Generating spacetimes with singularities

Eric Ling Copenhagen center for geometry and topology

Interdisciplinary junior scientist workshop: Mathematical General Relativity

March 7th, 2023

Outline

Outline

Outline

- Preliminary definitions
- Penrose's 1965 singularity theorem
- Singularities in the cosmological setting
- Singularities in the Gannon-Lee setting

In this talk singularity is synonymous with an incomplete null geodesic.

Definitions

- A spacetime (M, g) is a time-oriented Lorentzian manifold. For nonzero vectors X ∈ T_pM, we have a decomposition:
 - 1. $\langle X, X \rangle < 0$ iff X is timelike, 2. $\langle X, X \rangle = 0$ iff X is null,
 - 3. $\langle X, X \rangle > 0$ iff X is spacelike.

If X is timelike or null, then X is a causal vector.

Time-oriented means there is a timelike vector field X on M. If Y is causal, then we say Y is future or past if (X, Y) is negative or positive, respectively.

• The causal future of a point p is the set

 $J^+(p) = \{q \mid \exists a \text{ future-directed causal curve from } p \text{ to } q\}$

Similar definitions for $J^+(S)$ for any $S \subset M$ and the causal past J^- .

• A Cauchy surface V is a subset of M such that every inextendible future directed timelike curve intersects V exactly once.

Remarks.

- Cauchy surfaces are automatically topological hypersurfaces.
- If *M* has a Cauchy surface *V*, then *M* is topologically $\mathbb{R} \times V$.
- In the 2000's Bernal and Sánchez improved the above result to a diffeomorphism and an orthogonal metric splitting.
- The existence of a Cauchy surface is equivalent to global hyperbolicity of *M*. In Lorentzian geometry, globally hyperbolic spacetimes often play the role of complete Riemannian manifolds.

Penrose's 1965 Singularity Theorem

Penrose's 1965 Singularity Theorem

Trapped surfaces

• A surface S in a spacetime M (i.e. a codimension 2 submanifold) is future trapped if its mean curvature vector is past directed timelike.

Initial data perspective

Suppose V is a spacelike Cauchy surface and $S \subset V$ is two-sided.

- Null 2nd fundamental forms: $\chi_{\pm}(X,Y) = \langle \nabla_X \ell_{\pm}, Y \rangle.$
- Null expansion scalars: $\theta_{\pm} = tr_S \chi_{\pm} = tr_S K \pm H$
 - K is the 2nd fundamental form of V in M
 - H is the mean curvature of S in V.
- S is future trapped if $\theta_+ < 0$ and $\theta_- < 0$.

Theorem (Penrose (1965))

Suppose V is a noncompact Cauchy surface in a spacetime M satisfying the null energy condition, i.e. $\operatorname{Ric}(X, X) \ge 0$ for all null X. If M contains a future trapped compact surface S, then there is an incomplete future directed null geodesic emanating from S.

Sketch of proof.

Topology and singularities in cosmological spacetimes

Cosmology in brief

- In the 1920's Hubble observed that the universe is expanding by measuring the redshift of distant galaxies.
- For the isotropic FLRW models of cosmology,

$$g = -dt^2 + a(t)^2 h,$$

an expansion means $\dot{a}(t_0) > 0$ for our current cosmic time t_0 .

• An expanding universe implies that the second fundamental form *K* is positive definite since for FLRW cosmology

$$K = \frac{\dot{a}(t)}{a(t)}h.$$

Definition. A spacelike Cauchy surface V is expanding in all directions if its second fundamental form K is positive definite.

Theorem (Galloway and L. (2017))

Suppose V is a 3-dimensional compact spacelike Cauchy surface for M. Assume V is expanding in all directions and the NEC holds. If V is not a spherical space, then M is past null geodesically incomplete.

V is a spherical space if it's a quotient of the three-sphere.

Remarks.

- The assumption that V is expanding in all directions is stronger than the positive mean curvature assumption in Hawking's cosmological singularity theorem.
- However, we more than make up for it since we only assume the NEC whereas Hawking assumes the SEC. Therefore our theorem applies to spacetimes with $\Lambda > 0$ and inflationary models.
- De Sitter space and its quotients are examples of spacetimes with spherical space Cauchy surfaces expanding in all directions but are nevertheless complete.

Proof of the theorem:

If there exists an embedded minimal surface $S \subset V$, then

$$\theta_{\pm} = \operatorname{tr}_{S} K \pm H$$

= $\operatorname{tr}_{S} K$
> 0 (since V is expanding in all directions)

Then S would be past trapped.

Goal: Find a minimal $S \subset V$ and a covering $p: \tilde{V} \to V$ such that \tilde{V} is noncompact and \tilde{S} , the lift of S, contains an isometric copy of S.

This induces a canonical spacetime covering $P: \tilde{M} \to M$ with a Cauchy surface \tilde{V} in \tilde{M} . Apply Penrose's theorem in \tilde{M} to obtain a past incomplete null geodesic in \tilde{M} . This projects down to an incomplete null geodesic in M.

Lemma: If $H_2(V, \mathbb{Z}) \neq 0$, then the goal can be achieved.

Visual proof of Lemma

 $H_2(V,\mathbb{Z}) \neq 0 \implies$ there is an oriented, minimal, embedded $S \subset V$ which is nonseparating.

Prime decomposition:

V is orientable $\implies V = V_1 \# \cdots \# V_n$.

Two cases:

(1) $\pi_1(V_i) < \infty \implies V_i$ is spherical (elliptization conjecture).

(2) $\pi_1(V_i) = \infty$. Then either: (i) $V_i = S^1 \times S^2$, or (ii) V_i is irreducible.

In either case (i) or (ii), the goal can be achieved:

- Case (i) \implies $H_2(V,\mathbb{Z}) \neq 0 \implies$ Goal is achieved.
- In case (ii), the positive resolution of the surface subgroup conjecture along with classical results from Schoen-Yau imply that there is a minimal immersion f: S_g → V for some genus g ≥ 1 surface such that the induced homomorphism f_{*} is injective. Consider the covering p: V → V such that p_{*}π₁(V) = f_{*}π₁(S_g). Then V is noncompact and S_g is minimal and immersed in V via the map lifting criterion. Goal is achieved.

The remaining case is when V is the connected sum of two or more spherical spaces. In this case, there is a covering \tilde{V} with $H_2(\tilde{V}, \mathbb{Z}) \neq 0$:

Generating examples:

Let V be any compact 3-manifold. There is a metric h on V such that R_h is constant (Yamabe problem).

The vacuum Einstein constraint equations with Λ :

$$egin{aligned} R_h - |K|_h^2 + (tr_h K)^2 &= 2\Lambda \ D_i K^i_{\ j} - D_j K^i_{\ i} &= 0 \end{aligned} (D ext{ is the } h ext{-covariant derivative}). \end{aligned}$$

Choose K = h. Then

- K is positive definite (expanding in all directions),
- DK = 0 so the second constraint is satisfied,
- The LHS of the first constraint is a constant.

Pick Λ so that the first constraint is satisfied. Then

$$V$$
 is not spherical \implies MGHD is past null incomplete.

Setting:

 $S \approx S^2$ separates a Cauchy surface V into E_1 and E_2 :

Theorem (Gannon-Lee)

Assume

- the null energy condition holds,
- S is future inner trapped (i.e. $\theta_{-} < 0$),
- E₂ is noncompact.

If $\pi_1(E_1)$ is nontrivial, then M is future null geodesically incomplete.

The Schwarzschild *RP*³ geon:

Generating examples:

- Let $\ensuremath{\mathcal{V}}$ be a Riemannian manifold with positive scalar curvature.
- Fix p ∈ V. The Green's function at p for the conformal Laplacian on V exists and is strictly positive.
- Consequently, V := V \ {p} admits a metric h with R_h = 0 and is asymptotically flat with p ∈ V representing infinity.
- Let (M, g) denote the MGHD of (V, h, K = 0) for the vacuum Einstein equations.

Then

$$\pi_1(\mathcal{V})$$
 is nontrivial $\implies (M,g)$ is future null incomplete.

 $\mathcal{V}=S^1 imes S^2$:

Thank you!