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General introduction

The theory of Lorentzian length spaces (LLS) can be de-
scribed as a synthetic version of Lorentzian geometry.

Inspired by the relationship between metric geometry and Rie-
mannian geometry.

LLS are a comparatively young approach, hence some elemen-
tary concepts are not fully developed yet.

In the metric picture, gluing is of fundamental importance. It
is expected that this is the same case on the Lorentzian side.
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Lorentzian pre-length spaces: basics I

Definition (Lorentzian pre-length space).

A tuple (X , d ,≪,≤, τ) is called a Lorentzian pre-length space
(LpLS) if it satisfies the following:

(i) (X ,≪,≤) is a causal space, i.e., ≤ is a reflexive and transi-
tive relation on X and ≪ is a transitive relation on X con-
tained in ≤ (x ≪ y ⇒ x ≤ y).

(ii) τ : X × X → [0,∞] is lower semi-continuous w.r.t. the metric
d , i.e., lim inf τ(xn, yn) ≥ τ(x , y).

(iii) τ respects the causal structure in the following way: if
x ≤ y ≤ z then τ(x , z) ≥ τ(x , y) + τ(y , z) and
τ(x , y) > 0 ⇐⇒ x ≪ y .
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Lorentzian pre-length spaces: basics II

If X is intrinsic, i.e., τ is given by the length of curves, and
some technical assumptions hold additionally, then X is a
Lorentzian length space (LLS).

“LpLS ↭ LLS” = “metric space ↭ length space“.

Any smooth spacetime is a LpLS. Any smooth strongly causal
spacetime is a LLS.
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Lorentzian pre-length spaces: curvature bounds

In semi-Riemannian manifolds, sectional curvature bounds are
equivalent to triangle comparison (using the signed distance
sgn(γ)

√
|⟨γ′(0), γ′(0)⟩| for a geodesic γ).

Geodesics and Geodesic triangles can also be defined in met-
ric spaces and LpLS, without relying on metric tensor or man-
ifold structure.

Thus, can also define triangle comparison as substitute for
sectional curvature in the abstract setting of metric spaces or
LpLS.

In summary, a LpLS has timelike curvature bounded above
(or below) by K if triangles are slimmer (fatter) than in the
Lorentzian model space of constant curvature K .
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Gluing: introduction/motivation

Visually, one can think of points that are identified via an
equivalence relation as being glued together, e.g.,
[0, 1]/{0, 1} ∼= S1.

0 1

0 ∼ 1

[0]

Topological gluing: form disjoint union of spaces, then form
quotient space where the equivalence relation is given by the
identification of certain subsets via a map.

Metric gluing: do this process with metric spaces and equip
the resulting space with a suitable metric.

Gluing demonstrates one of the advantages of length spaces
compared to Riemannian manifolds: easy to construct new
spaces out of old ones.
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Lorentzian gluing: disjoint union

“Lorentzian disjoint union” is easy to construct.

Definition (Lorentzian disjoint union).

Let (X1, d1,≪1,≤1, τ1) and (X2, d2,≪2,≤2, τ2) be LpLS. Set
X := X1 ⊔ X2 and define ≪:=≪1 ⊔ ≪2, i.e., x ≪ y :⇔ ∃i ∈
{1, 2} : x , y ∈ Xi ∧ x ≪i y , and ≤:=≤1 ⊔ ≤2. Define

d(x , y) :=

{
di (x , y) x , y ∈ Xi

∞ else,

and

τ(x , y) :=

{
τi (x , y) x , y ∈ Xi

0 else.

Then (X , d ,≪,≤, τ) is called the Lorentzian disjoint union of X1

and X2 (this is always a LpLS).
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Lorentzian gluing: quotient structure

Let (X , d ,≪,≤, τ) be LpLS and ∼ equivalence relation. Quotient
semi-metric d̃ is already known:

d̃([x ], [y ]) := inf{
n∑

i=1

d(xi , yi ) | x ∼ x1, y ∼ yn, yi ∼ xi+1}.

x

y
x1

y1

x2

y2

Definition (Quotient Lorentzian structure).

The quotient time separation function τ̃ is defined as

τ̃([x ], [y ]) := sup{
n∑

i=1

τ(xi , yi ) | x ∼ x1, y ∼ yn, yi ∼ xi+1, xi ≤ yi}.

Moreover, define [x ] ≪̃ [y ] :⇔ τ̃([x ], [y ]) > 0 and
[x ] ≤̃ [y ] :⇔ {

∑n
i=1 τ(xi , yi ) | . . .} ≠ ∅.
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Lorentzian gluing: amalgamation I

To glue two (or more) LpLS, put these two concepts together:
Form Lorentzian disjoint union X1 ⊔ X2 and choose closed subsets
Ai ⊆ Xi together with a map f which “preserves structure”: need
f : A1 → A2 to be

τ -preserving (τ1(a, b) = τ2(f (a), f (b)))

≤-preserving (a ≤1 b ⇐⇒ f (a) ≤2 f (b))

locally bi-Lipschitz homeomorphism (ensures d̃ is definite).

Then apply quotient process to the disjoint union with respect to
the equivalence relation generated by a ∼ f (a).

The resulting space is almost a LpLS: it may happen that τ̃ is not
lower semi-continuous. The following condition on the glued sets
solves this issue:

Definition (Non-timelike local isolation).

A subset A ⊆ X of a LpLS is called non-timelike locally isolating if
∀a ∈ A and all nbhds U of a ∃b−, b+ ∈ U ∩ A : b− ≪ a ≪ b+.
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Lorentzian gluing: amalgamation II

Definition (Lorentzian amalgamation).

Let X1 and X2 be two LpLS, Ai ⊆ Xi closed and non-timelike lo-
cally isolating subsets and f : A1 → A2 a τ - and ≤-preserving
locally bi-Lipschitz homeomorphism. Consider the Lorentzian
disjoint union X1 ⊔ X2 and let ∼ be the equivalence relation on
X1 ⊔ X2 generated by a ∼ f (a). Then ((X1 ⊔ X2)/∼, d̃ , ≪̃, ≤̃, τ̃)
is called Lorentzian amalgamation of X1 and X2 and denoted by
X1 ⊔A X2.

X1 ⊔A X2 is always a LpLS.
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Lorentzian gluing theorem

Reshetnyak gluing theorem: gluing of metric spaces is compatible
with upper curvature bounds (X1,X2 CAT(k) ⇒ X1⊔AX2 CAT(k)).

Due to the missing concept of spacelike distance in LpLS, a
Lorentzian version is currently only possible for spacetimes.

Theorem (Beran, R., ’22).

Let X1 and X2 be two smooth strongly causal spacetimes. Let
Ai ⊆ Xi be closed non-timelike locally isolating and f : A1 → A2 a
τ - and ≤-preserving locally bi-Lipschitz homeomorphism which
locally preserves the signed distance. If A1 and A2 are convex
(“∀x , y ∈ Ai : γxy ⊆ Ai”) and X1 and X2 have sectional curva-
ture bounded above by K ∈ R, then the Lorentzian amalgamation
X1 ⊔A X2 is a Lorentzian pre-length space with timelike curvature
bounded above by K .
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Gluing of LLS and the causal ladder I

Investigate the compatibility of gluing and the causal ladder,
as well as other elementary properties of LpLS.

For example: if X1 and X2 are strongly causal or causally
path-connected, what about X1 ⊔A X2?

Most steps of the causal ladder appear to interact well with
gluing.
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Gluing of LLS and the causal ladder II

Theorem (R., ’22).

Let X1 and X2 be two LpLS and X the Lorentzian amalgamation.

(i) If Xi are strongly causal and locally compact LLS, then X is a
LLS.

(ii) If Xi are chronological/causal/strongly causal, then so is X .

(iii) If Xi are globally hyperbolic LLS with Ai time observing
(∀x , y ∈ Xi ∃a, b ∈ Ai : J(x , y) ∩ Ai ⊆ J(a, b) ∩ Ai ),
then X is globally hyperbolic (causal + J(x , y) cpt.).
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Outlook to Lorentzian gluing

Possible applications and further work in this direction include:

Globalization/Alexandrov’s Patchwork (done!).

Generalize Reshetnyak via spacelike distance for LpLS.

Matching of spacetimes.

Gluing of spaces with lower curvature bounds along boundary.

Gluing of spaces with synthetic Ricci curvature bounds.
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