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Introduction

This mini-course will be a brief tour through certain parts of mathematical
relativity. Results will be presented mainly without proofs but we hope to present
enough background to enable you appreciate some recent results in the area.

Here is a brief plan of the 4 lectures.

Lecture 1: Introduction to Lorentzian geometry and causal theory.

Lecture 2: The Einstein equations from the PDE perspective. The
constraint equations and the local existence theorem of Choquet-Bruhat.

Lecture 3: Solving the constraint equations via the conformal method

Lecture 4: Topological censorship from the initial data point of view.

The final lecture is based on Topological censorship from the initial data
point of view, (with Michael Eichmair and Gregory Galloway).
(ArXiv:1204.0278) J. Differential Geometry 95 (2013), 389–405.
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Lorentzian Manifolds
We start with an (n + 1)-dimensional Lorentzian manifold (M, g). (M, g) is thus
a psuedo-Riemannian manifold such that the metric

g : TpM × TpM −→ R

is a scalar product of signature (−1,+1, . . . ,+1). With respect to a Lorentzian
orthonormal basis (e0, e1, . . . , en), as a matrix,

[gij ] = diag(−1,+1, . . . ,+1).

Example: Minkowski space Mn+1 is the Lorentzian analogue of Euclidean space.
For vectors X ,Y ∈ TpRn+1 given in Cartesian coordinates on Rn+1 by

X = X i ∂

∂x i
, Y = Y i ∂

∂x i

we define the Minkowski metric η by

η(X ,Y ) = −X 0Y 0 +
n∑

i=1

X iY i = ηijX
iY i ,

where ηij = εiδij and (ε0, ε1, . . . , εn) = (−1, 1, . . . , 1).
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Lorentzian Manifolds and basic causal theory
For any p ∈ M, a Lorentz manifold, we have a classification of vectors X ∈ TpM
into timelike, null or spacelike, as follows

X is

 timelike if g(X ,X ) < 0
null if g(X ,X ) = 0
spacelike if g(X ,X ) > 0

We extend this notion to smooth curves γ : (a, b) −→ M as follows

γ is

 timelike if γ′(t) is timelike, ∀t ∈ (a, b)
null if γ′(t) is null, ∀t ∈ (a, b)
spacelike if γ′(t) is spacelike, ∀t ∈ (a, b)

We say that γ is causal if γ′(t) is either timelike or null, ∀t ∈ (a, b).

The world lines of particles follow causal curves, with light traveling on null curves
(null geodesics) and massive particles traveling on timelike curves. At each point

p ∈ M the set of timelike vectors form two disjoint open cones, which we’ll
denote as V+

p and V+
p , the interiors of the future and past light cones.
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The light cone at a point p

p

V +
p future timelike

V −
p past timelike

future null conepast null cone

1
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Causal Structures and Conformal Structures

Exercise: Show that the assignment of a causal structure on a manifold M (i.e.
the assignment of a smoothly varying light cone at each point p ∈ M) is
equivalent to the assignment a conformal structure, namely class of Lorentz
metrics [g ] where any two metics g1, g2 ∈ [g ] are conformally related: g1 = φ2g2
for some smooth, positive function φ on M.
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Lorentzian Manifolds and basic causal theory

We’ll say that the Lorentzian manifold (Mn+1, g) is time orientable if it admits
a timelike vector field. This allows us to make a continuous choice of a future
light cone V+

p at each point of M.

Definition

A spacetime (Mn+1, g) is a connected, time-oriented Lorentzian manifold.

Let T denote a timelike vector field defining the time orientation on M. For any
nonzero causal vector v ∈ TpM, g(v ,T ) is either positive or negative. If g(v ,T )
is negative we say that v is future pointing (since v then lies in V+

p ) and if
g(v ,T ) is positive we say that v is past pointing (since v then lies in V+

p ).

A causal (timelike, null) curve γ is said to be future pointing if γ′ is future
pointing at each point along γ.
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Future and Past sets
We say p << q if there is a future pointing timelike curve in M from p to q, and
p < q if there is a future pointing causal curve in M from p to q. p ≤ q means
that either p = q or p < q.

Definition
Let A be a subset of M

I+(A) = {p ∈ M : q << p for some q ∈ A}
J+(A) = {p ∈ M : q ≤ p for some q ∈ A}

I+(A) is called the chronological future of A and J+(A) is called the causal
future of A. The past sets I−(A) and J−(A) are similarly defined.

The sets I+(A) and I−(A) are always open (exercise) but for J+(A) and J−(A)
no general statement holds without further assumption (remove a point from
Minkowski spacetime to see that these need not be closed). However, we do have
(exercise)

I+(A) = I+(I+(A)) = I+(J+(A)) = J+(I+(A)) ⊆ J+(J+(A)) = J+(A).
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Strong Causality
We need to impose a reasonable causality condition on our spacetimes in order to
prohibit pathologies (such as closed timelike curves) and make them amenable to
analysis.

The strong causality condition holds at p ∈ M if, given any neighborhood U of
p, there is a neighborhood V ⊆ U of p such that every causal curve segment with
endpoints in V lies entirely in U. A spacetime M is said to be strongly causal if
strong causality holds at each point p ∈ M.

Strong causality prohibits the existence of closed causal curves, but is much
stronger:

Lemma
Suppose that strong causality holds in a compact subset K ⊂ M. If
γ : [0, b)→ M is a future inextensible causal curve that starts in K , then it
eventually leaves K and does not return, i.e., ∃t0 ∈ [0, b) such that
γ(t) /∈ K ∀t ∈ [t0, b).

So a future inextensible causal curve can not be contained forever within a
compact set on which strong causality holds. (Exercise: Prove the Lemma.)

Daniel Pollack (University of Washington) The Cauchy Problem in General Relativity I March 23–26, 2015 9 / 21



Global hyperbolicity

Definition

(M, g) is globally hyperbolic if it is strongly causal and for every pair p < q,
the set

J(p, q) = J+(p) ∩ J−(q)

is compact (“internal compactness”).

Mathematically, global hyperbolicity often plays a role analogous to geodesic
completeness in Riemannian geometry, but as the name suggests (and as we will
see), it is also related to the solvability of hyperbolic PDE. Global hyperbolicity is
also connected to the (strong) cosmic censorship conjecture introduced by Roger
Penrose, which says that, generically (globally hyperbolic) solutions to the
Einstein equations do not admit naked singularities (singularities visible to some
observer).
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Consequences of Global hyperbolicity

The following are some consequences of global hyperbolicity:

Theorem

Let (M, g) be a globally hyperbolic spacetime. Then

1. The sets J±(A) are closed, for all compact subsets A ⊂ M.

2. The sets J+(A) ∩ J−(B) are compact, for all compact subsets A,B ⊂ M.

3. If p < q, then there is a maximal future directed causal geodesic from p to q
(no causal curve from p to q can have greater length).

4. If we have convergent sequences on M; pn → p and qn → q and pn ≤ qn,
then p ≤ q (i.e. the causality relation ≤ is closed on M).

In the way that for Riemannian manifolds completeness insures the existence of
minimizing geodesics between points (recall the Hopf-Rinow theorem), global
hyperbolicity is the condition which insures the existence of maximal causal
geodesic segments (cf. 3. above).
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Domains of Dependence

A ⊂ M is called achronal if there is no pair of points p, q ∈ A that can be
connected by a timelike curve. Let A ⊂ M be achronal, we define the future and
past domains of dependence (also called Cauchy developments) of A as follows

D+(A) = {p ∈ M : every past inextendible causal curve from p meets A},
D−(A) = {p ∈ M : every future inextendible causal curve from p meets A}.

(p is a future endpoint of a causal curve γ if for any Lipschitz parametrization γ : [0,∞)→ M, we have that for any

neighborhood U of p, ∃T = T (U) such that γ(t) ∈ U, ∀t ≥ T . γ is future inextendible if it does not have a future endpoint.)

The domain of dependence of A is

D(A) = D+(A) ∪ D−(A)

Since information travels along causal curves, D(A) consist of the set of points in
spacetime which are (potentially) influenced by every point in the set A, to either
the past or the future. If physics is be deterministic then initial data on A should
completely determine the state of the theory on all of D(A).
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Domains of dependence and global hyperbolicity
Domains of dependence are tied to global hyperbolicity because the interior of the
domain of dependence (viewed itself as a spacetime) is globally hyperbolic:

Proposition

Let A ⊂ M be achronal.

(1) Strong causality holds on int D(A).

(2) Internal compactness holds on int D(A), i.e., for all p, q ∈ D(A),
J+(p) ∩ J−(p) is compact.

We wish to find a condition on an achronal subset A that will insure that the
domain of dependence of A is all of M.

D(A) = M.

This will insure that the entire spacetime is deterministic relative to A, so that we
can try to approach an analytical theory (namely the Einstein field equations) via
an evolutionary perspective by prescribing initial data on A, determining the
spacetime metric by solving a system of PDE in D(A) (2nd lecture).

Daniel Pollack (University of Washington) The Cauchy Problem in General Relativity I March 23–26, 2015 13 / 21



Cauchy surfaces

Definition
A Cauchy surface S is an achronal subset of M which is met by every
inextendible causal curve in M.

If S is a Cauchy surface for M then S = ∂I+(S) = ∂I−(S), from this one can
show that S is a closed C 0 hypersurface. The existence of Cauchy surfaces and
global hyperbolicity for the entire spacetime are closely connected.

Theorem (Geroch)

Let M be a spacetime.

1. If M is globally hyperbolic then it admits a Cauchy surface.

2. If S is a Cauchy surface for M then M is homeomorphic to R× S .

Thus we see that for globally hyperbolic spacetimes, the topology of a Cauchy
surface S determines the topology of the entire spacetime. At the end of this
lecture we will make some remarks regarding the strengthening of this result to
the smooth category.
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Cauchy surfaces (cont.)

Sketch of Proof: For 1. let µ be a probability measure on M so µ is a positive
measure with µ(M) = 1. Let f −(p) = µ[J−(p)] and f +(p) = µ[J+(p)] and using
these, define a positive function f : M → R by

f (p) =
f −(p)

f +(p)
=
µ[J−(p)]

µ[J+(p)]
.

One can show that f is continuous, and strictly increasing along future directed
causal curves. The claim is that the level sets of f are each Cauchy surfaces. This
is demonstrated by showing that both (1) f −(p)→ 0 along every past inextensible
causal curve, and (2) f +(p)→ 1 along every future inextensible causal curve.
This shows that f attains all values of (0,∞) along every inextensible causal
curve, and therefore each such curve intersects each level set precisely once.

To prove 2. one introduces a future directed timelike vector field X scaled so that
the time parameter of each integral curve of X extends from −∞ to ∞ with
t = 0 corresponding to S . The flow of X provides the desired homeomorphism.
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The topology of globally hyperbolic spacetimes

Proposition

If a spacetime has a Cauchy surface S than

D(S) = M

Sketch of Proof: Let p ∈ M and let γ be an inextendible timelike geodesic
through p. The γ intersects S in exactly one point. So p is in one of the sets S ,
I+(S) and I−(S). Since S is a Cauchy surface these sets are disjoint. Also J±(S)
and I∓(S) are disjoint. This shows

J±(S) = M \ I∓(S),

so J±(S) are closed sets. Since p ∈ I−(S) implies p /∈ D+(S), we have
D+(S) ⊂= J+(S). One the other hand one can see that
J+(S) = S ∪ I+(S) ⊂ D+(S) so we see that J+(S) = D+(S). Reversing time
orientation above we see that J−(S) = D−(S). These together show that
D(S) = M.
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Additional Remarks

In summary we have seen that a spacetime M is globally hyperbolic if and only if
it admits a Cauchy surface S , it’s global topology is R× S and D(S) = M.

A time function on a Lorentzian manifold (M, g) is a function that is strictly
increasing along any future directed causal curve. In the sketch of the proof of
Geroch’s Theorem we introduced the time function f .

The existence of a smooth Cauchy surface and a smooth time function leading to
a splitting M = R× S (as a diffeomorphism) was only rigorously established in a
series of papers from 2003 – 2006 by Bernal and Sánchez.
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Boundary Conditions

In the next lecture we will introduce the Einstein field equations upon which
general relativity is based. Historically there are two cases of restrictions on the
topology/geometry which have received the most attention. From the perspective
of analysis we can view these as choices of (spatial) boundary conditions.

(1) Cosmological spacetimes: here we assume that the Cauchy surface S is
compact without boundary (so this is the empty boundary condition).

(2) Asymptotically flat spacetimes – Isolated gravitational systems:
There are a number of different ways to introduce this notion. We take the initial
data approach that will be discussed further in the next talk.

A Cauchy surface S in a spacetime (M, g) inherits a natural geometry as a
submanifold. The relevant geometric data on M is the induced metric h
(Riemannian if S is spacelike) and second fundamental form K . We will explore
more about the relationship between (M, g) and (S , h,K ) in the next talk. Here
we simply express the notion that (M, g) is asymptotically flat in terms of
restrictions on (S , h,K ).
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Boundary Conditions: Asymptotic flatness
We want to assume that the geometry of (S , h,K ) is such that ‘near infinity’ it is
asymptotic to a t = constant slice of Minkowski space (M3+1, η). In other words
it should be asymptotic to (R3, δ, 0) where δ is the Euclidean metric and 0
represents the trivial second fundamental form.

To be more precise, suppose we have a compact subset C ⊂ S for which

S \ C =
k⋃

m=1
Em, where the Em are pairwise disjoint, and each diffeomorphic to

the exterior of a ball in Euclidean space, i.e. R3 \ {|x | ≤ 1}.

Then we say that (S , h,K ) is asymptotically flat with decay rate q provided each
Em admits coordinates for which we have

|∂αx (hij − δij)(x)| = O(|x |−|α|−q)

and
|∂βx Kij(x)| = O(|x |−|β|−1−q)

for |α| ≤ `+ 1 and |β| ≤ `, for some ` ∈ Z+ (chosen depending on the need).
(For simplicity, we can take q = 1, though q > 1

2 generally gives sufficient decay.)
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Asymptotically flat spacetimes
The Einstein field equations in the context of asymptotically flat spacetimes leads
to a number of the major themes. These include

Notions of Mass and the Penrose inequality

Black holes, censorship and gravitational radiation

Each of these topics have their origins in the Schwarzschild spacetimes, a family
of rotationally symmetry, explicit solutions of the vacuum Einstein equations
which has been very important not only for physics but also for geometry.
The Schwarzschild metric takes the form, in coordinates (t, x) ∈ R× R3,

ḡS(x) = −
(

1− m
2|x|

1 + m
2|x|

)2

dt2 +

(
1 +

m

2|x |

)4

δ

where δ is the Euclidean metric. The parameter m is called the mass of the
spacetime. The spacelike slice t = 0 is asymptotically flat and conformally flat

with vanishing scalar curvature, and the metric gS(x) =
(
1 + m

2|x|
)4
δ extends to a

complete metric on the set R3 \ {0}, with two asymptotically flat ends.
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Schwarzschild Geometry

We will refer to this Riemannian metric as the “Schwarzschild metric”.
The two-sphere |x | = m

2 inside this slice is totally geodesic, and the
three-manifold has a reflection symmetry across it. This minimal sphere is
called the horizon of the time symmetric slice. In the Schwarzschild
black-hole space-time itself, this horizon is the central leaf of the
three-dimensional null hypersurface comprising the actual event horizon.

The “asymptotic simplicity” model for isolated gravitational systems
proposed by Penrose has been very influential. This model assumes
existence of smooth conformal completions to study global properties of
asymptotically flat space-times.

We will come back to the geometry of the Schwarzschild metric, and it’s
horizon, in the fourth lecture in this series.

Thank you very much for your attention!
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