## Gluing constructions for Lorentzian length spaces

### Felix Rott Faculty of Mathematics, University of Vienna Joint work with Tobias Beran

## Interdisciplinary junior scientist workshop: Mathematical General Relativity Wildberg, Germany

March 8, 2023

- Introduction to Lorentzian pre-length spaces
- Introduction to gluing
- Main results: Reshetnyak gluing theorem and causal inheritance
- Outlook/Applications

- The theory of Lorentzian length spaces (LLS) can be described as a synthetic version of Lorentzian geometry.
- Inspired by the relationship between metric geometry and Riemannian geometry.
- LLS are a comparatively young approach, hence some elementary concepts are not fully developed yet.
- In the metric picture, gluing is of fundamental importance. It is expected that this is the same case on the Lorentzian side.

### Definition (Lorentzian pre-length space).

A tuple  $(X, d, \ll, \leq, \tau)$  is called a *Lorentzian pre-length space* (LpLS) if it satisfies the following:

(i)  $(X, \ll, \leq)$  is a causal space, i.e.,  $\leq$  is a reflexive and transitive relation on X and  $\ll$  is a transitive relation on X contained in  $\leq (x \ll y \Rightarrow x \leq y)$ .

### Definition (Lorentzian pre-length space).

A tuple  $(X, d, \ll, \leq, \tau)$  is called a *Lorentzian pre-length space* (LpLS) if it satisfies the following:

(i)  $(X, \ll, \leq)$  is a causal space, i.e.,  $\leq$  is a reflexive and transitive relation on X and  $\ll$  is a transitive relation on X contained in  $\leq (x \ll y \Rightarrow x \leq y)$ .

(ii)  $\tau: X \times X \to [0, \infty]$  is lower semi-continuous w.r.t. the metric d, i.e.,  $\liminf \tau(x_n, y_n) \ge \tau(x, y)$ .

### Definition (Lorentzian pre-length space).

A tuple  $(X, d, \ll, \leq, \tau)$  is called a *Lorentzian pre-length space* (LpLS) if it satisfies the following:

- (i)  $(X, \ll, \leq)$  is a causal space, i.e.,  $\leq$  is a reflexive and transitive relation on X and  $\ll$  is a transitive relation on X contained in  $\leq (x \ll y \Rightarrow x \leq y)$ .
- (ii)  $\tau: X \times X \to [0, \infty]$  is lower semi-continuous w.r.t. the metric d, i.e.,  $\liminf \tau(x_n, y_n) \ge \tau(x, y)$ .
- (iii)  $\tau$  respects the causal structure in the following way: if  $x \le y \le z$  then  $\tau(x, z) \ge \tau(x, y) + \tau(y, z)$  and  $\tau(x, y) > 0 \iff x \ll y$ .

- If X is *intrinsic*, i.e., τ is given by the length of curves, and some technical assumptions hold additionally, then X is a *Lorentzian length space* (LLS).
- "LpLS  $\leftrightarrow \rightarrow$  LLS" = "metric space  $\leftrightarrow \rightarrow$  length space".
- Any smooth spacetime is a LpLS. Any smooth strongly causal spacetime is a LLS.

## Lorentzian pre-length spaces: curvature bounds

- In semi-Riemannian manifolds, sectional curvature bounds are equivalent to *triangle comparison* (using the *signed distance*  $sgn(\gamma)\sqrt{|\langle \gamma'(0), \gamma'(0) \rangle|}$  for a geodesic  $\gamma$ ).
- Geodesics and Geodesic triangles can also be defined in metric spaces and LpLS, without relying on metric tensor or manifold structure.
- Thus, can also define triangle comparison as substitute for sectional curvature in the abstract setting of metric spaces or LpLS.
- In summary, a LpLS has *timelike curvature bounded above* (or below) by K if triangles are slimmer (fatter) than in the Lorentzian model space of constant curvature K.

# Gluing: introduction/motivation

Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., [0, 1]/{0,1} ≅ S<sup>1</sup>.



# Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., [0, 1]/{0,1} ≅ S<sup>1</sup>.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.



# Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., [0, 1]/{0,1} ≃ S<sup>1</sup>.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.
- Metric gluing: do this process with metric spaces and equip the resulting space with a suitable metric.

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., [0, 1]/{0,1} ≃ S<sup>1</sup>.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.
- Metric gluing: do this process with metric spaces and equip the resulting space with a suitable metric.
- Gluing demonstrates one of the advantages of length spaces compared to Riemannian manifolds: easy to construct new spaces out of old ones.

## Lorentzian gluing: disjoint union

"Lorentzian disjoint union" is easy to construct.

Definition (Lorentzian disjoint union).

Let  $(X_1, d_1, \ll_1, \leq_1, \tau_1)$  and  $(X_2, d_2, \ll_2, \leq_2, \tau_2)$  be LpLS. Set  $X := X_1 \sqcup X_2$  and define  $\ll:=\ll_1 \sqcup \ll_2$ , i.e.,  $x \ll y :\Leftrightarrow \exists i \in \{1,2\} : x, y \in X_i \land x \ll_i y$ , and  $\leq:=\leq_1 \sqcup \leq_2$ . Define

$$d(x,y) := egin{cases} d_i(x,y) & x,y \in X_i \ \infty & ext{else}, \end{cases}$$

and

$$au(x,y) := egin{cases} au_i(x,y) & x,y \in X_i \ 0 & ext{else.} \end{cases}$$

Then  $(X, d, \ll, \leq, \tau)$  is called the *Lorentzian disjoint union* of  $X_1$  and  $X_2$  (this is always a LpLS).

## Lorentzian gluing: quotient structure

Let  $(X, d, \ll, \leq, \tau)$  be LpLS and  $\sim$  equivalence relation. *Quotient semi-metric* d is already known:

$$\widetilde{d}([x],[y]) := \inf\{\sum_{i=1}^n d(x_i, y_i) \mid x \sim x_1, y \sim y_n, y_i \sim x_{i+1}\}.$$



## Lorentzian gluing: quotient structure

Let  $(X, d, \ll, \leq, \tau)$  be LpLS and  $\sim$  equivalence relation. *Quotient semi-metric*  $\tilde{d}$  is already known:

$$\widetilde{d}([x],[y]) := \inf\{\sum_{i=1}^n d(x_i,y_i) \mid x \sim x_1, y \sim y_n, y_i \sim x_{i+1}\}.$$

### Definition (Quotient Lorentzian structure).

The quotient time separation function  $\widetilde{\tau}$  is defined as

$$\widetilde{\tau}([x],[y]) := \sup\{\sum_{i=1}^n \tau(x_i, y_i) \mid x \sim x_1, y \sim y_n, y_i \sim x_{i+1}, x_i \leq y_i\}.$$

Moreover, define  $[x] \cong [y] :\Leftrightarrow \tilde{\tau}([x], [y]) > 0$  and  $[x] \cong [y] :\Leftrightarrow \{\sum_{i=1}^{n} \tau(x_i, y_i) \mid \ldots\} \neq \emptyset.$ 

## Lorentzian gluing: amalgamation I

To glue two (or more) LpLS, put these two concepts together: Form Lorentzian disjoint union  $X_1 \sqcup X_2$  and choose closed subsets  $A_i \subseteq X_i$  together with a map f which "preserves structure": need  $f : A_1 \to A_2$  to be

- $\tau$ -preserving  $(\tau_1(a, b) = \tau_2(f(a), f(b)))$
- $\leq$ -preserving  $(a \leq_1 b \iff f(a) \leq_2 f(b))$
- locally bi-Lipschitz homeomorphism (ensures  $\tilde{d}$  is definite).

## Lorentzian gluing: amalgamation I

To glue two (or more) LpLS, put these two concepts together: Form Lorentzian disjoint union  $X_1 \sqcup X_2$  and choose closed subsets  $A_i \subseteq X_i$  together with a map f which "preserves structure": need  $f : A_1 \to A_2$  to be

- $\tau$ -preserving  $(\tau_1(a, b) = \tau_2(f(a), f(b)))$
- $\leq$ -preserving  $(a \leq_1 b \iff f(a) \leq_2 f(b))$
- locally bi-Lipschitz homeomorphism (ensures d is definite).

Then apply quotient process to the disjoint union with respect to the equivalence relation generated by  $a \sim f(a)$ .

The resulting space is almost a LpLS: it may happen that  $\widetilde{\tau}$  is not lower semi-continuous. The following condition on the glued sets solves this issue:

### Definition (Non-timelike local isolation).

A subset  $A \subseteq X$  of a LpLS is called *non-timelike locally isolating* if  $\forall a \in A$  and all nbhds U of  $a \exists b_-, b_+ \in U \cap A : b_- \ll a \ll b_+$ .

### Definition (Lorentzian amalgamation).

Let  $X_1$  and  $X_2$  be two LpLS,  $A_i \subseteq X_i$  closed and non-timelike locally isolating subsets and  $f : A_1 \to A_2$  a  $\tau$ - and  $\leq$ -preserving locally bi-Lipschitz homeomorphism. Consider the Lorentzian disjoint union  $X_1 \sqcup X_2$  and let  $\sim$  be the equivalence relation on  $X_1 \sqcup X_2$  generated by  $a \sim f(a)$ . Then  $((X_1 \sqcup X_2)/\sim, \widetilde{d}, \widetilde{\ll}, \widetilde{\leq}, \widetilde{\tau})$ is called *Lorentzian amalgamation* of  $X_1$  and  $X_2$  and denoted by  $X_1 \sqcup_A X_2$ .

 $X_1 \sqcup_A X_2$  is always a LpLS.

Reshetnyak gluing theorem: gluing of metric spaces is compatible with upper curvature bounds  $(X_1, X_2 \operatorname{CAT}(k) \Rightarrow X_1 \sqcup_A X_2 \operatorname{CAT}(k))$ . Due to the missing concept of spacelike distance in LpLS, a

Lorentzian version is currently only possible for spacetimes.

#### Theorem (Beran, R., '22).

Let  $X_1$  and  $X_2$  be two smooth strongly causal spacetimes. Let  $A_i \subseteq X_i$  be closed non-timelike locally isolating and  $f : A_1 \rightarrow A_2$  a  $\tau$ - and  $\leq$ -preserving locally bi-Lipschitz homeomorphism which locally preserves the signed distance. If  $A_1$  and  $A_2$  are *convex* (" $\forall x, y \in A_i : \gamma_{xy} \subseteq A_i$ ") and  $X_1$  and  $X_2$  have sectional curvature bounded above by  $K \in \mathbb{R}$ , then the Lorentzian amalgamation  $X_1 \sqcup_A X_2$  is a Lorentzian pre-length space with timelike curvature bounded above by K.

- Investigate the compatibility of gluing and the causal ladder, as well as other elementary properties of LpLS.
- For example: if  $X_1$  and  $X_2$  are strongly causal or causally path-connected, what about  $X_1 \sqcup_A X_2$ ?
- Most steps of the causal ladder appear to interact well with gluing.

#### Theorem (R., '22).

Let  $X_1$  and  $X_2$  be two LpLS and X the Lorentzian amalgamation.

- (i) If X<sub>i</sub> are strongly causal and locally compact LLS, then X is a LLS.
- (ii) If  $X_i$  are chronological/causal/strongly causal, then so is X.
- (iii) If  $X_i$  are globally hyperbolic LLS with  $A_i$  time observing  $(\forall x, y \in X_i \exists a, b \in A_i : J(x, y) \cap A_i \subseteq J(a, b) \cap A_i)$ , then X is globally hyperbolic (causal + J(x, y) cpt.).

Possible applications and further work in this direction include:

- Globalization/Alexandrov's Patchwork (done!).
- Generalize Reshetnyak via spacelike distance for LpLS.
- Matching of spacetimes.
- Gluing of spaces with lower curvature bounds along boundary.
- Gluing of spaces with synthetic Ricci curvature bounds.

## References



#### S. B. Alexander and R. L. Bishop.

Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds. *Comm. Anal. Geom.*, 16(2):251–282, 2008.



#### T. Beran, L. Napper, and F. Rott.

Alexandrov's Patchwork and the Bonnet-Myers theorem for Lorentzian length spaces, 2023. https://arxiv.org/abs/2302.11615.



#### T. Beran and F. Rott.

Gluing constructions for Lorentzian length spaces., 2022. https://arxiv.org/abs/2201.09695.



#### F. Cavalletti and A. Mondino.

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications., 2020.

https://arxiv.org/abs/2004.08934.



#### M. Kunzinger and C. Sämann.

Lorentzian length spaces. Ann. Glob. Anal. Geom., 54(3):399-447, 2018.



#### E. Minguzzi.

Further observations on the definition of global hyperbolicity under low regularity, 2023. https://arxiv.org/abs/2302.09284.



#### F. Rott.

Gluing of Lorentzian length spaces and the causal ladder., 2022. https://arxiv.org/abs/2209.06894.