the corresponding Ruelle estimate.
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We remark that in formulas (11) and (12) rA(o) = 1. A classical result of Min-
los [22] and Ruelle [33] shows that rA converges pointwise to the socalled limiting
correlation function r if A ↑ X along some increasing sequence of bounded Borel sets
exhausting X . It gives also an estimate of the rate of convergence. We obtain a weaker
version of this result directly from Theorem 1 by means of Lebesgue’s dominated con-
vergence theorem.

Corollary 2. Under standard conditions (Wρ) the function r is the limiting correlation
function in the sense of pointwise convergence, i.e.

r(ξ ) = lim
A↑X

rA(ξ ), ξ ∈ X,

and satisfies the Ruelle bound (ℵa
c). Furthermore, r is supported by the collection of

visible configurations VΦ.

Proof. Given ξ ∈ X, we note that 1X(An)(·)|G|(ξ , ·),n ≥ 1, is a sequence in L1(Λρ)

majorized by |G|(ξ , ·) ∈ L1(Λρ) in view of (ℵa
c). Thus Lebesgue’s dominated conver-

gence theorem implies

1X(An)(·)G(ξ , ·)→ G(ξ , ·) in L1(Λρ),

when An ↑ X . This implies the assertions.

7 Construction of a limiting Gibbs process
with correlation function r

We now show that r is not only a limiting correlation function. We use the method
of moments to show that there exists a unique process P having r as its correlation
function.10 Recall that from now on the underlying space X is lcsc.

Lemma 11. (cf. [39], Corollary 2.2.) Let (Pn)n be a sequence of point processes Pn in
X of infinite order satisfying the conditions

for each k the limits(13)

ν̃
k( f ) = lim

n→∞
ν̃

k
Pn( f ), f ∈K (Xk), exist and satisfy

∞

∑
k=1

ν
k(Ak)−

1
2k =+∞ for each A ∈B0(X),(14)

where
ν

k(Ak) = ∑
J

ν̃
|J |(A|J |).

Then there exists one and only one point process P in X of infinite order such that
Pn⇒ P and ν̃k

P = ν̃k for each k.

Lemma 11 follows from Krickeberg’s decomposition Lemma 2 combined with
Lemma 3.

10Thus we realize Minlos’ program on limiting Gibbs processes from [22] by means of methods from
point process theory which had been developed later.
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For the construction of the limiting process we work under the standard conditions
on Φ. Let (Kn)n be a sequence of bounded Borel sets in X exhausting X and con-
sider the sequence Pn = QKn of Gibbs processes in X . By Proposition 1 the associated
correlation measures are given for n large enough by

ν̃
k
Pn f =

∫
Xk

f (x1, . . . ,xk)
∫
X(Kn)

G(εx1 + · · ·+ εxk ,η)Λρ(dη)ρ(dx1) . . .ρ(dxk),

where f ∈K (Xk). In view of local integrability, the Ruelle bound implies that each
Pn is of infinite order. Moreover, it is clear from Corollary 2 that Condition (13) holds
true with limits

ν̃
k( f ) =

∫
Xk

f (x1, . . . ,xk)
∫
X

G(εx1 + · · ·+ εxk ,η)Λρ(dη)ρ(dx1) . . .ρ(dxk).

Thus it remains to prove (14). Let A ∈B0(X). Denoting by S(k,m) the Stirling
number of the second kind, Krickeberg’s decomposition Lemma 2 implies under (Wρ)

ν
k(Ak) =

k

∑
m=1

S(k,m)ν̃m(Am)

≤
k

∑
m=1

S(k,m)
[
ρA(ec+a)

]m
<+∞.

Here we used once more (ℵa
c). Recalling Stirling’s Formula (cf. [35], Formula (24 a)),

i.e.

S(k,m) =
1

m!

m

∑
j=1

(−1)m− j
(

m
j

)
jk,

we conclude that there is a positive constant C

ν
k(Ak)≤ eC(2k)2k

so that for some positive constant C′

ν
k(Ak)

1
2k ≤C′ · k.

This implies (14). To summarize:

Theorem 2. Under the standard conditions on Φ there exists a unique process G of
infinite order with correlation function r, which is the limiting Gibbs process with empty
boundary conditions (in the sense of weak convergence) of the sequence QKn of local
Gibbs processes.

Theorem 1 and Theorem 2 are applicable to all potentials of Examples 1 - 4.

Support of limiting Gibbs processes.
A general exclusion principle
Let Φ be an arbitrary pair potential in X . Consider the collection of all infinitely ex-
tended visible configurations, i.e. configurations in M ··(X) of finite local energy, de-
fined by

M ··
υ = {µ =

∞

∑
j=1

εx j ∈M ··(X)|(i 6= j⇒Φ(xi,x j)<+∞)}.
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Here we suppose that o,εx ∈M ··
υ for all x. Note that VΦ = X∩M ··

υ . The aim is to
characterize processes P which are supported by M ··

υ . Let

D∞ = {(x,y) ∈ X2|Φ(x,y) = +∞}.

We first characterize M ··
υ : Let µ ∈M ··. Then µ ∈M ··

υ if and only if µ̃2(D∞) = 0. The
proof is immediate and left to the reader. This implies

Proposition 2. (Exclusion principle) Let P be a process in X. Then P is supported by
M ··

υ in the sense that P M ··
υ = 1, if and only if

ν̃
2
P(D∞) = 0.

In this case we say that P is a visible process for Φ. Denote by D = {(x,x) : x ∈ X}
the diagonal in X2. An immediate implication of the exclusion principle is

Corollary 3. Let Φ be an arbitrary pair potential in X satisfying Φ(x,y) = +∞ iff
x = y. Then P is a simple process, i.e. supported by the collection of simple point
configurations M ·(X), if and only if ν̃2

P D = 0.

This is Theorem 1 in [40]. Another corollary of Proposition 2 is

Corollary 4. If P has a correlation function rP, which is supported by the Φ-visible
configurations VΦ, then P is visible.

In view of Corollary 2 we obtain

Corollary 5. The limiting Gibbs process G from Theorem 2 is visible.

Corollary 5 may be applied to all Examples 1- 4. Particularly, we have

Example 5. Consider Example 2: Let ϕ be a P-potential in E with parameter R.
The collection of hard-core configurations M ·

R(E) are the visible configurations. Thus
Corollary 4 implies that the limiting Gibbs process G for ϕ is a hard-core process. The
same holds true for the hard-core model of Example 4. One has to work now with the
pseudometric

D(x,y) = min
u∈x,v∈y

|u− v|, x,y ∈ X′.

8 The Gibbsian character of the limiting Gibbs process
We next identify the limiting Gibbs process G as a Gibbs process in the DLR-sense
under slightly stronger than the standard conditions:

Assume the conditions

(W]
ρ) Φ is wP-stable with stability function c and modified c-regular for some func-

tion a. Moreover, Φ is weak locally (c,a)-integrable.

Note that (W]
ρ) implies the standard conditions (Wρ).

Theorem 3. Let ρ be a Radon measure on X and Φ a pair potential in X satisfying
(W]

ρ). Then G is a visible Gibbs process in X for Φ and ρ .
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Theorem 2 guarantees the existence of a limiting Gibbs process G of infinite order.
To show its Gibbsianess it suffices to show that G is a solution of equation (Σρ) for
functions h of the form f ⊗ e−ζg , where f ,g ∈ U . (Cf. [21], proof of Theorem 10)
Let (Kn)n be an increasing sequence in B0(X) exhausting X . Since by construction
Gn :=GKn⇒G as n→∞, we know from the generalized Palm-Khinchin theorem ([18],
Proposition 10.1.5 or also Corollary 3.3.2 in [26]), that the left hand side converges,
i.e. CGn h→CG h.

Since the Gn are Gibbs processes in Kn, they solve equation (ΣρKn
). (Cf. Lemma 1

in [41]) To show convergence of the right hand side of (ΣρKn
) consider the sequence of

integrands on the space (X ,ρ) given by

ιn(x) = f (x)e−g(x) ·
∫
X(Kn)

e−µ(g) e−WΦ(x,µ) Gn(d µ) ·1Kn(x).

The idea is to use Lebesgue’s dominated convergence theorem. Observe first that∫
X(Kn)

e−µ(g) e−WΦ(x,µ) Gn(d µ) = LGn(g+Φx).
11

On the other hand ∫
X(Kn)

e−WΦ(x,µ) Gn(d µ) = rGn(x),

which follows directly from equation (ΣρKn
). This implies that the ιn are dominated by

some ρ-integrable function. Indeed,

ιn(x)≤ f (x)rGn(x)≤ f (x)e(c+a)(x) .

Here we used Theorem 1 combined with the bound (ℵa
c). The function on the right

hand side is ρ-integrable by local (c,a)-integrability.
Thus the problem is to show pointwise convergence

LGn(g+Φx)→n LG(g+Φx), x ∈ X

This difficult question has been answered by Benjamin Nehring [26] for the case of a
classical gas. For the convenience of the reader we recall his proof where we replace
his Lemma 5.2.5 by an abstract version which allows a proof in our different setting.

Proof. ( We proceed in steps labeled from A to F.)

A. Consider the socalled cluster measure L = κ.Λρ . (Cf. [31]) This is an infinite and
signed measure on X of first order. The latter follows from Mecke’s formula combined
with the estimate (10 ) of Lemma 9 and local integrability of the potential: For f ∈U

ν
1
|L | f =

∫
X

∫
X

f (x)|κ|(ξ )ξ (dx) Λρ(dξ )

=
∫

X
f (x)

∫
X
|κ|(ξ + εx) Λρ(dξ )ρ(dx)

≤
∫

X
f (x)e(c+a)(x)

ρ(dx)

<+∞.

This implies that ν1
G f ≤ ν1

|L | f , f ∈ F .

11Although the function g+Φx is not an element of U we speak, in an abuse of language, of the Laplace
transform evaluated in g+Φx.
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B. The observation that L is of first order allows to represent the limiting Gibbs pro-
cess G in another way: Proposition 3 or Proposition 4 in [31] characterize G as the
unique process ℑL in X with Laplace transform

LℑL f = exp(−KL( f )) , f ∈U.

Recall that KL( f ) = L(1− e−ζ f ) is the modified Laplace transform. Furthermore, the
local Gibbs processes Gn satisfy

LGn f = exp
(
−Ln

(
1− e−ζ f

))
→n LG f , f ∈U.

Here Ln = 1X(Kn).L. We now use this representation for the solution of our problem,
i.e. we show the convergence of the modified Laplace transform

(a) KLn (g+Φx)→n KL (g+Φx) ,

and the equalities

(b) LGn (g+Φx) = exp(−KLn (g+Φx)) ,

(c) LG (g+Φx) = exp(−KL (g+Φx)) .

C. The main lemma to obtain these assertions is the following: Fix some x and set
k = g+Φx. Consider the function

ξ)ג ) = ξ (g+ |Φx|)eξ (Φ−x ), ξ ∈ X.

Lemma 12. ג is integrable with respect to |L | and satisfies

|1− e−ζk | ≤ .ג

Proof. |1− e−ζk | is seen to be bounded from above by ג if one takes into account the
elementary inequalities (1). Integrability of ג is implied by the following reasoning:∫

X

∫
X
(g(y)+ |Φx|(y)eξ (Φ−x ) |κ|(ξ ) ξ (dy)Λρ(dξ )

=
∫
X
(g(y)+ |Φx|(y)eΦ−x (y)

∫
X
|κ|(ξ + εy)eξ (Φ−x )

Λρ(dξ )ρ(dy)

≤
∫

X
(g(y)+ |Φx|(y)e(c+a)(y) eΦ−x (y) .ρ(dy)

In view of the second part of Lemma 9 the inner intergral on the right hand side of the
equality can be estimated from above by e(c+a)(y). Finally, the last integral is a sum of
two integrals which are both finite.

An immediate corollary is assertion (a): Indeed,

|(L−Ln)(1− e−ζk)| ≤ |L |
(
|1− e−ζk |(1−1X(Kn))

)
↘n 0.

Since e
ζ

Φ
−
x −1≤ ג we also have

Corollary 6. The function
(

e
ζ

Φ
−
x −1

)
is integrable with respect to |L |.
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D. It remains to show (b) and (c). It suffices to do it for (c). Recall that G = ℑL. We
observe first that monotone convergence implies∫

M ··
e−µ(k+)

∞

∑
n=o

µ(k−)n

n!
G(d µ) =

∞

∑
n=0

1
n!

∫
M ··

e−µ(k+) µ(k−)n G(d µ)

= LG(k+)+
∞

∑
n=1

1
n!

Cn
G

(
k⊗n
− ⊗e−ζk+

)
.

Here Cn
G is the Campbell measure of order n of G. Note that the left hand side equals

the Laplace transform LG(k) in the generalized sense. Our aim is to show that both
terms on the right hand side are finite and sum up to exp(−KL(k)).

E. In view of k− ≤Φ−x Corollary 6 implies

∞

∑
n=1

1
n!

∫
X

ξ (k−)n e−ξ (k+) |L |(dξ )≤
∞

∑
n=1

1
n!

∫
X

ξ (Φ−+)
n |L |(dξ )

≤
∫
X

(
eξ (Φ−x )−1

)
|L |(dξ )

<+∞

This argument also shows that

(k) ν
n
|L |(k

⊗n
− )≤ ν

n
|L |((Φ

−
x )
⊗n)<+∞, n≥ 1.

F. We now can show LG(k) = exp(−KL(k)). To see this note that

KL k = L
(

1− e−ζk+

)
−
∫
X

e−ξ (k+)
∞

∑
n=1

1
n!

ξ (k−)n L(dξ ).

This is the difference of two positive terms which are not equal to +∞. For the first
terms this is clear by 1− e−ζk+ ≤ ;ג for the second it follows from the convergence of
the integral which has been shown under E. Therefore

exp(−KL(k)) = exp(−L(1− e−ζk+ )) · exp

(∫
X

e−ξ (k+)
∞

∑
n=1

1
n!

ξ (k−)n L(dξ )

)

The first factor on the right hand side equals LG(k+). This is easily seen by dominated
convergence, if one approximates k+ from below by the sequence of functions in U
defined by fn := (k+∧n).1Kn . For the second factor we use the exponential formula of
combinatorial theory (cf. [35], chapter 4, Equation (4.14)):

exp

(∫
X

e−ξ (k+)
∞

∑
n=1

1
n!

ξ (k−)n L(dξ )

)
= 1+

∞

∑
n=1

1
n! ∑

J∈℘(|n|)
∏

J∈J
C|J|L

(
k⊗|J|− ⊗e−ζk+

)
Because the series in the argument of the exponential is absolutely convergent, the
series on the right hand side has this property too. In view of (k) we can use Theorem
4.3.1 in [26] to obtain

LG(k+) · ∑
J∈℘(|n|)

∏
J∈J

C|J|L

(
k⊗|J|− ⊗e−ζk+

)
=Cn

G

(
k⊗n
− ⊗e−ζk+

)
.
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Thus

exp(−KL(k)) = LG(k+)+
∞

∑
n=1

1
n!

Cn
G

(
k⊗n
− ⊗e−ζk+

)
,

which in view of paragraph D. implies the assertion. (The reasoning for assertion (b)
is exactly the same.)

Theorems 1 - 3 may be applied to all Examples 1 - 4. The following observation
from the last proof will be important in the next part.

Remark 1. In view of ν1
G f ≤ ν1

|L | f , f ∈ F, condition (k) for n = 1 yields ν1
G(Φ

−
x )<

+∞. This implies ζ
Φ
−
x
< +∞ almost surely with respect to G and shows that the con-

ditional energy WΦ(x, ·) in x is well defined G-almost surely. A direct argument which
avoids (k) is: Due to condition (W]

ρ) we know that ν1
G(|Φx|) < +∞ and thus also

ν1
G(Φ

−
x )<+∞.

Part III

Uniqueness of Gibbs processes
To obtain uniqueness of Gibbs processes we have to restrict the class of potentials
again. This is done in two steps. The method for the proof uses the classical method of
Kirkwood-Salsburg equations.

9 Kirkwood-Salsburg equation
In this section we assume that Φ is a wP-stable pair potential on X with stability
function c, which is strongly c-regular, i.e. there exist parameters ε > 0,0 < p < 1 and
a measurable function a : X → [ε,+∞) such that∫

X
|ωx|(y)e(c+a)(y)

ρ(dy)≤ pa(x), x ∈ X .

In addition we assume that Φ is weak locally (c,a)-integrable. These assumptions im-
ply (Wρ). Thus the associated limiting Gibbs process G exists; its correlation function
is r(ξ ) =

∫
X G(ξ ,η) Λρ(dη).

Proposition 3. r satisfies the equations r(o) = 1 and

(KΣρ) r(ξ ) = e−WΦ(x,ξx) ·
∫
X

K(x,η)r(ξx +η)Λρ(dη), x ∈ ξ 6= o.

Particularly, the right hand side of the equation does not depend on the choice of x.

Proof. We obtain from the non-integrated Kirkwood-Salsburg equation of Lemma 6
by means of Minlos’ Formula for all x ∈ ξ

r(ξ ) = e−WΦ(x,ξx) ·
∫
X

∫
X

K(x,ν)G(ξx +ν ,η−ν)Λ
′
η(dν)Λρ(dη)

= e−WΦ(x,ξx) ·
∫
X

∫
X

K(x,ν)G(ξx +ν ,η)Λρ(dν)Λρ(dη)

= e−WΦ(x,ξx) ·
∫
X

K(x,ν)r(ξx +ν)Λρ(dν).
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To complete the proof we have to justify the use of Minlos’ Formula as well as the
interchange of the integrations with respect to ν and η . Combining the Ruelle bound
(ℵa

c) with Fubini’s theorem yields in view of c-regularity∫
X

∫
X
|K|(x,ν) · |G|(ξx +ν ,η)Λρ(dν)Λρ(dη)

≤ eξx(c+a)
∫
X
|K|(x,ν)eν(c+a)

Λρ(dν)

= eξx(c+a) exp
(∫

X
|ωx|(y)e(c+a)(y)

ρ(dy)
)

≤ eξx(c+a) ea(x) <+∞.

We next follow the classical reasoning of Ruelle [33], Ginibre [4] and Minlos [22]:
Let E , be the Banach space of all complex valued measurable functions ϕ : X′ → C
such that

‖ϕ‖= sup
ξ∈X′

|ϕ|(ξ )
eξ (c+a)

<+∞.

Recall that X′ = X\{o}. Since r satisfies the Ruelle bound (ℵa
c) we have

Lemma 13. The correlation function r is an element of E with norm smaller or equal
than 1.

We define on E the linear operator K by

Kϕ(εy) =
∫
X′

K(y,η)ϕ(η)Λρ(dη), y ∈ X ,

Kϕ(ξ ) = e−WΦ(x,ξx) ·
∫
X

K(x,η)ϕ(η +ξx)Λρ(dη), x ∈ ξ 6= o.

Using the operator K we can write the Kirkwood-Salsburg equations as a fixed point
equation in the Banach space E , namely

r = Kr+1.

If the norm of the operator satisfies ‖K‖< 1, then this equation has a unique solution
given by the Neumann series

r =
∞

∑
n=0

Kn 1.

Under the strong regularity condition the operator K is bounded. Indeed, let ϕ ∈ E
such that ‖ϕ‖ ≤ 1. Then we obtain as above

|(Kϕ)|(ξ )≤ ec(x)
∫
X
|K|(x,η)e(η+ξx)(c+a)

Λρ(dη)

≤ eξ (c)+ξx(a) ·exp
(
ρ(|ωx|ec+a)

)
≤ eξ (c)+ξx(a) ·ep·a(x)

≤ eξ (c+a) e−(1−p)ε .

Thus ‖K‖< 1 and we have
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Theorem 4. Let Φ be a wP-stable pair potential with stability function c which is
strongly c-regular for some a and weak locally (c,a)-integrable. Then the limiting
Gibbs process G exists, its correlation function r is an element of the Banach space E
and the unique solution of the equation (KΣρ).

Theorems 1 - 4 may be applied to all Examples 1 - 4.

10 Generalities on Gibbs processes
To obtain uniqueness we compare the limiting Gibbs process G with any other Gibbs
process P having the same properties as G. Accordingly we work under conditions
which imply the assumptions of Theorem 3 as well as Theorem 4 and strengthen again
our assumtions:

(℘]
ρ) Φ is P-stable with stability function c and strongly modified c-regular. This

means that there exist parameters ε > 0 and 0 < p < 1 and a measurable function
a : X → [ε,+∞) such that∫

X
|Φ|(x,y)e(c+a)(y) eΦ−x (y)

ρ(dy)≤ pa(x), x ∈ X .

Finally, Φ is assumed to be weak locally (c,a)-integrable.

We consider processes P ∈ G (Φ,ρ) having the property

(15) ν
1
P(Φ

−
x )<+∞, x ∈ X .

(15) guaranties that the conditional energies WΦ(x, ·), x ∈ X , are well defined P-almost
surely. (Cf. Remark 1) Moreover, P is visible. Indeed,

ν̃
2
P(D∞) =

∫
{Φ=+∞}

∫
M ··

e−WΦ(εx+εy,µ) P(d µ)ρ(dx)ρ(dy) = 0.

Here we use that WΦ(εx + εy,µ) =WΦ(x,µ)+WΦ(y,µ)+Φ(x,y).
Visible processes P ∈ G (Φ,ρ) satifying (15) are called tempered Gibbs processes,

we then write P ∈ Gt(Φ,ρ).

Lemma 14. Every tempered Gibbs process is c-extendable in the sense that for every
x and P-almost all µ

WΦ(x,µ)≥−c(x),

Its correlation function is given by

rP(ξ ) =
∫

M ··
exp(−WΦ(ξ ,µ) P(d µ)), ξ ∈ X,

so that rP satisfies the Ruelle bound:

rP(ξ )≤ eξ (c), ξ ∈ X,

and P is of infinite order. Finally, P is uniquely determined by its correlation function
and visible, i.e. supported by M ··

υ .
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Proof. In view of visibility of P the P-stability for c implies that the conditional en-
ergies are infinitely c-extendable. This implies∫

M ··
e−WΦ(ξ ,µ) P(d µ)≤ eξ (c), ξ ∈ X.

On the other hand the left hand side of this inequality is the locally integrable correla-
tion function of P. This follows immediately from the compound version of (Σρ).

With respect to uniqueness note that the first part of the proof shows that for every
f ∈K+(X)

∞

∑
k=1

1
k!

ν̃
k
P( f⊗k)≤ exp ρ( f ec)< ∞.

It is well known that this is a sufficient condition for P to be uniquely determined by
its correlation functions. (Cf. [14, 39])

Kirkwood-Salsburg equation for Gibbs processes
Proposition 4. The correlation function rP of a tempered Gibbs process P ∈ Gt(Φ,ρ)
solves the Kirkwood-Salsburg equation (KΣρ).

Proof. Similarly to the proof of Proposition 3 we can see that the right hand side of
(KΣρ) converges absolutely.

(Step 1) The proof of the assertion uses the following two identities: For all ξ 6= o,
x ∈ ξ and P-almost all µ

WΦ(ξ ,µ) =WΦ(x,ξx)+WΦ(x,µ)+WΦ(ξx,µ),(16)

e−WΦ(x,µ) = Λ
′
µ(K(x, ·)) =

∞

∑
k=0

1
k!

µ̃
k(ωx⊗·· ·⊗ωx).(17)

(The term k = 0 of the last series is equal to 1.)
The second identity is the key of the proof and appeared already in Ruelle’s proof

of Lemma 6 (cf. [33] section 4.4.6 ) in the case of finite µ . Thus, in view of Lebesgue’s
dominated convergence theorem, we need to know whether the right hand side of equa-
tion (17) is absolutely convergent almost-surely with respect to P. Indeed, Formula
(Σρ) in its iterated compound form implies for every x∫

M ··

∞

∑
k=0

1
k!

∫
Xk
|ωx|⊗k(y1, . . . ,yk) µ̃

k(dy1 . . .dyk)P(d µ)

=
∞

∑
k=0

1
k!

∫
M ··

∫
Xk

k

∏
j=1
|ωx|(y j)e−WΦ(εy1+...εyk ,µ) ρ(dy1) . . .ρ(dyk)P(d µ).

We continue by using extended P-stability and obtain

≤
∞

∑
k=0

1
k!

∫
Xk

k

∏
j=1

(
|ωx|(y j)ec(y j)

)
ρ(dy1) . . .ρ(dyk)

≤ exp
(∫

X
|ωx|(y)ec(y)

ρ(dy)
)
<+∞.
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(Step 2) We are now in the position to show the assertion.
Let ξ ∈ X′ and choose some x ∈ ξ . Using once more the Gibbsian character of P we
obtain by formulas (16) and (17)

rP(ξ ) = e−WΦ(x,ξx)
∫

M ··
e−WΦ(x,µ) e−WΦ(ξx,µ) P(d µ)

=e−WΦ(x,ξx)
∞

∑
k=0

1
k!

∫
M ··

∫
Xk

k

∏
j=1

ωx(y j)e−WΦ(ξx,µ) µ̃
k(dy1 . . .dyk)P(d µ)

=e−WΦ(x,ξx)
∞

∑
k=0

1
k!

∫
Xk

K(x,εy1 + · · ·+ εyk)∫
M ··

e−WΦ(ξx,µ+εy1+···+εyk )−WΦ(εy1+···+εyk ,µ) P(d µ)ρ(dy1) . . .ρ(dyk).

Here the interchange of integration and limit building is justified if we take into account
P-stability of the potential. Noting that the inner integral is rP(ξx +εy1 + · · ·+εyk) we
see that the correlation function of a Gibbs process satisfies the Kirkwood-Salsburg
equation (KΣρ).

11 Uniqueness of Gibbs processes
We now compare the limiting Gibbs process G, which exists by Theorem 2 and is an
element of Gt(Φ,ρ) by Theorem 3, with any P∈ Gt(Φ,ρ) by comparing the correlation
function r of G with rP, the correlation function of P.

We know that r and rP solve the same Kirkwood-Salsburg equation (KΣρ) and are
elements of the Banach space E . Since (KΣρ) has a unique solution by Theorem 4 we
obtain

Theorem 5. Let Φ be a pair potential in X, which satisfies the assumptions (℘]
ρ). Then

the collection Gt(Φ,ρ) of tempered Gibbs processes contains only the limiting Gibbs
process G for (Φ,ρ).

Example 6. Consider the Examples 1 - 4. Theorem 5 covers Example 2. It contains
a more-dimensional version of the results of van Hove [38], which is Theorem 5.6.7
in Ruelle’s book [33], and of Gallavotti, Miracle-Solé, and Ruelle [2, 3]. If ϕ is non-
negative Theorem 5 can be applied to Example 1. This covers Theorem 2.1 in [8]
under slightly stronger conditions. Finally Theorem 5 can be applied to Example 3 and
Example 4, i.e. to systems of interacting clusters.
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