>>> The scattering problem for the wave equation with negative cosmological constant

Gemma Hood[†] Imperial College London 2 March 2023

Interdisciplinary Junior Scientist Workshop: Mathematical General Relativity

[†]gemma.hood19@imperial.ac.uk

>>> Outline

- 1. Negative cosmological constant
- 2. (Asymptotically) Anti-de Sitter spacetimes
- 3. The black hole stability problem
- 4. The scattering problem
- 5. Outlook

>>> Negative cosmological constant

* The Einstein vacuum equation with cosmological constant Λ reads

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = 0.$$

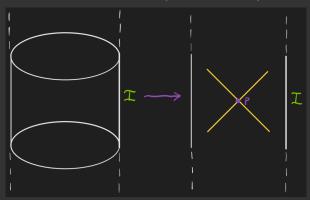
- * Typically, the $\Lambda \geq 0$ case is considered.
- * However, the $\Lambda < 0$ setting is mathematically very interesting.

- >>> Negative cosmological constant
 - * $\Lambda < 0$ is also of interest in the physics community because of the AdS-CFT correspondence

>>> Negative cosmological constant

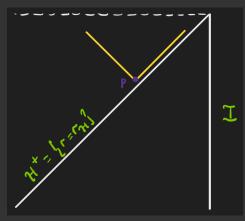
* $\Lambda < 0$ is also of interest in the physics community because of the AdS-CFT correspondence

- >>> Anti-de Sitter space
 - * Anti-de Sitter space (AdS) is the simplest solution of the Einstein vacuum equation (EVE) with negative cosmological constant.
 - * A solid 4-cylinder, with each fixed-time slice a hyperbolic 3-disk.
 - * Possesses a timelike boundary at infinity.



>>> Schwarzschild-Anti-de Sitter space

- One can consider more interesting spacetimes which are asymptotically AdS.
- * Schwarzschild-AdS is a 1-parameter family of <u>black hole</u> spacetimes within the larger 2-parameter family of Kerr-AdS spacetimes



What do we know about $\Lambda < 0$ spacetimes?

What do we know about $\Lambda < 0$ spacetimes? Relatively little.

What do we know about $\Lambda < 0$ spacetimes? Relatively little. * $\Lambda > 0$

What do we know about $\Lambda < 0$ spacetimes? Relatively little. * $\Lambda > 0$

The global non-linear stability of the Kerr–de Sitter family of black holes

Peter Hintz, András Vasy

What do we know about $\Lambda < 0$ spacetimes? Relatively little. * $\Lambda > 0$

The global non-linear stability of the Kerr–de Sitter family of black holes

Peter Hintz, András Vasy

206 PAGES

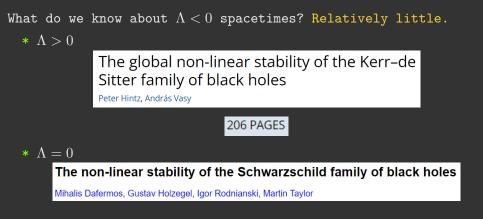
What do we know about $\Lambda < 0$ spacetimes? Relatively little. * $\Lambda > 0$

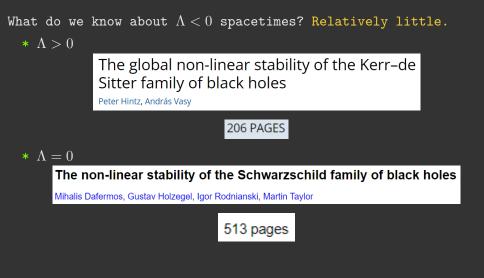
The global non-linear stability of the Kerr–de Sitter family of black holes

Peter Hintz, András Vasy

206 PAGES

* $\Lambda = 0$





Conjecture (Dafermos, Holzegel '06)

AdS is asymptotically <u>unstable</u> as a solution of the Einstein vacuum equation with <u>Dirichlet</u> boundary conditions.

Conjecture (Dafermos, Holzegel '06)

AdS is asymptotically <u>unstable</u> as a solution of the Einstein vacuum equation with <u>Dirichlet</u> boundary conditions.

This is supported by results of Moschidis ['20, '22], who proved instability for spherically symmetric toy model problems, and by numerical results [Bizoń, Rostworowski '11].

Conjecture (Dafermos, Holzegel '06)

AdS is asymptotically <u>unstable</u> as a solution of the Einstein vacuum equation with <u>Dirichlet</u> boundary conditions.

This is supported by results of Moschidis ['20, '22], who proved instability for spherically symmetric toy model problems, and by numerical results [Bizoń, Rostworowski '11].

Conjecture (Holzegel, Luk, Smulevici, Warnick '20)

AdS is asymptotically <u>stable</u> as a solution of the Einstein vacuum equation with optimally <u>dissipative</u> boundary conditions.

Conjecture (Dafermos, Holzegel '06)

AdS is asymptotically <u>unstable</u> as a solution of the Einstein vacuum equation with <u>Dirichlet</u> boundary conditions.

This is supported by results of Moschidis ['20, '22], who proved instability for spherically symmetric toy model problems, and by numerical results [Bizoń, Rostworowski '11].

Conjecture (Holzegel, Luk, Smulevici, Warnick '20) AdS is asymptotically <u>stable</u> as a solution of the Einstein vacuum equation with optimally dissipative boundary conditions.

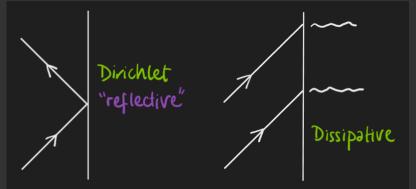
Why?

>>> Boundary conditions

* <u>Intuition</u>: In certain coordinates, the Einstein vacuum equation becomes a system of nonlinear wave equations. "Fast enough" decay of nonlinear waves $\Box \psi = F$ is key in the proofs of existing stability statements (e.g. $\Lambda = 0$ Schwarzschild).

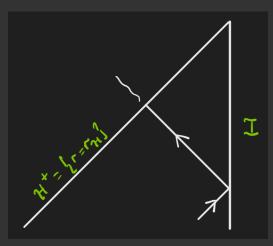
>>> Boundary conditions

* <u>Intuition</u>: In certain coordinates, the Einstein vacuum equation becomes a system of nonlinear wave equations. "Fast enough" decay of nonlinear waves $\Box \psi = F$ is key in the proofs of existing stability statements (e.g. $\Lambda = 0$ Schwarzschild).



* Dirichlet \rightarrow energy conservation for waves * Dissipative \rightarrow wave energy escapes to infinity

- >>> Is Kerr-AdS stable?
 - * Black hole horizons provide an escape route for reflected energy of waves, so one might think this is enough for stability.



- >>> Is Kerr-AdS stable?
 - However, generic waves decay slowly (logarithmically) [Holzegel, Smulevici '13].

>>> Is Kerr-AdS stable?

- However, generic waves decay slowly (logarithmically) [Holzegel, Smulevici '13].
- * This leads us to suspect instability.

>>> Is Kerr-AdS stable?

- However, generic waves decay slowly (logarithmically) [Holzegel, Smulevici '13].
- * This leads us to suspect instability.
- * Some have conjectured that stability still holds because of special structure in the nonlinear interaction [Dias, Horowitz, Marolf, Santos, '12]. However, there are currently no rigorous results.

>>> Is Kerr-AdS stable?

- However, generic waves decay slowly (logarithmically) [Holzegel, Smulevici '13].
- * This leads us to suspect instability.
- * Some have conjectured that stability still holds because of special structure in the nonlinear interaction [Dias, Horowitz, Marolf, Santos, '12]. However, there are currently no rigorous results.

Conjecture (Holzegel, Smulevici '13)

Kerr-AdS is asymptotically <u>unstable</u> as a solution of the Einstein vacuum equation with <u>Dirichlet</u> boundary conditions.

Theorem (GH, in preparation)

There exist a class of exponentially decaying waves on the Kerr-AdS black hole exterior with Dirichlet boundary conditions.

>>> Main result

Theorem (GH, in preparation) Let $h_{\mathcal{H}}: [0,\infty) \times S^2 \to \mathbb{R}$ be scattering data on \mathcal{H} satisfying

$$\overline{D_k}_{\mathcal{H}} := \sum_{0 \le m \le k} \int_0^\infty \int_{S^2} \exp(\alpha(k) \cdot t^*) |\partial^m h_{\mathcal{H}}| \mathrm{d}t^* \mathrm{d}\omega < \infty$$

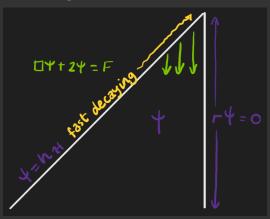
for $k\geq 3$, $\alpha(k)>0$ sufficiently large. Then, given t_0^* sufficiently large, there exists a unique solution $\psi:[t_0^*,\infty)\times[r_{\mathcal{H}},\infty)\times S^2\to\mathbb{R}$ of

$$\begin{cases} \Box \psi + 2\psi = F(\psi, \partial \psi), \\ (\psi, \nabla_{t^*} \psi)|_{\mathcal{H}} = (h_{\mathcal{H}}, \nabla_{t^*} h_{\mathcal{H}}), \quad r\psi|_{\mathcal{I}} = 0 \end{cases}$$

 $|\text{such that } |\psi(\tau)| \lesssim \overline{\tfrac{D_3}{r^3}} \exp(-B \cdot \tau) \text{ for some } B > 0 \text{, } \tau \in [t_0^*,\infty) \text{.}$

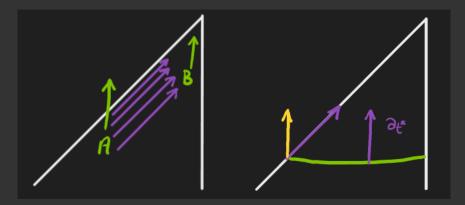
>>> Nonlinear waves from exponentially decaying data

- * Idea: construct a <u>non-generic</u> class of nonlinear wave equation solutions which decay as fast as we like
- * Take exponentially decaying data on the horizon
- * Dirichlet data at the boundary
- * Solve towards the past



>>> Key difficulty: gravitational redshift

- * The **redshift** effect helps one deduce decay in forwards evolution
- * In backwards evolution this becomes a blueshift, a geometric obstruction to proving decay



>>> Outlook

- A scattering construction for the Einstein vacuum equation with asymptotically-AdS data
- * Open question: do there exist slower decaying solutions?
- * Is Kerr-AdS, indeed, unstable?

Thank you for your attention!

- >>> Idea of the proof
 - * Approximate the target global solution by a sequence of solutions of finite problems.
 - Prove estimates on solutions in the sequence and their derivatives.
 - * Derive a convergent subsequence whose limit is a global solution.

