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Cosmology

Cosmology is concerned with the study of the large-scale behaviour
of our universe.

Key questions for relativists include:

Which solution of the field eqns corresponds to our universe?
(Or at least a close approximation of it)
What sort of behaviour do these models produce for the
universe in the past or future?
Other interesting mathematical/physical properties of these
solutions?
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Initial Assumptions

As a first step towards answering these question we use a mix of
observational data and (mainly) assumptions about the structure of
our universe.

1 Spatial Isotropy - There is no geometrically preferred direction,
i.e. the universe ‘looks the same’ in any direction.

2 Spatial Homogeneity - The universe looks the same from every
point, i.e. it is isotropic at every point.

Current evidence suggests our universe, on large scales, is
approximately isotropic and homogeneous.
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FLRW Metric

The standard spatially isotropic and homogeneous solution is the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

g = −dt2 + a(t)2hIJdx IdxJ , (1)

where a(t) is the scale factor which measures the relative motion of
isotropic observers and hIJ is the (time-independent) metric on
spatial hypersurfaces.
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Cosmological Fluids

Only matter compatible with homogeneity and isotropy is a
perfect fluid.
Stress-energy tensor → T ij = (p + ρ)v iv j + pg ij .
Need an equation of state to close system → p = Kρ (linear).

K = 0 (Dust universe)
K = 1/3 (Radiation Fluid)
K = 1 (Stiff fluid)
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Introduction to Cosmological Stability
Einstein-Euler in Gowdy Symmetry

Non-Linear Stability Definition

Consider a solution X0 = (M, g , φ) to the EFE which is future
causally geodesically complete and generated from initial data
x0 = (g0, φ0) = (g , φ)|t0 .

For initial data suitably close to x0, if the corresponding maximal
Cauchy development is future causally geodesically complete then we
say X0 is future stable.

Physical relevance - Are FLRW solutions stable to the future?
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Previous Results on Non-Linear Stability

FLRW fluid solutions with linear equation of state p = Kρ:
Euler between dust and radiation: Speck ’12, Rodnianski and
Speck ’13.
Radiation fluid : Lübbe and Valiente ’13.
Dust: Hadzic and Speck ’13.

Other stability results have been obtained Friedrich, LeFloch,
Oliynyk, Beyer, Ringström, and Wei (Amongst many others)

FLRW results only consider 0 ≤ K ≤ 1/3.
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Current Picture

0 ≤ K < 1/3 K = 1/3 1/3 < K < 1
Isotropic Stable Stable Unstable? **
Non-Isotropic Stable Stable*

*Only for relativistic Euler equations on fixed FLRW background
[Oliynyk, 2021, Marshall and Oliynyk, 2022]

** [Rendall, 2004], [Speck, 2013]
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Relativisitic Euler for K>1/3

Two key results:
1 For each K ∈ (1/3, 1) the numerical solutions of the relativistic

Euler equations display ODE behaviour at late times.
2 For each K ∈ (1/3, 1) the density contrast (∂Iρρ ) of the fluid

develops steep gradients near a finite number of spatial points
where it becomes unbounded as t ↘ 0.

NB: Only holds for suitably small perturbations of FLRW solution
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Einstein-Euler System

Is the behaviour of the density contrast the same when the fluid is
coupled to the gravitational field?

The simplest way to test this numerically is by considering the
Einstein-Euler equations in Gowdy symmetry.
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Numerical Implementation - Gowdy Metric

Compactified T3-Gowdy metric:

g =
1
τ2

(
e2(η−U)(−e2αdτ2 + dθ2) + e2U(dy + Adz)2 + e−2Udz2).

(2)

The functions η, U, α, and A depend only on
(τ, θ) ∈ (0, 1]× T.
We take θ to be a periodic coordinate on the 1-torus T
obtained by identifying the ends of the interval [0, 2π].
1+1 problem with periodic boundary condtions
Finite time domain to evolve over
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Numerical Implementation - Discretisation

Our numerical scheme is straightforward:
2nd order central finite difference stencils to discretise spatial
derivatives.
2nd order Runge-Kutta (RK2) method to evolve in time.

Figure: Convergence plot of ρ̃ at τ = 0.599
E. Marshall The Future (in)Stability of Relativistic Perfect Fluids
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Numerical Implementation - Einstein Equations

The Einstein equations are Gab + Λgab = Tab.

For the Gowdy metric we get:
Three wave equations for A, U, and η,
A first order evolution equation for α,
The Hamiltonian and momentum constraints.

First Order System
Need to introduce first order variables for U, A.
Use Hamiltonian constraint as evolution equation for η.
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Numerical Implementation - Euler Equations

We contract ∇iT
ij = 0 with v j and δjJ −

vJ
v0
δj0 to get Euler equations

B0
(
ρ̃
ṽ1

)
+ B1

(
ρ̃
ṽ1

)
= FṼ

Euler Variables

Only two non-zero fluid components, v0 and v1

Eliminate v0 using normalisation condition
Introduce new variables ρ̃ and ṽ1 to remove leading-order
behaviour in τ
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Numerical Implementation - Initial Data

We require that:
The four-velocity must vanish somewhere on the domain.
The momentum constraint is satisfied.
The constraints from the definition of the first order variables
are satisfied.
The initial data is a (small) perturbation of the FLRW solution.
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ODE Behaviour

How do we determine whether the system behaves like an ODE?

If the system behaves like an ODE the spatial derivative terms
should be negligible.
Construct asymptotic system from EFEs by setting spatial
derivatives to 0.
Compare full EFEs and asymptotic system

∂tu + ∂xu = f (u), Full System (PDE)
∂tu = f (u), Asymptotic System (ODE)
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ODE Behaviour

(a) τ = 0.001 (b) τ = 5.55 × 10−6

(c) τ = 9.79 × 10−10

Figure: Comparison of full Einstein-Euler solution ṽ1 (in blue) and asymptotic
solution v̄1 (in orange) at various times. τ̃0 = 0.001, N = 1000, K = 0.5, Λ = 1.
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Density Contrast Blowup

(a) τ = 0.001 (b) τ = 5.55 × 10−6

(c) τ = 3 × 10−8

Figure: Density contrast ∂θρ
ρ

at various times. N = 1000, K = 0.5, Λ = 1.E. Marshall The Future (in)Stability of Relativistic Perfect Fluids
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Future Directions

‘Generic’ initial data.
Full 3+1 code (i.e. no symmetry).
Stability of non-isotropic solutions when coupled to gravity.
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