Black Hole and Equipotential Photon Surface uniqueness in ($\mathrm{n}+1$)-dimensional static vacuum spacetimes via Robinson's method

Albachiara Cogo

joint work with
C. Cederbaum, B. Leandro and J. P. dos Santos

Interdisciplinary junior scientist workshop: Mathematical General Relativity

Wildberg, 3rd March 2023

We study solutions $\left(\mathcal{L}^{n+1}, \mathcal{g}\right)$ in any dimension to the vacuum Einstein equation that are
(1) Standard Static
$\exists(\mathrm{M}, g)$ Riemannian manifold with compact boundary $\partial \mathrm{M}$ and $N: \mathrm{M} \rightarrow \mathbb{R}$ with $N>0$ in M , called Lapse Function such that

$$
\mathcal{L}^{n+1}=\mathbb{R} \times \mathrm{M}, \quad \mathcal{g}=-N^{2} d t^{2}+g
$$

(3) Asymptotically Flat

We study solutions $\left(\mathcal{L}^{n+1}, \mathcal{g}\right)$ in any dimension to the vacuum Einstein equation that are
(1) Standard Static
$\exists(\mathrm{M}, g)$ Riemannian manifold with compact boundary $\partial \mathrm{M}$ and $N: \mathrm{M} \rightarrow \mathbb{R}$ with $N>0$ in M , called Lapse Function such that

$$
\mathcal{L}^{n+1}=\mathbb{R} \times \mathbf{M}, \quad g=-N^{2} d t^{2}+g
$$

(2) Asymptotically Flat

$$
\left(x_{*} g\right)_{i j}=\delta_{i j}+o_{2}\left(|x|^{-\tau}\right), \quad \tau<n-2 .
$$

in presence of (a Black Hole Horizon or) an Equipotential Photon Surface.

We study solutions $\left(L^{n+1}, \mathcal{g}\right)$ in any dimension to the vacuum Einstein equation that are
(1) Standard Static
$\exists(\mathrm{M}, g)$ Riemannian manifold with compact boundary $\partial \mathrm{M}$ and $N: \mathrm{M} \rightarrow \mathbb{R}$ with $N>0$ in M , called Lapse Function such that

$$
\mathcal{L}^{n+1}=\mathbb{R} \times \mathbf{M}, \quad g=-N^{2} d t^{2}+g
$$

(2) Asymptotically Flat

$$
\left(x_{*} g\right)_{i j}=\delta_{i j}+o_{2}\left(|x|^{-\tau}\right), \quad \tau<n-2 .
$$

in presence of (a Black Hole Horizon or) an Equipotential Photon Surface.

The problem can be reduced to the study of tuples (M, g, N) which satisfy the Static Einstein Equation in vacuum

$$
\begin{cases}N \operatorname{Ric}=\mathrm{D}^{2} N & \text { in } \mathrm{M} \tag{1}\\ \Delta N=0 & \text { in } \mathrm{M} \\ & \\ N=N_{0} \geq 0 & \text { on } \partial \mathrm{M}\end{cases}
$$

and the decay condition

$$
N \circ x^{-1}=1-\frac{m}{|x|^{n-2}}+o_{2}\left(|x|^{-(n-2)}\right) \quad \text { as }|x| \rightarrow+\infty
$$

The Schwarzschild solution

The unique rotationally symmetric solution is the Schwarzschild solution of mass $\mathrm{m} \in \mathbb{R}$

$$
\begin{gathered}
\mathrm{M}_{\mathrm{m}}=\left((2 \mathrm{~m})^{\frac{1}{n-2}},+\infty\right) \times \mathbb{S}^{n-1} \\
g=\frac{1}{N^{2}} \mathrm{~d} r^{2}+r^{2} g_{\mathbb{S}^{n-1}}
\end{gathered}
$$

where the Lapse Function is

$$
N=\sqrt{1-\frac{2 \mathrm{~m}}{r^{n-2}}} .
$$

Definition (Static Horizon)
Let (M, g, N) be a static system, $\partial \mathrm{M}$ is a Static Horizon if $N_{0}=0$.

Properties

- The surface gravity $|\nabla N|_{0}$ is constant.
- Totally geodesic $\Rightarrow \mathrm{H}=0$.

Definition (Static Horizon)
Let (M, g, N) be a static system, $\partial \mathrm{M}$ is a Static Horizon if $N_{0}=0$.

Properties

- The surface gravity $|\nabla N|_{0}$ is constant.
- Totally geodesic $\Rightarrow \mathrm{H}=0$.

Definition (Static Horizon)
Let (M, g, N) be a static system, $\partial \mathrm{M}$ is a Static Horizon if $N_{0}=0$.

Properties

- The surface gravity $|\nabla N|_{0}$ is constant.
- Totally geodesic $\Rightarrow \mathrm{H}=0$.

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A nhoton surface P^{n} is called Eauinotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A photon surface P^{n} is called Equipotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A photon surface P^{n} is called Equipotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A photon surface P^{n} is called Equipotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

If N is constant on each connected component, P^{n} is a Photon Sphere. In Schwarzschild $\left\{r=(n m)^{\frac{1}{n-2}}\right\}$

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A photon surface P^{n} is called Equipotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

If N is constant on each connected component, P^{n} is a Photon Sphere.

In Schwarzschild $\left\{r=(n m)^{\frac{1}{n-2}}\right\}$.

Definition (Photon Surface)

- An embedded timelike hypersurface $P^{n} \hookrightarrow\left(\mathcal{L}^{n+1}, g\right)$ is called a Photon Surface if it is null totally geodesic.
- A photon surface P^{n} is called Equipotential if the lapse function N is constant along each connected component of each time slice $\Sigma^{n-1}(t):=P^{n} \cap \mathrm{M}(t)$.

If N is constant on each connected component, P^{n} is a Photon Sphere.

In Schwarzschild $\left\{r=(n m)^{\frac{1}{n-2}}\right\}$.

Properties (See Cederbaum, Jahns \& Vičánek-Martínez (i. p.))

- $|\nabla N|_{0}$ is constant.
- Totally umbilic $h=0$.
- $\mathrm{R}^{\partial \mathrm{M}}, \mathrm{H}$ are constant and

[https://news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]

Properties (See Cederbaum, Jahns \& Vičánek-Martínez (i. p.))

- $|\nabla N|_{0}$ is constant.
- Totally umbilic $h=0$.
- $\mathrm{R}^{\partial \mathrm{M}}, \mathrm{H}$ are constant and

[https://news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]

Properties (See Cederbaum, Jahns \& Vičánek-Martínez (i. p.))

- $|\nabla N|_{0}$ is constant.
- Totally umbilic $h=0$.
- $\mathrm{R}^{\partial \mathrm{M}}, \mathrm{H}$ are constant and

$$
\mathrm{R}^{\partial \mathrm{M}}=\frac{2 \mathrm{H}|\nabla \mathrm{~N}|_{0}}{N_{0}}+\frac{n-2}{n-1} \mathrm{H}^{2}
$$

[https://news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]

Black Hole and Equipotential Photon Surface Uniqueness

(Cederbaum, C., Leandro, dos Santos)
Let (M, g, N) be an asymptotically flat solution to (1).
Suppose that $\partial \mathbf{M}$ is a connected Static Horizon or a connected (time slice of an)
Equipotential Photon Surface. Then,

$$
\begin{aligned}
& \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}} \sqrt{\left(\frac{\left|\mathbb{S}^{n-1}\right|}{|\partial \mathbf{M}|}\right)^{\frac{n-3}{n-1}} \frac{\int_{\partial \mathrm{M}}\left(\mathrm{R}^{\partial \mathrm{M}}-\frac{n-2}{n-1} \mathrm{H}^{2}\right) d S}{\left(1-N_{0}^{2}\right)(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|}} \\
& \quad \geq m \geq \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}}
\end{aligned}
$$

In addition, if

$$
\int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|^{\frac{2}{n-1}}|\partial \mathrm{M}|^{\frac{n-3}{n-1}}
$$

then (M, g) is isometric to Schwarzschild of mass m.

Black Hole	Equipotential Photon Surface
Israel '67	Cederbaum '14
Robinson '77	Cederbaum, C., Fehrenbach (i. p.)
Bunting \& Masood-ul-Alam '87	Cederbaum \& Galloway '15
Hwang '98	
Gibson, Ida \& Shiromizu '02	
	Cederbaum \& Galloway '17, '21
Agostiniani \& Mazzieri '17, '19	Cederbaum, C., Fehrenbach, (i. p.)
	Cederbaum, C., Leandro, dos Santos (i. p.)

Black Hole	Equipotential Photon Surface
Israel '67	Cederbaum '14
Robinson '77	Cederbaum, C., Fehrenbach (i. p.)
Bunting \& Masood-ul-Alam '87	Cederbaum \& Galloway '15
Hwang '98	
Gibson, Ida \& Shiromizu '02	
	Cederbaum \& Galloway '17, '21
Agostiniani \& Mazzieri '17, '19	Cederbaum, C., Fehrenbach, (i. p.)
	Cederbaum, C., Leandro, dos Santos (i. p.)

- Multiple connected components are admitted,
- BUT makes use of the PMT.

Black Hole	Equipotential Photon Surface
Israel '67	Cederbaum '14
Robinson '77	Cederbaum, C., Fehrenbach (i. p.)
Bunting \& Masood-ul-Alam '87	Cederbaum \& Galloway '15
Hwang '98	
Gibson, Ida \& Shiromizu '02	
	Cederbaum \& Galloway '17, '21
Agostiniani \& Mazzieri '17, '19	Cederbaum, C., Fehrenbach, (i. p.)
	Cederbaum, C., Leandro, dos Santos (i. p.)

- Multiple connected components are admitted,
- BUT makes use of the PMT.

Main idea of other approaches

- Select a vector field which divergence is non-negative and such that detects rotational symmetry when it vanishes.

Main idea of other approaches (e.g. Robinson for BH Uniqueness in $\boldsymbol{n}=3$):

- Select a vector field which divergence is non-negative and such that detects rotational symmetry when it vanishes.

$$
\begin{gathered}
\forall a, b \in \mathbb{R} \text { such that } F_{a, b}(N):=\frac{a N^{2}+b}{\left(1-N^{2}\right)^{3}}>0 \\
\mathcal{X}_{a, b}^{3}:=F_{a, b}(N) \frac{\nabla|\nabla N|^{2}}{N}+\left(\frac{6 F_{a, b}(N)}{\left(1-N^{2}\right)^{4}}-\frac{2 a}{\left(1-N^{2}\right)^{3}}\right)|\nabla N|^{2} \nabla N
\end{gathered}
$$

- Use the divergence theorem to transfer the problem to the boundary $\partial \mathrm{M}$.

Main idea of other approaches

- Select a vector field which divergence is non-negative and such that detects rotational symmetry when it vanishes.
- Use the divergence theorem to transfer the problem to the boundary $\partial \mathrm{M}$.

Robinson's approach in $\boldsymbol{n}=\mathbf{3}$

$\operatorname{div}\left(\mathcal{X}_{a, b}^{3}\right)=\frac{F_{a, b}(N)}{4|\nabla N|^{2}}\left(\frac{3\left(1-N^{2}\right)^{2}}{N}\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{2}}\right|^{2}+N^{3}|C|^{2}\right) \geq 0$ where C is the Cotton tensor

$$
\begin{aligned}
C(X, Y, Z):= & \left(\nabla_{X} \operatorname{Ric}(Y, Z)-\nabla_{Y} \operatorname{Ric}(X, Z)\right) \\
& +\frac{1}{2(n-1)}\left(\nabla_{Y} \operatorname{R} g(X, Z)-\nabla_{Z} \operatorname{R} g(X, Y)\right) .
\end{aligned}
$$

whence

$$
\bar{g}_{a b} d \theta^{a} d \theta^{b}=r^{2}(N) g_{\mathbb{S}^{2}}, \quad\left|\Sigma_{N}\right|=4 \pi r^{2}(N)
$$

Robinson's approach in $\boldsymbol{n}=\mathbf{3}$

$$
\operatorname{div}\left(\mathcal{X}_{a, b}^{3}\right)=\frac{F_{a, b}(N)}{4|\nabla N|^{2}}\left(\frac{3\left(1-N^{2}\right)^{2}}{N}\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{2}}\right|^{2}+N^{3}|C|^{2}\right) \geq 0
$$

where C is the Cotton tensor

$$
\begin{aligned}
C(X, Y, Z):= & \left(\nabla_{X} \operatorname{Ric}(Y, Z)-\nabla_{Y} \operatorname{Ric}(X, Z)\right) \\
& +\frac{1}{2(n-1)}\left(\nabla_{Y} \operatorname{R~} g(X, Z)-\nabla_{Z} \operatorname{R~} g(X, Y)\right) .
\end{aligned}
$$

whence

Robinson's approach in $\boldsymbol{n}=\mathbf{3}$

$$
\operatorname{div}\left(\mathcal{X}_{a, b}^{3}\right)=\frac{F_{a, b}(N)}{4|\nabla N|^{2}}\left(\frac{3\left(1-N^{2}\right)^{2}}{N}\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{2}}\right|^{2}+N^{3}|C|^{2}\right) \geq 0
$$

where C is the Cotton tensor

$$
\operatorname{div}\left(\mathcal{X}_{a, b}^{3}\right)=0 \quad \text { iff } \quad\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{2}}\right|^{2}=0 \text { and }|C|^{2}=0
$$

whence

$$
\begin{gathered}
g=\frac{1}{|\nabla N|^{2}} d N^{2}+\bar{g}_{a b}\left(N, \theta^{2}, \theta^{3}\right) d \theta^{a} d \theta^{b} \\
\bar{g}_{a b} d \theta^{a} d \theta^{b}=r^{2}(N) g_{\mathbb{S}^{2}}, \quad\left|\Sigma_{N}\right|=4 \pi r^{2}(N)
\end{gathered}
$$

Robinson's approach in $\boldsymbol{n} \geq \mathbf{3}$?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

$$
W:=\operatorname{Rm}-\frac{1}{n-2}\left(\operatorname{Ric}-\frac{\mathrm{R}}{2(n-1)} g\right) \otimes g
$$

The right tensor is

$$
\begin{aligned}
T(X, Y, Z):= & \frac{n-1}{n-2}[\operatorname{Ric}(X, Z) d N(Y)-\operatorname{Ric}(Y, Z) d N(X)] \\
& -\frac{1}{n-2}[\operatorname{Ric}(X, \nabla N) g(Y, Z)-\operatorname{Ric}(Y, \nabla N) g(X, Z)] \\
& -(n-1)(n-2)[d N(X) g(Y, Z)-d N(Y) g(X, Z)] \\
= & N C(X, Y, Z)-W(X, Y, Z, \nabla N)
\end{aligned}
$$

Robinson's approach in $\boldsymbol{n} \geq \mathbf{3}$?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

Robinson's approach in $\boldsymbol{n} \geq \mathbf{3}$?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

$$
W:=\operatorname{Rm}-\frac{1}{n-2}\left(\operatorname{Ric}-\frac{\mathrm{R}}{2(n-1)} g\right) \otimes g
$$

The right tensor is

Robinson's approach in $\boldsymbol{n} \geq \mathbf{3}$?
Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

The right tensor is

$$
\begin{aligned}
T(X, Y, Z):= & \frac{n-1}{n-2}[\operatorname{Ric}(X, Z) d N(Y)-\operatorname{Ric}(Y, Z) d N(X)] \\
& -\frac{1}{n-2}[\operatorname{Ric}(X, \nabla N) g(Y, Z)-\operatorname{Ric}(Y, \nabla N) g(X, Z)] \\
& -\frac{\mathrm{R}}{(n-1)(n-2)}[d N(X) g(Y, Z)-d N(Y) g(X, Z)] \\
= & N C(X, Y, Z)-W(X, Y, Z, \nabla N)
\end{aligned}
$$

Robinson's approach in $\boldsymbol{n} \geq \mathbf{3}$?
Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

The right tensor is

$$
\begin{aligned}
T(X, Y, Z):= & \frac{n-1}{n-2}[\operatorname{Ric}(X, Z) d N(Y)-\operatorname{Ric}(Y, Z) d N(X)] \\
& -\frac{1}{n-2}[\operatorname{Ric}(X, \nabla N) g(Y, Z)-\operatorname{Ric}(Y, \nabla N) g(X, Z)] \\
= & N C(X, Y, Z)-W(X, Y, Z, \nabla N)
\end{aligned}
$$

The tensor T has been largely used to detect rotational symmetry on steady gradient Ricci solitons

$$
\operatorname{Ric}=\mathcal{L}_{(-\nabla f)} g=\nabla^{2} f
$$

and the T tensor is such that

References:

- Cao \& Chen '12,'13

The tensor T has been largely used to detect rotational symmetry on steady gradient Ricci solitons

$$
\operatorname{Ric}=\mathcal{L}_{(-\nabla f)} g=\nabla^{2} f
$$

and the T tensor is such that

$$
T=C-W(\cdot, \cdot, \cdot, \nabla f)
$$

References:

- Cao \& Chen '12,'13
- Brendle ' 12

The tensor T has been largely used to detect rotational symmetry on steady gradient Ricci solitons

$$
\operatorname{Ric}=\mathcal{L}_{(-\nabla f)} g=\nabla^{2} f
$$

and the T tensor is such that

References:

- Cao \& Chen '12, ' 13
- Brendle ' 12
- Leandro \& Solozano '19

Black Hole and Equipotential Photon Surface Uniqueness

(Cederbaum, C., Leandro, dos Santos)
Let (M, g, N) be an asymptotically flat solution to (1).
Suppose that $\partial \mathbf{M}$ is a connected Static Horizon or a connected (time slice of an)
Equipotential Photon Surface. Then,

$$
\begin{aligned}
& \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}} \sqrt{\left(\frac{\left|\mathbb{S}^{n-1}\right|}{|\partial \mathbf{M}|}\right)^{\frac{n-3}{n-1}} \frac{\int_{\partial \mathrm{M}}\left(\mathrm{R}^{\partial \mathrm{M}}-\frac{n-2}{n-1} \mathrm{H}^{2}\right) d S}{\left(1-N_{0}^{2}\right)(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|}} \\
& \quad \geq m \geq \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}}
\end{aligned}
$$

In addition, if

$$
\int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|^{\frac{2}{n-1}}|\partial \mathrm{M}|^{\frac{n-3}{n-1}}
$$

then (M, g) is isometric to Schwarzschild of mass m.

Step 1: define the family of vector fields $\mathcal{X}_{a, b}^{n}$ and use the divergence theorem

Step 1: define the family of vector fields $\mathcal{X}_{a, b}^{n}$ and use the divergence theorem

$$
\text { Let } n \geq 3 \text { and } F_{a, b}(N):=\frac{a N^{2}+b}{\left(1-N^{2}\right)^{n-2}}>0
$$

Step 1: define the family of vector fields $\mathcal{X}_{a, b}^{n}$ and use the divergence theorem

Let $n \geq 3$ and $F_{a, b}(N):=\frac{a N^{2}+b}{\left(1-N^{2}\right)^{\frac{n}{n-2}}}>0$
$\operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=\frac{(n-2)^{2} N \boldsymbol{F}_{\boldsymbol{a}, \boldsymbol{b}}}{(n-1)^{2}|\nabla N|^{2}}|T|^{2}+\frac{n \boldsymbol{F}_{a, b}}{2(n-1) N}\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2} \geq 0$

Step 1: define the family of vector fields $\mathcal{X}_{a, b}^{n}$ and use the divergence theorem

$$
\text { Let } n \geq 3 \text { and } F_{a, b}(N):=\frac{a N^{2}+b}{\left(1-N^{2}\right)^{\frac{n}{n-2}}}>0
$$

$\operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=\frac{(n-2)^{2} N \boldsymbol{F}_{a, b}}{(n-1)^{2}|\nabla N|^{2}}|T|^{2}+\frac{n \boldsymbol{F}_{a, b}}{2(n-1) N}\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2} \geq 0$

$$
\begin{aligned}
0 \leq \int_{\mathrm{M}} \operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)= & F_{a, b}\left(N_{0}\right)|\nabla N|_{0} \int_{\partial \mathrm{M}}\left[\mathrm{R}^{\partial \mathrm{M}}-\frac{n-2}{n-1} \mathrm{H}^{2}\right] d S \\
& -\left(\frac{2 n}{(n-2)\left(1-N_{0}^{2}\right)} F_{a, b}\left(N_{0}\right)-\frac{2 a}{\left(1-N_{0}^{2}\right)^{\frac{n}{n-2}}}\right)|\nabla N|_{0}^{3}|\partial \mathbf{M}| \\
& -\frac{(a+b)(n-2)^{3}}{2^{\frac{n}{n-2}}}\left|\mathbb{S}^{n-1}\right| m^{\frac{n-4}{n-2}}
\end{aligned}
$$

Admissible values of a and b so that $F_{a, b}(N)>0$:

Considering $b=-a, a<0 \quad$ and $\quad b=-a N_{0}^{2}, a>0$, combined with the properties of the Static Horizon or the Equipotential Photon Sphere and the Smarr formula

$$
\int_{\partial \mathrm{M}}|\nabla N|=(n-2)\left|\mathbb{S}^{n-1}\right| m
$$

gives the two estimates on m.

Considering $b=-a, a<0 \quad$ and $\quad b=-a N_{0}^{2}, a>0$, combined with the properties of the Static Horizon or the Equipotential Photon Sphere and the Smarr formula

$$
\int_{\partial \mathrm{M}}|\nabla N|=(n-2)\left|\mathbb{S}^{n-1}\right| m
$$

gives the two estimates on m.

$$
\begin{aligned}
& \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}} \sqrt{\left(\frac{\left|\mathbb{S}^{n-1}\right|}{|\partial \mathbf{M}|}\right)^{\frac{n-3}{n-1}} \frac{\int_{\partial \mathbf{M}}\left(\mathrm{R}^{\partial \mathrm{M}}-\frac{n-2}{n-1} \mathrm{H}^{2}\right) d S}{\left(1-N_{0}^{2}\right)(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|}} \\
& \quad \geq m \geq \frac{1-N_{0}^{2}}{2}\left(\frac{|\partial \mathbf{M}|}{\left|\mathbb{S}^{n-1}\right|}\right)^{\frac{n-2}{n-1}}
\end{aligned}
$$

Step 2: proof of rotational symmetry

Under the condition

- Use N as a coordinate: $g=\frac{1}{|\nabla N|^{2}} d N^{2}+g_{N}$

Step 2: proof of rotational symmetry

Under the condition

$$
\begin{gathered}
\int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq(n-1)(n-2)\left|\mathbb{S}^{n-1}\right|^{\frac{2}{n-1}}|\partial \mathrm{M}|^{\frac{n-3}{n-1}} \\
\operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=0 \quad \text { iff } \quad\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2}=0 \text { and }|T|^{2}=0
\end{gathered}
$$

Step 2: proof of rotational symmetry

Under the condition

$$
\begin{aligned}
& \int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq(n-1)(n-2)\left|\mathrm{S}^{n-1}\right|^{\frac{2}{n-1}|\partial \mathrm{M}|^{\frac{n-3}{n-1}}} \\
& \operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=0 \quad \text { iff } \quad\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2}=0 \text { and }|T|^{2}=0
\end{aligned}
$$

- Use N as a coordinate: $g=\frac{1}{|\nabla N|^{2}} d N^{2}+g_{N}$ totally umbilic and CMC.
- Solve an ODE for g_{N} to get $g_{N}=f(N) g_{\partial \mathrm{M}}$ and conclude by the asymptotic conditions.

Step 2: proof of rotational symmetry

Under the condition

$$
\begin{array}{r}
\int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq\left.\left.(n-1)(n-2)\right|^{n-1}\right|^{\frac{2}{n-1}}|\partial \mathrm{M}|^{\frac{n-3}{n-1}} \\
\operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=0 \quad \text { iff } \quad\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2}=0 \text { and }|T|^{2}=0
\end{array}
$$

- Use N as a coordinate: $g=\frac{1}{|\nabla N|^{2}} d N^{2}+g_{N}$
- Use $0=T(\cdot, \cdot, \nabla N)$ and $0=T(\cdot, \nabla N, \cdot)$ to deduce that Σ_{N} are totally umbilic and CMC.
- Solve an ODE for g_{N} to get $g_{N}=f(N) g_{\partial \mathrm{M}}$ and conclude by the asymptotic conditions.

Step 2: proof of rotational symmetry

Under the condition

$$
\begin{array}{r}
\int_{\partial \mathrm{M}} \mathrm{R}^{\partial \mathrm{M}} d S \leq\left.\left.(n-1)(n-2)\right|^{n-1}\right|^{\frac{2}{n-1}}|\partial \mathrm{M}|^{\frac{n-3}{n-1}} \\
\operatorname{div}\left(\mathcal{X}_{a, b}^{n}\right)=0 \quad \text { iff } \quad\left|\nabla \frac{|\nabla N|^{2}}{\left(1-N^{2}\right)^{\frac{2(n-1)}{n-2}}}\right|^{2}=0 \text { and }|T|^{2}=0
\end{array}
$$

- Use N as a coordinate: $g=\frac{1}{|\nabla N|^{2}} d N^{2}+g_{N}$
- Use $0=T(\cdot, \cdot, \nabla N)$ and $0=T(\cdot, \nabla N, \cdot)$ to deduce that Σ_{N} are totally umbilic and CMC.
- Solve an ODE for g_{N} to get $g_{N}=f(N) g_{\partial \mathrm{M}}$ and conclude by the asymptotic conditions.

Thank you!

