Gluing constructions for Lorentzian length spaces

Felix Rott
Faculty of Mathematics, University of Vienna
Joint work with Tobias Beran

Interdisciplinary junior scientist workshop: Mathematical General Relativity
Wildberg, Germany
March 8, 2023

Contents

- Introduction to Lorentzian pre-length spaces
- Introduction to gluing
- Main results: Reshetnyak gluing theorem and causal inheritance
- Outlook/Applications

General introduction

- The theory of Lorentzian length spaces (LLS) can be described as a synthetic version of Lorentzian geometry.
- Inspired by the relationship between metric geometry and Riemannian geometry.
- LLS are a comparatively young approach, hence some elementary concepts are not fully developed yet.
- In the metric picture, gluing is of fundamental importance. It is expected that this is the same case on the Lorentzian side.

Lorentzian pre-length spaces: basics I

Definition (Lorentzian pre-length space).

A tuple (X, d, \ll, \leq, τ) is called a Lorentzian pre-length space
(LpLS) if it satisfies the following:
(i) (X, \ll, \leq) is a causal space, i.e., \leq is a reflexive and transitive relation on X and \ll is a transitive relation on X contained in $\leq(x \ll y \Rightarrow x \leq y)$.

Lorentzian pre-length spaces: basics I

Definition (Lorentzian pre-length space).

A tuple (X, d, \ll, \leq, τ) is called a Lorentzian pre-length space
(LpLS) if it satisfies the following:
(i) (X, \ll, \leq) is a causal space, i.e., \leq is a reflexive and transitive relation on X and \ll is a transitive relation on X contained in $\leq(x \ll y \Rightarrow x \leq y)$.
(ii) $\tau: X \times X \rightarrow[0, \infty]$ is lower semi-continuous w.r.t. the metric d, i.e., $\lim \inf \tau\left(x_{n}, y_{n}\right) \geq \tau(x, y)$.

Lorentzian pre-length spaces: basics I

Definition (Lorentzian pre-length space).

A tuple (X, d, \ll, \leq, τ) is called a Lorentzian pre-length space
(LpLS) if it satisfies the following:
(i) (X, \ll, \leq) is a causal space, i.e., \leq is a reflexive and transitive relation on X and \ll is a transitive relation on X contained in $\leq(x \ll y \Rightarrow x \leq y)$.
(ii) $\tau: X \times X \rightarrow[0, \infty]$ is lower semi-continuous w.r.t. the metric d, i.e., $\lim \inf \tau\left(x_{n}, y_{n}\right) \geq \tau(x, y)$.
(iii) τ respects the causal structure in the following way: if $x \leq y \leq z$ then $\tau(x, z) \geq \tau(x, y)+\tau(y, z)$ and $\tau(x, y)>0 \Longleftrightarrow x \ll y$.

Lorentzian pre-length spaces: basics II

- If X is intrinsic, i.e., τ is given by the length of curves, and some technical assumptions hold additionally, then X is a Lorentzian length space (LLS).
- "LpLS $\leadsto \rightarrow$ LLS" = "metric space $\longleftrightarrow \rightsquigarrow$ length space".
- Any smooth spacetime is a LpLS. Any smooth strongly causal spacetime is a LLS.

Lorentzian pre-length spaces: curvature bounds

- In semi-Riemannian manifolds, sectional curvature bounds are equivalent to triangle comparison (using the signed distance $\operatorname{sgn}(\gamma) \sqrt{\left|\left\langle\gamma^{\prime}(0), \gamma^{\prime}(0)\right\rangle\right|}$ for a geodesic $\left.\gamma\right)$.
- Geodesics and Geodesic triangles can also be defined in metric spaces and LpLS, without relying on metric tensor or manifold structure.
- Thus, can also define triangle comparison as substitute for sectional curvature in the abstract setting of metric spaces or LpLS.
- In summary, a LpLS has timelike curvature bounded above (or below) by K if triangles are slimmer (fatter) than in the Lorentzian model space of constant curvature K.

Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., $[0,1] /\{0,1\} \cong \mathbb{S}^{1}$.

Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., $[0,1] /\{0,1\} \cong \mathbb{S}^{1}$.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.

Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., $[0,1] /\{0,1\} \cong \mathbb{S}^{1}$.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.
- Metric gluing: do this process with metric spaces and equip the resulting space with a suitable metric.

Gluing: introduction/motivation

- Visually, one can think of points that are identified via an equivalence relation as being glued together, e.g., $[0,1] /\{0,1\} \cong \mathbb{S}^{1}$.
- Topological gluing: form disjoint union of spaces, then form quotient space where the equivalence relation is given by the identification of certain subsets via a map.
- Metric gluing: do this process with metric spaces and equip the resulting space with a suitable metric.
- Gluing demonstrates one of the advantages of length spaces compared to Riemannian manifolds: easy to construct new spaces out of old ones.

Lorentzian gluing: disjoint union

"Lorentzian disjoint union" is easy to construct.

Definition (Lorentzian disjoint union).

Let ($X_{1}, d_{1},<_{1}, \leq_{1}, \tau_{1}$) and ($X_{2}, d_{2},<_{2}, \leq_{2}, \tau_{2}$) be LpLS. Set $X:=X_{1} \sqcup X_{2}$ and define $\ll:=<_{1} \sqcup \ll 2$, i.e., $x \ll y: \Leftrightarrow \exists i \in$ $\{1,2\}: x, y \in X_{i} \wedge x<_{i} y$, and $\leq:=\leq_{1} \sqcup \leq_{2}$. Define

$$
d(x, y):= \begin{cases}d_{i}(x, y) & x, y \in X_{i} \\ \infty & \text { else }\end{cases}
$$

and

$$
\tau(x, y):= \begin{cases}\tau_{i}(x, y) & x, y \in X_{i} \\ 0 & \text { else }\end{cases}
$$

Then (X, d, \ll, \leq, τ) is called the Lorentzian disjoint union of X_{1} and X_{2} (this is always a LpLS).

Lorentzian gluing: quotient structure

Let (X, d, \ll, \leq, τ) be LpLS and \sim equivalence relation. Quotient semi-metric d is already known:

$$
\widetilde{d}([x],[y]):=\inf \left\{\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \mid x \sim x_{1}, y \sim y_{n}, y_{i} \sim x_{i+1}\right\}
$$

Lorentzian gluing: quotient structure

Let (X, d, \ll, \leq, τ) be LpLS and \sim equivalence relation. Quotient semi-metric \tilde{d} is already known:

$$
\widetilde{d}([x],[y]):=\inf \left\{\sum_{i=1}^{n} d\left(x_{i}, y_{i}\right) \mid x \sim x_{1}, y \sim y_{n}, y_{i} \sim x_{i+1}\right\}
$$

Definition (Quotient Lorentzian structure).

The quotient time separation function $\widetilde{\tau}$ is defined as

$$
\widetilde{\tau}([x],[y]):=\sup \left\{\sum_{i=1}^{n} \tau\left(x_{i}, y_{i}\right) \mid x \sim x_{1}, y \sim y_{n}, y_{i} \sim x_{i+1}, x_{i} \leq y_{i}\right\} .
$$

Moreover, define $[x] \widetilde{<}[y]: \Leftrightarrow \widetilde{\tau}([x],[y])>0$ and $[x] \widetilde{\leq}[y]: \Leftrightarrow\left\{\sum_{i=1}^{n} \tau\left(x_{i}, y_{i}\right) \mid \ldots\right\} \neq \emptyset$.

Lorentzian gluing: amalgamation I

To glue two (or more) LpLS, put these two concepts together: Form Lorentzian disjoint union $X_{1} \sqcup X_{2}$ and choose closed subsets $A_{i} \subseteq X_{i}$ together with a map f which "preserves structure": need $f: A_{1} \rightarrow A_{2}$ to be

- τ-preserving $\left(\tau_{1}(a, b)=\tau_{2}(f(a), f(b))\right)$
- \leq-preserving $\left(a \leq_{1} b \Longleftrightarrow f(a) \leq_{2} f(b)\right)$
- locally bi-Lipschitz homeomorphism (ensures \widetilde{d} is definite).

Lorentzian gluing: amalgamation I

To glue two (or more) LpLS, put these two concepts together:
Form Lorentzian disjoint union $X_{1} \sqcup X_{2}$ and choose closed subsets $A_{i} \subseteq X_{i}$ together with a map f which "preserves structure": need $f: A_{1} \rightarrow A_{2}$ to be

- τ-preserving $\left(\tau_{1}(a, b)=\tau_{2}(f(a), f(b))\right)$
- \leq-preserving $\left(a \leq_{1} b \Longleftrightarrow f(a) \leq_{2} f(b)\right)$
- locally bi-Lipschitz homeomorphism (ensures \widetilde{d} is definite).

Then apply quotient process to the disjoint union with respect to the equivalence relation generated by $a \sim f(a)$.
The resulting space is almost a LpLS: it may happen that $\widetilde{\tau}$ is not lower semi-continuous. The following condition on the glued sets solves this issue:

Definition (Non-timelike local isolation).

A subset $A \subseteq X$ of a LpLS is called non-timelike locally isolating if $\forall a \in A$ and all nbhds U of $a \exists b_{-}, b_{+} \in U \cap A: b_{-} \ll a \ll b_{+}$.

Lorentzian gluing: amalgamation II

Definition (Lorentzian amalgamation).

Let X_{1} and X_{2} be two LpLS, $A_{i} \subseteq X_{i}$ closed and non-timelike locally isolating subsets and $f: A_{1} \rightarrow A_{2}$ a τ - and \leq-preserving locally bi-Lipschitz homeomorphism. Consider the Lorentzian disjoint union $X_{1} \sqcup X_{2}$ and let \sim be the equivalence relation on $X_{1} \sqcup X_{2}$ generated by $a \sim f(a)$. Then $\left(\left(X_{1} \sqcup X_{2}\right) / \sim, \widetilde{d}, \widetilde{<}, \widetilde{\leq}, \widetilde{\tau}\right)$ is called Lorentzian amalgamation of X_{1} and X_{2} and denoted by $X_{1} \sqcup_{A} X_{2}$.
$X_{1} \sqcup_{A} X_{2}$ is always a LpLS.

Lorentzian gluing theorem

Reshetnyak gluing theorem: gluing of metric spaces is compatible with upper curvature bounds ($X_{1}, X_{2} \operatorname{CAT}(k) \Rightarrow X_{1} \sqcup_{A} X_{2} \operatorname{CAT}(k)$).
Due to the missing concept of spacelike distance in LpLS, a Lorentzian version is currently only possible for spacetimes.

Theorem (Beran, R., '22).

Let X_{1} and X_{2} be two smooth strongly causal spacetimes. Let $A_{i} \subseteq X_{i}$ be closed non-timelike locally isolating and $f: A_{1} \rightarrow A_{2}$ a τ - and \leq-preserving locally bi-Lipschitz homeomorphism which locally preserves the signed distance. If A_{1} and A_{2} are convex (" $\forall x, y \in A_{i}: \gamma_{x y} \subseteq A_{i}$ ") and X_{1} and X_{2} have sectional curvature bounded above by $K \in \mathbb{R}$, then the Lorentzian amalgamation $X_{1} \sqcup_{A} X_{2}$ is a Lorentzian pre-length space with timelike curvature bounded above by K.

Gluing of LLS and the causal ladder I

- Investigate the compatibility of gluing and the causal ladder, as well as other elementary properties of LpLS.
- For example: if X_{1} and X_{2} are strongly causal or causally path-connected, what about $X_{1} \sqcup_{A} X_{2}$?
- Most steps of the causal ladder appear to interact well with gluing.

Gluing of LLS and the causal ladder II

Theorem (R., '22).

Let X_{1} and X_{2} be two LpLS and X the Lorentzian amalgamation.
(i) If X_{i} are strongly causal and locally compact LLS, then X is a LLS.
(ii) If X_{i} are chronological/causal/strongly causal, then so is X.
(iii) If X_{i} are globally hyperbolic LLS with A_{i} time observing $\left(\forall x, y \in X_{i} \exists a, b \in A_{i}: J(x, y) \cap A_{i} \subseteq J(a, b) \cap A_{i}\right)$, then X is globally hyperbolic (causal $+J(x, y) \mathrm{cpt}$.).

Outlook to Lorentzian gluing

Possible applications and further work in this direction include:

- Globalization/Alexandrov's Patchwork (done!).
- Generalize Reshetnyak via spacelike distance for LpLS.
- Matching of spacetimes.
- Gluing of spaces with lower curvature bounds along boundary.
- Gluing of spaces with synthetic Ricci curvature bounds.

References

S. B. Alexander and R. L. Bishop.

Lorentz and semi-Riemannian spaces with Alexandrov curvature bounds.
Comm. Anal. Geom., 16(2):251-282, 2008.

T. Beran, L. Napper, and F. Rott.

Alexandrov's Patchwork and the Bonnet-Myers theorem for Lorentzian length spaces, 2023. https://arxiv.org/abs/2302.11615.
T. Beran and F. Rott.

Gluing constructions for Lorentzian length spaces., 2022.
https://arxiv.org/abs/2201.09695.
F. Cavalletti and A. Mondino.

Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications., 2020.
https://arxiv.org/abs/2004.08934.

M. Kunzinger and C. Sämann.

Lorentzian length spaces.
Ann. Glob. Anal. Geom., 54(3):399-447, 2018.

E. Minguzzi.

Further observations on the definition of global hyperbolicity under low regularity, 2023.
https://arxiv.org/abs/2302.09284.
F. Rott.

Gluing of Lorentzian length spaces and the causal ladder., 2022.
https://arxiv.org/abs/2209.06894.

