

The mean curvature flow on certain generalized Robertson-Walker space-times with non compact space-like slice

Giuseppe Gentile

Leibniz Universität Hannover

Interdisciplinary junior scientist workshop: Mathematical General Relativity 8th March 2023

Question 1

What happens when one deforms a (space-like) hypersurface (submanifold) in the direction of the mean curvature vector?

Question 1

What happens when one deforms a (space-like) hypersurface (submanifold) in the direction of the mean curvature vector?

More interesting question

Do (space-like) hypersurfaces (submanifolds) of prescribed mean curvature exist?

Question 1

What happens when one deforms a (space-like) hypersurface (submanifold) in the direction of the mean curvature vector?

More interesting question

Do (space-like) hypersurfaces (submanifolds) of prescribed mean curvature exist?

Remark

In this talk I will always assume the ambient to be (some special kind of) Lorentzian manifold and the submanifold to be an hypersurface. Important to point out that MCF has been analyzed also in other setting. Semi-Riemannian (cf. [LISA10]). But also in a Kähler(-Einstein) ambient, preserving the Lagrangian property (cf. [SM012]).

Giuseppe Gentile (LUH)

э

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

• *M* smooth *m*-dimensional manifold.

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

- *M* smooth *m*-dimensional manifold.
- $(N, \overline{g}) m + 1$ -dimensional Lorentzian manifold.

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

- *M* smooth *m*-dimensional manifold.
- $(N,\overline{g}) m + 1$ -dimensional Lorentzian manifold.

Definition 1: PMCF

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

- *M* smooth *m*-dimensional manifold.
- $(N,\overline{g}) m + 1$ -dimensional Lorentzian manifold.

Definition 1: PMCF

Let $\mathcal{H} : M \to \mathbb{R}$, we say that a family of embedding $F : M \times I \to N$ is a **prescribed mean curvature flow** if it satisfies

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

- *M* smooth *m*-dimensional manifold.
- $(N, \overline{g}) m + 1$ -dimensional Lorentzian manifold.

Definition 1: PMCF

Let $\mathcal{H} : M \to \mathbb{R}$, we say that a family of embedding $F : M \times I \to N$ is a **prescribed mean curvature flow** if it satisfies

$$\partial_t F = -(H - \mathcal{H})\nu$$

 $F(_-, 0) = F_0,$ (PMCF)

with ν being the unit normal and $F_0: M \to N$ an initial embedding.

We want to rephrase the "more interesting question" in the language of (parabolic) evolution equations.

- *M* smooth *m*-dimensional manifold.
- $(N,\overline{g}) m + 1$ -dimensional Lorentzian manifold.

Definition 1: PMCF

Let $\mathcal{H} : M \to \mathbb{R}$, we say that a family of embedding $F : M \times I \to N$ is a **prescribed mean curvature flow** if it satisfies

$$\partial_t F = -(H - \mathcal{H})\nu$$

 $F(-, 0) = F_0,$ (PMCF)

with ν being the unit normal and $F_0: M \to N$ an initial embedding.

Remark

Be aware of the sign convention, I am using the **positive** Laplacian.

Giuseppe Gentile (LUH)

How to prove existence of PMC hypersurfaces

Giuseppe Gentile (LUH)

Image: Image:

э

How to prove existence of PMC hypersurfaces

Hope

Giuseppe Gentile (LUH)

< 円

э

(PMCF) admits solutions (short time existence).

- (PMCF) admits solutions (short time existence).
- (PMCF) admits solutions for long time.

.∋...>

- (PMCF) admits solutions (short time existence).
- (PMCF) admits solutions for long time.
- Solutions converge to a stationary solution $F^*: M \to N$ with $H(F^*) = \mathcal{H}$.

- (PMCF) admits solutions (short time existence).
- 2 (PMCF) admits solutions for long time.
- Solutions converge to a stationary solution $F^*: M \to N$ with $H(F^*) = \mathcal{H}$.

Remark

In the Riemannian setting with M compact, and perhaps $\mathcal{H} = 0$, one can not expect long time existence.

イロト イヨト イヨト イヨト

æ

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$:

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

1 Spatial compactness, ($\rightsquigarrow M$ is compact)

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Sime-like Convergence Condition, (Ric^N(X, X) ≥ 0, ∀X time-like vector field).

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.

5/17

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Solution Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.

'00 In [Ger00] removes assumption (2) and (3).

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Solution Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.

'00 In [Ger00] removes assumption (2) and (3).

'97 In [ECOT97] $N = \mathbb{R}^{m+1}$, \overline{g} static.

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Solution Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- 3 Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.
- '00 In [Ger00] removes assumption (2) and (3).
- '97 In [ECOT97] $N = \mathbb{R}^{m+1}$, \overline{g} static.
- '21 In [KPLOT21] M asymptotically flat, \overline{g} static.

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Solution Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.
- '00 In [Ger00] removes assumption (2) and (3).
- '97 In [ECOT97] $N = \mathbb{R}^{m+1}$, \overline{g} static.
- '21 In [KPLOT21] M asymptotically flat, \overline{g} static.
- '22 In [GEVE22] *M* of bounded geometry satisfying the Omori-Yau maximum principle, (N, \overline{g}) generalized Robertson-Walker (GRWST).

< □ > < □ > < □ > < □ > < □ > < □ >

Existence of space-like hypersurfaces of prescribed mean curvature in globally hyperbolic Lorentzian manifolds $(N = \mathbb{R} \times M, \overline{g})$: '91 In [EcHu91], if N satisfies:

- Spatial compactness, ($\rightsquigarrow M$ is compact)
- Solution Time-like Convergence Condition, $(\operatorname{Ric}^{N}(X, X) \ge 0, \forall X \text{ time-like vector field}).$
- Structure condition for the mean curvature, $|\mathsf{H}| \leq \Lambda v$, $v = -\overline{g}(\partial_{x^0}, \nu)$.
- '00 In [Ger00] removes assumption (2) and (3).
- '97 In [ECOT97] $N = \mathbb{R}^{m+1}$, \overline{g} static.
- '21 In [KPLOT21] M asymptotically flat, \overline{g} static.
- '22 In [GEVE22] *M* of bounded geometry satisfying the Omori-Yau maximum principle, (N, \overline{g}) generalized Robertson-Walker (GRWST).

Note: global hyperbolicity plays a crucial role. Allows to express space-like hypersurfaces as graphs over the space-like slice.

Giuseppe Gentile (LUH)

<ロト <問ト < 目ト < 目ト

3

Let (M, ğ) be an m-dimensional Riemannian manifold. A GRWST is an n = m + 1 Lorentzian manifold (N, g) so that N = ℝ × M and g = -dx₀² + f(x₀)² g, with f ∈ C[∞](ℝ, ℝ⁺).

• Let (M, \tilde{g}) be an *m*-dimensional Riemannian manifold. A GRWST is an n = m + 1 Lorentzian manifold (N, \overline{g}) so that $N = \mathbb{R} \times M$ and $\overline{g} = -dx_0^2 + f(x_0)^2 \tilde{g}$, with $f \in C^{\infty}(\mathbb{R}, \mathbb{R}^+)$. Moreover $f \ge \delta > 0$ and uniformly bounded with all of its derivatives.

- Let (M, \tilde{g}) be an *m*-dimensional Riemannian manifold. A GRWST is an n = m + 1 Lorentzian manifold (N, \overline{g}) so that $N = \mathbb{R} \times M$ and $\overline{g} = -dx_0^2 + f(x_0)^2 \tilde{g}$, with $f \in C^{\infty}(\mathbb{R}, \mathbb{R}^+)$. Moreover $f \ge \delta > 0$ and uniformly bounded with all of its derivatives.
- **2** (M, \tilde{g}) satisfies the Omori-Yau maximum principle: that is for every bounded $u \in C^{\infty}(M)$ there exist sequences $(p_k)_k$ and $(p'_k)_k$ in M so that

(i)
$$u(p_k) > \sup_M u - 1/k; -\Delta u(p_k) < 1/k$$

(ii) $u(p'_k) < \inf_M u + 1/k; -\Delta u(p'_k) > -1/k.$

- Let (M, \tilde{g}) be an *m*-dimensional Riemannian manifold. A GRWST is an n = m + 1 Lorentzian manifold (N, \overline{g}) so that $N = \mathbb{R} \times M$ and $\overline{g} = -dx_0^2 + f(x_0)^2 \tilde{g}$, with $f \in C^{\infty}(\mathbb{R}, \mathbb{R}^+)$. Moreover $f \ge \delta > 0$ and uniformly bounded with all of its derivatives.
- ② (M, \tilde{g}) satisfies the Omori-Yau maximum principle: that is for every bounded *u* ∈ *C*[∞](*M*) there exist sequences $(p_k)_k$ and $(p'_k)_k$ in *M* so that

(i)
$$u(p_k) > \sup_M u - 1/k; -\Delta u(p_k) < 1/k$$

(ii) $u(p'_k) < \inf_M u + 1/k; -\Delta u(p'_k) > -1/k.$

(M, \tilde{g}) has bounded geometry.

(PMCF) for graphs

Giuseppe	Gentile (LUH)
----------	-----------	------

3

PGMCF

A family of functions $u: M \times I \to \mathbb{R}$ is (gives rise to a prescribed mean curvature flow) with initial embedding $F(p, 0) = (u_0(p), p)$ if it satisfies:

$$(\partial_t + \Delta) u = \frac{f'(u)}{f(u)} \left(m + \frac{|\widetilde{\nabla}u|_{\widetilde{g}}^2}{f(u)^2 - |\widetilde{\nabla}u|_{\widetilde{g}}^2} \right) + \mathcal{H} \frac{f(u)}{\sqrt{f(u)^2 - |\widetilde{\nabla}u|_{\widetilde{g}}^2}}, \quad (1)$$
$$u(-,0) = u_0.$$

- 3 ▶

Short time existence

Giuseppe Gentile (LUH)

Image: A matrix and a matrix

3

Let $u_0 \in C^{2,\alpha}(M)$ and $\mathcal{H} \in C^{\ell,\alpha}(M)$ with $\ell \ge 2$. There exists T > 0 small enough and $u \in C^{2,\alpha}(M) \cap C^{\ell+2,\alpha}(M \times [\sigma, T])$ for every $\sigma > 0$ solution to (1).

Let $u_0 \in C^{2,\alpha}(M)$ and $\mathcal{H} \in C^{\ell,\alpha}(M)$ with $\ell \ge 2$. There exists T > 0 small enough and $u \in C^{2,\alpha}(M) \cap C^{\ell+2,\alpha}(M \times [\sigma, T])$ for every $\sigma > 0$ solution to (1).

Remark

More regularity on u_0 allows for more regularity on u, e.g. $u_0 \in C^{4,\alpha}(M)$ and $\mathcal{H} \in C^{2,\alpha}(M)$ then $u \in C^{4,\alpha}(M \times [0, T])$.

Long time existence

Giuseppe Gentile (LUH)

・ロト ・四ト ・ヨト ・ヨト

æ

Assume $u_0 \in C^{4,\alpha}(M)$ and $\mathcal{H} \in C^{\ell,\alpha}(M)$ with $\ell \geq 2$.

æ

9/17

< 17 ►

Assume $u_0 \in C^{4,\alpha}(M)$ and $\mathcal{H} \in C^{\ell,\alpha}(M)$ with $\ell \geq 2$. Furthermore assume

i)
$$H(t=0) - \mathcal{H} \geq \delta > 0$$
.

ii) $\operatorname{Ric}^{N}(X, X) > 0$ for every time-like vector field $X \in \Gamma(TN)$ (TCC).

э

Assume $u_0 \in C^{4,\alpha}(M)$ and $\mathcal{H} \in C^{\ell,\alpha}(M)$ with $\ell \geq 2$. Furthermore assume

i) $H(t=0) - \mathcal{H} \geq \delta > 0.$

ii) $\operatorname{Ric}^{N}(X, X) > 0$ for every time-like vector field $X \in \Gamma(TN)$ (TCC). Then there exists $u \in C^{4,\alpha}(M) \cap C^{\ell+2,\alpha}(M \times [\sigma, \infty))$ for every $\sigma > 0$ with uniformly bounded Hölder norm. Moreover $\|\partial_t u\|_{\infty}$ is exponentially decreasing.

If *M* satisfies the same assumptions as for the long time existence and it is the interior of a compact manifold with boundary \overline{M} then there exists $u^* \in L^{\infty}(M)$ so that a solution *u* to (1) exists and $u \to u^*$ as $t \to \infty$. Moreover $u^* \in C^{\ell+2,\alpha'}(M)$ with $\alpha' < \alpha$ in the interior with curvature $H(u^*) = \mathcal{H}$.

- A.. N. BERNAL and M. SÀNCHEZ, Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes, Comm. Math.Phys. 257, 43–50, (2005).
- B. CALDEIRA, L. HARTMANN and B. VERTMAN, *Normalized* Yamabe flow on some complete manifolds of infinite volume, (2021).
- K. ECKER and OTHERS, Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in minkowski space, J. Differential Geom **46**, no. 3, 481–498, (1997).
- K. ECKER and G. HUISKEN, *Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes*, Communications in mathematical physics **135**, no. 3, 595–613, (1991).
- G. GENTILE, and B. VERTMAN, *Prescribed mean curvature flow of non-compact space-like Cauchy hypersurfaces*, (2022).

- C. GERHARDT, Hypersurfaces of prescribed mean curvature in Lorentzian manifolds, Mathematische Zeitschrift 235, no. 1, 83–97, (2000).
- K. KRÖNCKE, O. L. PETERSEN, F. LUBBE, T. MARXEN,
 W. MAURER, W. MEISER, O. C. SCHNÜRER, Á. SZABÓ, and
 B. VERTMAN, *Mean curvature flow in asymptotically flat product spacetimes*, The Journal of Geometric Analysis **31**, no. 6, 5451–5479, (2021).
- G. LI and I. M.C. SALAVESSA, *Mean curvature flow of spacelike graphs*, Mathematische Zeitschrift, Springer, **269**, no. 3-4, 697–719, (2010).
- K. SMOCZYK, Mean curvature flow in higher codimension: introduction and survey, Global differential geometry, Springer, 231–274, (2012).

Thank you for your attention

æ

Giuseppe Gentile (LUH)

・ロト ・四ト ・ヨト ・ヨト

3

• Note that Δ is time dependent.

æ

- Note that Δ is time dependent.
- (1) is a quasilinear parabolic PDE.

э

- Note that Δ is time dependent.
- (1) is a quasilinear parabolic PDE.
- Linearize (1) (really not funny equation, especially due to the warping function *f*).

- Note that Δ is time dependent.
- (1) is a quasilinear parabolic PDE.
- Linearize (1) (really not funny equation, especially due to the warping function f).
- Use a Banach fixed-point argument.

- Note that Δ is time dependent.
- (1) is a quasilinear parabolic PDE.
- Linearize (1) (really not funny equation, especially due to the warping function f).
- Use a Banach fixed-point argument.

So far one gets the existence of a solution $u \in C^{2,\alpha}(M \times [0, T])$.

- Note that Δ is time dependent.
- (1) is a quasilinear parabolic PDE.
- Linearize (1) (really not funny equation, especially due to the warping function f).
- Use a Banach fixed-point argument.

So far one gets the existence of a solution $u \in C^{2,\alpha}(M \times [0, T])$.

Bootstrapping (use Krylov-Safonov estimates and bounded geometry).

LTE proof idea

Giuseppe Gentile (LUH)

・ロト ・四ト ・ヨト ・ヨト

15 / 17

3

Assume a finite maximal time existence $T_{\max} < \infty$. The idea is to prove that $u(T_{\max})$ satisfies the same properties as the initial function u_0 . If so one could restart the flow at $u(T_{\max})$ thus making T_{\max} not maximal.

Assume a finite maximal time existence $T_{\max} < \infty$. The idea is to prove that $u(T_{\max})$ satisfies the same properties as the initial function u_0 . If so one could restart the flow at $u(T_{\max})$ thus making T_{\max} not maximal.

- C⁰-estimates.
- C¹-estimates.
- C²-estimates.
- Hölder regularity.
- Bootstrapping.

A parabolic maximum principle is needed. [CHV21] proved an envelopping theorem for the Omori-Yau maximum principle that allows to some version of the parabolic maximum principle.

A parabolic maximum principle is needed. [CHV21] proved an envelopping theorem for the Omori-Yau maximum principle that allows to some version of the parabolic maximum principle. Usually barrier argument but may be very intricate see e.g. [KPLOT21], in our case the assumption $H(t = 0) - H \ge \delta > 0$ gets the work done. But in using the above one needs more regularity on u_0 namely $u_0 \in C^{4,\alpha}(M)$.

A parabolic maximum principle is needed. [CHV21] proved an envelopping theorem for the Omori-Yau maximum principle that allows to some version of the parabolic maximum principle. Usually barrier argument but may be very intricate see e.g. [KPLOT21], in our case the assumption $H(t = 0) - \mathcal{H} \ge \delta > 0$ gets the work done. But in using the above one needs more regularity on u_0 namely $u_0 \in C^{4,\alpha}(M)$. Evolution equations for $H - \mathcal{H}$, $||h||^2$ and $(H - \mathcal{H})^2$. This also implies that $||\partial_t u||_{\infty}$ is exponentially decreasing.

$$egin{aligned} & (\partial_t + \Delta)(\mathsf{H} - \mathcal{H}) \geq -c(\mathsf{H} - \mathcal{H}). \ & (\partial_t + \Delta) \|\,\mathsf{h}\,\|^2 \leq -a^2 \|\,\mathsf{h}\,\|^4 + b^2. \ & (\partial_t + \Delta)(\mathsf{H} - \mathcal{H})^2 \leq -\delta'(\mathsf{H} - \mathcal{H})^2. \end{aligned}$$

For C^{1} -estimates one would need only the solution to be $C^{2,\alpha}(M \times [0, T])$.

э

For C^1 -estimates one would need only the solution to be $C^{2,\alpha}(M \times [0, T])$. This is equivalent to proving that the flow stays graphical and space-like. Evolution equation for the gradient function $v = -\overline{g}(\nu, \partial_0)$. Very elaborate argument similar to [GER00].

For C^1 -estimates one would need only the solution to be $C^{2,\alpha}(M \times [0, T])$. This is equivalent to proving that the flow stays graphical and space-like. Evolution equation for the gradient function $v = -\overline{g}(\nu, \partial_0)$. Very elaborate argument similar to [GER00]. C^2 -estimates follow from C^1 and C^0 -estimates.

For C^1 -estimates one would need only the solution to be $C^{2,\alpha}(M \times [0, T])$. This is equivalent to proving that the flow stays graphical and space-like. Evolution equation for the gradient function $v = -\overline{g}(\nu, \partial_0)$. Very elaborate argument similar to [GER00]. C^2 -estimates follow from C^1 and C^0 -estimates. Hölder regularity and bootstrapping follows again from Krylov-Safonov.