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The constraint equations I

From previous talks we know that the Gauss-Codazzi equations impose con-
straints on the admissible initial data for the Cauchy problem in GR. Also, we
know that:

An initial data set is given by a tuple (Mn, g ,K), where (g ,K) are subject
to the Einstein constraint equations:

R(g)− |K |2g + (trg K)2 = 2ϵ
divgK − dtrg K = J ,

(1)

where ϵ .= T (n, n)|t=0 and J = −T (n, ·) denote, respectively, the induced
energy and momentum by the physical sources modelled in space-time by
some energy-momentum tensor field T .
The system (1) is not only a necessary but also a sufficient condition for
the initial data to admit (short-time) evolution.

One is interested in:
1. Producing solutions, ideally with freedom to model interesting situations;
2. Parametrize the space of solutions;
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The constraint equations II

We intent to comment on the analysis of the existence of solutions to (1). Let
us fist make a few remarks:

The space-time equations associated with matter fields can impose further
constraints;
This is the case for the electromagnetic field equations (and more generally,
for Yang-Mills fields coupled to the Einstein equations);
In the case of a charged fluid, the full system of constraint equations reads
as follows:

R(g)− |K |2g + (trg K)2 = 2ϵ
divgK − dtrg K = J ,

divg E = q̃,
dF= 0,

(2)

where E is a vector field on M and F ∈ Ω2(M) representing the electric and
magnetic fields induced in the initial data set. Thus, in realistic situations, the
ECE will typically couple with further equations.
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Conformal method I

The constraint equations appear as a highly underdetermined system. It is there-
fore natural to split the initial data into arbitrarily prescribed data and unknowns.
The proposal of the conformal method is to consider the following:

g = ϕ
4

n−2 γ

K = ϕ−2K̃ +
τ

n g ,

K̃ = £γ,conf X + U,

(3)

where we have denoted by τ .
= trg K and defined the conformal killing operator

£γ,conf X .
= £Xγ − 2

n divγX γ.

In the above decomposition, the symmetric traceless (0, 2)-tensor field U is sup-
posed to be transverse, i.e, divγU = 0. Using the above conformal splitting, the
Gauss-Codazzi constraints are rewritten as follows:
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Conformal method II

∆γϕ− cnRγϕ+ cn|K̃ |2γϕ− 3n−2
n−2 + cn

(
1 − n

n τ 2 + 2ϵ
)
ϕ

n+2
n−2 = 0,

∆γ,conf X −
(

n − 1
n dτ + J

)
ϕ

2n
n−2 = 0,

(4)

where we have introduced the Conformal Killing Laplacian, defined by ∆γ,conf X .
=

divγ(£γ,conf X).

Remarks:
The specific form of the energy-momentum tensor imposes conformal scal-
ing for the sources. One says J is York-scaled if J = ϕ− 2n

n−2 J̃ , where J̃ is
constructed with freely prescribed data.
In this case, under a CMC assumption, the constraints read as follows.

∆γϕ− cnRγϕ+ cn|K̃ |2γϕ− 3n−2
n−2 + cn

(
1 − n

n τ 2 + 2ϵ
)
ϕ

n+2
n−2 = 0,

∆γ,conf X = J̃ .
(5)
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Conformal method III

Above we are treating these equations as equations for (ϕ,X), with free
parameters (γ, τ,U, ϵ̃, J̃), and the only coupling between the two equations
in (5) is through K̃(X).
Thus, if the momentum constraint is solvable for some prescribed J̃ , then
the equations decouple, and we are left with the study of the Lichnerow-
icz equation. For vacuum, CMC data on closed manifolds, one has the
following classical classification:

τ = 0 U = 0 τ = 0 U 6= 0 τ 6= 0 U = 0 τ 6= 0 U 6= 0
Y([γ]) > 0 No Yes No Yes
Y([γ]) = 0 Yes No No Yes
Y([γ]) < 0 No No Yes Yes

The above classification relies on two big steps:
1 Monotone iteration scheme for equations of the form

∆γϕ = f (·, ϕ) .=
∑

I

aIϕ
I , aI ∈ Lp (6)

2 Construction of barriers for the monotone iteration.
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The coupled system

Let us consider now the conformally formulated ECE for a charged (dust) fluid

an∆γϕ− Rγϕ+ |K̃(X)|2γϕ− 3n−2
n−2 +

(
2ϵ1 −

n − 1
n τ 2

)
ϕ

n+2
n−2

+ 2ϵ2(f )ϕ−3 + 2cnϵ3ϕ
n−6
n−2 = 0,

∆γ,conf X − n − 1
n dτϕ

2n
n−2 − ω1ϕ

2 n+1
n−2 + ω2(f ) = 0,

∆γ f = q̃ϕ
2n

n−2

where, setting Ẽ = ∇f + ϑ ∈ Γ(T ∗M),

ϵ1 = µ
(

1 + |ũ|2γ
)
, ϵ2 =

1
2 |Ẽ |2γ , ϵ3 =

1
4 |F̃ |2γ ,

ω1k = µ
(

1 + |ũ|2γ
) 1

2 ũk , ω2k = F̃ik Ẽ i , q̃ = q(1 + |ũ|2γ)
1
2 .

New difficulties:
The system is fully coupled (even under a CMC condition);
An iteration/fixed point scheme will have to depend on the existence of
uniform barriers (because the coefficients are changing along the iteration!);
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Analysis on AE manifolds I

Definition (Weighted Sobolev spaces)
Let E → Rn be vector bundle over Rn. The weighted Sobolev space W k,p

δ , with
k a non-negative integer, 1 < p < ∞ and δ ∈ R, of sections u of E , is defined
as the subset of W k,p

loc for which the norm

‖u‖W k,p
δ

(Rn)
.
=

∑
|α|≤k

‖σ−δ− n
p +|α|

∂αu‖Lp(Rn) (7)

is finite, where σ(x) .= (1 + |x |2) 1
2 and α denotes an arbitrary multi-index.

Remark: Using a partition of unity one extends the definition of W k,p
δ -spaces to

an arbitrary AE manifold.

Definition (W k,p
−τ -AE manifolds)

Let (Mn, g) be a connected, n-dimensional Riemannian manifold and let τ > 0.
We say that (M, g) is an Asymptotically Euclidean (AE) manifold of class W k,p

−τ

if:
1. g ∈ W k,p

loc (M) where p > n
k (and consequently g is continuous).
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Analysis on AE manifolds II

2. There exists a compact set K ⊂ M and a diffeomorphism Φ : M\K 7→
Rn\B1(0);

3. For each 1 ≤ i , j ≤ n
(
(Φ−1)∗g

)
ij − δij ∈ W k,p

−τ (R
n\B1(0)).

With the above definitions in mind, one proceeds as follows:
First, analyse the behaviour of the linear parts involved in the above system
between appropriate (weighted) spaces;
For non-compact manifolds one needs to be careful with the behaviour of
ϕ at infinity;
Since ϕ should not decay to zero at infinity (but to some constant value)
one splits ϕ = ω + φ where ω is a harmonic function which captures the
behaviour of ϕ at infinity;
Denoting the linear operator appearing in the left-hand side by
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Analysis on AE manifolds III
P : W 2,p

δ (M;E) 7→ Lp
δ−2(M;E),

(φ, f ,X) 7→ (∆γφ,∆γ f ,∆γ,confX)

we rewrite the above system more compactly as

P(ψ) = F(ψ), (8)

The idea is to solve the above problem by solving a sequence of linear problems:
Given ψ0 ∈ W 2,p

δ (M;E), if we get a unique solution ψ1 = P−1F(ψ0), we can
begin an iteration scheme. If we find a fixed point ψ̄ in this iteration, then such
fixed point solves

P(ψ̄) = F(ψ̄),

which is equivalent to solving the original system. If, furthermore, we get that
ϕ > 0, then such solution actually solves the conformal problem associated to
a charged fluid. In order to satisfy this last condition, we will need to produce
barriers ϕ− and ϕ+, and make sure that the iteration stays within [ϕ−, ϕ+].

Obtaining solution via the above method then requires
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Analysis on AE manifolds IV

1. An iteration scheme replacing the one for Lichnerowicz type equations,
adapted to systems;

2. Construction of (strong) global barriers for the particular system.
3. Both of the above can be done and one can obtain the following type of

results:

Theorem (Yamabe positive existence - free τ)
Let (Mn, γ) be a W 2,p

δ -Yamabe positive AE manifold, p > n, n ≥ 3 and 2− n <
δ < 0. Consider the system associated to a charged fluid with conformal data
τ,U, F̃ , ϑ ∈ W 1,p

δ−1, µ ∈ W 1,p
2(δ−1), ũ ∈ W 1,p

δ−1, q̃ ∈ Lp
δ−2. If U, F̃ , ϑ, µ, q̃ are

sufficiently small, then, there is a W 2,p
δ -solution to the conformal problem.

Remark:
The restrictions on the size of the coefficients appear when constructing
barriers;
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Analysis on non-compact complete manifolds I

Motivations:
Physical motivation: Analysis of system with bounded initial data, but not
necessarily decaying.
Mathematical motivation: Extending the analysis of Lichnerowicz on com-
plete manifolds to the conformally formulated ECE.

Difficulties:
The previous theorems relied on global estimates and compactness theorems
for the chosen functional spaces, which are no longer available.

One way to overcome these difficulties is:
1 Solve the system along an exhaustion of M by compact sets {Ωk}∞k=1 under

the assumption of existence of uniform barriers;
2 Obtain uniform estimates on interior compacts;
3 Extract a diagonal sequence converging to a solution in W 2,p

loc (M);
4 Construct uniform barriers.
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Analysis on non-compact complete manifolds II

Steps 1-3 above can be done for general complete manifolds and provide a
substitute for the iteration scheme;
Step 4 can be obtained under the condition of bounded geometry.

Example: Consider the simplified system

∆γϕ− cnRγϕ+ cn

∣∣∣K̃(X)
∣∣∣2
γ
ϕ− 3n−2

n−2 − cn
n − 1

n τ 2ϕ
n+2
n−2 + 2cnϵ1ϕ

n+2
n−2

+ 2cnϵ2ϕ
−3 + 2cnϵ3ϕ

n−6
n−2 = 0,

∆γ,conf X − n − 1
n dτϕ

2n
n−2 − ω1ϕ

2 n+1
n−2 + ω2 = 0,

(9)

The above system corresponds to the electromagnetic constraints, but with q̃ =
0. In this case, one can prove results along the lines of the following theorem:
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Analysis on non-compact complete manifolds III
Theorem
Let (Mn, γ) be a smooth complete Riemannian manifold of bounded geometry,
let n ≥ 3 be its dimension and p > n. We make the following assumptions:

Rγ , ϵ1, ϵ2, ϵ3, |U|2, τ 2 ∈ Lp
loc(M) and ω1, ω2, dτ ∈ L2(M) ∩ Lp(M).

λ1,conf > 0,

a .
= cnRγ + bnτ

2 ∈ L∞(M), a ≥ a0 > 0.

Assume further that:

ϵ2 + ϵ3 > 0 if n ≤ 6
ϵ2 > 0 if n > 6.

Then, there exists C(n,M, γ, λ1,conf) such that if

|Rγ |+max
(
‖dτ‖L2(M), ‖dτ‖Lp(M)

)
+max

(
‖ω1‖L2(M), ‖ω1‖Lp(M)

)
+max

(
‖ω2‖L2(M), ‖ω2‖Lp(M)

)
+ |U|+ ϵ1 + ϵ2 + ϵ3 ≤ Cτ 2,

then (9) admits a W 2,p
loc solution.
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Remarks

Under different conditions on the geometric parameters and physical sources
one can get different versions of the above theorems;

One can in particular introduce boundary conditions on compact inner
boundaries;

When one deals with controlled asymptotic geometry extensions to larger
systems of constraints seem fairly natural;

In both settings, one can produce solutions in L2-spaces (which might be
better suited for the evolution problem..), but in this case more subtle
regularity issues appear.
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Thank you for your attention!
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