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Setup Staticity and Asymptotically Flatness

We study solutions (L"!, 4) in any dimension to the vacuum Einstein
equation that are

@ Standard Static
3 (M, g) Riemannian manifold with compact boundary OM and
N:M — R with N > 0 in M, called Lapse Function such that

LN =R x M, g=—N%d +g.
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@ Standard Static
3 (M, g) Riemannian manifold with compact boundary OM and
N:M — R with N > 0 in M, called Lapse Function such that

LT =R x M, g=—N%d +g.
@ Asymptotically Flat

(x:8)ij = 0ij + 02(|x|77), r<n-—2.
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Setup Staticity and Asymptotically Flatness

We study solutions (L"!, 4) in any dimension to the vacuum Einstein
equation that are

@ Standard Static
3 (M, g) Riemannian manifold with compact boundary OM and
N:M — R with N > 0 in M, called Lapse Function such that

LT =R x M, g=—N%d +g.
@ Asymptotically Flat

(x:8)ij = 0ij + 02(|x|77), r<n-—2.

in presence of (a Black Hole Horizon or) an Equipotential Photon Surface.
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Setup Static Einstein Equations in Vacuum

The problem can be reduced to the study of tuples (M, g, N) which satisfy
the Static Einstein Equation in vacuum

N Ric = D°’N inM,
AN = 0 inM,
(1)

N=Ny>0 on OM
and the decay condition

m
Noxil = 1—W+02(‘x’7(n72)) aS|x|—>—|-OO,
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Setup The Schwarzschild solution

The Schwarzschild solution

The unique rotationally symmetric solution is the Schwarzschild solution of

mass m € R |

My = ((2m)72, +o0) x "',

1
g = mdr2 + gt

where the Lapse Function is
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Static Horizons and Photon surfaces

Definition (Static Horizon)
Let (M, g, N) be a static system, OM is a Static Horizon if Ny = 0. J

Properties
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Static Horizons and Photon surfaces

Definition (Static Horizon)
Let (M, g, N) be a static system, OM is a Static Horizon if Ny = 0. J

Properties

@ The surface gravity |VN|o is constant.
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Static Horizons and Photon surfaces

Definition (Static Horizon)
Let (M, g, N) be a static system, OM is a Static Horizon if Ny = 0.

Properties
@ The surface gravity |VN|o is constant.

o Totally geodesic = H = 0.
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Definition (Photon Surface)

@ An embedded timelike hypersurface P" < (L"T! ) is called a Photon
Surface if it is null totally geodesic.

@ A photon surface P" is called Equipotential if the lapse function N is
constant along each connected component of each time slice
Yl() i= PP M(r).




Static Horizons and Photon surfaces

Definition (Photon Surface)

e An embedded timelike hypersurface P" < (L' g) is called a Photon
Surface if it is null totally geodesic.
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Static Horizons and Photon surfaces

Definition (Photon Surface)
e An embedded timelike hypersurface P" < (L' g) is called a Photon
Surface if it is null totally geodesic.
@ A photon surface P" is called Equipotential if the lapse function N is

constant along each connected component of each time slice
Y1) == PN M(2).

If N is constant on each connected
component, P" is a Photon Sphere.

In Schwarzschild {r = (nm)7 }.
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Static Horizons and Photon surfaces
Properties (See Cederbaum, Jahns & Vi¢dnek—Martinez (i. p.))

@ |VN|y is constant.

[https:/news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]

Albachiara Cogo (UniTiibingen) BH and EPS Uniqueness in (n+1)-dimension

March 3, 2023

7/19



Static Horizons and Photon surfaces
Properties (See Cederbaum, Jahns & Vi¢dnek—Martinez (i. p.))
@ |VN|y is constant.

@ Totally umbilic 4 = 0.

[https:/news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]
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Static Horizons and Photon surfaces
Properties (See Cederbaum, Jahns & Vi¢dnek—Martinez (i. p.))
@ |VN|y is constant.
@ Totally umbilic 4 = 0.

° RaM7 H are constant and

om _ 2H|VN|y , n—2

R H?

NO n—1

[https:/news.mit.edu/2019/eht-astronomers-direct-image-black-hole-0410]
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Uniqueness Theorem

Black Hole and Equipotential Photon Surface Uniqueness

(Cederbaum, C., Leandro, dos Santos)

Let (M, g, N) be an asymptotically flat solution to (1).

Suppose that OM is a connected Static Horizon or a connected (time slice of an)
Equipotential Photon Surface. Then,

1=NG (1M ) | (I8N o (R =25 17)ds
2 \Is] M) =N = 1)(n =[5

o LN (oM )
m
=M= s

In addition, if

/ RBMdSS(n—l)(n_2)|sn—l|ﬁ|8M|g
oM

then (M, g) is isometric to Schwarzschild of mass m.
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Uniqueness Theorem Historical overview of the proofs of the uniqueness theorem

| Black Hole | Equipotential Photon Surface |

Israel ’67 Cederbaum ’14
Robinson 77 Cederbaum, C., Fehrenbach (i. p.)
Bunting & Masood-ul-Alam ’87 Cederbaum & Galloway °15

Hwang "98
Gibson, Ida & Shiromizu 02

Cederbaum & Galloway 17, °21
Agostiniani & Mazzieri 17, ’19 Cederbaum, C., Fehrenbach, (i. p.)
Cederbaum, C., Leandro, dos Santos (i. p.)
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Uniqueness Theorem  Historical overview of the proofs of the uniqueness theorem

Black Hole | Equipotential Photon Surface |
Israel ’67 Cederbaum 14
Robinson 77 Cederbaum, C., Fehrenbach (i. p.)
Bunting & Masood-ul-Alam ’87 Cederbaum & Galloway *15
Hwang *98

Gibson, Ida & Shiromizu *02

Cederbaum & Galloway *17, *21

Agostiniani & Mazzieri 17, 19 Cederbaum, C., Fehrenbach, (i. p.)

Cederbaum, C., Leandro, dos Santos (i. p.)

@ Multiple connected components are admitted,
o BUT makes use of the PMT.
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Uniqueness Theorem Historical overview of the proofs of the uniqueness theorem

Main idea of other approaches

@ Select a vector field which divergence is non-negative and such that
detects rotational symmetry when it vanishes.
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Uniqueness Theorem Historical overview of the proofs of the uniqueness theorem

Main idea of other approaches (e.g. Robinson for BH Uniqueness inn = 3):

@ Select a vector field which divergence is non-negative and such that
detects rotational symmetry when it vanishes.

N>+ b
Va,b € R such that Fa,b(N) = (?1—\’]_2)3 >0
VIVN]? [ 6F.,(N) 2a
3 = ’
Xl = Fap(N)— (1—NF  (1=N2P [VN["VN
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Uniqueness Theorem Historical overview of the proofs of the uniqueness theorem

Main idea of other approaches

@ Select a vector field which divergence is non-negative and such that
detects rotational symmetry when it vanishes.

@ Use the divergence theorem to transfer the problem to the boundary
OM.
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Uniqueness Theorem Robinson’s approachinn = 3

Robinson’s approachinn = 3

_ F.»(N) [(3(1 — N?)?
X3 — a,
AV (Xen) = Zonp ( N

VNP

(1—-nN2)2

\%

+N? ycz> >0
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Uniqueness Theorem Robinson’s approachinn = 3

Robinson’s approachinn = 3

' F,»(N) (3(1 —N?)?
X3 — 9
AV (Xen) = Zonp ( N

VNP

(1—-nN2)2

\%

where C is the Cotton tensor
C(X,Y,Z) := (VxRic(Y,Z) — VyRic(X, Z))

N ﬁ(vm g(X,Z) - V2R g(X,Y)).
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Uniqueness Theorem Robinson’s approachinn = 3

Robinson’s approachinn = 3

' F,»(N) (3(1 —N?)?
X3 — 9
AV (Xen) = Zonp ( N

VNP

Vi—ny

2

VN|?
V] =0 and |C]> =

diV (X(;),b) =0 lff ‘V(I—NZ)Z

whence

g = ——5dN* +2,(N,6% 6°) d9°de®

!VN 2
2,,d0°d0” = r*(N) g, 1Xy| = 47 r*(N)
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Robinson’s approachinn > 3 ?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

1 R
W := Rm — Ric———¢ >
- 112( : 2(n — 1)&> s

The right tensor is

n—1

T(X,Y,Z) :=
n—

{Ric (X,Z)dN(Y) — Ric (Y,Z) c[N(X)}

1
n—2

{Ric (X, VN) g(Y¥,Z) —Ric (Y, VN) g(X,Z)}

=NC(X,Y,Z) —W(X,Y,Z,VN).



Uniqueness Theorem Robinson’s approach inn > 3

Robinson’s approachinn > 3 ?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?
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Uniqueness Theorem Robinson’s approach inn > 3

Robinson’s approachinn > 3 ?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

1 . R
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Uniqueness Theorem Robinson’s approach inn > 3

Robinson’s approachinn > 3 ?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

The right tensor is
1] .
T(X,¥,2) = "— |:R1C (X,Z) dN(Y) — Ric (Y, 2) dN(X)]

— [Ric (X, VN) g(¥,Z) — Ric (Y, VN) g(X, Z)]
R
RCESCE)) [dN(X)g(Y,Z) — dN(Y)g(X,Z)]
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Uniqueness Theorem Robinson’s approach inn > 3

Robinson’s approachinn > 3 ?

Which tensor plays the role of the Cotton tensor C? The Weyl tensor?

The right tensor is

T(X,Y,Z) :=

=NC(X,Y,Z) - W(X,Y,Z,VN).
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Uniqueness Theorem The T tensor

The tensor T has been largely used to detect rotational symmetry on steady
gradient Ricci solitons
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Uniqueness Theorem The T tensor

The tensor T has been largely used to detect rotational symmetry on steady
gradient Ricci solitons

and the T tensor is such that

T = C_W(Jvavf)
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Uniqueness Theorem The T tensor

The tensor T has been largely used to detect rotational symmetry on steady

gradient Ricci solitons

References:
@ Cao & Chen’12,’13
@ Brendle 12

@ Leandro & Solozano ’19
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Uniqueness Theorem Proof of the uniqueness theorem

Black Hole and Equipotential Photon Surface Uniqueness

(Cederbaum, C., Leandro, dos Santos)

Let (M, g, N) be an asymptotically flat solution to (1).

Suppose that OM is a connected Static Horizon or a connected (time slice of an)
Equipotential Photon Surface. Then,

1=NG (1M ) | (I8N o (R =25 17)ds
2 \Is] M) =N = 1)(n =[5

o LN (oM )
m
=M= s

In addition, if

/ RBMdSS(n—l)(n_2)|sn—l|ﬁ|8M|g
oM

then (M, g) is isometric to Schwarzschild of mass m.
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Uniqueness Theorem Proof of the uniqueness theorem

Step 1: define the family of vector fields X . and use the divergence theorem
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Uniqueness Theorem Proof of the uniqueness theorem

Step 1: define the family of vector fields X . and use the divergence theorem

Let n >3 and F,,(N):= —aN’th
’ (I_Nz)an
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Uniqueness Theorem Proof of the uniqueness theorem

Step 1: define the family of vector fields X . and use the divergence theorem

Let n >3 and F,,(N):= —aN’th
’ (1_N2))172

(n— 2)2NFa,,, 2

CEDEN 7

IVN\2

nFab
T2 )N

div (X7,) = (1-N) %= |v
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Uniqueness Theorem Proof of the uniqueness theorem

Step 1: define the family of vector fields X . and use the divergence theorem

Let n >3 and F,,(N):= —aN’th
’ (1_N2))172

2
>0

IVN\2

nFab
T2 )N

(l’l — Z)ZNFa’b 2(n 1)

div (Xr:l,b) = (n— I)Z\VNP

(1-N*) "2 |V

-2
0< / div (&}',) =Fa(No) |VN|0/ {RaM_” Hz}dS
M oM n—1

2n 2a
— | < Fup(Ny) — —————— VN2 oM
((n _ 2)(1 _Ng) 717( 0) (1 Ng)”z) | |0| |

(a+b)(n— 2)1

. n I"” 74
D=2

4
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Uniqueness Theorem Proof of the uniqueness theorem

Admissible values of a and b so that F, ,(N) > 0:

Q
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Uniqueness Theorem Proof of the uniqueness theorem

Considering b = —a,a <0 and b= —aN], a >0, combined with the
properties of the Static Horizon or the Equipotential Photon Sphere and the
Smarr formula

/ VN| = (n—2)|S" | m
oM

gives the two estimates on m.

Albachiara Cogo (UniTiibingen) BH and EPS Uniqueness in (n+1)-dimension March 3, 2023 17/19



Uniqueness Theorem Proof of the uniqueness theorem

Considering b = —a,a <0 and b= —aN], a >0, combined with the
properties of the Static Horizon or the Equipotential Photon Sphere and the
Smarr formula

/ VN| = (n—2)|S" | m
oM

gives the two estimates on m.

1N§<\6M|>Zf <|sn—1y>ii‘ Jom (RM —2=2 112) 4§
=

2 |Sn 1| |OM] —N3)(n—1)(n —2)|S* 1]

oo 1NE (oM =
- 1oM|
=M= e

Albachiara Cogo (UniTiibingen) BH and EPS Uniqueness in (n+1)-dimension March 3, 2023 17/19



Uniqueness Theorem Proof of the uniqueness theorem

Step 2: proof of rotational symmetry
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Uniqueness Theorem Proof of the uniqueness theorem

Step 2: proof of rotational symmetry

Under the condition

/ RMaS < (n—1)(n — 2)[S"" |77 |oM|+=T
oM
VN2
div (&},) =0 iff ‘VHM =0 and |T|*=0
(1 —N2) 2
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Uniqueness Theorem Proof of the uniqueness theorem

Step 2: proof of rotational symmetry

VNP P
2(n—1)

diV ( ;’b) = 0 iff Vm

@ Use N as a coordinate: g = WdN2 + &N
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Uniqueness Theorem Proof of the uniqueness theorem

Step 2: proof of rotational symmetry

2

N2
VN =0 and [T =0

div(;b):o iff ‘V(l N2)2(H)
— n—2

@ Use N as a coordinate: g = WdN2 + &N

@ Use 0=T(-,-, VN)and 0 =T(-, VN, -) to deduce that X are
totally umbilic and CMC.
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Uniqueness Theorem Proof of the uniqueness theorem

Step 2: proof of rotational symmetry

2

N2
VN =0 and [T =0

2(n—1)

le( ;’b) :0 iff ‘V(ll\ﬂ)z

@ Use N as a coordinate: g = Wsz + gn

@ Use 0=T(-,-, VN)and 0 =T(-, VN, -) to deduce that X are
totally umbilic and CMC.

@ Solve an ODE for gy to get gy = f(N) ggm and conclude by the
asymptotic conditions.
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Uniqueness Theorem Thank you

Thank you!
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