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• Preliminary definitions

• Penrose’s 1965 singularity theorem

• Singularities in the cosmological setting

• Singularities in the Gannon-Lee setting

In this talk singularity is synonymous with an incomplete null geodesic.
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Preliminary definitions

Definitions

• A spacetime (M, g) is a time-oriented Lorentzian manifold. For
nonzero vectors X ∈ TpM, we have a decomposition:

1. ⟨X ,X ⟩ < 0 iff X is timelike,
2. ⟨X ,X ⟩ = 0 iff X is null,
3. ⟨X ,X ⟩ > 0 iff X is spacelike.

If X is timelike or null, then X is a causal vector.

p ∈ M

X

Y

Z

X is timelike

Y is null

Z is spacelike

• Time-oriented means there is a timelike vector field X on M. If Y is
causal, then we say Y is future or past if ⟨X ,Y ⟩ is negative or
positive, respectively.



Preliminary definitions

• The causal future of a point p is the set

J+(p) = {q | ∃ a future-directed causal curve from p to q}

Similar definitions for J+(S) for any S ⊂ M and the causal past J−.

p

q



Preliminary definitions

• A Cauchy surface V is a subset of M such that every inextendible
future directed timelike curve intersects V exactly once.

V

Remarks.

- Cauchy surfaces are automatically topological hypersurfaces.

- If M has a Cauchy surface V , then M is topologically R× V .

- In the 2000’s Bernal and Sánchez improved the above result to a
diffeomorphism and an orthogonal metric splitting.

- The existence of a Cauchy surface is equivalent to global
hyperbolicity of M. In Lorentzian geometry, globally hyperbolic
spacetimes often play the role of complete Riemannian manifolds.
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Penrose’s 1965 Singularity Theorem

Trapped surfaces

• A surface S in a spacetime M (i.e. a codimension 2 submanifold) is
future trapped if its mean curvature vector is past directed timelike.

Initial data perspective

Suppose V is a spacelike Cauchy surface and S ⊂ V is two-sided.

V

ℓ± = u ± νS

ℓ−
u

ℓ+

ν

- Null 2nd fundamental forms: χ±(X ,Y ) = ⟨∇X ℓ±,Y ⟩.

- Null expansion scalars: θ± = trSχ± = trSK ± H

- K is the 2nd fundamental form of V in M
- H is the mean curvature of S in V .

• S is future trapped if θ+ < 0 and θ− < 0.



Penrose’s 1965 Singularity Theorem

Theorem (Penrose (1965))

Suppose V is a noncompact Cauchy surface in a spacetime M satisfying
the null energy condition, i.e. Ric(X ,X ) ≥ 0 for all null X . If M contains
a future trapped compact surface S , then there is an incomplete future
directed null geodesic emanating from S .

Sketch of proof.

Geodesic completeness =⇒ ∂J+(S) is compact,

=⇒ ∂J+(S) ≈ V ,

=⇒ V is compact.

→←
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Topology and singularities in cosmology

Cosmology in brief

• In the 1920’s Hubble observed that the universe is expanding by
measuring the redshift of distant galaxies.

• For the isotropic FLRW models of cosmology,

g = −dt2 + a(t)2h,

an expansion means ȧ(t0) > 0 for our current cosmic time t0.

• An expanding universe implies that the second fundamental form K
is positive definite since for FLRW cosmology

K =
ȧ(t)

a(t)
h.

Definition. A spacelike Cauchy surface V is expanding in all directions if
its second fundamental form K is positive definite.



Topology and singularities in cosmology

Theorem (Galloway and L. (2017))

Suppose V is a 3-dimensional compact spacelike Cauchy surface for M.
Assume V is expanding in all directions and the NEC holds. If V is not a
spherical space, then M is past null geodesically incomplete.

V is a spherical space if it’s a quotient of the three-sphere.

Remarks.

• The assumption that V is expanding in all directions is stronger
than the positive mean curvature assumption in Hawking’s
cosmological singularity theorem.

• However, we more than make up for it since we only assume the
NEC whereas Hawking assumes the SEC. Therefore our theorem
applies to spacetimes with Λ > 0 and inflationary models.

• De Sitter space and its quotients are examples of spacetimes with
spherical space Cauchy surfaces expanding in all directions but are
nevertheless complete.



Topology and singularities in cosmology

Proof of the theorem:

If there exists an embedded minimal surface S ⊂ V , then

θ± = trSK ± H

= trSK

> 0 (since V is expanding in all directions).

Then S would be past trapped.

Goal: Find a minimal S ⊂ V and a covering p : Ṽ → V such that Ṽ is
noncompact and S̃ , the lift of S , contains an isometric copy of S .

This induces a canonical spacetime covering P : M̃ → M with a Cauchy
surface Ṽ in M̃. Apply Penrose’s theorem in M̃ to obtain a past
incomplete null geodesic in M̃. This projects down to an incomplete null
geodesic in M.

Lemma: If H2(V ,Z) ̸= 0, then the goal can be achieved.



Topology and singularities in cosmology

Visual proof of Lemma

H2(V ,Z) ̸= 0 =⇒ there is an oriented, minimal, embedded S ⊂ V
which is nonseparating.

S is minimal

S

S̃



Topology and singularities in cosmology

Prime decomposition:

V is orientable =⇒ V = V1# · · ·#Vn.

Two cases:

(1) π1(Vi ) <∞ =⇒ Vi is spherical (elliptization conjecture).

(2) π1(Vi ) =∞. Then either:

(i) Vi = S1 × S2, or

(ii) Vi is irreducible.

In either case (i) or (ii), the goal can be achieved:

• Case (i) =⇒ H2(V ,Z) ̸= 0 =⇒ Goal is achieved.

• In case (ii), the positive resolution of the surface subgroup
conjecture along with classical results from Schoen-Yau imply that
there is a minimal immersion f : Sg → V for some genus g ≥ 1
surface such that the induced homomorphism f∗ is injective.
Consider the covering p : Ṽ → V such that p∗π1(Ṽ ) = f∗π1(Sg ).

Then Ṽ is noncompact and Sg is minimal and immersed in Ṽ via
the map lifting criterion. Goal is achieved.



Topology and singularities in cosmology

The remaining case is when V is the connected sum of two or more
spherical spaces. In this case, there is a covering Ṽ with H2(Ṽ ,Z) ̸= 0:

RP3#RP3

S1 x S2



Topology and singularities in cosmology

Generating examples:

Let V be any compact 3-manifold. There is a metric h on V such that
Rh is constant (Yamabe problem).

The vacuum Einstein constraint equations with Λ:

Rh − |K |2h + (trhK )2 = 2Λ

DiK
i
j − DjK

i
i = 0 (D is the h-covariant derivative).

Choose K = h. Then

• K is positive definite (expanding in all directions),

• DK = 0 so the second constraint is satisfied,

• The LHS of the first constraint is a constant.

Pick Λ so that the first constraint is satisfied. Then

V is not spherical =⇒ MGHD is past null incomplete.
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Singularities in the Gannon-Lee setting

Setting:

S ≈ S2 separates a Cauchy surface V into E1 and E2:

V

ℓ± = u ± νS E1 E2

ℓ− ℓ+

Theorem (Gannon-Lee)

Assume

• the null energy condition holds,

• S is future inner trapped (i.e. θ− < 0),

• E2 is noncompact.

If π1(E1) is nontrivial, then M is future null geodesically incomplete.



Singularities in the Gannon-Lee setting

J +
a

J−
a

J +
b

J−
b

SaSb

J +

J−

RP2

S
The Schwarzschild RP3 geon:



Singularities in the Gannon-Lee setting

Generating examples:

• Let V be a Riemannian manifold with positive scalar curvature.

• Fix p ∈ V. The Green’s function at p for the conformal Laplacian
on V exists and is strictly positive.

• Consequently, V := V \ {p} admits a metric h with Rh = 0 and is
asymptotically flat with p ∈ V representing infinity.

• Let (M, g) denote the MGHD of (V , h,K = 0) for the vacuum
Einstein equations.

Then

π1(V) is nontrivial =⇒ (M, g) is future null incomplete.



Singularities in the Gannon-Lee setting

V = S1 × S2:

p



Singularities in the Gannon-Lee setting



Thank you!


