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1. Lecture 1

1.1. Introduction. We consider a spacetime (N, γ) satisfying the Einstein field equations. Recall
from [13] that (N, γ) is encapsulated in initial data (M, g, k) consisting of a spacelike hypersurface
M ⊂ N with induced metric g and second fundamental form k. In this context, the scalar curvature
R of (M, g) provides a lower bound for the energy density of (N, γ).

If (N, γ) models an isolated gravitational system, (M, g, k) can be chosen to be an asymptotically
flat Riemannian manifold in the sense of Definition 1 below. Here and below, we will assume that
k = 0. A bar indicates that a geometric quantity is computed with respect to the Euclidean metric ḡ.

Definition 1. Let (M, g) be a connected complete Riemannian manifold with integrable scalar curvature
R. We say that (M, g) is asymptotically flat if there is a non-empty compact subset of M whose
complement is diffeomorphic to {x ∈ R3 : |x|ḡ > 1/2} such that, in this so-called asymptotically flat
chart, g = ḡ + σ where

|σ|ḡ + |x|ḡ |D̄σ|ḡ + |x|2ḡ |D̄2σ|ḡ = O(|x|−τ
ḡ )

for some τ ∈ (1/2, 1].

We usually fix an asymptotically flat chart and use it as a reference. We use Br, r > 1/2, to denote
the connected, bounded subset of M whose boundary corresponds to Sr(0) = {x ∈ R3 : |x|ḡ = r} with
respect to this chart.

Definition 2. The mass of a an asymptotically flat Riemannian manifold (M, g) is given by

m =
1

16π
lim
λ→∞

λ−1

∫
Sλ(0)

3∑
i, j=1

xi (∂jgij − ∂igjj) dµ̄.

The mass is a geometric invariant that measures the total gravitational energy of the initial data set;
see [3, 1]. It is positive if the scalar curvature of (M, g) is non-negative and if (M, g) is not isometric
to flat R3; see [28].

Definition 3 ([27]). Let (M, g) be an asymptotically flat Riemannian manifold with positive mass.
The Hamiltonian center of mass of (M, g) is given by C = (C1, C2, C3) where

(1) Cℓ =
1

16πm
lim
λ→∞

λ−1

∫
Sλ(0)

3∑
i, j=1

xℓ xj (∂igij − ∂jgii)−
3∑

i=1

(xi giℓ − xℓ gii) dµ̄

provided the limits on the left-hand side exist.

Remark 4 ([18]). The center of mass exists if (M, g) satisfies the so-called Regge-Teitelboim conditions

|ĝ|ḡ + |x|ḡ |D̄ĝ|ḡ + |x|2ḡ |D̄2ĝ|ḡ = O
(
|x|−1−τ

ḡ

)
and R̂ = O(|x|−7/2−τ

ḡ )

where
ĝ(x) = g(x)− g(−x) and R̂(x) = R(x)−R(−x).
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Example 5. Spatial Schwarzschild (Mm, gm) of mass m > 0 is given by

Mm = {x ∈ R3 : |x|ḡ ≥ m/2} and gm = (1 +m/2 |x|−1
ḡ )4 ḡ.

It models initial data for a static black hole with mass m.

A central goal in mathematical relativity is to understand the relationship between the asymptotic
geometry of (M, g) and the global physical properties of (M, g).

Definition 6. We say that a family {Σ(s) : s ∈ (0, 1)} of spheres Σ(s) ⊂ M forms an asymptotic
foliation of (M, g) if there is a smooth function u :M → (0,∞) with the following properties.

◦ u→ 0 as x→ ∞.
◦ Σ(s) = {x ∈M : u(x) = s}.
◦ Every s ∈ (0, 1) is a regular value of u.

Note that an asymptotic foliation provides an asymptotic coordinate system of (M, g). We will
study geometric foliations that

◦ are defined in a canonical way,
◦ detect the mass of (M, g),
◦ detect the center of mass or the asymptotic energy distribution of (M, g).

1.2. Special surfaces in initial data sets. Let Σ ⊂M be a closed surface with outward normal ν,
area element dµ, second fundamental form h, traceless second fundamental form

◦
h, and mean curvature

H. The Hawking mass of Σ is defined by

mH(Σ) =

√
|Σ|
16π

(
1− 1

16π

∫
Σ
H2 dµ

)
.

It provides a measure for the strength of the gravitational field in the domain enclosed by Σ; see [17].
It plays an important part in the proof of the Riemannian Penrose inequality; see [19].

The following proposition shows that the quantity mH(Σ) is meaningless unless Σ is in some way
special.

Proposition 7. Let (Mm, gm) be spatial Schwarzschild of mass m > 0. There holds

sup
Σ⊂Mm

mH(Σ) = ∞ and inf
Σ⊂Mm

mH(Σ) = −∞

where the supremum and infimum are taken over all embedded spheres Σ ⊂M .

We will study the existence, uniqueness, and asymptotic positioning of two classes of surfaces that
are well-adapted to the Hawking mass.

1.2.1. Stable constant mean curvature surfaces. A closed surface Σ ⊂ M is called a stable constant
mean curvature surface if it passes the second derivative test for area among all volume-preserving
variations. Such surfaces are potential candidates to have least area for the volume they enclose. Their
mean curvature equals a scalar and they satisfy the stability inequality∫

Σ
|h|2 f2 +Ric(ν, ν) f2 dµ ≤

∫
Σ
|∇f |2 dµ

for all f ∈ C∞(Σ) with ∫
Σ
f dµ = 0.
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Proposition 8 ([14]). Let (M, g) be an asymptotically flat Riemannian manifold with non-negative
scalar curvature and Σ ⊂M be a stable constant mean curvature sphere. There holds mH(Σ) ≥ 0.

1.2.2. Area-constrained Willmore surfaces. A closed surface Σ ⊂M is called an area-constrained Will-
more surface if it passes the first derivative test for the Hawking mass among all area-preserving
variations; see [22] where area-constrained Willmore surfaces are called surfaces of Willmore type.
Such surfaces are potential candidates to have a maximal amount of Hawking mass for their area.
They satisfy the area-constrained Willmore equation

∆H + (|
◦
h|2 +Ric(ν, ν) + κ)H = 0(2)

for some Lagrange parameter κ ∈ R. In this context, recall that the first variation of the Willmore
energy

W(Σ) =
1

4

∫
Σ
H2 dµ

along a normal variation with initial speed f ∈ C∞(Σ) is given by

δW(Σ)(f) = −1

2

∫
Σ
f ∆H + f |

◦
h|2H + f Ric(ν, ν)H dµ.

On the one hand, area-constrained Willmore surfaces are expected be fine-tuned to the Hawking
mass. On the other hand, the area-cosntrained Willmore equation allows for more analytical flexibility:

◦ (2) is a fourth-order quasi-linear equation so that standard tools such as the maximum principle
are not available.

◦ A closed minimal surface Σ ⊂ M satisfies the second derivative test for the Hawking mass
among area-preserving variations. It does not necessarily satisfy the second derivative test for
area among volume-preserving variations.

◦ There are infinitely many (area-constrained) embedded stable Willmore surfaces in R3 that
are not congruent to each other; see [4]. By contrast, every immersed stable constant mean
curvature surface in R3 is a sphere; see [2].

1.3. Asymptotic foliations by stable constant mean curvature spheres. Let (M, g) be an
asymptotically flat Riemannian manifold with positive mass.

Theorem 9 ([25]). There exists H0 > 0 and a family

{Σ(H) : H ∈ (0, H0)},(3)

where Σ(H) ⊂ M is a stable constant mean curvature sphere with mean curvature H, that forms a
foliation of the complement of a compact subset of M .

Theorem 9 was proved in [20] under the assumption that (M, g) is asymptotic to Schwarzschild; see
Definition 25. We also note the important previous works [18, 24]. Theorem 9 has been extended to a
spacetime setting in [9]. The following proof is from the author’s recent joint work with M. Eichmair
[15].

1.3.1. Heuristics. Since g is asymptotic to ḡ, the results in [2] suggest that large stable constant mean
curvature spheres in (M, g) are perturbations of round coordinate spheres. The Euclidean area is
invariant under rigid motions. We therefore use a Lyapunov-Schmidt reduction instead of the implicit
function theorem; see also [10, 6].
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1.3.2. Spherical harmonics. Recall that the eigenvalues of the operator

−∆̄ : H2(S1(0)) → L2(S1(0))

are given by

{ℓ (ℓ+ 1) : ℓ = 0 , 1 , 2, . . . }.(4)

The corresponding eigenspaces Λℓ(S1(0)) are finite-dimensional and form an orthonormal basis for
L2(S1(0)). Λ0(S1(0)) consists of constant functions and Λ1(S1(0)) is spanned by the coordinate func-
tions y 7→ ḡ(y, ei), i = 1, 2, 3.

1.3.3. Notation. Given ξ ∈ R3 and λ > 1, we abbreviate

Sξ,λ = Sλ(λ ξ) = {x ∈ R3 : |x− λ ξ|ḡ = λ}.

Given u ∈ C∞(Sξ,λ), we define Σξ,λ(u) to be the Euclidean graph of u over Sξ,λ. In the estimate (5),
D̄, the dash, and ∇̄ denote differentiation with respect to ξ ∈ R3, λ ∈ R, and x ∈ Sξ,λ, respectively.

1.3.4. Lyapunov-Schmidt reduction.

Proposition 10. Let δ ∈ (0, 1/2). There are constants λ0 > 1 and ϵ > 0 such that for every ξ ∈ R3

with |ξ|ḡ < 1 − δ and λ > λ0 there exists a function uξ,λ ∈ C∞(Sξ,λ) such that the following holds.
uξ,λ ⊥ Λ1(Sξ,λ) and, as λ→ ∞,

(5)

λ−1 |uξ,λ|+ |∇̄uξ,λ|ḡ + λ |∇̄2uξ,λ|ḡ = o(λ−1/2),

λ−1 (D̄u)|(ξ,λ) = o(λ−1/2),

u′|(ξ,λ) = o(λ−1/2)

uniformly for all ξ ∈ R3 with |ξ|ḡ < 1− δ. The surface Σξ,λ = Σξ,λ(uξ,λ) has the properties

◦ H ∈ Λ0(Sξ,λ)⊕ Λ1(Sξ,λ),
◦ vol(Σξ,λ) =

4π
3 λ

3.

Proof. Let G be the space of Riemannian metrics on {y ∈ R3 : 1− δ/2 < |y|ḡ < 3} equipped with the
C2-topology. We consider the map

Θξ,λ : R3 → R3 given by Θξ,λ(y) = λ (ξ + y).

Note that Θξ,λ(S1(0)) = Sξ,λ. The rescaled metric gξ,λ = λ−2Θ∗
ξ,λ g satisfies

||gξ,λ − ḡ||G = o(λ−1/2 |1− |ξ||−1/2
ḡ ) = o(λ−1/2 δ−1/2).

Let α ∈ (0, 1), k ≥ 0 be an integer, and Λ0,k(S1(0)) and Λ1,k(S1(0)) be the constants and first
spherical harmonics viewed as subspaces of Ck,α(S1(0)), respectively. We define the smooth map

T : Λ1,2(S1(0))
⊥ × G → [Λ0,0(S1(0))⊕ Λ1,0(S1(0))]

⊥ × R

by
T (u, g) =

(
proj[Λ0,0(S1(0))⊕Λ1,0(S1(0))]⊥ H, vol(Σ1,0(u))

)
where all geometric quantities are with respect to Σ1,0(u) and the metric g. Note that

(DT )|(0, ḡ)(u, 0) =
(
proj[Λ0,0(S1(0))⊕Λ1,0(S1(0))]⊥(−∆̄u− 2u), −4π projΛ0(S1(0)) u

)
.
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Since kernel of the operator
−∆̄− 2 : C2,α(S1(0)) → C0,α(S1(0))

is given by Λ1,2(S1(0)), (DT )|(0, ḡ)( · , 0) : Λ1,2(S1(0))
⊥ → [Λ0,0(S1(0)) ⊕ Λ1,0(S1(0))]

⊥ × R is an
isomorphism. The assertions follow from this and the implicit function theorem. □

To capture the variational nature of the constant mean curvature equation on the families of surfaces
{Σξ,λ : |ξ|ḡ < 1− δ} from Proposition 10, we consider the reduced area function

Gλ : {ξ ∈ R3 : |ξ|ḡ < 1− δ} → R given by Gλ(ξ) = λ−1 |Σξ,λ|.

Lemma 11. Given δ ∈ (0, 1/2), there is λ0 > 1 such that for every λ > λ0 and ξ ∈ R3 with |ξ|ḡ < 1−δ
the following holds. The sphere Σξ,λ has constant mean curvature if and only if ξ is a critical point of
Gλ.

2. Lecture 2

2.0.1. Computing the reduced area function.

Lemma 12. Let δ ∈ (0, 1/2) and a ∈ R3 with |a|ḡ = 1. There holds, as λ→ ∞,

div a =
1

2
D̄at̄rσ +O(λ−1−2 τ ),(6)

g(Dνa, ν) =
1

2
(D̄aσ)(ν̄, ν̄) +O(λ−1−2 τ )

on Sξ,λ uniformly for all ξ ∈ R3 with |ξ|ḡ < 1− δ. Moreover,

ν − ν̄ = − 1

2
σ(ν̄, ν̄) ν̄ −

2∑
α=1

σ(ν̄, fα) fα +O(λ−2 τ ),(7)

dµ =

[
1 +

1

2
[t̄rσ − σ(ν̄, ν̄)] +O(λ−2 τ )

]
dµ̄.

Here, {f1, f2} is a local Euclidean orthonormal frame for TSξ,λ.

Proof. We sketch the proof of (6) and (7).
There holds

div(a) =

3∑
i, j=1

gij g(Deia, ej) =

3∑
i, k=1

ak Γi
ik +O(|x|−1−2 τ

ḡ ) =
1

2
D̄at̄rσ +O(|x|−1−2 τ

ḡ ).

Note that |x|−1
ḡ = O(λ−1) on Sξ,λ.

Let gt = g + t σ and νt the unit normal of Sξ,λ with respect to gt. Differentiating gt(νt, νt) = 1, we
obtain

σ(ν̄, ν̄) + 2 ḡ(ν̇, ν̄) = 0.

□

Lemma 13. Let δ ∈ (0, 1/2). There holds, as λ→ ∞ on Sξ,λ uniformly for all ξ ∈ R3 with |ξ|ḡ < 1−δ,

H(Σξ,λ) = H(Sξ,λ)−∆(Sξ,λ)uξ,λ − |h(Sξ,λ)|2 uξ,λ −Ric(ν(Sξ,λ), ν(Sξ,λ))uξ,λ + o(λ−5/2).

In the following two lemmas, we compute an asymptotic expansion of Gλ as λ→ ∞.

Lemma 14. Let a ∈ R3 with |a|ḡ = 1. There holds, as λ→ ∞,

(D̄aGλ)|ξ =
1

2

∫
Sξ,λ

[
D̄at̄rσ − (D̄aσ)(ν̄, ν̄)− 2λ−1 t̄rσ ḡ(a, ν̄)

]
dµ̄+ o(1)
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uniformly for all ξ ∈ R3 with |ξ|ḡ < 1− δ.

Proof. Using that vol(Σξ,λ) does not depend on ξ ∈ R3, we obtain

(D̄aGλ)|ξ =
∫
Σξ,λ

[H − 2λ−1] g(a+ λ−1 (D̄au)|(ξ,λ) ν̄, ν) dµ.(8)

By Lemma 13, Lemma 12, and (5),

H(Σξ,λ) = H(Sξ,λ) + o(λ−3/2) = 2λ−1 + o(λ−3/2).

In conjunction with (5) and (8), we find

(D̄aGλ)|ξ =
∫
Σξ,λ

[H − 2λ−1] g(a, ν) dµ+ o(1).(9)

The first variation formula implies that

(10)

∫
Σξ,λ

[H − 2λ−1] g(a, ν) dµ =

∫
Σξ,λ

[div a− g(Dνa, ν)− 2λ−1 g(a, ν)] dµ

=

∫
Sξ,λ

[div a− g(Dνa, ν)− 2λ−1 g(a, ν)] dµ+ o(1).

The assertion follows from this, Lemma 12, and the divergence theorem. □

Lemma 15. Let δ ∈ (0, 1/2). There holds, as λ→ ∞, uniformly for all ξ ∈ R3 with |ξ|ḡ < 1− δ,

Gλ(ξ) =Gλ(0) + 4πm |ξ|2ḡ + o(1) and

(D̄Gλ)|ξ =8πmξ + o(1).

Proof. Let a ∈ R3 with |a|ḡ = 1. Note that

D̄a trσ − (D̄aσ)(ν̄, ν̄) = ḡ(a, ν̄)
[
D̄ν̄ t̄rσ − (d̄ivσ)(ν̄)

]
+

2∑
α,β=1

ḡ(a, fα)(D̄fασ)(fβ, fβ)

+

2∑
α=1

[
ḡ(a, ν̄) (D̄fασ)(ν, fα)− ḡ(a, fα) (D̄fασ)(ν̄, ν̄)

]
.

Using Lemma 14 and integration by parts, we have

(D̄aGλ)|ξ =
1

2

∫
Sξ,λ

[
ḡ(a, ν̄)

[
D̄ν̄ t̄rσ − (d̄iv σ)(ν̄)

]
+ σ(ν̄, a)− ḡ(a, ν̄) t̄rσ

]
dµ̄

+ o(1)

=
1

2
λ−1

∫
Sξ,λ

[
ḡ(a, x− λ ξ)

[
D̄ν̄ t̄rσ − (d̄iv σ)(ν̄)

]
+ σ(ν̄, a)− ḡ(a, ν̄) t̄rσ

]
dµ̄

+ o(1).

Moreover,

d̄iv

( 3∑
j=1

[
[D̄ej t̄rσ − (d̄iv σ)(ej)] ḡ(a, λ

−1 x− ξ) + λ−1 [σ(a, ej)− ḡ(a, ej) t̄rσ]

]
ej

)
= −R ḡ(a, λ−1 x− ξ) +O(|x|−2−2 τ

ḡ ).
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Using the divergence theorem and that the scalar curvature is integrable, we find that

(11)

(D̄aGλ)|ξ =
1

2
ḡ(a, ξ)

∫
S2λ(0)

[
(d̄iv σ)(ν̄)− D̄ν̄ trσ

]
dµ̄

+
1

2
λ−1

∫
S2λ(0)

[
ḡ(a, x)

[
D̄ν̄ trσ − (d̄iv σ)(ν̄)

]
+ σ(ν̄, a)− ḡ(a, ν̄) t̄rσ

]
dµ̄

+ o(1).

Using that the scalar curvature is integrable again, we have∫
S2λ(0)

[
(d̄iv σ)(ν̄)− D̄ν̄ t̄rσ

]
dµ̄ = 16πm+ o(1)

and
λ−1

∫
S2λ(0)

[
ḡ(a, x)

[
D̄ν̄ t̄rσ − (d̄iv σ)(ν̄)

]
+ σ(ν̄, a)− ḡ(a, ν̄) t̄rσ

]
dµ̄ = o(1).

In fact, if (M, g) satisfies the Regge-Teitelboim conditions, the last integral equals ḡ(C, a) + o(1). □

2.0.2. Existence of large stable constant mean curvature spheres.

Proof of Theorem 9. Let δ = 1/2. Lemma 15 implies that, for every λ > 1 sufficiently large, Gλ is
strictly radially increasing on {ξ ∈ R3 : |ξ|ḡ = 1/2} . In particular, Gλ has a critical point ξ(λ) ∈ R3

with |ξ(λ)|ḡ < 1/2. According to Lemma 11, Σ(λ) = Σξ(λ),λ is a constant mean curvature sphere.
By (4), we find that∫

Σ(λ)
|∇f |2 − |h|2 f2 −Ric(ν, ν) f2dµ ≥ 2λ−2

∫
Σ(λ)

f2 dµ(12)

for every f ∈ [Λ0(Sξ(λ),λ)⊕ Λ1(Sξ(λ),λ)]
⊥ provided that λ > 1 is sufficiently large. Using that

D̄2Gλ = 8πm Id−o(1),

we have ∫
Σ(λ)

|∇f |2 − |h|2 f2 −Ric(ν, ν) f2 dµ ≥λ−3 [8πm− o(1)]

∫
Σ(λ)

f2 dµ

for every f ∈ Λ1(Sξ(λ),λ). In particular, Σ(λ) is stable.
We have

H(Σ(λ)) = 2λ−1 + o(λ−3/2) and H(Σ(λ))′ = −2λ−2 + o(λ−5/2).

It follows that λ 7→ H(Σ(λ)) is strictly decreasing on (λ0,∞) provided that λ0 > 1 is sufficiently
large. By Lemma 15, ξ(λ) = o(1). Moreover, D̄G′

λ = o(λ−1) as λ → ∞ uniformly for all ξ ∈ R3 with
|ξ|ḡ < 1/2. Differentiating the equation (D̄Gλ)|ξ(λ) = 0, we find that

ξ′(λ) = [(D̄2Gλ)|ξ(λ)]−1 (D̄G′
λ)|ξ(λ) = o(λ−1).

Consequently,
(λ y + uξ(λ),λ y + λ ξ(λ))′ = y + o(1),

y ∈ S1(0). In particular, the family {Σ(λ) : λ > λ0} is transversal. □

2.0.3. Asymptotic positioning. The geometric center of mass CCMC = (C1
CMC , C

2
CMC , C

3
CMC) of

(M, g) is given by

Cℓ
CMC = lim

H→0
|Σ(H)|−1

∫
Σ(H)

xℓ dµ(13)
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provided the limit on the right-hand side exists.

Theorem 16 ([18, Theorem 1]). Suppose that (M, g) is an asymptotically flat Riemannian manifold
with positive mass that satisfies the Regge-Teitelboim conditions. Then the limits in (1) and (13) exist
and C = CCMC .

Theorem (16) has been proven under weaker assumptions in [25]. It has been generalized to a
spacetime setting in [9]. In [15], we provide a proof based on the identity (11).

3. Lecture 3

Let (M, g) be an asymptotically flat Riemannian manifold with positive mass and non-negative
scalar curvature.

Theorem 17 ([15]). There exists r > 1/2 with the following property. Every stable constant mean
curvature sphere Σ ⊂M that encloses Br satisfies Σ = Σ(H) for some H ∈ (0, H0).

Remark 18. Theorem 17 shows that quantities associated to the foliation {Σ(H) : H ∈ (0, H0)} are
canonical.

Theorem 17 was proved in [26] if (M, g) is asymptotic to Schwarzschild and in [23] if τ = 1. Previous
results have been obtained in [20, 18]. The assumption that Σ encloses Br cannot be dropped; see
[8]. We note that stronger results are available if (M, g) is asymptotic to Schwarzschild and if the
scalar curvature satisfies a growth condition; see [7, 11, 10, 6]. If (M, g) is spatial Schwarzschild, all
embedded constant mean curvature spheres have been classified in [5]. It has been shown in [12] that
the spheres Σ(H) bound isoperimetric regions.

3.0.1. Christodoulou-Yau estimate.

Proposition 19. Let Σ ⊂M be a stable constant mean curvature sphere. There holds

2

3

∫
Σ
|
◦
h|2 dµ ≤ 16π −

∫
Σ
H2 dµ.

Proof. By the uniformization theorem, we may choose a conformal diffeomorphism ψ : Σ → S1(0) with∫
Σ
ψ dµ = 0.

In particular, there exists u ∈ C∞(Σ) with ḡ(∇fαψ,∇fβψ) = u2 δαβ for every local orthonormal frame
{f1, f2} of Σ. Note that∫

Σ
ḡ(∇ψ,∇ψ) dµ = 2

∫
Σ
u2 dµ = 2

∫
Σ

√
det (∇ψ)t∇ψ dµ = 8π.

Since Σ is stable, we have∫
Σ
|h|2 +Ric(ν, ν) dµ =

3∑
i=1

∫
Σ
|h|2 ḡ(ψ, ei)2 +Ric(ν, ν) ḡ(ψ, ei)

2dµ ≤ 8π.

The assertion follows from this, the Gauss equation

|h|2 +Ric(ν, ν) =
1

2
|
◦
h|2 + 3

4
H2 +

1

2
R−K,

and the Gauss-Bonnet theorem, using that R ≥ 0. □
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3.0.2. Curvature estimates. Let Σ ⊂ M be a closed surface. We define the area radius λ(Σ) of Σ by
4π λ(Σ)2 = |Σ| and the inner radius ρ(Σ) by

ρ(Σ) = sup{r > 1/2 : Br ∩ Σ} = ∅.

Let {Σℓ}∞ℓ=1 be a sequence of stable constant mean curvature spheres Σℓ ⊂ M enclosing B1 with
ρ(Σℓ) → ∞. By Proposition 19, H = O(λ(Σℓ)

−1).

Lemma 20. [26] There holds, as ℓ→ ∞,

|x|2ḡ |
◦
h|2 =O(|x|−2 τ

ḡ ) +O

( ∫
Σℓ

|
◦
h|2 dµ

)
.

Proof. We only sketch the argument. By the Simons’ identity

∆h = ∇2H + h ∗ h ∗ h+ h ∗Rm+DRm ∗ 1 = h ∗ h ∗ h+ h ∗Rm+DRm ∗ 1.

More precisely,

−|
◦
h|∆|

◦
h| = O(|

◦
h|4) +O(H2 |

◦
h|2) +O(|x|−2−τ

ḡ |
◦
h|2) +O(|x|−2−2 τ

ḡ |
◦
h|).

In conjunction with the Michael-Simon-Sobolev inequality,(∫
Σℓ

u2 dµ

) 1
2

= O(1)

∫
Σℓ

|∇u| dµ+O(1)

∫
Σℓ

H udµ

where u ∈ C∞(Σℓ), we obtain∫
B|x|ḡ/4(x)∩Σℓ

|
◦
h|4 dµ ≤ O(|x|−2

ḡ )

∫
B|x|ḡ/2(x)∩Σℓ

|
◦
h|2 dµ.

The assertion now follows from Moser iteration. □

3.0.3. Hawking mass estimate. Using the inequality∫
Σℓ

H2 dµ ≤ 16π,

we see that ∫
Σℓ

H̄2 ≤ 16π +O(ρ(Σℓ)
−τ ).

In particular, λ(Σℓ)
−1Σℓ converges to a round sphere in Haussdorff distance. In particular, supx∈Σℓ

|x|ḡ =

O(λ(Σℓ)).

We now prove a refined estimate for the Willmore energy.

Lemma 21 ([11]). There holds

16π −
∫
Σℓ

H2 dµ ≤ O(λ(Σℓ)
−1).(14)

Proof. Let Σ′
ℓ ⊂M be the minimizing hull of Σℓ. Note that

16π −
∫
Σℓ

H2 dµ ≤ 16π −
∫
Σ′

ℓ

H2 dµ.(15)

Moreover, there holds λ(Σℓ) = (1 + o(1))λ(Σ′
ℓ). By [19],√

|Σ′
ℓ|

16π

(
1− 1

16π

∫
Σ′

ℓ

H2 dµ

)
≤ m.

□
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Corollary 22. There holds
|x|2ḡ |

◦
h|2 = O(|x|−2 τ

ḡ ) +O(λ(Σℓ)
−1).

3.0.4. Convergence to a coordinate sphere. Let xℓ ∈ Σℓ ∩ Sρ(Σℓ)(0). Passing to a subsequence, we may
assume that there is ξ ∈ R3 with |ξ|ḡ = 1 and

lim
ℓ→∞

|xℓ|−1
ḡ xℓ = −ξ.(16)

Lemma 23. The surfaces 1
2 H(Σℓ) Σℓ converge to S1(ξ) in C1 in R3.

Proof. We may assume that ξ = e3. Moreover, we may assume that |xℓ|−1 xℓ = −e3 for every ℓ > 1.
Let γℓ > 0 be largest such that there is a smooth function uℓ : {y ∈ R2 : |y|ḡ ≤ γℓ} → R with

(17)
◦ |(∇̄uℓ)(y)| ≤ 1,

◦ (y, ρ(Σℓ) + uℓ(y)) ∈ Σℓ

for all y ∈ R2 with |y|ḡ ≤ γℓ. Clearly, (∇̄uℓ)(0) = 0. It follows that

4 |(y, ρ(Σℓ) + uℓ(y))|ḡ ≥ |y|ḡ + ρ(Σℓ)

and

|(∇̄2uℓ)(y)|ḡ ≤ 8 |h̄((y, ρ(Σℓ) + uℓ(y)))|ḡ.

Moreover,

|h̄|ḡ =
1

2
|H(Σℓ)|+O(|x|−1−τ

ḡ ) +O(|x|−1
ḡ λ(Σℓ)

−1/2) =
1

2
|H(Σℓ)|+O(|x|−3/2

ḡ ).

Integrating,

|(∇̄uℓ(y)|ḡ ≤ 4 |y|ḡH(Σℓ) +O(ρ(Σℓ)
−1/2).

It follows that 1
2 Hℓ γℓ ≥ 1

16 for all ℓ sufficiently large. The assertion follows. □

3.0.5. Uniqueness of large stable constant mean curvature spheres. We need the following decay esti-
mate.

Lemma 24 ([20]). Let q > 2. There holds

ρ(Σℓ)
q−2

∫
Σℓ

|x|−q
ḡ dµ̄ ≤ O(1).

Proof. This follows from an application of the first variation formula. □

Proof of Theorem 17. Suppose, for a contradiction, that the conclusion of Theorem 17 fails. It follows
that there is a sequence {Σℓ}∞ℓ=1 of stable constant mean curvature spheres Σℓ ⊂ R3 enclosing B1(0)

with ρ(Σℓ) → ∞ and Σℓ ̸= Σ(H) for every H ∈ (0, H0).
Let a ∈ R3 with |a|ḡ = 1. Clearly,∫

Σℓ

H g(a, ν) dµ = H(Σℓ)

∫
Σℓ

g(a, ν) dµ.

On the one hand, arguing as in Lemma 12, we see that

g(a, ν) dµ = [ḡ(a, ν̄) + ḡ(a, ν̄) t̄rσ +O(|x|−2 τ
ḡ )] dµ̄.
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Moreover, by the divergence theorem, ∫
Σℓ

ḡ(a, ν̄) dµ̄ = 0.

Using Lemma 24, we obtain

H(Σℓ)

∫
Σℓ

g(a, ν) dµ =
1

2

∫
Σℓ

H̄ ḡ(a, ν̄) t̄rσ dµ̄+ o(1).

On the other hand, by the first variation formula, we have∫
Σℓ

H g(a, ν) dµ =

∫
Σℓ

[div a− g(Dνa, ν)] dµ.

As in Lemma 12,

[div a− g(Dνa, ν)] dµ =
1

2
[D̄a trσ − (D̄aσ)(ν̄, ν̄) +O(|x|−1−2 τ

ḡ )] dµ̄.

In conjunction with Lemma 24, we find∫
Σℓ

[div a− g(Dνa, ν)] dµ =
1

2

∫
Σℓ

[D̄at̄rσ − (D̄aσ)(ν̄, ν̄)] dµ̄+ o(1).

Using these estimates and integration by parts, we conclude that

0 =

∫
Σℓ

[D̄ν̄ t̄rσ − (d̄iv σ)(ν̄)] ḡ(a, ν̄) dµ̄+
1

2
H(Σℓ)

∫
Σℓ

[σ(a, ν̄)− t̄rσ ḡ(a, ν̄)] dµ̄

+O

(∫
Σℓ

|
◦

h̄|ḡ |σ|ḡ dµ̄
)
+ o(1).

Note that ∫
Σℓ

|
◦

h̄|ḡ |σ|ḡ dµ̄ = o(1).

Let zℓ ∈ Σℓ with ν̄(zℓ) = −|xℓ|−1
ḡ xℓ and

ξℓ =
1

2
H(Σℓ) zℓ − ν̄(zℓ).

It follows from Lemma 23 that ξℓ → ξ. We define the map Eℓ : Σℓ → R3 by

Eℓ = ν̄(Σℓ)−
1

2
H(Σℓ)x+ ξℓ.

Using Lemma 23 and the curvature estimates, we have

∇̄Eℓ = O(|x|−3/2
ḡ )(18)

and, consequently, Eℓ = O(|x|−1/2
ḡ ). We obtain

0 =

∫
Σℓ

[D̄ν̄ trσ − (d̄iv σ)(ν̄)] ḡ
(
a, 12 H(Σℓ)x− ξℓ

)
dµ̄+

1

2
H(Σℓ)

∫
Σℓ

[σ(a, ν̄)− ḡ(a, ν̄) t̄rσ] dµ̄

+ o(1).

As in the proof of Theorem 9, using the divergence theorem and that R is integrable, we find

0 = ḡ(a, ξℓ)

∫
SH(Σℓ)

−1 (0)
(d̄iv σ)(ν̄)− D̄ν̄ t̄rσ dµ̄

+
1

2
H(Σℓ)

∫
SH(Σℓ)

−1 (0)
ḡ(a, x)

[
D̄ν̄ t̄rσ − (d̄iv σ)(ν̄)

]
+ σ(ν̄, a)− ḡ(a, ν̄) t̄rσ dµ̄
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+ o(1)

so that
0 = 16πm ḡ(a, ξ).

It follows that ξ = 0. By local uniqueness of the implicit function theorem, we have Σℓ = Σξ̃ℓ,λℓ

for suitable ξ̃ℓ ∈ R3 and λℓ ∈ R with ξ̃ℓ → 0 and λℓ → ∞. By Lemma 11, we have ξ̃ℓ = ξ(λℓ), a
contradiction. □

4. Lecture 4

4.1. Asymptotic foliations by area-constrained Willmore spheres. Let (M, g) be a Riemannian
manifold that is asymptotically flat. Area-constrained Willmore spheres are more sensitive to the local
geometry of (M, g). We therefore require stronger decay assumptions on the metric g.

Definition 25. We say that (M, g) is asymptotic to Schwarzschild with mass m > 0 if, in the asymp-
totically flat chart, g = gm + σ where

|σ|ḡ + |x|ḡ |D̄σ|ḡ + |x|2ḡ |D̄2σ|ḡ = O(|x|−2
ḡ ).

Theorem 26 ([16]). Let (M, g) be asymptotic to Schwarzschild with mass m > 0 and non-negative
scalar curvature. There exists a family {Σ(κ) : κ ∈ (0, κ0)} of area-constrained Willmore spheres
Σ(κ) ⊂M with Lagrange parameter κ that sweeps out the complement of a compact subset of M .

Remark 27. The assumption that R ≥ 0 cannot be dropped. Understanding large area-constrained
Willmore spheres in general asymptotically flat manifolds with non-negative scalar curvature appears
to be beyond the reach of the methods presented here.

Theorem 26 has been proved in [22] under stronger decay assumptions on both the metric g and the
scalar curvature R.

4.1.1. Lyapunov-Schmidt reduction. Recall that, given ξ ∈ R3 and λ > 1,

Sξ,λ = Sλ(λ ξ) = {x ∈ R3 : |x− λ ξ|ḡ = λ}.

Moreover, recall that Σξ,λ(u) is the Euclidean graph of u ∈ C∞(Sξ,λ) over Sξ,λ.

Proposition 28. Let δ ∈ (0, 1/2). There are constants λ0 > 1 and ϵ > 0 such that for every ξ ∈ R3

with |ξ|ḡ < 1− δ and λ > λ0 there exists a function uξ,λ ∈ C∞(Sξ,λ) such that the following holds. Let
Σξ,λ = Σξ,λ(uξ,λ). There holds

|Σξ,λ| = 4π λ2.

Moreover, Σξ,λ is an area-constrained Willmore sphere if and only if ξ is a critical point of the reduced
Willmore energy Gλ : {ξ ∈ R3 : |ξ|ḡ < 1− δ} given by

Gλ(ξ) = λ−2

(∫
Σ
H2 dµ− 16π − 32πmλ−1

)
.

4.1.2. Computing the reduced Willmore energy. By scaling, we may assume from now on that m = 2.
We use a tilde to indicate that a geometric quantity is computed with respect to the metric g̃ = g2.

Lemma 29. There holds

Gλ(ξ) = 64π +
32π

1− |ξ|2ḡ
− 48π |ξ|−1

ḡ log
1 + |ξ|ḡ
1− |ξ|ḡ

− 128π log(1− |ξ|2ḡ) + 2λ

∫
R3\Bλ(λ ξ)

R dv̄ +O(λ−1).
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Proof. We only sketch the argument.
In the first step, by an explicit calculation, we estimate∫

Sξ,λ

H̃2 dµ̃.

Second, we estimate ∫
Sξ,λ

H2 dµ−
∫
Sξ,λ

H̃2 dµ̃.

To this end, note that∫
Sξ,λ

H2 dµ = 16π + 2

∫
Sξ,λ

|
◦
h|2 dµ+ 2

∫
Sξ,λ

(2 Ric(ν, ν)−R) dµ.(19)

We have ∫
Sξ,λ

|
◦̃
h|2g̃ dµ̃ = 0 and

∫
Sξ,λ

|
◦
h|2 dµ = O(λ−4).

Next, recall that the Einstein tensor

E = Ric−1

2
Rg

is divergence free. Let Z = (1+ |x|−1
ḡ )−2 λ−1 (x−λ ξ) and note that Z = ν̃ on Sξ,λ. By the divergence

theorem, ∫
Sξ,λ

E(Z, ν) dµ = −
∫
R3\Bλ(λ ξ)

[
1

2
g(E,DZ)− 1

6
(divZ)R

]
dv + 8πmλ−1.(20)

Here,

DZ = LZg −
1

3
tr(LZg) g

is the conformal Killing operator. Using that DZ = O(λ−1 |x|−1
ḡ ) and R̃ = 0, we see that the relevant

contribution of the perturbation σ is given by

1

6

∫
R3\Bλ(λ ξ)

(divZ)R dv =
1

2
λ−1

∫
R3\Bλ(λ ξ)

R dv̄ +O(λ−3).

Finally, we estimate ∫
Σξ,λ

H2 dµ−
∫
Sξ,λ

H2 dµ.(21)

To this end, let W = −∆H − H (|
◦
h|2 + Ric(ν, ν)) and Q be the linearization of W . We compute

W̃ (Sξ,λ) explicitly in terms of spherical harmonics. Using that

Q̃(Sξ,λ)(uξ,λ)− W̃ (Sξ,λ)− 2κλ−1 = W̃ (Σξ,λ)− 2κλ−1 +O(λ−5) =W (Σξ,λ)− κH(Σξ,λ) +O(λ−5),

that W (Σξ,λ)− κH(Σξ,λ) ∈ Λ1(Sξ,λ), and that

Q̃(Sξ,λ)(uξ,λ) = −∆̄2 uξ,λ − 2λ−2 ∆̄uξ,λ +O(λ−5),

we obtain an expansion for uξ,λ in terms of spherical harmonics. We then estimate (21) using the first
and second variation for the Willmore energy. □

Proof of Theorem 26. Note that

64π +
32π

1− |ξ|2ḡ
− 48π |ξ|−1

ḡ log
1 + |ξ|ḡ
1− |ξ|ḡ

− 128π log(1− |ξ|2ḡ) → ∞
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as |ξ|ḡ → 1. Using that R ≥ 0 and that R = O(|x|−4
ḡ ), we see that Gλ(ξ) > Gλ(0) for every ξ ∈ R3

with |ξ|ḡ = 1 − δ provided that δ > 0 is sufficiently small and that λ > 1 is sufficiently large. In
particular, Gλ has a critical point for every λ > 1 sufficiently large. □

Remark 30. We can construct Riemannian manifolds that are asymptotic to Schwarzschild which
have local concentrations of negative scalar curvature and such that, given δ > 0, for infinitely many
values of λ, Gλ has no critical point ξ ∈ R3 with |ξ|ḡ < 1− δ.

4.1.3. Asymptotic positioning.

Theorem 31. Let (M, g) be asymptotic to Schwarzschild with mass m > 0 and non-negative scalar
curvature satisfying

R(x) = R(−x) and
3∑

i=1

xi ∂i(|x|2ḡ R(x)) ≤ 0.

Then the family {Σ(κ) : κ ∈ (0, κ0)} forms a foliation of the complement of a compact subset of M .

Remark 32. The weakest possible assumption on the scalar curvature that guarantees that the family
{Σ(κ) : κ ∈ (0, κ0)} forms a foliation is not known.

Lemma 29 suggests that the asymptotic positioning of the family {Σ(κ) : κ ∈ (0, κ0)} is determined
by the asymptotic distribution of scalar curvature in a nonlinear way. In the special case where (M, g)

is vacuum at infinity, we have the following result.

Theorem 33 ([18, Theorem 1]). Suppose that (M, g) is asymptotic to Schwarzschild with mass m > 0

and center of mass C and suppose that R = 0 outside a compact set. Then

lim
κ→0

|Σ(κ)|−1

∫
Σ(κ)

x dµ = C.

4.2. Uniqueness of large area-constrained Willmore spheres. Let {Σℓ}∞ℓ=1 be a sequence of
area-constrained Willmore spheres Σℓ ⊂M enclosing B1 such that ρ(Σℓ) → ∞. Suppose that∫

Σℓ

H2 dµ ≤ 16π(22)

for every ℓ. Note that, equivalently, mH(Σℓ) ≥ 0.

Remark 34. For ease of exposition, we only consider area-constrained Willmore spheres that enclose
B1. This assumption is not necessary for the following uniqueness results.

4.2.1. Curvature estimates.

Proposition 35. There holds, uniformly for all x ∈ Σℓ,

|h− λ(Σℓ)
−1 g|Σℓ

|4 =O(|x|−4
ḡ )

(∫
Σℓ∩B1/4 |x|ḡ (x)

|h− λ(Σℓ)
−1 g|Σℓ

|2 dµ
)2

+O(|x|−8
ḡ ) +O(κ(Σℓ)

2)

∫
Σℓ∩B1/4 |x|ḡ (x)

|h− λ(Σℓ)
−1 g|Σℓ

|2 dµ.

Proof. This follows from an adaptation of the integral curvature estimates proved in [21]. □

It follows from (22) that∫
Σℓ∩B1/4 |x|ḡ (x)

|h− λ(Σℓ)
−1 g|Σℓ

|2 dµ = O(λ(Σℓ)
−1 + ρ(Σℓ)

−2).(23)
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Corollary 36. There holds

|x|ḡ |h− λ(Σℓ)
−1 g|Σℓ

| = O(λ(Σℓ)
−1/2 + ρ(Σℓ)

−1).

4.2.2. A general convexity criterion.

Lemma 37. Let f ∈ C1(R3) be a non-negative function satisfying

3∑
i=1

xi ∂i(|x|2ḡ f) ≤ 0.(24)

For every ξ1, ξ2 ∈ R3 with |ξ1|ḡ, |ξ2|ḡ < 1 and λ > 0 there holds∫
Sξ1,λ

ḡ(ν̄, ξ2 − ξ1) f dµ̄ ≥
∫
Sξ2,λ

ḡ(ν̄, ξ2 − ξ1) f dµ̄.

Proof. We may assume that λ = 1. Moreover, we may assume that ξ2 ̸= ξ1 and that

e3 =
ξ2 − ξ1
|ξ2 − ξ1|ḡ

.

We define the hemispheres

Sℓ
+ = {x ∈ S1(ξℓ) : ḡ(ν̄, ξ2 − ξ1) ≥ 0} and Sℓ

− = {x ∈ S1(ξℓ) : ḡ(ν̄, ξ2 − ξ1) ≤ 0}

where ℓ = 1, 2. We parametrize S+
2 via

Ψ : (0, π)× (0, 2π) → S+
2 given by Ψ(ζ, φ) = ξ2 + (sin ζ sinφ, sin ζ cosφ, cos ζ).

and S+
1 by

(0, π)× (0, 2π) → S+
1 where (θ, φ) 7→ ξ1 + (sin θ sinφ, sin θ cosφ, cos θ).

Note that, given ζ, there is θ = θ(ζ) with θ ≤ ζ and t = t(ζ) > 1 such that

t [ξ1 + (sin θ sinφ, sin θ cosφ, cos θ)] = ξ2 + (sin ζ sinφ, sin ζ, cosφ, cos ζ).(25)

By a direct computation,
θ̇ sin θ cos θ ≥ t−2 sin ζ cos ζ.

Using that f is non-negative and (24), it follows that∫
S1
+

f ḡ(ν̄, ξ2 − ξ1) dµ̄−
∫
S2
+

f ḡ(ν̄, ξ2 − ξ1) dµ̄

≥ |ξ2 − ξ1|ḡ
∫ 2π

0

∫ π

0

[
t−2 f(t−1Ψ(ζ, φ))− f(Ψ(ζ, φ))

]
sin ζ cos ζ dζ dφ

≥ 0.

The same argument shows that∫
S1
−

f ḡ(ν̄, ξ2 − ξ1) dµ̄−
∫
S2
−

f ḡ(ν̄, ξ2 − ξ1) dµ̄ ≥ 0.

□

4.2.3. Local uniqueness.
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Proposition 38. Let (M, g) be asymptotic to Schwarzschild and suppose that

3∑
i=1

xi ∂i(|x|2ḡ R(x)) ≤ 0.(26)

Let {Σℓ}∞ℓ=1 be a sequence of area-constrained Willmore spheres Σℓ ⊂ M enclosing B1 such that
ρ(Σℓ) → ∞, mH(Σℓ) ≥ 0, and Σℓ ̸= Σ(κ) for every κ ∈ (0, κ0). Then ρ(Σℓ) = o(λ(Σℓ)).

Proof. Suppose for a contradiction, that, passing to a subsequence, λ(Σℓ) = O(ρ(Σℓ)). By Corollary
36, λ(Σℓ)

−1Σℓ converges smoothly to S1(ξ) for some ξ ∈ R3 with |ξ|ḡ < 1. In particular, Σℓ = Σξℓ,λℓ

for suitable ξℓ ∈ R3 and λℓ > 1 with λℓ → ∞. By Lemma 29 and Lemma 37, Gλℓ
is strictly convex.

In conjunction with Proposition 28, we see that Σℓ = Σ(κℓ) for suitable κℓ ∈ (0, κ). □

Remark 39. Proposition 38 is in general not true without the assumption (26) even when R ≥ 0.

4.2.4. Slowly divergent area-constrained Willmore spheres. We aim to prove the following improvement
on Proposition 38.

Theorem 40. Let (M, g) be asymptotic to Schwarzschild and suppose that

3∑
i=1

xi ∂i(|x|2ḡ R(x)) ≤ 0.

Let {Σℓ}∞ℓ=1 be a sequence of area-constrained Willmore spheres Σℓ ⊂ M enclosing B1 such that
ρ(Σℓ) → ∞, mH(Σℓ) ≥ 0, and Σℓ ̸= Σ(κ) for every κ ∈ (0, κ0). Then ρ(Σℓ) = O(log λ(Σℓ)).

Let {Σℓ}∞ℓ=1 be a sequence of area-constrained Willmore spheres Σℓ ⊂ M enclosing B1 such that
ρ(Σℓ) → ∞, mH(Σℓ) ≥ 0, ρ(Σℓ) = o(λ(Σℓ)), and log(λ(Σℓ)) = o(ρ(Σℓ))

Lemma 41. The surfaces λ(Σℓ)
−1Σℓ converge to S1(ξ) in C1 in R3 for some ξ ∈ R3 with |ξ|ḡ = 1.

It follows that, for every ℓ sufficiently large, Σℓ is the Euclidean graph over a nearby coordinate
sphere Sℓ = Sλℓ

(λℓ ξℓ).

Proposition 42. There holds, as ℓ→ ∞,

H(Σℓ) = (2 + o(1))λ(Σℓ)
−1 − 4λ(Σℓ)

−1 |x|−1
ḡ + o(ρ(Σℓ)

−1 λ(Σℓ)
−1)

and

κ(Σℓ) = o(ρ(Σℓ)
−1 λ(Σℓ)

−2).

We need the following lemma.

Lemma 43. There is a constant c > 0 with the following property. Let ξ ∈ R3 and λ > 0. Suppose
that u, f ∈ Λ0(Sλ(λ ξ))

⊥ are such that ∆̄u = f. Then

sup
x∈Sλ(λ ξ)

|x|ḡ |∇̄u(x)|ḡ ≤ c

(∫
Sλ(λ ξ)

|f | dµ̄+ sup
x∈Sλ(λ ξ)

|x|2ḡ |f |
)
.

Proof of Proposition 42. We only sketch the argument. For ease of exposition, we assume that κ(Σℓ) =

0.
Recall the potential function N : R3 \ {0} → R of spatial Schwarzschild given by

N(x) = (1 + |x|−1
ḡ )−1 (1− |x|−1

ḡ )
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and that D̃2N = N R̃c. Let Fℓ = N−1H(Σℓ). By a direct computation,

∆Fℓ = (|
◦
h|2 + κ+O(|x|−4

ḡ ) +O(|x|−2
ḡ |Fℓ|))Fℓ +O(|x|−3

ḡ ) |x|ḡ |∇̄Fℓ|ḡ.

By the curvature estimates, we have |Fℓ| = O(λ(Σℓ)
−1) + O(|x|−1

ḡ (λ(Σℓ)
−1/2 + ρ(Σℓ)

−1)). Moreover,
using Lemma 41,

Fℓ = projΛ0(Sℓ)
Fℓ + projΛ0(Sℓ)⊥ Fℓ = O(λ(Σℓ)

−1) +O(log(ρ(Σℓ)
−1 λ(Σℓ))) sup

x∈Sℓ

|x|ḡ |∇̄Fℓ|ḡ.

Using Lemma 41, we may apply Lemma 43 and (23) to obtain

sup
x∈Σℓ

|x|ḡ |∇F̄ |ḡ = O((λ(Σℓ)
−1/2 + ρ(Σℓ)

−1)2 + λ(Σℓ)
−1 log(ρ(Σℓ)

−1 λ(Σℓ)))

(λ(Σℓ)
−1 + log(ρ(Σℓ)

−1 λ(Σℓ)) sup
x∈Σℓ

|x|ḡ |∇F̄ |ḡ)

+ ρ(Σℓ)
−1 sup

x∈Σℓ

|x|ḡ |∇F̄ |ḡ.

Absorbing, we obtain

sup
x∈Σℓ

|x|ḡ |∇F̄ |ḡ = O((λ(Σℓ)
−1/2 + ρ(Σℓ)

−1)2 + λ(Σℓ)
−1 log(ρ(Σℓ)

−1 λ(Σℓ)))λ(Σℓ)
−1.

Using that
projΛ0(Sℓ)⊥ Fℓ = O(log(ρ(Σℓ)

−1 λ(Σℓ))) sup
x∈Sℓ

|x|ḡ |∇̄Fℓ|ḡ

and that, for instance,

log(ρ(Σℓ)
−1 λ(Σℓ)) ρ(Σℓ)

−2 λ(Σℓ)
−1 = o(ρ(Σℓ)

−1 λ(Σℓ)
−1),

it follows that projΛ0(Sℓ)⊥ Fℓ = o(ρ(Σℓ)
−1 λ(Σℓ)

−1) as claimed. □

Proof of Theorem 40. A lengthy computation using Proposition 42, integration by parts, and the di-
vergence theorem shows that

0 =

∫
Σℓ

(−∆H − (|
◦
h|2 +Ric(ν, ν))H) g(ξℓ, ν) dµ− κ

∫
Σ
H g(ξℓ, ν) dµ

= 4π ρ(Σℓ)
−2 λ(Σℓ)

−1 − λ(Σℓ)
−1

∫
Σℓ

ḡ(ξℓ, ν)R dµ̄+ o(ρ(Σℓ)
−2 λ(Σℓ)

−1).

By Lemma 41, ḡ(ξℓ, ν) ≥ 0 implies that |x|ḡ ≥ 1/2λ(Σℓ). In conjunction with the estimates R ≥ 0,
R = O(|x|−4

ḡ ), and ρ(Σℓ) = o(λ(Σℓ)), we conclude that

0 = 4π ρ(Σℓ)
−2 λ(Σℓ)

−1 − o(ρ(Σℓ)
−2 λ(Σℓ)

−1),

a contradiction. □

Conjecture 1. Let (M, g) be asymptotic to Schwarzschild and suppose that

3∑
i=1

xi ∂i(|x|2ḡ R(x)) ≤ 0.

There exist r > 1 and A > 1 with the following property. Let Σ ⊂M be an area-constrained Willmore
sphere with non-negative Hawking mass such that Σ ∩ Br = ∅ and |Σ| > A. Then Σ = Σ(κ) for some
κ ∈ (0, κ0).
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