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Preface

These lecture notes result from the second part of a two term course in func-
tional analysis. Therefore, there are sometimes references to subjects which
were introduced and discussed in the first part of the course. In order to
improve the readability, some of these results are shortly recapitulated.

These notes are mostly based on Dirk Werner:” Funktionalanalysis” [W] and

Michael Reed and Barry Simon:” Functional Analysis” [RS].

The starting point in this course was the spectral theorem for bounded
self-adjoint operators. The continuous functional calculus version was al-
ready proven in the end of Functional Analysis 1. After giving a functional
calculus for measurable functions, we introduce spectral projections and pro-
jection valued measures. The last result given in this context is the fact that
each bounded self-adjoint operator is unitary equivalent to a multiplication
operator on some Hilbert space. A generalisation to normal bounded oper-
ators is given in the appendix. It is based on a talk of Jan Mdchring, who
agreed to add his handout to this text.

The second chapter gives definitions and properties of unbounded oper-
ators on Hilbert spaces. In particular, we discuss the notion of symmetric,
closed and (essentially) self-adjoint operators, give criteria for a symmetric
operator to be (essentially) self-adjoint and define the Friedrichs extension.
In the next section, the different versions of the spectral theorem described
above are generalized to unbounded self-adjoint operators. In the third sec-
tion, strongly continuous one-parameter semigroups of operators on a Banach

space and in particular contraction semigroups are introduced and the the-



orems of Hille-Yosida and Lumer-Phillips are proven. These theorems give
criteria for an operator to be the infinitesimal generator of a strongly contin-
uous semigroup. Then we consider continuous unitary groups of operators
on a Hilbert space and prove Stone’s Theorem. In the last part of this chap-
ter, we discuss the notion of commuting unbounded operators and Trotter’s
product formula.

The third chapter includes definitions and properties of locally convex
spaces and Fréchet spaces, in the end, we briefly introduce distributions and
the Fourier transform. The appendix includes the handouts for talks given by
Jan Mohring and Pushya Mitra on the spectral theorem for normal operators
and on the Gelfand-Naimark-Theorem respectively at the end of the term.

Exercises are given at the end of each section. For some of them Jan

Mohring provided solutions which are given in the appendix.

I am pleased to thank the students who took part in the course and helped
to improve these notes with their questions and comments. Especially I want
to thank Jan Mohring for his constructive remarks, numerous suggestions
and corrections and his consent to make some of his solutions for exercises
available. Moreover I thank Jan Mohring and Pushya Mitra for their approval
to add to this script the handouts of their talks.
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Chapter 1

Bounded operators on Hilbert

spaces

1.1 Spectral Theorem for bounded operators

1.1.1 Results from the previous Semester

We continue our analysis of the spectrum of self-adjoint (or normal) opera-
tors started in ”Functional analysis 1”7 and give a recap on definitions and

results we discussed there.

We start with a short reminder on the spectrum of operators.

DEFINITION 1.1 (SPECTRUM OF A BOUNDED OPERATOR)
Let X be a Banach space over K and T € L(X) a bounded linear operator
on X.

i) A complex number X € C is said to be in the resolvent set p(T") of
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

T < MNd—T is a bijection (with bounded inverse).
i) R\(T) := (\Id—T)~" is called the resolvent of T at X € p(T).

iii) If X & p(T'), then X is said to be in the spectrum o(T) = C\ p(T) of
T.

iv) A vector x € X, x # 0, is called eigenvector of T :< Tx = Az for
some \ € C.
In this case, X is called corresponding eigenvalue. (Then A1d =T is
not injective and thus in particular X € o(T')). The set of all eigenval-

ues is called point spectrum o,(T) of T

v) If X is not an eigenvalue (i.e. N1d =T is injective), but N\Id =T is not
surjective and the range Ran(A1d —=T') C X is dense, then X is said to

be in the continuous spectrum o.(7) of T.

vi) If X is not an eigenvalue and \1d —T is not surjective, but Ran(A1d —T)
is not dense in X, then X is said to be in the residual spectrum o, (7")

of T.

In Theorem 80, we proved that the resolvent set p(T") C C is open and

the map
R(T) : p(T) — L(X), A= R\(T)

is analytic.

Moreover, for any A, 1 € p(71") the operators Ry(T') and R, (T") commute and

RA(T) — R,(T) = (p— N)RA(T)R,(T) First Resolvent Formula
(1.1)

10



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Lemma 79 told us that if ) 2 ;7™ converges in £(X) (in particular if
|IT|| < 1), then (Id —T7) is invertible and

(Id—T)~ ZT” (1.2)

These two results imply (Corollary 81) that o(7) is compact, |[A| < ||T|
for all A € o(T) and if K = C, then (7)) # 0 . In particular, for |\| > |||

1 (o.9]
Ad-T)" = X E < ) Von Neumann Series (1.3)
n=0

In Theorem 84 we proved for the spectral radius of T" given by r(T) :=
inf,en ||77||Y/™ that

H(T) = Tim [T (1.4
IA| < r(T) forany \e€o(T) (1.5)
Neo(T) : |MN=r(T) if K=C. (1.6)

If X is a Hilbert space and T is self-adjoint, then (T") = ||T’|| (Prop.85).
This implies that if K = C, there exists A\ € o(7T) such that |[A| = ||T.

For a Banach space X with dual space X* = £L(X,K) and T € L(X), the
adjoint operator (or ”Banach space adjoint”) 7" € L£L(X*) is defined by the
relation

(T'0)(x) = £(Tx), le X", zeX.
The map T — T" is an isometric isomorphism onto its range (in general not

surjective).

11



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

Then Proposition 86 and 87 showed

o(T)=0o(T"),  R\(T") = RA\(T)", (1.7)

o.(T) Cop(T') and 0,(T) C (0,(T") U0, (T")).
If 77 is a Hilbert space, the Riesz Lemma shows that the map
C:H =", y=Cy) =y

is isometric, surjective and conjugate linear.
It allows to define for T" € L(s#) the adjoint operator (or ”Hilbert space
adjoint”) T* € L() by T* = C~'T"C. Then T* satisfies the relation

(z,Ty) = (T"z,y), x,yeH
and the map T' — T* is a conjugate linear (i.e. o1 — aT™*) isometric iso-
morphism on L(J7).
Then by Proposition 86 we have
o(T*)={N|X€a(T)} and R\(T*)= Ry(T)" (1.8)

In Theorem 88 we considered a bounded self-adjoint operator A on a

Hilbert space 7. We saw that
o.(A)=0 and o(A)CR (1.9)

and that eigenvectors associated to different eigenvalues are orthogonal.

We already gave the following version of the Spectral Theorem:

12



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

THEOREM 1.2 (CONTINUOUS FUNCTIONAL CALCULUS)
Let 7 be a Hilbert space and A € L(H) self-adjoint. Then there exists a
unique map P4 : C(o(A)) — L(H) with the following properties:

i) Da(1l) =1d and ®4(x) = A (here 1 denotes the function f(x) =1 for

all z and x denotes the function f(z) = x).

it) ®4 is an algebraic x-homomorphism (with respect to multiplication in
C(a(A)) and composition in L(F)), i.e. for all f,g € C(c(A)) and
A€ a(A)

Qu(f+9) =Pa(f) +DPalg) and DPa(Nf) = APA(f) linear
Du(f-g9)=Da(f) o Pa(g) multiplicative

i11) ®4 is continuous.
Moreover, ® 4 has the following additional properties:
) I A = M, then ®a(F)i = FA).
v) Spectral Mapping Theorem: o(®4(f)) = {f(N\) | € a(A)}.
vi) ®y4 is positive (preserving), i.e. f >0 implies Pao(f) >0 .
vii) P4 is isometric, i.e. || Pa(f)|lz = ||flloo-

Here we used for T' € L(.7) the notation 7' > 0 if (x,Tz) > 0 for all
r e .

13



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

We will sometimes write ®4(f) =: f(A). Then v) is in short notation
a(f(A)) = f(o(A)).

For compact self-adjoint operators, we have a more explicit form of the
Spectral Theorem. To derive it, we start with a reminder on the Riesz-

Schauder-Theorem (101) and the Hilbert-Schmidt-Theorem (102).

THEOREM 1.3 (RIESZ-SCHAUDER-THEOREM)

Let 7 be a Hilbert space and A € () a self-adjoint compact operator.
Then o(A) is a discrete set having no limit points except perhaps 0. Fur-
thermore, any non-zero X\ € o(A) is an eigenvalue of finite multiplicity (i.e.
the corresponding eigenspace Ey spanned by the eigenvectors is finite dimen-

sional).

We remark that if K = C, then

THEOREM 1.4 (HILBERT-SCHMIDT-THEOREM)

Let S be a Hilbert space and A € K(I) a self-adjoint compact operator.
Then there exist a complete orthonormal system {po }acr for H, a countable
or finite subset Iy = {a,} C I and a null sequence (A4, )nen n K\ {0} such
that

Ada,, = Ao, Pa, and Aps =0 if pel\l.
These theorems allow to show:

THEOREM 1.5 (SPECTRAL THEOREM FOR COMPACT OPERATORS)

Let A be a Hilbert space and A € K(I) a self-adjoint compact operator.

14



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Then there ezists an orthonormal system {¢,} and a null sequence (\,) in

K\ {0} (both maybe finite) such that

H =ker A@span{¢,}  and  AY =) M(bn,¥)n,  (1.10)

in particular Ap, = A\,é, and || A|| = max,, |\,]|.
Denoting by 11, the orthogonal projection to the eigenspace

.E/\k = ker()\k Id —A)
of \i, and \g = 0 we get
A =E@E\,, and A=) M\, (1.11)
n=0 n=1

and the sum converges in operator norm.

Before we start to prove Theorem 1.5, we give a short reminder on or-
thogonal projections:
In Theorem 40 (the Projection Theorem) we have seen that if J# is a closed
subspace of the Hilbert space 7, then every 1) € 7 can uniquely be written
as 1) = 1 + by where ¢ € 4 and 1, € J4+ (here - = {¢p € H|Vp €
4 1 (¢,¢) = 0} denotes the orthogonal complement on ). Then we

called the linear maps

Ly 50 — 5, Iy =1 and
Wy = s 0 — A, Tth = 1y

orthogonal projection to 74 and 4" respectively and proved ||TLy || = 1.

If {e,} is an orthonormal basis of 77, then II 4 = II where

M= (e, V)ea, U E N (1.12)

15



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

To see this, it suffices to prove that 1 — IIy) € %%, because the partition of

1 given above is unique. But for any eg

<€B’w o Z<€a,¢>6a> = <6/3’¢)> - Z(ea7¢><eﬂ>ea> =0

«

(since (eg, €q) = dap)-

Proposition 70 told us that for each orthogonal projection IT on a closed
subspace we have II? = IT and II* = II. Moreover we even have the reverse,
i.e. if II € L(#) such that IT? = II and IT* = II holds, then the range of II

is a closed subspace of 77 and II is the orthogonal projection its range.

Proof. Consider the basis {¢4}acs for S described in Theorem 1.4. Set
On = o, and A, = A, # 0 for a,, € Iy, then ()\,) is a null sequence in
K\ {0} and the representation of .7 in (1.10) follows immediately from the
fact that ¢, € ker A for a € T\ I,.

Moreover, by Theorem 96, each ¢ € 2 can be written as ¢ = > (¢, V) da
and the summands are non-zero only for a countable subset of I. But since

Ap, = 0 for a ¢ Iy, it follows that

AP =AY (¢aV)ba = > (Gap V) Aba, = D Albn,10)bn

acl an€lp

Moreover this gives the estimate

> (b )

n

< max |A,| < max [A,[[[¢]]
n n

| A = |

D A n, )b

proving that [|A|| < max, |[\,|. Since |A\| < ||A]| for each A € o(A) we get

equality.

16



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

The representation of 7 in (1.11) follows at once from (1.10) and the fact
that the kernel of Ay Id —A is spanned by the eigenvalues associated to A
(by Theorem 1.3 these eigenspaces are finite dimensional if A, # 0).

The last representation of A follows from (1.12) together with (1.10) by
combining all summands belonging to the same value of .

To show that the sum converges in operator norm we use that || > - IL,[| =

1 to write

N fee)
A= > AL
n=1

n=N+1

<max [\, — 0 (N — o0).
n>N
O

Since for A € L(s) compact and self-adjoint and f € C(c(A)), the
map f — Y, f(\,)II, has the properties i),ii) and iii) from Theorem 1.2
(Exercise 1.32), it describes the map @4, i.e. we have f(A) =37 f(A)IL,

Thus the Continuous Functional Calculus allows to regain the orthogonal
projections Il as images of A under suitable characteristic functions. In

fact, defining for £ > 1 the continuous functions

1 ift = Mg
ka-(A):{O}U{)\l,)\Q,}HR given by fk(t):

0 otherwise

These functions are continuous because by Theorem 1.3 all elements of the

spectrum of A except 0 are isolated points. Then we get

f]( (I)A fj Zf]

17



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

1.1.2 Functional Calculus Form

To get a similar procedure for a bounded (non-compact) self-adjoint operator
A, we have to define an operator f(A) for some {0, 1}-valued functions f on
o(A). But in general, if the points of the spectrum are not isolated, these
functions will not be continuous. Thus it will be necessary to get a Func-
tional Calculus for the class B(o(A)) of Borel-measurable bounded functions

on the (compact) set o(A).

To this end, we first introduce the notion of a spectral measure using the
Riesz-Markov-Theorem, which we state here in two versions without proof.

We start with a short reminder on complex measures.

REMARK 1.6

A complex measure on a o-algebra (X, F) is a function p : F — C such
that for any disjoint partition of £ € F (i.e. £ =J; E; and E; N Ey, =0
for j # k) the equality

w(E) = n(E;)

holds (in particular the series converges absolutely). We define the total

variation of p by
|| (E) = sup{z \W(E))| | {E;} is a disjoint partition of E} .
j=1

Then |u| is the smallest positive measure dominating jv and is in particular
finite, i.e. ||p| = |p[(X) < cc.

The Radon-Nikodym-Theorem states that if v is absolutely continuous with
respect to a positive o-finite measure \ (i.e. if u(E) = 0 whenever A\(E) = 0,

18



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

we write <K ), then there exists a unique h € L*(X) such that
,u(E):/hd)\, EerF. (1.13)
E

Since by definition p < |p|, there exists a unique h € L'(X) such that (1.13)

holds for A\ = |u|. Moreover it can be shown that in this case |h(z)| =1 for
allz € X.

This suggests to define integration with respect to the complex measure p by

[ raw= [ tndil.

Then [ fd(p1+p2) = [ fdu+ [ fdus for any two complex measures puy, fi.

the formula

Now let X be a locally compact Hausdorffspace and F the Borel-o-algebra.
We call a complex Borel measure p regular, if |u| is reqular i.e. if for all

FEeF

inf{|p|(V)|E CV and V is open} = |u|(E)

= sup{|p|(K) | K C E and K is compact} .

The first equality defines outer regularity, the second inner regularity of

||, a regular measure is outer and inner regular.

THEOREM 1.7 (RIESZ-MARKOV-THEOREM)
Let X be a Hausdorff space.

i) If X is compact, then for any positive bounded linear functional £ on

C(X) there is a unique reqular Borel measure p € #(X) on X with

() = /X fdu,  (feC(X)). (1.14)

19



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

it) If X is locally compact, then for any bounded linear functional ¢ on
Co(X) there is a unique complex reqular Borel measure p € Mc(X) on

X with
() = /X fdu,  (f €ColX)). (1.15)

Moreover, in both cases the operator-norm of £ is equal to the total variation

|ul of p.

REMARK 1.8
We remark that for a given Borel measure p € #(X), the integral on the
right hand side of (1.14) defines a continuous positive linear functional and

analog for complexr measures. Moreover each positive linear functional is

bounded with ||¢|| < ¢(1) (Ezercise 1.53).

We come back to our goal to extend the functional calculus for self-adjoint

operators from continuous to bounded measurable functions.

Let ¢ be a Hilbert space and A € L(J) be self-adjoint. Let ®4 :
C(o(A)) — L(H) be the unique map given in Theorem 1.2. Then, for any
fixed 1, ¢ € 7, the mapping

C(a(A) 3 f = Lyp(f) == (b, Pa(f)p) € C
is a complex valued linear functional ¢, , on C(c(A)) and

Cu o (N < NRANNM N < ANl 1l

and therefore [y < [|9[[l¢]-

20



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Thus by the Riesz-Markov-Theorem, there exists a unique regular com-

plex Borel measure ju, , on o(A) such that

Ly (f) = (0, 2a(f)p) = | FN) dpy o (A) - (1.16)

o(A

This measure is called spectral measure of A associated with the vectors

¥ and .

Moreover the map
H X H 3 (W, 0) = b1, ¢) = py € Mc(0(A)) (1.17)
and for fixed f € C(c(A)) the map
H XA S (1h,p) = Br(ih,9) = ly(f) €C (1.18)

are sesquilinear! (since (¢, p) + (1, ®4(f)p) is sesquilinear) and bounded

with

1600, )| = [l ol = [1€p ol < Nlllell and  [Br(4h, @)] < | fllo oMl -
(1.19)
Then by a Corollary of the Riesz Lemma? (Corollary 45 in the previous

course), there exists a unique bounded operator ® 4(f) on .# such that

By(t,9) = (¥, Da(f)e)

A map B on J# x 4 is called sesquilinear, if for all a,b € C and z,y, 2 € € we

have

B(x,ay +bz) = aB(z,y) + bB(z,2) and B(azx +by,2) = aB(z,z) + bB(y, 2).

2

LEMMA 1.9 (RiESz, (THM 43))
For each bounded linear functional ¢ € F* on a Hilbert space € there is unique vector

y € A such that (x) = (y,z) for all x € I and ||£]| = ||y||.

21



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

By (1.16), we immediately see that ®4(f) = ®4(f).

The procedure by which we regained the operator ®4(f) now allows to
extend the Continuous Functional Calculus (Theorem 1.2) to the bounded

Borel measurable functions B(cg(A)) on o(A):

The integral on the right hand side of (1.16) makes sense, if the continuous
function f is replaced by a measurable function g € B(o(A)). This allows to

define for any fixed g € B(o(A)) a sesquilinear form B, on # by

Byv.o) = [ oWV, (1.20)

o(A)

As before, using Corollary 1.10, there exists a bounded operator ® alg) €
L(A) such that

By(v,) = (¢, ®a(9)) (1.21)

holds for all ¥, p € . By this procedure, we have constructed a map D4
from B(c(A)) to L(S), extending ® 4 given in Theorem 1.2.

The properties of this map are given in the following Theorem.

COROLLARY 1.10

For any sesquilinear bounded form B on € (i.e. sesquilinear bounded map from 3 x A
to C) there is a unique operator A € L(J) such that B(x,y) = (y, Az) holds for all
x,y € H. The norm of A is the smallest constant C' > 0 so that B(z,y) < C||z|/|ly]l-

22



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

THEOREM 1.11 (SPECTRAL THEOREM - FUNCTIONAL CALCULUS FORM)
Let 7 be a Hilbert space and A € L(H) self-adjoint. Then there exists a
unique map 4 : B(o(A)) — L(F) with the following properties:

i) ®4(1) = Id and ®4(id) = A where 1(x) = 1 and id(x) = z for all
x € o(A).

i1) ® 4 is an algebraic x-homomorphism (with respect to multiplication in

B(c(A)) and composition in L(I))
iii) 4 is norm continuous: || PA(f)|lz < IIf |lso -

iv) Suppose fn(x) — f(x) for each x € o(A) and sup,, || full is bounded.

Then ®4(f,) = ®a(f) weakly, i.e. (1), Pa(fo)e) — (¥, PA(f)@) for
all Y, p € .

Moreover, ® 4 has the following additional properties:
v) If A =\, then ®A(f)e = f(\)e.
vi) ®4 is positive, i.e. f >0 implies D 4(f) > 0.
vii) If BA = AB, then ®4(f)B = B®4(f).
viii) If f is real-valued, then ®4(f) is self-adjoint.

Proof. Step 1: Uniqueness
From Theorem 1.2 we know that on C(c(A)) the map ® 4 is already uniquely
determined by i), ii) and iii). We then use iv) to get uniqueness on B(c(A)).

To this end, we first need the following lemma, which proves that the set

23



CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

B(c(A)) of bounded measurable functions is the smallest family closed un-
der limits of the form iv) (pointwise limits of uniform bounded sequences)

containing all of C(a(A))? :

LEMMA 1.12
Let M C C be compact. Let U C B(M) be such that for any sequence (f,)
in U
(sup | flloo < 00 and f(t) := lim f,(t) exists for allt € M)
n n—ro0
= felU (1.22)
holds. Then C(M) C U implies U = B(M).

Proof of Lemma 1.12. Consider the system S of all sets S of functions such
that

C(M)c Sc B(M) and (1.22) holds for all sequences (f,) in S. (1.23)

Then S # (), because in particular B(M) € S.
We set V :=(NgcgS. Then by definition C(M) C V.

3This does not imply that each bounded measurable function is a pointwise limit of
continuous functions. A counterexample is the function which is 1 on the rationals and
zero otherwise. The continuous functions are called Baire functions of class zero. Then
all functions which occur as pointwise limits of continuous functions are called of Baire
functions of class 1. Pointwise limits of these lead to functions of Baire class 2. In this way
one can define Baire functions of class 1, 2, 3, ..... The numbers describing the classes are
ordinal numbers and thus we can define functions of class w, the first non-finite ordinal, as
the pointwise limit of a sequence of functions each of which belongs to some finite class.
From this one can proceed with w + 1,w + 2,...w? +1,.... It can be shown that this

process stops when one reaches the first non-contable ordinal wy.

24



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Moreover V' is a vector space: To f € V set Vy:={ge B(M)|f+geV}
Now let f € C(M). Then V; € S and thus V' C V;. Thus we have seen that

feCcM) and geV = f+4+geV.

But this implies on the other hand that C(M) C V, for ¢ € V and since
(1.22) holds in V, this implies V' C V.

Thus f+geV forall f,ge V.

Moreover ag € V for all @ € C and g € V' (Exercise 2.6), thus V' is a vector
space.

In the next step we want to show that characteristic functions of Borel sets
are in V. Let %), denote the Borel sets in M and consider the set A = {E €
B | xe € V}, where yg denotes the characteristic function on E.

Then A includes all open sets, because the characteristic functions of open
sets are pointwise limits of continuous functions (Urysohn’s Lemma, see e.g.
[R2]). Thus A includes a generator of % which is stable under (countable)
intersections.

Therefore by some measure theoretic result (see e.g. [Ba], Dynkin systems),

to show A = £ it suffices to prove
i) If E,F e Aand E C F, then F\ E € A.
ii) If By, Es,... € A are pairwise disjoint, then F :=J E, € A.

But i) follows from xpmr = xr — x& and the fact that V is a vector space
and ii) follows from the fact that xz =) Xxg, (With pointwise convergence)
together with (1.22).

Thus all characteristic functions of Borel sets are in V and since V is a
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vector space this implies that all simple functions are in V. But since all
measurable functions are pointwise limits of simple functions (even norm-
limits), it follows that V = B(M).

g

We come back to the proof of Theorem 1.11.
Set

Uy :={feB(a(A))| (i)A(f) is uniquely determined by i)-iv) },

then we have C(c(A)) C U; as mentioned above. Moreover, if (f,,) is a uni-
formly bounded sequence in U; converging pointwise to f € B(c(A)), then
o A(fn) converges weakly to o 4(f) by iv). This determines P A(f) uniquely
and thus f € U;. It follows that U; € § and by Lemma 1.12 we can conclude
Uy = B(a(A)).

Step 2: Existence
Construct the bounded sesquilinear form B, given in (1.20) for g € B(c(A))
as above, then there exists a unique bounded linear operator ® 4(g), bounded
by [|g]ls such that (1.21) holds. We have to show that this operator has the
properties i)-iv).

Since the functions 1 and id are continuous, i) is already shown. Property
iii) follows at once from (1.21), since |By(¢, ©)| < ||g|l||¥]l|¢]l- The conver-
gence in iv) follows from the dominated convergence theorem for Lebesgue-
integrals. Thus it remains to prove that ® 4 is an algebraic *-homomorphism.

(Exercise 2.19)
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Now we come to the proof of the additional properties v) - viii).
v): Assume that Ay = M holds and set Uy := {f € B(o(A))|®a(f)v) =
f(AN)¥}. Then C(0(A)) € Us by Theorem 1.2. Now choose a uniformly
bounded sequence (f,) in Uy such that f,(z) — g(z) for all x € o(A). Then

Sa(fa) = Fu(N — gV

Thus to see D 4(g)Y = g(\)y (which implies U, € S for S as given in the proof
of Lemma 1.12) we have show that iv) in fact implies strong convergence of
P A(fn) to ®4(g). This can be seen as follows.

Let h, be a sequence in B as given in iv) converging pointwise to h € B.

Then h,h, converges pointwise to hh and ||h,h,| s is bounded.

Thus for any ¢ € S by ii) and iv)

(@4 (hn)l|* = (@ a(hn)S, ®alhn)6) = (@ () Pa(hn), §)
= (2a(hnhn)9,0) — (Da(hh), 6) = [2a(m)o|.  (1.24)

But in a Hilbert space, we have the general equivalence (for n — o)

l6a=0l =0 <= [Ioall > o]l and (du—6,0) =0 for all Y € 2],
(1.25)

This proves that weak convergence of f,(A) combined with (1.24) implies

strong convergence.

Concerning (1.25), the implication ” = ” follows from the triangle- and the

Cauchy-inequality. To get the implication ” <= 7, we write

||¢n - ¢||2 = <¢n + ¢ - 2¢7 ¢n - ¢> = Re<¢n + ¢a ¢n - ¢> - 2Re<¢7 ¢n - ¢>
< lléall® = 811" + 2K¢, ¢n — )
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where the last estimate follows from the Polarization Identity.

It follows that Uy € S and thus Uy = B(o(A)) by Lemma 1.12.

vi) Set Us := {f € B(a(A))|f >0 = ®4(f) > 0}, then C(c(A)) C Us
by Theorem 1.2. Consider a uniformly bounded sequence (f,) of positive
functions in Us converging pointwise to g € B(c(A)). Then g(x) > 0 and for
each 1) € S the sequence (1), ® 4(f,)1) is non-negative and by iv) converges
to (¢, ®4(g)1), which thus is non-negative. This shows that Us C S and
again by Lemma 1.12 we get that ® 4(g) is a positve operator for any positive
g € B(ag(A)).

vii) If B € L(4¢) commutes with A, then by i) and ii) it commutes
with @ A(p) for any polynomial p on o(A). Then the assertion follows using

approximation arguments (Exercise 1.35).

viii) Exercise 1.35

REMARK 1.13 i) We will sometimes use the notation ®4(f) = f(A).

i) By the construction giwen above Theorem 1.11, the operator ®4(f)
only depends on the values of f on the spectrum o(A), i.e. ®4(f) =
éA(XU(A)f), where xq denotes the characteristic function on the Borel

set ).

iii) For Q C R, we always consider B()) as the subset of functions in

M(R), the set of measurable functions on R, which are bounded on €.
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1.1.3 Projection-valued Measures

We now come to the most important class of functions gained in passing from
the continuous functional calculus to the Borel functional calculus, that is,
the characteristic functions of Borel sets. We have the following Lemma and

Definition.

DEFINITION AND LEMMA 1.14 (SPECTRAL PROJECTION)

Let A be a bounded self-adjoint operator on a Hilbert space 7€ and let 2 C R
be a Borel set and xq the characteristic function of €2.

Then g := xao(A)(= ®4(xa)) is an orthogonal projection, called a spectral
projection of A.

Proof. Since xq is real and x4 = xq it follows from the fact that P, is a

*-homomorphism, that we have 113, = Il and I}, = Ilq. O

The following proposition states some properties of the spectral projec-

tions of A.

PROPOSITION 1.15 (PROPERTIES OF SPECTRAL PROJECTIONS)

Let 7 be a Hilbert space and A € L(F) be self-adjoint. Let % be the Borel-
o-algebra on R, then the family of spectral projections {Ilg | € B} of A
has the following properties:

i) gy =0 and Il = 1d for some compact set K C R.

i) If Q=" and Q, N Qy, =0 for all n # m, then

N
Z I, — Il strongly as N — oo.

n=1
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iii) Tg, Mg, = Io,nq,.

Proof. 1) follows from Theorem 1.11 i), since o(A) C K for some compact
set K C R. ii) follows from Theorem 1.11 iv), taking fy = Zivzl XQ,,, iii)
follows from Theorem 1.11ii) together with the fact that xq,xq,, = XN, -

U

Properties i) and ii) remind of the properties of a measure. This makes

it reasonable to define:

DEFINITION 1.16 (PROJECTION-VALUED MEASURE (SPEKTRALMASS))

A family 11 := {Ilg | Q2 € B} of orthogonal projections on F€ obeying prop-
erty i) and i) of Proposition 1.15 is called a bounded (or compactly
supported) projection-valued measure (p.v.m.) (kompakt getragenes
Spektralmaf).

The smallest compact set such that Prop. 1.15,i) holds is called support of
the p.v.m (we write K = suppll).

From the properties of orthogonal projections, in particular from Propo-
sition 46% it follows that each bounded projection valued measure II has the

property iii) of Prop. 1.15.

We will now see, how it is possible to integrate a bounded measurable

function with respect to a projection valued measure.

4Proposition 46: Let J# be a Hilbert space and A, B be subspaces of J#. Let P4 and
Ppg denote the orthogonal projections on A and B respectively. Then A C B if and only
if ||Paz| < ||Ppz|| for all x € 5. In this case P4Pp = PpPy = Py.
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The idea is, that if IT is a p.v.m. and v, ¢ € S, then

is an complex measure on 4.
Thus we can integrate a function f € B(R) with respect to this measure and
the map

BR)S [ ool = [ 1) dlw ) (1.26)
is a linear functional on B(R). Since as above (see (1.17)) the map (¢, ¢) —
(1, I ¢) is sesqulinear, we can, for fixed f, define the sesquilinear form
Bi(¢,¢) == Ly s(f) on . Thus again by use of Corollary 1.10, there is
a unique bounded self-adjoint linear operator T'(f) on # such that

<%TUW%14ﬂMM%Hm> (1.27)

In fact, the measure (¢, I1¢) is just the measure p, 4 associated with T'(f)

as constructed in (1.16).

To define [ fdII as bounded linear operator on # for any f € B(R), we

proceed in three steps (similar to the introduction of the Lebesgue-integral):

Step 1: Let f be a characteristic function, i.e. f = xq for some Q2 € #. Then
we set [, fdIl =1lg € L(S).

Step 2: Let f be a simple function, i.e. f =3 ,_, apxq, for some a; € C and
Q. € #. Then we set

/ fdIl =" allg, € L(H). (1.28)
R k=1
(and this definition is independent of the representation  ,_, arxq, )-
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Step 3: Let f be bounded and measurable, i.e. f € B(R), then there exists a
sequence (f,,) of simple functions converging uniformly to f. Now we
use that for any simple function s = > 7'_, arxq,, we have || [ sdII||; <
||s]|co- In fact, let ¢ € S and assume without loss of generality that

the sets 2 are disjoint, then

[(fsm)o| = [Soman@] = o o1
= 3 el Mo, (0)1 < suplasf? Y o, ()]
= sl |3 Mo )] = lslle [Ty, ()]

< lIsllllol*.

By Theorem 1.11iv) and since (f,,) is a Cauchy sequence w.r.t. ||| co,
this implies that ([ f, dII) is a Cauchy sequence in £(.) and thus has
a limit

/f(A) dIl, = /de - nng)lo/fn dIl (1.29)

which is independent of the approximating sequence (f,,).

If I = Id for some compact set K and f € B(K), we set [ fdIl =
[ xx fdll (since IT4 = 0 whenever AN K = (), this definition is independent
of the choice of K).

We have proven the following

THEOREM 1.17 (INTEGRATION W.R.T. PROJECTION VALUED MEASURES)
If 11 = {Ilg | Q2 € B} is a bounded projection-valued measure with supp I =
K and f € B(K), then there is a unique operator [ fdIl € L(J).
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The map f +— [ fdIl is linear and continuous with || [ fdIl||z < ||f]lce-
Moreover, if f is real-valued, then [ fdIl is self-adjoint.

1.1.4 Projection-valued Measure form

Since restricted to compact sets, the polynomials are bounded functions, we
can associate to any given bounded p.v.m. {Ilg} the self-adjoint operator
T := [ XdII, € L(2).

Thus on the one hand we have associated a bounded projection-valued
measure to a bounded self-adjoint operator. On the other hand, we can
associate a bounded self-adjoint operator to a bounded projection-valued

measure.

The central point of this section is to see that these two operations are

in fact inverse to each other.

THEOREM 1.18 (SPECTRAL THEOREM - P.V.M. FORM)
There is a one-one correspondence between bounded self-adjoint operators

A € L(A) and bounded projection valued measures 11 = {Ilq | Q € B} given
by
A= {lo} = {xa(A)} (1.30)

(Mo} s A — /)\dHA. (131)

In more detail, if 11 is a bounded p.v.m. on R and A € L(F) the self-adjoint

operator given by A = f NdILy, then the unique map 4 defined in Theorem
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1.11 s given by

:/f()\)dHA, € B(a(A)). (1.32)

If on the other hand A € L() is self-adjoint, then there exists a unique

bounded projection-valued measure I1 such that

A:/ AdIT, (1.33)
o(4)

and (1.32) holds. In this case, f(A) = ®A(f) for any f € B(o(A)) is deter-
mined by

/ fN) d(¥, ) . (1.34)

The formula (1.33) is the generalization of the formula A = >~ >° AL,
holding for compact operators (see Theorem 1.5). As before, A is composed
by orthogonal projections Il for 2 C o(A), but now in a ”continuous” way,

i.e. the sum is replaced by an integral.

Proof. Step 1:
Let IT be a bounded p.v.m. with suppll = K C R compact and define
A:= [ AdII,. We have to show that (1.32) holds.

We extend any f € B(o(A)) to a function on R by setting f = 0 on
R\ 0(A). We then define the map

U:B(R)— L(H /f ) dIly (1.35)
and have to show that

QA(f) =T(f) forall feB(a(A).
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This equality follows from the uniqueness statement in Theorem 1.5, if W
satisfies 1)- iv).

By Theorem 1.17, V¥ is linear and continuous.
To see that W is multiplicative, we first consider simple functions f =

> k—1 kX, and g = 377", biXo;. Then by (1.28) and (1.35) we have

U(f)oW(g) =Y g, (Z ijQj> =30,y bTlg, o T,
k=1 Jj=1

k=1 j=1

and since XAXB = XAnB

U(fg) =0 (Z aj Z ijkaQj> = Z ar Z billg,na; -
k=1 j=1

k=1 j=1

Thus using I14ollp = I14np (which holds for any p.v.m. as mentioned below
Definition 1.16) we have U(f) o U(g) = ¥(fg). For general f,g € B(R) we
use approximation with step functions and the continuity of .
That W is involutive follows in a similar way (approximate f by simple func-
tions and use (allg)* = allg).
For the convergence property in iv) use (1.27) and dominated convergence
for the integral.
Thus it remains to prove i). Since we consider 1 as Xq(a), by definition
(1) = Id is equivalent to I,(4) = Id and this immediately implies ¥(id) = A
by the definition of A above.

To show Il,(4) = Id consider an interval (a, b] in R such that Mgy = 1d
(this exists by Proposition 1.15) and let i € p(A). The aim is now to show
that Il = 0 for some neighbourhood U of u. For this next step we need the

following lemma.
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LEMMA 1.19

Let X be a Banach space. Then the set Z(X) of invertible bounded linear

operators on X is an open subset of L(X).

Proof. Assume that T € Z(X). We show that B € Z(X) whenever ||[A—B|| <
0 for some 0 > 0 sufficiently small. We write
B=T—-(T-B)=T(d-T"'(T - B)).

Since T is invertible, it suffices to show that Id —T~(T — B) is invertible. By
Lemma 79 this holds if |71 (T — B)|| < 1 which is true if ||T—B|| < |||~
0

We come back to the proof of Theorem 1.18. Since p was assumed to
be in the resolvent set, (1Id —A) is invertible. Thus by Lemma 1.19, there
exists some 0 > 0 such that for any S € L(J7)

[S = (pld-A)|| <6 = (1.36)
S is invertible and ||S7!|| < C = ||(pId —A)7Y| + 1.

(for the last estimate choose 6 < ||T7!||71/2 in the proof of Lemma 1.19).

We can assume § = b’T“ and 0 < % and we set a; := a + kd for k =
0,...,N to get a disjoint partition of (a,b]. Then the step function s :=

SV kX (ax_1,0;] aPProximates id(x) = x on (a,b] in the sense that ||s —

id ||c = 9. Then by (1.28) and Theorem 1.17

14— iy ol = |4 - /sdHH - H/(id _syd| <5, (137)

Since by the assumption on the interval and Proposition 1.15 we have
N
> M0 = Hiapy =1d..
k=1
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Thus (1.37) implies (by adding zero)

WE

[(p1d=A) = (1 — @)y anl| <9

i

1
From (1.36) it follows that S := S~ (u — a )11
[S~HI < C.

But on the other hand ||S¢|| > ||¢[| inf{|p — ax| | (a, ;. # 0} and thus®

an_1,ax] 18 invertible and

187 < sup{|p — ax| " [ Ta, 0 # 0}

This implies (4, 4, = 0 for (g —ai| < % Therefore we have shown that
for any p € p(A) there exists a neighbourhood U of p such that Iy = 0.

Consider now a compact set K C p(A). As shown above, for each p € K
there exists a neighbourhood U, such that ITy;, = 0. These neighbourhoods
are a covering of K and since K is compact, there exists a finite subcover
K c U~ Uy, Thus IIx = 0 by Proposition 1.15. Since for each ¢ € ¢ the
map {4 defined in (1.26) is a positive linear functional on Cy(R), it follows
from Theorem 1.7, i) that the (positive) measure Q2 — (1, IIg1)) is regular.
Thus

(¥, Hyay) = sup{ (¢, Hgv) | K C p(A) compact } =0, ¢ €. (1.38)

Let X,Y be normed spaces, S : X — Y be a linear map so that there exists a constant
m > 0 with ||Sz| > m/||z| for all z € X. Then S : X — Ran S is bijective and the inverse
S~1:Ran S — X is bounded with ||S7!|| < m™!, since for all y = Sz € Ran S

IS~tyll _ IS~ Sa| _ ST S| _ 1

S .

Iyl ISzl = mil]
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Since by assumption Ilg, is self-adjoint for each 2 € £, it follows from Lemma

695 that 11,4y = 0 and therefore II;(4) = Id.

Step 2:

Let A € L(4) be self-adjoint and let I be the family of spectral pro-
jections of A given by Ilg = ®4(xq) as in Definition 1.14. We then have to
show that the operator B := [ AdII, is equal to A.

By Proposition 1.15 the projection valued measure II given by the family
of spectral projections is compactly supported (with suppIl C o(A)). Fix
e > 0 and choose a simple function s = > | cxxqo, on o(A) such that
|id —5|co < &. Then for ¥ given in (1.35) and ® 4 given by Theorem 1.11 it
follows from Theorem 1.11, Theorem 1.17 and the definition of II that

1A= Bl < A= @a(s)]| + [Pals) = U(s)]| + [¥(s) - Bl

< |lid = 8|00 + HZ Ck((i)A(XQk) — g,
k=1

[+ lid =]l
<e+4+0+e.

Since ¢ is arbitrarily small, this proves the assertion.

g

As we have seen in the above proof, the spectral projection of the resolvent
set is zero, which implies that the support is a subset of the spectrum. We

even have the following:

SLemma 69: Let # be a Hilbert space and T € L(J#) self-adjoint, then ||T| =
SUp)|y(|=1(2, T).
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COROLLARY 1.20
Let A € L(F) be self-adjoint and let 11 be the family of spectral projections
of A, then supplIl = o(A).

Thus A € p(A) if and only if there exists some neighbourhood U of A such
that HU = 0.

Proof. ”C”: This follows at once from (1.38).
"D": Let U be a neighbourhood of A such that II;; = 0. Set
A=t)"t, if t¢U
ft) =
0, otherwise.
Then f and g(t) := (A — ) are measurable and bounded on o(A) and fg =
Xue. Thus

FA)ATd =A) = f(A)g(A) = (f9)(A) = xve(A) = Mye = Id

where the last equality holds because Iy = 0. Similar it can be shown that

(Ad—A)f(A) =1d, thus (AId —A) is invertible, proving A € p(A). O

EXAMPLE 1.21
On ¢ = L*([0,1]) consider for f € C([0, 1], R) the self-adjoint multiplication
operator Myx(t) = f(t)-x(t). Then the spectrum o(My) is given by f([0,1]),
the range of f.

In fact, if p ¢ f([0,1]), then u— f(t) # 0 for allt € [0,1] and the inverse
operator M;l is given by M, with g(t) = (n— f(t)) .

On the other hand, if ;1 € f([0,1]) then the set Q, = {t € [0,1]] f(t) =

p} is not empty. Moreover, Xq,, the characteristic set of Q,, satisfies the
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equation
Mixa,(t) = f(t)xa,(t) = pxa, -

Thus p is an eigenvalue of My with eigenfunction xq,, if Xq, s not the zero
function in L?, i.e. if the Lebesque-measure of Q,, is not zero.

Now assume that € f([0,1]) is not an eigenvalue of My and thus
(pld —My) is injective. If pn ¢ o(My), then (uld —My) is bijective, i.e. for
any y € L*([0,1]) there exists x € L*([0,1]) such that

(pld—Myp)x =y and thus z(t) = ,u—;f(t)y(t)'

Since f is continuous we have |f(t) — f(to)| < & for [t —to] < . Since the
term (u— f(t))™' converges to 0o ast — tq it follows that x in not in L* for
any y € L?.

Therefore we have shown that o(My) = f([0,1]) and

op(My) ={p € f([0,1]) |, has positive Lebesque-measure}.

Since My is self-adjoint, it has no residual spectrum.

Now consider the operator Miq (with id(t) =t), then
O’(Mid) = O’C(Mid) = [0, 1]
and

(2, Miay) = / £(t)ty(t) dt = / Ad(e, TLy)

where II denotes the spectral projection of Miq. Thus Ilgx = xanp,1z and the
measure d(z,I1\y) is absolutely continuous with respect to Lebesgue-measure

with Radon density Ty (see (1.13)).

40



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

If, more general, f is differentiable and f'(t) > 0, then f is invertible,
f([0,1)) is an interval and My has no eigenvalues. We then have (using the
substitution A = f(t))

(2, Myy) = / E(0) f(£)y(t) dt

I
S—
>
—~
Kl
<
SN—
@)
I
>
(.,
L
>
QU
>~

f@)
1(0)

1.1.5 Multiplication Operator Form

In this section, we will show that each bounded self-adjoint operator on a

Hilbert space is unitary equivalent to a multiplication operator.

We start with the notion of cyclic vectors.

DEFINITION 1.22
Let 7 be a Hilbert space and A € L(H) self-adjoint. A vector i € FH is

called a cyclic vector for A <= Finite linear combinations of the elements

{A"p}22 ) are dense in F.

If an operator A has a cyclic vector, then it is unitary equivalent to M;q
introduced in Example 1.21 on some appropriate Hilbert space, as is shown

in the following lemma.

LEMMA 1.23
Let A € L(I) be a self-adjoint operator with cyclic vector ¥ € . We

denote by fuy, the spectral measure of A associated to 1, i.e. such that

(W, 2a(f)¥) = )f(A) duy(A),  f € B(a(A)), (1.39)

o(A
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(in the notation introduced in (1.16) we thus set py = pyp). Then there

erists a unitary operator

U: A# — L*(0(A),duy)  such that  (UAU'f)(N) = A(A)  py — ace
(1.40)

Proof. For f € C(c(A)) and &4 given in Theorem 1.2, we define U on the
vectors P 4(f) € H by
U(@alf)e) = I

To see that U is well-defined we remark that
[PA()DII? = (0, (@a(f)) @al()) = (1, Pa(F )

=/ | f1? dpy -
o(A)

Thus ®4(f)Y = Pa(g)y if and only if f = g py-almost everywhere. This
shows that

U: X ={2a(f)¥| f € Cla(A)} — L*(0(A), dpy)

is well-defined and norm-preserving. Moreover, U is linear since ®, is lin-
ear. Since 1) was assumed to be cyclic, X = 7. Therefore using the
BLT-Theorem, we can extend U to an isometric linear map of 7 into
L2(0(A), dpy).

Since C(o(A)) is dense in L?*(o(A),du,) and the range of an isometry is
closed, it follows that U is surjective and thus unitary.

Finally, if f € C(c(A)), we get using ®4(id) = A, the multiplicativity of
® 4 and the definition of U

(UoAoU ' f)(A) = (UoAo®a(f)v)(N) = (Uo @a(id-f)1)(N)
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— (id-f)(N) = A- FO).

By continuity this equality extends to L?(o(A), du,) and thus proves (1.40).
U

Unfortunately, not all self-adjoint operators have cyclic vectors (Exercise
1.38). But the following lemma shows that there exist cyclic vectors for

subspaces and 7 is a direct sum” of these.

LEMMA 1.24
Let A be a separable Hilbert space and A € L(F) self-adjoint. Then there
exists a direct sum decomposition & = @nNzl 7,8 with N € N or N = oo

so that

i) A leaves each s, invariant, that is, v € 4, implies Ay € J,.

"Suppose 74 and % are Hilbert spaces. Then the set of pairs (x,y) with z € 24 and
y € J% is a Hilbert space with the inner product

(x1,91), (T2, 92)) = (@1, Y1) 00 + (T2,Y2) .-

This space is called direct sum of the Hilbert spaces 7, and % and is denoted by
D 5. For a given Hilbert space 2 with closed subspace M, we have the decomposition
H =M oM.

Analogously to the direct sum of two spaces, we can construct countable direct sums
of Hilbert spaces, starting with a sequence (74,)22 ;. Then the direct sum @, , 7, is
given by the set of sequences (z,)p2; such that z,, € 7, and Y7, ||z, < oo

8This means that each x € J# can be written uniquely as z = ZN ., where x,, € /7,

n=1
and [|z]|? = > ||zx||>. In other words, %, are pairwise orthogonal closed subspaces and

the span of these is dense in J#. We identify the elements x € J# with the sequences

(xn)fy:r
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it) For each n, there is a @, € J€,, which is cyclic for A|,, i.e.

A ={@a(f)en | € Cla(A))}

Proof. We use the Lemma of Zorn®. Let H denote the set of at most count-
able families (777) of pairwise orthogonal closed subspaces 77 of # satisfying
i) and ii). Then H is not empty since ({0}) € H. Moreover, H is partially
ordered by inclusion. Let C' be a chain in H and set hg := ([, k- Then
hg is an upper bound of C'. To use Zorn’s Lemma, we have to show that
ho € H.

If hg would contain a non-countable number of different .77, then (since
the 7 where assumed to be pairwise orthogonal) .7 would have a non-
countable orthonormal system, which would contradict the separability of
. Therefore hy contains only countable many elements and is thus an
element of H. This shows that C' has an upper bound in H.

By Zorn’s Lemma, this implies that H has a maximal element h = (J%) €
H, which includes {0}. Now let 7 := span | ¢, 74 and assume that A+
. Then there exists some z € -\ {0} C . Set V = span{A"z|n >
0}, then V' is invariant under A and z is cyclic for A|y. But this implies

h C hU{V} and by the maximality of h we get V = {0}. Then x = 0 in

9A set P together with a relation < is called partially ordered set, if for all z,y,z € P
we have a) x < z (reflexive), b) 2 < y and y < z imply = < z (transitive), ¢) z < y
and y < z imply = = y (antisymmetric). A subset C' C P is called chain, if C is linearly
ordered, i.e. x <y ory <z for all x,y € C.
Zorn’s Lemma (1935): If every non-empty chain in a non-empty partially ordered set
(P, <) has an upper bound in P, then P has a maximal element a, i.e. for all z € P we

have a < z implies a = .
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contradiction to the assumption. Thus H = H , which proves the existence

of the decomposition. O

Lemma 1.23 and Lemma 1.24 can be combined to get the following mul-

tiplication operator form of the spectral theorem.

THEOREM 1.25
Let 7€ be a separable Hilbert space and A € L(F) self-adjoint. Then there
exist measures {p,}0_; with N € N or N = oo on o(A) and a unitary

operator

U:H# — QNBLQ(R,dun)
n=1
such that for any g = (g1, ... gn) € @, L*(R, duy,)
(UAUg) (A) = Agn(A)  pin —ace. forall n=1,... N. (1.41)
This realization of A is called spectral representation of A.

Proof. By Lemma 1.24 we get a direct sum decomposition 7 = @TJLI I,
into A-invariant subspaces ¢, on which A has a cyclic vector ¢,,. Thus by

Lemma 1.23 there exist for each n = 1,..., N unitary maps
U, : #, — L*(R,dp,,) such that U, AU, " g,(\) = Agn(\)  p,, — ace.

(here we use that U, 'g, € 5, by definition and AU g, € S, since /7, is
A-invariant).
We identify ¢ € # with the tuple (¢1,...,¢n) € @, 7, and set
fn 1= [y, and
N
U: A — P LR dp), Up=U(r,....¢n) = (Ur¢1,...,Unén).
n=1
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Then

U_lg = (Ul_lglv SRR U]?flgN)

for any g = (g1,...9n) € Eij:l L*(R,du,,) and

(UAUg) (N) = (UA(U; g1, -, Ux'gn)), (N)
— ((UlAUl_lgl, ey UNAUJGIQN))’“()\)

= U, AU g, (/\) = Agn(A) [n — a.e.
Ol

Remark that each measure p,, has support on the spectrum of A,, := A| 4,
thus L*(R, du,) = L*(0(A,),du,) (two functions are equal in L?(u) if they
only differ on a set of measure zero, i.e. in our case only outside of o(A4,,)).

This theorem shows that every bounded self-adjoint operator is in fact a

multiplication operator on a suitable measure space.

COROLLARY 1.26
Let 7 be a separable Hilbert space and A € L(F) self-adjoint. Then there
exists a finite measure space (M, ), a bounded function F on M and a

unitary map
U: A — L*(M,dp)  so that (UAU'g)(m) = F(m)g(m). (1.42)

Proof. Choose a decomposition ¢ = @7]:]:1 J¢, in invariant subspaces as
given in Lemma 1.24 and cyclic vectors ¢,, € 7, such that ||¢,| =27". Let
M = UTJLIR be the disjoint union of N copies of R (this can be realized as a
subspace of R? given by M = |J (R x {n}), we denote the elements of M by
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m = (\,n)forN€ Randn € {1,...,N}). Let ¥ := {Q C M |QNR is Borel}
and define the measure p : ¥ — [0, 00| by

u(A) =3 p(ANR)

where p,,n = 1,..., N are the measures given in Theorem 1.25, i.e. the
restriction of p to the n-th copy of R is just u,. Then u is finite, because
n = ks, Was determined by (1.39) and thus (for f(¢) = 1, using ®4(1) = Id)

N N N
W) =3 j®) =Y / Qi = 3 (o 00)
n;l n;l n=1
= leal> =) 27" < 0.
n=1

n=1

Then the map V : @7]:7:1 L*(R,du,) — L*(M,dp) given by

(Vg) (A\,n) = (V(gl, o ,gN))()\,n) = gn(N)

is unitary (Exercise 1.39). Thus if we denote the unitary map given in The-
orem 1.25 by U, the map U := V o U satisfies (1.42) for F(\,n) = X for all
n=1,...,N (Exercise 1.40). O

REMARK 1.27
Corollary 1.26 essentially is a rigorous form of the Dirac notation used in

physics. Using the unitary transform U, we get for ¢, o € L*(M, du)
oo =Y [T )
(0. A9) = 3 [ XS m) i
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EXAMPLE 1.28 1) Let A be compact and self-adjoint, then by the Hilbert-
Schmidt-Theorem 1.4 there is a complete set of eigenvectors {¢g}§°;1
with Ag; = Nj¢gj. In this case p = Y22, 2776(t — ;) works as a

spectral measure if there is no repeated eigenvalue.

i) Let # = (*(Z,C) and A = R+ L, where L is the left-shift operator (i.e.
(La), = ant1) and R = L* is the right-shift operator (with (Ra), =
an—l)-

To represent A as multiplication operator, use

U:(Z,C) = L*([0,1])  given by Ulan) = ) ane®™".

n=—oo

Then ULU™Y is multiplication by e >™ and URU ™! is multiplication
by e™2™. Therefore UAU™! is multiplication by 2 cos(27t). A can be
represented as a multiplication operator by t on L*(R, duy)®L*(R, dus),
where py, po have support in [—2,2] (Ezercise 1.41).

We now introduce another decomposition of the spectrum of an operator
additional to the one given in Definition 1.1, using the notion of spectral
projections.

In Corollary 1.20 we already saw that the spectrum of a self-adjoint oper-
ator A is equal to the support of the associated family of spectral projections
and that A is in the resolvent set of A, if and only if II;; = 0 for some neigh-
bourhood U of A. This implies that A\ € o(A) if and only if II;; # 0 for all
neighbourhoods of .

DEFINITION 1.29
Let 7 be a Hilbert space, A € L(F) self-adjoint and 11 = {Ilg} the associ-

ated family of spectral projections.
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i) We say A € 0(A) is in the essential spectrum o.(A) of A (<=

dim Ran Iy 1) = 00 for all € > 0.

ii) We say X € o(A) is in the discrete spectrum ogi.(A) of A (<=

dim Ran Iy y1c) < 00 for some e > 0.

THEOREM 1.30

The essential spectrum of a self-adjoint bounded operator is always closed.

Proof. Let A\, — A with \,, € 0ess(A). Let € > 0 given, then (A, —J, \,+9) C
(A=, A+e) for some n € Nand § > 0. Thus the range of IT(y_. y.) is infinite

dimensional. This shows that A is an element of the essential spectrum. [

THEOREM 1.31
A € 0aisc(A) if and only if X is an isolated point of 0(A) and X is an eigenvalue

of finite multiplicity.

Proof. =: If X\ € 04isc(A), then there exists some gy such that I\, r1s,) is
a projector of finite range independent of ¢ for all ¢ < gy. This is actually
the projector Il;yy and we observe that Iy x4-,) = 0 and II;y_c, ) = 0. This
shows that A is an isolated point in o(A).

If A € 0(A) is an isolated point, the spectral representation of A shows that
if x = Il 2 for some x # 0, then Ax = Az, thus A is an eigenvalue of finite
multiplicity.

< If A is isolated, then II(x_; x4y = IIjy for € small enough. Since A is of

finite multiplicity, the dimension of Ilgy; is finite. O
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1.1.6 Exercises

EXERCISE 1.32 (CONTINUOUS FUNCTIONAL CALCULUS FOR COMPACT
OPERATORS)

Let A be a Hilbert space, A € K(I) be a compact self-adjoint operator.

Let (An)n>1 denote the non-zero eigenvalues of A and 11, the orthogonal
projections on the associated eigenspaces. Denote by Iy the orthogonal pro-

jection to the kernel of A (i.e. to the eigenspace ot A\g =0).

Show that the map
C(o(A) 3 [ = U(f) = f(A)IL,
n=0
has the properties i), ii) and iii) of the map ® 4 given in Theorem 1.2.

EXERCISE 1.33 (POSITIVE LINEAR FUNCTIONAL)

Let XY be compact topological spaces and let Z := L(C(X),C(Y)) be the set
of linear (not necessarily bounded) operators from C(X) to C(Y). Here C(X)
and C(Y') are the sets of continuous complex valued functions on X and Y

respectively.

We call T € Z positivity preserving, if T maps positive functions to positive

functions, i.e.
flx) >0 forallxe X = Tf(y) >0 forallyeY.

i) Prove that each positivity preserving operator T € Z is automatically
continuous and |T|| = ||T'1||«, where 1 is the constant function with

value 1 (i.e. 1(z) =1).

it) Let (Sp)nen be a family of linear operators in Z such that S,11 — S, is

positivity preserving for each n € N.
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Prove that (Sy,)nen converges in operator norm if and only if (Syp1)nen

converges in sup-norm (here again 1 is the constant function 1(x) = 1).

EXERCISE 1.34 (PROOF LEMMA 1.12)
Let M be a compact subset of C and consider the system S of all sets S such
that

i) C(M)C S cB(M)
it) for any sequence (f,) in S

(sup |flloo <00 and f(t):= lim f,(t) exists for allt € M)
n n—o0

= fes

Set V = (\ges S-

Show that ag € V' for all o« € C and g € V.

EXERCISE 1.35 (SPECTRAL THEOREM - FUNCTIONAL CALCULUS FORM)
Let A be a Hilbert space and A € L(A) self-adjoint. Let ® 4 : B(o(A)) —
L() be determined by

B(o(A)) 3 g (1, Balg)g) = / PRIy

using Corollary 1.10 (or the Riesz Lemma 1.9).
Here for any ¢ € J€ fized, the measure [, is determined via the Riesz-
Markov-Theorem (Theorem 1.7) by the bounded linear form on C(c(A)) given
by

lyo(f) = (0, a(f)p) = FON) dppp(A) -

o(A)
Show the following statements.
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i) ®4 is an algebraic *-homomorphism.
i) If BA= AB, then ®4(f)B = B®4(f).
ii) If f is real-valued, then ®4(f) is self-adjoint.

EXERCISE 1.36 (INVERTIBLE OPERATORS)

Let X be a Banach space. Show the following statements.

i) Let S € L(X) and p € p(S), then

1

i B e T E)]

(1.43)

it) If X is a Hilbert space and S in i) is self-adjoint, then equality holds
in (1.43).

iii) The set Z(X) of invertible bounded linear operators on X is an open

subset of L(X).

EXERCISE 1.37 (ANALYTICAL FUNCTIONAL CALCULUS)
Let X be a Banach space and S € L(X). Consider the power series f(z) =
Yoo o an 2™ and assume that the radius of convergence is larger than the spec-

tral radius r(S) of S. Show the following statements.
i) The sequence f(S):=> ", a,S" converges in L(FC).

i) If g(z) = >~ buz™ is another power series with radius of convergence

> r(S), then (fg)(S) = f(5)g(S).

iii) The spectral mapping theorem holds, i.e. o(f(S)) = f(a(9)).
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i) If S is self-adjoint and X is a Hilbert space, then operator f(S) defined
in i) and ®g(f) coincide.

EXERCISE 1.38 (CYCLIC VECTORS)
Prove that a self-adjoint operator on a finite dimensional space has a cyclic
vector if and only if it has no repeated eigenvalue. Construct in this case the

unitary map given in Lemma 1.25.

EXERCISE 1.39 (MULTIPLICATION OPERATOR)

Let p,,n=1,...N (for N € N or N = o) be finite reqular Borel-measures
on R. Let M be given by M = |J"_,(R x {n})). We denote the elements
of M by m = (A\,n) for A € R andn € {1,...,N}. Set ¥ := {Q C
M|QNR x {n} is Borel for eachn € {1,...N}} and define the measure
e = [0,00] by u(A) == SN pin(A,) where we set A, = AN (R x {n}).
Show that the map V : @Y_, LA(R, du,) — L*(M,du) given by

(Vg) (\,n) = (V(gl, . ,gN)) (A, n) = gn(N)
15 bijective and isometric.

EXERCISE 1.40 (MULTIPLICATION OPERATOR)
Let 5 be a separable Hilbert space and A € L(H) self-adjoint and let U :
I — @nNzl L*(R,du,) be a unitary operator as described in Theorem 1.22,

i.e. such that
(UAU’lg)n()\) =Agn(A) g —ae. forall n=1,...,N

for any g = (g1, gn) € B, LA(R.dp,).
LetV : @Y | L*(R,du,) — L*(M,du) be the unitary map given in Exercise
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1.39. Show that for any g € L*(M,du) (using the notation m = (A\,n) € M)
(VUAUT'VTIg)(A\,n) = Ag(An) p— ae..

EXERCISE 1.41 (RIGHT AND LEFT SHIFT)
Let ## = (*(Z,C) and A = R+ L, where L is the left-shift operator (i.e.
(La), = ani1) and R is the right-shift operator (with (Ra), = an—1). Set

U:0*(Z,C)— L*([0,1])  given by U(a,) = Z ane*™m

n=—oo

i) Show that R = L* and thus A is self-adjoint.

it) Show that U is a unitary operator with inverse
1 .
(U'f), = / e ™ f(t) dt .
0

iii) Show that ULU' and URU™' are multiplication by e~*™* and e*t?™

respectively.
w) Conclude that UAU™ is multiplication by 2 cos(2nt).
v) Find measures piy, o on R supported in [—2.2] and a unitary map
Vo L*([0,1]) — L*(R, du;) @ L*(R, dus)
such that U .=V o U : A — L*(R,dpy) ® L*(R, duy) satisfies

<UA0_1(91792))(3) =5-(g1,92)(s).

EXERCISE 1.42 (SPECTRUM OF THE ADJOINT OPERATOR)

Let X be a Banach space and T € L(X) with adjoint T". Show
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i) RanT = (KerT"),, where we set for any Y C X*

Y ={zeX|VleY : lx)=0}.

i) o(T)=o(T")
iii) Rx(T") = Rx\(T) for all X € p(T).
Let 7 be a Hilbert space and T € L(F) with adjoint T*. Show
i) KerT* = (RanT)* and Ker T = (RanT*)*
i) o(T*) ={\ € C| A € o(T)}

iii) Ry(T*) = Ry(T)*.
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Chapter 2

Unbounded operators on

Hilbert spaces

2.1 Domains, graphs, adjoints and spectrum

Many of the most important operators which occure in applications are not
bounded. We already saw (Hellinger-Toeplitz-Theorem) that an operator A
on a Hilbert space .7, which satisfies the relation (z, Ay) = (Ax,y) and has

domain  is necessarily bounded.

This already suggests, that unbounded operators are usually not defined
everywhere on 7, but only on some linear subset of .7#°. To identify an
unbounded operator, we have to specify both its domain and how it acts on

that subspace.
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2.1.1 Symmetric and closed operators, extensions

DEFINITION 2.1

Let 7 be a Hilbert space.

i) A (linear) operator A : 7 O P(A) — H is a linear map defined on
PD(A), its domain, which is a (possibly not closed) subspace of 7. We
say that A is densely defined in J2, if Z(A) is dense in H.

it) An operator S : P(S) — H is called extension of A : P(A) — A,
if 2(A) C 2(S) and Sx = Ax for all x € P(A). We write A C S.

iii) Two operators A and S are equal, A= B, if AC S and S C A.

i) An operator A : A D D(A) — H is called symmetric <=

(Az,y) = (x, Ay) for all x,y € P(A).

EXAMPLE 2.2 i) Position operator:
In classical mechanics, a particle is represented by its position z(t) € R3
at time t € R and its momentum or impulse £(t) = ma(t) (where
m denotes the mass of the particle and #(t) = <z(t)). A classical
observable is then a real smooth function on the phase space R3 x R3
and its value at the point (z(t),£(t)) gives information about the particle

at time t.

In quantum mechanics, the state of a particle in space at timet € R is
described by its wave function ¢, € 2 = L*(R3), which is normalized
(i.e. ||W¢llz2 = 1). Here |tpy(x)|* is interpreted as a probability density:
the probability of the presence of the particle at the point x at time t.
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The average position of the particle at the time t is then the expectation

value of the random variable x with respect to this density:
<x>wt = <wt7xwt>L2(R3) = (<wt7$]wt>L2(R3))J:17273

So let A = L*(R®) and 2(T) := {¢ € L*(R)| [ z*|(x)|* dz < oo}.
For ¢ € 9(T) define (TY)(x) = zi)(x).
It is clear that T is unbounded (choose 1Vn, = Xpnt1), then ||| =1

and we see that || T,|| > n). Moreover T is symmetric.

If we take ¢ ¢ D(T'), then xd(x) also has sense as a function, but this
function is not in € anymore. The chosen domain is the largest one

which is possible to get an operator with values in F€ .

Momentum operator:
To define the average momentum as described above for the position,
we need to use an analogy with plane waves in optics given by functions
of the type

o(t,z) == AgiFa=«t)

where v := = € R describes the frequency of the wave and k € R3 is
the so called wave vector, giving the direction in which the wave propa-
gates (p is independent of x on any plane, on which x - k is constant).
Thus the momentum should have the same direction as k. Using the
wave-particle-duality and the De Broglie relation, which relates the mo-
mentum of a particle to its wavelength, gives & = hk, where h = % 18

the reduced Planck constant. Since
|A[?

vx@ tym - Zk?(,D t,fL‘ and @ t’l‘ = Ze_i(k"m_wﬂ —
o ) o) o(z,t)
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we therefore get

This relation provides a way to get by analogy the average impulse of

the quantum particle described by the wave function v;: Viewing |A|*

as a normalization factor, we set

5 h 0O
S ty _.Va: t = b ot .
() <¢ ? v >L2(R3) <<¢ v (9ka >L2(R3)> k=1,2,3

As above we consider the Hilbert space 7 = L*(R3). The opera-
tor M given by Mo(z) = iV.p(x) on its domain (M) = {¢ €

CHR?) | |V¢| € LA2(R3)} is then a symmetric unbounded operator.

ii) The operator S on L*([0,1]) with 2(S) = {¢ € C'([0,1]) | #(1) = ¢(0)}

and S¢ = i1 is an unbounded operator and an extension of T with

dt

2(T) ={¢ € C'([0,1]) | 6(1) = ¢(0) = 0} and T¢ = i .

Both operators are symmetric, which follows from integration by parts,

since the boundary terms cancel.

We now come to the definition of a closed operator. The notion of a

graph of amap 7' : X — Y for normed vector spaces X,Y was already used

in Theorem 57 (Closed Graph Theorem)*

DEFINITION 2.3

Let 7 be a Hilbert space and A be an operator in € with domain 2 (A).

! Let X,Y be normed vector spaces and T : X — Y, then the graph of T is defined

as I(T) :={(z,y) e X xY |y =Tx}.

Closed Graph Theorem: Let T': X — Y be linear and X,Y be Banach spaces, then T is

continuous if and only if I'(T) is closed.
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i) The graph of A is the set of pairs T(T) := {(z, Ax) |z € 2(A)}. It is
a subset of 7€ x €, which is a Hilbert space with inner product

(w1, 91), (v2,92)) = (T1,91) + (T2, Y2)- (2.1)
i) A is called a closed operator if I'(A) is a closed subset of H x F.

iii) A is called closable if A has a closed extension. In this case, A has a

smallest closed extension, called its closure, which is denoted by A.

Using the graph, we have for two operators A, B on ¢
ACB <= TI(4) cI(B).

REMARK 2.4
The definition of a closed operator can be written using sequences: A is closed

if and only if for any sequence (x,)5, in D (A)
r, —x and Tr,—y — z€P(A) and Tr=y.

A natural way to find a closed extension of a given operator A seems to

take the closure of its graph in .7 x . The problem is, that I'(A) may not
be the graph of an operator. But if A is closable, this procedure gives the

closure of A.

PROPOSITION 2.5

Let T be a closable operator on a Hilbert space 7€, then I'(T') = I'(T).

Proof. Suppose S is a closed extension of T', then Z(T) C 2(S) and T'(S)

is closed. Therefore I'(T") C T'(S), so if (0,¢) € I'(T'), then ¢ = S(0) = 0.
Define the operator R on S by

D(R) ={y € | (,p) € T'(T) for some ¢ € H}
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Ry = ¢ where ¢ is the unique vector so that (i, ¢) € I'(T).

Then I'(R) = I'(T") and thus R is a closed extension of 7. But R C S, which

is any closed extension, thus R = T. U

EXAMPLE 2.6
Let Ty, Ty be operators on # = L*(R) given by Typ(x) = i-L¢(x) for ¢ €
PD(Ty) where 2(Ty) = C(R) and 2(Ty) = C3(R). Then Ty C Ty.

We will show that T(Ty) C T(Ty). To do this, we need the following

DEFINITION 2.7 (APPROXIMATE IDENTITY)
Let j € C(R) be non-negative with suppj C (—1,1) and [, j(z)dz = 1.
Then the family {jc}eeo,) where jo(x) = e 'j(£) is called approximate

identity or mollifier.

We remark that if {j.} is an approximate identity, then supp je C (—¢,€)

(since —1 < £ < 1 implies —e < x <€) and

/Rje(:v)dx:/Re_lj (%) dm:/Rj(z)dzzl.

Let {j.} be an approzimate identity, ¢ € P(11) and set

be(z) = (6 3o)( /f Wiz —y

Then
e s/ (x — 1)[6(t) — o(x)| dt
— i(x—1)d
<{ti“£7<e} 6(a)) / Jolw — t)dt
= sup [6(t) — 6o,
{t||z—t|<e}
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Since ¢ has compact support, it is uniformly continuous, thus
|pe = Ollc —> 0 as €—0. (2.2)

Moreover, since the whole family {¢.} is supported in a fized compact set,
this implies that p. — ¢ in L*(R).

Similarly, we get

i00) = [ iia = ol dy

_ / <_i>(%j€<x —4))é(y) dy

Since je has compact support and is infinitely differentiable, ¢. € C§°(R).
Thus ¢. € P(1y) for each € > 0. Since we have proven that

2 2
6= o and Too. = Tig
for any ¢ € D(T1), the closure of I'(Ty) contains T'(T}).

We remark that if {j.} is an approximate identity, for any f € LP(R), 1 <
p < 0o, the convolution f. := f * j. is smooth and f. converges in LP to f

(see e.g. [R2]), which explains the name.

2.1.2 Definition and Properties of the adjoint operator

We come to the definition of the Hilbert space adjoint.
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DEFINITION 2.8 (ADJOINT OPERATOR AND SELF-ADJOINTNESS)

Let T be a densely defined linear operator on a Hilbert space 2 with domain
D(T). Let 2(T*) be the set of ¢ € F for which there is an n € F with

(0, T) = (n,b)  for all 4 € D(T). (2.3)

For ¢ € 2(T*) we define T*¢ = n. The operator T* is called the adjoint
operator of T'. If T =T then T is called self-adjoint.

Remark that the self-adjointness implies 2(T) = 2(T*).
The Riesz Lemma gives another possible characterisation of the domain

of T™:
peP(T") <= themap Z(T) > — (¢, T9) is bounded.  (2.4)
In fact if, for ¢ € 2 fixed, the linear map
ty + 2(T) = C givenby ([ () := (¢, Te)) (2.5)

is bounded, then (since Z(T) is dense in J¢) it has a unique extension to
a bounded linear functional !Zf on 7. The Riesz Lemma then shows that
there exists a unique 1 € J such that (2 (y)) = (n,%). Thus if ¢ is bounded
and ¢ € Z(T), then there exists n € 7 such that equation (2.3) holds.

If T is not densely defined, the vector n (and thus the operator 7*) is not
uniquely determined by (2.3).

Even if we assume that 7" is densely defined, it can occur that the domain

of T* is not dense and even that 2(7*) = {0}.

EXAMPLE 2.9

Take # = L*(R) and suppose that f € B(R) but f ¢ L*(R). Let ¢y € H#
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be some fized vector and define

P(T) = {$ € ’(R)| / F@)(e)] dz < 00} and
Ty = (f, ¥)do for v € H(T).

Since D(T) contains all L*-functions with compact support, it is dense in
T
Now suppose that ¢ € D(T*), then for all v € P(T)

(0, T7¢) = (T, ¢) = {{f, 1) do, &)

= <f,¢><¢0,7/1> = Wa <¢0,¢>f>'

Thus T*¢ = {(¢o, @) f. Since f is not in L*(R) it follows that {¢g,d) = 0.
Therefore P(T*) = span{¢o}*, which is not dense in 3, and T*¢ = 0 for
any ¢ € 2(T7).

EXAMPLE 2.10

Let {e,}2, be an orthonormal basis of # = L*(R) and set
P(A) =C(R) and A= t(n)e,.
n=1

Since ¥ is compactly supported, the sum is in fact finite, thus the operator is
well-defined.

We will show that for any ¢ € I, ¢ # 0, the map Kﬁ defined in (2.5) is
not continuous and therefore 2(A*) = {0} by (2.4).

Let ¢ € H, ¢ # 0, be fized, then (e,,,d) # 0 for some ng. Choose a
sequence (1) in P(A) so that for all k € N

1

1
supp ¥ C [ng — 5,7”60 + 5] , Ur(no) =1 and |¢pf/r2 — 0.
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Then for each k € N
(A (r) = (¢, Ay) = Zwk (@, €n) = (¢, €ny) #0

although 1, — 0. Thus €£ 15 not continuous.

In the unbounded case, it is important to distinguish between symmetric
and self-adjoint operators. Clearly each self-adjoint operator is symmetric
and if 7" is symmetric and densely defined then 7" C T™*. In particular, T*
is densely defined in this case and it is possible to define T** = (T*)*. The
following Theorem gives a relationship between the notions of adjoint and

closure.

THEOREM 2.11

Let T be a densely defined linear operator on a Hilbert space 7, then
i) T* is closed.
ii) T is closable if and only if 2(T*) is dense in . In this case T = T**.
ii) If T is closable, then (T)* = T*.

Proof. 1) We use the characterisation given in Remark 2.4.
Let (y,) be a sequence in 2(T*) such that y, — y € S and T*y,, — 2z € H
as n — 0o. We have to show that y € Z(T*) and Ty = z.

We have for any z € 2(T')

(y, Tx) = lim (y,, Tx) = Um (T"y,,z) = (2, x).
n—0o0

n—oo

Therefore £ given in (2.5) is bounded and it follows from (2.4) that y €
2(T*). Moreover, T*y = z by Definition 2.8.
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ii) 7«<=": Assume that Z(T*) is dense in . We have to show that T
has a closed extension.
If z € 2(T), the linear map ¢~ defined in (2.5) is bounded on 2(T*) and
thus x € 2(T**) by (2.4). Moreover, for any y € 2(T*)

(Tz,y) = (z,T"y) = (T""z,y) .

Since by assumption Z(7T*) is dense in 5, this implies Tz = T**x for all
r € P(T)C 2(T*) and thus T' C T**. Since T** is closed by i), this shows
that 7" has a closed extension and thus is closable.

Next we show that if T is closable then T' = T**:

»T C T : Since T** is closed by i), this follows from 7' C T** and the
definition of the closure as smallest closed extension.

"T > T*” : Since the graphs of both operators are closed, it suffices
to prove I'(T)*+ C T'(T**)*, where the orthogonal complement is taken with
respect to the inner product (2.1) in 5 x . Let (u,v) € T(T)*, then

0= {((u,v),(z,Tx)) = (u,z) + (v,Tz) foral =zePT). (2.6)

This implies that £I" is bounded on 2(T). Thus from (2.4) and (2.6) we can

deduce
(u,v) € T(T)* = veP(T*) and T'v=—u. (2.7)
For any (z,7*z) € I'(T"**) we therefore get

(u,v), (2, T"2)) = (u, z) + (v, T 2) = (u, z) + (T"v, 2)

=(u+T"v,2)=0
and thus (u,v) € T(T**)*.
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"=—>": We use contraposition.
First we introduce the operator V on ¢ x J¢ given by V(z,y) = (—y, x).

Then V is unitary, since

(V(z,9), V(u,0)) = ((=y,2), (-v,u)) = (=y, =v) + (#,w) = (2,9), (u, v)).

Thus V(E+) = (V(E'))L for any subspace E of ¢ x ¢ and

(z,y) € (V(D(T))" <= ((z,y),(~Tz,2)) =0 forall ze (T
— (¢,Tz)=(y,z) foral ze P(T)

— (x,y) € I(T™).

Thus
D(T*) = (V(I(T))" (2.8)
and
T = (1)) = (@) = (Vo)) = (viea))
(2.9)

Now assume that Z(T*) is not dense. Then there exists z € Z(T*)* with
z # 0. This implies that (z,0) € T'(T*)*, because

((2,0), (x,T"x)) = (z,2) + (0,T"z) =0 forall z e 2(T").

But then (0,2) € V(I'(T*)*) and therefore (0, z) € T'(T).
If (0,z) would be an element of the graph of some linear operator S, this
would imply that SO = z # 0, which is a contradiction to the linearity of

S. Thus there exists no operator T such that I'(T) = I'(T). Therefore by

Proposition 2.5, T" is not closable.
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iii) If T is closable, then
7 27 D DT
U

We could have used the unitary operator V' already for the first part of
the proof (which then were a bit less direct):
Equation (2.8) implies that the graph of T is closed, since the orthogonal

complement of a subspace is always closed.

If T* is densely defined, (2.8) together with (2.9) give I'(T') = I'(7**), thus

proving T' = T™* is this case.

2.1.3 Symmetric operators, essential self-adjointness

Theorem 2.11 leads at once to the following corollary.

COROLLARY 2.12

Let T be a densely defined linear operator on a Hilbert space €, then

i) T is symmetric if and only if T C T*. In this case T** is symmetric as
well and

Trcr=cr:=1T"".
ii) T is closed and symmetric if and only if
T=T"CT".
iii) T is self-adjoint if and only if
T=T"=T".
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Between i) and iii) there are operators with the following property.

DEFINITION 2.13 (ESSENTIAL SELF-ADJOINTNESS, CORE)

Let T be a symmetric, densely defined operator on a Hilbert space 7.
i) T is called essentially self-adjoint : <= T is self-adjoint.
i) If T is closed, a subset C C D(T) is called core for T : <= T|c=T.

PROPOSITION 2.14
Let T, S be densely defined operators on a Hilbert space €. Then the fol-

lowing statements hold.
i) If T'C S then S* C T*.

it) If T is essentially self-adjoint, then it has a unique self-adjoint exten-

Ston.
iii) If T is self-adjoint, then T' has no proper symmetric extension.
i) T 1is essentially self-adjoint if and only if

Tcr~=1T".

Proof. Exercise 2.33 ]

The importance of essential self-adjointness lies in the uniqueness of the
self-adjoint extension. This allows to determine a self-adjoint operator A
uniquely without giving the exact domain of A, which often is difficult. In-

stead it suffices to give a core for A.
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2.1.4 Resolvent set and Spectrum for unbounded op-

erators

Before we give criteria for (essential) self-adjointness of operators, we define

the resolvent set in the case of closed unbounded operators.

DEFINITION 2.15 (RESOLVENT SET)

Let 7€ be a Hilbert space and T a closed operator on F€ with domain Z(T).
A complex number A € C is in the resolvent set p(T') of T : <=

(AId —T) is a bijection of Z(T) onto F with bounded inverse.

If X € p(T), then the operator Ry(T) = (A\1d —T)~! is called resolvent of T
at \.

The definitions of spectrum, point spectrum, continuous spectrum and resid-

ual spectrum are exactly as given in Definition 1.1 for bounded operators.

Since T' is assumed to be closed, it follows from the closed graph theorem
that if (AId —T') is a bijection of Z(T') onto .7, then its inverse is bounded.
If we speak of the spectrum of a closable operator, we always mean the
spectrum of its closure.

As in the case of bounded operators (Theorem 80), we have the following

Theorem.

THEOREM 2.16
Let T be a closed densely defined linear operator on a Hilbert space 7. Then
the resolvent set of T is an open subset of C on which the resolvent is an

analytic operator-valued function. Furthermore

{BA(T) | A € p(T)}
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is a commuting family of bounded operators satisfying

RA\(T) — R,(T) = (p— N)RA(T)R,(T) First Resolvent Formula
(2.10)

The proof is exactly as in the case of bounded operators.
The following example will show that the spectrum of an unbounded

operator depends on the choice of the domain. Before that we give for com-

pleteness the definition of absolute continuity.

DEFINITION 2.17 (ABSOLUTE CONTINUITY)
Let J C R be a (possibly unbounded) interval. Then a function f:J — C is

called absolutely continuous: <—-

For each ¢ > 0 there exists 6 > 0 such that for every finite collection of

disjoint intervals lay, by C J, k=1,...n,n € N

Dolbe—al <6 = D |fbe) — fla)] <e.
k=1 k=1
Then the Fundamental Theorem of Calculus holds:

THEOREM 2.18 (FUNDAMENTAL THEOREM OF CALCULUS)

Let J C R be a (possibly unbounded) interval.

i) If f : J — C is absolutely continuous, then f is differentiable almost
everywhere, the deriwative f' € L'(J) and

f@)— fto) = /tt f'(s)ds  forall to,t€ J.

72



2.1. DOMAINS, GRAPHS, ADJOINTS AND SPECTRUM

ii) If g - J — C is integrable over compact subintervals and

for an arbitrary a € J, then f is absolutely continuous, f’ exists almost

everywhere and ' = g almost everywhere.

EXAMPLE 2.19

We consider operators given by i% on different domains in = L*([0,1]).
We already introduced in Example 2.2iii) the operator T acting on its

domain 2(T) = {¢ € C'([0,1])| (1) = ¢(0) = 0} as T = iLg. T is

symmetric but not closed and thus not self-adjoint. To see that it is not

closed, consider the sequence

+ L2 eo]

n

Gult) = ((t = 32+ 1) —(

™

Then ¢, € C*([0,1]) and ¢,(0) = 0 = ¢,(1), thus ¢, € Z(T) for all n € N.

Moreover

and the convergence is uniform and thus in L*([0,1]):

Setting t — % = s and using that |s| < % gives for any t € [0, 1]

[on(t) — o] = |(*+ 1) = G+ 1) = (1) + 4

() (@) (2 )

n
1,1 _ 1 2 _ 241
1T 1 S C R

+
(%+l)1/2+% (82)1/2+(82—|—l)1/2

n

< —4—=—0 as mn— 0o.
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We have for any t € [0, 1]

—i if t<3
d _ 1
Tn(t) = i—on(t) =i P ) =50 if t=0
/2
N
¢ if 5
and this convergence is in fact in L?:
With the substitution t — % =s
! 2
[ 1T6ute) — wio) P
0
2 ) 2
0 1/2
:/‘ S d&+/ 5 ] as
_1/2 32 + 1 0 32 + l

1/2
:2/ R ds
0 s2+ 2
1/2 52 25
:2/ 1+52+l_ - ds
0 n s2 4 2

1/2
=2

1 1\ 12
S+ s — NG arctan (v/ns) — 2 (32 + ﬁ) 0

211 1acta (\/_) 2 1+1 1/2+ 2
= — —— arctan(+/ns) — B — —
vn 4 n Vn
—0asn— 0.

Thus we found a sequence in the graph T'(T) converging to some element

(¢, ) € A x A, but since ¢ ¢ D(T) (since the absolute value is not differ-
entiable), T'(T) is not closed and therefore T is not closed.

74



2.1. DOMAINS, GRAPHS, ADJOINTS AND SPECTRUM

Now we set
AC[0,1] := {¢ € C([0,1]) | ¢ is absolutely continuous with %¢ € L*([0,1])}
and define the operators Ty and Ty by setting T,¢ = i%gb fork=1,2 and
2(Ty) = AC[0,1] and 2(T) = {¢ € AC[0,1]|#(0) = 0}.

Then both domains are dense in ¢ and both operators are closed.

To see that Ty is closed, let (x,,) be a sequence in P(T) such that
T, w1 €N and Tx,—yeH in L*(0,1]). (2.11)
Since x, 1s absolutely continuous, it follows from Theorem 2.18 that
t

T (t) = 2,(0) + %/0 Tix,(s)ds forall te[0,1]. (2.12)

We will use (2.12) to show that x,,(t) converges uniformly.
We first observe that by the Holder inequality for any t € [0, 1]

’/Ot Thzn(s) ds — /Oty(s) ds] < /Ot Ty, (s) — y(s)| ds

< /01 Tz, (s) — y(s)|ds < (/01 Ty, (s) — y(s)[? ds> 2 </01 12 d8> 2

= |Thz, —y|lzz — 0 asn— .

where for the convergence we used (2.11). Thus

t t
/levn(s)ds —>n_>oo/ y(s)ds wuniformly. (2.13)
0 0

Moreover, using (2.12) again, we have for any n,m € N
t
2 (0) — 2,,(0) = 2, (t) — zp(t) + %/ (T (s) — Tix,(s)) ds
0
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and therefore

|2,(0) 0) = /|xn )|2dt>
/|xn (1) dt) 2+ /|/ Tyom(s) — Tyl ))d32|dt>1/2.

(2.14)

Since by (2.11) and (2.13) both summands on the right hand side of (2.14)
converge to zero, it follows that (x,(0)) is a Cauchy sequence and thus con-

vergent. Set

¢
lim z,(0) =a and z(t) = a+%/ y(s)ds,
0

n—oo

then combining (2.12) with (2.13) and the definition of a shows that x, —
z uniformly. Moreover, z is absolutely continuous by Theorem 2.18, since
y € L*([0,1]) € LY([0,1]), and %£=(t) = y(t) almost everywhere. This shows
that

z2eP(Ty) and Tiz=y.

Since x, — x in L? and x,, — z uniformly, it follows that x(t) = z(t) almost
everywhere and thus x = z in L*([0,1]). Thus T} is closed.
Similarly, it can be proven that Ty is closed (each sequence x,, in D (15)

has the fized value ,(0) = 0, thus a = 0 in the above proof).

But although Ty is an extension of Ty and both operators are closed, the

spectra of Ty and Ty are not equal. In fact we have

o(Ty)=C and  o(Tz) =1. (2.15)
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To see that o(Ty) = C, observe that for all A € C
e e 9(Ty) and — Tie™™ = \e™™.

To see that o(Ty) = 0, we show that \1d =Ty has an inverse for each A € C
and thus p(Ty) = C. In fact, define the operator Sy on F€ given by

¢
Sha(t) = z/ e M=)y (s) ds .
0

Then Syx € P(13) for any x € S and by product rule and Theorem 2.18

o d . —iAt ! iAS
TyS\x(t) = ZE(ZG /0 e x(s) ds>
t
= /\ie_m/ e (s) ds — e ey (t)
0
= ASha(t) — x(t)

and therefore

(A1d—T3)S\ =1d on .

On the other hand, for any v € (1) we get by integration by parts, using
z(0) =0,

t
S\Thz(t) = z'e_i’\t/ ei’\siix(s) ds
0 ds

t

= —e_i’\t([ei’\sx(s)]é - /0 iXe™x(s) ds)

= —z(t) + Si z(t).
This shows for each \ € C
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Therefore (A\1d —T3) is invertible on 2(T3) for any A € C and thus p(T3) = C
by Definition 2.15. This shows o(Ty) = 0.

Now we will show that T* = T].
Let x € 2(T*) and set

t
y="T and F(t):/ y(s)ds.
0

Since y € L*([0,1]) € L'([0,1]) by the definition of the domain of T*, it
follows from Theorem 2.18 that

F' is absolutely continuous and F' =y almost everywhere. (2.16)
Thus for any z € P(T), integration by parts yields
(2, T2) =(y,z) = (F',2) = —(F,2") = (—iF,Tz) .

Therefore
z+iF € Ran(T)". (2.17)

Moreover, it follows from the definition of Z(T) that for each x € 2(T)
1 1
Tx €C([0,1]) and / Tx(s)ds = Z/ z'(s)ds = i(x(1) — z(0)) = 0.
0 0

Since the closure of C([0,1]) with respect to the L*-norm is L*([0,1]), this

shows

1
Ran(7) = {w € L2(0,1) |/ w(s)ds =0} = {13
0
Therefore Ran(T)* = {1}*++ = span{1} and by (2.17)
x +iF € span{l} and — x=—iF+al foral xzeP(T").
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Thus © € 2(T*) is absolutely continuous and by (2.16)

d
L([0,1) 2Tz =y=F = z%x =Tz and thus =z € AC[0,1] = 2(T1),

proving T* C Ty. On the other hand, assume x € AC[0,1] and set

d
= L2 1]).
ye=ite e 12(0.1)

Then as above integration by parts yields
(x,Tz) = (y, 2) forall ze 2(T)

and therefore T*r = y = Tyx and x € P(T*). This proves T* C Ty and we
thus have shown T™ = Tj.

We remark that although T' is symmetric, its adjoint T is not symmetric.
Since by Corollary 2.12 we know that T** is also symmetric, it follows that
T % T* and therefore T is not essentially self-adjoint.

Moreover, by Theorem 2.11, Corollary 2.12 and Proposition 2.14, if T

has any self-adjoint extension S, then
TCT=T*CS=S8"CT"=T"". (2.18)

In the next step, we will determine T**. We already know from above that

T* =Ty, i.e. 9(T*) =AC[0,1] and T*x(t) = iLx(t). Thus by (2.18)
.d
rePT™) = ze€AC[0,1] and T"z(t)= z%x(t) :
Let x € 2(T*"), then for any z € 2(T*) we have on one hand
1
(2, T%2) = (T*z, 2) = / (—id2(®) - =(t) dt (2.19)
0
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and on the other hand by integration by parts
(x, T"z) :/0 z(t) - (id2(t)) dt (2.20)
=i(2(1)z(1) — 2(0)z(0)) +/O (—idz(t)) - 2(t)dt.

Combining (2.19) and (2.20) shows that
z(1)z(1) = 2(0)2(0) =0  for all ze€ AC|0,1]
and therefore x(1) = x(0) = 0. It follows that

T = z% with  P(T) = {z € AC[0, 1] | 2(0) = =(1) = 0} .

We remark that T is an extension of T™*, thus the spectrum of T** is empty
as well.

Since T** is not equal to T* = T**, it follows that T** is an extension
of T" which is closed and symmetric, but not self-adjoint. Since T" is not
essentially self-adjoint, there might be no or many self-adjoint extensions of
T.

In our example, T has infinitely many self-adjoint extensions. In fact,
consider for any A € C with |\| = 1 the operators Sy on F acting on their

domain

2(5,) = {z € AC[0,1]|2(0) = Az(1)} as Sh(t) = @'%m). (2.21)
Then T C S\ C T* and Sy is symmetric, since for all x,y € 2(S))
7(1)z(1)—z(0)2(0) = 2(1)z(1) = AZ(1)Az(1) = (1—|A]*)Z(1)2(1) = 0 (2.22)
by the assumption |\|* = 1 and therefore

(z, Sxy) = i /0 2(0)(Ly (1)) dt (2.23)
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=i(z(1)z(1) — 2(0)z(0)) —i/o (La(t)) - y(t)dt
= (Sx1,y) .

Thus Sy C S5 by Corollary 2.12.
To see that S5 C Sy, we can proceed using arguments similar to those given

above:

From Proposition 2.1} and T C Sy it follows that Sy C T* and thus
d
reP(SY) = xe€AC[0,1] and Six(t)= ’L%{[@) (2.24)
Let © € 2(S5%), then for any z € 2(S)) we have on one hand

(x,S\2) = (S z,2) = /0 (- i%%) - z(t) dt (2.25)

and on the other hand integration by parts shows

(x,S\2) :/0 x(t) - (i22(t)) dt (2.26)

Combining (2.25) and (2.26) shows that
7(1)2(1) — 2(0)2(0) = (z(1) = AZ(0)2(1) =0 forall =€ D(S))
and therefore (1) = Ax(0). Since A = A~ for |\| = 1, it follows that
P(S3)  {x € AC[0,1]| 2(0) = Az(1)} = 2(S))

and therefore S C Sy by (2.24).
Thus we have proven that for any A € C with |\| = 1 the operator S)
defined in (2.21) is a self-adjoint extension of T' (and of T**). Thus T has

in fact infinitely many self-adjoint extensions.
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2.1.5 Criteria for (essential) self-adjointness

We now want to get criteria to decide, whether an operator on a Hilbert
space is (essentially) self-adjoint.

We first observe that if T is a self-adjoint operator and if there exists
x € P(T*) = P(T) such that T*z = iz, then Tr = iz and thus

—i(z,x) = (ix,x) = (Tr,x) = (x, T"x) = (x,Tx) = i(z, ),

and therefore x = 0. A similar computation shows that 7"z = —ix has no
non-zero solutions.
Thus if T is self-adjoint, then Ker(7™* 4+ i1d) = {0}.

The converse statement is one of the the basic criteria for self-adjointness.

We start with a lemma, giving the relation between the kernel of an opera-

tor and the range of its adjoint (see also Exercise 1.42). We set Z(A\1d —T") =
2(T) for X € C.

LEMMA 2.20
Let 7 be a Hilbert space and T : 7 D P(T) — A a densely defined

linear operator. Then
i) Ker(T* Fild) = Ran(T + i1d)* and in particular

Ker(T* Fild) ={0} <= Ran(T'£:¢ld) is dense in F .

ii) if T is closed and symmetric, Ran(T £ i1d) are closed.

Proof. We only prove the case T' + 1, the case T — ¢ is similar.

i) First remark that (7'+4)* =T —i.
"7 yeRan(T +i)" = (y,(T+14)z) =0 forall zec Z(T)
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=y e Z2(T") and (T —1)y,z) =0 forall ze P(T)

=y € Ker(T" —1).

TC yeKer(TH —i) = ye€ 2(T") and (T* —i)y,z) =0Vz €
= (y,(T+1i)z) =0 foral ze P(T)
= y€Ran(T +14)".
ii) Since T' is symmetric, (xz,Tz) € R and thus for all z € Z(T)

(T + i)l = | T[* + [l«]* + 2Re(iz, Tz) = |Tx|® + z|* > ||l=|*. (2.27)

Therefore (T'+4)~! : Ran(T + 1) — 2(T) exists and is continuous®.

Let (z,) be a sequence in Z(T) such that (T + i)z, — y € Ran(T +1).
Then ((T + 4)x,) is a Cauchy sequence in Ran(7" + i) and therefore (z,,) is
a Cauchy sequence in Z(T'). Thus there exists x € J with x = lim,,_,, x,

and moreover Tz,, — y —iz. Since by assumption 7" is closed, it follows that

re P(T)and y = (T +i)xr € Ran(T +i).

THEOREM 2.21 (BAsIC CRITERION: SELF-ADJOINTNESS)
Let T be a densely defined symmetric operator on a Hilbert space 7. Then

the following three statements are equivalent:
i) T is self-adjoint.
i) T is closed and Ker(T* +:1d) = {0}.
iii) Ran(T +ild) = 2.
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Proof. 71) = ii)” : If T is self-adjoint, then T" = T™ is closed by Theorem
2.11i). Assume (7% 4 i)z = 0. Since T™* is symmetric, it follows from (2.27)
that = 0 and thus Ker(7™ + i) = {0} and analogously Ker(7™* — i) = {0}.
"ii)=iii)” : If T" is closed and symmetric, Ran(7"+1) is closed by Lemma
2.20ii). Since Ker(T*F1) = {0} it follows from Lemma 2.20i) that Ran(7"+1)
is dense in 7. Thus Ran(7 +1) is closed and dense in ¢ showing Ran(7 +
i) = .
"iii)=1)” : Since T is symmetric, it follows from Corollary 2.12 that
T C T*, thus it suffices to show 2(T*) C 2(T). Let y € 2(T*). Since
by assumption Ran(7 £ i) = 7, there exists some x € Z(T) such that
(T* —i)y = (T' —i)x. But since T' C T* this implies (T — i)y = (T* —i)x.
Therefore, (y —x) € Ker(T* — i) and since Ker(T* —i) = {0} by iii) together
with Lemma 2.20i), it follows that y =z € 2(T).
U

There are similar criteria for essential self-adjointness.

COROLLARY 2.22 (BAsic CRITERION: ESSENTIAL SELF-ADJOINTNESS)
Let T be a densely defined symmetric operator on a Hilbert space 7. Then

the following three statements are equivalent:
i) T is essentially self-adjoint.
it) Ker(T* £i1d) = {0}.
iii) Ran(T +£i1d) is dense in .

Proof. "1) < ii)” : T is essentially self-adjoint if and only if 7** is self-adjoint,
thus this statement follows from Theorem 2.21 applied to T** and T™ = T™**.

84



2.1. DOMAINS, GRAPHS, ADJOINTS AND SPECTRUM

i)« iii)” : Lemma 2.20.

2.1.6 Deficiency Indices, existence of self-adjoint ex-

tensions

DEFINITION 2.23
Let T be a symmetric densely defined operator on a Hilbert space 7. The
numbers

ny = dim Ker(T* £ 1)
are called deficiency indices of T'.

Here dim M denotes the cardinality of the basis of the subspace M € 7.
In the next theorem we give a criterion to decide wether a symmetric
operator has a self-adjoint extension. As we saw in Example 2.19, this does

not imply that 7" is essentially self-adjoint (or that this extension is unique).

THEOREM 2.24
Let T be a densely defined symmetric operator on a Hilbert space € with
domain P(T). ThenT has a self-adjoint extension if and only if its deficiency

indices are equal, i.e.
S :TCcS=85 <+ dimKer(T* +1i) = dimKer(T™ —1).

Proof. Since T is symmetric, it is closable (since T C T* by Corollary 2.12
and 7™ is closed by Theorem 2.11). Moreover by Proposition 2.14, if S is
a self-adjoint extension of 7, then T ¢ T C S = S* C T*. Thus T has a

self-adjoint extension if and only if T has a self-adjoint extension. Thus we
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can assume without loss of generality that T is closed.

7«<=": We assume that n, = n_. By equation (2.27)
(T +d)x| = [[(T —i)z|| forall e 2(T),
and by Lemma 2.20 Ran(7" + ) is closed. Thus the operator
U : Ran(T —i) — Ran(T' +1i), (T —i)xw— (T +i)x

is a well-defined, isometric, surjective operator (U = (T +1)(T —14)~! defined
on Ran(7 — i) is called Cayley-transform of 7). In .# we choose an
orthonormal basis {e;} such that the subset {e; } is a basis for Ran(T —
i)* and an orthonormal basis {f;} such that the subset {f;, } is a basis for
Ran(T + i)*. Since by assumption n, = n_, it follows from Lemma 2.20i)
that

{f;.}| = dim Ran(T + 4)*" = dim Ran(7 —4)* = |{e;, },

where |M| denotes the cardinality of the set M. Thus there is a one-to-one
correspondence between {e;, } and {f;, }, which allows us to extend U to a
unitary map V : # — . In the first step, we show that V' — Id is
injective: Assume that y € Ker(V —1d), then Vy = y and since V' is unitary
(and thus V*V = Id) this implies y = V*y. Then for any z € 2(T), using
V(T —i)x = (T + i)z by the definition of V,

2ily,x) = {y, (T +i)e — (T — i)a) = {y, (V — L)(T — i)x)
— (V" —1d)y, (T —i)a) = 0.

But this implies that y € 2(T)* and since T is densely defined y = 0.
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Thus we can define the operator
S=i(V+Id)(V—-1Id)"' : Ran(V —Id) — #, Vz—zri(Vz+2).

The goal is to show that S is in fact a self-adjoint extension of 7.

Since for any z € Z(T) we have
(V-Id)(T —i)x = (T + 1)z — (T —i)x = 2ix (2.28)

it follows that x € Ran(V — Id) = 2(S) and thus 2(T") C 2(S). Moreover
for any z € 2(T) it follows from (2.28) and the definition of S and V' that

Sz = %S(V—Id)(T—z‘)x _ %(V+Id)(T—z‘)x = N ies (T—i)e) = Te.

DN | —

This shows that T C S.

Moreover, S is symmetric, since for any x = (V — id)y € 2(5)

(x,Sz)y = ((V = 1d)y,«(V + 1d)y)
=i((Vy. Vy) — (., Vy) + (Vy,y) — (v, v))

=i((Vy,y) — (y, Vy))
=—2Im(y,Vy) e R

where we used that V' is unitary. Thus S is symmetric by Exercise 2.35.
To finally show the self-adjointness of S, we use that by Theorem 2.21 it
suffices to show Ran(S +1i) = 5. But since for any z €

(S—i)(V—-Id)z=i(V+1d)z —i(V — 1d)z = 2iz
and
(S+i)(V-Id)V*z = ((V+Id) V" 24i(V=1d)V*z = iz+iV 2+iz—iV"z = 2iz,
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each element of JZ is in the range of both (7' — i) and (7" + i), showing that

S is self-adjoint.

"=—>": Assume that T has a self-adjoint extension S. Thus by Theorem

2.21 we can define the map
V=(S+i)(S—i)"" withdomain 2(V)=Ran(S—1)= 2.
Then V' is surjective, because Ran V' = Ran(S + i) = % by Theorem 2.21.
Moreover, by (2.27)
V(S —d)zx| = ||[(S+i)x| = [|(S — i)z for all z € 2(9),
and thus V' is isometric. Thus V' is unitary. Moreover, we set
U= (T+i)(T—14)"" with domain 2(U)=Ran(T —1).
Since T C .S by assumption it follows that U C V.
By construction V = U on Z(U) yielding
Vlgan(r—s) @ Ran(T" — i) — Ran(T +14) and
V|Ran(r—q+ © Ran(T — i)™ — Ran(T +14)",
where the second statement holds since V' is unitary and thus preserves the
inner product. Therefore, V' maps Ker(7T™ — i) unitarily onto Ker(7T™* + i),

proving that the dimension of these two spaces has to be equal.

g

EXAMPLE 2.25

We set Rt = (0,00). On the Hilbert space L*(R™) we consider the operator

Tyz(t) = z%x(zﬁ) with domain ~ 2(T3) = C°(R™)
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(the infinitely differentiable functions with compact support on R ). Then T3
is symmetric (the boundary values in the integration by parts formula vanish).
Similar to Example 2.19 it can be shown (Ezercise 2.38) that T3y = i%y

on the domain
.@(Tg‘):{xe,}f|%x€j€” and
VI C RT compact : z|; is absolutely contmuous} . (2.29)

Thus Ty is not symmetric (and thus in particular not self-adjoint). We
compute Ker(Ty +1):
(T3 £14)y = 0 holds if and only if y is a solution of the differential equation

v =Fy e if y(t)=avre™ for some as€C.
But since the function t — €' is not in L*(RT) while t — e~ is, we get
Ker(T; —i) ={0} and Ker(T;5 +1i) = span{e '} #0.

Thus T3 is not essentially self-adjoint by Corollary 2.22 and has no self-

adjoint extensions by Theorem 2.24.

2.1.7 The Friedrichs Extension

We come to an important class of operators with self-adjoint extensions.

DEFINITION 2.26 (SEMIBOUNDED OPERATORS)
A densely defined operator A on a Hilbert space F€ with domain P(A) is

called semibounded from below : <—-
3C eR :  (z,Az) > C|z|? for all x € 2(A).
A is called semibounded from above if —A is semibounded from below.
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REMARK 2.27
The condition given in Definition 2.26 implies that (x, Azx) € R (since in
C we have no order relation). Thus by Exercise 2.35, each semibounded

operator is in particular symmetric.

EXAMPLE 2.28

Ezxamples for semibounded operators are the Laplace operator (or free Hamil-

tonian) Hy on A = L*(R™) given by

Hop(x) = —A¢(x Z anb with domain  2(Hy) = C°(R™)
(2.30)
or more general a Schrodinger operator H = Hy + V' on the same domain,
where V' is a multiplication operator such that there exists a constant C' € R
such that V(x) > C for all x.
In fact, for any ¢ € P(H), integration by parts yields

<¢,H¢>:§< ¢, ¢> (6, V) =

+({, V) > Cllgll*.

THEOREM 2.29 (FRIEDRICHS EXTENSION)
Fach densely defined semibounded operator A on a Hilbert space F€ admits

a self-adjoint extension S and S is semibounded with the same bound.
To prove Theorem 2.29 we need the following Lemma:

LEMMA 2.30

Let 7€ and & be Hilbert spaces and J € L( , ) be injective with dense
range.

Then JJ* € L(F) is an injective operator with dense range und the inverse

operator S : Ran(JJ*) — S is self-adjoint.
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Here the adjoint operator J* is determined by the equation
(x, JY) o = (J 'z, y) forall xe 2, ye . (2.31)

Proof. Since Ker J* = (Ran J)*, the assumption that the range of J is dense
implies that J* is injective. Since J is injective this yields that JJ* is injec-
tive. Thus the self-adjoint operator JJ* has dense range and S is therefore
densely defined. Since S is symmetric, we can use Theorem 2.21 to show
that S is self-adjoint. To see that Ran(S +1i) = 42, let y € S be given. In

order to find a pre-image of y, the equation
(Sti)r=y orequivalently (Id+iJJ")z = JJ"y (2.32)

has to be solved in Z(S). But since JJ* is self-adjoint, i € p(JJ*) and thus
(¢1d —JJ*) is invertible, giving the solution

= i(ildFJJ) T Ty

in 7. But since x = JJ*(y F iz) by (2.32) it follows that z € Ran(JJ*) =
2(9).
U

Proof of Theorem 2.29. Assume without loss of generality that A is semi-
bounded from below.

Moreover, we can consider A + cId instead of A for some ¢ € R, since
both operators have the same domain and A admits a self-adjoint extension
if and only if A+ cId does. Thus by choosing ¢ appropriately we can assume

without loss of generality that
(z, Ax) > ||z|| forall ze€ 2(A). (2.33)
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Then the map (z,y) — (x, Ay) is a positive definite sesquilinear form on
P(A). Since A is symmetric by Remark 2.27, the map is conjugate symmet-

ric. We thus can define a new inner product on Z(A) by
D(A) x Z(A) 3 (x,y) = {z,y)) = (z, Ay) . (2.34)

Then (2(A), ({-,-))) is a pre-Hilbert space, and its completion with respect
to the induced norm ||-|| is a Hilbert space # C . 2. From (2.33) and the

construction of the norm in % it follows that
llzll > J|z|| forall =ze 2.
Therefore, the map
J: (24, N)d2rx—>xeH

is a linear contraction and by the BLT-Theorem it can be extended to a
contraction J : # — . Moreover, for any x € J# there is a sequence
(z,) in Z(A) such that x,, — = and thus by continuity of the inner product
and J, (2.34) and since Jx = x for x € Z(A)

({2, y)) = lim ((zg,9)) = lim (Jon, Ay) = (Jz, Ay) (2.35)

n—o0
forally € 2(A) and x € #. If Jx = 0, then it follows from (2.35) that x
is orthogonal to all y € Z(A) and since Z(A) is dense this implies z = 0.

Therefore, J is injective.

2From (2.33) we get
lzl* = (2, 2)) = (z, Az) > |a||* for all z € D(A)

and therefore each Cauchy sequence (z,) in Z(A) with respect to ||-||| is a Cauchy sequence
in 2 (i.e. with respect to || ||). Thus x € S is an element in .Z if there is a [||-|||-Cauchy

sequence with #,, — = in . This gives a norm on J as limit ||z = lim [||z,[| -
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Since Z(A) C RanJ, the map J € L(, ) is injective with dense
range. Thus by Lemma 2.30 the operator JJ* € L(J¢) is injective with

dense range and its inverse operator
S : Ran(JJ*) — H#

is self-adjoint.

We will show that S is an extension of A and satisfies the estimate
(x,Sx) > ||=|? for all z € 2(5)=Ran(JJ"). (2.36)
Let x € Z(A) and y € ', then by (2.35)
({y, 2)) = (Jy, Az) = ({y, J* Az)) (2.37)

where we used (2.31) (the definition of the adjoint) for the second equality.
Using Jx = x for x € Z(A), equation (2.37) yields

J'Ar =x = Jox =JJ Az forall ze P(A).

Therefore each x € Z(A) is in the range of JJ* and thus in the domain of
S, ie. Z(A) C 2(9).

Since S is the inverse of JJ*,
JJ'Ar = o = JJ*Sx forall xe€ ZP(A)

and this implies Az = Sz for v € Z(A), because JJ* is injective. Therefore
AcCS.

Thus S is a self-adjoint extension of A.
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To see that (2.36) holds (i.e. S is a semibounded operator with the same

constant as A), we use that J is a contraction, yielding for all z = JJ*z €

2(5), using (2.31)

(@, 82) = (J T z,2) = ((J*2, J*2)) = | 2| 2 | T2 = |||

REMARK 2.31
The self-adjoint extension constructed above is called Friedrichs Extension.
It could also be constructed starting directly from a semibounded sesquilinear

form defined on a dense subspace of € .

COROLLARY 2.32
Let A be a densely defined, closed operator on a Hilbert space €. Then the

operator
A*A  with domain D(A*A) ={x € Z(A)| Az € Z(A")}
is densely defined and self-adjoint.

Proof. 1t is clear that A*A is symmetric on its domain. To see that Z(A*A)

is dense in 7, we define on Z(A) the inner product

Since A is closed and ||z||4 := (x, )4 is the graph norm, (Z(A), (-,-)4) is a
Hilbert space, which we denote by J£. Let J € L(#, ) be the inclusion

operator (i.e. Jxr =z forallz € ). Since Z(A) is dense and ||z|[4 > ||z, J
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is an injective contraction with dense range (its range is equal to the domain

of A) and Ran JJ* is dense by Lemma 2.30. It therefore suffices to show that
Ran(JJ*) C Z(A*A).

Let z = JJ*y € Ran(JJ*), then z is in the range of J*, because JJ*y = J*y
and therefore © € # = Z(A). To see that Ax € Z(A*), we have to show
that the linear map z — (Az, Az) is bounded for all z € Z(A). In fact, by
(2.38) we have for all z € Z(A)

(Az, Az) = (x,2)a — (2, 2) = (J'y,2)a — (x, 2)
=(y,J2) = (2,2) = (y — 2, 2) < C|=|”

for some C' > 0. Thus z € Z(A*A) and Z(A*A) is dense in JZ.
The densely defined operator

T:=1d+A"A obeys (x,Tw)=||zlla = [ll* +[|Az]* > ||«

for all z € Z(A*A). Thus T is semibounded and its Friedrichs extension S
can be constructed exactly as in the proof of Theorem 2.29, where J and J#
are as above. Thus S is defined on Z(S) = Ran(JJ*) C Z(A*A) = 2(T)
and therefore S = T'. This shows that T"is and A*A = T —1d are self-adjoint.

O

2.1.8 Exercises

EXERCISE 2.33 (ESSENTIAL SELF-ADJOINTNESS)

Prove Proposition 2.14:

Let T, S be densely defined operators on a Hilbert space €. Show that the

following statements hold.
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i) If T'C S then S* C T*.

it) If T is essentially self-adjoint, then it has a unique self-adjoint exten-

S10N.
iii) If T is self-adjoint, then T has no proper symmetric extension.
i) T is essentially self-adjoint if and only if

Tcr™=1".

EXERCISE 2.34 (DENSITY OF FUNCTION SPACES)
Show that the space C§°(R™) of smooth compactly supported functions is dense

in the space Coo(R™) of continuous functions vanishing at infinity.

EXERCISE 2.35 (SYMMETRIC OPERATORS)

Let T be a densely defined linear operator on a complex Hllbert space 7€ with
domain Z(T'). Show that T is symmetric if and only if (x,Tx) € R for all
zePT).

Hint: Consider (x +y,T(z +y)).

EXERCISE 2.36 (ADJOINT OPERATORS)
Let 7€ be a Hilbert space. For densely defined linear operators S, T on
with domains 2(S) and 2(T), we set

D(SoTl)={zeH|xeDT) and Tr € 2(5)}.

Show that if SoT is densely defined, then T*0S* C (SoT)* and if S € L(F),
then T* o S* = (S o T)*.

96



2.1. DOMAINS, GRAPHS, ADJOINTS AND SPECTRUM

EXERCISE 2.37 (RESOLVENT SET)

Let T be a densely operator on a Hilbert space 7€ with domain 2(T). Assume
that there exists A € C such that (\1d =T) : 2(T) — S is bijective and has

a bounded inverse. Show that T is closed.

Rem.: This shows that the definition of resolvent set and spectrum for non-

closed operators is useless (the spectrum would always be C).

EXERCISE 2.38 (ADJOINT OPERATOR)
On the Hilbert space in S = L*(R"), consider the operator Ts with domain
2(Ts) = C°(RY), acting as Tzp = i2¢ for ¢ € D(T3).

Show that the adjoint is given by T3y = i%y on the domain

D(T3) ={x € | x|; is absolutely continuous for all compact intervals

d
ICR* (mdaxee%”}.

EXERCISE 2.39 (MULTIPLICATION OPERATOR)
Let (Q,%, 1) be a measure space and f :  — R measurable. Define the
operator My on A = L*(Q, 3, 1) by setting

D(My)={zecH|f xveH} and  Mpr=f-x forxze P(My).
Show that

i) My is densely defined
Hint: Consider the sets Q, == {w||f(w)| <n} CQ

i) My is self-adjoint.
iii) o(My) = {)\ eER|Ve>0: u(f‘l[/\—e,)\—l—e]) > 0}.
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Hint: To see ” D 7, show that if h : Q@ — R is measurable and the
multiplication operator My, is bounded, then |h(t)] < ||My| almost
everywhere (consider for a > 1 a set E € ¥ with u(E) < oo and
E C{t[|h@)] = al Mpnll})-

EXERCISE 2.40 (SPECTRUM OF SELF-ADJOINT OPERATOR)

Let A be a densely defined, closed, symmetric operator on a Hilbert space F .
Show that A is self-adjoint if o(A) C R.

2.2 Spectral Theorem for unbounded opera-
tors

As in the case of self-adjoint bounded operators, there are several versions of

the spectral theorem for self-adjoint unbounded operators.

2.2.1 Multiplication operator form

In this section, we will give an extension of Theorem 1.25 and Corollary 1.26.
From Exercise 2.39 we already know that if (€2, 3, 1) is a measure space

and f a real-valued measurable function, then the operator M; on J =

L*(Q, %, u) given by

D(My)={ze|f xeH} and Myx = f-x forxe P(My)
(2.39)
is self-adjoint. Moreover, the spectrum o(My) is equal to the essential range,

where A € R is said to be in the essential range of f if and only of
p({me M|X—e< f(m)<A+e€}) >0 foral e>0.
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Similar to the case of bounded operators, the following Lemma holds.

LEMMA 2.41
Let T be a self-adjoint operator on a complex Hilbert space 7€, then o(T) C R
and o(T) # .

Proof. Let z = XA+ 1in € C with n # 0 and set S = %(T —AId) on 2(5) =
2(T). Then S is self-adjoint and it follows from z—T = z—nS— X = n(i—.S)
together with equation (2.27), that for any =z € 2(T")

Iz = T)z|* = n*|I(i = S)xl* = n*[l=]|*.

Therefore there exists a continuous® map

(z=T)"' : Ran(z —T) — 2(T).

But since Ran(z — T') = Ran(i — S) = 5 by Theorem 2.21, it follows that
z € p(T). This shows that o(T) C R.

To see o(T') # (), we argue with contradiction: Assume p(7') = C, then for
any A\ # 0, the operator (A1 Id —T)"! : # — 2(T) exists and is bounded.

Since
(T7' = AI)TA' A ' A -T) "' = (Id=AT)(Id —-A\T) ' =1d,

the operator (T~! — A\1d) is invertible with inverse TA~'(A\~11d —7)~!
S — . This shows that any A # 0 is in the resolvent set of 7! and thus
the spectrum of 77! is a subset of {0}. Therefore T-! = 0, contradicting
TT =1d. Thus o(T) # 0.

O
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Before we state the theorem, we remark that Theorem 1.25 and Corollary
2.22 can be extended to normal bounded operators.

The idea is to write a normal bounded operator T' € L(J#) for a separable
Hilbert space ¢ as

T+T" -1

T=A4+iB where A:= and B := 5

are self-adjoint and commute.

One possible way to prove the assertion is described in Appendix A.1,
written (in german) by Jan Mohring. It is based on a talk he gave at the end
of this lecture.

Another possibe approach uses the families of spectral projections T4
and I1? of A and B respectively. It it follows from Theorem 1.11 that Hél
and II;, commute for all Q,Q, € Z(R). If we define the map

R? D Oy x Qy — P x Q) = 11§ 11§

then P(£2; x €) is an orthogonal projection.
Let f = ) ,aixc, be a simple function on the rectangles (ie. C; =
Qi1 % Qip € R? and C; N Cy = 0 for i # k), then we set

f(Av B) = ZQ%P(Cl) = Z ainémngi,z :
Using the BLT-Theorem, this allows to construct a continuous and a mea-

surable functional calculus, i.e. a unique map & : B(o(T)) — L(H) with

the properties as in Theorem 1.11. The analog of the complex measure

BR) 2 Q> 1y 4(Q) = (¢, ly) € C
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constructed in the case of self-adjoint operators for fixed ¢,v € ¢ is then

given by
%(C) S5 Oy + iy ﬂqg’w(Ql + ZQQ) = <¢, P(Ql X Qz)w> e C.
Then we have for any f € B(o(T))

<wéﬂﬁ@—1éfu+nnﬂmp@mww (2.40)

The construction of the multiplication operator can then be done similar to
the case of self-adjoint operators.
Thus we get the following extension of Theorem 1.25 and Corollary 1.26

from self-adjoint bounded operators to normal bounded operators.

PROPOSITION 2.42

For each normal operator T € L(F) there exists a unique bounded projection

valued measure P = { Py | Q € A(C)} on the Borel-o-algebra B(C) such that

T = / AdP; .
o(T)

There is a unique norm continuous algebraic x-homomorphism ®¢ B(C) —

L(A) such that ®1(1) =1d and ®p(id) = T (here id(t) =t), given by

éﬂﬂz/&ﬁ@ﬂﬂ.

Moreover, if € is separable, T is unitary equivalent to a multiplication
operator M; on L*(Q,%, u) for some finite measure space (2,3, ), where

f € L>(Q) is in general complex-valued.

We now come to the formulation of the spectral theorem for unbounded

operators.
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THEOREM 2.43 (SPECTRAL THEOREM - MULTIPLICATION OPERATOR)

Let A be a self-adjoint operator on a separable Hilbert space 7€ with domain
PD(A). Then there ezists a finite measure space (2,3, p), a unitary operator
U : # — L*(Q,2, 1) and real-valued measurable function f on S, which

is finite almost everywhere so that
i) x € D(A) if and only if f - Uz € LA, 3, ).
ii) If ¢ € U[Z(A)], then
UAU'6=f-¢ p—ae
where U[Z(A)] = {¢ € L*(Qpu) | [ - ¢ € L*(Q p)}.

Proof. Since A is self-adjoint, +i € p(A) by Lemma 2.41 and thus the maps
(A+ild)™! : # — P(A) exist and are bounded. Now let z,y € . Since
Ran(A £ i) = 4 by Theorem 2.21, it follows that there are u,v € Z(A)
satisfying (A + iId)u = x and (A — ild)v = y. Therefore, setting R :=
(A+iId)~ 1,

(y, Rr) = (A —i)v,u) = (v, (A +i)u) = (A —i) 'y, 2),

proving that
R =[A+)7 ] =(A-i)".

Since by Theorem 2.16 the operators R = (A + ild)™! and R* = (A —
i1d)~! commute, it follows that R € £(#) is normal. Thus by Proposition
2.42, there is a finite measure space (2, %, 1), a unitary operator U : 2 —

L*(Q,%, u) and a measurable, bounded, complex-valued function g so that
URU'¢p=g-¢p= Myp p—ae forall ¢eL*(Q,%,pu). (2.41)
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Since R is injective, Ker R = {0}. Thus g - ¢ = 0 implies that ¢ = 0 a.e.
by (2.41) and therefore g # 0 almost everywhere. Thus we can define the

measurable function

and f is finite almost everywhere.
Proof of i): Let x € 2(A), then there is some y € # such that = Ry
and from (2.41) it follows that

Ur=URU'Uy=¢g-Uy u—ae.
g is bounded and therefore f - g =1 — ig is bounded, showing
MUz =f-g-Uy€ L*(Q,%,u).

On the other hand, if M;Ux € L*(Q, i), then there exists some y € J# such
that Uy = (f +4) - Uz. This implies

g-Uy=g(f+i)-Ur=Ux [ — a.e. (2.42)
and by (2.41) we get
x=U"'"M,Uy=U'"URU 'Uy = Ry € 2(4).
Proof of ii): We first remark that the equality
UlZ(A)] ={p € L*(Qu) | [ d € L*(Q,n)} = Z(My)

follows at once from i).
Let U'¢p = x € P(A), then Rx = (A + i) 'z = y for some y € .
Therefore y = (A + i)x and thus Az =y — iz, which by (2.42) proves

1
UAU’%zUszUy—iUx:E-Ux—iUx:MfUa::quﬁ [ — a.e.
(2.43)
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f real-valued: Since U is unitary, it follows from (2.43) that
(x, Ay) w = (Uz, M;Uy) 2

and since A is symmetric, if follows that My has to be symmetric. Thus by

Exercise 2.35

R > (6, Myo) = / F@IS@)Pdu(w)  forall ¢e LH(Q,5, )

showing that f is real-valued almost everywhere. U

2.2.2 Functional Calculus form

The above possibility to represent any self-adjoint operator as a multiplica-
tion operator on an appropriate space provides us with a natural procedure
to define functions of self-adjoint operators.

Let (£2,%, 1) be a measure space, f a real-valued measurable function
on Q and let M; denote the self-adjoint operator on L?(2, 3, ) defined in
(2.39).

If h € B(R) (i.e. h is bounded, Borel measurable and complex-valued),
then the bounded operator

h(My) i= @y, (h) == Mo € L(L*(Q, 3, 1)) (2.44)

is normal, since My, = Mj 7 and all multiplication operators commute.
For an arbitrary self-adjoint operator A on a Hilbert space 77, we then
set
h(A) = ®u(h) == U Mo, U (2.45)
where U is a unitary transform and f is a real-valued measurable function

associated to A as described in Theorem 2.43.
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We then have

THEOREM 2.44 (SPECTRAL THEOREM - FUNCTIONAL CALCULUS FORM)

Let A be a self-adjoint operator on a separable Hilbert space 7 with domain
P(A). Then there exists a unique map ®4 : B(R) — L(I) such that

i) ®4 is an algebraic x-homomorphism.
i) 4 is norm continuous, i.e. ||®4(R)||z < ||h]lso-

iii) Let (hyp)nen be a sequence in B(R) converging pointwise to id(t) =t and
satisfying |h,(t)] < |t| for allt € R and n € N, then ®4(h,) converges
strongly to A, i.e. lim,,_ éA(hn)x = Az for all x € .

iv) Let (hp)nen be a sequence in B(R) converging pointwise to h and if

|hnlloo is a bounded sequence, then ® 4(hy) — ®a(h) strongly.
In addition:
v) If Ax = Az then ®4(h)z = h(\)x.
vi) If h >0, then ®4(h) > 0.

Proof. Exercise 2.48 U

The functional calculus allows us to define the exponential e4. The direct

definition for bounded operators using the power series is not applicable for

unbounded A.
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2.2.3 Projection valued measure form

The functional calculus introduced above can be used to define projection
valued measures and thus to give a spectral decomposition of a self-adjoint
operator.

As first step, we introduce the family of spectral projections as in the

bounded case. As above we denote by #(R) be the Borel-o-algebra on R.

DEFINITION AND LEMMA 2.45 (SPECTRAL PROJECTION)
Let A be a self-adjoint operator on a Hilbert space F with domain Z(A).
Then for any M € A(R) we set

My = xar(A) (= Palxwr)) -
(here xar denotes the characteristic function of M ). Then
i) 114, is an orthogonal projection.
i) Iy = 0 and 11§ = 1d.

wi) If M =\J,—, M,, and M, N M,, =0 for all n # m, then

N
ZHX‘% — 1Y, strongly as N — oco.

n=1
7;'0) HAM1HAM2 = HfllﬂMg'
We call TT* = {14, | M € B(R)} the family of spectral projections of A
or projection valued measure (p.v.m).

The proof is similar to the bounded case. The important difference is,
that in the unbounded case, the projection valued measure does not have a

compact support (i.e. is not bounded).
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In the special case of a multiplication operator M; on L? with a real-

valued measurable function f as defined in (2.39), we get from (2.44)

H]gf = xB(Mj) = M, o = M for all B e Z(R). (2.46)

Xf=1(B)

and if My = UAU ! on 2(M;) for some self-adjoint operator A on a Hilbert
space ¢, where U : # — L? is a unitary transform, then it follows from
(2.45) that for any B € #A(R)

4 = xp(A) = U "My, ;U = U'TIL' U . (2.47)

Given the spectral projection II* of a self-adjoint operator A, we can

define for any x,y € J the complex Borel measure
BR)> M (x,11{y) € C
and the positive measure
BR) > M v (x,114,x) € [0, 00)

as described in Section 1.1.3. Then similar to Section 1.1.4 for h € B(R) we
can define h(A) by setting

(. h(A)y) = / B(N) d(z, TIf'y) (2.48)

and as in the case of bounded operators it can be shown that the map
h — h(A) has properties i)-iv) in Theorem 2.44. Therefore, by the unique-

ness of ® 4, the operator h(A) coincides with the operator constructed there.

Now suppose that g : R — C is Borel measurable, but not necessarily

bounded. Let IT* denote the spectral projection of a self-adjoint operator A
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on a Hilbert space ¢, then we set
7 ={veA| /R|g(/\)|2d<x, I{z) < oo} . (2.49)

We claim that .@;‘ is dense in 7.

To see this, we use that by Theorem 2.43 A is unitary equivalent to a
multiplication operator M; on L*(Q, 3, u) for some real-valued measurable
function f.

Let U be the unitary transform U : J# — L*(Q, %, i) such that
UAU Yo = Msp forall e U[Z(A)].

Then writing ¢ = Uz and ¢ = Uy for x,y € J we have for any B € Z(R)
by (2.46) and (2.47)

(2, 18y e = Uz, UILAU Uy 2 = (¢, T ) 12 (2.50)

= [ dens e due) = [ dvdu,
f=HM)
We define the complex measure on (€2, X)
YoM —  vyu(M) :—/ oY du .
M
Then for any integrable function k£ on €2
[ kvas = [ ke)ov) duto) (2.51)
Q Q

and by (2.50) for any B € Z(R)

pay(B) = (2, 15y) = vou(f7(B)) = L (B).
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Thus pu, , is the pushforward measure® of v, under f: Q — R.
For any p, ,-integrable function A : R — C, the Transformation Formula®

together with (2.51) therefore yields
[ 90y = [ g0 f@)dvast) = [ (g0 - v dute). (253
R Q Q
By (2.53) we get
xE@gA — UrcP:={pc Q)] /|gof|2|(;§]2du<oo}. (2.54)
Q

But in Exercise 2.39 we have shown that 2 = 2(M,.;) is dense in L*(u).
Since U is unitary, this implies that @;‘ C J is dense.

Forx =U¢p € 7 and y = Uy € 9;4, equation (2.53) together with the
Holder inequality yields

sl 1) = [ 190 nvidute < ( | |90f|2|w\2du(w))% Il

= ([ o, ny>)é ] < oo

3 Let (©,%,v) be a measure space, (€',%') measurable space and f : Q — Q' be

¥ — Y'-measurable. Then

fen 2 X' —[0,00], B fup(B) = p(f71(B))
is a measure on (£2',%’), called pushforward measure of y under the map f (Bildmaf).

PROPOSITION 2.46 (TRANSFORMATION FORMULA)
In the above setting let h : ' — R be Borel measurable function. Then h is f.p-integrable
if and only if h o f is p-integrable and in this case

/ hofdu:/ hdf.u forany MeXY. (2.52)
fmH (M) M
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The last estimate follows from (2.54).
Thus for any y € Z; the map S 5 z — [ g(A\)(z,II{y) is a bounded
linear form and by the Riesz-Lemma there exists some element in .7, which

we call g(A)y € S, such that

(x,9(A)y) = /Rg()\)@, I1%) for all z e 7. (2.55)

This allows to define the operator g(A) : 9;4 — ¢, which we symbolically
write as g(A) = [ g(\)dIL3.

Unlike the case of bounded functions as given in (2.48), this integral does
not exist in the sense of Theorem 1.17), but only as described in (2.55).

If we consider the special case g(t) = id(t) = t, we get from (2.54) for any
y=UpePA) andz=U"pe#

/M%ny) = / fov du = (¢, Myp) 2 = (U MUz, y) o = (Az,y) e -
: ’ (2.56)
Thus 2(A) = ¢ and A = [ AdII{. Similarly, (2.53) and (2.55) yield for
y € .@;‘ and x €

(@A) = [ 91 = [ (90 1) G0(0) du(e)

Q

= <¢7 Mgszm )

thus the definition of g(A) for an unbounded function g is consistent with
the definition (2.45) in the case of bounded functions.

The results given above can be summarized to the following extension of
Theorem 1.18 to the case of unbounded operators and unbounded measurable

functions.

110



2.2. SPECTRAL THEOREM FOR UNBOUNDED OPERATORS

THEOREM 2.47 (SPECTRAL THEOREM - P.V.M FORM (SPECTRAL DE-
COMPOSITION))

There is a one-to-one correspondence between self-adjoint operators A and
projection-valued measures {Ilg| B € AB(R)} on a separable Hilbert space

FC, given by
(x, Ay) ://\d<a:,H>\y>, forall xe H,ye P(A).
R

If g : R — R is Borel-measurable and ;' := {x € | [, |g(N)|* d(z, 1I5z) <
oo}, then there is a self-adjoint operator g(A) with domain 2(g(A)) = 2}
defined by

(. g(A)y) = / o (e, Thy),  forall zeH,ye D(gA).

If g is bounded, g(A) coincides with ®4(g) given in Theorem 2.44.

2.2.4 Exercises

EXERCISE 2.48 (FUNCTIONAL CALCULUS)

Let A be a self-adjoint operator A on a Hilbert space S with domain Z(A).
Let U : 7 — L*(Q, 3, 1) and f measurable real-valued as in Theorem 2.43.
We set

Dy B(R) — L(),  Da(h) = U "My, U. (2.57)
Show that

i) ®4 is an algebraic x-homomorphism with ® 4(1) = Id

i) | @all < [|R]
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iii) if (hn)nen be a sequence in B(R) converging pointwise to id(t) =t and
satisfying |hn(t)] < |t| for allt € R and n € N, then ®4(h,) converges

strongly to A.

i) let (hn)nen be a sequence in B(R) converging pointwise to h and if

|l s a bounded sequence, then ® 4(hy,) — ®a(R) strongly.
v) if Az = Az then ® 4(h)x = h(\)z.
vi) if h >0, then ®4(h) > 0.

Show that the function ® 4 given in (2.57) is uniquely determined by proper-
ties i)-iv).

2.3 Semigroups of operators

In this section, we will introduce the notion of semigroups of operators. An

important application are differential equations of the form
Z'(t) = Az(t), z(0) = o, (2.58)

where A is a linear operator. In the finite dimensional case, i.e. if A is
a (n x n)-matrix and z is a curve in R", (2.58) is a system of ordinary
linear differential equations, which is solved by z(t) = e'tzy. If A is an
unbounded operator on a Hilbert or Banach space, (2.58) can describe a
partial differential equation. Thus we are interested to define the exponential
et4 and e for classes of operators. From Section 2.2 and in particular

Theorem 2.47 it follows that we can define e if A is self-adjoint, o(A) has

an upper bound and t > 0.
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2.3.1 Definition and Properties of Semigroups

DEFINITION 2.49 (STRONGLY CONTINUOUS SEMIGROUP)
Let X be a compler Banach space and Ty : X — X, t > 0, a family of
bounded linear operators.

{T};}+>0 is called strongly continuous one-parameter semigroup : <=
a) Ty = 1d.
b) Tsiy =TT, for all s,t > 0.
c) imy o Tyx =x for allx € X
If instead of c) the family has the stronger property
¢) limy_ || —1d|| =0
then it is called norm-continuous semigroup.

EXAMPLE 2.50

(a) If A € L(X), then the exponential {T; = e}, is a norm-continuous
one-parameter semigroup (for t € R, this would even be a group).

(b) The translation semigroup T} f(x) = f(xz+t) builds a strongly continu-
ous semigroup on Cs(R) (the space of continuous functions vanishing at 0o ).
Here a) and b) are obvious. For c¢) we remark that f € Cy is uniformly con-
tinuous. Let € > 0, then there exists some § > 0 such that |f(x) — f(y)| < €

whenever |x — y| < . This implies
0<t<d = |Tf = fllo =sup|f(z+1) - flz)] <e
TEe
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Since Cy 1s dense in LP for 1 < p < oo and ||T;|] < oo it can be shown by
an €/3-arqgument that T; is a strongly continuous semigroup on LP(R). The
family {T,}icr is even a group of operators.

As above it can be shown that {T;}1>o is a strongly continuous semigroup
on Cx([0,00)) and LP(]0,00)).
(¢) The heat diffusion semigroup on LP(R") (1 < p < o0) is given by
To =1d and

1 7Im—y\2
(T.f)(x) := O /Rn e fy)dy (2.59)
fort > 0. If we define the heat kernel
1 e .
Ye(x) == We i, for xeR" t>0, (2.60)

then we can define Ty as convolution

Lif=mx*f.

Since v, € LY(R™), with ||v|| = 1, if follows from Young’s inequality (Ezer-
cise 2.84) that

1T fllp = lve * Fllp < llvellall fll = 11

thus Ty € L(LP(R™)) is a contraction. Property c) can be shown with methods

similar to those in Example 2.6. In order to show b), it suffices to prove

Vits = Ve * Vs
because the convolution is associative. (Exercise 2.84).

We now state two elementary properties of strongly continuous semi-

groups.

114



2.3. SEMIGROUPS OF OPERATORS

LEMMA 2.51
Let {Ti}i>0 be a strongly continuous one-parameter semigroup on a Banach

space X . Then the following holds.

i) There exists constants M > 1 and w € R such that

||| < Me*! forall t>0. (2.61)

it) The map
[0,00) x X 3 (t,z) +— Tx)e X
18 continuous.

With respect to t it is uniformly continuous on compact subsets of

[0, 00).
Proof. 1): First we show that there exists some r > 0 such that

K := sup ||T}]| < o©. (2.62)

0<t<r
We show this by contradiction: Assume that (2.62) does not hold. Then
there exists some null sequence (t,)nen such that |13, || — oo.

From Exercise 2.82 (or the Principle of Uniform Boundedness, Theorem
3.31) we can conclude that there exists some = € X so that ||T}, z| — oc.
But this is false by property c).

Now let K and r be such that (2.62) holds. We write any ¢t > 0 as

t=nr-+s where ne€N and 0<s<r.
Using that n < £ and K > ||Tp|| = 1, it follows from property b) that
Tl = 1T Tl < IT T < K™ < K(K7 )
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Thus (2.61) holds for

log K
M=K and w:Og .
r

ii): Let € > 0 and fix x € X and ¢, > 0. Then we have to show that there

are 0 > 0 and hg > 0 such that

lz—y| <6 A 0<s<t<ty AN t—s<hy = |Tix—Ty| <e.

(2.63)
We first remark that by property c) for § > 0 given we can choose hg > 0
such that

|The — x| <9 forall 0<h<hy. (2.64)
Now let M, w be such that (2.61) holds. Then, using property b)
[Tix — Toyl|| < || Thw — Tow|| + || Tox — Toy|

ST T s — 2l + 175l = wll

< Me¥3§ + Me*'s,

where for the last step we used (2.64).

Thus (2.63) holds, if we choose § < 537 fw<0and ¢ < Aot if w > 0.
O

2.3.2 Infinitesimal Generators

We can associate to each strongly continuous semigroup an operator, the so
called generator. In example 2.50(a) this would be the operator A. To regain

A from T, = €', we have to differentiate.
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DEFINITION 2.52 (GENERATOR OF A SEMIGROUP)
Let {Ti}i>0 be a strongly continuous one-parameter semigroup on a Banach
space X .

The (infinitesimal) generator of the semigroup is the operator

Az = lim The —x
RN\0 h

(2.65)

with domain
Thx —

P(A) ={z e X| }ILI{(I(I) exists } .

Thus A is the right derivative of the vector-valued function
Tz :[0,00) = X  with ¢t — T

at the point ¢ = 0.

For the semigroups given in Example 2.50, we get the following.

EXAMPLE 2.53

(a) As already mentioned above, for T, = e*4 with A bounded, the generator

is A itself. In fact, using e"* =50 L(hA)", we get

n=0 n!

- 1 n— n
;mh 1A

as h (0. In this case, the domain of the generator is X.

eh4 —1d
h

- 1 n— n
— AH = <> —h LA™ < hAZeMAll — 0
n=2

(b) In the case of the translation semigroup on Co(R), we have pointwise

. Thf(x) = flx) . fla+h)—flx)
o : h = 3 = fi(a),

where fi denotes the right derivative of f. Thus we would guess that the

generator A is given by the right derivative and f € Cy s in the domain of
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A if fl(z) exists for all x € R and f, € Cx(R). But then f', is uniformly
continuous and this implies that for any € > 0 there exists hy > 0 such that
for all0 < h < hg withy =z —h)

f(x —h) — f(x) )‘<‘f(y)—f(y+h)
(—h) - (—h)

e - f'+<y>] W) - fi@)

_ | fy+h) = fy)
h

- fi(y)‘ L) — f@)] <.

This shows that the left derivative f’ exists and is equal to the right derivative

and therefore f is differentiable. Thus
Af=f" and 2(A) ={f € Cx(R)| [ exists and ' € Co(R)}.

(c) To derive the generator of the heat diffusion semigroup, we need the

theory of Fourier transformation. Thus we discuss this example later.

In the following we will discuss some of the properties of the generator of
a semigroup. One goal is to show that it is densely defined and closed.

First remark that the notion of a Riemannian integral can be extended to
continuous functions on R with values in a Banach space X (taking the limit
of Riemannian sums). Then the usual computation rules hold (as linearity)

and the Fundamental Theorem

1 t+h
}111_% E/t u(s)ds = u(t) . (2.66)

holds for u € C(R, X). Moreover, if 7" € £(X), then

T (/abu(s) ds) _ /abT(u(s)) ds. (2.67)

Let A be the generator of a strongly continuous semigroup {T;}>0 on a Ba-

LEMMA 2.54

nach space X and let t > 0, then
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i) forallz € X

t t
/ Tixds € P(A) and A(/ Tsxds> =T —=x.
0 0

i) Ti(2(A)) € Z(A).
iii) TyAx = ATyx for all x € D(A).
) Thx —x = fJTsAxds forallz € Z(A).

Proof. Remark that the map ¢ — T,z is continuous for each x € X (Lemma

2.51).

i): Using (2.67) and the semigroup properties, we can write

1 t t 1 t t
7 (Th (/ T.x ds) —/ T.x ds> =7 (/ Toinxds —/ T.x ds) (2.68)
0 0 0 0
1 h+t t
:—(/ Tsxds—/Tsxds) )
h \J 0

Writing [/*'— i = [{4 [ i = f - J) we et by (2:65) and
(2.66)

t 1 t+h h
A (/ Tsx ds) = lim 1hs(2.68) = lim — (/ Tsx ds —/ Tsx ds)
0 h—0 h—0 h \ J, 0
=T —=x.

ii) and iii): Let x € Z(A), then by the continuity of 7}

Thoe —x

1 (Th(Ttw) - Ttx> —T

. — T, Az as h—0.

Thus Tyz € P(A) and AT,z = T, Ax.
iv) Let x € 2(A), then by i)

t 1 t t
Tt:c—x:A(/ Tsxds>:lim—(Th</ Tsxds)—/ Tsxds>
0 h—)Oh 0 0
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t T _
= lim TS< nt 33) ds.
h—0 0 h

Since by Lemma 2.51 the integrand converges uniformly on [0, ¢] to Ty Az as
h — 0, iv) follows.
O

PROPOSITION 2.55
The generator of a strongly continuous one-parameter semigroup on a Banach

space is densely defined and closed.

Proof. Let A be the generator of the strongly continuous semigroup {7} }:>o

on a Banach space X. For x € X and t > 0 we set

1 t
Ty ::—/ Texds.
t Jo

Then z; € Z(A) by Lemma 2.54 and lim;_,o x; = = by (2.66). Thus Z(A) is
dense in X.

Now consider a sequence (z,)nen in Z(A) such that x,, — z and Az, —
y.
Since T} is continuous, we have by Lemma 2.54

1 [h
= lim = lim — [ T,Ax,ds. (2.69)

h n—00 h n—00 0

Thx —x Tht, — Tn

From Lemma 2.51 it follows that the convergence T,Ax,, — Tyy is uniform

in [0, ], thus
1 [h
rhs(2.69) = E/ T.yds — Toy =y as h—0.
0

This proves that © € Z(A) and Az =y. Thus A is closed.
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2.3.3 Application to a Cauchy problem

Lemma 2.54 gives us information about the solutions of an abstract Cauchy

problem

u'(t) = Aul(t), u(0) = o . (2.70)

PROPOSITION 2.56

Let A be the generator of the strongly continuous semigroup {Ii}i>0 on a
Banach space X and let xog € D(A).
Then the map

u:[0,00) — X, u(t) = Tyxg

is continuously differentiable, Z(A)-valued and solves (2.70).
Moreover, u is the unique solution of (2.70) with these properties and the

map xo — u(t) is continuous.

Proof. From Lemma 2.54 it follows that Tyxy € Z(A) for all t > 0 and
therefore A(u(t)) is well defined. So see that ' = Au, we compute the right
and left derivative of u separately.
We use that t — T,z is continuous by Lemma 2.51 and T; Az = AT,z by
Lemma 2.54. Then the right derivative of u is given by
;1}{% u(t + h})L —u(t) _ }13{% Tt+h$0h— Tivo _ }IL{%E (Thﬂﬁoh— IEO)
=T, Axg = ATyxo = Au(t) . (2.71)

To determine the left derivative, we first notice that

_ut—h)—u(t) . T_pxo—Tixe . Thro — o
ey Ty T ) (272)
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We set Ay, := +(T), — Id), then the right hand side of (2.72) can be written

as lim T;_, Apxo. We have

| T —n Apwo — Ty Axg|| < || Ti—nAnwo — Ti—pAzol| + || Ti—pAzg — T, Ao ||

S HTt_hHHAth — ALBOH + HE—hAxO — TtA.fE()“ —0 as h \ O, (273)

where for the limit we used sup,, [|75|| < oo, the definition of A and the

continuity of T;. By (2.73) we get
rhs(2.72) = Ty Axg = ATyxo = Ault). (2.74)

Combining equations (2.72), (2.73) and (2.74) shows that v’ = Au or more
explicitly
d

d—TsxO ='(s) = Au(s) = AT, . (2.75)
s

Since u/(t) = AT,xg = Ty Axg, the continuity of 7, implies that v’ is continu-
ous.

For the uniqueness, let v be another solution of (2.70). Then by the
product rule and (2.75)

%Ts_tv(t) = (—=1)AT,_(t) + Ts_0'(t) = —Ts_yAv(t) + Ts_sAv(t) = 0.

Therefore the function
F:0,s] - X, F(t)=Ts_v(t)

is constant, because for any functional ¢ € X*

d d
%(6 oF)="/o EF =0 and thus ((F(0)) =L(F(t)) (t€]0,s]).
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The Hahn-Banach-Theorem (or Corollary 62 from the previous semester)

thus shows F(0) = F'(s) and thus
u(s) = Tszog = F(0) = F(s) = Ts_sv(s) = v(s).

Since s was arbitrary, this shows the uniqueness of the solution.
The fact that zo — u(t) = Tizy continuous follows from Lemma 2.51.

4

COROLLARY 2.57
Two strongly continuous one-parameter semigroups with the same infinitesi-

mal generator are equal.

Proof. Let (Si)t>0 and (T}):>0 be strongly continuous one-parameter semi-

groups with the (same) generator A, then the maps
t— Sz and t— Tix

both solve the initial value problem
u'(t) = Au(t), u(0) =z € 2(A).

The uniqueness of the solution (Proposition 2.56) then implies Si|ga) =
Ti|gcay for all t > 0. Since S; and T; are continuous by Lemma 2.51 and
P(A) is dense by Proposition 2.55, this implies T; = S;.

Ul

In order to use Proposition 2.56 for a Cauchy problem with a differential
operator A, we need criteria to decide whether A is the generator of a strongly

continuous semigroup.
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First, consider a norm-continuous semigroup (7);>¢. Since for any 0 <

s <t <ty we have
1T: = Tof| = | T5(Te—s = 1d)|| < (1Tl T2-s — Id || < O Te—s = 1d ][,

it follows from property ¢)’ that ¢t — T; is continuous with respect to operator
norm. Therefore, the Riemannian integral fot T, ds converges in operator

norm and we can define the operators

1 t
M; = ;/ Tsds for all ¢>0. (2.76)
0

Since, moreover, the map T — T'x is a continuous linear operator from L£(X)

to X, it follows that
1 t
Mﬂz;/Tsxds forall ze€X and t>0.
0

PROPOSITION 2.58
Let A be the generator of a strongly continuous semigroup {T;}+>0 on a Ba-

nach space X. Then the following three statements are equivalent:
i) {T;}+>0 is norm-continuous.
i1) A is continuous.
iii) P(A) = X.
If these assumptions hold, then T, = e** for all t > 0.

Proof. 7i) = iii)” : If T, is norm-continuous, then ¢ — T} is continuous
and thus |[|[M; —Id| — 0 by (2.66). Thus by Lemma 79 from the previous

semester (see (1.2)) it follows that M, is invertible and thus in particular
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surjective for r sufficiently small. Since Ran M, C Z(A) by Lemma 2.54 it
follows that 2(A) = X.

"4ii) = 1) : It follows from Proposition 2.55 that A is closed. Since by
assumption the domain of A is a Banach space, it follows from the Closed
Graph Theorem that A is continuous.

"ii) = i)” : If A is bounded, the semigroup S; = e is norm-continuous and
has A as generator (see example 2.50 and 2.53). Thus T; = S; by Corollary
2.57.

2.3.4 Theorem of Hille-Yosida for Contraction Semi-
groups
First remark that Definition 2.15 (Resolvent set and spectrum of unbounded

operators on a Hilbert space) and Theorem 2.16 (Properties of the resolvent)

can be extended to the case of unbounded operators on Banach spaces.

DEFINITION 2.59 (CONTRACTION SEMIGROUP)
A strongly continuous one-parameter semigroup (Tt)tzo on a Banach space

X s called contraction semigroup : <= ||T¢|| < 1 for all t > 0.

PROPOSITION 2.60
Let A be the infinitesimal generator of the contraction semigroup (T});>0 on

a Banach space X, then

i) {\=n+iveCln>0}CplA).
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ii) For all A\ =n+iv withn >0

A=Atz = / e T ds. (2.77)
0

iii) |[n(A— A)7Y| <1 for all X\ = n + iv with n > 0.
Proof. Let A =n+iv € C with n > 0, then

lim |le™7T;|| < lim [e™| = lim e =0.
t—o0 t—o0 t—o0

Moreover, the semigroup (e *T});>o has the generator A — A\ with domain

Z(A). Thus by Lemma 2.54 (applied to this semigroup)

N (A=) [jeMTads forall zeX
e N —x =

[y e T (A~ Nzds forall z€ 2(A)
and in the limit ¢ — oo this shows

(A—=A) [[FeMTads forall zeX

Tr =

[ e Ty (A= A)xds forall z e Z(A)

Therefore, (A — A) : Z(A) — X is bijective and thus A € p(A) and the
inverse of (A — A) is given by [~ e *T,(-) ds, proving i) and ii).

In order to see iii), we write

> ]l

J0= )l < [ erInlelds < [ e s ol =2
0 0 n

The converse statement is given in the following theorem.
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THEOREM 2.61 (HILLE-YOSIDA FOR CONTRACTION SEMIGROUPS)
Let A be an operator on a Banach space X with domain P(A). Then A is

the infinitesimal generator of a contraction semigroup if and only if
i) A is densely defined and closed,
i) (0,00) C p(A),

i)
IANA=A)7 <1 forall X>0. (2.78)

Proof. 7 = 7 : This follows from Proposition 2.55 and Proposition 2.60.

7 <7 :For A > 0 define the bounded operator (called Yosida approximation)
Ay = MA-ATT =X -A) T - Xe LX), (2.79)
where for the second equation we used that
A=A A—=A)'=Id andthus AAN—A)'=XA-A)"'—Id. (2.80)
Remark that
Ayr = A\ —A)tAr  forall z€ Z(A). (2.81)

We consider the associated norm-continuous semigroup (e1*);>q, which is

contractive since by (2.79) and (2.78)
[et ]| < e XN O < e MO < oM — - (2,89)
Since by (2.78) together with (2.81)
4G 47yl = - )l < g s s
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for all y € Z(A), it follows from (2.80) that for y € Z(A)

lim A\ — A) 'y = )\h_)m (y+ AN = A)y) =y. (2.83)

A—o0

Since again by (2.78) the family of operators A(A — A)~! is bounded and
P(A) is dense by assumption i), it follows with an €/3-argument that (2.83)
holds for all y € X. Inserting y = Az and using (2.81) shows

lim Ayx = Ax forall =€ 2(A). (2.84)

A—00

In the next step we show that for z € X and ¢ > 0 the limit limy_, ez

exists. First we notice that

dies(AAA”)x = eS(A*’A")(A,\ —A))z.
s

Integration from 0 to ¢ gives
t
tr—An)y g = / es(AA_A")(A,\ — A,z ds
0

tAy (

and by multiplication with e using that A, and A, commute) we get

ey — ety = /t el (A — A)wds.
0
Using that |en]] < 1 by (2.82), equation (2.84) yields for x € 2(A)
et — et [ ot s — Ay s
0
<t||(Ay — Ay)zx|]| — 0 as  A\,nm — oo.

Since e is bounded by (2.82), again with an €/3-argument we can conclude
that

lim e g exists for all = € X .
A—00

128



2.3. SEMIGROUPS OF OPERATORS

Moreover, the convergence is uniform in ¢ on bounded intervals.

Thus for each t > 0 and z € X we can define

Tyx := lim e (2.85)

A—00

and (7;):>0 is a contraction semigroup:

In fact, T} is is a linear contraction since each e!* is. Properties a) and
b) of a semigroup are obvious by the properties of the exponential function.
The strong continuity follows from the fact, that the convergence in (2.85) is
uniform on bounded intervals.

It remains to show that A is the generator of the contraction semigroup
(TY) 0.
We denote the generator of (7}):>o by B.

First we claim that A C B. Let © € Z(A), then by (2.84) and (2.85)

t t
‘ / M Axds — / T, Ax ds
0 0

t t
< / HeSAAH |Axx — Azx|| ds + / ||€SA>‘A£L‘ — T, Az|| ds
0 0

—0 as AN — 0.

Since as above we have
t
My — = / M A x ds
0

we therefore get

t

t
Tz —z = lim ¢z — 2z = lim M Ay ds = / T.Axds.
0

A—00 A—00 0

Thus

Tox —
i x—>Ax as t— 0

Btl' =
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proving that x € Z(B) and Bz = lim B,x = Az for x € Z(A).
Since 1 € p(A) by hypothesis ii) and 1 € p(B) by Proposition 2.60 it
follows from A C B that for all z € X

r=(Id—B)Id—A)"'z and thus (Id—B) 'z = (Id—A4) 'z

proving that Z(A) = 2(B). O

2.3.5 Theorem of Hille-Yosida for general semigroups

We will now extend the Theorem of Hille-Yosida to general strongly contin-

uous semigroups. We start with the analog to Proposition 2.60.

PROPOSITION 2.62

Let (T})1>0 be a strongly continuous semigroup with generator A and let M, w

be as in Lemma 2.51, i.e. ||T3|| < Me*" for allt > 0. Then
i) {IN=n+iveCln>w} Cp(A).
i) for all \ = n+iv with n > w.

A=Az = / e MT,xds. (2.86)
0

i) ||(n—w)*"N—=A)™"|| < M for all A =n + iv with n > w.

Proof. Case 1: w =20
In this case, ||T3|| < M for all t > 0. Then we can define a norm on X by
setting

||| := sup || Ty
>0
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and since

2]l = | Toz|| < =] < M= (2.87)

it is equivalent to the original norm. Thus replacing || - || by ||| does not
change the convergence properties of sequences and their limits and therefore
the strong continuity of (7;) and the generator A do not change, if we replace

[ 11 By 1[I

To |[||-]||, we can associate an operator norm

1SN = sup [|Sz||
llzll=1
and with respect to the new norm, (7}) is a contraction semigroup, since for

any s > 0

I Tsz|| = sup | TsTix|| = sup || Tz < |||
>0 t>s

Since the generator A is unchanged as mentioned above, it follows from
Proposition 2.60 that i) and ii) hold in this case. Moreover, for any A\ = n+iv
withnp >0 and n € N

Il =7 < [l = 7" < 1. (288)

Since by (2.87) we have for any S € £(X)

11 = sup 1 < s a0 < g I .
sex [zl T aex |zl vex ||l
iii) follows at once from (2.88).
Case 2: general w € R
We consider the semigroup
S, = e YT, with generator A—w.
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Then ||S¢]] < M for all t > 0 and thus by the arguments above it follows that
{neClRep>0} CplAd-w)={A-w[Ar€p(A)}
and for p with Re u > 0 we have for all n € N
[(Re )" (n— (A —w))™"[| < M.

If we write p = A — w, we get Re > 0 if and only of Re A > w, this yields i)
and iii). Property ii) follows as in the proof of Proposition 2.60.
0

THEOREM 2.63 (HILLE-YOSIDA (STRONGLY CONTINUOUS SEMIGROUPS))
Let A be an operator on a Banach space X with domain P(A). Then A is
the infinitesimal generator of a strongly continuous semigroup if and only if
A is densely defined and closed and there exists constants w € R and M > 1
such that

i) (w,00) C p(A)
[A=w)" A=A <M forall A>wandneN. (2.89)

In this case, the generated semigroup satisfies the estimate ||T|| < Me** for

allt > 0.

Proof. 7 = 7 : This follows from Proposition 2.55 and Proposition 2.62.
"«<7:Case l: w=0

For ;1 > 0 we define the norm on X
lell += sup [l (e = A)"a]] (2.90)
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Then || - ||, is equivalent to our original norm, since by (2.89) we have

]l = 11 ( = A)°]| < JJll,e < Ma]]- (2.91)
Moreover, we get by the definition (2.90) for all x € X

i = A) el = sup fla(e — A) 7 " (o — A) "]
= sup [|[u™ (p — A)"l| < |2l
m>1
and thus, denoting the associated operator norm by ||.||,, as well
it — A < 1. (2.92)

We will show that ||z||,, is monotonically increasing with p.

By the Resolvent equation (2.10) and (2.92) it follows that for all 0 < A < p

1A= A) =l = A7+ A= )= A) A = A)

1 pu—A _
<=4+ BT - A
PR It )"

:nu—m*m+ia—wu—m*m»

This shows
A=A, <1 forall 0<A<u. (2.93)

Equation (2.93) implies together with (2.91) for all 0 < A < pandn € N
A" (A = A) ]| < (AN = A) "l < A = AT sl < ],
and therefore by taking the supremum over all n € N

z]|x < |zl forall 0<A<pu
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implying the monotonicity.

This allows to define the norm
flll = lina izl
which by (2.91) fulfills
[l < fll=ll < Mjzl] forall zecX (2.94)

and therefore is equivalent to the original norm. Moreover, (2.93) yields for

all A >0
MO = )| = tim A = 4) Ml < lim [l = el

Thus Hypothesis iii) in Theorem 2.61 holds with respect to |||-||| and since by
assumption A is closed and (0,00) C p(A), it follows from Theorem 2.61 that
A is the generator of a strongly continuous semigroup satisfying |73/ < 1.

This implies by (2.94) for all z € X
[Tell < Tl < fll < Mll|

and therefore ||T;|| < M, proving the statement in the case w = 0.

Case 2: general w € R
Consider the operator B = A — w, then B satisfies the given assumptions
for w = 0, and thus, by Case 1, it generates a strongly continuous semigroup
S; satisfying || S¢|| < M. This implies that the operator A generates the
semigroup

T; = e*'S;  which satisfies || T;|| < e*'M .

This proves the theorem.
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2.3.6 Accretive operators, Lumer-Phillips-Theorem

In order to be able to apply the Theorem of Hille-Yosida, it is necessary to
know the resolvent of an operator. In the following we give a criterion which
only uses information about the operator itself. In order to get an idea, we
consider the Hilbert space case first:

Let T, be a contraction semigroup with generator A. The fact that

| Tyz]|* < ||z||* for all ¢ > 0 implies that
d
STl < 0.
On the other hand
d 2
%HT}/Z‘H ‘f:o = <A$,£L‘> + <£C,A.1'> = 2Re<x,Ax> )
thus we can conclude that
Re(z, Az) <0.

This condition will be generalized to the Banach space case.

We first need the following definition.

DEFINITION 2.64 (ACCRETIVE AND DISSIPATIVE OPERATORS)

Let X be a Banach space and A a densely defined linear operator on X .
i) Let x € X. An element ¢ € X* that satisfies
Il =ll=ll  and  £(z) = |=||*

1s called a normalized tangent functional to x.

The map J : X — P(X*) assigning to each v € X the set of all

normalized tangent functionals to x is called duality map on X.
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ii) A is called dissipative : <= for all x € P(A) there exists a normal-

ized tangent vector € € J(x) such that

Rel(Azx) <0.

iii) A is called accretive : <= —A is dissipative.

REMARK 2.65
The Hahn-Banach-Theorem implies that each x € X has at least one nor-
malized tangent functional.

If X = A is a Hilbert space, it follows from the Riesz-Lemma that the
only normalized tangent functional to x € JH is (x,-) itself, i.e. J(x) =
{{z,)} (and this functional is identified with x in the usual way). In this
case, an operator A is dissipative if and only if Re(x, Ax) <0 on Z(A). In
particular this holds for self-adjoint operators which have no spectrum on the
positive real line.

If X = LP(Q, F,p) with 1 < p < oo we have J(f) C L9 = (LP)* for
% + % =1 (see Example 58.1 in the previous semester) and there is exactly

one normalized tangent functional to f given by

0(f) = / 9(w) (@) dp(w)
where
2P @)@ . i fw) #£0
0 , if fw)=0

For X = C([0,1]), J(1) is the set of all probability measures on [0, 1]
(Ezercise 2.84).

g(w) =

136



2.3. SEMIGROUPS OF OPERATORS

EXAMPLE 2.66 (LAPLACE OPERATOR)

On X = C(R™) consider the Laplace operator
Af(x) = Z agjf(a:) with domain  2(A) = . (R™)*.
j=1

Then A is dissipative: For each f € . there exists some xy such that

|f(z0)| = || flloo- Set a = f(xo) and consider the functional ((f) = ad.,(f) =
af(xg). Then (€ J(f) and

Rel(Af) =Rea(Af)(zo) <0
since the real valued function Reaf takes its maximum at xg.

PROPOSITION 2.67

A linear operator A on a Banach space X is dissipative if and only if
|(A = A)zx|| > Al|z]] forall A>0 andxz € Z(A). (2.95)

Proof. 7 = 7: We assume that A is dissipative. For x € Z(A) we choose
¢ € J(z) such that Re/(Az) < 0. Then for all A >0

1IN = Azl = (A = A)z)| = Re (A — A)z)

4 The Schwartz space .7 (R") is the set of infinitely differentiable complex-valued

functions f on R™ which are rapidly decreasing, i.e. such that
1 fllap == suﬂg) ‘anﬁf(x)‘ < oo for all «,8 € N".
zER™

For a = (ai,...,0p) € N we set |a] =), oy,

98l

n
% = x%d and Dfi= — —
H J 0%y ...0%x,

Jj=1
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> ARe/(z) = A||z|?

and since ||¢]| = ||z|| this shows (2.95).
7 < 7: We assume that (2.95) holds. For z € Z(A) and A\ > 0 choose
any 0, € J((A — A)z). Then

lxll =1l(A = A)zll  and  L((A = A)z) = [|[(A = A)z|*

and for the normalized functional £, = W—iM x it follows from (2.95) that

Mzl < |\ = A)z|| = {x(Ax — Az) = ARely () — Rely(Az) .

Since by Corollary 62b (previous semester) ||z|| = supsex- g1 [¢(z)] >

10x(2)| , this estimate implies the two inequalities
10x(z)| < ||z]| < Rely(z) + Hf‘;_xH and Re/ly(Az) <0 (2.96)
for all A > 0. Now let
E =span{z, Az} and ¢ ={,|z, neN.

Then ||¢|| = 1 for all n € N (since £/, ((n — A)x) = ||(n — A)z|| by construc-
tion). Therefore, the sequence (¢/),en in the finite dimensional space E* is
bounded and thus has some accumulation point ¢'. Since (2.96) holds for

each £, it follows that
10 =1 and [/'(z)] <|z]] < Rel(x) andRel'(Az) <0. (2.97)

Thus ¢'(x) = ||z|| and by the Hahn-Banach-Theorem (Corollary 61), there is
an extension £ of ¢ to X* satisfying (2.97).
Therefore, the linear functional ¢ := ||z|| - £ is a normalized tangential

functional satisfying Re ¢(Az) < 0. This shows that A is dissipative. O
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Now we come to the fundamental criterion for an operator to be the

generator of a contraction semigroup.

THEOREM 2.68 (LUMER-PHILLIPS-THEOREM)
Let A be a densely defined linear operator on a Banach space X. Then A is
the generator of a contraction semigroup if and only if A is dissipative and

Ao — A is surjective for some Ny > 0.

REMARK 2.69
In [RS], the definition of the generator of a semigroup is given with a minus,

tA  With this change of sign,

i.e. A is the generator of the semigroup e~
the theorem of Lumer-Phillips is formulated with ”dissipative” replaced by

"accretive”.

Proof. 7 = 7 : If A generates a contraction semigroup, then (0,00) C p(A)
by Theorem 2.61, showing the surjectivity of A — A for any A > 0. Moreover,
the Hille-Yosida-condition [[A(A — A)7!|| < 1 for all A > 0 implies (2.95),
showing that A is dissipative by Proposition 2.67.

7 <7 Assume that A is dissipative and A\g— A is surjective. Then (2.78)
follows at once from (2.95). Thus by Theorem 2.61 it suffices to show that
A is closed and (0,00) C p(A).

By assumption A\g — A is injective with bounded inverse by (2.95). In
particular, (A\g — A)~! is closed and this shows that A\g — A and A are closed
(Exercise 2.37).

To see that (0,00) C p(A), we set

A={X € (0,00)| X — A is surjective } = (0,00) N p(A).
Since p(A) is open, A C (0,00) is open and A # ) since Ay € A.
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Let (\,) be a sequence in A converging to A € (0,00). We use the
following estimate, which we proved for bounded linear operators on X in

Exercise 1.36 and which also holds in the unbounded case:

1
A Y > — for all A).

Together with (2.95) this implies for all A,

1
dist(Ap, o(A)) > ————— >\,
(A = A7

and therefore

dist(\, o(A)) > A > 0.

Therefore A € p(A)N(0,00) = A and thus A is closed in the relative topology
of (0,00). Since A is both open and closed in (0,00) it follows that A =
(0,00). This shows that p(A) D (0, c0).

O
EXAMPLE 2.70
Consider the following initial- and boundary-value problem:
21}(1595)—6—21)(%15) for t>0,0<z<1
8t ) - 81’2 ’ ) - Y — —=
v(0,2) = fo(x) for 0<x<1, (2.98)
v(t,0) =v(t,1) =0 for t>0.

This problem can be translated in an abstract Cauchy problem as follows:

Set X ={f €C([0,1])) | f(0) = f(1) = 0} with supremum-norm,

Af = f"  with domain  P(A)={f € X|fe€C*0,1]) and f" € X}
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and (u(t))(z) = v(t,z). Then (2.98) means that we try to find
u:[0,00) = X such that u = Au, u(0) = fo. (2.99)

By Proposition 2.56 such a solution exists, if A generates a strongly contin-
uous semigroup (1y)i>0 on X and fo € Z(A). In this case u(t) = Ti fo.

First we remark that 2(A) is dense in X since it contains the compactly
supported smooth functions, which are dense in X. Similar to Example 2.66
it can be shown that A is dissipative.

Since the boundary value problem

(d-A)f=f-f"'=g  f0)=f(1)=0
is uniquely solvable for each g € X (see e.g. [Wa]), it follows that (Id —A)

is surjective. Thus by Theorem 2.68, A generates a contraction semigroup.

COROLLARY 2.71
Let A be a densely defined closed operator on a Banach space X. Then A
generates a contraction semigroup if both A and the adjoint operator A" are

dissipative.

REMARK 2.72
Here the adjoint operator A’ is defined similar to the Hilbert space case. We
set
(A" ={le X*|Vx € Z(A): x> L(Az) is bounded }
All(z) = ((Ax) forall e (A", e P(A).
Proof. Since we assume that A is closed and dissipative, by the Lumer-

Phillips-Theorem 2.68 it suffices to show that Ran(A\g — A) = X for some
)\0 > 0.
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Since A is dissipative, it follows from (2.95) that (A — A) is injective for
all A\ > 0. Thus if (y,) is a sequence in Ran(A — A) converging to y € X, then
there exists a sequence (x,) in Z(A) such that y, = (A — A)z,. Since (y,)
is a Cauchy sequence, it follows form (2.95) that (x,) is a Cauchy sequence
and thus converges to some x € X. But by assumption A is closed and thus
r € P(A) and y = (A — A)z € Ran(A — A). This shows that Ran(\ — A) is
closed.

Now suppose that Ran(Id —A) is not dense. Then by Corollary 63 of
the Hahn-Banach-Theorem there exists an ¢ € X* so that [|¢|| > 0 and
(((Id—A)x) = 0 for all x € Z(A). Therefore ¢ € Z(A’) and (Id —A")¢ =
0. This implies, that any normalized tangent functional v € X** fulfils
v(A'l) = v(f) = ||¢||* > 0. This is a contradiction to the assumption that A’
is dissipative. Thus Ran(Id —A) is dense in X. 0

COROLLARY 2.73
Any non-positive self-adjoint operator B on a Hilbert space S (i.e. satisfying

(x,Bx) <0 for all x € P(B)) is the generator of a contraction semigroup.

Proof. The self-adjointness of B implies that B is closed (Corollary 2.12).
Moreover, since B and B* = B are non-positive, they are dissipative by

Remark 2.65. O

2.3.7 Unitary groups and Stone’s Theorem

We will come to the case of strongly continuous unitary groups, i.e. groups

consisting of unitary operators on a Hilbert space.
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DEFINITION 2.74 (STRONGLY CONTINUOUS UNITARY GROUP)
Let 7€ be a complex Hilbert space and U, € L(H), t € R, a family of unitary
operators. Then (U)ier is called strongly continuous one-parameter

unitary group : <
a) Usry = UsUy for all s, t € R.
b) limy s, Upr = Uy for all x € .

If A is a self-adjoint operator on a Hilbert space, the functional calculus

(Theorem 2.44) allows to define e,

THEOREM 2.75

Let 7 be a Hilbert space and A be a self-adjoint operator on € with domain
P(A). We set
U, := et forall teR.

Then

i) the family (Uy)er is a strongly continuous one-parameter unitary group.

it) for x € P(A)
Ux —x
t

— 1A as t—0.

iti) if limyo3(U —x) ezists, then v € P(A).

REMARK 2.76
Below we give a proof of Theorem 2.75 using functional calculus and spectral
decomposition introduced in Section 2.2. Another possible way would be to

use the Hille-Yosida-Theorem 2.61 for contraction semigroups as follows.
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Since A is self-adjoint, it follows from Ezercise 1.36 that for any p € C
with Im p # 0 (which implies u € p(A) by Lemma 2.41)

1 1

Tist(, 0 (A)) = [Tpd] (2.100)

(= A) 7 =

Thus if we define By := +iA, both operators satisfy the conditions for an
operator to generate a semigroup as given in Theorem 2.61:

They are closed since A is closed by Corollary 2.12 and (0,00) C p(By)
since o(By) C iR by Lemma 2.41. Moreover, for any A > 0, using FiB =
—i?A = A and (2.100),

IAA = Bo) M = [(FiM) ((Fid) — A) 7 < 1.

Thus the operators By and B_ generate contraction semigroups (Tti)tzo.
Moreover, T, = e fort > 0 and T, = e for t < 0. Therefore, the
properties given in Theorem 2.75 follow from the respective properties for the

SEMIGTrOUPS.

Proof. i) a) If ®, denotes the algebraic *-homomorphism given in Theorem

2.44, then the multiplicativity of ®4 gives

Upsy = &)A(ei(t—i-s))\) _ C'I“)A(emeisx) — $A(e™) 0 Py = U,U, .
The unitarity of U; then follows at once from

Uf = da(e™) = dy(eit) = Dy(e™™) =U_, and U_ U, =1d.

b) The strong continuity follows by use of the spectral decomposition
given in Theorem 2.47 together with the fact that ®4(f)* = ®4(f): observe
that

etz — 2|2 = / € _12d(z, ) forall € .
R
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For each t € R the integrand |e?* — 1|2 is dominated by 4. But the constant

function g(\) = 4 is integrable with respect to (x, Il z) since

<x,x>:(x,1dx>241d<x,HAx><oo.

Since moreover
e — 1 — 0 as t—0 forall AN€R
we can conclude by the dominated-convergence theorem that
Uiz — z||* — 0 as t—0 forall ze€ 2.

Thus (U,) is strongly continuous at ¢ = 0 and by the group property this
implies property b).

ii) Similar to above we write

) 2
I e —a) el = [ de ) forall o€ 2(4),

R

Le™—1)—ix

, 2
Since for each t € R the integrand ‘%(e”’\ — 1) — z')\’ is dominated by the

function g(\) = 4|\, which is integrable, because
/ A2 d{x, T z) = ||Az||* < oo for z e 2(A)
R

and since

%(eit’\—l)—i/\‘—>0 as t—0 forall NeR

we can conclude by the dominated-convergence theorem that

Ux —x

lim =iAx forall ze€ 2(A).
t—0
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iii) Define the operator

t—0 it t—0 it

Bz =lim i — 2 with domain 2(B) = {J: € | lim e — 2 exists } :

Then A C B and B is symmetric since for all z,y € 2(B), using U} = U_y,

(z, By) = lim <x M> = lim <uy>

1t t—0 —1t

= lim <w7y>=<3x,y>'

s=(—t)—0
Since A is self-adjoint and has no proper symmetric extension by Proposition

2.14iii), it follows that A = B. g

The following theorem tells us that each strongly continuous unitary

group arises as exponential of a self-adjoint operator.

THEOREM 2.77 (STONE’S THEOREM)
Let (Up)ier be a strongly continuous one-parameter unitary group on a Hilbert

space F€. Then there is a self-adjoint operator A on J€ such that
U, = e forall teR.
Proof. For f € C°(R) we define

bf = /Rf(t)Utgbdt, for all ¢ € 2,

where the integral is a Riemann integral (this is possible since Uy is strongly
continuous).

Let D be the set of finite linear combinations of all such ¢; for ¢ € 2
and f € Cg°(R). If j. € Cg°(R) denotes the approximate identity introduced
in Definition 2.7 in Example 2.6, then

[iwwe-o ‘“H <([iwa) sup U= ol

te[—e,e

165, — oll =
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Thus the strong continuity of U; implies that D is dense in 7.
For ¢y € D we have (see (2.67))

(U Id) ¢f—/f (U”SS_ )¢dt
:/R(f(T_S;_f( )>U7¢d7'%—/Rf’(7-)UT¢dT:¢f,

fr=5)—f(7)

since

We define the operator A: D — D by

converges uniformly to —f’(7).

Us —1Id

Agpi=ito_p = hm ( ) bf for ¢reD. (2.101)

We notice that U : D — D since
Uity = [ FOULd: = (U.0) € D
R

and
UAgy = i /R (Y OVt = i Ua)_p = AUy

Furthermore, if ¢¢, ¢, € D, we have by (2.101) and since U} = U_,

s — 1d Id —

= <¢f7 Z-71¢*g'> = <¢f7 A¢9> .

showing that A is symmetric.

Now we show that A is essentially self-adjoint. Suppose there is i) €
P(A*) such that A*Y =i (i.e. ¥ € Ker(ild —A*)). Then for each ¢ € D =
D(A)

d t :
Ui, v) = ig%(([”h—) ¢.9) = (1AV, )
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= —i(Uyp, A*Y) = —i(Us, it)) = (Up, 1) .

Thus the complex-valued function h(t) := (U;p, 1) satisfies the ordinary

differential equation A’ = h and thus is given by
h(t) = e'h(0) .

But since on the other hand Uy is unitary and therefore |h(t)| is bounded,
it follows that h(0) = (¢,¢) = 0. Since D is dense, this implies ¢ = 0.
Therefore Ker(iId —A*) = {0}.

A similar proof shows that Ker(iId+A*) = {0}. By Corollary 2.22 this
shows that A is essentially self-adjoint.

Set V; = ¢4 then it remains to show that U, = V;.

Let ¢ € D, then ¢ € 2(A) and by Theorem 2.75 iii) we have

Vio € 2(A) and %WD _ AV,

Let w(t) = Uip — V¢, then since U;pp € Z(A) and A = A on 2(A),

Ew(zf) = iAUp — i AV, = i Aw(t)
and therefore
d 9 - . -
|7 = —i{Aw(t), w(t)) + i{w(t), Aw(t)) = 0.
Since w(0) = 0, this implies w(t) = 0 for all ¢ € R and thus V,¢ = U;¢ for
all t € R and ¢ € D. Since D is dense, this shows V; = Uj.

g

DEFINITION 2.78 (INFINITESIMAL GENERATOR)

Let (Uy)ier be a strongly continuous one-parameter unitary group on a Hilbert
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space S, then the self-adjoint operator A with U, = e is called infinites-

imal generator of (U;)icr.

REMARK 2.79

If a unitary group (U;)ier is weakly continuous, i.e. if
(U, —1d)p, ) — 0 as t—0 forall ¢, €A

then the group is in fact strongly continuous, since we can conclude, using

that Uy is unitary,

U6 — ol = |U]|> = (Ui, ¢) — (6, Us) + ¢l — 2[|o[I” — 2[|¢]|* = 0
ast — 0.

COROLLARY 2.80
Suppose (Up)er s a strongly continuous one-parameter unitary group on
a Hilbert space 7€. Let D C J be a dense domain, which is invariant
under (Up)ier and on which Uy is strongly differentiable at t = 0 with strong
derivative 1A.

Then A is essentially self-adjoint on D and its closure A is the infinites-

imal generator of (Up)ier.

COROLLARY 2.81
Let A be a self-adjoint operator on a Hilbert space 7 and let D C € be a

dense linear set contained in P (A). If
et D—D forall teR

then D is a core for A (i.e. Alp =A).
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2.3.8 Exercises

EXERCISE 2.82 (CONDENSATION OF SINGULARITIES, PRINCIPLE OF UNI-
FORM BOUNDEDNESS)

Let X,Y be Banach spaces and {Tj;};ken @ family of linear maps from X to
Y. Assume that for any k € N there exists v € X such that sup;cy || Tjrz| =

0.
Prove that there exists x € X such that sup;ey || Tjx|| = 0o for all k € N.

Rem.: See Theorem 3.31

EXERCISE 2.83 (SEMIGROUP)

Let ¢ € C(R™) be real-valued and bounded from above and set
T,f(z) := €@ f(z) for t>0.

Show that (T3)i>0 is a strongly continuous one-parameter semigroup on X
for X = C(R™) and for X = LP(R™) with 1 < p < oo and determine its
infinitesimal generator.

Under which additional assumptions is (T})i>0 a strongly continuous semi-

group on X = L>®(R")?

EXERCISE 2.84 (CONVOLUTION AND YOUNG INEQUALITY)

Let 1 < p,qg < o0 and%::%—i—é—l > 0. Let f € LP(R") and g € LI(R™).
i) Show that

frgeLl'R")  and  |[f*gler < | flleo lgllze -

Here f x g denotes the convolution of f and g given by
(fxg)@):= [ [flyglz—y)dy.
Rn
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i) Show the the convolution is associative and commutative.

EXERCISE 2.85 (SEMIGROUP-PROPERTY, HEAT KERNEL)

We define the heat kernel

1 e .
%(x):zwe [ for zeR"t>0

and set Ty = 1d and fort >0

Tif(x) =y * f(x).

Show that (T})e>o s a strongly continuous contraction semigroup on LP(R™)

for 1 <p< oo, ie T, € LLP(RY) such that
i) Tsry =TTy for all s, t > 0.
it) limy_o Tyx = x for all z € X.
i) || 13| <1 for allt > 0.

EXERCISE 2.86 (NORMALIZED TANGENT FUNCTIONALS)

Show that the set of normalized tangent functionals on the Banach space
C([0,1]) to the function f(x) = 1 is given by the set of all probability measures
on [0,1].

EXERCISE 2.87 (CONTRACTION SEMIGROUP)
On the Banach space X = {f € C([0,1])| f(0) = f(1) = 0} with supremums-

norm, we consider the operator (see Example 2.70)
Af =" with domain  D(A) ={f € X|fe€C*[0,1]) and f" € X}.
Show that A generates a contraction semigroup.
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2.4 Commutation relations

Besides the fact that in the case of unbounded operators we have to take
care about the domain, another important difference to bounded operators
lays in the fact that formal calculations can be misleading. In the following
this will be illustrated using the notion of ”commuting operators”.

Two bounded self-adjoint operators A, B € L(J) on a Hilbert space

are said to commute, if
ABz = BAx forall z e 7. (2.102)

If A and B are unbounded, (2.102) might not make sense for any = € J2Z,
for example if Ran A N 2(B) = {0}. This suggests that we need to find an
alternative way to define commutativity. To do this, we will use the spectral
theorem.

For bounded operators A, B, it follows from Theorem 1.11 together with
Theorem 1.18 that (2.102) holds if and only if all spectral projection {ITA}

and {15} commute.

DEFINITION 2.88 (COMMUTING OPERATORS)
Two self-adjoint operators A and B on a Hilbert space 7€ are said to com-
mute : <=

All projections in the families of spectral projections
{IT5 1Q € B(R)} and {115 Q € B(R)}
of A and B commute.

We then have
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THEOREM 2.89

Let A and B be self-adjoint operators on a Hilbert space €. Then the fol-

lowing statements are equivalent.

i) A and B commute.
it) If Im A # 0 and Im p # 0, then

B\(A)R(B) = Ru(B)EA(A) .

iii) For all s,t € R

eztAesz — 6szeztA .

Proof. 7i) = ii)” and 7i) = 4ii)”: These two implications follow imme-
diately from Theorem 2.47 (the spectral decomposition and the functional
calculus for unbounded operators), since the resolvent and the exponential
are bounded functions.

7i1) = i)”: We will use Stone’s Formula.

For ¢ > 0 and a,b € R, a < b, set

fulw) = — b<x_1 ! >d>\.

T 2mi “ A—ie T —\+ie

If we denote by I'. the closed curve in C

given by the composition of v, k =1,...,4° (see figure above) then

1 1 1 1 1 1
fe(a:)——/ dz — — dz — — dz .
r

21 Jr, x — 2 211 o L — 2 271 yie T—Z

M,e:[0,1] = C, m.(t) =(1—1t)a+ic+th,

V2,€ - [—1, 1] — (C, Wg,e(t) =b— t’i€7
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M,e F€

€ T
Va,e V2,e

73,6

Figure 2.1: The integral contour I'.

Y361 [0,1] = C, 73.(t) =ta—ie+ (1 —1t)b,

Yae: [—1,1] = C,  7a.(t) = a+ tie,
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Using the Residual Theorem®, it follows that

(

0 for xz¢la,b

dz=qRes|,--- =1 for z € (a,b)

\%Res\xml: =1 for z€{a,b}

where in the last case, this is the principal value of the integral. Since in the

limit € — 0 the integrals over v, and 7, converge to zero it follows that

(

0 for x¢la,b
1
fe(@) — <1 for =€ (a,b) = §(X[“»b] + X(ap)) as €—0.

: for z € {a,b}

\

THEOREM 2.90 (RESIDUAL THEOREM)
Let Q C C be a domain, g : Q — C be meromorphic. Assume that G C Q is compact and
such that there are no singularities of g on the boundary OG. Then
/ g(z)dz = 2mi Z Res|.g,
oG zeG

where Res|,g denotes the residue of g at the point z.

If g has at the point zg a pole of order k, then

1
(k— 1)

Res |9 =

0.y (2= 20)"9(2))

If in the setting of Theorem 2.90 there are at most finitely many poles of order 1 on the

boundary dG, then

P g(z)dz:QwiZRes|Zg + i Z Res|.g,
G Lel 2€0G

where P fac g(z) dz denotes the principal value of the integral

155



CHAPTER 2. UNBOUNDED OPERATORS ON HILBERT SPACES

Moreover, |f¢| is bounded uniformly in e. Thus by the functional calculus

(Theorem 2.44)

z strong]. = 1
Da(f) Y <I>A<§(X[a,b] + X(a,b))> as €—0

or more explicit

1 ' 1 1 strongly 1
2mi - AN =5 —(jap + ay) . (2103
27ri/a <A—)\—ie A—)\—l—ie) 0 2( ] T H@apy) - ( )

This equation is called Stone’s Formula.

Since, moreover,

ie 1, if a=u
9 () = ——m — as €—0
a+i—x 0, if atx
it follows that
. strongly A
ZeRa+ie (A) 0 H{a} .

Thus the spectral projections can be expressed as strong limits of resolvents.
7i11) = 14)”: For this point we use the notion of Fourier transform and

some facts, which will be proved later.

DEFINITION 2.91 (FOURIER TRANSFORM)
Suppose f € .Z(R™)26. The Fourier transform of f is the function f
given by

£ 1 —iz
i) = W/Rne () de (2.104)

where x - £ = Z?Zl x;&;. The inverse Fourier transform of f, denoted by

f, is the function
i3 1 ix-
f&) = ERE /Rn e f(x) d . (2.105)

We sometimes write f =Ffand f=F'f.
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Let f € Z(R), then by Fubini’s theorem

[ swxeto = [ g0 [ e ango.n) i

— Vor /R FOVA(ITAG, ) = vV2r(6, (AN

Using iii) and Fubini’s theorem again,

(. f( / / F(D)g(s) (6, e By ds dt = (6, §(B) F(A)S)

Thus we have shown that

~

f(A§(B)—§(B)f(A)=0  forall fge.7(R).
Now we use the following

THEOREM 2.92 (FOURIER INVERSION THEOREM)
The Fourier transform is a linear bicontinuous bijection from #(R™) onto

L (R™). Its inverse map is the inverse Fourier transform, i.e.

~ ~

f=f=f forall fe . (R").

Moreover, setting p,(z) = (ix)* for all o € N,

(PaD?F) (&) = DH(=1)PIpsf(€) . (2.106)

This shows that f(A)g(B) — g(B)f(A) =0 for all f,g € .7(R).
Now we use that the Schwartz functions are dense in the set of bounded
measurable functions B(R). Thus there are uniformly bounded sequences

(fr)nen and (gn)nen in Z(R) such that

fu(x) = X(ap) () and  gn() = X(ca)(®) for all z € R.
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By Theorem 2.44 (Functional Calculus), this implies
fa(A) T and g, (A) S TP
Since the sequences are uniformly bounded and
fa(A)gn(B) = gn(B) fu(A) forall neN
it follows that H@b) and H(BQ 4) commute. O

It is not always easy to deal with the above definition of commuting
operators. A and B are often given only on sets of essential self-adjointness
and it may be difficult to construct the spectral projections, resolvents or
unitary groups generated by A and B. It would be nice to have a criterion
in terms of the operators themselves. This is not as easy.

The following two conjectures, which seem reasonable, are in fact false.

1) Let D € A be dense and D C Z(A) N Z(B). Moreover, assume that
D is invariant under A and B. Then (AB — BA)¢ = 0 for all ¢ € D

implies that A and B commute.

2) Let D be a dense domain of essential self-adjointness for A and B,
which is invariant under A and B. Then (AB — BA)¢p = 0 for all
¢ € D implies that A and B commute.

Both of these statements are false, the hypotheses are not sufficient for
commutativity. Although for all n,m € N if follows from 1) and 2) that
AmB"p = B"A™¢ for all ¢ € D, we can not conclude that the unitary
groups €4 and e”? commute on D. In the case of unbounded operators,
these operators are not given by the the power series.

This can be seen by the following example of Nelson.
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EXAMPLE 2.93

Let M denote the Riemann surface of \/z and S = L*(M) with Lebesgue

measure (locally).

Figure 2.2: The Riemann surface of \/z. Horizontal axes: real and imaginary
parts of z. Vertical axis: real part of \/z. Colors: imaginary part of v/, Leonid

2/CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

Let D denote the set of all infinitely differentiable functions with compact
support not containing 0. Set Z(A) = D = P(B) with

.0 .0
A__Zé?_x and B——@a—y.

Then
i) A and B are essentially self-adjoint on D.
it) D is invariant for A and B, i.e. A: D — D and B : D — D.
iii) AB¢ = BA¢ for all ¢ € D.
i) e and €8 do not commute.
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The proofs of ii) and iii) are obvious by the definition of D.

To see i), we first remark that A and B are symmetric (by integration by
parts).
Now let D,, C D denote those functions in D, whose support does not contain
the x-azis on either sheet. Then D, is dense in L*(M) and we define the

family of translation operators

(Ud)(x,y) = ¢p(x+t,y)  forall $€D,.

Then for each t € R the operator U; is norm-preserving with dense range D,
and extends to a unitary operator on L*(M). Since (Uy) is strongly continu-
ous on Dy, the family of unitary operators on L*(M) is strongly continuous.

Moreover, since for ¢ € D,

1 1 0

o
it follows that (Uy) is strongly differentiable on D, with strong derivative i A.
Thus by Corollary 2.80, A is essentially self-adjoint on D, and thus on D
(this follows from Corollary 2.22 since if Ran(A £ ild)|p, is dense in J,
then Ran(A £ i1d) is dense) and A generates (Uy). Similar arguments show
that B is the infinitesimal generator of Vip(x,y) = é(x,y + t) defined on
D, C D and is thus essential self-adjoint on D.
For i), let ¢ € D be supported in a small ball around the point (—%, —%)
on the first sheet. Then
UiVig # ViUio.

There is a similar effect in the following case.
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DEFINITION 2.94 (CANONICAL COMMUTATION RELATION, WEYL RELA-
TION)

Let 7€ be a Hilbert space.

i) A pair of self-adjoint operators P and Q on J is said to satisfy the

canonical commutation relation : <

There is a dense domain D C P(A) N P(B), which is invariant under

A and B, such that Alp and Blp are essentially self-adjoint and

PQé— QPo = —i¢  forall ¢€D. (2.107)

it) A pair of continuous one-parameter unitary groups (Up)ier and (Vi)ier

on J is said to satisfy the Weyl relation : <=

UV, =e""V,U, ~ forall s teR. (2.108)

As shown in Exercise 2.99, P and ) cannot both be bounded, if they
satisfy the canonical commutation relation.

The standard realisation used in quantum mechanics is the Schrodinger
representation, where 7 = L*(R) and P and Q are the closures of

1d
Pog(z) = ;@ﬂ@ and  Qod(z) = zé(x)

with domain 2(F) = . (R) = 2(Qy) (Exercise 2.99).

Then the groups ¢ and €@ satisfy the Weyl relation (Exercise 2.99).
The following theorem, which we will not prove here, tells us that in some

sense, these are the only such groups.
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THEOREM 2.95 (VON NEUMANN’S THEOREM)
Let (Up)ier and (Vi)ier be continuous one-parameter unitary groups on a
separable Hilbert space 7€ satisfying the Weyl relation.

Then there are closed subspaces 74, so that

i) A =@ A (here N €N or N = o0).

ir) Uy : 4 — 4 and Vy : 76, — 56, for all s,t € R and for all k.
iii) For each k there is a unitary operator Ty : 56 — L*(R) such that

TWU T d(z) = ¢p(x —t) and T,V.T,'¢(x) = e ¢(x).

COROLLARY 2.96

Let (Up)ier and (Vi)ier be continuous one-parameter unitary groups on a
separable Hilbert space € satisfying the Weyl relation. Let P be the gener-
ator of U; and Q) the generator of V;. Then P and () satisfy the canonical

commutation relation.

Thus any solution of the Weyl relation has infinitesimal generators satis-
fying the canonical commutation relation. The converse of this statement is

not true, as can be seen by the following example.

EXAMPLE 2.97
In the setting of Example 2.93, let

1
P:A:l2 and Q:MI+B::16+—,2
1 0x i Oy

with domain D given there. Then P and Q) satisfy the canonical commutation
relation (the proof of the self-adjointness is as in Example 2.93). But the
groups they generate do not satisfy the Weyl relation (Exercise 2.98).
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2.4.1 Exercises

EXERCISE 2.98 (CANONICAL COMMUTATION RELATION)
Let X be a normed linear space and S,T € L(X) with ST — TS = 1d. Show
that

ST™ — TS = (n + 1)T"

holds for all n € Ny and conclude that S and T' can not both be bounded.

EXERCISE 2.99 (CANONICAL COMMUTATION RELATION - WEYL RELA-
TION)
A pair of self-adjoint operators P, () is said to satisfy the canonical com-

mutation relation if

PQ—QP=—ild. (2.109)
Consider on 3 = L*(R) the operators
d
Pigla) =55 0la)  and  Quir) = 26(x)
with domain 2(Py) = . (R) = 2(Qo).

i) Show that Py and Qo are essentially self-adjoint and that their self-
adjoint extensions P and Q satisfy (2.109) on . (R).

ii) Show that the generated unitary groups U, = e and V, = €@ satisfy
the Weyl relation, i.e.

UV, =e"V,U,  forall tsecR. (2.110)

EXERCISE 2.100 (CANONICAL COMMUTATION RELATION - WEYL RELA-

TION)
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Work out the details of Fxample 2.97:
Let M denote the Riemann surface of \/z and S = L*(M) with Lebesgue

measure (locally). Set

P=A= Lo and Q= M—l—B—:l:—l—12
iz i Oy

with domain D given by the set of all infinitely differentiable functions with

compact support not containing 0.

i) Show that P and Q satisfy the canonical commutation relation (2.109)

ii) Show that the generated unitary groups U, = e'f and V; = €9 do not
satisfy the Weyl relation (2.110).

2.5 Trotters product formula

it(A+B)

In this section, we give an approximation theorem for e in terms of

¢4 and B where A and B are (essentially) self-adjoint operators.

We start with the version for finite-dimensional matrices.

THEOREM 2.101 (LIE PRODUCT FORMULA)

Let A and B be finite-dimensional matrices. Then

. 14 1\"
AP = lim (enAenB> .

n—oo

Proof. For n € N let

:\H

n —

1
(A+B)  and T, —enAenB

n

then
Zsm )T (2.111)
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and therefore
157 — T2 < n(max{||Sull, 1T l})™ 10 — Tl < 0l Sy — Tl AI+IEI

Since by the definition of .S,, and T,

IS, Tl = ;%(Aw) (i%<‘)> <i%<_>>”

where C' depends on || Al| and || B||, it follows that [|.S]> —T*|| — 0 as n — oo.
U

This theorem can be extended to the case of contraction semigroups on

Banach spaces. We give the proof only in the following case.

THEOREM 2.102

Let A and B be self-adjoint operators on a Hilbert space € and suppose that

A+ B is self-adjoint on D = 2(A) N P(B). Then
(elrfAezntB> Strongly, - oit(A+B) as n — 0o.

Proof. Similar to the proof above, we set

Sp(t) = e m(A+B) _ S, (E) and T, (t) = enALEB _ T, (i) ‘

n n

Let ¢ € D, then by the properties of continuous unitary groups (see Theorem
2.75)

%(Tl(t) —Id)¢ = %(e“f‘e”B —1d)¢ = %(eim —1d)¢ + %ei“‘ (e"? —1d)¢

— iAp+iBp as t—0 (2.112)
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and
%(Sl(t) —1d)¢ = %(e“WB) —1d)¢p — i(A+B)¢ as t—0. (2.113)
Setting (with s = £)

K(s) = é(eisAeisB — ¢(AtB)) = é(Tl(s) — Sl(s)) ,

it follows from (2.112) together with (2.113) that
K(s)p — 0 as s—0 forany ¢eD. (2.114)

Since A+ B is self-adjoint on D, it is closed and thus D is a Banach space

with respect to the graph norm

I¢llats = (A + B)gll + ll¢]l -

We denote this Banach space by D. Then for each fixed s € R, the map
K(s): D — 2 is bounded (||K(s)¢| < 2|\ ¢l for s > 0 and ||K(0)¢| = 0).
Thus we have a family of bounded operators { K (s) }scg on the Banach space
D. Since, moreover, for each fixed ¢ € D the set {|K(s)p||s € R} is
bounded, it follows from the Principle of uniform boundedness (Theorem
3.31) that the family {||K(s)||}ser is uniformly bounded, i.e. there is a

constant C so that
|K(s)¢|| < Cl|@|laxs  forall seR, ¢eD.

Thus on sets in D which are compact (with respect to || - |as5), the con-

vergence K(s)¢ — 0 is uniformly”. Since D = Z(A + B), it follows from

"Let € > 0 and M C D be compact. Cover M with balls of radius 5 and choose some
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Lemma 2.54 that e®+5) ¢ € D if ¢ € D. Moreover by Lemma 2.51 the map
s+ S1(s)¢ = e*ATB)¢ is a continuous map from R into D. Thus for each

fixed ¢ € D
{S1(t)p = ™™ Bg |t € [-1,1]} € D is compact .
This shows that for any ¢ € D, uniformly for s € [—1, 1],
K(t)Si(s)¢ — 0  as t—0. (2.115)

Now we can proceed as in the proof of Theorem 2.101. The aim is to
show that [[(S,(t))" — (T.(t))"|| = 0 as n — oo for any fixed ¢t € R. Remark
that T,,(¢t) = T; (%) and S, (¢) = S; (%) and therefore

t
n

(Tu(t) — Su(t) = “K (3) .

n n

We write for ¢ € D as in (2.111)

To estimate the norm of this term, we use that 7),(¢) is unitary,

(Su(0))"F = e=tasD)

finite subcover with balls around the points ¢1,...d,,. Then by (2.114) there is some sg
such that ||[K(s)¢e|| < § for all s < sp and 1 < £ < m. Let ¢ € D be arbitrary. Then

there is ¢ such that [|1) — ¢¢|a1B < 55 and thus for all s < s

IK (s3] < 1K ()0 = do)ll + [ K ()u]] < O + 5 = e
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and s = 2=1=E¢ < |¢|. Thus by (2.115) for any fixed ¢ € R and ¢ € D

[ (50" = (@) < e max |1 (2) (51(s>)H )

s<|t| n

as n — 0o. Since D is dense and the operators are bounded by one, this

proves the theorem. O

The following result, which we will not prove here, is stronger, since it

only requires essential self-adjointness of A+ B on Z(A) N Z(B).

THEOREM 2.103 (TROTTER PRODUCT FORMULA)

Let A and B be self-adjoint operators on a Hilbert space 7€ and suppose that
A+ B is essentially self-adjoint on D = Z(A) N P(B). Then

it A it " strongly ;
(enAenB) ST, git(A+B) as mn— 00.

A similar result (which we also will not prove) holds in the case of gener-

ators of contraction semigroups.

THEOREM 2.104 (TROTTER PRODUCT FORMULA)

Let A and B be generators of contraction semigroups (13)i>0 and (St)i>0 on
a Banach space X. Suppose that the closure of A + B restricted to D =
P(A) N D(B) generates a contraction semigroup (Us)i>o on X. Then for all

peX
ti (13) 0 = Ui

If (A+ B)|p is closed, the proof is exactly as the proof of Theorem 2.102.
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Chapter 3

Locally convex spaces,
Distributions, Fourier

transform

3.1 Locally convex spaces

The idea behind locally convex spaces is that instead of a norm the topology

is given by a family of seminorms.

3.1.1 Topology generated by families of seminorms

DEFINITION 3.1 (SEMINORM)
A seminorm on a vector space X is a map p : X — [0,00) obeying for all

r,y € X and o € K

a) p(x+y) < p(x) + p(y).
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b) plax) = |alp(z).

A family of seminorms P := {pa}taca, where A is any index set, is said to
separate points : <= p,(z) =0 for all o« € A implies x = 0.
If B C A is finite and € > 0 we set

Up.={re€X|VaeB : p,(x)<e} and (3.1)

% ={Up.|B C A finite, ¢ > 0}.

The system % substitutes the set of all balls at 0 in a normed vector

space. It has the following properties:

1.0eUforallU € %.

2. For any Up, ¢, U, e, € % there exists U € % such that U C U; N Uy
(in fact we can take U, with B = By U By and € = min{e;, €2}).

3. For any U € % there is V € % such that V +V C U (for U = Up,
take V = Up/a).

4. Any U € 7 is absorbing, i.e. the Minkowski functional
pu: X — 0,00, py(zr):=inf{A>0|zec AU} (3.2)

is finite for all z € X.
To see this, take U = Ug, and x € U. Then z € AU if max,ep pa(z) <

A€, 50 py(z) < L maxaep palz) < o0.

5. For any U € % and A > 0 there is V € % such that \V C U (if
U= UB,e and V = UB7E/)\, then AV = U)
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6. Each U € % is balanced, i.e. YU C U for all v € K with |y| < 1.

7. Each U € % is absolutely convex, i.e. U is balanced and convex

(le. tU+(1—t)U CcU forall 0 <t <1).

A set A is absolutely convex if for all x,y € A and A\, u € C such that
IA| + |©] < 1it holds that A\x + uy € A.

Now let % be any system of sets in X obeying properties 1. to 6. Then
it is possible to define a topology! on X by setting

McXisopen <= VeeMIUe¥% :2+UCM. (3.3)
This is in fact a topology:
i) It is clear that () and X are open.

ii) Let My, M be open and x € My N Ms. Then there exist U; € % such
that x + U; C M; for i = 1,2. By 2. there is some V € % such that
V c Uy NU;y and therefore x +V C M; N Ms. Thus M; N M, is open.

LA topology T on a set X is a system of subsets of X satisfying
i) erand X €.
11) IfOl,Og eT, then O1 N Oy € 7.

iii) If I is any index set and O; € 7 for all i € I, then |J,.; Or € 7.

i€l
The elements of 7 are called open sets. A neighbourhood of a point x € X is a set
U C X such that there exists some O € 7 with x € O C U. A neighbourhood base at
a point & € X is a system %, of neighbourhoods U of z, so that for each neighbourhood
V of z there is some U € %, with U C V. The boundary OM of a set M C X consists
of all points m € X for which UNM # 0 and U N M€ # ) for each U € %,,. A sequence
() in X is said to converge to x € X, if for all U € %, there is some N € N such that

Ty € U for all n > N. Such a limit does not need to be unique.
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iii) Let M;, i € I, be open and x € |J,c; M;, take x € M;,. Then there
exists some U € % such that v + U C M;, C J,c; M;. Thus J,c; M;

is open.

By construction, % is a neighbourhood base (or local base) at 0 of the

topology.

LEMMA 3.2
In the topology given in (3.3), addition and scalar multiplication are contin-

uous® with respect to the product topology on X x X and C x X.

Proof. Let M C X be open. It has to be shown that
M={(z,y)|lz+yeM} and M ={(\z)|\xe M} areopen.

If x+y € M, then there exists U € % such that xt+y+U C M. By 3. there
is some V' € % such that V+V C U. But this implies (z+V)+(y+V) C M
and thus (z + V,y + V) € M. Therefore M is open.

If \x € M, then \e + U C M for some U € % . Choose again V € %
according to 3, i.e. such that V 4+ V C U. Then by 4. there is some € > 0
such that ex € V. Since V is balanced, it follows that

(p=MNx eV if |u—A<e.

2If X, and X, are topological spaces, then a map f : X; — Xj is called continuous
at xo, if for each neighbourhood V' of f(zg) the pre-image f~!(V) is a neighbourhood of
wo. If %, and 7(,,) are neighbourhood bases at zo and f(x¢) respectively, then f is
continuous at g if for any V' € ¥}, there is some U € %, such that f(U) C V. The
function f is called continuous if it is continuous at all x € X. This holds if and only if

the pre-images of all open sets in X5 are open in X;.
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Now by 5. and 6. there is W € % such that uWW C V if |u| < |A\| + €. Thus
if |u—A <eandweW

pz+w)—de=pu—-Ner+pweV+VcU

proving that {u||p— A < e} x (x+ W) C M. O

3.1.2 Definition, examples and fundamental properties

DEFINITION 3.3 (LOCALLY CONVEX SPACE)

Let X be a vector space and T a topology on X.

i) (X, 7) is called topological vector space : <= addition and scalar

multiplication are continuous.

it) Let P = {pataca be a family of seminorms on X and T the associ-
ated topology defined in (3.3). Then (X, T) is called locally convex

topological vector space or simply locally convex space.

It follows from Lemma 3.2 that a locally convex space is in fact a topo-

logical vector space.

EXAMPLE 3.4 i) Let S be a set and X = C° the space of functions f :
S — C, then the family P = {p;: }1es of seminorms with p,(f) = |f(¢)]

generates the locally convex topology of pointwise convergence on X.

it) Let (S,7) be a topological space and X = C(S,C). For any compact set

K C S we define the seminorm

pr(f) = sup [f(t)].

teK
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iii)

vi)

174

Then the family P = {px | K C S compact} generates the locally convex

topology of uniform convergence on compact sets.

On X = C®(Q), where Q@ = R™ or Q C R™ open, consider the semi-

norms

Pr.o(f) ==sup |Df(x)| where K CQ compact,a € N".
zeK

The locally convex space generated by the family
P ={pka|aeN" KCQ compact}
is often denoted by &(€2).

The Schwartz space . (R™)25 (infinitely differentiable functions of

rapid decrease) together with the family of seminorms || - ||as given by
|| flla,s == sup ‘a:aDﬁf(x)| < 00 for all o, € N" (3.4)
zeR"
is a locally convex space (Exercise 3.35).

For Q0 C R™ open and K C €2 compact set

Tie(Q) == {f € C(Q) | supp f C K} and  pa(f) = sup| D*f(a)].

z€Q

Then Dk () together with the family of seminorms P = {py}acnn S a

locally convex space.

For Pk () as given in v) we denote the topology by 1. Set Z(2) =
Ux Zk () and let P be the family of all seminorms p on 2(§2) such

that all restrictions p|g, are continuous with respect to Tk .
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ii)

viii)

i)

If X is a vector space with norm || - ||, then the locally convex topology

generated by P ={|| - ||} is the norm topology.

On a normed vector space X with dual space X*, the locally convex

topology generated by the seminorms
pe(x) = [l(z)], e X,
is the weak topology o(X, X™*) on X.

On the dual space X* of a normed vector space X, the locally convex

topology generated by the seminorms
p(0) == [l(z)], reX
is the weak-* topology on X*.

If X and Y are normed vector spaces, then on L(X,Y) there are
three topologies: the norm topology generated by the operator morm,

the strong operator topology generated by the seminorms
p(T) = ||Tx|y , reX
and the weak operator topology generated by the seminorms

pep(T) = |((Tx)]|, leY* zeX.

On any vector space X the seminorm p(x) = 0 generates the chaotic
topology, in which only X and () are open. This "family of seminorms”

does obuviously not separate points.
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LEMMA 3.5
Let X be a locally convex space, where the topology T is generated by the family

of seminorms P = {pa}aca. Then the following statements are equivalent:
i) (X,7) is a Hausdorff space’.
ii) P separates points.

i) There exists a neighbourhood base % at 0 such that (e, U = {0}.

Proof. i) = i) : Let x # 0 and let U and V' be neighbourhoods of 0 satisfying
(x+U)NV = 0. Since 7 is generated by P there are B C A finite and € > 0
such that V = Up, = {x € X |Va € B : p,(z) < €}. Therefore z ¢ V
implies that p,(z) > € for some o € B.
i1) = 411) : This follows from the fact that

T € (WUR6 < po(r)=0 forall ac A

Bie

and if P separates points, the last statement is equivalent to x = 0.
i11) = 1) : Let x # y, then by assumption there exists some U = U, € %
such that o —y # U, i.e po(xr —y) > e for all @ € B. Let V = Up/4, then
(x4+V)N(y+V)=0. In fact, assume that = +v = y+w for some v, w € V.
It follows from the triangle inequality that

Pa(—y) =palz—v—y—wtv+tw) < pu((z+0v) = (y+w)) +pa(v) +pa(w)
and therefore for all & € B by the definition of U and V'
€
Pa((z +0) = (y +w)) 2 pa(z = y) = pa(v) =palw) 2~ 5 >0

which contradicts the assumption. U

3Two different points have disjoint neighbourhoods
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This shows that all examples except the last are Hausdorff spaces. The
following proposition explains, why these spaces are called locally convex.

We start with a lemma.

LEMMA 3.6
Let X be a vector space and U C X a subset. Then the Minkowski functional
pu defined in (3.2) is

i) sublinear* if U is convex and absorbing.
it) a seminorm, if U is absorbing, convex and balanced.

Proof. 1) Since U is absorbing, py is finite by definition.
From the definition of py it follows by setting p = tA that

t
tpy(z) = tinf{\ > 0| § ceU}=inf{u>0]| Ex e U} = pu(tx) (3.5)
for any t > 0 and z € X. In order to see the inequality

pu(z+y) <pu(z)+pu(y) forall z,ye X (3.6)

let x,y € X be fixed. Choose any € > 0. Since the Minkowski functional
pu(x) is the infimum over all ¢+ > 0 such that ¢ € U, it follows that there are
A, it > 0 such that

A<py(z)+e and p<py(y)+e and

Y

> 8
ISR

4 If V is a vector space, a map g : X — R is called sublinear if
(a) p(Av) = Ap(v) for all A >0 and v € V.

(b) p(v+w) < p(v) + p(w) for all v,w € V.
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The convexity of U implies

A T4y

z Loy
~+ - = eU.
A A A+pp A+p

Therefore
pu(z+y) <X+ p <pu(x)+pu(y) + 2

and since € > 0 was arbitrary, this proves (3.6).
ii) Since U is balanced, i.e. vyU C U for all |y| < 1, it follows that U = AU
for [A\| =1 and thus

pu(Az) = pav(Ax) = py(x) = [A|py(x) forall |\ =1,2z€X.
Combining this with (3.5) shows that
|Apu(z) = pu(Azx) forany MeK, ze X.

Together with (3.6) and the fact that py is finite, this shows that py is a

seminorm. O

PROPOSITION 3.7
A topological vector space (X, T) is locally convex if and only if it has a

neighbourhood base at O consisting of convex, balanced and absorbing sets.

Proof. 7 = 7: This follows at once from the construction of a locally convex

space.

7 «=7: Assume that 7 has a neighbourhood base % and that any U € % is

convex, balanced and absorbing. Then by Lemma 3.6, each py is a seminorm.
Consider now the family of seminorms P = {py }yes . This family gener-

ates a topology 7 on X with the neighbourhood base at 0 given by
U ={Uyle>0, ¥ CU finite }
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Upe={xe X|VU eV : py(zr) <e}.

We show that the topologies 7 and 7 are equal:

In order to see 7 C T, we observe that

Uwyp={r € X|py(x) <1} =U if 0€U C X open and convex.
(3.7)
In fact, if py(x) < 1, then there exists A < 1 such that { € U. Since 0 € U,
it follows from the convexity that

x:/\§+(1—/\)O€U.

Thus U{U}J cU.
On the other hand, if py(z) > 1, then { # U for all A < 1. Since U* is
closed, it follows that

x:hmerC.
2

This shows that U{CU},l CU Thus U = Uy, € U for any U € % .

The inclusion 7 C 7 holds, since for any finite ¥ C % and € > 0
Uy = ﬂ eU eT.
ey

In fact, x € Uy if and only if py(x) < € which is equivalent to z € €U for
allU € 7. Il

This Proposition shows, that locally convex spaces can be determined
either by a family of seminorms or by an absolutely convex neighbourhood

base at 0.
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3.1.3 Continuous linear maps

The equivalence of continuity and boundedness for linear maps given in
normed vector spaces can be generalized to locally convex spaces. We start

with criteria for the continuity of a seminorm.

LEMMA 3.8
Let X be a locally convex space with topology T generated by the family of

seminorms P = {py}aca-

i) Let g : X — [0,00) be a seminorm. Then the following statements are
equivalent.
(a) q is continuous.
(b) q is continuous at 0.

(c) {z € X |q(x) <1} is a neighbourhood of 0.
i) po is continuous for all a € A.
iii) A seminorm q on X is continuous if and only if

dM > 03B C A finite :  q(x) <Mm€aé<pa(x) forall xe€ X.
(3.8)

Proof. i): The implication (a) = (b) is clear. But ¢ is continuous at 0
if and only if for each neighbourhood V of ¢(0) = 0, the pre-image is a
neighbourhood of 0. Thus (b) = (¢) is clear.

(¢) = (a): Assume that (c¢) holds. Let 2 € X and ¢ > 0 be given. We

have to show that the pre-image of the e-interval around ¢(x) is open in X.
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Set
U:==elye X|qy) <1} ={y € X|[q(y) <e}.

Then for any y € U

lg(x +y) —q(@)] <q((z +y) —2) =q(y) <e

and therefore

gz +U) C{ANeR||N—q(z)| <€}

This proves the continuity of q.
i1): By the construction of 7 the sets {z € X | p,(z) < 1} are neighbourhoods
of 0 for all &« € A. The continuity of all seminorms in P thus follows from i).
i1i): By i) it suffices to show that (3.8) is equivalent to the fact that N =
{z € X |q(z) < 1} is a neighbourhood of 0.

N is a neighbourhood of 0 if and only if there exist ¢ > 0 and B C A
finite such that Up, C N. But this is equivalent to (3.8) for M =1 and the

same finite B C A, since %maxaeB Palz) < 1 for any z € Ug,. O

It can be interesting to compare two different topologies (or two different

families of seminorms) on the same vector space X.

DEFINITION 3.9
On the vector space X consider the families of seminorms P and Q) generating
the topologies Tp and 1g respectively. Then P and @) are called equivalent

&= Tp=T1TQ.

COROLLARY 3.10
On the vector space X consider the families of seminorms P and () generating

the topologies Tp and Tg respectively.
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i) Tp = Tq holds if

P c @ C{q seminorm |q is continuous with respect to p} .

it) P and Q are equivalent if and only if each p € P is continuous with

respect to 7o and each q € Q) is continuous with respect to Tp.

This lemma allows to get the following characterisation of a convergent

net.

COROLLARY 3.11
Under the assumptions of Lemma 3.8 a net® (x.)yer converges to v € X if
and only if

Palry —x) — 0, forall a€A.

Proof. We have x, — x if and only if (z, — x) — 0, thus it suffices to

consider z = 0. 7 = 7: If 2, — 0 it follows from Lemma 3.8ii) together with

5A directed system is an index set I together with an ordering < wich satisfies
i) If o, 8 € I then there exists v € I such that v = o and v = 3.

ii) < is a partial ordering, i.e. a < a for all &« € T and o < 8 and 8 < ~ implies « < v
for all o, B,y € I.

A net is a mapping from a directed system I to X and is denoted by (z4)acs. A net
(Za)acr is said to converge to z € X (written z, — ) if for any neighbourhood U of x

there is some § € I so that x, € U for all a > .

ProOPOSITION 3.12
Let X andY be topological spaces. A function f: X — Y is continuous at xq if and only

if for every convergent net (x4 )acr in X with o — x, the net (f(wa))ael converges in'Y’

to f(x).
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Proposition 3.12 that p,(z,) — 0 for all o € A.

7 <7 Let U € % be a neighbourhood of 0, then by construction U = Up
for some € > 0 and B C A finite. By assumption, for any o« € A there is
Yo € I such that

Palxy) <€ for all v >,

Since [ is directed and B is finite, it follows that there is a § € I such that

B > 7, for all @ € B. This implies
pa(z,) <€ forall y>panda€B

and thus z, € Up, for all v > 8. This shows that z, — 0. O

DEFINITION 3.13 (COMPLETE LOCALLY CONVEX SPACE)
A net (x)yer in a locally convex space X generated by the family of semi-

norms P = {pa}aca is called Cauchy : <
Ve>0Vae AIBye IV B,v> By : palap—z,) <e.
X is called complete if every Cauchy net converges.

We now consider linear maps between locally convex spaces. The follow-
ing proposition generalizes the fact that linear maps between normed vector

spaces are continuous if and only if they are bounded.

PropPoOSITION 3.14
Let (X, 7x) and (Y, 1y) be locally convex spaces where Tx and Ty are generated
by the families P and @) of seminorms respectively. LetT : X — 'Y be linear.

Then the following statements are equivalent.
i) T is continuous.
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ii) T is continuous at 0.

i) If q is a continuous seminorm on'Y , then qoT is a continuous seminorm

on X.

iv) For any q € Q there is a finite F C P and M > 0 such that

q(Tz) < Mmalgip(x) forall zeX. (3.9)
pe

Proof. i) = ii): clear

it) = 1i): Since T is continuous at 0, for each neighbourhood V' C Y of 0

there exists a neighbourhood U C X of 0 such that T(U) C V. But then for

any x € X by the linearity of T'we get T(x+U) =T(x)+T(U) C T'(z)+ V.

i1) = 1ii): This follows from Lemma 3.81), since the composition of continu-

ous maps is continuous.

i) = w): If ¢ € @, then ¢ is continuous by Lemma 3.8ii). Thus by iii) it

follows that goT is a continuous seminorm on X. Lemma 3.8iii) implies that

iv) holds.

iv) = ii): Let V C Y be a neighbourhood of 0. Without loss of generality

we can assume that V = {y € Y | ¢;(y) < €} for some ¢, where ¢y, ..., ¢, € Q.

For each i = 1,...n choose M; and F; according to (2.95). If we set
F=|JF and M:= max M,

i=1,..n

it follows that
max ¢;(Tr) < M maxp(z) forall ze X
i=1,...n peEF

and thus T(UF,E/M) cV. O
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In the special case of a linear functional, this implies:

COROLLARY 3.15
Let X be a locally convexr space with topology generated by the family P of
seminorms. A linear map ¢ : X — K is continuous if and only if there are

finitely many seminorms p1,...,pn € P and M > 0 such that
[0(x)] < M max pi(x), forall zeX.

DEFINITION 3.16 (DUAL SPACE)

Let XY be locally convex spaces.
i) L(X,Y) denotes the set of all continuous linear maps from X to Y.
i) X' := L(X,K) is called topological dual space of X.

It follows from Proposition 3.14 that X’ and £(X,Y") are vector spaces.

3.1.4 Hahn-Banach and Separating Hyperplane

THEOREM 3.17 (HAHN-BANACH-THEOREM )
Let X be a locally convex space, U C X a subspace and ¢ € U'. Then there

exists an extension A € X' of /.

Proof. Let P = {pa}aca be the family of seminorms generating the topol-
ogy 7 on X. Then the relative topology® on U is generated by the family

{pa !U}aeA-

5The relative topology on U is given by 7y = {ONU| O € 7}.
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By Corollary 3.15 there exists a continuous seminorm p on X (we can take

p = M max;_y_,p;) such that
[0(x)| < p(x) forall zeU.

Thus it follows from the general versions of the Hahn-Banach-Theorem (The-

orem 59 or Theorem 60) that there exists a linear extension extension A :
X — Kof ¢ such that |A(x)| < p(z) for all z € X. Thus A € X' by Corollary
3.15. 0

In the following we will use this theorem to show a geometric statement
about a separating hyperplane.

DEFINITION 3.18 (HYPERPLANE)

Let X be a locally convex space.
i) A hyperplane is the set of points x € X where Rel(x) = a for some

¢ e X' and a € R.

it) Two sets A, B C X are said to be separated by a hyperplane : <

HeX' JaeR : VreA: Rel(x)<aandVr € B : Rel(x) > a.
(3.10)

iii) If the inequalities in (3.10) are strict, A and B are called strictly
separated.
Before we state the Theorem, we give two lemmata used in the proof.

LEMMA 3.19
Let W be an open, absorbing, balanced, convex neighbourhood of 0 in a lo-
cally convexr space X. Then the Minkowski functional pyw is a continuous

seminorm.
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Proof. By Lemma 3.6, py is a seminorm. The continuity follows from Lemma

3.81) together with (3.7). O

THEOREM 3.20 (SEPARATING HYPERPLANE THEOREM)
Let X be a locally conver space and let A and B be disjoint convex sets in

X.

i) If A is open and 0 ¢ A, there exists £ € X' such that

Rel(a) <0 forall a€A.

i1) If A is open, then A and B can be separated by a hyperplane.
iii) If A and B are open, then they can be strictly separated by a hyperplane.

i) If A is compact and B is closed, they can be strictly separated by a

hyperplane.

Proof. 1): Let g € A, yo = —x9 and U = yo + A. Then U is open and
convex, yo ¢ U (since yp —yo =0 ¢ A) and 0 € U (since 0 — yo = zg € A).

Consider the Minkowski functional py. Since U is open, there exists a
convex, balanced and absorbing neighbourhood W C U of 0. This shows
that py is finite, since py < py and W is absorbing. By Lemma 3.6, the
convexity of U implies that py is sublinear!. Moreover py(yy) > 1 by (3.7)
since yo ¢ U.

Set Y = {tyo|t € R} and define the R-linear functional A : Y — R by

Atyo) = tpu(yo). Then

Ay) <pu(y)  forall y=tyeY
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because

t<0 = Aty) <0 <py(ty) and

t>0 = Atyo) = tpu(vo) = pu(tyo) -

Thus by the Hahn-Banach-Theorem (real version) (Theorem 59), there exists

an R-linear functional A : X — R such that
Aly) =Ay) forally € Y and A(x) <py(z)forallz e X.

Setting
(: X —C, (z) == A(x) —il(ix),

it follows that ¢ is C-linear” and
Rel(z) = A(z) < py(x) forall ze€ X. (3.11)

Since any a € A can be written as a = u — yg for some u € U, it follows from

pu(yo) > 1 and py(u) < 1 for all w € U (see (3.7)) that

Rel(a) < py(a) < pu(u) —pu(yp) < pu(u) —1<0.

The continuity of £ can be seen as follows: By (3.27) it follows that Re ¢(x) <
pw(zx), since W C U. Since py is a seminorm, we have py (Az) = pw(z)
for all [\| = 1. Thus choosing A € C, |A\| = 1, so that M(z) = [{(x)| € R, it
follows that

[0(x)| = M(x) = L(Ax) = Rel(A\x) < pp(Az) = pw ().

"For any 2z = a +ib € C and z € X, it follows from the R-linearity of A that
L(zz) = A((a+1ib)x) —iA(i(a+ib)x) = alA(z) + bA(iz) —iaA(ix) +ibA(z) = (a+ib)A(z) —
i(a 4+ ib)A(iz) = zL(x).
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Thus by Proposition 3.14, ¢ is continuous and thus ¢ € X”.
ii): Since A and B are disjoint and A is open, the set A — B is open and

convex and does not contain 0. Thus by i) there exists £ € X’ such that

Rel(z) = Rel(a —b) = Rel(a) —Rel(b) <0 forall z=a—-be A—-B.
(3.12)

This implies that for some ¢ € R

supRel(a) < ¢ < inf Re/(b)

acA beB
and thus A and B are separated by the hyperplane ¢(z) = c.
iii) Let £ € X’ be such that (3.12) holds. Since £ is continuous and non-zero,
it maps open sets to open sets (i.e. ¢ is open)®. Thus Rel(A) and Re{(B)
are open in R, proving the strict inequality.
iv) Let % denote the absolutely convex neighbourhood base at 0 generating

the topology on X. We start showing that there exists V € % such that
(A+V)NnB=0. (3.13)

If A=, then A+V = and (3.13) is trivial. We therefore can assume that
A # (. Consider a € A, then a ¢ B and since B is closed there is U € %
such that (a +U)N B = 0.
By property 3. of %, there exists V, € % such that V, +V, C U it
follows that
(a+Vo+Vo)NB=19. (3.14)

8In fact let V C X be open and let z € ¢(V). Then there exists v € V such that
£(v) = z. Since V is open, there exists U € % such that v+ U C V. Since U is a balanced
neighbourhood of 0 € X, the linearity of ¢ implies that ¢(U) is a balanced neighbourhood
of 0 € C, i.e. ¢(U) contains some open ball K at 0 and z 4+ K C {(v+U) =C {(V)
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We assumed A to be compact, thus the open covering A C |Ja € A(a + V)

has a finite subcovering, i.e. there are points ay,...,a, € A such that
Ac|Jla+Va,).
k=1
Setting V' := (;_; V4, it follows that

A+V | Jlar + Vo, + V) [ (ar + Vi, +Va,)
k=1

k=1
and since (3.14) holds for each a; and V,, , this proves (3.13).

Since (3.13) holds, the sets B and A + V', which is open, are separated
by a hyperplane by ii) given by some ¢ € X'. But ¢(A) is a compact subset
of (A + V', because ¢ is continuous. This shows that A and B are strictly

separated by a hyperplane. Il

COROLLARY 3.21

If X is a locally convex space, then X' separates points, i.e. for any x # y

there ezists some { € X' such that {(x) # £(y).
Proof. Apply Theorem 3.20 iii) with A = {«} and B = {y}. O

COROLLARY 3.22

Suppose M s a subspace of a locally convexr space X and xq € X. If xq is
not in the closure of M, then there exists ¢ € X' such that {(xy) = 1 and
¢(m) =0 for every m € M.

Proof. Apply Theorem 3.20 iii) to A = {29} and B = M. Then there exists
¢" € X’ such that Ref'(xy) and Rel(M) are disjoint. Thus Re?¢'(M) is a
proper subset of R. Since ¢ is linear and M is a subspace, this implies

¢'(M) = 0. The functional ¢ is then given by ¢'/¢'(x). O
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3.1.5 Weak topologies

In Example 1viii) and ix) we introduced the weak and the weak-* topologies
on a normed vector space X. More general, we can consider two vector spaces
X and Y and a bilinear map B : X x Y — K (i.e. B, :Y — K given by
B,(y) = B(z,y) and B, : X — K given by B,(z) = B(x,y) are both linear).

DEFINITION 3.23 (DUAL PAIR)
For vector spaces X and Y and a bilinear map B : X XY — K, the tuple
(X,Y, B) is called dual pair with respect to B : <=

Vee X\{0}JyeY :B(z,y) #0 and
Vye Y\ {0} dz € X : B(z,y) #0.

For a given pair (X, Y, B) of vector spaces, the bilinear map B can often be
chosen in a canonical way. Moreover, the spaces X (and Y') can be identified
with a subspace ot the dual space of Y (and X respectively) separating

points, because the mappings x — B(x,-) and y — B(-,y) are injective.

EXAMPLE 3.24 (a) Let X be a locally convex space and X' the dual space,
then it follows from Corollary 3.21 that (X, X', B) is a dual pair with
respect to the canonical bilinear map B : X x X' — K given by B(zx, () =
((x). Similarly (X', X, B) is a dual pair, where B : X' x X — K is
given by B({,z) = {(x).

(b) The set X of bounded continuous functions on R and the set Y of

reqular finite signed or complex Borel-measures on B(R) are a dual

pair with respect to B(f, pu) = fRfdu.
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(c) Let X = R® be the set of functions f : R — R and denote by 6; : R* —
R the pointwise evaluation, i.e. 6;(f) = f(t). Let Y = span{d; |t € R},
then (X,Y, B) is a dual pair for

B(f. i A, ) = i NF(t)

DEFINITION 3.25

Let (X,Y,B) be a dual pair. The o(X,Y) (or o(Y,X)) topology on X
(or'Y respectively) is the locally convex topology generated by the family of
seminorms P = {py}yey where py(z) = |B(z,y)| (or P = {p,}.ex where
px(y) = |B(z,y)| respectively).

Since by Definition 3.23 the family of seminorms P separates points (in
both cases), if follows from Lemma 3.5 that the o(X,Y’) topology for a dual
pair is always Hausdorff.

In Example 3.24(a), the o(X, X’) topology is the weak topology and the
(X', X) topology is the weak-* topology. In (c¢) o(X,Y") is the topology of
pointwise convergence given in Example 1i).

In order to determine the topological dual space of (X, 0(X,Y)), we need

the following lemma.

LEMMA 3.26
Let X be a vector space and 0,0+, ...,0, : X — K linear. Set

N={reX|Vj=1,...n: {j(z)=0}.
Then the following statements are equivalent.

i) € €span{l;|j e {l,...n}}.
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ZZ) dM Z OVre X : |€($)| S MmaXlSan |£j<l’)|

iii) £ =0 for allz € N, i.e. [;_, Ker({;) C Ker(().
Proof. The implications i) = ii) = iii) are clear.
iti) = i) : Let

V={l=(z),.. ly(z)) e K" |z e X},
then by iii) the map ¢ : V' — K given by qb(ﬁx))) = {(z) is well defined and
linear on V. Thus there exists a linear extension ¢ : K" — K with &(E) =
> iy ;& for some ay, ..., € Ko Thus £ =377 | a;f; € span{ly,...0,}.
U

COROLLARY 3.27
A functional ¢ on (X,0(X,Y)) is continuous, if and only if {(x) = B(x,y)
for somey €Y, i.e. the topological dual space of X with the o(X,Y) topology
15 equal to Y .

Proof. Exercise 2.100 U

3.1.6 Fréchet spaces

Under some additional assumptions, locally convex spaces are metrizable,
i.e. there is a metric on X which is compatible with the topology, i.e. such
that the balls of radius 1/n at 0 build a neighbourhood base. Here it is not

necessary that the topologies are given by a norm.

THEOREM 3.28
Let (X, 1) be a locally convez space. Then the following statements are equiv-

alent.
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i) X is metrizable.
it) 0 has a countable neighbourhood base.

i11) T is generated by a countable family of seminorms.

Proof. i) = ii): If there is a metric on X which is compatible with 7, then
the balls with radius % centred at 0 form a countable local neighbourhood
base at 0.

i1) = d11): If 0 has a countable neighbourhood base, there is a neighbourhood
base of open, absorbing, balanced convex sets. Thus by Lemma 3.19, the
associated family of Minkowski functionals is a countable family of continuous
seminorms generating 7 (see the proof of Proposition 3.7).

i11) = 1): Let {pn}nen be a countable family of seminorms generating 7. Set

pon X x X by
plx,y) = E 2 & (3.15)

e R
Then p(z,y) < oo and p is a translation invariant metric (compare Exercise
3.35). Moreover, the topology 7 for which the open balls of radius 1/n at 0

are a neighbourhood base, is equal to 7. In fact, let

Umam={r€X|Vn<MeN: p(r)<l/n}C% and

Bijm={x € X|p0,z)<1/n}.

Remark that for any M € N

p1( )

M
< p(0,z) < kPl 2- k<2max +2~M
TR UKD S 1+pk> 2 b pe(@)

k>M+1
Since 27" < 1/n for all n € N, this implies that U, 1/4n) C Bij, and that

Bi/py2 C Uyyyp for any n € N. Thus 7 = 7. O
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PROPOSITION 3.29

Let (X, T) be a locally convex space generated by a countable family of semi-
norms P = {pp}nen. Let p be the metric given by (3.15). Then a net (x4)acr
is Cauchy with respect to T if and only if it is Cauchy with respect to p.

Proof. =: Assume that (z,)aes is Cauchy with respect to 7. Let € > 0, then
by Definition 3.13 there is § € I such that

pn(xv—x5)<§ forall ~,0 > 8, neN.

By (3.15) it follows that p(x.,xs) < €.
<: Assume that there exists some € > 0 such that for any g € I there exist

7,6 = B and n € N such that p(z, — x5) > €. Then p(z,,z5) > 27", O

DEFINITION 3.30 (FRECHET SPACE)

A complete metrisable locally convex space is called a Fréchet space.

Since any Fréchet space is a complete metric space, it obeys the Baire
category theorem (Theorem 51), which allows to derive analogues of some
of its consequences. In particular, the following analogues to the principle
of uniform boundedness (Banach-Steinhaus-Theorem 52) and to the open

mapping theorem (Theorem 54) on Banach spaces hold.

THEOREM 3.31 (PRINCIPLE OF UNIFORM BOUNDEDNESS)

Let XY be Fréchet spaces and let F be a family of continuous linear maps
from X toY. Assume that for each continuous seminorm q in Y and for
every © € X the set {q(Tz)|T € F} is bounded. Then for each continuous
seminorm q in 'Y there is a continuous seminorm p in X and a constant

C >0 so that

q(Tz) < Cp(x) forall zeX,TeF.
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THEOREM 3.32 (OPEN MAPPING AND INVERSE MAPPING THEOREM ON
FRECHET SPACES)

Let XY be Fréchet spaces and T : X — 'Y a linear continuous map.
i) If T is surjective, then T is open.
i1) If T is bijective, then T has a continuous inverse.
For a proof of these theorems see e.g. [R].

EXAMPLE 3.33 1) The most important example for a Fréchet space is the
Schwartz space ./ (R™) of functions decreasing to 0 as |x| — oo faster

than any polynomial (see Exercise 3.35).

i1) Another example of a Fréchet space is D (Q)) of infinitely differentiable
functions, supported in a compact set K C Q C R" introduced in Fzx-

ample 1 v).

3.1.7 Exercises

EXERCISE 3.34 (WEAK TOPOLGY)
Let (X,Y,B) be a dual pair. Show that a functional ¢ on (X,0(X,Y)) is
continuous, if and only if {(x) = B(z,y) for somey €Y.

EXERCISE 3.35 (SCHWARTZ SPACE)
The Schwartz space .7 (R™) is the set of infinitely differentiable complex-

valued functions f on R™ which are rapidly decreasing, i.e. such that
| flla := sup ‘xo‘Dﬁf(x)’ < 00 for all o, € N".
TeR™
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For a = (ay,...,ay,) € N" we set |a| =), a;,

no ol8l
%= H:cj” and DP .=

I T

j=1

Show the following statements.
i) || |lap s @ seminorm for any o, f € N™.

ii) The family (|| - ||lap) of seminorms can be used to define a metric d on

.
iwi) The metric space (., d) is complete.

Rem.: This shows that . is a Fréchet space.

3.2 Generalized functions or Distributions

The theory of distributions allows to enlarge the set of functions, on which
several operators, in particular differential operators can be defined. Then
e.g. the derivative of functions, which are not differentiable, or even of more
general objects can be defined in a reasonable way.

In order to be useful, such an extension should have the following prop-

erties:
e it should include all continuous functions.

e on the subset of differentiable functions the definition of the derivative

should coincide with the usual definition.

e the usual formal rules of calculus should hold.
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e there should be convergence theorems allowing to handle limit pro-

cesses.

The main idea in the theory of distributions (or generalized functions)
is to identify functions f with linear functionals ¢ : X — K on a suitable

function space X via

t5(0) = [ f@)ola) da. (3.16)

Then the derivative of the function f (or the functional ¢¢) is defined by

integrating by parts, if ¢ is differentiable.

The set of functions, such that the integral in (3.16) exists, depends on
the choice of X. If X includes only compactly supported functions, there are

no restrictions on the behaviour of f at infinity.

Of course, not for every functional ¢ exists some f such that ¢ = (¢ given
by (3.16). However, even for the J,-functional, given by d,(¢) = ¢(z), it
is common in physics to formally calculate with some J,-function, which is
assumed to satisfy ¢(z) = [ 6,(y)¢(y) dy. Nevertheless, the definition of the
derivative of a functional by use of integration by parts can be extended to

larger class of functionals than those given by (3.16) for some f.

In order to be able to treat as many distributions as possible, the space
X' should be large. Thus X should be small (the integral in (3.16) should
exist for many functions f if ¢ € X) and its topology should be fine (then it

is easier for a functional to be continuous).
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3.2.1 Definition of distribution spaces

There are three choices of (complete) locally convex function spaces on an

open set {2 C R™ or on R” commonly used in this context:

i) The largest space is the space &(€2) of infinitely differentiable functions
on 2 defined in Example 1 iii).

ii) The Schwartz space . (R") defined in Footnote 2% and Example 1 iv).

iii) The smallest space is Z(f2) defined in Example 1 vi) (with elements in
C(R™).

DEFINITION 3.36 (DISTRIBUTION SPACES)

The elements of the space Z(X2) are called test functions. The elements
of its topological dual space 2'(Q2) are called distributions. The topological
dual space ' (R™) of the Schwartz space is called the space of tempered
distributions. The elements of &'()) are called distributions of compact
support. A distribution £, for which there exists a functions f such such

0=Vl as defined in (3.16) is called regular distribution.

We start, discussing the topology on the space Z({2) of test functions in

more detail. Explicitly, we have

200)=|J 2. (3.17)

K CQ compact

where

Dk(Q)={feC®Q)|suppf C K} and p,r(f)= sgg | D f(z)].
(3.18)
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Then the spaces Zk (2) are locally convex spaces with topology 7k generated

by Pk = {Pa,k }aenn Or equivalently by the seminorms

Pm(f) == sup pa(f).

la|<m

The topology 7 on Z(£2) is generated by be the family P of all seminorms
p on 2(2) such that all restrictions p|g, are continuous with respect to 7,

i.e. such that

VK C Q compact 3e,m > 0V¢ € Zk(2) @ p(¢) < cpm(P) . (3.19)

3.2.2 Properties of 7(12)

LEMMA 3.37
For an open set 2 C R™ let 2(Q2) be the locally convex space defined in (3.17).
Then the following holds.

i) The relative topology of T on Pk () is equal to Tk .
ii) D (Q) is T-closed in D(Q).
iii) 2() is a Hausdorff space.

iv) Let'Y is a locally convex space and L : () — Y a linear map. L
18 T-continuous if and only if for all compact K C ) the restrictions

L| 9, () are Ti-continuous.

Proof. i) : The relative topology on Zk(f2) is generated by the family Qg
given by the restrictions p|g, (o) of seminorms p € P, which by definition are

continuous with respect to 7x. Since on the other hand, the family Px is a
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subset of Yk by Lemma 3.8, the assertion follows from Corollary 3.10.
i1) : For x € Q, consider the seminorm ¢,(¢) := |¢(x)|. Then for all K C Q

compact and ¢ € Zk(§2) we have

2:(¢) < po.x(9) for all z € Q

and thus ¢, € P by (3.19). This implies by Lemma 3.8 that ¢, is continuous

with respect to 7. Since for any K C €) compact, we have
T K = YoeTk(Q) 1 q:(¢) =0

it follows that

Since on the other hand
(v:p € K°: (o) = o) = (‘v’x e K¢ : |o(x)| = o) = ¢ € Dr(Q)

we have

Dk (Q) = m Ker q,

zeKe

and since intersections of closed sets are closed, it follows that Zx () is
closed (with respect to 7).

iii) : If ¢ # 0, then ¢(z) # 0 for some x € Q and thus ¢,(¢) # 0. Since
q: € P, it follows from Lemma 3.5 that (Z(f2), 7) is a Hausdorff space.

iv) =: If L : 2(Q) — Y is 7-continuous, then it follows from i) that all
restrictions L| 7r(Q) are Tr-continuous.

«: Let g be any continuous seminorm in Y. Then by Proposition 3.14
and the assumption, ¢ o L|g, () is a continuous seminorm on Zx(2) for all

compact sets K C Q. By (3.19) this implies g o L € P and in particular

201



CHAPTER 3. LOCALLY CONVEX SPACES, DISTRIBUTIONS,
FOURIER TRANSFORM

qo L is T-continuous by Lemma 3.5. Thus again by Proposition 3.14 we can

conclude that L is 7-continuous. O
The following proposition is about convergence of sequences in Z(2).

PROPOSITION 3.38
Let (¢n)nen be a sequence in 2(S2). Then the following statements are equiv-

alent.
i) ¢n — 0 as n — oo with respect to T.

it) There exists a compact set K C Q such that ¢, € Dk (L) for alln € N

and ¢, — 0 as n — oo with respect to T .

iii) There exists a compact set K C € such that supp ¢, C K for alln € N

and for all o € N the sequence (D¢, )nen converges uniformly to 0.

Proof. By the construction of Z(2) and the definition of the seminorms in
(3.17) and (3.18), the statement in 4i7) is only another way to formulate 7).
The implication i) = 1) is clear by (3.19). Thus it remains to prove
i) = ii):
Assume that ¢, — 0 with respect to 7. If there exists some K such that
On € DK (Q) for all n € N, then the statement follows from Lemma 3.37 i).
We prove by contradiction.
Assume that there is no such compact set K C €). Then there exists a

sequence of compact sets K1 C Ky C K3... C () with

Q=JK, (3.20)

neN
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and a subsequence (¢,,) such that

Q/Jn S gKn(Q) but @D §é @Kn_l(Q) .

For each n € N choose z, € K, \ K,_1 such that a, := [, (z,)] > 0. It

follows from the proof of Lemma 3.37 that the seminorms
G D(Q) = [0,00), ¢+ ay'[d(wn)]

are T-continuous. Set ¢ := > - ¢,. Since by (3.20) each compact set K C
is a subset of some K, it follows from (3.17) that 2(Q2) = U, ey k. (92).
Since Gn|y, @) = 0 for n > m, it follows that ¢(¢) is a finite sum for any

¢ € 2(Q). Thus the seminorm ¢ is well-defined and

N
n=1

Thus ¢ € P and 7-continuous. This implies that ¢(¢,) — 0 as n — oo, since
¥, — 0 with respect to 7 by assumption. But on the other hand, it follows
from the definition of ¢ and ¢, that ¢(¢,) > ¢,(¢,) = 1 for all n € N in
contradiction to the convergence property. This shows ii).

g

The construction of Z(Q2) is an example of a strict inductive limit of

Fréchet spaces.

DEFINITION 3.39 (STRICT INDUCTIVE LIMIT TOPOLOGY)
Let X be a vector space, { X, tnen a family of subspaces such that X,, C X, 41
for alln € N and X = |, X,,. Suppose that each X,, has a locally convex

topology 1, and Tny1|x, = Tn. Let % be the collection of convex, absorbing,
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balanced sets U C X for which U N X,, € 7, for each n € N and let T be the
collection of all unions of sets of the form x + U with x € X and U € % .
Then (X, 1) is (a locally convex space) called strict inductive limit of the

spaces X,,.

It can be shown that the inductive limit of complete locally convex spaces

is complete.

3.2.3 Characterisation of distributions and examples

By the above results, distributions, i.e. elements of the topological dual space

2'(QY) of 2(§2), can be characterised as follows.

PRrROPOSITION 3.40
Let ¢ : 2(Q2) — C be a linear map. Then the following statements are

equivalent.
i) € is a distribution, i.e. { € P'(2).
i) o) € Pi(Q) for all compact K C €.

i11) For all compact K C ) there exist m € Ny and ¢ > 0 such that

[6(d)] < cpm(9) = ¢ sup sup [D¢(z)|,  forall ¢ € Dk(S).

la|<m z€Q
w) If ¢, — 0 in 2(Q), then £(¢,) — 0 in C.

Proof. i) < ii): This is a special case of Lemma 3.37 iv).

i1) < 1ii): This follows from Corollary 3.15.
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i) = iv): This holds by definition.

iv) = ii): Since T is generated by a countable family of seminorms, Zx(£2)
is metrizable by Theorem 3.28. iv) implies that ¢(¢,) — 0 whenever ¢,, — 0
in () for any compact K C 2. But on metric spaces, this is equivalent
to the continuity of £|4, (o) at 0 and by Proposition 3.14 it follows that
oy ) € DK (). O

EXAMPLE 3.41 i) Let g € Z(R) and define the functional ¢, on .* by

(g,0) =1,4(¢) = /Rg(x)qﬁ(x) de  forall ¢ S (R). (3.21)

Then €, is a linear functional and £, € .#'(R) since

[€g(D)] < llgllzr lIélloo-

Moreover, if g1 # g2 in L (R), then g1 # go in '(R). Thus .7 (R)
is naturally embedded in 7' (R), i.e. each Schwartz functions can be

wdentified with a regular and tempered distribution.

it) L (R) is a subset of each LP(R) and the identity mapping of . into
L? is continuous. This can be seen as follows: For p =1, we write for

any ¢ € L (R)

\|¢||L1=/_Oo ! ((1+ 2%)|¢(x)|) da

o 1+ 22

< (I6lloo + Iolko) [

oo L+ 22

o

dz =7 (||¢]loo + [|&]l20) -

For general p, notice that with 110 + % =1 we can write

1 1
Iollee < NSIY2 10790 < 107 0]l0 -

205



CHAPTER 3. LOCALLY CONVEX SPACES, DISTRIBUTIONS,
FOURIER TRANSFORM

Now for g € L4(R) let £, be defined as in (3.21), then for any ¢ € ./ (R)
by Hélder’s inequality

[lg(O)] < llglla ¢l v,

thus £, € ' (R). This defines a continuous embedding of LI(R) in
' (R). Thus each g € LI1(R) can be seen as a regular tempered distri-

bution.
iwi) Let g € Li.(Q)° and define £, on 2(Q) by

(9,0) = £,(0) = /R g@)d(e)de  foral d€D(Q). (322

Then L4 is linear and well-defined, since g 1is locally integrable. Since

for any K C Q) compact,

10,(6)] < /K 9@ depo(d)  forall ¢ € Tie(Q)

it follows that £, € 2'(2). £, is the reqular distribution associated to g.

Since the mapping g — {, is injective'®, the function g € Li.(Q) can

loc
be identified with the distribution (, € Z'(2).

iv) For some a € Q) fized, define the functional 6,(¢) := ¢(a). Since

0a(9)| = |o(a)| <po(@)  forany ¢ € Dk(Q),

9A measurable function f : Q — C is called locally integrable, if [, |f(z)|dz is finite

for any compact K C 2. Two locally integrable functions are said to be equivalent if they

1

are equal almost everywhere. Then L

() is the space of all equivalence classes of locally
integrable functions.

et g € L{ .(Q) and ¢, as given in (3.22). If £,(¢) = 0 for all test functions ¢, then

loc

g = 0 almost everywhere.
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g 18 continuous on all D (), thus ¢ is a distribution (i.e. 0, € 2'(Q))

by Proposition 3.40. For a =0, we usually write §g = 9.

Moreover, for ¢ € Z(R") we have |3,(¢P)| < ||dllo0, thus I, is a tem-
pered distribution (i.e. o, € ' (R™)).

But 0, is no regular distribution. This can be seen as follows: Set
Q, = Q\ {a}, then §|gq,) = 0. If there would be some function f
such that 8, = Uy as given in (3.21), it would follow from the injectivity
of f — s that flo, = 0 almost everywhere and thus f = 0 almost

everywhere. But this would imply 0, = 0, which is not the case.
v) Suppose that p is a Borel measure on ) and define the linear functional
6(0) = [ odn.
Q

If |u|(K) < oo for all compact sets K C Q, then £, is a distribution. If
W is finite and Q2 = R™, it is a tempered distribution (here it suffices if

p can be estimated by some polynomial). The map p — £, is injective.

3.2.4 Adjoint operator and derivative of distributions

Before we can define the derivative of a distribution, we need the following

definition.

DEFINITION 3.42 (ADJOINT OPERATOR)

Let X, Y be locally convex spaces and L € L(X,Y). Then the linear map
L':Y — X', y—=Ly)=y oL
15 called adjoint of L.
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As already explained above, the idea is to extend the derivative of regular
distributions, which can be computed using integration by parts, to general

distributions. If f € C'(R), then

(p(6) = / P (2)o(x) dr = — / F@) (@) de = —L,(¢)) forall &€ D(R)
R R
and analogue for higher derivatives and partial derivatives.

DEFINITION 3.43

Fort e 2'()) and o € N™ set
(D0)(¢) = (=1)*le(Dg) .

If € = g for some f € LL (), then D*U; is called ath distribution deriva-

loc

tive or weak derivative of f.

LEMMA 3.44
The map D* : 2'(Q) — 2'(Q) given in Definition 3.43 is well-defined and

o(2', P)-continuous.

Proof. By definition, D> = (—1)led (Da)’7 i.e. the adjoint operator except for
the sign. Thus it suffices to verify that D* : 2(Q) — 2(2) is continuous.
By Lemma 3.37, it suffices to show that D : k() — Pk () is continuous

for all K C €2 compact, but since

Pm(DY®) < Py (@),
this holds. O

EXAMPLE 3.45 i) If f € C*(Q) and |a| < k, then DUy = {pay, i.e. the

operator D® extends the classical differential operator D.
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ii) The derivative ot the d-distribution §,(p) = ¢(a) is given by
0a(¢) = —0a(¢') = —¢'(a).

iii) The Heavyside function H : R — C is the characteristic function of
[0,00), i.e. H(z) =1ifx >0 and H(x) =0 ifx <0. Then H is not
differentiable in the usual sense, but we can differentiate in the sense

of distributions: For any ¢ € Z(R)
(Dtu) (6) = ~tu(D6) = = [ H@)/(z) da
—— [ @) ds = ot = 9(0) = de).

Thus the delta-distribution is the distributional derivative of the Heavy-

side function.

3.2.5 Multiplication operator

This idea of extending a differential operator on Z(Q2) or .(R") to the dual
spaces can be generalised to a greater class of operators.

The general philosophy is as follows:
We consider the locally convex space X, which is equal to 2(2) or .7 (R"),
via the identification f ~ ¢, as subspace of its topological dual space X' of
distributions. Then to a continuous linear operator L : X — X we have the

adjoint L' : X' — X', If L'|x : X — X, then we set for / € X" and ¢ € X

(LO(¢) = 6(L'9) .

Let f € C*(Q) and ¢ € 2'(2) a distribution. Let M; denote the multi-
plication operator acting as My¢(x) = f(x)¢(x). Then it follows from the
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Leibniz formula that My : 2(2) — 2(12) is continuous. We set for £ € 2'(2)
(Ms0)(9) :== L(Mp)  forall ¢ € 2(Q). (3.23)

Then M #U is a distribution, i.e. the multiplication operator extends to a
linear continuous operator M; : 2'(Q) — 2'(R2) and a direct calculation

shows that the Leibniz formula holds; i.e.

DMl = cagMpe-s D0 forall (€ Z'(Q). (3.24)

BLa

3.3 The Fourier Transform

We already gave the definition of the Fourier transform F' on the Schwartz

space .(R™) in Definition 2.91 and we stated the following theorem:

THEOREM 3.46 (FOURIER INVERSION THEOREM)

The Fourier transform is a linear bicontinuous bijection

1

P ®) 5 S®). (PO = o [ @)

with tnverse

(FDO = oy [ e Ha) o

Moreover, setting pa(z) = (ix)® for o € N,
(PaD"FF)(&) = (FD*(=1)psf) (€) (3.25)
and
. |f(2)|? dz = . |\Ff(k)|>dk  forall f e .7(R"). (3.26)
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Proof. The linearity of the maps * and * is clear. For any f € .#(R")
(paDﬁFf) (© = (9" DLFE) = o7 / €D f(x) da

/ (1€)* ’lx'éf(:c) dx

QW o [ (-0l (D ”“)(—iaﬁ)ﬁf@) s

(27T)n/2 /n eﬂxf(Da( zx)ﬁf(x)> dx

= (FD*(=1)psf) (€)

where we used integration by parts. This proves (3.25). We conclude from

these equations that for any f € .#(R")
IF flls = sup 6" DF1(6)] < )m/ |D°(—i2)’ f(2)| do < oo
E n n

and thus Ff € (R"). Furthermore, since [(1 4 2?)"*dzx < oo for k
sufficiently large, it follows that

IFflos < G [ (e ()% o

< sup (1 -+ 22| D7 (~i) f ()] /Rnu + ) F d.

TER™

Using Leibniz’s rule, it follows from Proposition 3.14 that F' is continuous.
The proof for F~! is similar.

Next we will prove that F~'Ff = f, i.e. F~!is the left inverse of F.
Since F' and F~! are continuous linear maps on . (R"), it suffices to prove
F~'F = 1d on the dense subspace C°(R"). Let f € C5° be given. For any
e > 0 let C. be a cube around 0 € R™ of volume (%)n Choose € such that

supp f C C. and set
k-
K={keR"|Vj=1,...n: L €Z}.
e
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Then the Fourier series of f is given by

flz) = k%; <(§)”/2 eit0), f> (g)"m et = kEZK %(we)n. (3.27)

Since f is continuously differentiable, the series converges uniformly in C..
R™ is the disjoint union of the cubes of volume (me)™ centered about the

points in K., thus the right hand side of (3.27) is the Riemann sum for the

Fi(k)e’s=
(2m)n/2

¢ — 0. This shows F~1Ff = f.
The proof that FF~!f = f is similar.
In order to show (3.26), assume that f € C°(R™), then for ¢ > 0 small

integral of the function € /(R™) and converges to the integral as

enough, f is given by the Fourier series (3.27). Using that {(%)n/2 eF ) ek,

is an orthonormal basis for L?(C,), it follows that

(G e0s)

:Z]Ff(k)\2(7re)"—>/Rn PR dk as e —0.

keK.

2

RERCEYRICITIEDY

keK.

Since F' and || - |72 are continuous on . and C§° is dense, (3.26) holds on

Z(R"). 0

The Fourier transform on the space of tempered distributions .’(R™) can

be defined as follows.

DEFINITION 3.47
Let ¢ € '(R"), then the Fourier transform F{ of € is the tempered distribu-
tion defined by

FU(¢) = L(Fo).
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Appendix

A.1 Spectral Theorem for normal operators

- by Jan Mohring

In der Vorlesung wurden verschiedene Versionen des Spektralsatzes fiir beschrankte
selbstadjungierte Operatoren aus dem stetigen Funktionalkalkiil (Theorem
1.2) hergeleitet. Thema dieser Note ist es, eine analoge Version des Funktion-
alkalkiils fiir normale Operatoren aus der Version fiir selbstadjungierte Oper-
atoren herzuleiten. Hat man einen solchen Funktionalkalkiil zur Verfiigung,
so lasst sich der Spektralsatz fiir normale Operatoren fast wortlich wie flir
selbstadjungierte Operatoren formulieren und es ist in gewisser Weise auch
eine Ausdehnung auf unbeschriankte normale Operatoren moglich. Die fol-
gende Argumentation basiert auf dem Artikel von Whitley [1]. Im Text
werden einige Resultate herangezogen, die im Anhang (A.1.2) gezeigt wer-

den. Auflerdem werden einige einfache Rechnungen interessierten Lesenden
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als Ubungsaufgaben (Abschnitt (A.3)) iiberlassen. Der Autor dieser Arbeit

empfiehlt die Auseinandersetzung mit den Aufgaben ausdriicklich.

A.1.1 Der Beweis

Im Folgenden ist 7 immer ein komplexer Hilbertraum. Ein Operator ist
ein Element von £(4¢), also ein beschrankter linearer Operator 5 — 7.

Mit N bezeichnen wir einen normalen Operator auf .77.

Die Idee

Der Beweis des Spektralsatzes fiir einen selbstadjungierten Operator A basierte
auf dem Funktionalkalkiil U 4, der ein isometrischer Isomorphismus von Cg (o (A))
nach £(s) war, hierbei bezeichnet Cr(c(A)) die Menge aller stetigen Funk-
tionen o(A) — C, wobei das "R” von der bekannten Tatsache c(A4) C R
kommt. Das Bild von ¥, war dabei die von A und der Identitat I erzeugte
abgeschlossene Unteralgebra von £(.7°) und ¥4 hat ein reelles Polynom p
dem Operator p(A) zugeordnet. Es soll jetzt zunéchst betrachtet werden,
wie der Funktionalkalkiil fiir normale Operatoren aussehen sollte.

Als ersten wesentlichen Unterschied zwischen dem selbstadjungierten und
dem normalen Fall bemerkt man, dass das Spektrum eines normalen Oper-
ators im Allgemeinen eine kompakte Teilmenge von C ist, sodass das Iden-
titats-Polynom p(z) = z, das man mit einem normalen Operator N assozi-
ieren mochte, eine Abbildung C — C ist. Wir miissen also komplexe Poly-
nome und den Raum C¢(o(NV)) betrachten.

Hierbei entsteht jetzt ein Problem. Man erinnert sich daran, dass der
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selbstadjungierte Fall bewiesen wurde, indem zunachst Polynome betrachtet
wurden und anschlieBend der Satz von Stone-Weierstrafl in Kombination mit
dem Satz tiber die lineare Fortsetzung (BLT-Theorem) angewendet wurde.
Mochte man diese Argumentation jetzt tibertragen, so benotigt man die kom-
plexe Version des Satzes von Stone-Weierstra$}, die als eine der Forderungen
an die betrachtete Unteralgebra voraussetzt, dass die Unteralgebra selbstad-
jungiert ist. Das bedeutet, dass man, wenn man es wieder mit Polynomen
versuchen will, mit einem Polynom p(-) auch das Polynom p(-) in der Unter-
algebra enthalten haben mochte. Es zeigt sich allerdings, dass die komplexen

Polynome p(-) im Allgemeinen nicht dicht in Cc(o(V)) sind.

Um das einzusehen, betrachten wir den Einheitskreis S' und den zugehorigen
Funktionenraum Cc(S') (das ist keine besonders kiinstliche Wahl — siehe
Aufgabe (A.40)). Bekanntlich gilt auf dem Einheitskreis z = 271, Es folgt
deswegen unmittelbar, dass mit p(z) auf dem Einheitskreis p(z) im Allge-
meinen kein Polynom, geschweige denn, tiberhaupt definiert ist. Der Satz
von Stone-Weierstrafl lasst sich in dieser Form also nicht anwenden. Da es
sich dabei nur um ein hinreichendes Kriterium handelt, kann man sich dann
fragen, ob die komplexen Polynome nicht trotzdem noch dicht in Cc(o(V))
liegen. Diese Frage muss spatestens mit dem folgenden Argument endgiiltig
verneint werden. Es liegt z nicht im uniformen Abschluss der Polynome:
Man weifl namlich aus der Funktionentheorie, dass Polynome holomorph auf
dem Einheitskreis sind, dass der gleichmaflige Limes holomorpher Funktionen

holomorph ist, und dass z nicht holomorph ist.

Man kann also nicht wie bisher vorgehen und einem Polynom p den Op-

erator p(IN) zuordnen und diese Abbildung dann nach Cc(o(N)) fortset-
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zen. Einstweilen sei nun daran erinnert, dass nach dem Satz von Stone-
Weierstra$ eine Unteralgebra dicht in Ce(o(N)) liegt, wenn sie die konstan-
ten Funktionen enthélt, die Punkte von o (V) trennt und unter Konjugation
abgeschlossen ist. Ist p(z) = z = z+1iy das Identitéts-Polynom assoziiert mit
dem Operator N, so wiirde man analog das Polynom p(z) = z = z — iy mit

dem Operator N* assoziieren wollen. Dies suggeriert, Polynome der Form

p(z,2) = Zaijzizj, a;; € C,
zu betrachten und ein solches Polynom mit dem Operator

p(N,N*) = a;; N'(N*Y
zu assozileren. Zu zeigen ist jetzt, dass die Abbildung ¥y, die p(z, z) auf den
Operator p(N, N*) abbildet, ein isometrischer Isomorphismus vom Raum P
der Polynome der Form p(z, ) in eine geeignete Teilmenge von L(.7) ist.
Sei dazu also P der Raum aller komplexen Polynome der Form p(z, z) =

> a;2'Z mit a;; € C, ausgestattet mit der Supremumsnorm

1Pllee = sup{lp(z, 2)| : z € o(N)}.

Es ist dann klar, dass P eine Algebra beziiglich der tiblichen punktweisen Op-
erationen ist und weil P offenbar die Punkte von o (V) trennt und abgeschlossen
unter Konjugation ist, ist P dicht in Cc(o(N)) (Aufgabe (A.41)). Sei nun
A die abgeschlossene Unteralgebra von £(), die von N, N* und [ erzeugt
wird und definiere die Abbildung ¥y : P — A mit

Uy :p(z,2) — p(N,N¥).

Dann ist ¥ (P) dicht in A wegen des Satzes von Stone-Weierstrafl und wegen

der Stetigkeit von Wy (Aufgaben (A.42) und (A.43)). Weiterhin ist klar,
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dass Uy ein Algebrenhomomorphismus ist (Aufgabe (A.43)). Wir wollen

jetzt zeigen, dass ¥y eine [sometrie ist, das heif3t,

(N N = [lplloos

und kénnen dann ¥ zu einem isometrischen Homomorphismus von Ce (o (V))
nach A fortsetzen. Es wird sich zeigen, dass der Nachweis der Isometrieeigen-
schaft der wesentliche Teil der jetzt folgenden Betrachtungen ist.

Reduktion von Operatoren durch Unterraume

DEFINITION A.1
Sei M ein abgeschlossener Unterraum von . FEs reduziert M einen Oper-
ator S € L() (oder S wird von M reduziert) genau dann, wenn sowohl M

als auch M~ invariant unter S sind.

REMARK A.2

Mit der Notation aus Definition (A.1) sind die folgenden Aussagen dquivalent.
i) M reduziert S,
i) M* reduziert S,
i11) M reduziert S*,
iv) M ist invariant unter S und S*.

Fiir den Beweis beachte man einfach die Giiltigkeit der folgenden zwei Aus-

sagen und die Aufgabe (1.36):
(a) M++ = M,
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(b) S(M) C M genau dann, wenn S*(M*) C M*.
Dabei wurde (a) schon im letzten Semester gezeigt und (b) folgt aus

weMuveM = SueM
= (u,S"v) = (Su,v) =0

— S'we M-

NoTATION A.3
Ist S € L(A) und M ein abgeschlossener Unterraum von J€, so bezeichnet

S|y die Einschrankung von S auf M.

LEMMA A4
Wenn M den Operator S reduziert, dann gilt (S|ar)* = S*|um-

Proof. Setze U = S|y und V' = S*|p. Dann gilt U,V € L(M) wegen
Bemerkung (A.2). Sind x,y € M, so gilt nun

(Urz,y) = (z,Uy) = (z,8y) = (S"z,y) = (Vz,y).
Das zeigt U* =V wegen der Abgeschlossenheit von M. U

COROLLARY A.5

Reduziert M den Operator S und ist S normal, so ist S|y normal.

Proof. Wir wenden Lemma (A.4) an und erhalten

(575) | = (S*[m)(Slar) = (S[w)"(S|ar)
= (55"|ar) = (SIa)(S%[ar) = (Slar)(S|w)"

218



A.l. SPECTRAL THEOREM FOR NORMAL OPERATORS - BY JAN
MOHRING

LEMMA A.6
Sei N ein normaler Operator mit 0 € o(N) und € > 0. Dann gibt es einen
abgeschlossenen Unterraum M # {0} derart, dass jeder Operator, der mit

NN* kommutiert, von M reduziert wird und | N|u|| < e gilt.

Proof. Setze A = NN*. Wegen 0 € o(N) gibt es wegen des Satzes (A.15) aus
dem Anhang eine Folge (z) in 5 mit ||xx|| = 1 derart, dass || Nxzy|| — 0.
Daraus folgt Azy, — 0 und der selbstadjungierte Operator A hat 0 € o(A)
(fiir ein alternatives Argument vergleiche Aufgabe (A.46)).

Zu ¢ > 0 betrachten wir jetzt die stetige (!) Funktion

(

1, 1] < e/2,

JiR—R, t+— 21 —|t/e]), /2 <]t| <e,

0, it] > e.
\

Weil A selbstadjungiert ist, kann der stetige Funktionalkalkiil aus Theorem
1.2 angewendet werden, um f(A) zu definieren.

Sei nun M der abgeschlossene Unterraum M = {x €  : f(A)z = z}
von S (siehe auch Aufgabe (A.47)) und sei B ein Operator, der mit A
kommutiert. Einstweilen sei daran erinnert, dass dann B auch mit f(A)

kommutiert. Es folgt also fiir alle x € M, dass
Bx = Bf(A)x = f(A)Buz,

weswegen M invariant unter B ist. Da B* auch mit A kommutiert, ist M
auch invariant unter B* und es folgt mit Bemerkung (A.2), dass M den

Operator B reduziert.
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WEeil der Funktionalkalkiil von A eine Isometrie ist, gilt fir x € M mit

|z|| = 1, dass
[Az| = [|Af(A)z]| < [AF(A) = sup{[tf(B)] : t € o(A)} <e.
Mit ||z|| = 1 folgt dann
|Nz|?> = (Nz, Nx) = (N*Nz,z) = (Az,z) < ||Az|| < ¢,

sodass sich ||N|y|| < /€ ergibt.
Schlieflich muss noch M # {0} gezeigt werden. Man beachte dazu, dass
f(t) =1 gilt, falls f(2t) # 0. Diese Aussage impliziert

I = F(A)(F A = sup{[1 = F(O)[If(20)] : t € o(A)} = 0.

Es folgt, dass jedes Element im Bild des Operators f(2A) ein Element von
M ist, und dieses Bild ist nicht {0} wegen

17 (2A)]| = sup{[f(20)| : t € o(A)} = |f(0)] = 1.

Der Spektralabbildungssatz und eine Folgerung

Als néchstes zeigen wir eine Version des Spektralabbildungssatzes fiir Poly-

nome in zwei Variablen und einen normalen Operator.

THEOREM A.7

Sei p(s,t) ein komplexes Polynom in zwei Variablen. Dann gilt

o(p(N,N)) = {p(z,7) : = € o(N)}.
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Proof. Sei p(s,t) = > a;s't? und A € o(N). Wegen des Satzes (A.15) aus
dem Anhang gibt es eine Folge (zj) in 4 mit ||zx|| = 1 so, dass [[(A —
N)zi|| — 0 gilt. Lemma (A.14) besagt, dass in diesem Fall auch [|(A —
N*)zg|| — 0 gilt, weil mit N auch (A — N) normal ist (Aufgabe (A.45)).

Nun hat man

(p(N.N) = pOL )i = 3 aiy (V'Y = XV
= " ay(N((NY = M)ai+ V(N = X))
=D ay (NN o MY - )
F V(N NN =) )

— 0.

Daraus folgt

P(A,A) € 0ap(p(N, N7)) € o(p(N,N7)),

wobel o,, das approximierende Punktspektrum (Definition (A.11) im An-
hang) bezeichnet. Das zeigt " D”.

Sei jetzt p € o(p(N, N*)). Der Operator B = p(N, N*) — p ist normal
und hat 0 € o(B). Wegen Lemma (A.6) gibt es fiir jedes n € N einen
abgeschlossenen Unterraum M,, # {0}, der B reduziert und || Bl || < 1/n
erfiillt. Da N mit B* B kommutiert, reduziert jedes M,, auch N. Mit Korollar
(A.5) folgt, dass N|y;, normal ist. Sei A, € o(N|y;,) (das existiert!). Dann
gibt es eine Folge (y,,) in M, mit ||y,|| = 1 so, dass ||[(A\, — N)y,|| < 1/n gilt.
Die Folge (A,) ist durch || N|| beschrankt und hat daher eine konvergente
Teilfolge, die hier auch mit (A,) bezeichnet wird. Sei A € C der Grenzwert
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der Teilfolge. Dann gilt A € o(N) wegen
[A=N)ynll < 1A= A)ynll + (A = Nyl < [An = Al+ | (A= N)ynll — 0.

Im ersten Teil des Beweises wurde allerdings gezeigt, dass im Falle (A —
N)y, — 0 folgt
(P(N, N*) = p(A, X))y — 0.

Andererseits ist y, € M, also gilt wegen || By, || < 1/n auch

[Bynll = [I(p(N, N*) = p)ynll < 1/n.

Wegen der Eindeutigkeit des Grenzwertes schlieft man p = p(\, A). Das
zeigt 7 C7. O
Das Ergebnis

Mit Satz (A.7) folgt nun die Isometrie genau wie im selbstadjungierten Fall.

COROLLARY A.8

Ist N € L(A) normal, so gilt

[p(N, N¥)|| = sup{[p(z, 2)| - z € o(N)}.

Proof. Wir benutzen, dass (pp)(N, N*) normal ist (Aufgabe (A.48)) und fol-
gern mit Satz (A.7), dass

lp(N, N*)[[* = [[p(N, N*)*p(N, N*)|

= [[(p)(N, NY)||

= sup |7
z€a((pp)(N,N"))
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= sup [(pp)(z, 2)|
z€o(N)
2
:( sup |p<z,z>\) |
z€o(N)
0

Ist nun Uy : P — L(H) der Funktionalkalkiil definiert iiber
\IINp = p(N7 N*>7

dann ist ¥ ein isometrischer algebraischer *-Homomorphismus von P nach
L(A). Weil P dicht in Cc(o(N)) ist, kann ¥y zu einem isometrischen alge-
braischen *-Homomorphismus von C¢(o(N)) nach £(.7) fortgesetzt werden,
wobei die Fortsetzung auch ¥y heifle. Genau wie im selbstadjungierten Fall
folgert man dann weiter leicht, dass ¥y eindeutig ist, dass Uy (f) = Uy (f)*
fir jedes f € Cc(o(N)) gilt und dass jeder mit N und N* kommutierende Op-
erator auch mit Wy f fiir jedes f € Cc(o(N)) kommutiert (Aufgabe (A.49)).

Insgesamt haben wir daher den folgenden Satz gezeigt.

THEOREM A.9

Sei N ein normaler Operator auf 7 und f,g € Cc(o(N)). Dann gibt es eine
eindeutige Abbildung Yy : Cc(o(N)) — L(I) mit

(a) Uy ist linear und es gilt Yy (fg) = YN (f)Un(g).

(B) [N = 1Sl
(c) ‘DN(f) = WUn(f)"
(d) Es gilt o(¥Un(f)) ={f(A): A€ a(N)}.
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(e) Kommutiert B € L(€) mit N und N*, so kommutiert B auch mit
jedem W (f).

REMARK A.10 i) Es kann (e) in Satz (A.9) verbessert werden, wenn man
den Satz von Fuglede anwendet: Sind T, N € L(F) mit N normal, so
gilt: Aus TN = NT folgt TN* = N*T.

it) Fine dhnliche Konstruktion des Funktionalkalkiils kann auch mit direk-
ten mafstheoretischen Argumenten vollzogen werden. FEine Anleitung
fiir den Beweis steht in [W] und in [Ha/ ist der Beweis etwas detail-
lierter beschrieben. Auflerdem ist es auch moglich, den Satz aus der
Theorie von C*-Algebren zu erhalten, eine solche Vorgehensweise wird
beispielsweise bei [R] benutzt. In [Hal ist auflerdem beschrieben, wie
man vom stetigen Funktionalkalkil fiir normale Operatoren mit relativ
wenig Aufwand zu einer Multiplikationsoperator- Version fiir unbeschrdankte

normale Operatoren kommdt.

A.1.2 Das approximierende Punktspektrum

Im Text wird mehrmals eine Aussage benotigt, die aus einer Betrachtung
iiber das approximierende Punktspektrum fiir normale Operatoren folgt. Da

diese Ergebnisse von eigenem Interesse sind, sammeln wir sie hier im Anhang.

DEFINITION A.11

Sei A € L(A).

(a) Ein X € C heifit genau dann approximierender Eigenwert von A, wenn
es fir jedes € > 0 ein x € S mit ||z|| = 1 so gibt, dass ||[Ax — \z|| < e

qgilt.
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b) Das approzimierende Punktspektrum o,,(A) ist die Menge aller approx-
p

imierenden Figenwerte von A.

REMARK A.12
Die Werte im approximierenden Punktspektrum sind jene, fir welche die
Figenwertgleichung Ax = \x nur approximativ gilt, das heifit, im Grenzwert.

Folgende Aussagen sind zu (a) aus Definition (A.11) dquivalent:
o Fir jedes € > 0 gibt es ein x # 0 mit ||[Ax — x| < el|z||.

o Es gibt eine Folge (x,) von Vektoren aus F mit ||z, | = 1 fir alle n
derart, dass \x,, — Ax,, — 0 fir n T oo gilt. Das ist dquivalent zu

|Ax,, — Az, || — 0 fiir n 1 co.

THEOREM A.13
Fiir jedes A € L(H) gilt 0.p(A) C o(A).

Proof. Ist A ¢ o(A), so ist A — X\ invertierbar und es folgt
ol = [1(A = X)7HA = Nz || < [[(A = X)7H[[|Az — Az

fiir jedes x € . Daraus folgt ||Az — \x|| > ¢||z|| mit e = 1/||[(A— )7} fiir
jedes x, also A ¢ 0,,(A). O

Fir den Beweis des nachfolgenden Satzes erinnern wir noch an das fol-

gende einfache Lemma ([W], Lemma V.5.10).

LEMMA A.14
Ist N € L(A) normal, so gilt fiir jedes x € A, dass

[Na|| = [|Nx].
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Der folgende Satz besagt nun, dass fiir normale Operatoren das Spektrum

mit dem approximierenden Punktspektrum zusammenfallt.

THEOREM A.15

Ist N € L(A) normal, so gilt 0,p(N) = o(N).

Proof. Wegen Satz (A.13) reicht es aus, ”2” zu zeigen. Sei A ¢ o.p,(N).

Dann gibt es ein € > 0 mit
[Ny =Myl = ellyll, — yen. (*)

Weil mit N auch N —\ normal ist (Aufgabe (1.37)) und weiterhin (N —\)* =
N* — X gilt, folgt mit Lemma (A.14), dass

HN*y—j\yH > ellyll, y e . (%)

Um A ¢ o(N) zu zeigen, also die Invertierbarkeit von N — A, reicht es wegen
() zu zeigen, dass das Bild von N — A dicht ist. Aquivalent dazu ist, dass
das orthogonale Komplement des Bildes von N — X\ nur aus der 0 besteht.

Sei also y orthogonal zum Bild von N — A\, dann gilt

fiir alle 7 € 2#. Daraus folgt N*y— Ay = 0. Wegen (*#) ergibt sich schlielich
y=0. U

A.1.3 Aufgaben

AUFGABE A.16
FEinstweilen sei daran erinnert, dass ein U € L(F) genau dann unitdr heifit,

wenn U* = UL gilt.
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Zeigen Sie, dass o(U) C S fiir jeden unitiren Operator U gilt.

Zeigen Sie weiter, dass die Umkehrung der obigen Aussage falsch ist, das
heifst, aus o(U) C S folgt im Allgemeinen nicht, dass U unitdr ist.

Beweisen Sie schliefllich, dass ein normales U € L() genau dann

unitdr ist, wenn o(U) C St gilt.

AUFGABE A.17

Zeigen Sie, dass der Raum P beztglich der ublichen punktweisen Addition
und Multiplikation eine Algebra ist. Weisen Sie weiterhin nach, dass P
beziiglich || - || eine normierte Algebra ist, begrinden Sie dabei insbeson-

dere die Wohldefiniertheit der Supremumsnorm auf P beziiglich o(N).

AUFGABE A.18

Seien S und T topologische Raume, f: S — T stetig und E C S dicht in
S. Zeigen Sie, dass f(E) dicht in f(S) ist. Untersuchen Sie weiter, ob f(E)
stets auch dicht in T ist.

AUFGABE A.19
Zeigen Sie, dass die Abbildung Vy : P — L(I) ein stetiger Algebrenho-

momorphismus 1st.

AUFGABE A.20
Geben Sie die Details des Beweises von Bemerkung (A.2).

AUFGABE A.21
Zeigen Sie, dass mit N € L(F) normal auch (A\—N) fiir jedes A\ € C normal

1st.
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AUFGABE A.22

Zeigen Sie mit einem anderen Argument als im Text: Ist N mormal mit

0 € o(N), so gilt auch 0 € o(A) fir A= NN*.

AUFGABE A.23
Zeigen Sie, dass M = {x € 5 : f(A)x = x} ein abgeschlossener Unterraum
von F ist.

AUFGABE A.24

Zeigen Sie, dass (pp)(N, N*) selbstadjungiert ist.

AUFGABE A.25
Folgern Sie analog zum selbstadjungierten Fall die restlichen Eigenschaften

von Wy aus Satz (A.9).

A.2 The Gelfand-Naimark-Theorem by Pushya
Mitra

A.2.1 Introduction

Formulation and interpretation of quantum mechanics in some sense is dif-
ficult if one treats quantum mechanics completely through the notion of a
Hilbert space. Hilbert spaces do not have any analogy in the classical the-
ory and cannot be directly accessed by "measurements”. In the meta-sense,
measurements can only be associated with observables of the theory and only
observables have counterparts in classical mechanics. Additionally, the no-

tion of states in a Hilbert space possess few mathematical difficulties as we
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shall see in the succeeding section where we try to set up the mathematical
identity required for the existence of hidden variables in quantum mechan-
ics.

The empiricists approach, where they do not mathematically clarify what
they mean by state and what they mean by observables, forces a lot of trou-
ble and with that approach for example one then has to start admitting
almost everything as definitions and notions like quasi states, contextual,
non-contextual, etc. which creates immense amount of confusions and some-
time may mislead to the conclusions which are not consistent with the theory.
This shouts for the need to formulate Quantum mechanics based on the Al-
gebra of observables. In quantum mechanics, the most general form for an
algebra of observables is a C*-algebra. The dynamics of the quantum me-

chanical system is described through an element of a C*-algebra.

In this talk, we discuss an important theorem which helps one to a deeper
understanding of the structure of a Banach-Algebra. This is the Gelfand-
Naimark-Theorem, which (in one of its forms) says that every commutative
C*-algebra 2 is isometrically isomorphic to the space of continuous complex-
valued functions on its spectrum. In the classical reinterpretation of quantum
mechanics, this theorem helps one to formulate the theorem of Kochen and
Specker, which rules out the existence of hidden variables in quantum me-

chanics if the dimension of the Hilbert space is at least 3.

The following work is largely adapted from the book [HS] of Hirzebruch
and Scharlau, few intermediate results are from the books [?] of Reed and

Simon and [BR] of Bratelli and Robinson.
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A.2.2 Properties of an algebra

DEFINITION A.26 (ALGEBRA)
Let 2 be a C-vector space. The space U is called a complex algebra if it
18 equipped with a multiplication law which associates the product to each

pair a,b € A. The product is assumed to be associative and distributive, i.e.

Va,b,c € A, Vo, € C
i) a(bc) = (ab)c
ii) a(b+c) = ab+ ac and (a + b)c = ac + bc
iii) a(ab) = (a)b = a(ab)

A subspace B of A which is also an algebra with respect to the operations of
2 is called sub-algebra.
An algebra is commutative, or abelian if the product is commutative, i.e.
if ab = ba for all a,b € 2.
An algebra 2 is a normed algebra, if to each element a € 2 there is associ-
ated a real number ||a||, the norm of a, satisfying the following requirements

for all a,b e A and a € C:
i) lla]l >0 and ||la]] =0 iffa=0
i) |laall = fe|lall
iii) ||a + bl < ||al|| + [|b]|- triangle inequality

i) ||abl| < llal[[b]l
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If a normed algebra A is complete, it is called Banach algebra.
A Banach algebra is called unital if there exists 1y € 2 such that aly =
lya =a, Ya € A and ||1y]| = 1. We call 19 unit.

The norm defines a metric topology on 2 also known as uniform
topology. A special (open) neighbourhood of an element a € 2 in this
topology is given by U(a;e) = {b € &7 | ||b — a| < €}, where € > 0; the open
ball around a with radius e.

If there exists a unit then it is unique.

DEFINITION A.27 (HOMOMORPHISM, INVERSE)
Let A, B be complex unital algebras.
A linear map ® : A — B is called (algebra) homomorphism, if Va,b € A

B(ab) = B(a)®(b).

A linear functional £ on A, which is not identically zero, is called complex
homomorphism, if {(ab) = ¢(a)l(b) Va,b € 2.
An element a € 2 is said to be invertible, if it has an inverse, i.e., if there

exists an element a=' € A such that

If follows that ¢(1y) = 1 for any complex homomorphism and if a has an
inverse, than ¢(a)l(a™') = £(1y) = 1 and thus £(a) # 0.

The following discussion involves the spectrum of a € .

DEFINITION A.28 (SPECTRUM AND RESOLVENT)

Let 2 be a unital Banach algebra and a € 2.
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i) A complex number \ is said to be in resolvent set p(a) of a, if \g—a

has an inverse (Algl — a)fl e A
ii) If X\ & p(a), then X is said to be in spectrum o(a) := C\ p(a) of a.
ii1) The spectral radius of a is given by r(a) 1= SUPycyq) |A|-

THEOREM A.29
Let A be a unital Banach algebra. Then every a € 2 has non-empty spectrum

and |\ < ||la|| for any X € o(a). Moreover r(a) = lim,_, Ha”H%.

Proof. For |A| > ||al|, let us do the following computation:

First remark that ||a”| < |la||" and % < 1. Then

Sx(a) = 1m+ﬁ: (%)

form a Cauchy sequence. Since 2 is complete, there is some limit element
S(a) € A. Since (£)" — 0 as n — oo and

A"LSy(a) (Mg — a) = 1y — (;)NH = (Mg — a) A" Sx(a)

it follows that R,(\) := A"1S(a) is the inverse of a and thus A € p(a).
Moreover, ||R,(A)|| — 0 as |A] — oo. If o(a) were empty, R, would be
an entire bounded analytic function of A with values in 2. By Liouville’s*
theorem, R, would be constant and and thus zero everywhere, which is a
contradiction. Thus o(a) is non-empty.

Since R, is analytic on {\ > r(a)}, the series converges uniformly on every

circle I, around zero with radius r > r(a). Term by term integration gives

1
a"=— [ A"R,(\)dA.

27 T,

ILiouville’s theorem says that every bounded entire function must be constant
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By the continuity of R, we have

M(r) = 02[103};] HRa(rew)H <oo, r>r(a).

Thus [|a?|| < "M (r), giving limsup, . [|a"||"™ < r for all 7 > r(a) and
thus
limsup ||a”]|*" < r(a). (A1)

n—o0

If A\ € o(a), then \"1y — a™ = (Mg — a)(A" g + ... + a" ') and thus
A1y — a” is not invertible, i.e. A" € o(a") and |\"| < ||a™|| for n € N. This
shows

r(a) < inf [la”| (A2

Combining (A.1) and (A.2) proves the third statement. O

We remark that o(a) is always closed (as the complement of the resolvent

set p(a) which is always open).

LEMMA A.30
Let £ : A — C be an arbitrary complex homomorphism. Then ((a) € o(a) for

any a € A and { is bounded with [|¢|| = 1.

Proof. For a € 2, set £(a) = A, then ¢(a — Aly) = 0. This implies that
(a — Aly) is not invertible which then further implies that A\ € o(a). Thus,
|¢(a)| < ||la]| for any a € A, which gives ||¢]] < 1. On the other side, ¢(1y) =1
implies ||¢]| > 1 O

THEOREM A.31 (THEOREM OF GELFAND-MAZUR)
Let A be a unital commutative Banach algebra in which every non-zero ele-
ment is invertible. Then W : C — A, X\ — Mg is an isomorphism (i.e. 2 is

isometrically isomorphic to C).
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Remark The condition is equivalent to the unital Banach algebra being
a field. Typically in the notion of the field, the commutativity is contained.

So it stresses once-more the fact that the algebra is commutative.

Proof. In order to prove that ¥ is an isomorphism, we go through the stan-
dard procedure. It is clear that ¥ is an injective homomorphism. Thus it
remains to show surjectivity. Let a € 2, a # 0, then by Theorem A.19, it’s
spectrum is non-empty. Let A € C be a spectral value of a, then a — A1y
is non-invertible by the definition of the spectrum. By assumption a — A1y

must be the zero element, which then implies a = Aly. Hence 2l = Cly. 0O

A.2.3 (*-algebras

DEFINITION A.32 (INVOLUTION, C*-ALGEBRA)
Let A be a unital Banach-Algebra. An involution in 24 is a map * : A — A,

a +— a* such that Va,b € A and A € C, the following holds:
i) (a*)*=a
ii) (a+b)* =a* +b*
i) (\a)* = \a*
iv) (ab)* = b*a*

A C*-algebra is a unital Banach-algebra equipped with an involution % such
that the C*-identity

" 2
la*all = |all
is satisfied for all a € 2.
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There are two important examples of C*-algebras:

i) Let X be a compact Hausdorff space. The space C(X) of all complex
valued continuous functions over X is a C*-algebra with point-wise
addition and multiplication, where for f € C(X) the adjoint is given by

f*(x) = f(z) for z € X and the norm is given by || f|| ., = sup,cx | f(2)]-

ii) Let % be a separable Hilbert space and denote by L(5#) the set of
all bounded operators on 7#. We define the sum of elements of L(7¢)
pointwise, the product is given by the composition. The Hilbert space
adjoint defines an involution on £(5#). With respect to these opera-
tions and the operator norm, £(7¢) is a C*-algebra (non-commutative
for dim . > 1). To see this we verify the most important C*-identity:
For a given a € L(.7), we have

lal* = sup [lag|* = sup (at), ap))
ll¥ll=1 llll=1

= sup (¥, a"ar))

[¥ll=1
< sup [[¢9] - [la*ay|| = [la"a]
¥ll=1
2
< llall - la*[] = o]

Hence ||a|® < |la*a|| < |la||>. This implies |ja*al| = ||a||>.

Let 2 be a C*-algebra and denote by L£(2) the Banach-algebra of con-

tinuous linear maps from 2l into itself. For any a € A, we set T, : A — 2 by

To(x) = ax. Then A — L(A), a — T, is an algebraic homomorphism, also

known as Canonical Regular Representation.

Furthermore [|T,(z)|| < ||a||||x]| and [|T,(1%)|| = ||a|| = ||a|||[1«|| which then
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imply [|7a]| = |l

Moreover, o(a) = o(T,): if T, is invertible and T, ! is its inverse map, then,
clearly aT;'(1yg) = T, T;*(1y) = 1lg, which implies that a is also invertible
and T, ! = T,-1.

A.2.4 Commutative Banach-Algebras
From now on we consider only commutative unital Banach algebras

DEFINITION A.33 (IDEAL)
An ideal ¥ of a complex commutative algebra A is a vector subspace with

the additional property that xy € X for all x € X and y € 2.

LEMMA A.34
Let ¥ be an ideal of a commutative algebra A. Then the closure ¥ of ¥ is
also an ideal of A. If 3 contains any invertible element of A, then 3 = 2.

Proof. Let a,b € ¥ and {a,}, {b,} be sequences in ¥, which converge to a
and b respectively. Then clearly {a,, + b,} converges to a + b. Which means
a+beX. If v € Athen {a,z} is a sequence in ¥ which converges to az,
which implies az € X.

We assume that there exists a € ¥ such that a=! exists. Thena™la = 19 € &,

which implies x = zly € X for all x € A and thus X = 2. U

DEFINITION A.35 (MAXIMAL IDEAL)

Let A be a commutative algebra and M be an ideal. Then M is called proper
if M # 2. A maximal ideal is a proper ideal M such that M = J for any
other proper ideal J with M C J.
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COROLLARY A.36

FEvery maximal ideal of a commutative algebra is closed.

Proof. Let M be a maximal ideal of 2 then M is also an ideal and M C M.
As M is maximal, we must have either M = M or M = . But since M

contains no invertible elements and the set of invertible elements in 2 is open,

the same is true for M, in particular 1y & M and thus M # 2. O
Note that from now onward all our Banach algebras will be unital.

LEMMA A.37
Let A be a commutative Banach algebra and 3 be any closed ideal. Then the

quotient space A/ is in a canonical way a Banach algebra.

Proof. By former results we know that 21/3 is a Banach space (denoting for

a € 2A the equivalence class by @ = a + X € A/%, we set a +b = a + b and

Aa = Aa) with respect to the quotient norm
al| = inf ||a — s|| . A.
all ;EEHG sl (A.3)

For a—a' € ¥ and b—b' € X it follows that (a'b'—ab) = (¢’ —a)V/+a(l/—b) € &
(since ¥ is an ideal). Therefore ab = a//, i.e. multiplication is well-defined by
ab = ab. It is quite clear that /¥ is a complex algebra and the map 7 : 2A —
2(/% is a homomorphism. Since ||a|| < [|a|| by (A.3), 7 is continuous. And
now we have to show the norm properties with respect to the multiplicative
structure: For any z; € A, j = 1,2, and > 0 by (A.3) there exists s; € &
such that

lz; + 85|l < ||lz5]] + 6. (A4)
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Since (x1 + s1)(xg + s2) € T123 it follows that
[zgll = lzyll < (21 + s1)(z2 + s2)|| < [[(21 + s1)[[[ (22 + s2) -

Thus by (A.4) we get

1zgll < [Iz[[1[7]l - (A.5)
It remains to show that 2(/3 has a unit. Clearly, 1y is a unit in 20/ by
the definition of the product. To see that the norm is one, first remark that
| Ta|| < [11a]| = 1. Moreover, Ty # 0 since 1y ¢ ¥ (otherwise 3 = 2). Thus
by (A.5) we have on the other hand

=7 > [ = )

it follows that ||Ty|| > 1 and thus ||Ty|| = 1. d

If M is a maximal ideal in a commutative Banach algebra 2, then by
Corollary A.26 it is closed and thus 2A/M is a Banach algebra by Lemma
A.27. Choose any a € A, a ¢ M and put J, = {ab+m|b € A, m € M}.
Then J, is an ideal and J, is larger than M since a € J. Thus J, = A
by the maximality of M, showing that there exist b € 2, m € M such that
ab+m = 1g. It follows that ab = 1y, therefore each nonzero element of 2A/M
is invertible. Hence from the Gelfand-Mazur-Theorem (Theorem A.21), it
follows that /M is isometrically isomorphic to the field C. If we denote this
isomorphism by j : A/M — C, the map hy = jorw : A — C is a complex
homomorphism and its kernel is M. Thus each maximal ideal M is the kernel
of some complex homomorphism h.

If on the other hand h is any complex homomorphism on 2, then its kernel

h=1(0) is an ideal. Since it has codimension 1, it is maximal.
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The above computations have also shown that an element a € 2 is invertible

if and only if a lies in no proper ideal of .

DEFINITION A.38 (SPECTRUM OF 2, GELFAND TRANSFORM)
Let A be a commutative complex Banach algebra. Then the set of all mazximal

ideals of A is said to be the spectrum of A, written as o(2A).

We denote by Ay the set of all complex homomorphisms of A. Then for each
a € A, the function

a:0Ay —C, al):=/{(a)
15 called Gelfand transform of a. We denote by A the set of all Gelfand

transforms.

The Gelfand topology of Ay is the weakest topology such that every a is

continuous.

There is a one-to-one correspondence between Ay and o (2():
As described above, every maximal ideal M defines in a canonical way the

continuous complex algebra homomorphism
har A = A/M — C

with kernel M and for any h € Ay, the kernel of h is a maximal ideal. Thus
we also can equip o(2() with the Gelfand topology.
It follows that 2 is a subset of C(c(2A)), the set of complex-valued continuous
functions on the spectrum o(21).

By Lemma A.20, we may consider ¢(2() as a subset of the unit sphere in
the (Banach space) dual 2. The Gelfand topology is the restriction of the
weak*-topology of 2 to Ay (or o(2A)).
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THEOREM A.39

Let A be a commutative Banach algebra. Then a(o(A)) = o(a).

Proof. Since {(a) € o(a) for any ¢ € Ay, it follows that A € o(a) if A = {(a)
for some £ € Agy. If on the other hand A € o(a), then a — A1y is not invertible
and thus the set {x(a — Aly) |z € A} does not contain lg. It therefore is a
proper ideal, which lies in a maximal ideal M. Thus it is an element of the
kernel of hj; constructed above, proving that A = ¢(a) for some ¢ € Ag. It

follows that for each a € 2, the range of a is the spectrum of a. O

THEOREM A.40
Let A be a commutative complex Banach algebra. Then o(2l) is closed and
thus a compact subset of the norm-closed unit sphere B in the dual space A’

with respect to the weak™ — topology.

Proof. By the Banach-Alaoglu-Theorem, B is weak*-compact. Since o(21) C
B, it suffices to show that it is weak*-closed. Let {/,},en be a sequence in
Ay so that {,,x} converges for all z € . Then, setting {(x) = lim,,_o0 ln (),
it remains to show that ¢ is a complex homomorphism, i.e. ¢(zy) = ¢(x)l(y)
and {(1yq) =1 for all z,y € A.

For x,y € A and ¢ > 0 fixed, set

U:={feA||f(a) —L(a)] <eforaec {ly,z,y,xy}}.

Then U is a weak*-neighbourhood of ¢, containing some f € Agy. By as-
sumption |f(ly) — ¢(1y)| = |1 — €(1y)| < €, giving the second equation. To

see the first one, write

lxy) — U(z)l(y) = (U(zy) — f(xy)) + (f(2)f(y) — (2)(y))
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= (Ulzy) = fzy)) + (F(y) = L) f(2) + (f(z) — £(2))(y)

which gives
|[E(zy) — L(x)e(y)| < (4[] + [€Cy) e

g

Thus, since o(2) with the topology described above is a compact Haus-

dorff space, one obtains by standard arguments

COROLLARY A .41
The algebra C(a(A)) of complex-valued continuous function on the topological

space o(2A) is a Banach-algebra.

THEOREM A .42

Let 2 be a commutative complex Banach algebra. Then the Gelfand transform
G:2A— C(J(Ql)) . G(a) (M) =alhpy) = hy(a), Meo() (A.6)

is a continuous homomorphism and ||G(a)|| = |la|| = r(a) < ||la|| for any
a € A, where r(a) is the spectral radius of a.
The kernel of G is the intersection of all maximal ideals of A (which is said

to be the radical rad A of A ).

Proof. Since hy; € Ay, it is straightforward by the definition that G is an

algebra homomorphism, e.g.
G(ab)(M) = ab(hay) = has(ab) = has(a)har(b) = (G()G (b)) (M)

G(a) is continuous by the definition of the Gelfand topology. Moreover, from
Lemma A.20 it follows that ||hy|| = 1 for all M € o(2() and thus ||G|| < 1.
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The statement on the spectral radius follows from Theorem A.29.

The kernel of G consists of those a € 2 for which A = 0 for all h € Ag. Since
the kernel of each h € Ay is a maximal ideal (see the discussion above the
definition of the Gelfand transform), the kernel of G is the intersection of all

these maximal ideals. O

A.2.5 The Gelfand-Naimark-Theorem

THEOREM A.43 (GELFAND-NAIMARK-THEOREM)

Let A be a commutative C*-algebra. Then the Gelfand transform G : A —
C(o(A)) is an isometric isomorphism and G(a) = G(a*) for all a € A, i.e.
G is a homomorphism of commutative C*-algebras. In particular a € A is

self-adjoint (i.e. a* = a) if and only if a is real-valued.

Proof. We start proving that G(a*)(M) = G(a)(M) for all a € A and M €
o).
Let G(a)(M) = a+if and G(a*)(M) = v+1id with a, 8,7, € R. In order to

a+a*—(at7)la

get a contradiction, we now assume that 5+ 0 # 0 and set ¢ = o

It is clear that ¢ = ¢* and G(c)(M) = i.
For all A € R, G(c+ iAly)(M) =i(1+ A). Hence, |1+ A| < |lc+ iA1y]|| and

(L1+ X2 < [le+ iMa]* = [[(c + iAla)(c + iAly)"]|
<l + X1al| < [l + 2%
But for significant large A the above inequality does not hold. This contra-
dicts our assumption that S + ¢ # 0 and thus shows 5+ 6 = 0.

We apply the same line of argument on the elements ia, (ia)* and the result

follows.
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Since 2 is commutative, each a € 2 is normal, i.e. a*a = aa*, and thus
la||* = |la?||. It follows that ||a|| = 7(a) and thus, by Theorem A.32, the
homomorphism G is an isometry.

Now it is to be shown that G is surjective. We do this via the Stone-
Weierstrass Theorem (Theorem A.37 below). Since G is an isometry, the
set A C C(U(Ql)) of all Gelfand transforms is closed. Clearly 2 is a subal-
gebra separating points in ¢(2() and id € §l, thus the prerequisites for the
application of the Stone-Weierstrass Theorem are given. Therefore G(21) is

dense in C (U(Ql)), proving the surjectivity. O

Stone-Weierstrass Theorem

This part is taken from the book of Folland [F].

Let X be a compact Hausdorff space and C(X,R) be a space of real-valued
continuous functions on X equipped with uniform metric. A subset &7 of
C(X,R) is said to separate points, if for every x,y € X with x # y there
exists f € &7 such that f(x) # f(y).

If @ C C(X,R), o is called lattice if max(f,g) and min(f,g) are in &7
whenever f, g € &/. Since lattice operations are continuous, one easily sees
that if <7 is an lattice, so it’s closure 7 in the uniform metric. Before we
discuss the Stone-Weierstrass theorem, we shall see a few ingredients needed

for it’s proof in form of the following lemmas (the proofs can be found in

[F).-

LEMMA A.44
Consider R? as an algebra under coordinate-wise addition and multiplication.

The only sub-algebras of R? are R%, {(0,0)}, and linear spans of (1,0), (0, 1)
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and (1,1).

LEMMA A.45
If o7 is a closed sub-algebra of C(X,R), then |f| € o if f € & and o is a

lattice.

LEMMA A.46

Suppose o/ is a closed lattice in C(X,R) and f € C(X,R). If for every
z,y € X there exists g, € & such that g,,(z) = f(x) and g.,(y) = f(y),
then f € of.

THEOREM A.47 (STONE-WEIERSTRASS-THEOREM)

Let X be a compact Hausdorff space. If o/ is a closed sub-algebra of C(X,R)
that separates points, then either o/ = C(X,R) or & = {f € C(X,R) :
f(zo) = 0} for some xy € X. The first alternative holds if and only if <

contains the constant functions.

Proof. Given z # y € X, let o, = {(f(x), f(y)) : f € &/}. Then o, is a
sub-algebra of R? in the sense of Lemma A.34, because f — (f(z), f(y)) is
an algebra homomorphism. If <7, = R? for all z,y then Lemma A.35 and
Lemma A.36 imply that o = C(X,R). Otherwise, there exists z, y for which
Ay, s a proper sub-algebra of R?. It cannot be {(0,0)} or the linear span of
(1,1) because o separates points, so by Lemma A.34 <, is the linear span
of (1,0) or (0,1). In either case there exists o € X such that f(zo) =0 for
all f € /. There is only one such xg, since ./ separates points, so if neither
x nor y is xo we have o7, = R?. Lemma A.35 and Lemma A.36 now imply

that & = {f € C(X,R) : f(zo) = 0}. Finally, if &/ contains the constant
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functions, there is no xy such that f(z¢) = 0 for all f € &7, so &/ must equal
C(X,R). O

The above theorem is quite general but for the application purposes one
typically encounters a sub-algebra % of C(X,R) that is not closed, and one
applies the theorem to & = %

COROLLARY A .48

Suppose A is a sub-algebra of C(X,R) that separates points. If there exists
xo € X such that f(zo) =0 for all f € B, then A is dense in {f € C(X,R):
f(zo) = 0}. Otherwise, B is dense in C(X,R).

This could also be extended to a complex sub-algebra. The following

theorem allows us to do so.

THEOREM A.49
Let X be a compact Hausdorff space. If & is closed complex sub-algebra
of C(X) that separates points and is closed under complex conjugation, then

either o7 =C(X) or o ={f € C(X) : f(xo) = 0} for some xy € X.

Proof. Since, Re f = (f 4+ f)/2 and Im f = (f — f)/2i, the set /& of real
and imaginary parts of functions in &7 is a sub-algebra of C(X,R) to which

the Stone-Weierstrass Theorem applies. Since &7 = {f +ig: f,g € &/}, the

desired result follows. O

A.3 Solutions for some Exercises

EXERCISE 1.32: The first properties given by (i) are easily checked. We
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have (for 1(z) = 1)

U(1) = i 11, = inn =1d (A.7)

since H is the direct sum of the eigenspaces by Theorem 1.5. Furthermore,

for f(z) = = one has
=> AL, =A (A.8)
n=0

again by Theorem 1.5.
Now we come to linearity. Let f,g € C(c(A)) and A € o(A), then

V(f+g) = Z(f + ) (AL, = Z(f@‘nﬂln + g(An)ILn)
=> I +Zg U(f)+¥(g)

by convergence of all series and

TOS) =) AN, = A fFA)IL, = AT(f).

n=0

This shows linearity. Next, we prove multiplicativity. This holds by

‘If(fg)zz Zf
_Zf Z >\k nkH —Zf Z )\k)H OHk

- Zf()‘n)nn (Z g()‘k)Hk) Zf ), o Zg
=W (f)o¥(g).

The involution property is true by

D= T = (fOW)IL)’

n
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- (Zmnmn) — ()",

Here, we have used that the map 7' —— T™ is conjugate linear.

Finally, we show continuity (iii). This follows by

I = 11D SO < Y 1 ()L
< D Il ITLall = [1f oo D ITLall < 1 lloe-

EXERCISE 1.34:

i) We start by showing linearity. This is easy, since the properties follow
directly from the linearity of the integral. Let f,g € B(c(A)) and

a € g(A). Then we have

Ba(f +9) = (. Balf + g)) = / (f +9) dpg.,

- / F g, + / W = . 24(09) + (0. Ba(0)e)

= (i)A(f) + P a(g).

Furthermore, one has

Balaf) = (b, dalaf)e) = / (of) duy,
—a / f i, = ol Ba(f)p) = ada(f).

Linearity is proven.
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Next, we consider multiplicativity. Therefore, we need some properties

of the measures i, which we first want to provide.

The first fact is from basic measure theory. We want to recall that if
m is a measure and f is a measurable function, f - m is the unique

measure j such that
u(E) = [ fdm (A9
E
holds for all measurable sets E. In other words, p is the unique measure

such that du /dm = f (Radon-Nikodym-Theorem).
Now we need the

Lemma.

(a) For all g € C(0(A)) we have g - fiyo = [hy,d4(g)p> Where P4(g) is

the continuous functional calculus of g.

(b) For all f € B(o(A)) we have f - iy = fig(pyeure-

Proof.

(a) Let f € C(o(A)). Then

[ 149- e = [(9) s, = .0a050)9)

— (0 0ADBaDP) = [ £ty

(b) Let h € C(o(A)). Then

[ras e = [tpan, = [ 1ab-p.,

D [ F iy nme = @ BB
— (@alf) 0 BaW)e) = [ Bt gy
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g

Using the Lemma, we can now prove the multiplicativity of ®4. Let

therefore f,g € B(o(A)). Then it holds that

(6, Ba(fg)p) = / (o) duy, = / gdf - o

® / G5, (1) = (®a(F) 0, Da(9))

= <¢7(i)A<f)(i)A(g)90>'

This shows ®4(fg) = ®4(f)Palg).

Finally we prove the involution property. To that end we first assume

f € B(o(A)) to be real. Then we have

(W, B4(F)0) = (Ba(F 16 0) = (2 DAl D)
= [ tan, = [ Fang, = w.8400)

We have therefore shown viii) from Theorem 1.8: If f is real valued,
then ®4(f) is self-adjoint. Now consider f = u + iv to be complex
valued with real functions v and v. By viii), the usual adjoint properties

and linearity the calculation

?

(w)*@) + (1, ®a(iv) )
(w)* @) —i(e), Da(v)p)
A(w)g) — 1, ®a(v)p)
(Da(u) —iPa(v))p)

(W, 2a(f)*¢) A
o

R

= (¥,
= (¥,
= (¥
= (¥
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ii)

250

= (¥, Da(u —iv)p) = (¥, Da(f)ep)

reveals @4 (f) = ®a(f)*.

Let f € B(R) and p be a Borel measure. Then there is a sequence of
continuous functions (f,) such that [ f,dy — [ fdu. The assump-
tion AB = BA implies W4 (f,)B = BV 4(f,), since the claim is true for
polynomials and therefore for continuous functions (which are uniform

limits of polynomials) and since W 4 is continuous in || - ||sc.

Now let © € H, u, the corresponding spectral measure and f,, as above.

Then we have
(@ 0a()e) = [ fadie — [ Fe = (0. 0a1)2).
Since H is a complex Hilbert space, the Polarization formula yields
(y, Walfu)e) — (y, Va(f)o)

for all z,y € H. We conclude that W 4(f,) < W 4(f). Using this reveals

(y, U a(f)Bx) = (y, BUA(fo)z) = (B*y, Va(fn)z)
— (B*y, Ua(f)z) = (y, BUA(f)z).

On the other hand, (y, U A(f,)Bz) — (y, W (f)Bz). Thus we have

shown

Ua(fa)B = BUa(fn) = Wal(f)B,
@A<fn)B = B@A(fn) = B@A(f)

The claim now follows since weak limits are unique.
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iii) Let f € B(o(A)) be real. We have
(0, @a(f) ) = (@alf), ) = (0, Pa(S)V)
= [ tan, = [ Fang, = w.8400)

EXERCISE 1.36:

i) Let d be the distance in question. Since ¢(.5) is closed, there exists a
Ao € o(S) such that d = | — Ag|. Assume now to the contrary that
|pid =S~ < 1/d. Then

lid =(S = )~ (S = Ao)ll = I(S = 1) [(S — 1) = S = M)
< NS =) HIS = = S+ Aol

|
Ld=1.
<q

By Lemma 79 it follows that id —(id —(S — p)~1(S — X)) = (S —
w)~H(S — Xo) is invertible. But then (S — \g) must be invertible, as it

is the composition of invertible operators:
(S =Ao) = (S = 1)((S = 1)~ (S = o).
This is a contradiction because Ay € o(.5).

ii) For u € p(S) define the function r,(s) == (u — s)~', where s € o(9).
Then r, € C(o(S)) and for r,(S) € L(H) we obtain

(b= S)ru(S) = ((n —id)ru)(S) = ru(S) (= 5)
using the functional calculus for self-adjoint operators. This implies

r,(S) = (uId —S)~!. Using the functional calculus one now concludes

1 1
Id_SflzsupTSZ. =T )
Iudd=8)70 = sup Il = o g sl ~ dist(u, o())
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iii) We denote with GL(X,Y") the set of continuous (and therefore bounded)

252

bijective linear maps from X to Y. First we remember the following

(Lemma 79):

If A€ L(X) such that ||A|| < 1, then I — A € GL(X) (where I denotes
the identity on X) and (I — A)~' =77 A~

Proof By norm properties, one has || A*|| < ||A||* and therefore

- laj<t 1
A" 7=
,; 1—||A]

with the geometric series. Using Weierstrafi-M-test, it follows that

Y reo Ak is an absolutely convergent series in the Banach space L(X)
and in particular, B := Y ;- A" is well-defined in L(X). One easily
sees AB = BA =377 A* therefore we also have (I — A)B = B(I —
A) = I and this is equivalent to (I — A)~! = B. O

Now we prove our desired result:
The set GL(X,Y) is open in L(X,Y).

Proof. Let Ty € GL(X,Y) and T € L(X,Y) such that ||To — T|| <
17517t We have

T=To+T—Ty=TolIl + T, (T —Tp)].
Now we show: I+T, (T —Tp) € GL(X). This follows from the estimate
I =TT = Ty)ll < 175117 - Toll < 1

by our preceding result. All in all, we have shown that the open ball in
L(X,Y) with center Ty and radius |7, ||~} is an element of GL(X,Y),

so the proof is complete. Il
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EXERCISE 1.38: We first do some basic observations. Let 7 be a finite
dimensional Hilbert space an A be a self-adjoint operator on . Since ¢
is the only dense subspace, the condition of the existence of a cyclic vector

x € J for A is equivalent to
H ={A"r:n=0,1,2,...}.
This expression can be also written as
K ={p(A)x : p € C[t]}. (A.10)

Fix an orthonormal basis for H, then there exists a unitary matrix V' and a
diagonal matrix D such that A = VDVT. Since we have p(A) = Vp(D)VT,
(A.10) is equivalent to

A = {p(D)y : p € Clt]}, (A.11)

where y = Viz. Note that {p(D) : p € C[t]} is a vector space (for C[t] is)

and furthermore,
dim{p(D) : p € C[t]} = number of distinct eigenvalues of A. (A.12)

To see this, we remark that p(D) is a diagonal matrix with diagonal elements
p(D11),...,p(Dnn), and that given Ay, ..., A distinct, the set {(p(A\1), ..., p(A\x)) :
p € C[t]} equals C*.

7=": Assume that equality holds in (A.10). Then the set on the right
hand side of this equation has dimension n and by (A.12) A has n distinct

eigenvalues.
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"«<=": If A has n distinct eigenvalues, choose y as the vector with all
coordinates equal to 1 (the sum of all unit eigenvectors of A) and the set on
the right hand side of (A.10) has dimension n, which implies that it is equal
to .

To construct a measure p on the spectrum of A and a unitary map U :

H — L*(0(A),du) such that
AU f(N) = Af(N),  forall A€ o(A), (A.13)

we set o(A) = {A\1,..., \n},

(compare Example 1.28) and we identify functions f € L*(c(A),du) with
vectors f = (f(A1),..., f(A\n)) € C". Choosing an orthonormal basis of

associated eigenvectors wy, ... w, € ¢, we define
U:# — L*(o(A),du), Uv(\;) = (wj,v)r €C.

Then U is bijective with U™ : C* — 5 given by U (ay,...,a,) =

Y vy apwe € F. Moreover, U is unitary, since

n

(Uz,Uy)e = ZUJ? Z (wj, ) (W, Y) 2
j=1
= <Z<wj7$>3i”wj>y> = <$7y>ﬁ”
j=1 H

To show (A.13), we write for f € L*(o(A),du), using the spectral decompo-
sition of A, i.e. Ax =), A\p{wy, )wj,

(UAUYF) (N) = (wy, AU ) w],ZAk (Wi, UL w;)
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= Nelwe, U™ f)wy, wi) e = )\<w],2f>\g >
H

k

=) NSO wy well) e = A f(N) -

14

EXERCISE 2.34: We prove the statement in the following for the case
n = 1. After doing this, we explain how the argument can be easily extended
for the case of general n.

We begin with a

LEMMA A.50
Every f € Cx(R) is a uniform limit of continuous functions with compact

support.

Proof. Let f € Coo(R). Givenn € N, there exists an N > 0 with |f(z)| < 1/n
when |z| > N. Take g,, continuous with 0 < g,, < 1 such that g,(z) = 1 when
|z] < N and g, = 0 when |z| > N + 1 (recall that this exists by Urysohn’s
lemma). Then fg, € C.(R) and

|f = fgal = 1f(1 = ga)| <1/n (A.14)
implying fg, — f uniformly. O

Now let f € Co(R). By the previous lemma we can assume without loss of
generality that f is continuous with compact support. We now have to show
that there is a sequence of functions in C§°(R) which converges uniformly to

f. Therefore, we start with

ho(z) = (A.15)
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Now notice that h(x) = ho(z)ho(1 — x) € C§° (induction on the order of the
derivatives) with support in [0,1]. One can normalize h such that [, h = 1.

For € > 0 define the mollifiers
ho(z) = e hze ) (A.16)
and recall [, he = [ h = 1. Now we form the convolutions

/f (x—1t)d (A.17)

Because h. € C* it easily follows that f. € C*, and since f and h. have
compact support, so does f..

Given ¢ > 0, as f is continuous with compact support, it is uniformly
continuous. So given ¢ > 0, there exists a 6 > 0 such that |f(z) — f(y)] < ¢
if |z —y| < 0. Then

|[fe(z) = fl2)] =

(150 =)= Sttt dt] (A18)
/|f (2 — 1) — f(@)[ha(t)dt (A.19)
< C/m«s ho(t) dt + 2|1 f]| Aﬂz& ho(t) dt (A.20)

< c+2||f||oo/|t|>§ ho(t)dt . (A.21)

With ¢ fixed, the last integral goes to zero as € | 0 (because the support of
he is contained in [0, ]). Thus

limsup|fe(z) — f(x)] < ¢ (A.22)

e—0

for all z and all ¢ > 0. This shows || f. — f||., — 0
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Finally, we want to mention how one can extend the above arguments for

R™. This is easily done, since
hal@r, -y 2) = A1) - h(z) (A.23)

can be taken.

EXERCISE 2.35: "=":

(x,Tx) = (Tx,z) = (x,Tx). (A.24)
"<«=": Consider for A € C the real number
(x+ Xy, T(z+ \y)) = (2, Tx) + My, Tz) + XMz, Ty) + |M*(y, Ty).
Taking the complex conjugate yields
(x+ Xy, T(x+ \y)) = (T, Tx) + MTz,y) + MTy, z) + |\*(Ty, y).
Setting A =1 and A = —i implies

(y, Tz) + (z,Ty) = (T, y) + (T'y, 7),

<vax> - <$7Ty> = —<T$,y> + <Ty7x>

Adding both equations reveals (T'y, z) = (y, Tx).

EXERCISE 2.36: Let y € 2(T*S*) and let x € 2(ST). Then S*y €
P(T*) and x € 2(T), so

(Tx,S™y) = (x, T*S™y). (A.25)
On the other hand, y € Z(5*), so
(STx,y) = (Tz,S™y). (A.26)
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Hence
(STz,y) = (x, T*S™y), (A.27)
which implies that (ST)*y = T*S*y for each y € 2(T*S*), that is, T*S* C
(ST)*.
Suppose now that S € L(.), hence S* € L(.7), for which Z(5*) = .
Let y € 2((ST)*). For x € 2(ST),

(Tx,S*y) = (STz,y) = (z, (ST)"y). (A.28)
This implies that S*y € 2(T*) and hence y € Z(T*S5*), showing

D((ST)*) = D(T*S"). (A.29)

EXERCISE 2.37: We start showing;:

Claim: Let A: X D Z(A) — Y (with X,Y Banach spaces) be closed
and B € L(X,Y). Then A+ B with 2(A+ B) = 2(A) is closed.
To see this, let z, € Z(A+ B),n € N, and z € X,y € Y such that z,, — x
in X and (A + B)z, = Az, + Bz, — y in Y for n — oo. Since B is
bounded, Bz = lim Bz, exists, implying Ax,, — y — Bx for n — oc.
Because A is closed, it follows that x € Z(A) = Z(A+ B) and Ax = y— Bu,
or Ar + Bx =y.

Now let A € C be such that (A —T') : Z(T") — S is bijective and has
bounded inverse (A — T)~' : # — 2(T) C . Then by the Closed Graph
Theorem?, the graph T'((A — T)™!) is closed.

Let (x,)nen be a sequence in S such that x, — x € J and y, =
(A\—=T)"'z, = y. Then (A —T) 'z = y and thus y,,y € Ran(A —T)~! =
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P(A—T) and (A — T)y = x. Therefore, for any sequence (y,,) in Z(\ —T)
such that y, — y and (A =Ty, = =, — =z, it follows that y € (A —T) and
(A —=T)y = x. This shows that (A — T) is closed. Using the above claim for
B = —\1Id shows that 7' is closed.

EXERCISE 2.40: Let A be a densely defined, closed, symmetric operator
on 2 with o0(A) C R. Then +i € p(A) and thus (AFild) : Z(A) — H is
bijective with bounded inverse. This implies Ran(A Fi1d) = 5. It follows
from Theorem 2.21 that A is self-adjoint.

EXERCISE 2.85:

i) We want to show that Ty f = vyerex f = Vs x (v f) = TsT, f holds for
all f and s,t > 0. Since convolution is associative, it therefore suffices
to show that vs,; = 75 * 7, holds for all s,¢ > 0. We remark that this
identity can be obtained by elementary multivariable integral calculus.
We however give here a slightly other proof using facts from the theory

of partial differential equations.

Recall first that + is a so-called fundamental solution of the heat-
equation. This means that given f bounded and continuous on R",

the function
u(t,z) =y * f(z)
is C* in R x R™, satisfies the heat equation
ou = Au
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i)

260

and the initial data u|,—o = f in the sense that
u(t,z) — f(z) as t—0

locally uniformly in z (in the distributional sense, the convolution ist
dp). We now use this in order to show «y,_sxv, = v, forall 0 < s < t. Let
f be continuous in R™ with compact support. Then u; = 7, * f solves
the bounded Cauchy problem with the initial function f. Consider
now the Cauchy problem with the initial function ug,. Then u; gives
the bounded solution to this problem a time ¢ — s. On the other hand,
the solution at time t — s is given by ~v_, * us,. Hence, we obtain the
identity
Ut = Vt—s * Us,
that is
Yok f = s % (Vs * ).

Because convolution is associative, we have

Yees * (Vs ¥ ) = (Ve—s ¥ 7s) * [,

whence
Yxf= (%—s*%)*f

Since this is true for all f, we conclude v, = ;4 * 7s.

Let

1 2
_ . o~ lz—yl?/(4t)
7(1‘72%75) - (47Tt)d/2 S Y

and set

wat) = [ Ao 0fw)dy.
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Then (T;f)(z) = u(z,t). The statement lim; .o T3 f = f follows if we
show that lim,_ou(z,t) = f(z) for every z € R? and f : R? — R

bounded and continuous.

To this end, we use [p,7(x,y,t)dy = 1 and calculate

@) = u(e.0)] = |7(@) = [ 2o 07 ) dy

- | [ 2@ - ) dy\

— ; Ooe_TQ/(4t)rd—1 o) — o4 . .
(47Tt)d/2/0 /S (f(2) = f(z+ 7)) do(§) d

_ #/OOO R /Sd1 (f(z) = f(z+2V1s€)) do(€) ds

_ /0M+/MOO‘

dwd & _s2 d—
< swp[f(e) - S+ 2supl s e s,
yeB(z,2v/tM) R @ M

Given € > 0, we first choose M so large that the second summand is
less then £/2 and we then choose t; > 0 so small that for all ¢ with
0 <t < ty, the first summand is less than £/2 as well. This implies the

continuity.

iii) We recall first that in Analysis it was shown that ||| = 1 (use polar
coordinates and Fubini). Then an application of Young’s inequality

with » = p and ¢ = 1 shows

TN, = llvex FIE< Dell L1, = WAL

implying |73 < 1.

EXERCISE 2.87: We want to apply the theorem of Lumer-Philipps (The-
orem 2.68). First of all, A is densely defined since Z(A) contains D(0, 1) and
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D(0,1) is dense in X (here, D(0,1) is the test function space on (0,1) and
the density follows by a similar argument as given in Exercise 2.34).

Next, we want to show that A is dissipative. Take f € Z(A). Then f is
continuous on a compact set and hence it exists some zq such that |f(zo)| =
Ifll... Set a = f(zo) and consider the functional £(f) = ad,,(f) = af(xo).
Then [ € J(f) and

Rel(f") = Rea(f")(xo) <0

since the real valued function Reaf takes its maximum at xg.
Finally, we want to show that (Id —A) is surjective. This is equivalent to

the statement that the boundary value problem

f=f"=g, fO)=f(1)=0

is solvable for each g € X. This is proven e.g. in [Wa].
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