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Black hole initial data

Black hole initial data is initial data for the vacuum Einstein field
equations that contains a marginally outer trapped surface (MOTS),
also called an apparent horizon.

▶ The MOTS is the
boundary of the black hole
in the initial data.

(S, h,K)

∂S (MOTS)

For example, in the Schwarzschild spacetime the event horizon
coincides with the apparent horizon.

The Schwarzschild spacetime is also stationary - i.e. there exists a
time-like Killing vector field.
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Question

How do we characterise the stationarity (or lack thereof) of an
initial data set (S, h,K) of the vacuum Einstein field equations?

Motivated by:
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The approximate Killing equation



The constraint map

Given hab ∈ M2 space of Riemannian metrics,Kab ∈ S2 space of
symmetric 2-tensors.

Let C andX denote the spaces of scalars and vectors.

The constraint map is the map Φ : M × S2 → C ×X with

Φ

(
hij
Kij

)
≡

(
r +K2 −KijK

ij

−DjKij +DiK

)
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The Linearisation and its adjoint

Linearisation of the constraint map at (hij ,Kij):
DΦ : S2 × S2 → C ×X

DΦ

(
γij
Qij

)
=

(
DiDjγij − rijγ

ij −∆hγ +H
−DjQij +DiQ− Fi

)
.

The formal adjoint:

DΦ∗
(

X
Xi

)
=

(
DiDjX −Xrij −∆hXhij +Hij

D(iXj) −DkXkhij + Fij

)
.

where H,Fi, Hij and Fij are terms of lower order which vanish
under time symmetry -Kij = 0.
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The Killing initial data equations

Surprisingly, the elements of the kernel ofDΦ∗ are the symmetries
of the spacetime determined by the inital data set (S, h,K).
(Moncrief, 1975)

In other words, a solution (N,N i) to DΦ∗(N,N i) = 0 also solves
the Killing Initial data (KID) equations

NKij +D(iNj) = 0,

NkDkKij +DiN
kKkj +DjN

kKik +DiDjN = N(rij +KKij − 2KikK
k
j).

The spacetime evolving from the initial data will have a killing
vector with lapse N and shift N i. (Beig - Chrusciel, 1996)
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Bartnik operators

We will make use of the following Bartnik operators related to the
linearisation of the constraint map and its formal adjoint:

P

(
γij
qkij

)
≡ DΦ

(
γij

−Dkqkij

)
,

P∗
(

X
Xi

)
≡

(
1 0
0 Dk

)
·DΦ∗

(
X
Xi

)
.
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The approximate Killing equation

The approximate Killing operator : P ◦P∗ : C ×X → C ×X

P ◦P∗
(

X
Xi

)
≡

 2∆h∆hX − rijDiDjX + 2r∆hX + l.o.t

Dj∆hD(iXj) +Di∆hD
kXk + l.o.t

 .

Then the approximate Killing equation is

P ◦P∗
(
X
Xi

)
= 0. (AKE)
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Properties of (AKE)

The approximate Killing equation is

P ◦P∗
(
X
Xi

)
= 0. (AKE)

▶ A solution to the KID equations also solves (AKE),
▶ The approximate Killing operator is self-adjoint, fourth order

and elliptic,
▶ (AKE) is the Euler-Lagrange equation of∫

S
P∗ (X,Xi) ·P∗ (X,Xi) dµ.

Note: We cannot construct (AKE) using DΦ∗ because the functional∫
S
DΦ∗ (X,Xi) ·DΦ∗ (X,Xi) dµ

contains terms of inconsistent physical dimension.
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Solvability of (AKE)



The setup

▶ Focus on the symmetry corresponding to time translation,
▶ One asymptotic end,
▶ One (or several) inner bdrys that aremarginally outer

trapped surfaces (MOTS).

(S, h,K)

∂S

12 / 23



Asymptotic Conditions

Assume that the initial data is asymptotically flat

hab − δab ∈ H∞
− 1

2

(= o∞(|x|−
1
2 ))

Kab ∈ H∞
− 3

2

The initial data is called stationary if there exists (N,N i) ∈ H2
1/2

such thatP∗(N,N i) = 0.
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A stationary lemma

Lemma
Assume on the bdry ∂S that one has

N |∂S = 0

∆hN |∂S = 0

N i|∂S = 0

/DN i|∂S = 0

then there exists a solution (N,N i) ∈ H∞
1/2 to (AKE) if and only if

the data is stationary.

Where /D is the covariant derivative along the normal direction to
∂S.
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Main existence theorem

Theorem (S, Valiente Kroon ’22)

Given smooth functions f, g, f i, and hi on ∂S, then the BVP

P ◦P∗
(
X
Xi

)
= 0 on S,

X|∂S = f,

∆hX|∂S = g,

Xi|∂S = f i,

/DXi|∂S = hi,

has a unique solution such that

X = λ|x|+ ϑ, ϑ ∈ H∞
1
2

Xi ∈ H∞
1
2

.

Futhermore, λ vanishes if the initial data is stationary.

The number λ is Dain’s invariant.
15 / 23



Dain’s invariant

▶ Under time symmetry,Kij = 0, Dain’s invariant can be written
as the boundary integral

λ = − 1

8π

∮
S∞

naDa∆hXdS,

▶ It is the obstruction to stationarity at the asymptotic end,
▶ It can be used to measure the deviation from stationarity at the

asymptotic end.
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Specifying the boundary data

How do we turn the if in the previous theorem into an if and only if?



‘How much’ of the KID equations can be solved on ∂S?

To do this, perform a 2+1 decomposition of the KID equations.

(S, h,K)

ρ

eA
(∂S, h̄, K̄)

Now, assume time symmetry, Kij = 0. This assumption sets
Xi = 0 on S.

Projecting the KID equations with the 2-metric: h̄ij = hij − ρiρj
onto ∂S obtains the intrinsic equation on ∂S:

∆h̄X − 1

2
(r̄ + |K̄|2)X = 0

where |K̄|2 = K̄ABK̄
AB .
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Stability of MOTS

(S, h,K)

∂S

Marginally outer
trapped tube

A MOTS evolves into a marginally outer trapped tube if it is stable -
the lowest eigenvalue of the MOTS stability operator, L, is positive

L ≡ −∆h̄ +
1

2
(r̄ − |K̄|2)

KID equation on ∂S: ∆h̄X − 1
2(r̄ + |K̄|2)X = 0
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Existence of solutions to intrinsic KID equation

Lemma
If the MOTS is stable then the only solution to the intrinsic KID
equation

∆h̄X − 1

2
(r̄ + |K̄|2)X = 0

is the trivial one: X = 0.

Setting X = 0 in the KID equations leaves only

DiDjX = 0

on ∂S. This suggests setting∆hX = 0 as the boundary condition
for (AKE).
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A new invariant

The other components of the decomposition of the KID equations
(normal-normal and normal-tangential etc.) leads to the following
geometric invariant.

Lemma
Let X = ∆hX = 0 on ∂S. Then the KID equations are satisfied at
∂S if and only if ω = 0 where

ω =

∮
∂S

|K̄|2| /DX|2dS.

Thus, in the time symmetric setting, The boundary conditions
X|∂S = ∆hX|∂S = 0 with ω = 0 is enough to ensure that λ = 0 if
and only if the data is stationary.

Conversely, if ω ̸= 0 then the data is not stationary.
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Conclusions

▶ The non-time symmetric case? Much harder to see how to
specify boundary data because data must also be specified for
Xi. For X⃗ = (X,XA) the intrinsic part of the KID equations
can be written as an elliptic system

∆h̄X⃗ + T · D̄X⃗ + C · X⃗ = F⃗ .

The structure of this equation needs to be understood,

▶ Unique continuation of the KID equations from ∂S to S,
▶ Make connection with uniqueness of black holes using

approximate symmetries,
▶ Evolution of Dain’s invariant.
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Thank you!
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