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Preface

These lecture notes result from the second part of a two term course in func-

tional analysis. Therefore, there are sometimes references to subjects which

were introduced and discussed in the first part of the course. In order to

improve the readability, some of these results are shortly recapitulated.

These notes are mostly based on Dirk Werner:” Funktionalanalysis” [W] and

Michael Reed and Barry Simon:”Functional Analysis” [RS].

The starting point in this course was the spectral theorem for bounded

self-adjoint operators. The continuous functional calculus version was al-

ready proven in the end of Functional Analysis 1. After giving a functional

calculus for measurable functions, we introduce spectral projections and pro-

jection valued measures. The last result given in this context is the fact that

each bounded self-adjoint operator is unitary equivalent to a multiplication

operator on some Hilbert space. A generalisation to normal bounded oper-

ators is given in the appendix. It is based on a talk of Jan Möhring, who

agreed to add his handout to this text.

The second chapter gives definitions and properties of unbounded oper-

ators on Hilbert spaces. In particular, we discuss the notion of symmetric,

closed and (essentially) self-adjoint operators, give criteria for a symmetric

operator to be (essentially) self-adjoint and define the Friedrichs extension.

In the next section, the different versions of the spectral theorem described

above are generalized to unbounded self-adjoint operators. In the third sec-

tion, strongly continuous one-parameter semigroups of operators on a Banach

space and in particular contraction semigroups are introduced and the the-
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orems of Hille-Yosida and Lumer-Phillips are proven. These theorems give

criteria for an operator to be the infinitesimal generator of a strongly contin-

uous semigroup. Then we consider continuous unitary groups of operators

on a Hilbert space and prove Stone’s Theorem. In the last part of this chap-

ter, we discuss the notion of commuting unbounded operators and Trotter’s

product formula.

The third chapter includes definitions and properties of locally convex

spaces and Fréchet spaces, in the end, we briefly introduce distributions and

the Fourier transform. The appendix includes the handouts for talks given by

Jan Möhring and Pushya Mitra on the spectral theorem for normal operators

and on the Gelfand-Naimark-Theorem respectively at the end of the term.

Exercises are given at the end of each section. For some of them Jan

Möhring provided solutions which are given in the appendix.

I am pleased to thank the students who took part in the course and helped

to improve these notes with their questions and comments. Especially I want

to thank Jan Möhring for his constructive remarks, numerous suggestions

and corrections and his consent to make some of his solutions for exercises

available. Moreover I thank Jan Möhring and Pushya Mitra for their approval

to add to this script the handouts of their talks.

3



4



Contents

1 Bounded operators on Hilbert spaces 9

1.1 Spectral Theorem for bounded operators . . . . . . . . . . . . 9

1.1.1 Results from the previous Semester . . . . . . . . . . . 9

1.1.2 Functional Calculus Form . . . . . . . . . . . . . . . . 18

1.1.3 Projection-valued Measures . . . . . . . . . . . . . . . 29

1.1.4 Projection-valued Measure form . . . . . . . . . . . . . 33

1.1.5 Multiplication Operator Form . . . . . . . . . . . . . . 41

1.1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Unbounded operators on Hilbert spaces 57

2.1 Domains, graphs, adjoints and spectrum . . . . . . . . . . . . 57

2.1.1 Symmetric and closed operators, extensions . . . . . . 58

2.1.2 Definition and Properties of the adjoint operator . . . . 63

2.1.3 Symmetric operators, essential self-adjointness . . . . . 69

2.1.4 Resolvent set and Spectrum for unbounded operators . 71

2.1.5 Criteria for (essential) self-adjointness . . . . . . . . . . 82

2.1.6 Deficiency Indices, existence of self-adjoint extensions . 85

2.1.7 The Friedrichs Extension . . . . . . . . . . . . . . . . . 89

5



CONTENTS

2.1.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.2 Spectral Theorem for unbounded operators . . . . . . . . . . . 98

2.2.1 Multiplication operator form . . . . . . . . . . . . . . . 98

2.2.2 Functional Calculus form . . . . . . . . . . . . . . . . . 104

2.2.3 Projection valued measure form . . . . . . . . . . . . . 106

2.2.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.3 Semigroups of operators . . . . . . . . . . . . . . . . . . . . . 112

2.3.1 Definition and Properties of Semigroups . . . . . . . . 113

2.3.2 Infinitesimal Generators . . . . . . . . . . . . . . . . . 116

2.3.3 Application to a Cauchy problem . . . . . . . . . . . . 121

2.3.4 Theorem of Hille-Yosida for Contraction Semigroups . 125

2.3.5 Theorem of Hille-Yosida for general semigroups . . . . 130

2.3.6 Accretive operators, Lumer-Phillips-Theorem . . . . . 135

2.3.7 Unitary groups and Stone’s Theorem . . . . . . . . . . 142

2.3.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 150

2.4 Commutation relations . . . . . . . . . . . . . . . . . . . . . . 152

2.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 163

2.5 Trotters product formula . . . . . . . . . . . . . . . . . . . . . 164

3 Locally convex spaces, Distributions, Fourier transform 169

3.1 Locally convex spaces . . . . . . . . . . . . . . . . . . . . . . . 169

3.1.1 Topology generated by families of seminorms . . . . . . 169

3.1.2 Definition, examples and fundamental properties . . . . 173

3.1.3 Continuous linear maps . . . . . . . . . . . . . . . . . . 180

3.1.4 Hahn-Banach and Separating Hyperplane . . . . . . . 185

3.1.5 Weak topologies . . . . . . . . . . . . . . . . . . . . . . 191

6



CONTENTS
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Chapter 1

Bounded operators on Hilbert

spaces

1.1 Spectral Theorem for bounded operators

1.1.1 Results from the previous Semester

We continue our analysis of the spectrum of self-adjoint (or normal) opera-

tors started in ”Functional analysis 1” and give a recap on definitions and

results we discussed there.

We start with a short reminder on the spectrum of operators.

Definition 1.1 (Spectrum of a bounded operator)

Let X be a Banach space over K and T ∈ L(X) a bounded linear operator

on X.

i) A complex number λ ∈ C is said to be in the resolvent set ρ(T ) of
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

T :⇔ λ Id−T is a bijection (with bounded inverse).

ii) Rλ(T ) := (λ Id−T )−1 is called the resolvent of T at λ ∈ ρ(T ).

iii) If λ /∈ ρ(T ), then λ is said to be in the spectrum σ(T ) = C \ ρ(T ) of

T .

iv) A vector x ∈ X, x 6= 0, is called eigenvector of T :⇔ Tx = λx for

some λ ∈ C.

In this case, λ is called corresponding eigenvalue. (Then λ Id−T is

not injective and thus in particular λ ∈ σ(T )). The set of all eigenval-

ues is called point spectrum σp(T ) of T .

v) If λ is not an eigenvalue (i.e. λ Id−T is injective), but λ Id−T is not

surjective and the range Ran(λ Id−T ) ⊂ X is dense, then λ is said to

be in the continuous spectrum σc(T ) of T .

vi) If λ is not an eigenvalue and λ Id−T is not surjective, but Ran(λ Id−T )

is not dense in X, then λ is said to be in the residual spectrum σr(T )

of T .

In Theorem 80, we proved that the resolvent set ρ(T ) ⊂ C is open and

the map

R.(T ) : ρ(T ) −→ L(X) , λ 7→ Rλ(T )

is analytic.

Moreover, for any λ, µ ∈ ρ(T ) the operators Rλ(T ) and Rµ(T ) commute and

Rλ(T )−Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ) First Resolvent Formula

(1.1)
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1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Lemma 79 told us that if
∑∞

n=0 T
n converges in L(X) (in particular if

‖T‖ < 1), then (Id−T ) is invertible and

(Id−T )−1 =
∞∑
n=0

T n. (1.2)

These two results imply (Corollary 81) that σ(T ) is compact, |λ| ≤ ‖T‖

for all λ ∈ σ(T ) and if K = C, then σ(T ) 6= ∅ . In particular, for |λ| > ‖T‖

(λ Id−T )−1 =
1

λ

∞∑
n=0

(T
λ

)n
Von Neumann Series (1.3)

In Theorem 84 we proved for the spectral radius of T given by r(T ) :=

infn∈N ‖T n‖1/n that

r(T ) = lim
n→∞

‖T n‖1/n (1.4)

|λ| ≤ r(T ) for any λ ∈ σ(T ) (1.5)

∃λ ∈ σ(T ) : |λ| = r(T ) if K = C. (1.6)

If X is a Hilbert space and T is self-adjoint, then r(T ) = ‖T‖ (Prop.85).

This implies that if K = C, there exists λ ∈ σ(T ) such that |λ| = ‖T‖.

For a Banach space X with dual space X∗ = L(X,K) and T ∈ L(X), the

adjoint operator (or ”Banach space adjoint”) T ′ ∈ L(X∗) is defined by the

relation

(T ′`)(x) = `(Tx) , ` ∈ X∗, x ∈ X .

The map T 7→ T ′ is an isometric isomorphism onto its range (in general not

surjective).
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

Then Proposition 86 and 87 showed

σ(T ) = σ(T ′) , Rλ(T
′) = Rλ(T )′ , (1.7)

σr(T ) ⊂ σp(T
′) and σp(T ) ⊂

(
σp(T

′) ∪ σr(T ′)
)
.

If H is a Hilbert space, the Riesz Lemma shows that the map

C : H →H ∗ , y 7→ C(y) = 〈y, ·〉

is isometric, surjective and conjugate linear.

It allows to define for T ∈ L(H ) the adjoint operator (or ”Hilbert space

adjoint”) T ∗ ∈ L(H ) by T ∗ = C−1T ′C. Then T ∗ satisfies the relation

〈x, Ty〉 = 〈T ∗x, y〉 , x, y ∈H

and the map T 7→ T ∗ is a conjugate linear (i.e. αT 7→ ᾱT ∗) isometric iso-

morphism on L(H ).

Then by Proposition 86 we have

σ(T ∗) = {λ | λ̄ ∈ σ(T )} and Rλ(T
∗) = Rλ̄(T )∗. (1.8)

In Theorem 88 we considered a bounded self-adjoint operator A on a

Hilbert space H . We saw that

σr(A) = ∅ and σ(A) ⊂ R (1.9)

and that eigenvectors associated to different eigenvalues are orthogonal.

We already gave the following version of the Spectral Theorem:
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1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Theorem 1.2 (Continuous Functional Calculus)

Let H be a Hilbert space and A ∈ L(H ) self-adjoint. Then there exists a

unique map ΦA : C(σ(A))→ L(H ) with the following properties:

i) ΦA(1) = Id and ΦA(x) = A (here 1 denotes the function f(x) = 1 for

all x and x denotes the function f(x) = x).

ii) ΦA is an algebraic ∗-homomorphism (with respect to multiplication in

C(σ(A)) and composition in L(H )), i.e. for all f, g ∈ C(σ(A)) and

λ ∈ σ(A)

ΦA(f + g) = ΦA(f) + ΦA(g) and ΦA(λf) = λΦA(f) linear

ΦA(f · g) = ΦA(f) ◦ ΦA(g) multiplicative

ΦA(f̄) = ΦA(f)∗ involutive

iii) ΦA is continuous.

Moreover, ΦA has the following additional properties:

iv) If Aψ = λψ, then ΦA(f)ψ = f(λ)ψ.

v) Spectral Mapping Theorem: σ(ΦA(f)) = {f(λ) |λ ∈ σ(A)}.

vi) ΦA is positive (preserving), i.e. f ≥ 0 implies ΦA(f) ≥ 0 .

vii) ΦA is isometric, i.e. ‖ΦA(f)‖L = ‖f‖∞.

Here we used for T ∈ L(H ) the notation T ≥ 0 if 〈x, Tx〉 ≥ 0 for all

x ∈H .
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

We will sometimes write ΦA(f) =: f(A). Then v) is in short notation

σ(f(A)) = f(σ(A)).

For compact self-adjoint operators, we have a more explicit form of the

Spectral Theorem. To derive it, we start with a reminder on the Riesz-

Schauder-Theorem (101) and the Hilbert-Schmidt-Theorem (102).

Theorem 1.3 (Riesz-Schauder-Theorem)

Let H be a Hilbert space and A ∈ K(H ) a self-adjoint compact operator.

Then σ(A) is a discrete set having no limit points except perhaps 0. Fur-

thermore, any non-zero λ ∈ σ(A) is an eigenvalue of finite multiplicity (i.e.

the corresponding eigenspace Eλ spanned by the eigenvectors is finite dimen-

sional).

We remark that if K = C, then

Theorem 1.4 (Hilbert-Schmidt-Theorem)

Let H be a Hilbert space and A ∈ K(H ) a self-adjoint compact operator.

Then there exist a complete orthonormal system {φα}α∈I for H , a countable

or finite subset I0 = {αn} ⊂ I and a null sequence (λαn)n∈N in K \ {0} such

that

Aφαn = λαnφαn and Aφβ = 0 if β ∈ I \ I0 .

These theorems allow to show:

Theorem 1.5 (Spectral Theorem for compact Operators)

Let H be a Hilbert space and A ∈ K(H ) a self-adjoint compact operator.

14



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Then there exists an orthonormal system {φn} and a null sequence (λn) in

K \ {0} (both maybe finite) such that

H = kerA⊕ span{φn} and Aψ =
∑
n

λn〈φn, ψ〉φn, (1.10)

in particular Aφn = λnφn and ‖A‖ = maxn |λn|.

Denoting by Πk the orthogonal projection to the eigenspace

.Eλk := ker(λk Id−A)

of λk and λ0 = 0 we get

H =
∞⊕
n=0

Eλn and A =
∞∑
n=1

λnΠn (1.11)

and the sum converges in operator norm.

Before we start to prove Theorem 1.5, we give a short reminder on or-

thogonal projections:

In Theorem 40 (the Projection Theorem) we have seen that if H1 is a closed

subspace of the Hilbert space H , then every ψ ∈H can uniquely be written

as ψ = ψ1 + ψ2 where ψ1 ∈ H1 and ψ2 ∈ H ⊥
1 (here H ⊥

1 = {φ ∈ H | ∀ϕ ∈

H1 : 〈φ, ϕ〉 = 0} denotes the orthogonal complement on H1). Then we

called the linear maps

ΠH1 : H →H1 , ΠH1ψ = ψ1 and

Π⊥H1
= ΠH ⊥

1
: H →H ⊥

1 , Π⊥H1
ψ = ψ2

orthogonal projection to H1 and H ⊥
1 respectively and proved ‖ΠH1‖ = 1.

If {eα} is an orthonormal basis of H1, then ΠH1 = Π where

Πψ :=
∑
α

〈eα, ψ〉eα , ψ ∈H . (1.12)
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

To see this, it suffices to prove that ψ −Πψ ∈H ⊥
1 , because the partition of

ψ given above is unique. But for any eβ〈
eβ, ψ −

∑
α

〈eα, ψ〉eα

〉
= 〈eβ, ψ〉 −

∑
α

〈eα, ψ〉〈eβ, eα〉 = 0

(since 〈eβ, eα〉 = δα,β).

Proposition 70 told us that for each orthogonal projection Π on a closed

subspace we have Π2 = Π and Π∗ = Π. Moreover we even have the reverse,

i.e. if Π ∈ L(H ) such that Π2 = Π and Π∗ = Π holds, then the range of Π

is a closed subspace of H and Π is the orthogonal projection its range.

Proof. Consider the basis {φα}α∈I for H described in Theorem 1.4. Set

φn := φαn and λn := λαn 6= 0 for αn ∈ I0, then (λn) is a null sequence in

K \ {0} and the representation of H in (1.10) follows immediately from the

fact that φα ∈ kerA for α ∈ I \ I0.

Moreover, by Theorem 96, each ψ ∈H can be written as ψ =
∑

α∈I〈φα, ψ〉φα
and the summands are non-zero only for a countable subset of I. But since

Aφα = 0 for α /∈ I0, it follows that

Aψ = A
∑
α∈I

〈φα, ψ〉φα =
∑
αn∈I0

〈φαn , ψ〉Aφαn =
∑
n

λn〈φn, ψ〉φn .

Moreover this gives the estimate

‖Aψ‖ =

∥∥∥∥∥∑
n

λn〈φn, ψ〉φn

∥∥∥∥∥ ≤ max
n
|λn|

∥∥∥∥∥∑
n

〈φn, ψ〉φn

∥∥∥∥∥ ≤ max
n
|λn|‖ψ‖

proving that ‖A‖ ≤ maxn |λn|. Since |λ| ≤ ‖A‖ for each λ ∈ σ(A) we get

equality.
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1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

The representation of H in (1.11) follows at once from (1.10) and the fact

that the kernel of λk Id−A is spanned by the eigenvalues associated to λk

(by Theorem 1.3 these eigenspaces are finite dimensional if λk 6= 0).

The last representation of A follows from (1.12) together with (1.10) by

combining all summands belonging to the same value of λ.

To show that the sum converges in operator norm we use that ‖
∑

n≥0 Πn‖ =

1 to write∥∥∥∥∥A−
N∑
n=1

λnΠn

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=N+1

λnΠn

∥∥∥∥∥ ≤ max
n>N
|λn| −→ 0 (N →∞).

�

Since for A ∈ L(H ) compact and self-adjoint and f ∈ C(σ(A)), the

map f 7→
∑∞

n=1 f(λn)Πn has the properties i),ii) and iii) from Theorem 1.2

(Exercise 1.32), it describes the map ΦA, i.e. we have f(A) =
∑∞

n=1 f(λn)Πn.

Thus the Continuous Functional Calculus allows to regain the orthogonal

projections Πk as images of A under suitable characteristic functions. In

fact, defining for k ≥ 1 the continuous functions

fk : σ(A) = {0} ∪ {λ1, λ2, . . .} −→ R given by fk(t) =

1 if t = λk

0 otherwise

These functions are continuous because by Theorem 1.3 all elements of the

spectrum of A except 0 are isolated points. Then we get

fj(A) = ΦA(fj) =
∞∑
n=1

fj(λn)Πn = Πj.
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

1.1.2 Functional Calculus Form

To get a similar procedure for a bounded (non-compact) self-adjoint operator

A, we have to define an operator f(A) for some {0, 1}-valued functions f on

σ(A). But in general, if the points of the spectrum are not isolated, these

functions will not be continuous. Thus it will be necessary to get a Func-

tional Calculus for the class B(σ(A)) of Borel-measurable bounded functions

on the (compact) set σ(A).

To this end, we first introduce the notion of a spectral measure using the

Riesz-Markov-Theorem, which we state here in two versions without proof.

We start with a short reminder on complex measures.

Remark 1.6

A complex measure on a σ-algebra (X,F) is a function µ : F → C such

that for any disjoint partition of E ∈ F (i.e. E =
⋃
j Ej and Ej ∩ Ek = ∅

for j 6= k) the equality

µ(E) =
∞∑
j=1

µ(Ej)

holds (in particular the series converges absolutely). We define the total

variation of µ by

|µ|(E) = sup
{ ∞∑
j=1

|µ(Ej)| | {Ej} is a disjoint partition of E
}
.

Then |µ| is the smallest positive measure dominating µ and is in particular

finite, i.e. ‖µ‖ := |µ|(X) <∞.

The Radon-Nikodym-Theorem states that if µ is absolutely continuous with

respect to a positive σ-finite measure λ (i.e. if µ(E) = 0 whenever λ(E) = 0,

18



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

we write µ� λ), then there exists a unique h ∈ L1(X) such that

µ(E) =

∫
E

h dλ , E ∈ F . (1.13)

Since by definition µ� |µ|, there exists a unique h ∈ L1(X) such that (1.13)

holds for λ = |µ|. Moreover it can be shown that in this case |h(x)| = 1 for

all x ∈ X.

This suggests to define integration with respect to the complex measure µ by

the formula ∫
f dµ :=

∫
fh d|µ| .

Then
∫
fd (µ1 +µ2) =

∫
f dµ1 +

∫
f dµ2 for any two complex measures µ1, µ2.

Now let X be a locally compact Hausdorffspace and F the Borel-σ-algebra.

We call a complex Borel measure µ regular, if |µ| is regular i.e. if for all

E ∈ F

inf{|µ|(V ) |E ⊂ V and V is open} = |µ|(E)

= sup{|µ|(K) |K ⊂ E and K is compact} .

The first equality defines outer regularity, the second inner regularity of

|µ|, a regular measure is outer and inner regular.

Theorem 1.7 (Riesz-Markov-Theorem)

Let X be a Hausdorff space.

i) If X is compact, then for any positive bounded linear functional ` on

C(X) there is a unique regular Borel measure µ ∈M (X) on X with

`(f) =

∫
X

f dµ , (f ∈ C(X)). (1.14)
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

ii) If X is locally compact, then for any bounded linear functional ` on

C0(X) there is a unique complex regular Borel measure µ ∈MC(X) on

X with

`(f) =

∫
X

f dµ , (f ∈ C0(X)). (1.15)

Moreover, in both cases the operator-norm of ` is equal to the total variation

|µ| of µ.

Remark 1.8

We remark that for a given Borel measure µ ∈ M (X), the integral on the

right hand side of (1.14) defines a continuous positive linear functional and

analog for complex measures. Moreover each positive linear functional is

bounded with ‖`‖ ≤ `(1) (Exercise 1.33).

We come back to our goal to extend the functional calculus for self-adjoint

operators from continuous to bounded measurable functions.

Let H be a Hilbert space and A ∈ L(H ) be self-adjoint. Let ΦA :

C(σ(A)) → L(H ) be the unique map given in Theorem 1.2. Then, for any

fixed ψ, ϕ ∈H , the mapping

C(σ(A)) 3 f 7→ `ψ,ϕ(f) := 〈ψ,ΦA(f)ϕ〉 ∈ C

is a complex valued linear functional `ψ,ϕ on C(σ(A)) and

|`ψ,ϕ(f)| ≤ ‖ΦA(f)‖‖ψ‖‖ϕ‖ ≤ ‖f‖∞‖ψ‖‖ϕ‖

and therefore ‖`ψ,ϕ‖ ≤ ‖ψ‖‖ϕ‖.
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1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

Thus by the Riesz-Markov-Theorem, there exists a unique regular com-

plex Borel measure µψ,ϕ on σ(A) such that

`ψ,ϕ(f) = 〈ψ,ΦA(f)ϕ〉 =

∫
σ(A)

f(λ) dµψ,ϕ(λ) . (1.16)

This measure is called spectral measure of A associated with the vectors

ψ and ϕ.

Moreover the map

H ×H 3 (ψ, ϕ) 7→ b(ψ, ϕ) := µψ,ϕ ∈MC(σ(A)) (1.17)

and for fixed f ∈ C(σ(A)) the map

H ×H 3 (ψ, ϕ) 7→ Bf (ψ, ϕ) := `ψ,ϕ(f) ∈ C (1.18)

are sesquilinear1 (since (ψ, ϕ) 7→ 〈ψ,ΦA(f)ϕ〉 is sesquilinear) and bounded

with

‖b(ψ, ϕ)‖ = ‖µψ,ϕ‖ = ‖`ψ,ϕ‖ ≤ ‖ψ‖‖ϕ‖ and |Bf (ψ, ϕ)| ≤ ‖f‖∞‖ψ‖‖ϕ‖ .

(1.19)

Then by a Corollary of the Riesz Lemma2 (Corollary 45 in the previous

course), there exists a unique bounded operator Φ̃A(f) on H such that

Bf (ψ, ϕ) = 〈ψ, Φ̃A(f)ϕ〉 .
1A map B on H ×H is called sesquilinear, if for all a, b ∈ C and x, y, z ∈ H we

have

B(x, ay + bz) = aB(x, y) + bB(x, z) and B(ax+ by, z) = āB(x, z) + b̄B(y, z).

2

Lemma 1.9 (Riesz, (Thm 43))

For each bounded linear functional ` ∈ H ∗ on a Hilbert space H there is unique vector

y ∈H such that `(x) = 〈y, x〉 for all x ∈H and ‖`‖ = ‖y‖.
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By (1.16), we immediately see that Φ̃A(f) = ΦA(f).

The procedure by which we regained the operator ΦA(f) now allows to

extend the Continuous Functional Calculus (Theorem 1.2) to the bounded

Borel measurable functions B(σ(A)) on σ(A):

The integral on the right hand side of (1.16) makes sense, if the continuous

function f is replaced by a measurable function g ∈ B(σ(A)). This allows to

define for any fixed g ∈ B(σ(A)) a sesquilinear form B̃g on H by

B̃g(ψ, ϕ) :=

∫
σ(A)

g(λ) dµψ,ϕ(λ) . (1.20)

As before, using Corollary 1.10, there exists a bounded operator Φ̃A(g) ∈

L(H ) such that

B̃g(ψ, ϕ) = 〈ψ, Φ̃A(g)ϕ〉 (1.21)

holds for all ψ, ϕ ∈ H . By this procedure, we have constructed a map Φ̃A

from B(σ(A)) to L(H ), extending ΦA given in Theorem 1.2.

The properties of this map are given in the following Theorem.

Corollary 1.10

For any sesquilinear bounded form B on H (i.e. sesquilinear bounded map from H ×H

to C) there is a unique operator A ∈ L(H ) such that B(x, y) = 〈y,Ax〉 holds for all

x, y ∈H . The norm of A is the smallest constant C > 0 so that B(x, y) ≤ C‖x‖‖y‖.
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Theorem 1.11 (Spectral Theorem - Functional Calculus Form)

Let H be a Hilbert space and A ∈ L(H ) self-adjoint. Then there exists a

unique map Φ̃A : B(σ(A))→ L(H ) with the following properties:

i) Φ̃A(1) = Id and Φ̃A(id) = A where 1(x) = 1 and id(x) = x for all

x ∈ σ(A).

ii) Φ̃A is an algebraic ∗-homomorphism (with respect to multiplication in

B(σ(A)) and composition in L(H ))

iii) Φ̃A is norm continuous: ‖Φ̃A(f)‖L ≤ ‖f‖∞ .

iv) Suppose fn(x) → f(x) for each x ∈ σ(A) and supn ‖fn‖∞ is bounded.

Then Φ̃A(fn) → Φ̃A(f) weakly, i.e. 〈ψ, Φ̃A(fn)ϕ〉 −→ 〈ψ, Φ̃A(f)ϕ〉 for

all ψ, ϕ ∈H .

Moreover, Φ̃A has the following additional properties:

v) If Aψ = λψ, then Φ̃A(f)ψ = f(λ)ψ.

vi) Φ̃A is positive, i.e. f ≥ 0 implies Φ̃A(f) ≥ 0.

vii) If BA = AB, then Φ̃A(f)B = BΦ̃A(f).

viii) If f is real-valued, then Φ̃A(f) is self-adjoint.

Proof. Step 1: Uniqueness

From Theorem 1.2 we know that on C(σ(A)) the map Φ̃A is already uniquely

determined by i), ii) and iii). We then use iv) to get uniqueness on B(σ(A)).

To this end, we first need the following lemma, which proves that the set
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B(σ(A)) of bounded measurable functions is the smallest family closed un-

der limits of the form iv) (pointwise limits of uniform bounded sequences)

containing all of C(σ(A))3 :

Lemma 1.12

Let M ⊂ C be compact. Let U ⊂ B(M) be such that for any sequence (fn)

in U (
sup
n
‖f‖∞ <∞ and f(t) := lim

n→∞
fn(t) exists for all t ∈M

)
=⇒ f ∈ U (1.22)

holds. Then C(M) ⊂ U implies U = B(M).

Proof of Lemma 1.12. Consider the system S of all sets S of functions such

that

C(M) ⊂ S ⊂ B(M) and (1.22) holds for all sequences (fn) in S . (1.23)

Then S 6= ∅, because in particular B(M) ∈ S.

We set V :=
⋂
S∈S S. Then by definition C(M) ⊂ V .

3This does not imply that each bounded measurable function is a pointwise limit of

continuous functions. A counterexample is the function which is 1 on the rationals and

zero otherwise. The continuous functions are called Baire functions of class zero. Then

all functions which occur as pointwise limits of continuous functions are called of Baire

functions of class 1. Pointwise limits of these lead to functions of Baire class 2. In this way

one can define Baire functions of class 1, 2, 3, .....The numbers describing the classes are

ordinal numbers and thus we can define functions of class ω, the first non-finite ordinal, as

the pointwise limit of a sequence of functions each of which belongs to some finite class.

From this one can proceed with ω + 1, ω + 2, . . . ω2 + 1, . . .. It can be shown that this

process stops when one reaches the first non-contable ordinal ω1.
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Moreover V is a vector space: To f ∈ V set Vf := {g ∈ B(M) | f + g ∈ V }.

Now let f ∈ C(M). Then Vf ∈ S and thus V ⊂ Vf . Thus we have seen that

f ∈ C(M) and g ∈ V =⇒ f + g ∈ V.

But this implies on the other hand that C(M) ⊂ Vg for g ∈ V and since

(1.22) holds in Vg this implies V ⊂ Vg.

Thus f + g ∈ V for all f, g ∈ V .

Moreover αg ∈ V for all α ∈ C and g ∈ V (Exercise 2.6), thus V is a vector

space.

In the next step we want to show that characteristic functions of Borel sets

are in V . Let BM denote the Borel sets in M and consider the set ∆ = {E ∈

BM |χE ∈ V }, where χE denotes the characteristic function on E.

Then ∆ includes all open sets, because the characteristic functions of open

sets are pointwise limits of continuous functions (Urysohn’s Lemma, see e.g.

[R2]). Thus ∆ includes a generator of B which is stable under (countable)

intersections.

Therefore by some measure theoretic result (see e.g. [Ba], Dynkin systems),

to show ∆ = B it suffices to prove

i) If E,F ∈ ∆ and E ⊂ F , then F \ E ∈ ∆.

ii) If E1, E2, . . . ∈ ∆ are pairwise disjoint, then E :=
⋃
En ∈ ∆.

But i) follows from χF\E = χF − χE and the fact that V is a vector space

and ii) follows from the fact that χE =
∑

n χEn (with pointwise convergence)

together with (1.22).

Thus all characteristic functions of Borel sets are in V and since V is a
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vector space this implies that all simple functions are in V . But since all

measurable functions are pointwise limits of simple functions (even norm-

limits), it follows that V = B(M).

�

We come back to the proof of Theorem 1.11.

Set

U1 := {f ∈ B(σ(A)) | Φ̃A(f) is uniquely determined by i)-iv) },

then we have C(σ(A)) ⊂ U1 as mentioned above. Moreover, if (fn) is a uni-

formly bounded sequence in U1 converging pointwise to f ∈ B(σ(A)), then

Φ̃A(fn) converges weakly to Φ̃A(f) by iv). This determines Φ̃A(f) uniquely

and thus f ∈ U1. It follows that U1 ∈ S and by Lemma 1.12 we can conclude

U1 = B(σ(A)).

Step 2: Existence

Construct the bounded sesquilinear form B̃g given in (1.20) for g ∈ B(σ(A))

as above, then there exists a unique bounded linear operator Φ̃A(g), bounded

by ‖g‖∞ such that (1.21) holds. We have to show that this operator has the

properties i)-iv).

Since the functions 1 and id are continuous, i) is already shown. Property

iii) follows at once from (1.21), since |Bg(ψ, ϕ)| ≤ ‖g‖‖ψ‖‖ϕ‖. The conver-

gence in iv) follows from the dominated convergence theorem for Lebesgue-

integrals. Thus it remains to prove that Φ̃A is an algebraic *-homomorphism.

(Exercise 2.19)
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Now we come to the proof of the additional properties v) - viii).

v): Assume that Aψ = λψ holds and set U2 := {f ∈ B(σ(A)) | Φ̃A(f)ψ =

f(λ)ψ}. Then C(σ(A)) ⊂ U2 by Theorem 1.2. Now choose a uniformly

bounded sequence (fn) in U2 such that fn(x)→ g(x) for all x ∈ σ(A). Then

Φ̃A(fn)ψ = fn(λ)ψ −→ g(λ)ψ .

Thus to see Φ̃A(g)ψ = g(λ)ψ (which implies U2 ∈ S for S as given in the proof

of Lemma 1.12) we have show that iv) in fact implies strong convergence of

Φ̃A(fn) to Φ̃A(g). This can be seen as follows.

Let hn be a sequence in B as given in iv) converging pointwise to h ∈ B.

Then h̄nhn converges pointwise to h̄h and ‖h̄nhn‖∞ is bounded.

Thus for any φ ∈H by ii) and iv)

‖Φ̃A(hn)φ‖2 = 〈Φ̃A(hn)φ, Φ̃A(hn)φ〉 = 〈Φ̃A(hn)∗Φ̃A(hn)φ, φ〉

= 〈Φ̃A(h̄nhn)φ, φ〉 −→ 〈Φ̃A(h̄h)φ, φ〉 = ‖Φ̃A(h)φ‖2. (1.24)

But in a Hilbert space, we have the general equivalence (for n→∞)

‖φn−φ‖ → 0 ⇐⇒
[
‖φn‖ → ‖φ‖ and 〈φn−φ, ψ〉 → 0 for all ψ ∈H

]
.

(1.25)

This proves that weak convergence of fn(A) combined with (1.24) implies

strong convergence.

Concerning (1.25), the implication ”⇒ ” follows from the triangle- and the

Cauchy-inequality. To get the implication ”⇐ ”, we write

‖φn − φ‖2 = 〈φn + φ− 2φ, φn − φ〉 = Re〈φn + φ, φn − φ〉 − 2 Re〈φ, φn − φ〉

≤ ‖φn‖2 − ‖φ‖2 + 2|〈φ, φn − φ〉|
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where the last estimate follows from the Polarization Identity.

It follows that U2 ∈ S and thus U2 = B(σ(A)) by Lemma 1.12.

vi) Set U3 := {f ∈ B(σ(A)) | f ≥ 0 ⇒ Φ̃A(f) ≥ 0}, then C(σ(A)) ⊂ U3

by Theorem 1.2. Consider a uniformly bounded sequence (fn) of positive

functions in U3 converging pointwise to g ∈ B(σ(A)). Then g(x) ≥ 0 and for

each ψ ∈H the sequence 〈ψ, Φ̃A(fn)ψ〉 is non-negative and by iv) converges

to 〈ψ, Φ̃A(g)ψ〉, which thus is non-negative. This shows that U3 ⊂ S and

again by Lemma 1.12 we get that Φ̃A(g) is a positve operator for any positive

g ∈ B(σ(A)).

vii) If B ∈ L(H ) commutes with A, then by i) and ii) it commutes

with Φ̃A(p) for any polynomial p on σ(A). Then the assertion follows using

approximation arguments (Exercise 1.35).

viii) Exercise 1.35

�

Remark 1.13 i) We will sometimes use the notation Φ̃A(f) = f(A).

ii) By the construction given above Theorem 1.11, the operator Φ̃A(f)

only depends on the values of f on the spectrum σ(A), i.e. Φ̃A(f) =

Φ̃A(χσ(A)f), where χΩ denotes the characteristic function on the Borel

set Ω.

iii) For Ω ⊂ R, we always consider B(Ω) as the subset of functions in

M(R), the set of measurable functions on R, which are bounded on Ω.
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1.1.3 Projection-valued Measures

We now come to the most important class of functions gained in passing from

the continuous functional calculus to the Borel functional calculus, that is,

the characteristic functions of Borel sets. We have the following Lemma and

Definition.

Definition and Lemma 1.14 (Spectral Projection)

Let A be a bounded self-adjoint operator on a Hilbert space H and let Ω ⊂ R

be a Borel set and χΩ the characteristic function of Ω.

Then ΠΩ := χΩ(A)(= Φ̃A(χΩ)) is an orthogonal projection, called a spectral

projection of A.

Proof. Since χΩ is real and χ2
Ω = χΩ it follows from the fact that Φ̃A is a

∗-homomorphism, that we have Π2
Ω = ΠΩ and Π∗Ω = ΠΩ. �

The following proposition states some properties of the spectral projec-

tions of A.

Proposition 1.15 (Properties of Spectral Projections)

Let H be a Hilbert space and A ∈ L(H ) be self-adjoint. Let B be the Borel-

σ-algebra on R, then the family of spectral projections {ΠΩ |Ω ∈ B} of A

has the following properties:

i) Π∅ = 0 and ΠK = Id for some compact set K ⊂ R.

ii) If Ω =
⋃∞
n=1 Ωn and Ωn ∩ Ωm = ∅ for all n 6= m, then

N∑
n=1

ΠΩn −→ ΠΩ strongly as N →∞.
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iii) ΠΩ1ΠΩ2 = ΠΩ1∩Ω2.

Proof. i) follows from Theorem 1.11 i), since σ(A) ⊂ K for some compact

set K ⊂ R. ii) follows from Theorem 1.11 iv), taking fN =
∑N

n=1 χΩn , iii)

follows from Theorem 1.11ii) together with the fact that χΩnχΩm = χΩn∩Ωm .

�

Properties i) and ii) remind of the properties of a measure. This makes

it reasonable to define:

Definition 1.16 (Projection-valued Measure (Spektralmaß))

A family Π := {ΠΩ |Ω ∈ B} of orthogonal projections on H obeying prop-

erty i) and ii) of Proposition 1.15 is called a bounded (or compactly

supported) projection-valued measure (p.v.m.) (kompakt getragenes

Spektralmaß).

The smallest compact set such that Prop. 1.15,i) holds is called support of

the p.v.m (we write K = supp Π).

From the properties of orthogonal projections, in particular from Propo-

sition 464 it follows that each bounded projection valued measure Π has the

property iii) of Prop. 1.15.

We will now see, how it is possible to integrate a bounded measurable

function with respect to a projection valued measure.

4Proposition 46: Let H be a Hilbert space and A,B be subspaces of H . Let PA and

PB denote the orthogonal projections on A and B respectively. Then A ⊂ B if and only

if ‖PAx‖ ≤ ‖PBx‖ for all x ∈H . In this case PAPB = PBPA = PA.
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The idea is, that if Π is a p.v.m. and ψ, φ ∈H , then

〈ψ,Π. φ〉 : B → C , Ω 7→ 〈ψ,ΠΩφ〉

is an complex measure on B.

Thus we can integrate a function f ∈ B(R) with respect to this measure and

the map

B(R) 3 f 7→ `ψ,φ(f) =

∫
R
f(λ) d〈ψ,Πλφ〉 (1.26)

is a linear functional on B(R). Since as above (see (1.17)) the map (ψ, φ) 7→

〈ψ,Πλφ〉 is sesqulinear, we can, for fixed f , define the sesquilinear form

Bf (ψ, φ) := `ψ,φ(f) on H . Thus again by use of Corollary 1.10, there is

a unique bounded self-adjoint linear operator T (f) on H such that

〈ψ, T (f)φ〉 =

∫
R
f(λ) d〈ψ,Πλφ〉 (1.27)

In fact, the measure 〈φ,Πφ〉 is just the measure µψ,φ associated with T (f)

as constructed in (1.16).

To define
∫
fdΠ as bounded linear operator on H for any f ∈ B(R), we

proceed in three steps (similar to the introduction of the Lebesgue-integral):

Step 1: Let f be a characteristic function, i.e. f = χΩ for some Ω ∈ B. Then

we set
∫
R f dΠ = ΠΩ ∈ L(H ).

Step 2: Let f be a simple function, i.e. f =
∑n

k=1 akχΩk for some ak ∈ C and

Ωk ∈ B. Then we set∫
R
f dΠ =

n∑
k=1

akΠΩk ∈ L(H ) . (1.28)

(and this definition is independent of the representation
∑n

k=1 akχΩk).
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Step 3: Let f be bounded and measurable, i.e. f ∈ B(R), then there exists a

sequence (fn) of simple functions converging uniformly to f . Now we

use that for any simple function s =
∑n

k=1 akχΩk , we have ‖
∫
s dΠ‖L ≤

‖s‖∞. In fact, let φ ∈ H and assume without loss of generality that

the sets Ωk are disjoint, then∥∥∥∥(∫ s dΠ
)

(φ)

∥∥∥∥2

=
∥∥∥∑ akΠΩk(φ)

∥∥∥2

=
∑
‖akΠΩk(φ)‖2

=
∑
|ak|2 ‖ΠΩk(φ)‖2 ≤ sup

k
|ak|2

∑
‖ΠΩk(φ)‖2

= ‖s‖∞
∥∥∥∑ΠΩk(φ)

∥∥∥2

= ‖s‖∞
∥∥Π⋃

Ωk(φ)
∥∥2

≤ ‖s‖∞‖φ‖2.

By Theorem 1.11iv) and since (fn) is a Cauchy sequence w.r.t. ‖.‖∞,

this implies that (
∫
fn dΠ) is a Cauchy sequence in L(H ) and thus has

a limit ∫
f(λ) dΠλ :=

∫
f dΠ = lim

n→∞

∫
fn dΠ (1.29)

which is independent of the approximating sequence (fn).

If ΠK = Id for some compact set K and f ∈ B(K), we set
∫
f dΠ =∫

χKf dΠ (since ΠA = 0 whenever A ∩K = ∅, this definition is independent

of the choice of K).

We have proven the following

Theorem 1.17 (Integration w.r.t. projection valued measures)

If Π = {ΠΩ |Ω ∈ B} is a bounded projection-valued measure with supp Π =

K and f ∈ B(K), then there is a unique operator
∫
f dΠ ∈ L(H ).

32



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

The map f 7→
∫
f dΠ is linear and continuous with ‖

∫
f dΠ‖L ≤ ‖f‖∞.

Moreover, if f is real-valued, then
∫
f dΠ is self-adjoint.

1.1.4 Projection-valued Measure form

Since restricted to compact sets, the polynomials are bounded functions, we

can associate to any given bounded p.v.m. {ΠΩ} the self-adjoint operator

T :=
∫
λ dΠλ ∈ L(H ).

Thus on the one hand we have associated a bounded projection-valued

measure to a bounded self-adjoint operator. On the other hand, we can

associate a bounded self-adjoint operator to a bounded projection-valued

measure.

The central point of this section is to see that these two operations are

in fact inverse to each other.

Theorem 1.18 (Spectral Theorem - p.v.m. form)

There is a one-one correspondence between bounded self-adjoint operators

A ∈ L(H ) and bounded projection valued measures Π = {ΠΩ |Ω ∈ B} given

by

A 7→ {ΠΩ} = {χΩ(A)} (1.30)

{ΠΩ} 7→ A =

∫
λ dΠλ . (1.31)

In more detail, if Π is a bounded p.v.m. on R and A ∈ L(H ) the self-adjoint

operator given by A =
∫
λ dΠλ, then the unique map Φ̃A defined in Theorem
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1.11 is given by

Φ̃A(f) =

∫
f(λ) dΠλ , f ∈ B(σ(A)). (1.32)

If on the other hand A ∈ L(H ) is self-adjoint, then there exists a unique

bounded projection-valued measure Π such that

A =

∫
σ(A)

λ dΠλ (1.33)

and (1.32) holds. In this case, f(A) = Φ̃A(f) for any f ∈ B(σ(A)) is deter-

mined by

〈ψ, f(A)φ〉 =

∫
σ(A)

f(λ) d〈ψ,Πλφ〉 . (1.34)

The formula (1.33) is the generalization of the formula A =
∑∞

n=0 λnΠn

holding for compact operators (see Theorem 1.5). As before, A is composed

by orthogonal projections ΠΩ for Ω ⊂ σ(A), but now in a ”continuous” way,

i.e. the sum is replaced by an integral.

Proof. Step 1:

Let Π be a bounded p.v.m. with supp Π = K ⊂ R compact and define

A :=
∫
λ dΠλ. We have to show that (1.32) holds.

We extend any f ∈ B(σ(A)) to a function on R by setting f = 0 on

R \ σ(A). We then define the map

Ψ : B(R)→ L(H ) , Ψ(f) :=

∫
f(λ) dΠλ , (1.35)

and have to show that

Φ̃A(f) = Ψ(f) for all f ∈ B(σ(A)) .
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This equality follows from the uniqueness statement in Theorem 1.5, if Ψ

satisfies i)- iv).

By Theorem 1.17, Ψ is linear and continuous.

To see that Ψ is multiplicative, we first consider simple functions f =∑n
k=1 akχΩk and g =

∑m
j=1 bjχΩj . Then by (1.28) and (1.35) we have

Ψ(f) ◦Ψ(g) =
n∑
k=1

akΠΩk

( m∑
j=1

bjΠΩj

)
=

n∑
k=1

ak

m∑
j=1

bjΠΩk ◦ ΠΩj

and since χAχB = χA∩B

Ψ(fg) = Ψ
( n∑
k=1

ak

m∑
j=1

bjχΩk∩Ωj

)
=

n∑
k=1

ak

m∑
j=1

bjΠΩk∩Ωj .

Thus using ΠA◦ΠB = ΠA∩B (which holds for any p.v.m. as mentioned below

Definition 1.16) we have Ψ(f) ◦ Ψ(g) = Ψ(fg). For general f, g ∈ B(R) we

use approximation with step functions and the continuity of Ψ.

That Ψ is involutive follows in a similar way (approximate f by simple func-

tions and use (aΠΩ)∗ = āΠΩ).

For the convergence property in iv) use (1.27) and dominated convergence

for the integral.

Thus it remains to prove i). Since we consider 1 as χσ(A), by definition

Ψ(1) = Id is equivalent to Πσ(A) = Id and this immediately implies Ψ(id) = A

by the definition of A above.

To show Πσ(A) = Id consider an interval (a, b] in R such that Π(a,b] = Id

(this exists by Proposition 1.15) and let µ ∈ ρ(A). The aim is now to show

that ΠU = 0 for some neighbourhood U of µ. For this next step we need the

following lemma.
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Lemma 1.19

Let X be a Banach space. Then the set I(X) of invertible bounded linear

operators on X is an open subset of L(X).

Proof. Assume that T ∈ I(X). We show that B ∈ I(X) whenever ‖A−B‖ <

δ for some δ > 0 sufficiently small. We write

B = T − (T −B) = T
(
Id−T−1(T −B)

)
.

Since T is invertible, it suffices to show that Id−T−1(T−B) is invertible. By

Lemma 79 this holds if ‖T−1(T−B)‖ < 1 which is true if ‖T−B‖ < ‖T−1‖−1.

�

We come back to the proof of Theorem 1.18. Since µ was assumed to

be in the resolvent set, (µ Id−A) is invertible. Thus by Lemma 1.19, there

exists some δ > 0 such that for any S ∈ L(H )

‖S − (µ Id−A)‖ ≤ δ =⇒ (1.36)

S is invertible and ‖S−1‖ ≤ C := ‖(µ Id−A)−1‖+ 1.

(for the last estimate choose δ < ‖T−1‖−1/2 in the proof of Lemma 1.19).

We can assume δ = b−a
N

and δ < 1
C

and we set ak := a + kδ for k =

0, . . . , N to get a disjoint partition of (a, b]. Then the step function s :=∑N
k=1 akχ(ak−1,ak] approximates id(x) = x on (a, b] in the sense that ‖s −

id ‖∞ = δ. Then by (1.28) and Theorem 1.17∥∥A− N∑
k=1

akΠ(ak−1,ak]

∥∥ =
∥∥A− ∫ s dΠ

∥∥ =
∥∥∫ (id−s) dΠ

∥∥ ≤ δ . (1.37)

Since by the assumption on the interval and Proposition 1.15 we have

N∑
k=1

Π(ak−1,ak] = Π(a.b] = Id .
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Thus (1.37) implies (by adding zero)

∥∥(µ Id−A)−
N∑
k=1

(µ− ak)Π(ak−1,ak]

∥∥ ≤ δ .

From (1.36) it follows that S :=
∑N

k=1(µ − ak)Π(ak−1,ak] is invertible and

‖S−1‖ ≤ C.

But on the other hand ‖Sφ‖ ≥ ‖φ‖ inf{|µ−ak| |Π(ak−1,ak] 6= 0} and thus5

‖S−1‖ ≤ sup{|µ− ak|−1 |Π(ak−1,ak] 6= 0}.

This implies Π(ak−1,ak] = 0 for |µ − ak| < 1
C

. Therefore we have shown that

for any µ ∈ ρ(A) there exists a neighbourhood U of µ such that ΠU = 0.

Consider now a compact set K ⊂ ρ(A). As shown above, for each µ ∈ K

there exists a neighbourhood Uµ such that ΠUµ = 0. These neighbourhoods

are a covering of K and since K is compact, there exists a finite subcover

K ⊂
⋃m
k=1 Uµk . Thus ΠK = 0 by Proposition 1.15. Since for each ψ ∈H the

map `ψ,ψ defined in (1.26) is a positive linear functional on C0(R), it follows

from Theorem 1.7, i) that the (positive) measure Ω 7→ 〈ψ,ΠΩψ〉 is regular.

Thus

〈ψ,Πρ(A)ψ〉 = sup{〈ψ,ΠKψ〉 |K ⊂ ρ(A) compact } = 0 , ψ ∈H . (1.38)

5Let X,Y be normed spaces, S : X → Y be a linear map so that there exists a constant

m > 0 with ‖Sx‖ ≥ m‖x‖ for all x ∈ X. Then S : X → RanS is bijective and the inverse

S−1 : RanS → X is bounded with ‖S−1‖ ≤ m−1, since for all y = Sx ∈ RanS

‖S−1y‖
‖y‖

=
‖S−1Sx‖
‖Sx‖

≤ ‖S
−1Sx‖
m‖x‖

=
1

m
.
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Since by assumption ΠΩ is self-adjoint for each Ω ∈ B, it follows from Lemma

696 that Πρ(A) = 0 and therefore Πσ(A) = Id.

Step 2:

Let A ∈ L(H ) be self-adjoint and let Π be the family of spectral pro-

jections of A given by ΠΩ = Φ̃A(χΩ) as in Definition 1.14. We then have to

show that the operator B :=
∫
λdΠλ is equal to A.

By Proposition 1.15 the projection valued measure Π given by the family

of spectral projections is compactly supported (with supp Π ⊂ σ(A)). Fix

ε > 0 and choose a simple function s =
∑m

k=1 ckχΩk on σ(A) such that

‖ id−s‖∞ ≤ ε. Then for Ψ given in (1.35) and Φ̃A given by Theorem 1.11 it

follows from Theorem 1.11, Theorem 1.17 and the definition of Π that

‖A−B‖ ≤ ‖A− Φ̃A(s)‖+ ‖Φ̃A(s)−Ψ(s)‖+ ‖Ψ(s)−B‖

≤ ‖ id−s‖∞ +
∥∥∥ m∑
k=1

ck
(
Φ̃A(χΩk)− ΠΩk

)∥∥∥+ ‖ id−s‖∞

≤ ε+ 0 + ε.

Since ε is arbitrarily small, this proves the assertion.

�

As we have seen in the above proof, the spectral projection of the resolvent

set is zero, which implies that the support is a subset of the spectrum. We

even have the following:

6Lemma 69: Let H be a Hilbert space and T ∈ L(H ) self-adjoint, then ‖T‖ =

sup‖x‖=1〈x, Tx〉.
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Corollary 1.20

Let A ∈ L(H ) be self-adjoint and let Π be the family of spectral projections

of A, then supp Π = σ(A).

Thus λ ∈ ρ(A) if and only if there exists some neighbourhood U of λ such

that ΠU = 0.

Proof. ”⊂”: This follows at once from (1.38).

”⊃”: Let U be a neighbourhood of λ such that ΠU = 0. Set

f(t) :=

(λ− t)−1 , if t /∈ U

0 , otherwise.

Then f and g(t) := (λ− t) are measurable and bounded on σ(A) and fg =

χUc . Thus

f(A)(λ Id−A) = f(A)g(A) = (fg)(A) = χUc(A) = ΠUc = Id

where the last equality holds because ΠU = 0. Similar it can be shown that

(λ Id−A)f(A) = Id, thus (λ Id−A) is invertible, proving λ ∈ ρ(A). �

Example 1.21

On H = L2([0, 1]) consider for f ∈ C([0, 1],R) the self-adjoint multiplication

operatorMfx(t) = f(t)·x(t). Then the spectrum σ(Mf ) is given by f([0, 1]),

the range of f .

In fact, if µ /∈ f([0, 1]), then µ− f(t) 6= 0 for all t ∈ [0, 1] and the inverse

operator M−1
f is given by Mg with g(t) = (µ− f(t))−1.

On the other hand, if µ ∈ f([0, 1]) then the set Ωµ := {t ∈ [0, 1] | f(t) =

µ} is not empty. Moreover, χΩµ, the characteristic set of Ωµ, satisfies the
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equation

MfχΩµ(t) = f(t)χΩµ(t) = µχΩµ .

Thus µ is an eigenvalue ofMf with eigenfunction χΩµ, if χΩµ is not the zero

function in L2, i.e. if the Lebesgue-measure of Ωµ is not zero.

Now assume that µ ∈ f([0, 1]) is not an eigenvalue of Mf and thus

(µ Id−Mf ) is injective. If µ /∈ σ(Mf ), then (µ Id−Mf ) is bijective, i.e. for

any y ∈ L2([0, 1]) there exists x ∈ L2([0, 1]) such that

(µ Id−Mf )x = y and thus x(t) =
1

µ− f(t)
y(t).

Since f is continuous we have |f(t) − f(t0)| < ε for |t − t0| < δ. Since the

term (µ− f(t))−1 converges to ∞ as t→ t0 it follows that x in not in L2 for

any y ∈ L2.

Therefore we have shown that σ(Mf ) = f([0, 1]) and

σp(Mf ) = {µ ∈ f([0, 1]) |Ωµ has positive Lebesgue-measure}.

Since Mf is self-adjoint, it has no residual spectrum.

Now consider the operator Mid (with id(t) = t), then

σ(Mid) = σc(Mid) = [0, 1]

and

〈x,Midy〉 =

∫ 1

0

x̄(t)ty(t) dt =

∫ 1

0

λ d〈x,Πλy〉

where Π denotes the spectral projection ofMid. Thus ΠΩx = χΩ∩[0,1]x and the

measure d〈x,Πλy〉 is absolutely continuous with respect to Lebesgue-measure

with Radon density x̄y (see (1.13)).
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If, more general, f is differentiable and f ′(t) > 0, then f is invertible,

f([0, 1]) is an interval and Mf has no eigenvalues. We then have (using the

substitution λ = f(t))

〈x,Mfy〉 =

∫ 1

0

x̄(t)f(t)y(t) dt =

∫ f(1)

f(0)

λ ·
(
x̄y
)
◦ f−1(λ)(f−1)′(λ) dλ

=

∫ f(1)

f(0)

λ d〈x,Πλy〉 .

1.1.5 Multiplication Operator Form

In this section, we will show that each bounded self-adjoint operator on a

Hilbert space is unitary equivalent to a multiplication operator.

We start with the notion of cyclic vectors.

Definition 1.22

Let H be a Hilbert space and A ∈ L(H ) self-adjoint. A vector ψ ∈ H is

called a cyclic vector for A :⇐⇒ Finite linear combinations of the elements

{Anψ}∞n=0 are dense in H .

If an operator A has a cyclic vector, then it is unitary equivalent to Mid

introduced in Example 1.21 on some appropriate Hilbert space, as is shown

in the following lemma.

Lemma 1.23

Let A ∈ L(H ) be a self-adjoint operator with cyclic vector ψ ∈ H . We

denote by µψ the spectral measure of A associated to ψ, i.e. such that

〈ψ, Φ̃A(f)ψ〉 =

∫
σ(A)

f(λ) dµψ(λ) , f ∈ B(σ(A)), (1.39)
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(in the notation introduced in (1.16) we thus set µψ := µψ,ψ). Then there

exists a unitary operator

U : H −→ L2(σ(A), dµψ) such that
(
UAU−1f

)
(λ) = λf(λ) µψ − a.e.

(1.40)

Proof. For f ∈ C(σ(A)) and ΦA given in Theorem 1.2, we define U on the

vectors ΦA(f)ψ ∈H by

U
(
ΦA(f)ψ

)
= f.

To see that U is well-defined we remark that

‖ΦA(f)ψ‖2 = 〈ψ, (ΦA(f))∗ΦA(f)ψ〉 = 〈ψ,ΦA(f̄f)ψ〉

=

∫
σ(A)

|f |2 dµψ .

Thus ΦA(f)ψ = ΦA(g)ψ if and only if f = g µψ-almost everywhere. This

shows that

U : X := {ΦA(f)ψ | f ∈ C(σ(A))} −→ L2(σ(A), dµψ)

is well-defined and norm-preserving. Moreover, U is linear since ΦA is lin-

ear. Since ψ was assumed to be cyclic, X = H . Therefore using the

BLT-Theorem, we can extend U to an isometric linear map of H into

L2(σ(A), dµψ).

Since C(σ(A)) is dense in L2(σ(A), dµψ) and the range of an isometry is

closed, it follows that U is surjective and thus unitary.

Finally, if f ∈ C(σ(A)), we get using ΦA(id) = A, the multiplicativity of

ΦA and the definition of U(
U ◦ A ◦ U−1f

)
(λ) =

(
U ◦ A ◦ ΦA(f)ψ

)
(λ) =

(
U ◦ ΦA(id ·f)ψ

)
(λ)
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=
(
id ·f

)
(λ) = λ · f(λ).

By continuity this equality extends to L2(σ(A), dµψ) and thus proves (1.40).

�

Unfortunately, not all self-adjoint operators have cyclic vectors (Exercise

1.38). But the following lemma shows that there exist cyclic vectors for

subspaces and H is a direct sum7 of these.

Lemma 1.24

Let H be a separable Hilbert space and A ∈ L(H ) self-adjoint. Then there

exists a direct sum decomposition H =
⊕N

n=1 Hn
8 with N ∈ N or N = ∞

so that

i) A leaves each Hn invariant, that is, ψ ∈Hn implies Aψ ∈Hn.

7Suppose H1 and H2 are Hilbert spaces. Then the set of pairs (x, y) with x ∈H1 and

y ∈H2 is a Hilbert space with the inner product

〈(x1, y1), (x2, y2)〉 = 〈x1, y1〉H1
+ 〈x2, y2〉H2

.

This space is called direct sum of the Hilbert spaces H1 and H2 and is denoted by

H1⊕H2. For a given Hilbert space H with closed subspace M , we have the decomposition

H = M ⊕M⊥.

Analogously to the direct sum of two spaces, we can construct countable direct sums

of Hilbert spaces, starting with a sequence (Hn)∞n=1. Then the direct sum
⊕∞

n=1 Hn is

given by the set of sequences (xn)∞n=1 such that xn ∈Hn and
∑∞
n=1 ‖xn‖2Hn

<∞.
8This means that each x ∈H can be written uniquely as x =

∑N
n=1 xn where xn ∈Hn

and ‖x‖2 =
∑
‖xn‖2. In other words, Hn are pairwise orthogonal closed subspaces and

the span of these is dense in H . We identify the elements x ∈ H with the sequences

(xn)Nn=1.
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ii) For each n, there is a ϕn ∈Hn, which is cyclic for A|Hn, i.e.

Hn = {ΦA(f)ϕn | f ∈ C(σ(A))}.

Proof. We use the Lemma of Zorn9. Let H denote the set of at most count-

able families (Hi) of pairwise orthogonal closed subspaces Hi of H satisfying

i) and ii). Then H is not empty since ({0}) ∈ H. Moreover, H is partially

ordered by inclusion. Let C be a chain in H and set h0 :=
⋃
k∈C k. Then

h0 is an upper bound of C. To use Zorn’s Lemma, we have to show that

h0 ∈ H.

If h0 would contain a non-countable number of different Hi, then (since

the Hi where assumed to be pairwise orthogonal) H would have a non-

countable orthonormal system, which would contradict the separability of

H . Therefore h0 contains only countable many elements and is thus an

element of H. This shows that C has an upper bound in H.

By Zorn’s Lemma, this implies that H has a maximal element h = (Hi) ∈

H, which includes {0}. Now let H̃ := span
⋃

Hi∈h Hi and assume that H̃ 6=

H . Then there exists some x ∈ H̃ ⊥ \ {0} ⊂ H . Set V = span{Anx |n ≥

0}, then V is invariant under A and x is cyclic for A|V . But this implies

h ⊂ h ∪ {V } and by the maximality of h we get V = {0}. Then x = 0 in

9A set P together with a relation ≤ is called partially ordered set, if for all x, y, z ∈ P

we have a) x ≤ x (reflexive), b) x ≤ y and y ≤ z imply x ≤ z (transitive), c) x ≤ y

and y ≤ x imply x = y (antisymmetric). A subset C ⊂ P is called chain, if C is linearly

ordered, i.e. x ≤ y or y ≤ x for all x, y ∈ C.

Zorn’s Lemma (1935): If every non-empty chain in a non-empty partially ordered set

(P,≤) has an upper bound in P , then P has a maximal element a, i.e. for all x ∈ P we

have a ≤ x implies a = x.
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contradiction to the assumption. Thus H̃ = H , which proves the existence

of the decomposition. �

Lemma 1.23 and Lemma 1.24 can be combined to get the following mul-

tiplication operator form of the spectral theorem.

Theorem 1.25

Let H be a separable Hilbert space and A ∈ L(H ) self-adjoint. Then there

exist measures {µn}Nn=1 with N ∈ N or N = ∞ on σ(A) and a unitary

operator

U : H −→
N⊕
n=1

L2(R, dµn)

such that for any g = (g1, . . . gN) ∈
⊕N

n=1 L
2(R, dµn)(

UAU−1g
)
n
(λ) = λgn(λ) µn − a.e. for all n = 1, . . . , N . (1.41)

This realization of A is called spectral representation of A.

Proof. By Lemma 1.24 we get a direct sum decomposition H =
⊕N

n=1 Hn

into A-invariant subspaces Hn on which A has a cyclic vector ϕn. Thus by

Lemma 1.23 there exist for each n = 1, . . . , N unitary maps

Un : Hn −→ L2(R, dµϕn) such that UnAU
−1
n gn(λ) = λgn(λ) µϕn − a.e.

(here we use that U−1
n gn ∈ Hn by definition and AU−1

n gn ∈ Hn since Hn is

A-invariant).

We identify φ ∈ H with the tuple (φ1, . . . , φN) ∈
⊕N

n=1 Hn and set

µn := µϕn and

U : H −→
N⊕
n=1

L2(R, dµn) , Uφ = U(φ1, . . . , φN) := (U1φ1, . . . , UNφN).
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Then

U−1g =
(
U−1

1 g1, . . . , U
−1
N gN

)
for any g = (g1, . . . gN) ∈

⊕N
n=1 L

2(R, dµn) and

(
UAU−1g

)
n
(λ) =

(
UA(U−1

1 g1, . . . , U
−1
N gN)

)
n
(λ)

=
((
U1AU

−1
1 g1, . . . , UNAU

−1
N gN

))
n
(λ)

= UnAU
−1
n gn

(
λ) = λgn(λ) µn − a.e.

�

Remark that each measure µn has support on the spectrum ofAn := A|Hn ,

thus L2(R, dµn) = L2(σ(An), dµn) (two functions are equal in L2(µ) if they

only differ on a set of measure zero, i.e. in our case only outside of σ(An)).

This theorem shows that every bounded self-adjoint operator is in fact a

multiplication operator on a suitable measure space.

Corollary 1.26

Let H be a separable Hilbert space and A ∈ L(H ) self-adjoint. Then there

exists a finite measure space (M,µ), a bounded function F on M and a

unitary map

U : H −→ L2(M,dµ) so that
(
UAU−1g

)
(m) = F (m)g(m) . (1.42)

Proof. Choose a decomposition H =
⊕N

n=1 Hn in invariant subspaces as

given in Lemma 1.24 and cyclic vectors ϕn ∈Hn such that ‖ϕn‖ = 2−n. Let

M =
⋃̇N

n=1R be the disjoint union of N copies of R (this can be realized as a

subspace of R2 given by M =
⋃
n(R×{n}), we denote the elements of M by

46



1.1. SPECTRAL THEOREM FOR BOUNDED OPERATORS

m = (λ, n) for λ ∈ R and n ∈ {1, . . . , N}). Let Σ := {Ω ⊂M |Ω∩R is Borel}

and define the measure µ : Σ→ [0,∞] by

µ(A) :=
N∑
n=1

µn(A ∩ R)

where µn, n = 1, . . . , N are the measures given in Theorem 1.25, i.e. the

restriction of µ to the n-th copy of R is just µn. Then µ is finite, because

µn = µϕn was determined by (1.39) and thus (for f(t) = 1, using ΦA(1) = Id)

µ(M) =
N∑
n=1

µn(R) =
N∑
n=1

∫
R
dµϕn =

N∑
n=1

〈ϕn, ϕn〉

=
N∑
n=1

‖ϕn‖2 =
N∑
n=1

2−2n <∞ .

Then the map V :
⊕N

n=1 L
2(R, dµn) −→ L2(M,dµ) given by

(
V g
)
(λ, n) =

(
V (g1, . . . , gN)

)
(λ, n) := gn(λ)

is unitary (Exercise 1.39). Thus if we denote the unitary map given in The-

orem 1.25 by Ũ , the map U := V ◦ Ũ satisfies (1.42) for F (λ, n) = λ for all

n = 1, . . . , N (Exercise 1.40). �

Remark 1.27

Corollary 1.26 essentially is a rigorous form of the Dirac notation used in

physics. Using the unitary transform U , we get for ψ, ϕ ∈ L2(M,dµ)

〈ψ, ϕ〉 =
∑
n

∫
ψ(λ, n)ϕ(λ, n) dµn

〈ψ,Aϕ〉 =
∑
n

∫
λψ(λ, n)ϕ(λ, n) dµn .
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Example 1.28 i) Let A be compact and self-adjoint, then by the Hilbert-

Schmidt-Theorem 1.4 there is a complete set of eigenvectors {φj}∞j=1

with Aφj = λjφj. In this case µ =
∑∞

j=1 2−jδ(t − λj) works as a

spectral measure if there is no repeated eigenvalue.

ii) Let H = `2(Z,C) and A = R+L, where L is the left-shift operator (i.e.

(La)n = an+1) and R = L∗ is the right-shift operator (with (Ra)n =

an−1).

To represent A as multiplication operator, use

U : `2(Z,C)→ L2([0, 1]) given by U(an) =
∞∑

n=−∞

ane
2πint .

Then ULU−1 is multiplication by e−2πit and URU−1 is multiplication

by e+2πit. Therefore UAU−1 is multiplication by 2 cos(2πt). A can be

represented as a multiplication operator by t on L2(R, dµ1)⊕L2(R, dµ2),

where µ1, µ2 have support in [−2, 2] (Exercise 1.41).

We now introduce another decomposition of the spectrum of an operator

additional to the one given in Definition 1.1, using the notion of spectral

projections.

In Corollary 1.20 we already saw that the spectrum of a self-adjoint oper-

ator A is equal to the support of the associated family of spectral projections

and that λ is in the resolvent set of A, if and only if ΠU = 0 for some neigh-

bourhood U of λ. This implies that λ ∈ σ(A) if and only if ΠU 6= 0 for all

neighbourhoods of λ.

Definition 1.29

Let H be a Hilbert space, A ∈ L(H ) self-adjoint and Π = {ΠΩ} the associ-

ated family of spectral projections.
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i) We say λ ∈ σ(A) is in the essential spectrum σess(A) of A :⇐⇒

dim Ran Π(λ−ε,λ+ε) =∞ for all ε > 0.

ii) We say λ ∈ σ(A) is in the discrete spectrum σdisc(A) of A :⇐⇒

dim Ran Π(λ−ε,λ+ε) <∞ for some ε > 0.

Theorem 1.30

The essential spectrum of a self-adjoint bounded operator is always closed.

Proof. Let λn → λ with λn ∈ σess(A). Let ε > 0 given, then (λn−δ, λn+δ) ⊂

(λ−ε, λ+ε) for some n ∈ N and δ > 0. Thus the range of Π(λ−ε,λ+ε) is infinite

dimensional. This shows that λ is an element of the essential spectrum. �

Theorem 1.31

λ ∈ σdisc(A) if and only if λ is an isolated point of σ(A) and λ is an eigenvalue

of finite multiplicity.

Proof. ⇒: If λ ∈ σdisc(A), then there exists some ε0 such that Π(λ−ε0,λ+ε0) is

a projector of finite range independent of ε for all ε < ε0. This is actually

the projector Π{λ} and we observe that Π(λ,λ+ε0) = 0 and Π(λ−ε0,λ) = 0. This

shows that λ is an isolated point in σ(A).

If λ ∈ σ(A) is an isolated point, the spectral representation of A shows that

if x = Π{λ}x for some x 6= 0, then Ax = λx, thus λ is an eigenvalue of finite

multiplicity.

⇐: If λ is isolated, then Π(λ−ε,λ+ε) = Π{λ} for ε small enough. Since λ is of

finite multiplicity, the dimension of Π{λ} is finite. �
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1.1.6 Exercises

Exercise 1.32 (Continuous Functional Calculus for compact

operators)

Let H be a Hilbert space, A ∈ K(H ) be a compact self-adjoint operator.

Let (λn)n≥1 denote the non-zero eigenvalues of A and Πn the orthogonal

projections on the associated eigenspaces. Denote by Π0 the orthogonal pro-

jection to the kernel of A (i.e. to the eigenspace ot λ0 = 0).

Show that the map

C(σ(A)) 3 f 7→ Ψ(f) :=
∞∑
n=0

f(λn)Πn

has the properties i), ii) and iii) of the map ΦA given in Theorem 1.2.

Exercise 1.33 (Positive linear functional)

Let X, Y be compact topological spaces and let Z := L(C(X), C(Y )) be the set

of linear (not necessarily bounded) operators from C(X) to C(Y ). Here C(X)

and C(Y ) are the sets of continuous complex valued functions on X and Y

respectively.

We call T ∈ Z positivity preserving, if T maps positive functions to positive

functions, i.e.

f(x) ≥ 0 for all x ∈ X =⇒ Tf(y) ≥ 0 for all y ∈ Y.

i) Prove that each positivity preserving operator T ∈ Z is automatically

continuous and ‖T‖ = ‖T1‖∞, where 1 is the constant function with

value 1 (i.e. 1(x) = 1).

ii) Let (Sn)n∈N be a family of linear operators in Z such that Sn+1− Sn is

positivity preserving for each n ∈ N.
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Prove that (Sn)n∈N converges in operator norm if and only if (Sn1)n∈N

converges in sup-norm (here again 1 is the constant function 1(x) = 1).

Exercise 1.34 (Proof Lemma 1.12)

Let M be a compact subset of C and consider the system S of all sets S such

that

i) C(M) ⊂ S ⊂ B(M)

ii) for any sequence (fn) in S(
sup
n
‖f‖∞ <∞ and f(t) := lim

n→∞
fn(t) exists for all t ∈M

)
=⇒ f ∈ S

Set V :=
⋂
S∈S S.

Show that αg ∈ V for all α ∈ C and g ∈ V .

Exercise 1.35 (Spectral Theorem - Functional Calculus form)

Let H be a Hilbert space and A ∈ L(H ) self-adjoint. Let Φ̃A : B(σ(A)) →

L(H ) be determined by

B(σ(A)) 3 g 7→ 〈ψ, Φ̃A(g)ϕ〉 =

∫
σ(A)

g(λ) dµψ,ϕ(λ)

using Corollary 1.10 (or the Riesz Lemma 1.9).

Here for any ψ ∈ H fixed, the measure µψ,ϕ is determined via the Riesz-

Markov-Theorem (Theorem 1.7) by the bounded linear form on C(σ(A)) given

by

`ψ,ϕ(f) = 〈ψ,ΦA(f)ϕ〉 =

∫
σ(A)

f(λ) dµψ,ϕ(λ) .

Show the following statements.
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i) Φ̃A is an algebraic *-homomorphism.

ii) If BA = AB, then Φ̃A(f)B = BΦ̃A(f).

iii) If f is real-valued, then Φ̃A(f) is self-adjoint.

Exercise 1.36 (Invertible Operators)

Let X be a Banach space. Show the following statements.

i) Let S ∈ L(X) and µ ∈ ρ(S), then

‖(µ Id−S)−1‖ ≥ 1

dist(µ, σ(S))
(1.43)

ii) If X is a Hilbert space and S in i) is self-adjoint, then equality holds

in (1.43).

iii) The set I(X) of invertible bounded linear operators on X is an open

subset of L(X).

Exercise 1.37 (Analytical Functional Calculus)

Let X be a Banach space and S ∈ L(X). Consider the power series f(z) =∑∞
n=0 anz

n and assume that the radius of convergence is larger than the spec-

tral radius r(S) of S. Show the following statements.

i) The sequence f(S) :=
∑∞

n=0 anS
n converges in L(H ).

ii) If g(z) =
∑∞

n=0 bnz
n is another power series with radius of convergence

> r(S), then (fg)(S) = f(S)g(S).

iii) The spectral mapping theorem holds, i.e. σ(f(S)) = f(σ(S)).
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iv) If S is self-adjoint and X is a Hilbert space, then operator f(S) defined

in i) and ΦS(f) coincide.

Exercise 1.38 (Cyclic vectors)

Prove that a self-adjoint operator on a finite dimensional space has a cyclic

vector if and only if it has no repeated eigenvalue. Construct in this case the

unitary map given in Lemma 1.23.

Exercise 1.39 (Multiplication operator)

Let µn, n = 1, . . . N (for N ∈ N or N =∞) be finite regular Borel-measures

on R. Let M be given by M =
⋃N
n=1(R × {n})). We denote the elements

of M by m = (λ, n) for λ ∈ R and n ∈ {1, . . . , N}. Set Σ := {Ω ⊂

M |Ω ∩ R × {n} is Borel for each n ∈ {1, . . . N}} and define the measure

µ : Σ → [0,∞] by µ(A) :=
∑N

n=1 µn(An) where we set An = A ∩ (R × {n}).

Show that the map V :
⊕N

n=1 L
2(R, dµn) −→ L2(M,dµ) given by

(
V g
)
(λ, n) =

(
V (g1, . . . , gN)

)
(λ, n) := gn(λ)

is bijective and isometric.

Exercise 1.40 (Multiplication operator)

Let H be a separable Hilbert space and A ∈ L(H ) self-adjoint and let U :

H →
⊕N

n=1 L
2(R, dµn) be a unitary operator as described in Theorem 1.22,

i.e. such that

(
UAU−1g

)
n
(λ) = λgn(λ) µn − a.e. for all n = 1, . . . , N

for any g = (g1, . . . gN) ∈
⊕N

n=1 L
2(R, dµn).

Let V :
⊕N

n=1 L
2(R, dµn) −→ L2(M,dµ) be the unitary map given in Exercise
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1.39. Show that for any g̃ ∈ L2(M,dµ) (using the notation m = (λ, n) ∈M)

(
V UAU−1V −1g̃

)
(λ, n) = λg̃(λ, n) µ− a.e. .

Exercise 1.41 (Right and left shift)

Let H = `2(Z,C) and A = R + L, where L is the left-shift operator (i.e.

(La)n = an+1) and R is the right-shift operator (with (Ra)n = an−1). Set

U : `2(Z,C)→ L2([0, 1]) given by U(an) =
∞∑

n=−∞

ane
2πint .

i) Show that R = L∗ and thus A is self-adjoint.

ii) Show that U is a unitary operator with inverse

(
U−1f

)
n

=

∫ 1

0

e−2πintf(t) dt .

iii) Show that ULU−1 and URU−1 are multiplication by e−2πit and e+2πit

respectively.

iv) Conclude that UAU−1 is multiplication by 2 cos(2πt).

v) Find measures µ1, µ2 on R supported in [−2.2] and a unitary map

V : L2([0, 1])→ L2(R, dµ1)⊕ L2(R, dµ2)

such that Ũ := V ◦ U : H → L2(R, dµ1)⊕ L2(R, dµ2) satisfies(
ŨAŨ−1(g1, g2)

)
(s) = s · (g1, g2)(s) .

Exercise 1.42 (Spectrum of the adjoint operator)

Let X be a Banach space and T ∈ L(X) with adjoint T ′. Show
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i) RanT = (KerT ′)⊥, where we set for any Y ⊂ X∗

Y⊥ := {x ∈ X | ∀` ∈ Y : `(x) = 0} .

ii) σ(T ) = σ(T ′)

iii) Rλ(T
′) = Rλ(T )′ for all λ ∈ ρ(T ).

Let H be a Hilbert space and T ∈ L(H ) with adjoint T ∗. Show

i) KerT ∗ = (RanT )⊥ and KerT = (RanT ∗)⊥

ii) σ(T ∗) = {λ ∈ C | λ̄ ∈ σ(T )}

iii) Rλ(T
∗) = Rλ̄(T )∗.
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Chapter 2

Unbounded operators on

Hilbert spaces

2.1 Domains, graphs, adjoints and spectrum

Many of the most important operators which occure in applications are not

bounded. We already saw (Hellinger-Toeplitz-Theorem) that an operator A

on a Hilbert space H , which satisfies the relation 〈x,Ay〉 = 〈Ax, y〉 and has

domain H is necessarily bounded.

This already suggests, that unbounded operators are usually not defined

everywhere on H , but only on some linear subset of H . To identify an

unbounded operator, we have to specify both its domain and how it acts on

that subspace.
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2.1.1 Symmetric and closed operators, extensions

Definition 2.1

Let H be a Hilbert space.

i) A (linear) operator A : H ⊃ D(A) −→H is a linear map defined on

D(A), its domain, which is a (possibly not closed) subspace of H . We

say that A is densely defined in H , if D(A) is dense in H .

ii) An operator S : D(S) −→H is called extension of A : D(A) −→H ,

if D(A) ⊂ D(S) and Sx = Ax for all x ∈ D(A). We write A ⊂ S.

iii) Two operators A and S are equal, A = B, if A ⊂ S and S ⊂ A.

iv) An operator A : H ⊃ D(A) −→H is called symmetric :⇐⇒

〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A) .

Example 2.2 i) Position operator:

In classical mechanics, a particle is represented by its position x(t) ∈ R3

at time t ∈ R and its momentum or impulse ξ(t) = mẋ(t) (where

m denotes the mass of the particle and ẋ(t) = d
dt
x(t)). A classical

observable is then a real smooth function on the phase space R3 × R3

and its value at the point (x(t), ξ(t)) gives information about the particle

at time t.

In quantum mechanics, the state of a particle in space at time t ∈ R is

described by its wave function ψt ∈ H = L2(R3), which is normalized

(i.e. ‖ψt‖L2 = 1). Here |ψt(x)|2 is interpreted as a probability density:

the probability of the presence of the particle at the point x at time t.
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The average position of the particle at the time t is then the expectation

value of the random variable x with respect to this density:

〈x〉ψt := 〈ψt, xψt〉L2(R3) =
(
〈ψt, xjψt〉L2(R3)

)
j=1,2,3

.

So let H = L2(R3) and D(T ) := {ψ ∈ L2(R) |
∫
R x

2|ψ(x)|2 dx < ∞}.

For ψ ∈ D(T ) define (Tψ)(x) = xψ(x).

It is clear that T is unbounded (choose ψn = χ[n,n+1], then ‖ψn‖ = 1

and we see that ‖Tψn‖ ≥ n). Moreover T is symmetric.

If we take φ /∈ D(T ), then xφ(x) also has sense as a function, but this

function is not in H anymore. The chosen domain is the largest one

which is possible to get an operator with values in H .

ii) Momentum operator:

To define the average momentum as described above for the position,

we need to use an analogy with plane waves in optics given by functions

of the type

ϕ(t, x) := Aei(k·x−ωt)

where ν := ω
2π
∈ R describes the frequency of the wave and k ∈ R3 is

the so called wave vector, giving the direction in which the wave propa-

gates (ϕ is independent of x on any plane, on which x · k is constant).

Thus the momentum should have the same direction as k. Using the

wave-particle-duality and the De Broglie relation, which relates the mo-

mentum of a particle to its wavelength, gives ξ = ~k, where ~ = h
2π

is

the reduced Planck constant. Since

∇xϕ(t, x) = ikϕ(t, x) and ϕ(t, x) = Ae−i(k·x−ωt) =
|A|2

ϕ(x, t)
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we therefore get

ξ =
~
i

(
∇xϕ(t, x)

)ϕ(t, x)

|A|2
.

This relation provides a way to get by analogy the average impulse of

the quantum particle described by the wave function ψt: Viewing |A|2

as a normalization factor, we set

〈ξ〉ψt :=

〈
ψt,

~
i
∇xψt

〉
L2(R3)

=

(〈
ψt,

~
i

∂

∂xk
ψt

〉
L2(R3)

)
k=1,2,3

.

As above we consider the Hilbert space H = L2(R3). The opera-

tor M given by Mφ(x) = i∇xφ(x) on its domain D(M) := {φ ∈

C1(R3) | |∇φ| ∈ L2(R3)} is then a symmetric unbounded operator.

iii) The operator S on L2([0, 1]) with D(S) = {φ ∈ C1([0, 1]) |φ(1) = φ(0)}

and Sφ = i d
dt
φ is an unbounded operator and an extension of T with

D(T ) = {φ ∈ C1([0, 1]) |φ(1) = φ(0) = 0} and Tφ = i d
dt
φ.

Both operators are symmetric, which follows from integration by parts,

since the boundary terms cancel.

We now come to the definition of a closed operator. The notion of a

graph of a map T : X → Y for normed vector spaces X, Y was already used

in Theorem 57 (Closed Graph Theorem)1

Definition 2.3

Let H be a Hilbert space and A be an operator in H with domain D(A).

1 Let X,Y be normed vector spaces and T : X → Y , then the graph of T is defined

as Γ(T ) := {(x, y) ∈ X × Y | y = Tx}.

Closed Graph Theorem: Let T : X → Y be linear and X,Y be Banach spaces, then T is

continuous if and only if Γ(T ) is closed.
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i) The graph of A is the set of pairs Γ(T ) := {(x,Ax) |x ∈ D(A)}. It is

a subset of H ×H , which is a Hilbert space with inner product

〈(x1, y1), (x2, y2)〉 = 〈x1, y1〉+ 〈x2, y2〉. (2.1)

ii) A is called a closed operator if Γ(A) is a closed subset of H ×H .

iii) A is called closable if A has a closed extension. In this case, A has a

smallest closed extension, called its closure, which is denoted by A.

Using the graph, we have for two operators A,B on H

A ⊂ B ⇐⇒ Γ(A) ⊂ Γ(B) .

Remark 2.4

The definition of a closed operator can be written using sequences: A is closed

if and only if for any sequence (xn)∞n=1 in D(A)

xn −→ x and Txn −→ y =⇒ x ∈ D(A) and Tx = y .

A natural way to find a closed extension of a given operator A seems to

take the closure of its graph in H ×H . The problem is, that Γ(A) may not

be the graph of an operator. But if A is closable, this procedure gives the

closure of A.

Proposition 2.5

Let T be a closable operator on a Hilbert space H , then Γ(T ) = Γ(T ).

Proof. Suppose S is a closed extension of T , then D(T ) ⊂ D(S) and Γ(S)

is closed. Therefore Γ(T ) ⊂ Γ(S), so if (0, φ) ∈ Γ(T ), then φ = S(0) = 0.

Define the operator R on H by

D(R) = {ψ ∈H | (ψ, φ) ∈ Γ(T ) for some φ ∈H }
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Rψ = φ where φ is the unique vector so that (ψ, φ) ∈ Γ(T ).

Then Γ(R) = Γ(T ) and thus R is a closed extension of T . But R ⊂ S, which

is any closed extension, thus R = T . �

Example 2.6

Let T0, T1 be operators on H = L2(R) given by Tkφ(x) = i d
dx
φ(x) for φ ∈

D(Tk) where D(T0) = C∞0 (R) and D(T1) = C1
0(R). Then T0 ⊂ T1.

We will show that Γ(T1) ⊂ Γ(T0). To do this, we need the following

Definition 2.7 (Approximate Identity)

Let j ∈ C∞0 (R) be non-negative with supp j ⊂ (−1, 1) and
∫
R j(x) dx = 1.

Then the family {jε}ε∈(0,1) where jε(x) := ε−1j(x
ε
) is called approximate

identity or mollifier.

We remark that if {jε} is an approximate identity, then supp jε ⊂ (−ε, ε)

(since −1 < x
ε
< 1 implies −ε < x < ε) and∫
R
jε(x) dx =

∫
R
ε−1j

(x
ε

)
dx =

∫
R
j(z) dz = 1.

Let {jε} be an approximate identity, φ ∈ D(T1) and set

φε(x) :=
(
φ ∗ jε

)
(x) :=

∫
R

f(y)jε(x− y) dy.

Then

|φε(x)− φ(x)| ≤
∫
R
jε(x− t)|φ(t)− φ(x)| dt

≤
(

sup
{t | |x−t|≤ε}

|φ(t)− φ(x)|
)∫

R
jε(x− t) dt

= sup
{t | |x−t|≤ε}

|φ(t)− φ(x)| .
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Since φ has compact support, it is uniformly continuous, thus

‖φε − φ‖∞ −→ 0 as ε→ 0 . (2.2)

Moreover, since the whole family {φε} is supported in a fixed compact set,

this implies that φε → φ in L2(R).

Similarly, we get

i
d

dx
φε(x) =

∫
R
i
d

dx
jε(x− y)φ(y) dy

=

∫
R
(−i)

( d
dy
jε(x− y)

)
φ(y) dy

=

∫
R
jε(x− y)i

( d
dy
φ(y)

)
dy

L2(R)−−−→ i
d

dx
φ(x) .

Since jε has compact support and is infinitely differentiable, φε ∈ C∞0 (R).

Thus φε ∈ D(T0) for each ε > 0. Since we have proven that

φε
L2(R)−→ φ and T0φε

L2(R)−→ T1φ

for any φ ∈ D(T1), the closure of Γ(T0) contains Γ(T1).

We remark that if {jε} is an approximate identity, for any f ∈ Lp(R), 1 ≤

p < ∞, the convolution fε := f ∗ jε is smooth and fε converges in Lp to f

(see e.g. [R2]), which explains the name.

2.1.2 Definition and Properties of the adjoint operator

We come to the definition of the Hilbert space adjoint.
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Definition 2.8 (Adjoint operator and self-adjointness)

Let T be a densely defined linear operator on a Hilbert space H with domain

D(T ). Let D(T ∗) be the set of φ ∈H for which there is an η ∈H with

〈φ, Tψ〉 = 〈η, ψ〉 for all ψ ∈ D(T ). (2.3)

For φ ∈ D(T ∗) we define T ∗φ = η. The operator T ∗ is called the adjoint

operator of T . If T = T ∗ then T is called self-adjoint.

Remark that the self-adjointness implies D(T ) = D(T ∗).

The Riesz Lemma gives another possible characterisation of the domain

of T ∗:

φ ∈ D(T ∗) ⇐⇒ the map D(T ) 3 ψ 7→ 〈φ, Tψ〉 is bounded. (2.4)

In fact if, for φ ∈H fixed, the linear map

`Tφ : D(T )→ C given by `Tφ (ψ) := 〈φ, Tψ〉 (2.5)

is bounded, then (since D(T ) is dense in H ) it has a unique extension to

a bounded linear functional ˜̀T
φ on H . The Riesz Lemma then shows that

there exists a unique η ∈H such that ˜̀T
φ (ψ) = 〈η, ψ〉. Thus if `Tφ is bounded

and ψ ∈ D(T ), then there exists η ∈H such that equation (2.3) holds.

If T is not densely defined, the vector η (and thus the operator T ∗) is not

uniquely determined by (2.3).

Even if we assume that T is densely defined, it can occur that the domain

of T ∗ is not dense and even that D(T ∗) = {0}.

Example 2.9

Take H = L2(R) and suppose that f ∈ B(R) but f /∈ L2(R). Let φ0 ∈ H
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be some fixed vector and define

D(T ) = {ψ ∈ L2(R) |
∫
R
|f(x)ψ(x)| dx <∞} and

Tψ = 〈f, ψ〉φ0 for ψ ∈ D(T ).

Since D(T ) contains all L2-functions with compact support, it is dense in

H .

Now suppose that φ ∈ D(T ∗), then for all ψ ∈ D(T )

〈ψ, T ∗φ〉 = 〈Tψ, φ〉 = 〈〈f, ψ〉φ0, φ〉

= 〈f, ψ〉〈φ0, ψ〉 = 〈ψ, 〈φ0, φ〉f〉 .

Thus T ∗φ = 〈φ0, φ〉f . Since f is not in L2(R) it follows that 〈φ0, φ〉 = 0.

Therefore D(T ∗) = span{φ0}⊥, which is not dense in H , and T ∗φ = 0 for

any φ ∈ D(T ∗).

Example 2.10

Let {en}∞n=1 be an orthonormal basis of H = L2(R) and set

D(A) = C∞0 (R) and Aψ =
∞∑
n=1

ψ(n)en .

Since ψ is compactly supported, the sum is in fact finite, thus the operator is

well-defined.

We will show that for any φ ∈H , φ 6= 0, the map `Aφ defined in (2.5) is

not continuous and therefore D(A∗) = {0} by (2.4).

Let φ ∈ H , φ 6= 0, be fixed, then 〈en0 , φ〉 6= 0 for some n0. Choose a

sequence (ψn) in D(A) so that for all k ∈ N

suppψk ⊂ [n0 −
1

2
, n0 +

1

2
] , ψk(n0) = 1 and ‖ψk‖L2 −→ 0.
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Then for each k ∈ N

`Aφ (ψk) = 〈φ,Aψk〉 =
∞∑
n=1

ψk(n)〈φ, en〉 = 〈φ, en0〉 6= 0

although ψk → 0. Thus `Aφ is not continuous.

In the unbounded case, it is important to distinguish between symmetric

and self-adjoint operators. Clearly each self-adjoint operator is symmetric

and if T is symmetric and densely defined then T ⊂ T ∗. In particular, T ∗

is densely defined in this case and it is possible to define T ∗∗ = (T ∗)∗. The

following Theorem gives a relationship between the notions of adjoint and

closure.

Theorem 2.11

Let T be a densely defined linear operator on a Hilbert space H , then

i) T ∗ is closed.

ii) T is closable if and only if D(T ∗) is dense in H . In this case T = T ∗∗.

iii) If T is closable, then (T )∗ = T ∗.

Proof. i) We use the characterisation given in Remark 2.4.

Let (yn) be a sequence in D(T ∗) such that yn → y ∈H and T ∗yn → z ∈H

as n→∞. We have to show that y ∈ D(T ∗) and T ∗y = z.

We have for any x ∈ D(T )

〈y, Tx〉 = lim
n→∞
〈yn, Tx〉 = lim

n→∞
〈T ∗yn, x〉 = 〈z, x〉.

Therefore `Ty given in (2.5) is bounded and it follows from (2.4) that y ∈

D(T ∗). Moreover, T ∗y = z by Definition 2.8.
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ii) ”⇐=”: Assume that D(T ∗) is dense in H . We have to show that T

has a closed extension.

If x ∈ D(T ), the linear map `T
∗

x defined in (2.5) is bounded on D(T ∗) and

thus x ∈ D(T ∗∗) by (2.4). Moreover, for any y ∈ D(T ∗)

〈Tx, y〉 = 〈x, T ∗y〉 = 〈T ∗∗x, y〉 .

Since by assumption D(T ∗) is dense in H , this implies Tx = T ∗∗x for all

x ∈ D(T ) ⊂ D(T ∗∗) and thus T ⊂ T ∗∗. Since T ∗∗ is closed by i), this shows

that T has a closed extension and thus is closable.

Next we show that if T is closable then T = T ∗∗:

”T ⊂ T ∗∗” : Since T ∗∗ is closed by i), this follows from T ⊂ T ∗∗ and the

definition of the closure as smallest closed extension.

”T ⊃ T ∗∗” : Since the graphs of both operators are closed, it suffices

to prove Γ(T )⊥ ⊂ Γ(T ∗∗)⊥, where the orthogonal complement is taken with

respect to the inner product (2.1) in H ×H . Let (u, v) ∈ Γ(T )⊥, then

0 = 〈(u, v), (x, Tx)〉 = 〈u, x〉+ 〈v, Tx〉 for all x ∈ D(T ). (2.6)

This implies that `Tv is bounded on D(T ). Thus from (2.4) and (2.6) we can

deduce

(u, v) ∈ Γ(T )⊥ =⇒ v ∈ D(T ∗) and T ∗v = −u . (2.7)

For any (z, T ∗∗z) ∈ Γ(T ∗∗) we therefore get

〈(u, v), (z, T ∗∗z)〉 = 〈u, z〉+ 〈v, T ∗∗z〉 = 〈u, z〉+ 〈T ∗v, z〉

= 〈u+ T ∗v, z〉 = 0

and thus (u, v) ∈ Γ(T ∗∗)⊥.
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”=⇒”: We use contraposition.

First we introduce the operator V on H ×H given by V (x, y) = (−y, x).

Then V is unitary, since

〈V (x, y), V (u, v)〉 = 〈(−y, x), (−v, u)〉 = 〈−y,−v〉+ 〈x, u〉 = 〈(x, y), (u, v)〉.

Thus V
(
E⊥
)

=
(
V (E)

)⊥
for any subspace E of H ×H and

(x, y) ∈
(
V (Γ(T ))

)⊥ ⇐⇒ 〈(x, y), (−Tz, z)〉 = 0 for all z ∈ D(T )

⇐⇒ 〈x, Tz〉 = 〈y, z〉 for all z ∈ D(T )

⇐⇒ (x, y) ∈ Γ(T ∗).

Thus

Γ(T ∗) =
(
V (Γ(T ))

)⊥
(2.8)

and

Γ(T ) =
(
Γ(T )⊥

)⊥
=
(
V 2(Γ(T )⊥)

)⊥
=
(
V
(
V (Γ(T ))

)⊥)⊥
=
(
V (Γ(T ∗))

)⊥
.

(2.9)

Now assume that D(T ∗) is not dense. Then there exists z ∈ D(T ∗)⊥ with

z 6= 0. This implies that (z, 0) ∈ Γ(T ∗)⊥, because

〈(z, 0), (x, T ∗x)〉 = 〈z, x〉+ 〈0, T ∗x〉 = 0 for all x ∈ D(T ∗).

But then (0, z) ∈ V (Γ(T ∗)⊥) and therefore (0, z) ∈ Γ(T ).

If (0, z) would be an element of the graph of some linear operator S, this

would imply that S0 = z 6= 0, which is a contradiction to the linearity of

S. Thus there exists no operator T such that Γ(T ) = Γ(T ). Therefore by

Proposition 2.5, T is not closable.
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iii) If T is closable, then

T ∗
i)
= T ∗

ii)
= T ∗∗∗

ii)
= T

∗
.

�

We could have used the unitary operator V already for the first part of

the proof (which then were a bit less direct):

Equation (2.8) implies that the graph of T ∗ is closed, since the orthogonal

complement of a subspace is always closed.

If T ∗ is densely defined, (2.8) together with (2.9) give Γ(T ) = Γ(T ∗∗), thus

proving T = T ∗∗ is this case.

2.1.3 Symmetric operators, essential self-adjointness

Theorem 2.11 leads at once to the following corollary.

Corollary 2.12

Let T be a densely defined linear operator on a Hilbert space H , then

i) T is symmetric if and only if T ⊂ T ∗. In this case T ∗∗ is symmetric as

well and

T ⊂ T ∗∗ ⊂ T ∗ = T ∗∗∗ .

ii) T is closed and symmetric if and only if

T = T ∗∗ ⊂ T ∗ .

iii) T is self-adjoint if and only if

T = T ∗∗ = T ∗ .
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Between i) and iii) there are operators with the following property.

Definition 2.13 (Essential Self-adjointness, Core)

Let T be a symmetric, densely defined operator on a Hilbert space H .

i) T is called essentially self-adjoint :⇐⇒ T is self-adjoint.

ii) If T is closed, a subset C ⊂ D(T ) is called core for T :⇐⇒ T |C = T .

Proposition 2.14

Let T, S be densely defined operators on a Hilbert space H . Then the fol-

lowing statements hold.

i) If T ⊂ S then S∗ ⊂ T ∗.

ii) If T is essentially self-adjoint, then it has a unique self-adjoint exten-

sion.

iii) If T is self-adjoint, then T has no proper symmetric extension.

iv) T is essentially self-adjoint if and only if

T ⊂ T ∗∗ = T ∗ .

Proof. Exercise 2.33 �

The importance of essential self-adjointness lies in the uniqueness of the

self-adjoint extension. This allows to determine a self-adjoint operator A

uniquely without giving the exact domain of A, which often is difficult. In-

stead it suffices to give a core for A.
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2.1.4 Resolvent set and Spectrum for unbounded op-

erators

Before we give criteria for (essential) self-adjointness of operators, we define

the resolvent set in the case of closed unbounded operators.

Definition 2.15 (Resolvent set)

Let H be a Hilbert space and T a closed operator on H with domain D(T ).

A complex number λ ∈ C is in the resolvent set ρ(T ) of T :⇐⇒

(λ Id−T ) is a bijection of D(T ) onto H with bounded inverse.

If λ ∈ ρ(T ), then the operator Rλ(T ) = (λ Id−T )−1 is called resolvent of T

at λ.

The definitions of spectrum, point spectrum, continuous spectrum and resid-

ual spectrum are exactly as given in Definition 1.1 for bounded operators.

Since T is assumed to be closed, it follows from the closed graph theorem

that if (λ Id−T ) is a bijection of D(T ) onto H , then its inverse is bounded.

If we speak of the spectrum of a closable operator, we always mean the

spectrum of its closure.

As in the case of bounded operators (Theorem 80), we have the following

Theorem.

Theorem 2.16

Let T be a closed densely defined linear operator on a Hilbert space H . Then

the resolvent set of T is an open subset of C on which the resolvent is an

analytic operator-valued function. Furthermore

{Rλ(T ) |λ ∈ ρ(T )}
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is a commuting family of bounded operators satisfying

Rλ(T )−Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ) First Resolvent Formula

(2.10)

The proof is exactly as in the case of bounded operators.

The following example will show that the spectrum of an unbounded

operator depends on the choice of the domain. Before that we give for com-

pleteness the definition of absolute continuity.

Definition 2.17 (Absolute Continuity)

Let J ⊂ R be a (possibly unbounded) interval. Then a function f : J → C is

called absolutely continuous:⇐⇒

For each ε > 0 there exists δ > 0 such that for every finite collection of

disjoint intervals [ak, bk] ⊂ J, k = 1, . . . n, n ∈ N

n∑
k=1

|bk − ak| < δ =⇒
n∑
k=1

|f(bk)− f(ak)| < ε .

Then the Fundamental Theorem of Calculus holds:

Theorem 2.18 (Fundamental Theorem of Calculus)

Let J ⊂ R be a (possibly unbounded) interval.

i) If f : J → C is absolutely continuous, then f is differentiable almost

everywhere, the derivative f ′ ∈ L1(J) and

f(t)− f(t0) =

∫ t

t0

f ′(s) ds for all t0, t ∈ J .
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ii) If g : J → C is integrable over compact subintervals and

f(t) :=

∫ t

a

g(s) ds

for an arbitrary a ∈ J , then f is absolutely continuous, f ′ exists almost

everywhere and f ′ = g almost everywhere.

Example 2.19

We consider operators given by i d
dt

on different domains in H = L2([0, 1]).

We already introduced in Example 2.2iii) the operator T acting on its

domain D(T ) = {φ ∈ C1([0, 1]) |φ(1) = φ(0) = 0} as Tφ = i d
dt
φ. T is

symmetric but not closed and thus not self-adjoint. To see that it is not

closed, consider the sequence

φn(t) =
(
(t− 1

2
)2 + 1

n

)1/2 −
(

1
4

+ 1
n

)1/2
, t ∈ [0, 1].

Then φn ∈ C1([0, 1]) and φn(0) = 0 = φn(1), thus φn ∈ D(T ) for all n ∈ N.

Moreover

φn(t) −→ φ(t) = |t− 1
2
| − 1

2
, t ∈ [0, 1],

and the convergence is uniform and thus in L2([0, 1]):

Setting t− 1
2

= s and using that |s| ≤ 1
2

gives for any t ∈ [0, 1]

|φn(t)− φ(t)| =
∣∣∣(s2 + 1

n

)1/2 −
(

1
4

+ 1
n

)1/2 −
(
s2
)1/2

+ 1
2

∣∣∣
=
(

1
4

+ 1
n

)1/2 − 1
2

+
(
s2
)1/2 −

(
s2 + 1

n

)1/2

=
1
4

+ 1
n
− 1

4(
1
4

+ 1
n

)1/2
+ 1

2

+
s2 − s2 + 1

n(
s2
)1/2

+
(
s2 + 1

n

)1/2

≤ 1

n
+

1/n

1/
√
n
−→ 0 as n→∞ .
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We have for any t ∈ [0, 1]

Tφn(t) = i
d

dt
φn(t) = i

t− 1
2(

(t− 1
2
)2 + 1

n

)1/2
−→ ψ(t) :=


−i if t < 1

2

0 if t = 0

i if t > 1
2

and this convergence is in fact in L2:

With the substitution t− 1
2

= s∫ 1

0

∣∣Tφn(t)− ψ(t)
∣∣2 dt

=

∫ 0

−1/2

∣∣∣∣∣∣ s√
s2 + 1

n

+ 1

∣∣∣∣∣∣
2

ds+

∫ 1/2

0

∣∣∣∣∣∣ s√
s2 + 1

n

− 1

∣∣∣∣∣∣
2

ds

= 2

∫ 1/2

0

1− s√
s2 + 1

n

2

ds

= 2

∫ 1/2

0

1 +
s2

s2 + 1
n

− 2s√
s2 + 1

n

 ds

= 2

[
s+ s− 1√

n
arctan

(√
ns
)
− 2

(
s2 +

1

n

)1/2
]1/2

0

= 2

(
1− 1√

n
arctan

(√
ns
)
− 2

(
1

4
+

1

n

)1/2

+
2√
n

)
−→ 0 as n→∞ .

Thus we found a sequence in the graph Γ(T ) converging to some element

(φ, ψ) ∈H ×H , but since φ /∈ D(T ) (since the absolute value is not differ-

entiable), Γ(T ) is not closed and therefore T is not closed.
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Now we set

AC[0, 1] := {φ ∈ C([0, 1]) |φ is absolutely continuous with d
dt
φ ∈ L2([0, 1])}

and define the operators T1 and T2 by setting Tkφ = i d
dt
φ for k = 1, 2 and

D(T1) = AC[0, 1] and D(T2) = {φ ∈ AC[0, 1] |φ(0) = 0} .

Then both domains are dense in H and both operators are closed.

To see that T1 is closed, let (xn) be a sequence in D(T1) such that

xn → x ∈H and T1xn → y ∈H in L2([0, 1]). (2.11)

Since xn is absolutely continuous, it follows from Theorem 2.18 that

xn(t) = xn(0) + 1
i

∫ t

0

T1xn(s) ds for all t ∈ [0, 1] . (2.12)

We will use (2.12) to show that xn(t) converges uniformly.

We first observe that by the Hölder inequality for any t ∈ [0, 1]∣∣∣∫ t

0

T1xn(s) ds−
∫ t

0

y(s) ds
∣∣∣ ≤ ∫ t

0

|T1xn(s)− y(s)| ds

≤
∫ 1

0

|T1xn(s)− y(s)| ds ≤
(∫ 1

0

|T1xn(s)− y(s)|2 ds
)1/2(∫ 1

0

12 ds
)1/2

= ‖T1xn − y‖L2 −→ 0 as n→∞ .

where for the convergence we used (2.11). Thus∫ t

0

T1xn(s) ds −→n→∞

∫ t

0

y(s) ds uniformly. (2.13)

Moreover, using (2.12) again, we have for any n,m ∈ N

xn(0)− xm(0) = xn(t)− xm(t) + 1
i

∫ t

0

(T1xm(s)− T1xn(s)) ds
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and therefore

|xn(0)− xm(0)| =
(∫ 1

0

|xn(0)− xm(0)|2 dt
)1/2

≤
(∫ 1

0

|xn(t)− xm(t)|2 dt
)1/2

+
(∫ 1

0

∣∣∫ t

0

(T1xm(s)− T1xn(s)) ds2
∣∣ dt)1/2

.

(2.14)

Since by (2.11) and (2.13) both summands on the right hand side of (2.14)

converge to zero, it follows that (xn(0)) is a Cauchy sequence and thus con-

vergent. Set

lim
n→∞

xn(0) = a and z(t) = a+ 1
i

∫ t

0

y(s) ds ,

then combining (2.12) with (2.13) and the definition of a shows that xn →

z uniformly. Moreover, z is absolutely continuous by Theorem 2.18, since

y ∈ L2([0, 1]) ⊂ L1([0, 1]), and d
dt
z(t) = 1

i
y(t) almost everywhere. This shows

that

z ∈ D(T1) and T1z = y .

Since xn → x in L2 and xn → z uniformly, it follows that x(t) = z(t) almost

everywhere and thus x = z in L2([0, 1]). Thus T1 is closed.

Similarly, it can be proven that T2 is closed (each sequence xn in D(T2)

has the fixed value xn(0) = 0, thus a = 0 in the above proof).

But although T1 is an extension of T2 and both operators are closed, the

spectra of T1 and T2 are not equal. In fact we have

σ(T1) = C and σ(T2) = ∅ . (2.15)
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To see that σ(T1) = C, observe that for all λ ∈ C

e−iλt ∈ D(T1) and T1e
−iλt = λe−iλt .

To see that σ(T2) = ∅, we show that λ Id−T2 has an inverse for each λ ∈ C

and thus ρ(T2) = C. In fact, define the operator Sλ on H given by

Sλx(t) = i

∫ t

0

e−iλ(t−s)x(s) ds .

Then Sλx ∈ D(T2) for any x ∈H and by product rule and Theorem 2.18

T2Sλx(t) = i
d

dt

(
ie−iλt

∫ t

0

eiλsx(s) ds
)

= λie−iλt
∫ t

0

eiλsx(s) ds− e−iλteiλtx(t)

= λSλx(t)− x(t)

and therefore

(λ Id−T2)Sλ = Id on H .

On the other hand, for any x ∈ D(T2) we get by integration by parts, using

x(0) = 0,

SλT2x(t) = ie−iλt
∫ t

0

eiλsi
d

ds
x(s) ds

= −e−iλt
([
eiλsx(s)]t0 −

∫ t

0

iλeiλsx(s) ds
)

= −x(t) + Sλλx(t) .

This shows for each λ ∈ C

Sλ(λ Id−T2) = Id on D(T2) .
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Therefore (λ Id−T2) is invertible on D(T2) for any λ ∈ C and thus ρ(T2) = C

by Definition 2.15. This shows σ(T2) = ∅.

Now we will show that T ∗ = T1.

Let x ∈ D(T ∗) and set

y = T ∗x and F (t) =

∫ t

0

y(s) ds .

Since y ∈ L2([0, 1]) ⊂ L1([0, 1]) by the definition of the domain of T ∗, it

follows from Theorem 2.18 that

F is absolutely continuous and F ′ = y almost everywhere. (2.16)

Thus for any z ∈ D(T ), integration by parts yields

〈x, Tz〉 = 〈y, z〉 = 〈F ′, z〉 = −〈F, z′〉 = 〈−iF, Tz〉 .

Therefore

x+ iF ∈ Ran(T )⊥. (2.17)

Moreover, it follows from the definition of D(T ) that for each x ∈ D(T )

Tx ∈ C([0, 1]) and

∫ 1

0

Tx(s) ds = i

∫ 1

0

x′(s) ds = i(x(1)− x(0)) = 0 .

Since the closure of C([0, 1]) with respect to the L2-norm is L2([0, 1]), this

shows

Ran(T ) =
{
w ∈ L2([0, 1])

∣∣ ∫ 1

0

w(s) ds = 0
}

= {1}⊥ .

Therefore Ran(T )⊥ = {1}⊥⊥ = span{1} and by (2.17)

x+ iF ∈ span{1} and x = −iF + α1 for all x ∈ D(T ∗) .
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Thus x ∈ D(T ∗) is absolutely continuous and by (2.16)

L2([0, 1[) 3 T ∗x = y = F ′ = i
d

dt
x = T1x and thus x ∈ AC[0, 1] = D(T1) ,

proving T ∗ ⊂ T1. On the other hand, assume x ∈ AC[0, 1] and set

y := i
d

dt
x ∈ L2([0, 1]) .

Then as above integration by parts yields

〈x, Tz〉 = 〈y, z〉 for all z ∈ D(T )

and therefore T ∗x = y = T1x and x ∈ D(T ∗). This proves T ∗ ⊂ T1 and we

thus have shown T ∗ = T1.

We remark that although T is symmetric, its adjoint T ∗ is not symmetric.

Since by Corollary 2.12 we know that T ∗∗ is also symmetric, it follows that

T ∗∗ 6= T ∗ and therefore T is not essentially self-adjoint.

Moreover, by Theorem 2.11, Corollary 2.12 and Proposition 2.14, if T

has any self-adjoint extension S, then

T ⊂ T = T ∗∗ ⊂ S = S∗ ⊂ T ∗ = T ∗∗∗ . (2.18)

In the next step, we will determine T ∗∗. We already know from above that

T ∗ = T1, i.e. D(T ∗) = AC[0, 1] and T ∗x(t) = i d
dt
x(t). Thus by (2.18)

x ∈ D(T ∗∗) =⇒ x ∈ AC[0, 1] and T ∗∗x(t) = i
d

dt
x(t) .

Let x ∈ D(T ∗∗), then for any z ∈ D(T ∗) we have on one hand

〈x, T ∗z〉 = 〈T ∗∗x, z〉 =

∫ 1

0

(
− i d

dt
x(t)

)
· z(t) dt (2.19)
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and on the other hand by integration by parts

〈x, T ∗z〉 =

∫ 1

0

x(t) ·
(
i d
dt
z(t)

)
dt (2.20)

= i
(
x̄(1)z(1)− x̄(0)z(0)

)
+

∫ 1

0

(
− i d

dt
x(t)

)
· z(t) dt .

Combining (2.19) and (2.20) shows that

x̄(1)z(1)− x̄(0)z(0) = 0 for all z ∈ AC[0, 1]

and therefore x(1) = x(0) = 0. It follows that

T ∗∗ = i
d

dt
with D(T ∗∗) = {x ∈ AC[0, 1] |x(0) = x(1) = 0} .

We remark that T2 is an extension of T ∗∗, thus the spectrum of T ∗∗ is empty

as well.

Since T ∗∗ is not equal to T ∗ = T ∗∗∗, it follows that T ∗∗ is an extension

of T which is closed and symmetric, but not self-adjoint. Since T is not

essentially self-adjoint, there might be no or many self-adjoint extensions of

T .

In our example, T has infinitely many self-adjoint extensions. In fact,

consider for any λ ∈ C with |λ| = 1 the operators Sλ on H acting on their

domain

D(Sλ) = {x ∈ AC[0, 1] |x(0) = λx(1)} as Sλx(t) = i
d

dt
x(t) . (2.21)

Then T ⊂ Sλ ⊂ T ∗ and Sλ is symmetric, since for all x, y ∈ D(Sλ)

x̄(1)z(1)−x̄(0)z(0) = x̄(1)z(1)−λ̄x̄(1)λz(1) =
(
1−|λ|2

)
x̄(1)z(1) = 0 (2.22)

by the assumption |λ|2 = 1 and therefore

〈x, Sλy〉 = i

∫ 1

0

x̄(t)
(
d
dt
y(t)

)
dt (2.23)
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= i
(
x̄(1)z(1)− x̄(0)z(0)

)
− i
∫ 1

0

(
d
dt
x(t)

)
· y(t) dt

= 〈Sλx, y〉 .

Thus Sλ ⊂ S∗λ by Corollary 2.12.

To see that S∗λ ⊂ Sλ, we can proceed using arguments similar to those given

above:

From Proposition 2.14 and T ⊂ Sλ it follows that Sλ ⊂ T ∗ and thus

x ∈ D(S∗λ) =⇒ x ∈ AC[0, 1] and S∗λx(t) = i
d

dt
x(t) . (2.24)

Let x ∈ D(S∗λ), then for any z ∈ D(Sλ) we have on one hand

〈x, Sλz〉 = 〈S∗λx, z〉 =

∫ 1

0

(
− i d

dt
x(t)

)
· z(t) dt (2.25)

and on the other hand integration by parts shows

〈x, Sλz〉 =

∫ 1

0

x(t) ·
(
i d
dt
z(t)

)
dt (2.26)

= i
(
x̄(1)z(1)− x̄(0)z(0)

)
+

∫ 1

0

(
− i d

dt
x(t)

)
· z(t) dt .

Combining (2.25) and (2.26) shows that

x̄(1)z(1)− x̄(0)z(0) = (x̄(1)− λx̄(0))z(1) = 0 for all z ∈ D(Sλ)

and therefore x(1) = λ̄x(0). Since λ̄ = λ−1 for |λ| = 1, it follows that

D(S∗λ) ⊂ {x ∈ AC[0, 1] |x(0) = λx(1)} = D(Sλ)

and therefore S∗λ ⊂ Sλ by (2.24).

Thus we have proven that for any λ ∈ C with |λ| = 1 the operator Sλ

defined in (2.21) is a self-adjoint extension of T (and of T ∗∗). Thus T has

in fact infinitely many self-adjoint extensions.
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2.1.5 Criteria for (essential) self-adjointness

We now want to get criteria to decide, whether an operator on a Hilbert

space is (essentially) self-adjoint.

We first observe that if T is a self-adjoint operator and if there exists

x ∈ D(T ∗) = D(T ) such that T ∗x = ix, then Tx = ix and thus

−i〈x, x〉 = 〈ix, x〉 = 〈Tx, x〉 = 〈x, T ∗x〉 = 〈x, Tx〉 = i〈x, x〉 ,

and therefore x = 0. A similar computation shows that T ∗x = −ix has no

non-zero solutions.

Thus if T is self-adjoint, then Ker(T ∗ ± i Id) = {0}.

The converse statement is one of the the basic criteria for self-adjointness.

We start with a lemma, giving the relation between the kernel of an opera-

tor and the range of its adjoint (see also Exercise 1.42). We set D(λ Id−T ) =

D(T ) for λ ∈ C.

Lemma 2.20

Let H be a Hilbert space and T : H ⊃ D(T ) −→ H a densely defined

linear operator. Then

i) Ker(T ∗ ∓ i Id) = Ran(T ± i Id)⊥ and in particular

Ker(T ∗ ∓ i Id) = {0} ⇐⇒ Ran(T ± i Id) is dense in H .

ii) if T is closed and symmetric, Ran(T ± i Id) are closed.

Proof. We only prove the case T + i, the case T − i is similar.

i) First remark that (T + i)∗ = T ∗ − i.

” ⊃ ” : y ∈ Ran(T + i)⊥ =⇒ 〈y, (T + i)z〉 = 0 for all z ∈ D(T )
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=⇒ y ∈ D(T ∗) and 〈(T ∗ − i)y, z〉 = 0 for all z ∈ D(T )

=⇒ y ∈ Ker(T ∗ − i) .

” ⊂ ” : y ∈ Ker(T ∗ − i) =⇒ y ∈ D(T ∗) and 〈(T ∗ − i)y, z〉 = 0 ∀z ∈H

=⇒ 〈y, (T + i)z〉 = 0 for all z ∈ D(T )

=⇒ y ∈ Ran(T + i)⊥ .

ii) Since T is symmetric, 〈x, Tx〉 ∈ R and thus for all x ∈ D(T )

‖(T + i)x‖2 = ‖Tx‖2 + ‖x‖2 + 2 Re〈ix, Tx〉 = ‖Tx‖2 + ‖x‖2 ≥ ‖x‖2 . (2.27)

Therefore (T + i)−1 : Ran(T + i)→ D(T ) exists and is continuous5.

Let (xn) be a sequence in D(T ) such that (T + i)xn → y ∈ Ran(T + i).

Then ((T + i)xn) is a Cauchy sequence in Ran(T + i) and therefore (xn) is

a Cauchy sequence in D(T ). Thus there exists x ∈ H with x = limn→∞ xn

and moreover Txn → y− ix. Since by assumption T is closed, it follows that

x ∈ D(T ) and y = (T + i)x ∈ Ran(T + i).

�

Theorem 2.21 (Basic Criterion: Self-Adjointness)

Let T be a densely defined symmetric operator on a Hilbert space H . Then

the following three statements are equivalent:

i) T is self-adjoint.

ii) T is closed and Ker(T ∗ ± i Id) = {0}.

iii) Ran(T ± i Id) = H .
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Proof. ”i) ⇒ ii)” : If T is self-adjoint, then T = T ∗ is closed by Theorem

2.11i). Assume (T ∗ + i)x = 0. Since T ∗ is symmetric, it follows from (2.27)

that x = 0 and thus Ker(T ∗ + i) = {0} and analogously Ker(T ∗ − i) = {0}.

”ii)⇒ iii)” : If T is closed and symmetric, Ran(T ± i) is closed by Lemma

2.20ii). Since Ker(T ∗∓i) = {0} it follows from Lemma 2.20i) that Ran(T±i)

is dense in H . Thus Ran(T ± i) is closed and dense in H showing Ran(T ±

i) = H .

”iii)⇒i)” : Since T is symmetric, it follows from Corollary 2.12 that

T ⊂ T ∗, thus it suffices to show D(T ∗) ⊂ D(T ). Let y ∈ D(T ∗). Since

by assumption Ran(T ± i) = H , there exists some x ∈ D(T ) such that

(T ∗ − i)y = (T − i)x. But since T ⊂ T ∗ this implies (T ∗ − i)y = (T ∗ − i)x.

Therefore, (y−x) ∈ Ker(T ∗− i) and since Ker(T ∗− i) = {0} by iii) together

with Lemma 2.20i), it follows that y = x ∈ D(T ).

�

There are similar criteria for essential self-adjointness.

Corollary 2.22 (Basic Criterion: Essential Self-Adjointness)

Let T be a densely defined symmetric operator on a Hilbert space H . Then

the following three statements are equivalent:

i) T is essentially self-adjoint.

ii) Ker(T ∗ ± i Id) = {0}.

iii) Ran(T ± i Id) is dense in H .

Proof. ”i)⇔ ii)” : T is essentially self-adjoint if and only if T ∗∗ is self-adjoint,

thus this statement follows from Theorem 2.21 applied to T ∗∗ and T ∗ = T ∗∗∗.
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”ii)⇔ iii)” : Lemma 2.20.

�

2.1.6 Deficiency Indices, existence of self-adjoint ex-

tensions

Definition 2.23

Let T be a symmetric densely defined operator on a Hilbert space H . The

numbers

n± := dim Ker(T ∗ ± i)

are called deficiency indices of T .

Here dimM denotes the cardinality of the basis of the subspace M ∈H .

In the next theorem we give a criterion to decide wether a symmetric

operator has a self-adjoint extension. As we saw in Example 2.19, this does

not imply that T is essentially self-adjoint (or that this extension is unique).

Theorem 2.24

Let T be a densely defined symmetric operator on a Hilbert space H with

domain D(T ). Then T has a self-adjoint extension if and only if its deficiency

indices are equal, i.e.

∃S : T ⊂ S = S∗ ⇐⇒ dim Ker(T ∗ + i) = dim Ker(T ∗ − i) .

Proof. Since T is symmetric, it is closable (since T ⊂ T ∗ by Corollary 2.12

and T ∗ is closed by Theorem 2.11). Moreover by Proposition 2.14, if S is

a self-adjoint extension of T , then T ⊂ T ⊂ S = S∗ ⊂ T ∗. Thus T has a

self-adjoint extension if and only if T has a self-adjoint extension. Thus we

85



CHAPTER 2. UNBOUNDED OPERATORS ON HILBERT SPACES

can assume without loss of generality that T is closed.

”⇐=”: We assume that n+ = n−. By equation (2.27)

‖(T + i)x‖ = ‖(T − i)x‖ for all x ∈ D(T ) ,

and by Lemma 2.20 Ran(T ± i) is closed. Thus the operator

U : Ran(T − i) −→ Ran(T + i), (T − i)x 7→ (T + i)x

is a well-defined, isometric, surjective operator (U = (T + i)(T − i)−1 defined

on Ran(T − i) is called Cayley-transform of T ). In H we choose an

orthonormal basis {ei} such that the subset {eik} is a basis for Ran(T −

i)⊥ and an orthonormal basis {fj} such that the subset {fjk} is a basis for

Ran(T + i)⊥. Since by assumption n+ = n−, it follows from Lemma 2.20i)

that

|{fjk}| = dim Ran(T + i)⊥ = dim Ran(T − i)⊥ = |{eik}| ,

where |M | denotes the cardinality of the set M . Thus there is a one-to-one

correspondence between {eik} and {fjk}, which allows us to extend U to a

unitary map V : H −→ H . In the first step, we show that V − Id is

injective: Assume that y ∈ Ker(V − Id), then V y = y and since V is unitary

(and thus V ∗V = Id) this implies y = V ∗y. Then for any x ∈ D(T ), using

V (T − i)x = (T + i)x by the definition of V ,

2i〈y, x〉 = 〈y, (T + i)x− (T − i)x〉 = 〈y, (V − Id)(T − i)x〉

= 〈(V ∗ − Id)y, (T − i)x〉 = 0 .

But this implies that y ∈ D(T )⊥ and since T is densely defined y = 0.
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Thus we can define the operator

S = i(V + Id)(V − Id)−1 : Ran(V − Id) −→H , V z − z 7→ i(V z + z) .

The goal is to show that S is in fact a self-adjoint extension of T .

Since for any x ∈ D(T ) we have

(V − Id)(T − i)x = (T + i)x− (T − i)x = 2ix (2.28)

it follows that x ∈ Ran(V − Id) = D(S) and thus D(T ) ⊂ D(S). Moreover

for any x ∈ D(T ) it follows from (2.28) and the definition of S and V that

Sx =
1

2i
S(V −Id)(T−i)x =

1

2
(V +Id)(T−i)x =

1

2

(
(T+i)x+(T−i)x

)
= Tx .

This shows that T ⊂ S.

Moreover, S is symmetric, since for any x = (V − id)y ∈ D(S)

〈x, Sx〉 = 〈(V − Id)y, i(V + Id)y〉

= i
(
〈V y, V y〉 − 〈y, V y〉+ 〈V y, y〉 − 〈y, y〉

)
= i
(
〈V y, y〉 − 〈y, V y〉

)
= −2 Im〈y, V y〉 ∈ R

where we used that V is unitary. Thus S is symmetric by Exercise 2.35.

To finally show the self-adjointness of S, we use that by Theorem 2.21 it

suffices to show Ran(S ± i) = H . But since for any z ∈H

(S − i)(V − Id)z = i(V + Id)z − i(V − Id)z = 2iz

and

(S+i)(V−Id)V ∗z = i(V+Id)V ∗z+i(V−Id)V ∗z = iz+iV ∗z+iz−iV ∗z = 2iz ,
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each element of H is in the range of both (T − i) and (T + i), showing that

S is self-adjoint.

”=⇒”: Assume that T has a self-adjoint extension S. Thus by Theorem

2.21 we can define the map

V = (S + i)(S − i)−1 with domain D(V ) = Ran(S − i) = H .

Then V is surjective, because RanV = Ran(S + i) = H by Theorem 2.21.

Moreover, by (2.27)

‖V (S − i)x‖ = ‖(S + i)x‖ = ‖(S − i)x‖ for all x ∈ D(S) ,

and thus V is isometric. Thus V is unitary. Moreover, we set

U = (T + i)(T − i)−1 with domain D(U) = Ran(T − i) .

Since T ⊂ S by assumption it follows that U ⊂ V .

By construction V = U on D(U) yielding

V |Ran(T−i) : Ran(T − i)→ Ran(T + i) and

V |Ran(T−i)⊥ : Ran(T − i)⊥ → Ran(T + i)⊥ ,

where the second statement holds since V is unitary and thus preserves the

inner product. Therefore, V maps Ker(T ∗ − i) unitarily onto Ker(T ∗ + i),

proving that the dimension of these two spaces has to be equal.

�

Example 2.25

We set R+ = (0,∞). On the Hilbert space L2(R+) we consider the operator

T3x(t) = i
d

dt
x(t) with domain D(T3) = C∞0 (R+)
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(the infinitely differentiable functions with compact support on R+). Then T3

is symmetric (the boundary values in the integration by parts formula vanish).

Similar to Example 2.19 it can be shown (Exercise 2.38) that T ∗3 y = i d
dt
y

on the domain

D(T ∗3 ) =
{
x ∈H | d

dt
x ∈H and

∀I ⊂ R+ compact : x|I is absolutely continuous
}
. (2.29)

Thus T ∗3 is not symmetric (and thus in particular not self-adjoint). We

compute Ker(T ∗3 ± i):

(T ∗3 ± i)y = 0 holds if and only if y is a solution of the differential equation

y′ = ∓y i.e. if y(t) = a±e
∓t for some a± ∈ C .

But since the function t 7→ et is not in L2(R+) while t 7→ e−t is, we get

Ker(T ∗3 − i) = {0} and Ker(T ∗3 + i) = span{e−t} 6= 0 .

Thus T3 is not essentially self-adjoint by Corollary 2.22 and has no self-

adjoint extensions by Theorem 2.24.

2.1.7 The Friedrichs Extension

We come to an important class of operators with self-adjoint extensions.

Definition 2.26 (Semibounded operators)

A densely defined operator A on a Hilbert space H with domain D(A) is

called semibounded from below :⇐⇒

∃C ∈ R : 〈x,Ax〉 ≥ C‖x‖2 for all x ∈ D(A).

A is called semibounded from above if −A is semibounded from below.
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Remark 2.27

The condition given in Definition 2.26 implies that 〈x,Ax〉 ∈ R (since in

C we have no order relation). Thus by Exercise 2.35, each semibounded

operator is in particular symmetric.

Example 2.28

Examples for semibounded operators are the Laplace operator (or free Hamil-

tonian) H0 on H = L2(Rn) given by

H0φ(x) = −∆φ(x) = −
n∑
k=1

∂2

∂2
k

φ(x) with domain D(H0) = C∞0 (Rn)

(2.30)

or more general a Schrödinger operator H = H0 + V on the same domain,

where V is a multiplication operator such that there exists a constant C ∈ R

such that V (x) ≥ C for all x.

In fact, for any φ ∈ D(H), integration by parts yields

〈φ,Hφ〉 =
∑
k

〈
∂

∂k
φ,

∂

∂k
φ

〉
+ 〈φ, V φ〉 =

∑
k

∥∥∥∥ ∂∂kφ
∥∥∥∥2

+ 〈φ, V φ〉 ≥ C‖φ‖2 .

Theorem 2.29 (Friedrichs Extension)

Each densely defined semibounded operator A on a Hilbert space H admits

a self-adjoint extension S and S is semibounded with the same bound.

To prove Theorem 2.29 we need the following Lemma:

Lemma 2.30

Let H and K be Hilbert spaces and J ∈ L(K ,H ) be injective with dense

range.

Then JJ∗ ∈ L(H ) is an injective operator with dense range und the inverse

operator S : Ran(JJ∗) −→H is self-adjoint.
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Here the adjoint operator J∗ is determined by the equation

〈x, Jy〉H = 〈J∗x, y〉K for all x ∈H , y ∈ K . (2.31)

Proof. Since Ker J∗ = (Ran J)⊥, the assumption that the range of J is dense

implies that J∗ is injective. Since J is injective this yields that JJ∗ is injec-

tive. Thus the self-adjoint operator JJ∗ has dense range and S is therefore

densely defined. Since S is symmetric, we can use Theorem 2.21 to show

that S is self-adjoint. To see that Ran(S ± i) = H , let y ∈H be given. In

order to find a pre-image of y, the equation

(S ± i)x = y or equivalently (Id±iJJ∗)x = JJ∗y (2.32)

has to be solved in D(S). But since JJ∗ is self-adjoint, i ∈ ρ(JJ∗) and thus

(i Id−JJ∗) is invertible, giving the solution

x = i(i Id∓JJ∗)−1JJ∗y

in H . But since x = JJ∗(y ∓ ix) by (2.32) it follows that x ∈ Ran(JJ∗) =

D(S).

�

Proof of Theorem 2.29. Assume without loss of generality that A is semi-

bounded from below.

Moreover, we can consider A + c Id instead of A for some c ∈ R, since

both operators have the same domain and A admits a self-adjoint extension

if and only if A+ c Id does. Thus by choosing c appropriately we can assume

without loss of generality that

〈x,Ax〉 ≥ ‖x‖2 for all x ∈ D(A) . (2.33)
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Then the map (x, y) 7→ 〈x,Ay〉 is a positive definite sesquilinear form on

D(A). Since A is symmetric by Remark 2.27, the map is conjugate symmet-

ric. We thus can define a new inner product on D(A) by

D(A)×D(A) 3 (x, y) 7→ 〈〈x, y〉〉 := 〈x,Ay〉 . (2.34)

Then (D(A), 〈〈·, ·〉〉) is a pre-Hilbert space, and its completion with respect

to the induced norm |||·||| is a Hilbert space K ⊂H 2. From (2.33) and the

construction of the norm in K it follows that

|||x||| ≥ ‖x‖ for all x ∈ K .

Therefore, the map

J : (D(A), 〈〈·, ·〉〉) 3 x 7→ x ∈H

is a linear contraction and by the BLT-Theorem it can be extended to a

contraction J : K −→ H . Moreover, for any x ∈ K there is a sequence

(xn) in D(A) such that xn → x and thus by continuity of the inner product

and J , (2.34) and since Jx = x for x ∈ D(A)

〈〈x, y〉〉 = lim
n→∞
〈〈xn, y〉〉 = lim

n→∞
〈Jxn, Ay〉 = 〈Jx,Ay〉 (2.35)

for all y ∈ D(A) and x ∈ K . If Jx = 0, then it follows from (2.35) that x

is orthogonal to all y ∈ D(A) and since D(A) is dense this implies x = 0.

Therefore, J is injective.

2From (2.33) we get

|||x|||2 = 〈〈x, x〉〉 = 〈x,Ax〉 ≥ ‖x‖2 for all x ∈ D(A)

and therefore each Cauchy sequence (xn) in D(A) with respect to |||·||| is a Cauchy sequence

in H (i.e. with respect to ‖ · ‖). Thus x ∈H is an element in K if there is a |||·|||-Cauchy

sequence with xn → x in H . This gives a norm on K as limit |||x||| = lim |||xn||| .
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Since D(A) ⊂ Ran J , the map J ∈ L(K ,H ) is injective with dense

range. Thus by Lemma 2.30 the operator JJ∗ ∈ L(H ) is injective with

dense range and its inverse operator

S : Ran(JJ∗) −→H

is self-adjoint.

We will show that S is an extension of A and satisfies the estimate

〈x, Sx〉 ≥ ‖x‖2 for all x ∈ D(S) = Ran(JJ∗) . (2.36)

Let x ∈ D(A) and y ∈ K , then by (2.35)

〈〈y, x〉〉 = 〈Jy,Ax〉 = 〈〈y, J∗Ax〉〉 (2.37)

where we used (2.31) (the definition of the adjoint) for the second equality.

Using Jx = x for x ∈ D(A), equation (2.37) yields

J∗Ax = x = Jx = JJ∗Ax for all x ∈ D(A) .

Therefore each x ∈ D(A) is in the range of JJ∗ and thus in the domain of

S, i.e. D(A) ⊂ D(S).

Since S is the inverse of JJ∗,

JJ∗Ax = x = JJ∗Sx for all x ∈ D(A)

and this implies Ax = Sx for x ∈ D(A), because JJ∗ is injective. Therefore

A ⊂ S.

Thus S is a self-adjoint extension of A.
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To see that (2.36) holds (i.e. S is a semibounded operator with the same

constant as A), we use that J is a contraction, yielding for all x = JJ∗z ∈

D(S), using (2.31)

〈x, Sx〉 = 〈JJ∗z, z〉 = 〈〈J∗z, J∗z〉〉 = |||J∗z|||2 ≥ ‖JJ∗z‖2 = ‖x‖2 .

�

Remark 2.31

The self-adjoint extension constructed above is called Friedrichs Extension.

It could also be constructed starting directly from a semibounded sesquilinear

form defined on a dense subspace of H .

Corollary 2.32

Let A be a densely defined, closed operator on a Hilbert space H . Then the

operator

A∗A with domain D(A∗A) = {x ∈ D(A) |Ax ∈ D(A∗)}

is densely defined and self-adjoint.

Proof. It is clear that A∗A is symmetric on its domain. To see that D(A∗A)

is dense in H , we define on D(A) the inner product

〈x, y〉A := 〈x, y〉+ 〈Ax,Ay〉 . (2.38)

Since A is closed and ‖x‖2
A := 〈x, x〉A is the graph norm, (D(A), 〈 ·, · 〉A) is a

Hilbert space, which we denote by K . Let J ∈ L(K ,H ) be the inclusion

operator (i.e. Jx = x for all x ∈ K ). Since D(A) is dense and ‖x‖A ≥ ‖x‖, J
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is an injective contraction with dense range (its range is equal to the domain

of A) and Ran JJ∗ is dense by Lemma 2.30. It therefore suffices to show that

Ran(JJ∗) ⊂ D(A∗A) .

Let x = JJ∗y ∈ Ran(JJ∗), then x is in the range of J∗, because JJ∗y = J∗y

and therefore x ∈ K = D(A). To see that Ax ∈ D(A∗), we have to show

that the linear map z 7→ 〈Ax,Az〉 is bounded for all z ∈ D(A). In fact, by

(2.38) we have for all z ∈ D(A)

〈Ax,Az〉 = 〈x, z〉A − 〈x, z〉 = 〈J∗y, z〉A − 〈x, z〉

= 〈y, Jz〉 − 〈x, z〉 = 〈y − x, z〉 ≤ C‖z‖2

for some C > 0. Thus x ∈ D(A∗A) and D(A∗A) is dense in H .

The densely defined operator

T := Id +A∗A obeys 〈x, Tx〉 = ‖x‖A = ‖x‖2 + ‖Ax‖2 ≥ ‖x‖2

for all x ∈ D(A∗A). Thus T is semibounded and its Friedrichs extension S

can be constructed exactly as in the proof of Theorem 2.29, where J and K

are as above. Thus S is defined on D(S) = Ran(JJ∗) ⊂ D(A∗A) = D(T )

and therefore S = T . This shows that T is and A∗A = T−Id are self-adjoint.

�

2.1.8 Exercises

Exercise 2.33 (Essential Self-adjointness)

Prove Proposition 2.14:

Let T, S be densely defined operators on a Hilbert space H . Show that the

following statements hold.
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i) If T ⊂ S then S∗ ⊂ T ∗.

ii) If T is essentially self-adjoint, then it has a unique self-adjoint exten-

sion.

iii) If T is self-adjoint, then T has no proper symmetric extension.

iv) T is essentially self-adjoint if and only if

T ⊂ T ∗∗ = T ∗ .

Exercise 2.34 (Density of function spaces)

Show that the space C∞0 (Rn) of smooth compactly supported functions is dense

in the space C∞(Rn) of continuous functions vanishing at infinity.

Exercise 2.35 (Symmetric operators)

Let T be a densely defined linear operator on a complex HIlbert space H with

domain D(T ). Show that T is symmetric if and only if 〈x, Tx〉 ∈ R for all

x ∈ D(T ).

Hint: Consider 〈x+ y, T (x+ y)〉.

Exercise 2.36 (Adjoint operators)

Let H be a Hilbert space. For densely defined linear operators S, T on H

with domains D(S) and D(T ), we set

D(S ◦ T ) := {x ∈H |x ∈ D(T ) and Tx ∈ D(S)} .

Show that if S◦T is densely defined, then T ∗◦S∗ ⊂ (S◦T )∗ and if S ∈ L(H ),

then T ∗ ◦ S∗ = (S ◦ T )∗.
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Exercise 2.37 (Resolvent set)

Let T be a densely operator on a Hilbert space H with domain D(T ). Assume

that there exists λ ∈ C such that (λ Id−T ) : D(T )→H is bijective and has

a bounded inverse. Show that T is closed.

Rem.: This shows that the definition of resolvent set and spectrum for non-

closed operators is useless (the spectrum would always be C).

Exercise 2.38 (Adjoint operator)

On the Hilbert space in H = L2(R+), consider the operator T3 with domain

D(T3) = C∞0 (R+), acting as T3φ = i d
dt
φ for φ ∈ D(T3).

Show that the adjoint is given by T ∗3 y = i d
dt
y on the domain

D(T ∗3 ) = {x ∈H |x|I is absolutely continuous for all compact intervals

I ⊂ R+ and
d

dt
x ∈H } .

Exercise 2.39 (Multiplication operator)

Let (Ω,Σ, µ) be a measure space and f : Ω → R measurable. Define the

operator Mf on H = L2(Ω,Σ, µ) by setting

D(Mf ) = {x ∈H | f · x ∈H } and Mfx = f · x for x ∈ D(Mf ) .

Show that

i) Mf is densely defined

Hint: Consider the sets Ωn := {ω | |f(ω)| ≤ n} ⊂ Ω

ii) Mf is self-adjoint.

iii) σ(Mf ) =
{
λ ∈ R | ∀ε > 0 : µ

(
f−1[λ− ε, λ+ ε]

)
> 0
}

.
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Hint: To see ” ⊃ ”, show that if h : Ω → R is measurable and the

multiplication operator Mh is bounded, then |h(t)| ≤ ‖Mh‖ almost

everywhere (consider for a > 1 a set E ∈ Σ with µ(E) < ∞ and

E ⊂ {t | |h(t)| ≥ a‖Mh‖}).

Exercise 2.40 (Spectrum of self-adjoint operator)

Let A be a densely defined, closed, symmetric operator on a Hilbert space H .

Show that A is self-adjoint if σ(A) ⊂ R.

2.2 Spectral Theorem for unbounded opera-

tors

As in the case of self-adjoint bounded operators, there are several versions of

the spectral theorem for self-adjoint unbounded operators.

2.2.1 Multiplication operator form

In this section, we will give an extension of Theorem 1.25 and Corollary 1.26.

From Exercise 2.39 we already know that if (Ω,Σ, µ) is a measure space

and f a real-valued measurable function, then the operator Mf on H =

L2(Ω,Σ, µ) given by

D(Mf ) = {x ∈H | f · x ∈H } and Mfx = f · x for x ∈ D(Mf )

(2.39)

is self-adjoint. Moreover, the spectrum σ(Mf ) is equal to the essential range,

where λ ∈ R is said to be in the essential range of f if and only of

µ({m ∈M |λ− ε < f(m) < λ+ ε}) > 0 for all ε > 0 .
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Similar to the case of bounded operators, the following Lemma holds.

Lemma 2.41

Let T be a self-adjoint operator on a complex Hilbert space H , then σ(T ) ⊂ R

and σ(T ) 6= ∅.

Proof. Let z = λ + iη ∈ C with η 6= 0 and set S = 1
η
(T − λ Id) on D(S) =

D(T ). Then S is self-adjoint and it follows from z−T = z−ηS−λ = η(i−S)

together with equation (2.27), that for any x ∈ D(T )

‖(z − T )x‖2 = η2‖(i− S)x‖2 ≥ η2‖x‖2 .

Therefore there exists a continuous5 map

(z − T )−1 : Ran(z − T ) −→ D(T ) .

But since Ran(z − T ) = Ran(i − S) = H by Theorem 2.21, it follows that

z ∈ ρ(T ). This shows that σ(T ) ⊂ R.

To see σ(T ) 6= ∅, we argue with contradiction: Assume ρ(T ) = C, then for

any λ 6= 0, the operator (λ−1 Id−T )−1 : H → D(T ) exists and is bounded.

Since

(T−1 − λ Id)Tλ−1(λ−1 Id−T )−1 = (Id−λT )(Id−λT )−1 = Id ,

the operator (T−1 − λ Id) is invertible with inverse Tλ−1(λ−1 Id−T )−1 :

H →H . This shows that any λ 6= 0 is in the resolvent set of T−1 and thus

the spectrum of T−1 is a subset of {0}. Therefore T−1 = 0, contradicting

T−1T = Id. Thus σ(T ) 6= ∅.

�
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Before we state the theorem, we remark that Theorem 1.25 and Corollary

2.22 can be extended to normal bounded operators.

The idea is to write a normal bounded operator T ∈ L(H ) for a separable

Hilbert space H as

T = A+ iB where A :=
T + T ∗

2
and B :=

T − T ∗

2

are self-adjoint and commute.

One possible way to prove the assertion is described in Appendix A.1,

written (in german) by Jan Möhring. It is based on a talk he gave at the end

of this lecture.

Another possibe approach uses the families of spectral projections ΠA

and ΠB of A and B respectively. It it follows from Theorem 1.11 that ΠA
Ω1

and ΠB
Ω2

commute for all Ω1,Ω2 ∈ B(R). If we define the map

R2 ⊃ Ω1 × Ω2 7→ P (Ω1 × Ω2) = ΠA
Ω1

ΠB
Ω2

then P (Ω1 × Ω2) is an orthogonal projection.

Let f =
∑

i aiχCi be a simple function on the rectangles (i.e. Ci =

Ωi,1 × Ωi,2 ∈ R2 and Ci ∩ Ck = ∅ for i 6= k), then we set

f(A,B) :=
∑
i

aiP (Ci) =
∑
i

aiΠ
A
Ωi,1

ΠB
Ωi,2

.

Using the BLT-Theorem, this allows to construct a continuous and a mea-

surable functional calculus, i.e. a unique map Φ̃T : B(σ(T )) −→ L(H ) with

the properties as in Theorem 1.11. The analog of the complex measure

B(R) 3 Ω 7→ µφ,ψ(Ω) = 〈φ,ΠΩψ〉 ∈ C
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constructed in the case of self-adjoint operators for fixed φ, ψ ∈ H is then

given by

B(C) 3 Ω1 + iΩ2 7→ µ̃φ,ψ(Ω1 + iΩ2) = 〈φ, P (Ω1 × Ω2)ψ〉 ∈ C.

Then we have for any f ∈ B(σ(T ))

〈ψ, Φ̃T (f)φ〉 =

∫
C
f(λ+ iη) d〈ψ, P (λ, η)φ〉 . (2.40)

The construction of the multiplication operator can then be done similar to

the case of self-adjoint operators.

Thus we get the following extension of Theorem 1.25 and Corollary 1.26

from self-adjoint bounded operators to normal bounded operators.

Proposition 2.42

For each normal operator T ∈ L(H ) there exists a unique bounded projection

valued measure P = {PΩ |Ω ∈ B(C)} on the Borel-σ-algebra B(C) such that

T =

∫
σ(T )

λ dPλ .

There is a unique norm continuous algebraic ∗-homomorphism Φ̃T : B(C)→

L(H ) such that Φ̃T (1) = Id and Φ̃T (id) = T (here id(t) = t), given by

Φ̃T (f) =

∫
σ(T )

f(λ)dPλ .

Moreover, if H is separable, T is unitary equivalent to a multiplication

operator Mf on L2(Ω,Σ, µ) for some finite measure space (Ω,Σ, µ), where

f ∈ L∞(Ω) is in general complex-valued.

We now come to the formulation of the spectral theorem for unbounded

operators.
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Theorem 2.43 (Spectral Theorem - Multiplication operator)

Let A be a self-adjoint operator on a separable Hilbert space H with domain

D(A). Then there exists a finite measure space (Ω,Σ, µ), a unitary operator

U : H −→ L2(Ω,Σ, µ) and real-valued measurable function f on Ω, which

is finite almost everywhere so that

i) x ∈ D(A) if and only if f · Ux ∈ L2(Ω,Σ, µ).

ii) If φ ∈ U [D(A)], then

UAU−1φ = f · φ µ− a.e.

where U [D(A)] = {φ ∈ L2(Ω, µ) | f · φ ∈ L2(Ω, µ)}.

Proof. Since A is self-adjoint, ±i ∈ ρ(A) by Lemma 2.41 and thus the maps

(A± i Id)−1 : H → D(A) exist and are bounded. Now let x, y ∈H . Since

Ran(A ± i) = H by Theorem 2.21, it follows that there are u, v ∈ D(A)

satisfying (A + i Id)u = x and (A − i Id)v = y. Therefore, setting R :=

(A+ i Id)−1,

〈y,Rx〉 = 〈(A− i)v, u〉 = 〈v, (A+ i)u〉 = 〈(A− i)−1y, x〉 ,

proving that

R∗ = [(A+ i)−1]∗ = (A− i)−1 .

Since by Theorem 2.16 the operators R = (A + i Id)−1 and R∗ = (A −

i Id)−1 commute, it follows that R ∈ L(H ) is normal. Thus by Proposition

2.42, there is a finite measure space (Ω,Σ, µ), a unitary operator U : H →

L2(Ω,Σ, µ) and a measurable, bounded, complex-valued function g so that

URU−1φ = g · φ =: Mgφ µ− a.e. for all φ ∈ L2(Ω,Σ, µ) . (2.41)
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Since R is injective, KerR = {0}. Thus g · φ = 0 implies that φ = 0 a.e.

by (2.41) and therefore g 6= 0 almost everywhere. Thus we can define the

measurable function

f(ω) =
1

g(ω)
− i

and f is finite almost everywhere.

Proof of i): Let x ∈ D(A), then there is some y ∈ H such that x = Ry

and from (2.41) it follows that

Ux = URU−1Uy = g · Uy µ− a.e.

g is bounded and therefore f · g = 1− ig is bounded, showing

MfUx = f · g · Uy ∈ L2(Ω,Σ, µ) .

On the other hand, if MfUx ∈ L2(Ω, µ), then there exists some y ∈H such

that Uy = (f + i) · Ux. This implies

g · Uy = g(f + i) · Ux = Ux µ− a.e. (2.42)

and by (2.41) we get

x = U−1MgUy = U−1URU−1Uy = Ry ∈ D(A) .

Proof of ii): We first remark that the equality

U [D(A)] = {φ ∈ L2(Ω, µ) | f · φ ∈ L2(Ω, µ)} =: D(Mf )

follows at once from i).

Let U−1φ = x ∈ D(A), then Rx = (A + i)−1x = y for some y ∈ H .

Therefore y = (A+ i)x and thus Ax = y − ix, which by (2.42) proves

UAU−1φ = UAx = Uy − iUx =
1

g
· Ux− iUx = MfUx = Mfφ µ− a.e.

(2.43)
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f real-valued: Since U is unitary, it follows from (2.43) that

〈x,Ay〉H = 〈Ux,MfUy〉L2

and since A is symmetric, if follows that Mf has to be symmetric. Thus by

Exercise 2.35

R 3 〈φ,Mfφ〉 =

∫
Ω

f(ω)|φ(ω)|2 dµ(ω) for all φ ∈ L2(Ω,Σ, µ)

showing that f is real-valued almost everywhere. �

2.2.2 Functional Calculus form

The above possibility to represent any self-adjoint operator as a multiplica-

tion operator on an appropriate space provides us with a natural procedure

to define functions of self-adjoint operators.

Let (Ω,Σ, µ) be a measure space, f a real-valued measurable function

on Ω and let Mf denote the self-adjoint operator on L2(Ω,Σ, µ) defined in

(2.39).

If h ∈ B(R) (i.e. h is bounded, Borel measurable and complex-valued),

then the bounded operator

h(Mf ) := Φ̃Mf
(h) := Mh◦f ∈ L(L2(Ω,Σ, µ)) (2.44)

is normal, since M∗
h◦f = Mh◦f and all multiplication operators commute.

For an arbitrary self-adjoint operator A on a Hilbert space H , we then

set

h(A) := Φ̃A(h) := U−1Mh◦fU (2.45)

where U is a unitary transform and f is a real-valued measurable function

associated to A as described in Theorem 2.43.
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We then have

Theorem 2.44 (Spectral Theorem - Functional Calculus Form)

Let A be a self-adjoint operator on a separable Hilbert space H with domain

D(A). Then there exists a unique map Φ̃A : B(R)→ L(H ) such that

i) Φ̃A is an algebraic ∗-homomorphism.

ii) Φ̃A is norm continuous, i.e. ‖Φ̃A(h)‖L ≤ ‖h‖∞.

iii) Let (hn)n∈N be a sequence in B(R) converging pointwise to id(t) = t and

satisfying |hn(t)| ≤ |t| for all t ∈ R and n ∈ N, then Φ̃A(hn) converges

strongly to A, i.e. limn→∞ Φ̃A(hn)x = Ax for all x ∈H .

iv) Let (hn)n∈N be a sequence in B(R) converging pointwise to h and if

‖hn‖∞ is a bounded sequence, then Φ̃A(hn)→ Φ̃A(h) strongly.

In addition:

v) If Ax = λx then Φ̃A(h)x = h(λ)x.

vi) If h ≥ 0, then Φ̃A(h) ≥ 0.

Proof. Exercise 2.48 �

The functional calculus allows us to define the exponential eitA. The direct

definition for bounded operators using the power series is not applicable for

unbounded A.
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2.2.3 Projection valued measure form

The functional calculus introduced above can be used to define projection

valued measures and thus to give a spectral decomposition of a self-adjoint

operator.

As first step, we introduce the family of spectral projections as in the

bounded case. As above we denote by B(R) be the Borel-σ-algebra on R.

Definition and Lemma 2.45 (Spectral Projection)

Let A be a self-adjoint operator on a Hilbert space H with domain D(A).

Then for any M ∈ B(R) we set

ΠA
M := χM(A)(= Φ̃A(χM)) .

(here χM denotes the characteristic function of M). Then

i) ΠA
M is an orthogonal projection.

ii) ΠA
∅ = 0 and ΠA

R = Id.

iii) If M =
⋃∞
n=1 Mn and Mn ∩Mm = ∅ for all n 6= m, then

N∑
n=1

ΠA
Mn
−→ ΠA

M strongly as N →∞.

iv) ΠA
M1

ΠA
M2

= ΠA
M1∩M2

.

We call ΠA = {ΠA
M |M ∈ B(R)} the family of spectral projections of A

or projection valued measure (p.v.m).

The proof is similar to the bounded case. The important difference is,

that in the unbounded case, the projection valued measure does not have a

compact support (i.e. is not bounded).
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In the special case of a multiplication operator Mf on L2 with a real-

valued measurable function f as defined in (2.39), we get from (2.44)

Π
Mf

B = χB(Mf ) = MχB◦f = Mχf−1(B)
for all B ∈ B(R) . (2.46)

and if Mf = UAU−1 on D(Mf ) for some self-adjoint operator A on a Hilbert

space H , where U : H → L2 is a unitary transform, then it follows from

(2.45) that for any B ∈ B(R)

ΠA
B = χB(A) = U−1MχB◦fU = U−1Π

Mf

B U . (2.47)

Given the spectral projection ΠA of a self-adjoint operator A, we can

define for any x, y ∈H the complex Borel measure

B(R) 3M 7→ 〈x,ΠA
My〉 ∈ C

and the positive measure

B(R) 3M 7→ 〈x,ΠA
Mx〉 ∈ [0,∞)

as described in Section 1.1.3. Then similar to Section 1.1.4 for h ∈ B(R) we

can define h(A) by setting

〈x, h(A)y〉 =

∫
R
h(λ) d〈x,ΠA

λ y〉 (2.48)

and as in the case of bounded operators it can be shown that the map

h 7→ h(A) has properties i)-iv) in Theorem 2.44. Therefore, by the unique-

ness of Φ̃A, the operator h(A) coincides with the operator constructed there.

Now suppose that g : R → C is Borel measurable, but not necessarily

bounded. Let ΠA denote the spectral projection of a self-adjoint operator A
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on a Hilbert space H , then we set

DA
g := {x ∈H |

∫
R
|g(λ)|2 d〈x,ΠA

λx〉 <∞} . (2.49)

We claim that DA
g is dense in H .

To see this, we use that by Theorem 2.43 A is unitary equivalent to a

multiplication operator Mf on L2(Ω,Σ, µ) for some real-valued measurable

function f .

Let U be the unitary transform U : H → L2(Ω,Σ, µ) such that

UAU−1ϕ = Mfϕ for all ϕ ∈ U [D(A)] .

Then writing φ = Ux and ψ = Uy for x, y ∈ H we have for any B ∈ B(R)

by (2.46) and (2.47)

〈x,ΠA
By〉H = 〈Ux, UΠA

BU
−1Uy〉L2 = 〈φ,ΠMf

B ψ〉L2 (2.50)

=

∫
Ω

φ̄(ω)χf−1(B)(ω)ψ(ω) dµ(ω) =

∫
f−1(M)

φ̄ψ dµ .

We define the complex measure on (Ω,Σ)

Σ 3M 7→ νφ,ψ(M) :=

∫
M

φ̄ψ dµ .

Then for any integrable function k on Ω∫
Ω

k dνφ,ψ =

∫
Ω

k(ω)φ̄ψ(ω) dµ(ω) (2.51)

and by (2.50) for any B ∈ B(R)

µx,y(B) := 〈x,ΠA
By〉 = νφ,ψ(f−1(B)) = f∗νφ,ψ(B) .
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Thus µx,y is the pushforward measure3 of νφ,ψ under f : Ω→ R.

For any µx,y-integrable function h : R→ C, the Transformation Formula3

together with (2.51) therefore yields∫
R
g(λ) dµx,y(λ) =

∫
Ω

g ◦ f(ω) dνφ,ψ(ω) =

∫
Ω

(g ◦ f) · φ̄ψ(ω) dµ(ω) . (2.53)

By (2.53) we get

x ∈ DA
g ⇐⇒ Ux ∈ D := {φ ∈ L2(µ) |

∫
Ω

|g ◦ f |2|φ|2 dµ <∞} . (2.54)

But in Exercise 2.39 we have shown that D = D(Mg◦f ) is dense in L2(µ).

Since U is unitary, this implies that DA
g ⊂H is dense.

For x = Uφ ∈ H and y = Uψ ∈ DA
g , equation (2.53) together with the

Hölder inequality yields∫
R
|g(λ)| d〈x,ΠA

λ y〉 =

∫
Ω

|(g ◦ f)φ̄ψ| dµ(ω) ≤
(∫

Ω

|g ◦ f |2|ψ|2 dµ(ω)

) 1
2

‖φ‖

=

(∫
R
|g(λ)|2 d〈y,ΠA

λ y〉
) 1

2

‖x‖ <∞ .

3 Let (Ω,Σ, ν) be a measure space, (Ω′,Σ′) measurable space and f : Ω → Ω′ be

Σ− Σ′-measurable. Then

f∗µ : Σ′ −→ [0,∞], B 7→ f∗µ(B) = µ(f−1(B))

is a measure on (Ω′,Σ′), called pushforward measure of µ under the map f (Bildmaß).

Proposition 2.46 (Transformation formula)

In the above setting let h : Ω′ → R be Borel measurable function. Then h is f∗µ-integrable

if and only if h ◦ f is µ-integrable and in this case∫
f−1(M)

h ◦ f dµ =

∫
M

h df∗µ for any M ∈ Σ′ . (2.52)
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The last estimate follows from (2.54).

Thus for any y ∈ DA
g the map H 3 x 7→

∫
R g(λ)〈x,ΠA

λ y〉 is a bounded

linear form and by the Riesz-Lemma there exists some element in H , which

we call g(A)y ∈H , such that

〈x, g(A)y〉 =

∫
R
g(λ)〈x,ΠA

λ y〉 for all x ∈H . (2.55)

This allows to define the operator g(A) : DA
g −→H , which we symbolically

write as g(A) =
∫
g(λ)dΠA

λ .

Unlike the case of bounded functions as given in (2.48), this integral does

not exist in the sense of Theorem 1.17), but only as described in (2.55).

If we consider the special case g(t) = id(t) = t, we get from (2.54) for any

y = U−1ψ ∈ D(A) and x = U−1φ ∈H∫
R
λ〈x,ΠA

λ y〉 =

∫
Ω

fφ̄ψ dµ = 〈φ,Mfψ〉L2 = 〈U∗MfUx, y〉H = 〈Ax, y〉H .

(2.56)

Thus D(A) = DA
id and A =

∫
λ dΠA

λ . Similarly, (2.53) and (2.55) yield for

y ∈ DA
g and x ∈H

〈x, g(A)y〉 =

∫
R
g(λ)〈x,ΠA

λ y〉 =

∫
Ω

(g ◦ f) · φ̄ψ(ω) dµ(ω)

= 〈φ,Mg◦fψ〉 ,

thus the definition of g(A) for an unbounded function g is consistent with

the definition (2.45) in the case of bounded functions.

The results given above can be summarized to the following extension of

Theorem 1.18 to the case of unbounded operators and unbounded measurable

functions.
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Theorem 2.47 (Spectral Theorem - p.v.m form (Spectral De-

composition))

There is a one-to-one correspondence between self-adjoint operators A and

projection-valued measures {ΠB |B ∈ B(R)} on a separable Hilbert space

H , given by

〈x,Ay〉 =

∫
R
λ d〈x,Πλy〉 , for all x ∈H , y ∈ D(A) .

If g : R→ R is Borel-measurable and DA
g := {x ∈H |

∫
R |g(λ)|2 d〈x,ΠA

λx〉 <

∞}, then there is a self-adjoint operator g(A) with domain D(g(A)) = DA
g

defined by

〈x, g(A)y〉 =

∫
R
g(λ) d〈x,Πλy〉 , for all x ∈H , y ∈ D(g(A)) .

If g is bounded, g(A) coincides with Φ̃A(g) given in Theorem 2.44.

2.2.4 Exercises

Exercise 2.48 (Functional Calculus)

Let A be a self-adjoint operator A on a Hilbert space H with domain D(A).

Let U : H → L2(Ω,Σ, µ) and f measurable real-valued as in Theorem 2.43.

We set

Φ̃A : B(R) −→ L(H ) , Φ̃A(h) = U−1Mh◦fU . (2.57)

Show that

i) Φ̃A is an algebraic ∗-homomorphism with Φ̃A(1) = Id

ii) ‖Φ̃A‖ ≤ ‖h‖
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iii) if (hn)n∈N be a sequence in B(R) converging pointwise to id(t) = t and

satisfying |hn(t)| ≤ |t| for all t ∈ R and n ∈ N, then Φ̃A(hn) converges

strongly to A.

iv) let (hn)n∈N be a sequence in B(R) converging pointwise to h and if

‖hn‖∞ is a bounded sequence, then Φ̃A(hn)→ Φ̃A(h) strongly.

v) if Ax = λx then Φ̃A(h)x = h(λ)x.

vi) if h ≥ 0, then Φ̃A(h) ≥ 0.

Show that the function Φ̃A given in (2.57) is uniquely determined by proper-

ties i)-iv).

2.3 Semigroups of operators

In this section, we will introduce the notion of semigroups of operators. An

important application are differential equations of the form

x′(t) = Ax(t), x(0) = x0, (2.58)

where A is a linear operator. In the finite dimensional case, i.e. if A is

a (n × n)-matrix and x is a curve in Rn, (2.58) is a system of ordinary

linear differential equations, which is solved by x(t) = etAx0. If A is an

unbounded operator on a Hilbert or Banach space, (2.58) can describe a

partial differential equation. Thus we are interested to define the exponential

etA and eitA for classes of operators. From Section 2.2 and in particular

Theorem 2.47 it follows that we can define etA if A is self-adjoint, σ(A) has

an upper bound and t ≥ 0.
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2.3.1 Definition and Properties of Semigroups

Definition 2.49 (Strongly continuous Semigroup)

Let X be a complex Banach space and Tt : X −→ X, t ≥ 0, a family of

bounded linear operators.

{Tt}t≥0 is called strongly continuous one-parameter semigroup :⇐⇒

a) T0 = Id.

b) Ts+t = TsTt for all s, t ≥ 0.

c) limt→0 Ttx = x for all x ∈ X

If instead of c) the family has the stronger property

c)′ limt→0 ‖Tt − Id ‖ = 0

then it is called norm-continuous semigroup.

Example 2.50

(a) If A ∈ L(X), then the exponential {Tt = etA}t≥0 is a norm-continuous

one-parameter semigroup (for t ∈ R, this would even be a group).

(b) The translation semigroup Ttf(x) = f(x+t) builds a strongly continu-

ous semigroup on C∞(R) (the space of continuous functions vanishing at ∞).

Here a) and b) are obvious. For c) we remark that f ∈ C∞ is uniformly con-

tinuous. Let ε > 0, then there exists some δ > 0 such that |f(x)− f(y)| < ε

whenever |x− y| < δ. This implies

0 < t < δ =⇒ ‖Ttf − f‖∞ = sup
x∈R
|f(x+ t)− f(x)| < ε.
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Since C∞ is dense in Lp for 1 ≤ p < ∞ and ‖Tt‖ < ∞ it can be shown by

an ε/3-argument that Tt is a strongly continuous semigroup on Lp(R). The

family {Tt}t∈R is even a group of operators.

As above it can be shown that {Tt}t≥0 is a strongly continuous semigroup

on C∞([0,∞)) and Lp([0,∞)).

(c) The heat diffusion semigroup on Lp(Rn) (1 ≤ p < ∞) is given by

T0 = Id and (
Ttf
)
(x) :=

1

(4πt)n/2

∫
Rn
e−
|x−y|2

4t f(y) dy (2.59)

for t > 0. If we define the heat kernel

γt(x) :=
1

(4πt)n/2
e−
|x|2
4t , for x ∈ Rn, t > 0, (2.60)

then we can define Tt as convolution

Ttf = γt ∗ f .

Since γt ∈ L1(Rn), with ‖γt‖1 = 1, if follows from Young’s inequality (Exer-

cise 2.84) that

‖Ttf‖p = ‖γt ∗ f‖p ≤ ‖γt‖1‖f‖p = ‖f‖p ,

thus Tt ∈ L(Lp(Rn)) is a contraction. Property c) can be shown with methods

similar to those in Example 2.6. In order to show b), it suffices to prove

γt+s = γt ∗ γs ,

because the convolution is associative. (Exercise 2.84).

We now state two elementary properties of strongly continuous semi-

groups.
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Lemma 2.51

Let {Tt}t≥0 be a strongly continuous one-parameter semigroup on a Banach

space X. Then the following holds.

i) There exists constants M ≥ 1 and ω ∈ R such that

‖Tt‖ ≤Meωt for all t ≥ 0 . (2.61)

ii) The map

[0,∞)×X 3 (t, x) 7→ Tt(x) ∈ X

is continuous.

With respect to t it is uniformly continuous on compact subsets of

[0,∞).

Proof. i): First we show that there exists some r > 0 such that

K := sup
0≤t≤r

‖Tt‖ <∞ . (2.62)

We show this by contradiction: Assume that (2.62) does not hold. Then

there exists some null sequence (tn)n∈N such that ‖Ttn‖ → ∞.

From Exercise 2.82 (or the Principle of Uniform Boundedness, Theorem

3.31) we can conclude that there exists some x ∈ X so that ‖Ttnx‖ → ∞.

But this is false by property c).

Now let K and r be such that (2.62) holds. We write any t ≥ 0 as

t = nr + s where n ∈ N and 0 ≤ s < r .

Using that n ≤ t
r

and K ≥ ‖T0‖ = 1, it follows from property b) that

‖Tt‖ = ‖T nr Ts‖ ≤ ‖Tr‖n‖Ts‖ ≤ Kn+1 ≤ K(K
1
r )t .
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Thus (2.61) holds for

M = K and ω =
logK

r
.

ii): Let ε > 0 and fix x ∈ X and t0 > 0. Then we have to show that there

are δ > 0 and h0 > 0 such that

‖x− y‖ ≤ δ ∧ 0 ≤ s ≤ t ≤ t0 ∧ t− s ≤ h0 =⇒ ‖Ttx−Tsy‖ ≤ ε .

(2.63)

We first remark that by property c) for δ > 0 given we can choose h0 > 0

such that

‖Thx− x‖ ≤ δ for all 0 ≤ h ≤ h0 . (2.64)

Now let M,ω be such that (2.61) holds. Then, using property b)

‖Ttx− Tsy‖ ≤ ‖Ttx− Tsx‖+ ‖Tsx− Tsy‖

≤ ‖Ts‖‖Tt−sx− x‖+ ‖Ts‖‖x− y‖

≤Meωsδ +Meωtδ,

where for the last step we used (2.64).

Thus (2.63) holds, if we choose δ ≤ ε
2M

if ω ≤ 0 and δ ≤ ε
2Meωt0

if ω > 0.

�

2.3.2 Infinitesimal Generators

We can associate to each strongly continuous semigroup an operator, the so

called generator. In example 2.50(a) this would be the operator A. To regain

A from Tt = etA, we have to differentiate.
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Definition 2.52 (Generator of a Semigroup)

Let {Tt}t≥0 be a strongly continuous one-parameter semigroup on a Banach

space X.

The (infinitesimal) generator of the semigroup is the operator

Ax := lim
h↘0

Thx− x
h

(2.65)

with domain

D(A) = {x ∈ X | lim
h↘0

Thx− x
h

exists } .

Thus A is the right derivative of the vector-valued function

T(·)x : [0,∞)→ X with t 7→ Ttx

at the point t = 0.

For the semigroups given in Example 2.50, we get the following.

Example 2.53

(a) As already mentioned above, for Tt = etA with A bounded, the generator

is A itself. In fact, using ehA =
∑∞

n=0
1
n!

(hA)n, we get∥∥∥∥ehA − Id

h
− A

∥∥∥∥ =

∥∥∥∥∥
∞∑
n=2

1

n!
hn−1An

∥∥∥∥∥ ≤
∞∑
n=2

1

n!
hn−1‖A‖n ≤ hA2eh‖A‖ → 0

as h↘ 0. In this case, the domain of the generator is X.

(b) In the case of the translation semigroup on C∞(R), we have pointwise

lim
h↘0

Thf(x)− f(x)

h
= lim

h↘0

f(x+ h)− f(x)

h
=: f ′+(x) ,

where f ′+ denotes the right derivative of f . Thus we would guess that the

generator A is given by the right derivative and f ∈ C∞ is in the domain of
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A if f ′+(x) exists for all x ∈ R and f ′+ ∈ C∞(R). But then f ′+ is uniformly

continuous and this implies that for any ε > 0 there exists h0 > 0 such that

for all 0 ≤ h ≤ h0 with y = x− h)∣∣∣∣f(x− h)− f(x)

(−h)
− f ′+(x)

∣∣∣∣ ≤ ∣∣∣∣f(y)− f(y + h)

(−h)
− f ′+(y)

∣∣∣∣+ |f ′+(y)− f ′+(x)|

=

∣∣∣∣f(y + h)− f(y)

h
− f ′+(y)

∣∣∣∣+ |f ′+(y)− f ′+(x)| ≤ ε .

This shows that the left derivative f ′− exists and is equal to the right derivative

and therefore f is differentiable. Thus

Af = f ′ and D(A) = {f ∈ C∞(R) | f ′ exists and f ′ ∈ C∞(R)} .

(c) To derive the generator of the heat diffusion semigroup, we need the

theory of Fourier transformation. Thus we discuss this example later.

In the following we will discuss some of the properties of the generator of

a semigroup. One goal is to show that it is densely defined and closed.

First remark that the notion of a Riemannian integral can be extended to

continuous functions on R with values in a Banach space X (taking the limit

of Riemannian sums). Then the usual computation rules hold (as linearity)

and the Fundamental Theorem

lim
h→0

1

h

∫ t+h

t

u(s) ds = u(t) . (2.66)

holds for u ∈ C(R, X). Moreover, if T ∈ L(X), then

T

(∫ b

a

u(s) ds

)
=

∫ b

a

T
(
u(s)

)
ds . (2.67)

Lemma 2.54

Let A be the generator of a strongly continuous semigroup {Tt}t≥0 on a Ba-

nach space X and let t > 0, then
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i) for all x ∈ X∫ t

0

Tsx ds ∈ D(A) and A

(∫ t

0

Tsx ds

)
= Ttx− x .

ii) Tt(D(A)) ⊂ D(A).

iii) TtAx = ATtx for all x ∈ D(A).

iv) Ttx− x =
∫ t

0
TsAxds for all x ∈ D(A).

Proof. Remark that the map t 7→ Ttx is continuous for each x ∈ X (Lemma

2.51).

i): Using (2.67) and the semigroup properties, we can write

1

h

(
Th

(∫ t

0

Tsx ds
)
−
∫ t

0

Tsx ds

)
=

1

h

(∫ t

0

Ts+hx ds−
∫ t

0

Tsx ds

)
(2.68)

=
1

h

(∫ h+t

h

Tsx ds−
∫ t

0

Tsx ds

)
.

Writing
∫ h+t

h
−
∫ t

0
=
∫ t
h

+
∫ h+t

t
−
∫ h

0
−
∫ t
h

=
∫ t+h
t
−
∫ h

0
, we get by (2.65) and

(2.66)

A

(∫ t

0

Tsx ds

)
= lim

h→0
lhs(2.68) = lim

h→0

1

h

(∫ t+h

t

Tsx ds−
∫ h

0

Tsx ds

)
= Ttx− x .

ii) and iii): Let x ∈ D(A), then by the continuity of Tt

1

h

(
Th(Ttx)− Ttx

)
= Tt

Thx− x
h

−→ TtAx as h→ 0 .

Thus Ttx ∈ D(A) and ATtx = TtAx.

iv) Let x ∈ D(A), then by i)

Ttx− x = A

(∫ t

0

Tsx ds

)
= lim

h→0

1

h

(
Th

(∫ t

0

Tsx ds
)
−
∫ t

0

Tsx ds

)
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= lim
h→0

∫ t

0

Ts

(Thx− x
h

)
ds .

Since by Lemma 2.51 the integrand converges uniformly on [0, t] to TsAx as

h→ 0, iv) follows.

�

Proposition 2.55

The generator of a strongly continuous one-parameter semigroup on a Banach

space is densely defined and closed.

Proof. Let A be the generator of the strongly continuous semigroup {Tt}t≥0

on a Banach space X. For x ∈ X and t > 0 we set

xt :=
1

t

∫ t

0

Tsx ds .

Then xt ∈ D(A) by Lemma 2.54 and limt→0 xt = x by (2.66). Thus D(A) is

dense in X.

Now consider a sequence (xn)n∈N in D(A) such that xn → x and Axn →

y.

Since Tt is continuous, we have by Lemma 2.54

Thx− x
h

= lim
n→∞

Thxn − xn
h

= lim
n→∞

1

h

∫ h

0

TsAxn ds . (2.69)

From Lemma 2.51 it follows that the convergence TsAxn → Tsy is uniform

in [0, t], thus

rhs(2.69) =
1

h

∫ h

0

Tsy ds −→ T0y = y as h→ 0 .

This proves that x ∈ D(A) and Ax = y. Thus A is closed.

�
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2.3.3 Application to a Cauchy problem

Lemma 2.54 gives us information about the solutions of an abstract Cauchy

problem

u′(t) = Au(t), u(0) = x0 . (2.70)

Proposition 2.56

Let A be the generator of the strongly continuous semigroup {Tt}t≥0 on a

Banach space X and let x0 ∈ D(A).

Then the map

u : [0,∞) −→ X , u(t) = Ttx0

is continuously differentiable, D(A)-valued and solves (2.70).

Moreover, u is the unique solution of (2.70) with these properties and the

map x0 7→ u(t) is continuous.

Proof. From Lemma 2.54 it follows that Ttx0 ∈ D(A) for all t > 0 and

therefore A(u(t)) is well defined. So see that u′ = Au, we compute the right

and left derivative of u separately.

We use that t 7→ Ttx is continuous by Lemma 2.51 and TtAx = ATtx by

Lemma 2.54. Then the right derivative of u is given by

lim
h↘0

u(t+ h)− u(t)

h
= lim

h↘0

Tt+hx0 − Ttx0

h
= lim

h↘0
Tt

(
Thx0 − x0

h

)
= TtAx0 = ATtx0 = Au(t) . (2.71)

To determine the left derivative, we first notice that

lim
h↘0

u(t− h)− u(t)

(−h)
= lim

h↘0

Tt−hx0 − Ttx0

(−h)
= lim

h↘0
Tt−h

(
Thx0 − x0

h

)
. (2.72)
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We set Ah := 1
h
(Th − Id), then the right hand side of (2.72) can be written

as limTt−hAhx0. We have

‖Tt−hAhx0 − TtAx0‖ ≤ ‖Tt−hAhx0 − Tt−hAx0‖+ ‖Tt−hAx0 − TtAx0‖

≤ ‖Tt−h‖‖Ahx0 − Ax0‖+ ‖Tt−hAx0 − TtAx0‖ −→ 0 as h↘ 0, (2.73)

where for the limit we used sups≤t ‖Ts‖ < ∞, the definition of A and the

continuity of Tt. By (2.73) we get

rhs(2.72) = TtAx0 = ATtx0 = Au(t) . (2.74)

Combining equations (2.72), (2.73) and (2.74) shows that u′ = Au or more

explicitly

d

ds
Tsx0 = u′(s) = Au(s) = ATsx0 . (2.75)

Since u′(t) = ATtx0 = TtAx0, the continuity of Tt implies that u′ is continu-

ous.

For the uniqueness, let v be another solution of (2.70). Then by the

product rule and (2.75)

d

dt
Ts−tv(t) = (−1)ATs−tv(t) + Ts−tv

′(t) = −Ts−tAv(t) + Ts−tAv(t) = 0 .

Therefore the function

F : [0, s]→ X , F (t) = Ts−tv(t)

is constant, because for any functional ` ∈ X∗

d

dt
(` ◦ F ) = ` ◦ d

dt
F = 0 and thus `(F (0)) = `(F (t)) (t ∈ [0, s]) .
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The Hahn-Banach-Theorem (or Corollary 62 from the previous semester)

thus shows F (0) = F (s) and thus

u(s) = Tsx0 = F (0) = F (s) = Ts−sv(s) = v(s) .

Since s was arbitrary, this shows the uniqueness of the solution.

The fact that x0 7→ u(t) = Ttx0 continuous follows from Lemma 2.51.

�

Corollary 2.57

Two strongly continuous one-parameter semigroups with the same infinitesi-

mal generator are equal.

Proof. Let (St)t≥0 and (Tt)t≥0 be strongly continuous one-parameter semi-

groups with the (same) generator A, then the maps

t 7→ Stx and t 7→ Ttx

both solve the initial value problem

u′(t) = Au(t) , u(0) = x ∈ D(A) .

The uniqueness of the solution (Proposition 2.56) then implies St|D(A) =

Tt|D(A) for all t ≥ 0. Since St and Tt are continuous by Lemma 2.51 and

D(A) is dense by Proposition 2.55, this implies Tt = St.

�

In order to use Proposition 2.56 for a Cauchy problem with a differential

operator A, we need criteria to decide whether A is the generator of a strongly

continuous semigroup.
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First, consider a norm-continuous semigroup (Tt)t≥0. Since for any 0 ≤

s ≤ t ≤ t0 we have

‖Tt − Ts‖ = ‖Ts(Tt−s − Id)‖ ≤ ‖Ts‖‖Tt−s − Id ‖ ≤ C‖Tt−s − Id ‖ ,

it follows from property c)′ that t 7→ Tt is continuous with respect to operator

norm. Therefore, the Riemannian integral
∫ t

0
Ts ds converges in operator

norm and we can define the operators

Mt =
1

t

∫ t

0

Ts ds for all t > 0 . (2.76)

Since, moreover, the map T 7→ Tx is a continuous linear operator from L(X)

to X, it follows that

Mtx =
1

t

∫ t

0

Tsx ds for all x ∈ X and t > 0 .

Proposition 2.58

Let A be the generator of a strongly continuous semigroup {Tt}t≥0 on a Ba-

nach space X. Then the following three statements are equivalent:

i) {Tt}t≥0 is norm-continuous.

ii) A is continuous.

iii) D(A) = X.

If these assumptions hold, then Tt = etA for all t ≥ 0.

Proof. ”i) ⇒ iii)” : If Tt is norm-continuous, then t 7→ Tt is continuous

and thus ‖Mt − Id ‖ → 0 by (2.66). Thus by Lemma 79 from the previous

semester (see (1.2)) it follows that Mr is invertible and thus in particular
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surjective for r sufficiently small. Since RanMr ⊂ D(A) by Lemma 2.54 it

follows that D(A) = X.

”iii) ⇒ ii)” : It follows from Proposition 2.55 that A is closed. Since by

assumption the domain of A is a Banach space, it follows from the Closed

Graph Theorem that A is continuous.

”ii)⇒ i)” : If A is bounded, the semigroup St = etA is norm-continuous and

has A as generator (see example 2.50 and 2.53). Thus Tt = St by Corollary

2.57.

�

2.3.4 Theorem of Hille-Yosida for Contraction Semi-

groups

First remark that Definition 2.15 (Resolvent set and spectrum of unbounded

operators on a Hilbert space) and Theorem 2.16 (Properties of the resolvent)

can be extended to the case of unbounded operators on Banach spaces.

Definition 2.59 (Contraction Semigroup)

A strongly continuous one-parameter semigroup (Tt)t≥0 on a Banach space

X is called contraction semigroup :⇐⇒ ‖Tt‖ ≤ 1 for all t ≥ 0.

Proposition 2.60

Let A be the infinitesimal generator of the contraction semigroup (Tt)t≥0 on

a Banach space X, then

i) {λ = η + iν ∈ C | η > 0} ⊂ ρ(A).
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ii) For all λ = η + iν with η > 0

(λ− A)−1x =

∫ ∞
0

e−λsTsx ds . (2.77)

iii) ‖η(λ− A)−1‖ ≤ 1 for all λ = η + iν with η > 0.

Proof. Let λ = η + iν ∈ C with η > 0, then

lim
t→∞
‖e−λtTt‖ ≤ lim

t→∞
|e−λt| = lim

t→∞
e−ηt = 0 .

Moreover, the semigroup (e−λtTt)t≥0 has the generator A − λ with domain

D(A). Thus by Lemma 2.54 (applied to this semigroup)

e−λtTtx− x =

(A− λ)
∫ t

0
e−λsTsx ds for all x ∈ X∫ t

0
e−λsTs(A− λ)x ds for all x ∈ D(A)

and in the limit t→∞ this shows

x =

(λ− A)
∫∞

0
e−λsTsx ds for all x ∈ X∫∞

0
e−λsTs(λ− A)x ds for all x ∈ D(A)

.

Therefore, (λ − A) : D(A) → X is bijective and thus λ ∈ ρ(A) and the

inverse of (λ− A) is given by
∫∞

0
e−λsTs(·) ds, proving i) and ii).

In order to see iii), we write

‖(λ− A)−1x‖ ≤
∫ ∞

0

e−ηs‖Ts‖‖x‖ ds ≤
∫ ∞

0

e−ηs ds · ‖x‖ =
‖x‖
η

.

�

The converse statement is given in the following theorem.
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Theorem 2.61 (Hille-Yosida for Contraction Semigroups)

Let A be an operator on a Banach space X with domain D(A). Then A is

the infinitesimal generator of a contraction semigroup if and only if

i) A is densely defined and closed,

ii) (0,∞) ⊂ ρ(A),

iii)

‖λ(λ− A)−1‖ ≤ 1 for all λ > 0 . (2.78)

Proof. ”⇒ ” : This follows from Proposition 2.55 and Proposition 2.60.

”⇐ ” : For λ > 0 define the bounded operator (called Yosida approximation)

Aλ := λA(λ− A)−1 = λ2(λ− A)−1 − λ ∈ L(X) , (2.79)

where for the second equation we used that

(λ−A)(λ−A)−1 = Id and thus A(λ−A)−1 = λ(λ−A)−1− Id . (2.80)

Remark that

Aλx := λ(λ− A)−1Ax for all x ∈ D(A) . (2.81)

We consider the associated norm-continuous semigroup (etAλ)t≥0, which is

contractive since by (2.79) and (2.78)

‖etAλ‖ ≤ e−λt‖eλ2(λ−A)−1t‖ ≤ e−λte‖λ
2(λ−A)−1‖t ≤ e−λteλt = 1 . (2.82)

Since by (2.78) together with (2.81)

‖A(λ− A)−1y‖ = ‖(λ− A)−1Ay‖ ≤ ‖Ay‖
λ
−→ 0 as λ→∞
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for all y ∈ D(A), it follows from (2.80) that for y ∈ D(A)

lim
λ→∞

λ(λ− A)−1y = lim
λ→∞

(y + A(λ− A)−1y) = y . (2.83)

Since again by (2.78) the family of operators λ(λ − A)−1 is bounded and

D(A) is dense by assumption i), it follows with an ε/3-argument that (2.83)

holds for all y ∈ X. Inserting y = Ax and using (2.81) shows

lim
λ→∞

Aλx = Ax for all x ∈ D(A) . (2.84)

In the next step we show that for x ∈ X and t ≥ 0 the limit limλ→∞ e
tAλx

exists. First we notice that

d

ds
es(Aλ−Aη)x = es(Aλ−Aη)(Aλ − Aη)x .

Integration from 0 to t gives

et(Aλ−Aη)x− x =

∫ t

0

es(Aλ−Aη)(Aλ − Aη)x ds

and by multiplication with etAη (using that Aη and Aλ commute) we get

etAλx− etAηx =

∫ t

0

esAλe(t−s)Aη(Aλ − Aη)x ds .

Using that ‖etAη‖ ≤ 1 by (2.82), equation (2.84) yields for x ∈ D(A)

∥∥etAλx− etAηx∥∥ ≤ ∫ t

0

∥∥esAλ∥∥∥∥e(t−s)Aη
∥∥ ‖(Aλ − Aη)x‖ ds

≤ t ‖(Aλ − Aη)x‖ −→ 0 as λ, η →∞ .

Since etAη is bounded by (2.82), again with an ε/3-argument we can conclude

that

lim
λ→∞

etAλx exists for all x ∈ X .
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Moreover, the convergence is uniform in t on bounded intervals.

Thus for each t ≥ 0 and x ∈ X we can define

Ttx := lim
λ→∞

etAλx (2.85)

and (Tt)t≥0 is a contraction semigroup:

In fact, Tt is is a linear contraction since each etAλ is. Properties a) and

b) of a semigroup are obvious by the properties of the exponential function.

The strong continuity follows from the fact, that the convergence in (2.85) is

uniform on bounded intervals.

It remains to show that A is the generator of the contraction semigroup

(Tt)t≥0.

We denote the generator of (Tt)t≥0 by B.

First we claim that A ⊂ B. Let x ∈ D(A), then by (2.84) and (2.85)∥∥∥∥∫ t

0

esAλAλx ds−
∫ t

0

TsAxds

∥∥∥∥
≤
∫ t

0

∥∥esAλ∥∥ ‖Aλx− Ax‖ ds+

∫ t

0

∥∥esAλAx− TsAx∥∥ ds
−→ 0 as λ→∞ .

Since as above we have

etAλx− x =

∫ t

0

esAλAλx ds

we therefore get

Ttx− x = lim
λ→∞

etAλx− x = lim
λ→∞

∫ t

0

esAλAλx ds =

∫ t

0

TsAxds .

Thus

Btx :=
Ttx− x

t
−→ Ax as t→ 0
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proving that x ∈ D(B) and Bx = limBtx = Ax for x ∈ D(A).

Since 1 ∈ ρ(A) by hypothesis ii) and 1 ∈ ρ(B) by Proposition 2.60 it

follows from A ⊂ B that for all x ∈ X

x = (Id−B)(Id−A)−1x and thus (Id−B)−1x = (Id−A)−1x

proving that D(A) = D(B). �

2.3.5 Theorem of Hille-Yosida for general semigroups

We will now extend the Theorem of Hille-Yosida to general strongly contin-

uous semigroups. We start with the analog to Proposition 2.60.

Proposition 2.62

Let (Tt)t≥0 be a strongly continuous semigroup with generator A and let M,ω

be as in Lemma 2.51, i.e. ‖Tt‖ ≤Meωt for all t ≥ 0. Then

i) {λ = η + iν ∈ C | η > ω} ⊂ ρ(A).

ii) for all λ = η + iν with η > ω.

(λ− A)−1x =

∫ ∞
0

e−λsTsx ds . (2.86)

iii) ‖(η − ω)n(λ− A)−n‖ ≤M for all λ = η + iν with η > ω.

Proof. Case 1: ω = 0

In this case, ‖Tt‖ ≤ M for all t ≥ 0. Then we can define a norm on X by

setting

|||x||| := sup
t≥0
‖Ttx‖
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and since

‖x‖ = ‖T0x‖ ≤ |||x||| ≤M‖x‖ (2.87)

it is equivalent to the original norm. Thus replacing ‖ · ‖ by |||·||| does not

change the convergence properties of sequences and their limits and therefore

the strong continuity of (Tt) and the generator A do not change, if we replace

‖ · ‖ by |||·|||.

To |||·|||, we can associate an operator norm

|||S||| = sup
|||x|||=1

|||Sx|||

and with respect to the new norm, (Tt) is a contraction semigroup, since for

any s ≥ 0

|||Tsx||| = sup
t≥0
‖TsTtx‖ = sup

t≥s
‖Ttx‖ ≤ |||x||| .

Since the generator A is unchanged as mentioned above, it follows from

Proposition 2.60 that i) and ii) hold in this case. Moreover, for any λ = η+iν

with η > 0 and n ∈ N

∣∣∣∣∣∣ηn(λ− A)−n
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣η(λ− A)−1

∣∣∣∣∣∣n ≤ 1 . (2.88)

Since by (2.87) we have for any S ∈ L(X)

‖S‖ = sup
x∈X

‖Sx‖
‖x‖

≤ sup
x∈X

M
‖Sx‖
|||x|||

≤M sup
x∈X

|||Sx|||
|||x|||

= M |||S||| ,

iii) follows at once from (2.88).

Case 2: general ω ∈ R

We consider the semigroup

St := e−ωtTt with generator A− ω .
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Then ‖St‖ ≤M for all t ≥ 0 and thus by the arguments above it follows that

{µ ∈ C | Reµ > 0} ⊂ ρ(A− ω) = {λ− ω |λ ∈ ρ(A)}

and for µ with Reµ > 0 we have for all n ∈ N

‖(Reµ)n(µ− (A− ω))−n‖ ≤M .

If we write µ = λ− ω, we get Reµ > 0 if and only of Reλ > ω, this yields i)

and iii). Property ii) follows as in the proof of Proposition 2.60.

�

Theorem 2.63 (Hille-Yosida (strongly continuous semigroups))

Let A be an operator on a Banach space X with domain D(A). Then A is

the infinitesimal generator of a strongly continuous semigroup if and only if

A is densely defined and closed and there exists constants ω ∈ R and M ≥ 1

such that

i) (ω,∞) ⊂ ρ(A)

ii)

‖(λ− ω)n(λ− A)−n‖ ≤M for all λ > ω and n ∈ N . (2.89)

In this case, the generated semigroup satisfies the estimate ‖Tt‖ ≤ Meωt for

all t ≥ 0.

Proof. ”⇒ ” : This follows from Proposition 2.55 and Proposition 2.62.

”⇐ ” : Case 1: ω = 0

For µ > 0 we define the norm on X

‖x‖µ := sup
n≥0
‖µn(µ− A)−nx‖ . (2.90)
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Then ‖ · ‖µ is equivalent to our original norm, since by (2.89) we have

‖x‖ = ‖µ0(µ− A)0x‖ ≤ ‖x‖µ ≤M‖x‖ . (2.91)

Moreover, we get by the definition (2.90) for all x ∈ X

‖µ(µ− A)−1x‖µ = sup
n≥0
‖µ(µ− A)−1µn(µ− A)−nx‖

= sup
m≥1
‖µm(µ− A)−mx‖ ≤ ‖x‖µ

and thus, denoting the associated operator norm by ‖.‖µ as well

‖µ(µ− A)−1‖µ ≤ 1 . (2.92)

We will show that ‖x‖µ is monotonically increasing with µ.

By the Resolvent equation (2.10) and (2.92) it follows that for all 0 < λ ≤ µ

‖(λ− A)−1‖µ = ‖(µ− A)−1 + (λ− µ)(µ− A)−1(λ− A)−1‖µ

≤ 1

µ
+
µ− λ
µ
‖(λ− A)−1‖µ

= ‖(λ− A)−1‖µ +
1

µ

(
1− ‖λ(λ− A)−1‖µ

)
.

This shows

‖λ(λ− A)−1‖µ ≤ 1 for all 0 < λ ≤ µ . (2.93)

Equation (2.93) implies together with (2.91) for all 0 < λ ≤ µ and n ∈ N

‖λn(λ− A)−nx‖ ≤ ‖λn(λ− A)−nx‖µ ≤ ‖λ(λ− A)−1‖nµ ‖x‖µ ≤ ‖x‖µ

and therefore by taking the supremum over all n ∈ N

‖x‖λ ≤ ‖x‖µ for all 0 < λ ≤ µ

133



CHAPTER 2. UNBOUNDED OPERATORS ON HILBERT SPACES

implying the monotonicity.

This allows to define the norm

|||x||| := lim
µ→∞

‖x‖µ ,

which by (2.91) fulfills

‖x‖ ≤ |||x||| ≤M‖x‖ for all x ∈ X (2.94)

and therefore is equivalent to the original norm. Moreover, (2.93) yields for

all λ > 0∣∣∣∣∣∣λ(λ− A)−1x
∣∣∣∣∣∣ = lim

µ→∞
‖λ(λ− A)−1x‖µ ≤ lim

µ→∞
‖x‖µ = |||x||| .

Thus Hypothesis iii) in Theorem 2.61 holds with respect to |||·||| and since by

assumption A is closed and (0,∞) ⊂ ρ(A), it follows from Theorem 2.61 that

A is the generator of a strongly continuous semigroup satisfying |||Tt||| ≤ 1.

This implies by (2.94) for all x ∈ X

‖Ttx‖ ≤ |||Ttx||| ≤ |||x||| ≤M‖x‖

and therefore ‖Tt‖ ≤M , proving the statement in the case ω = 0.

Case 2: general ω ∈ R

Consider the operator B = A − ω, then B satisfies the given assumptions

for ω = 0, and thus, by Case 1, it generates a strongly continuous semigroup

St satisfying ‖St‖ ≤ M . This implies that the operator A generates the

semigroup

Tt = eωtSt which satisfies ‖Tt‖ ≤ eωtM .

This proves the theorem.

�
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2.3.6 Accretive operators, Lumer-Phillips-Theorem

In order to be able to apply the Theorem of Hille-Yosida, it is necessary to

know the resolvent of an operator. In the following we give a criterion which

only uses information about the operator itself. In order to get an idea, we

consider the Hilbert space case first:

Let Tt be a contraction semigroup with generator A. The fact that

‖Ttx‖2 ≤ ‖x‖2 for all t ≥ 0 implies that

d

dt
‖Ttx‖2|t=0 ≤ 0 .

On the other hand

d

dt
‖Ttx‖2|t=0 = 〈Ax, x〉+ 〈x,Ax〉 = 2 Re〈x,Ax〉 ,

thus we can conclude that

Re〈x,Ax〉 ≤ 0 .

This condition will be generalized to the Banach space case.

We first need the following definition.

Definition 2.64 (Accretive and Dissipative operators)

Let X be a Banach space and A a densely defined linear operator on X .

i) Let x ∈ X. An element ` ∈ X∗ that satisfies

‖`‖ = ‖x‖ and `(x) = ‖x‖2

is called a normalized tangent functional to x.

The map J : X → P(X∗) assigning to each x ∈ X the set of all

normalized tangent functionals to x is called duality map on X.
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ii) A is called dissipative :⇐⇒ for all x ∈ D(A) there exists a normal-

ized tangent vector ` ∈ J(x) such that

Re `(Ax) ≤ 0 .

iii) A is called accretive :⇐⇒ −A is dissipative.

Remark 2.65

The Hahn-Banach-Theorem implies that each x ∈ X has at least one nor-

malized tangent functional.

If X = H is a Hilbert space, it follows from the Riesz-Lemma that the

only normalized tangent functional to x ∈ H is 〈x, ·〉 itself, i.e. J(x) =

{〈x, ·〉} (and this functional is identified with x in the usual way). In this

case, an operator A is dissipative if and only if Re〈x,Ax〉 ≤ 0 on D(A). In

particular this holds for self-adjoint operators which have no spectrum on the

positive real line.

If X = Lp(Ω,F , µ) with 1 < p < ∞ we have J(f) ⊂ Lq ∼= (Lp)∗ for

1
p

+ 1
q

= 1 (see Example 58.1 in the previous semester) and there is exactly

one normalized tangent functional to f given by

`g(f) =

∫
Ω

g(ω)f(ω) dµ(ω)

where

g(ω) =

‖f‖
2−p
p f(ω)|f(ω)|p−2 , if f(ω) 6= 0

0 , if f(ω) = 0

.

For X = C([0, 1]), J(1) is the set of all probability measures on [0, 1]

(Exercise 2.84).
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Example 2.66 (Laplace operator)

On X = C∞(Rn) consider the Laplace operator

∆f(x) =
n∑
j=1

∂2
xj
f(x) with domain D(∆) = S (Rn)4 .

Then ∆ is dissipative: For each f ∈ S there exists some x0 such that

|f(x0)| = ‖f‖∞. Set a = f(x0) and consider the functional `(f) = aδx0(f) =

af(x0). Then ` ∈ J(f) and

Re `(∆f) = Re a(∆f)(x0) ≤ 0

since the real valued function Re af takes its maximum at x0.

Proposition 2.67

A linear operator A on a Banach space X is dissipative if and only if

‖(λ− A)x‖ ≥ λ‖x‖ for all λ > 0 and x ∈ D(A) . (2.95)

Proof. ” ⇒ ”: We assume that A is dissipative. For x ∈ D(A) we choose

` ∈ J(x) such that Re `(Ax) ≤ 0. Then for all λ > 0

‖`‖‖(λ− A)x‖ ≥ |`
(
(λ− A)x

)
| ≥ Re `

(
(λ− A)x

)
4 The Schwartz space S (Rn) is the set of infinitely differentiable complex-valued

functions f on Rn which are rapidly decreasing, i.e. such that

‖f‖α,β := sup
x∈Rn

∣∣xαDβf(x)
∣∣ <∞ for all α, β ∈ Nn .

For α = (α1, . . . , αn) ∈ Nn we set |α| =
∑
i αi,

xα :=

n∏
j=1

x
αj

j and Dβ :=
∂|β|

∂α1x1 . . . ∂αnxn
.
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≥ λRe `(x) = λ‖x‖2

and since ‖`‖ = ‖x‖ this shows (2.95).

” ⇐ ”: We assume that (2.95) holds. For x ∈ D(A) and λ > 0 choose

any `λ ∈ J((λ− A)x). Then

‖`λ‖ = ‖(λ− A)x‖ and `λ((λ− A)x) = ‖(λ− A)x‖2

and for the normalized functional ˜̀
λ = 1

‖`λ‖
`λ it follows from (2.95) that

λ‖x‖ ≤ ‖(λ− A)x‖ = ˜̀
λ(λx− Ax) = λRe ˜̀

λ(x)− Re ˜̀
λ(Ax) .

Since by Corollary 62b (previous semester) ‖x‖ = sup`∈X∗,‖`‖=1 |`(x)| ≥

|˜̀λ(x)| , this estimate implies the two inequalities

|`λ(x)| ≤ ‖x‖ ≤ Re ˜̀
λ(x) +

‖Ax‖
λ

and Re ˜̀
λ(Ax) ≤ 0 (2.96)

for all λ > 0. Now let

E = span{x,Ax} and `′n = ˜̀
n|E , n ∈ N .

Then ‖`′n‖ = 1 for all n ∈ N (since `′n((n− A)x) = ‖(n− A)x‖ by construc-

tion). Therefore, the sequence (`′n)n∈N in the finite dimensional space E∗ is

bounded and thus has some accumulation point `′. Since (2.96) holds for

each `′n, it follows that

‖`′‖ = 1 and |`′(x)| ≤ ‖x‖ ≤ Re `′(x) and Re `′(Ax) ≤ 0 . (2.97)

Thus `′(x) = ‖x‖ and by the Hahn-Banach-Theorem (Corollary 61), there is

an extension ˜̀ of `′ to X∗ satisfying (2.97).

Therefore, the linear functional ` := ‖x‖ · ˜̀ is a normalized tangential

functional satisfying Re `(Ax) ≤ 0. This shows that A is dissipative. �
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Now we come to the fundamental criterion for an operator to be the

generator of a contraction semigroup.

Theorem 2.68 (Lumer-Phillips-Theorem)

Let A be a densely defined linear operator on a Banach space X. Then A is

the generator of a contraction semigroup if and only if A is dissipative and

λ0 − A is surjective for some λ0 > 0.

Remark 2.69

In [RS], the definition of the generator of a semigroup is given with a minus,

i.e. A is the generator of the semigroup e−tA. With this change of sign,

the theorem of Lumer-Phillips is formulated with ”dissipative” replaced by

”accretive”.

Proof. ” ⇒ ” : If A generates a contraction semigroup, then (0,∞) ⊂ ρ(A)

by Theorem 2.61, showing the surjectivity of λ−A for any λ > 0. Moreover,

the Hille-Yosida-condition ‖λ(λ − A)−1‖ ≤ 1 for all λ > 0 implies (2.95),

showing that A is dissipative by Proposition 2.67.

”⇐ ”: Assume that A is dissipative and λ0−A is surjective. Then (2.78)

follows at once from (2.95). Thus by Theorem 2.61 it suffices to show that

A is closed and (0,∞) ⊂ ρ(A).

By assumption λ0 − A is injective with bounded inverse by (2.95). In

particular, (λ0 −A)−1 is closed and this shows that λ0 −A and A are closed

(Exercise 2.37).

To see that (0,∞) ⊂ ρ(A), we set

Λ = {λ ∈ (0,∞) |λ− A is surjective } = (0,∞) ∩ ρ(A) .

Since ρ(A) is open, Λ ⊂ (0,∞) is open and Λ 6= ∅ since λ0 ∈ Λ.
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Let (λn) be a sequence in Λ converging to λ ∈ (0,∞). We use the

following estimate, which we proved for bounded linear operators on X in

Exercise 1.36 and which also holds in the unbounded case:

‖(µ− A)−1‖ ≥ 1

dist(µ, σ(A))
, for all µ ∈ ρ(A) .

Together with (2.95) this implies for all λn

dist(λn, σ(A)) ≥ 1

‖(λn − A)−1‖
≥ λn

and therefore

dist(λ, σ(A)) ≥ λ > 0 .

Therefore λ ∈ ρ(A)∩(0,∞) = Λ and thus Λ is closed in the relative topology

of (0,∞). Since Λ is both open and closed in (0,∞) it follows that Λ =

(0,∞). This shows that ρ(A) ⊃ (0,∞).

�

Example 2.70

Consider the following initial- and boundary-value problem:

∂

∂t
v(t, x) =

∂2

∂x2
v(x, t) , for t ≥ 0, 0 ≤ x ≤ 1,

v(0, x) = f0(x) for 0 ≤ x ≤ 1, (2.98)

v(t, 0) = v(t, 1) = 0 for t ≥ 0 .

This problem can be translated in an abstract Cauchy problem as follows:

Set X = {f ∈ C([0, 1]) | f(0) = f(1) = 0} with supremum-norm,

Af = f ′′ with domain D(A) = {f ∈ X | f ∈ C2([0, 1]) and f ′′ ∈ X}
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and (u(t))(x) = v(t, x). Then (2.98) means that we try to find

u : [0,∞)→ X such that u′ = Au , u(0) = f0 . (2.99)

By Proposition 2.56 such a solution exists, if A generates a strongly contin-

uous semigroup (Tt)t≥0 on X and f0 ∈ D(A). In this case u(t) = Ttf0.

First we remark that D(A) is dense in X since it contains the compactly

supported smooth functions, which are dense in X. Similar to Example 2.66

it can be shown that A is dissipative.

Since the boundary value problem

(Id−A)f = f − f ′′ = g f(0) = f(1) = 0

is uniquely solvable for each g ∈ X (see e.g. [Wa]), it follows that (Id−A)

is surjective. Thus by Theorem 2.68, A generates a contraction semigroup.

Corollary 2.71

Let A be a densely defined closed operator on a Banach space X. Then A

generates a contraction semigroup if both A and the adjoint operator A′ are

dissipative.

Remark 2.72

Here the adjoint operator A′ is defined similar to the Hilbert space case. We

set

D(A′) = {` ∈ X∗ | ∀x ∈ D(A) : x 7→ `(Ax) is bounded }

A′`(x) = `(Ax) for all ` ∈ D(A′), x ∈ D(A) .

Proof. Since we assume that A is closed and dissipative, by the Lumer-

Phillips-Theorem 2.68 it suffices to show that Ran(λ0 − A) = X for some

λ0 > 0.
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Since A is dissipative, it follows from (2.95) that (λ − A) is injective for

all λ > 0. Thus if (yn) is a sequence in Ran(λ−A) converging to y ∈ X, then

there exists a sequence (xn) in D(A) such that yn = (λ − A)xn. Since (yn)

is a Cauchy sequence, it follows form (2.95) that (xn) is a Cauchy sequence

and thus converges to some x ∈ X. But by assumption A is closed and thus

x ∈ D(A) and y = (λ− A)x ∈ Ran(λ− A). This shows that Ran(λ− A) is

closed.

Now suppose that Ran(Id−A) is not dense. Then by Corollary 63 of

the Hahn-Banach-Theorem there exists an ` ∈ X∗ so that ‖`‖ > 0 and

`((Id−A)x) = 0 for all x ∈ D(A). Therefore ` ∈ D(A′) and (Id−A′)` =

0. This implies, that any normalized tangent functional ν ∈ X∗∗ fulfils

ν(A′`) = ν(`) = ‖`‖2 ≥ 0. This is a contradiction to the assumption that A′

is dissipative. Thus Ran(Id−A) is dense in X. �

Corollary 2.73

Any non-positive self-adjoint operator B on a Hilbert space H (i.e. satisfying

〈x,Bx〉 ≤ 0 for all x ∈ D(B)) is the generator of a contraction semigroup.

Proof. The self-adjointness of B implies that B is closed (Corollary 2.12).

Moreover, since B and B∗ = B are non-positive, they are dissipative by

Remark 2.65. �

2.3.7 Unitary groups and Stone’s Theorem

We will come to the case of strongly continuous unitary groups, i.e. groups

consisting of unitary operators on a Hilbert space.
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Definition 2.74 (Strongly continuous unitary group)

Let H be a complex Hilbert space and Ut ∈ L(H ), t ∈ R, a family of unitary

operators. Then (Ut)t∈R is called strongly continuous one-parameter

unitary group :⇐⇒

a) Us+t = UsUt for all s, t ∈ R.

b) limt→t0 Utx = Ut0x for all x ∈H .

If A is a self-adjoint operator on a Hilbert space, the functional calculus

(Theorem 2.44) allows to define eiAt.

Theorem 2.75

Let H be a Hilbert space and A be a self-adjoint operator on H with domain

D(A). We set

Ut := eiAt for all t ∈ R .

Then

i) the family (Ut)t∈R is a strongly continuous one-parameter unitary group.

ii) for x ∈ D(A)
Utx− x

t
−→ iA as t→ 0 .

iii) if limt→0
1
t
(Utx− x) exists, then x ∈ D(A).

Remark 2.76

Below we give a proof of Theorem 2.75 using functional calculus and spectral

decomposition introduced in Section 2.2. Another possible way would be to

use the Hille-Yosida-Theorem 2.61 for contraction semigroups as follows.
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Since A is self-adjoint, it follows from Exercise 1.36 that for any µ ∈ C

with Imµ 6= 0 (which implies µ ∈ ρ(A) by Lemma 2.41)

‖(µ− A)−1‖ =
1

dist(µ, σ(A))
≤ 1

| Imµ|
. (2.100)

Thus if we define B± := ±iA, both operators satisfy the conditions for an

operator to generate a semigroup as given in Theorem 2.61:

They are closed since A is closed by Corollary 2.12 and (0,∞) ⊂ ρ(B±)

since σ(B±) ⊂ iR by Lemma 2.41. Moreover, for any λ > 0, using ∓iB =

−i2A = A and (2.100),

‖λ(λ−B±)−1‖ = ‖(∓iλ)((∓iλ)− A)−1‖ ≤ 1 .

Thus the operators B+ and B− generate contraction semigroups (T±t )t≥0.

Moreover, T+
t = eitA for t ≥ 0 and T−t = eitA for t < 0. Therefore, the

properties given in Theorem 2.75 follow from the respective properties for the

semigroups.

Proof. i) a) If Φ̃A denotes the algebraic ∗-homomorphism given in Theorem

2.44, then the multiplicativity of Φ̃A gives

Ut+s = Φ̃A(ei(t+s)λ) = Φ̃A(eitλeisλ) = Φ̃A(eitλ) ◦ Φ̃A(eisλ) = UtUs .

The unitarity of Ut then follows at once from

U∗t = Φ̃A(eitλ)∗ = Φ̃A(eitλ) = Φ̃A(e−itλ) = U−t and U−tUt = Id .

b) The strong continuity follows by use of the spectral decomposition

given in Theorem 2.47 together with the fact that Φ̃A(f)∗ = Φ̃A(f̄): observe

that

‖eitAx− x‖2 =

∫
R
|eitλ − 1|2d〈x,Πλx〉 for all x ∈H .
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For each t ∈ R the integrand |eitλ − 1|2 is dominated by 4. But the constant

function g(λ) = 4 is integrable with respect to 〈x,Πλx〉 since

〈x, x〉 = 〈x, Idx〉 =

∫
R

1 d〈x,Πλx〉 <∞ .

Since moreover

|eitλ − 1|2 −→ 0 as t→ 0 for all λ ∈ R

we can conclude by the dominated-convergence theorem that

‖Utx− x‖2 −→ 0 as t→ 0 for all x ∈H .

Thus (Ut) is strongly continuous at t = 0 and by the group property this

implies property b).

ii) Similar to above we write

‖1
t
(eitAx−x)−iAx‖2 =

∫
R

∣∣∣1t (eitλ−1
)
−iλ

∣∣∣2d〈x,Πλx〉 for all x ∈ D(A) .

Since for each t ∈ R the integrand
∣∣∣1t (eitλ − 1

)
− iλ

∣∣∣2 is dominated by the

function g(λ) = 4|λ|2, which is integrable, because∫
R
|λ|2 d〈x,Πλx〉 = ‖Ax‖2 <∞ for x ∈ D(A)

and since ∣∣∣1t (eitλ − 1
)
− iλ

∣∣∣ −→ 0 as t→ 0 for all λ ∈ R

we can conclude by the dominated-convergence theorem that

lim
t→0

Utx− x
t

= iAx for all x ∈ D(A) .
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iii) Define the operator

Bx = lim
t→0

Utx− x
it

with domain D(B) =

{
x ∈H | lim

t→0

Utx− x
it

exists

}
.

Then A ⊂ B and B is symmetric since for all x, y ∈ D(B), using U∗t = U−t,

〈x,By〉 = lim
t→0

〈
x,

(Ut − 1)y

it

〉
= lim

t→0

〈
(U−t − 1)x

−it
, y

〉
= lim

s=(−t)→0

〈
(Us − 1)x

is
, y

〉
= 〈Bx, y〉 .

Since A is self-adjoint and has no proper symmetric extension by Proposition

2.14iii), it follows that A = B. �

The following theorem tells us that each strongly continuous unitary

group arises as exponential of a self-adjoint operator.

Theorem 2.77 (Stone’s Theorem)

Let (Ut)t∈R be a strongly continuous one-parameter unitary group on a Hilbert

space H . Then there is a self-adjoint operator A on H such that

Ut = eitA for all t ∈ R .

Proof. For f ∈ C∞0 (R) we define

φf :=

∫
R
f(t)Utφ dt , for all φ ∈H ,

where the integral is a Riemann integral (this is possible since Ut is strongly

continuous).

Let D be the set of finite linear combinations of all such φf for φ ∈ H

and f ∈ C∞0 (R). If jε ∈ C∞0 (R) denotes the approximate identity introduced

in Definition 2.7 in Example 2.6, then

‖φjε − φ‖ =

∥∥∥∥∫
R
jε(t)(Utφ− φ) dt

∥∥∥∥ ≤ (∫
R
jε(t) dt

)
sup

t∈[−ε,ε]
‖Utφ− φ‖ .
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Thus the strong continuity of Ut implies that D is dense in H .

For φf ∈ D we have (see (2.67))(
Us − Id

s

)
φf =

∫
R
f(t)

(
Ut+s − Ut

s

)
φ dt

=

∫
R

(
f(τ − s)− f(τ)

s

)
Uτφ dτ −→ −

∫
R
f ′(τ)Uτφ dτ = φ−f ′

since f(τ−s)−f(τ)
s

converges uniformly to −f ′(τ).

We define the operator A : D → D by

Aφf := i−1φ−f ′ = lim
s→0

(
Us − Id

is

)
φf for φf ∈ D . (2.101)

We notice that U : D → D since

Usφf =

∫
R
f(t)UsUtφ dt = (Usφ)f ∈ D

and

UsAφf = i−1

∫
R
(−f ′)(t)UsUtφ dt = i−1(Usφ)−f ′ = AUsφf .

Furthermore, if φf , φg ∈ D, we have by (2.101) and since U∗t = U−t

〈Aφf , φg〉 = lim
s→0

〈(
Us − Id

is

)
φf , φg

〉
= lim

s→0

〈
φf ,

(
Id−U−s

is

)
φg

〉
= 〈φf , i−1φ−g′〉 = 〈φf , Aφg〉 .

showing that A is symmetric.

Now we show that A is essentially self-adjoint. Suppose there is ψ ∈

D(A∗) such that A∗ψ = iψ (i.e. ψ ∈ Ker(i Id−A∗)). Then for each φ ∈ D =

D(A)

d

dt
〈Utφ, ψ〉 = lim

h→0
〈
(
Ut+h − Ut

h

)
φ, ψ〉 = 〈iAUtφ, ψ〉
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= −i〈Utφ,A∗ψ〉 = −i〈Utφ, iψ〉 = 〈Utφ, ψ〉 .

Thus the complex-valued function h(t) := 〈Utφ, ψ〉 satisfies the ordinary

differential equation h′ = h and thus is given by

h(t) = eth(0) .

But since on the other hand Ut is unitary and therefore |h(t)| is bounded,

it follows that h(0) = 〈φ, ψ〉 = 0. Since D is dense, this implies ψ = 0.

Therefore Ker(i Id−A∗) = {0}.

A similar proof shows that Ker(i Id +A∗) = {0}. By Corollary 2.22 this

shows that A is essentially self-adjoint.

Set Vt = eitĀ, then it remains to show that Ut = Vt.

Let φ ∈ D, then φ ∈ D(Ā) and by Theorem 2.75 iii) we have

Vtφ ∈ D(Ā) and
d

dt
Vtφ = iĀVtφ .

Let w(t) = Utφ− Vtφ, then since Utφ ∈ D(A) and A = Ā on D(A),

d

dt
w(t) = iAUtφ− iĀVtφ = iĀw(t)

and therefore

d

dt
‖w(t)‖2 = −i〈Āw(t), w(t)〉+ i〈w(t), Āw(t)〉 = 0 .

Since w(0) = 0, this implies w(t) = 0 for all t ∈ R and thus Vtφ = Utφ for

all t ∈ R and φ ∈ D. Since D is dense, this shows Vt = Ut.

�

Definition 2.78 (Infinitesimal Generator)

Let (Ut)t∈R be a strongly continuous one-parameter unitary group on a Hilbert
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space H , then the self-adjoint operator A with Ut = eitA is called infinites-

imal generator of (Ut)t∈R.

Remark 2.79

If a unitary group (Ut)t∈R is weakly continuous, i.e. if

〈(Ut − Id)φ, ψ〉 −→ 0 as t→ 0 for all φ, ψ ∈H

then the group is in fact strongly continuous, since we can conclude, using

that Ut is unitary,

‖Utφ− φ‖2 = ‖Utφ‖2 − 〈Utφ, φ〉 − 〈φ, Utφ〉+ ‖φ‖2 −→ 2‖φ‖2 − 2‖φ‖2 = 0

as t→ 0.

Corollary 2.80

Suppose (Ut)t∈R is a strongly continuous one-parameter unitary group on

a Hilbert space H . Let D ⊂ H be a dense domain, which is invariant

under (Ut)t∈R and on which Ut is strongly differentiable at t = 0 with strong

derivative iA.

Then A is essentially self-adjoint on D and its closure Ā is the infinites-

imal generator of (Ut)t∈R.

Corollary 2.81

Let A be a self-adjoint operator on a Hilbert space H and let D ⊂ H be a

dense linear set contained in D(A). If

eitA : D −→ D for all t ∈ R

then D is a core for A (i.e. A|D = A).
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2.3.8 Exercises

Exercise 2.82 (Condensation of Singularities, Principle of Uni-

form Boundedness)

Let X, Y be Banach spaces and {Tjk}j,k∈N a family of linear maps from X to

Y . Assume that for any k ∈ N there exists x ∈ X such that supj∈N ‖Tjkx‖ =

∞.

Prove that there exists x ∈ X such that supj∈N ‖Tjkx‖ =∞ for all k ∈ N.

Rem.: See Theorem 3.31

Exercise 2.83 (Semigroup)

Let q ∈ C(Rn) be real-valued and bounded from above and set

Ttf(x) := etq(x)f(x) for t ≥ 0 .

Show that (Tt)t≥0 is a strongly continuous one-parameter semigroup on X

for X = C∞(Rn) and for X = Lp(Rn) with 1 ≤ p < ∞ and determine its

infinitesimal generator.

Under which additional assumptions is (Tt)t≥0 a strongly continuous semi-

group on X = L∞(Rn)?

Exercise 2.84 (Convolution and Young inequality)

Let 1 ≤ p, q ≤ ∞ and 1
r

:= 1
p

+ 1
q
− 1 ≥ 0. Let f ∈ Lp(Rn) and g ∈ Lq(Rn).

i) Show that

f ∗ g ∈ Lr(Rn) and ‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

Here f ∗ g denotes the convolution of f and g given by

(f ∗ g)(x) :=

∫
Rn
f(y)g(x− y) dy .
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ii) Show the the convolution is associative and commutative.

Exercise 2.85 (Semigroup-property, Heat kernel)

We define the heat kernel

γt(x) :=
1

(4πt)n/2
e−
|x|2
4t , for x ∈ Rn, t > 0

and set T0 = Id and for t > 0

Ttf(x) = γt ∗ f(x) .

Show that (Tt)t≥0 is a strongly continuous contraction semigroup on Lp(Rn)

for 1 ≤ p <∞, i.e. Tt ∈ L(Lp(Rd)) such that

i) Ts+t = TsTt for all s, t ≥ 0.

ii) limt→0 Ttx = x for all x ∈ X.

iii) ‖Tt‖ ≤ 1 for all t ≥ 0.

Exercise 2.86 (Normalized Tangent Functionals)

Show that the set of normalized tangent functionals on the Banach space

C([0, 1]) to the function f(x) = 1 is given by the set of all probability measures

on [0, 1].

Exercise 2.87 (Contraction Semigroup)

On the Banach space X = {f ∈ C([0, 1]) | f(0) = f(1) = 0} with supremums-

norm, we consider the operator (see Example 2.70)

Af = f ′′ with domain D(A) = {f ∈ X | f ∈ C2([0, 1]) and f ′′ ∈ X} .

Show that A generates a contraction semigroup.
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2.4 Commutation relations

Besides the fact that in the case of unbounded operators we have to take

care about the domain, another important difference to bounded operators

lays in the fact that formal calculations can be misleading. In the following

this will be illustrated using the notion of ”commuting operators”.

Two bounded self-adjoint operators A,B ∈ L(H ) on a Hilbert space H

are said to commute, if

ABx = BAx for all x ∈H . (2.102)

If A and B are unbounded, (2.102) might not make sense for any x ∈ H ,

for example if RanA ∩ D(B) = {0}. This suggests that we need to find an

alternative way to define commutativity. To do this, we will use the spectral

theorem.

For bounded operators A,B, it follows from Theorem 1.11 together with

Theorem 1.18 that (2.102) holds if and only if all spectral projection {ΠA
Ω}

and {ΠB
Ω} commute.

Definition 2.88 (Commuting operators)

Two self-adjoint operators A and B on a Hilbert space H are said to com-

mute :⇐⇒

All projections in the families of spectral projections

{ΠA
Ω |Ω ∈ B(R)} and {ΠB

Ω |Ω ∈ B(R)}

of A and B commute.

We then have
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Theorem 2.89

Let A and B be self-adjoint operators on a Hilbert space H . Then the fol-

lowing statements are equivalent.

i) A and B commute.

ii) If Imλ 6= 0 and Imµ 6= 0, then

Rλ(A)Rµ(B) = Rµ(B)Rλ(A) .

iii) For all s, t ∈ R

eitAeisB = eisBeitA .

Proof. ”i) ⇒ ii)” and ”i) ⇒ iii)”: These two implications follow imme-

diately from Theorem 2.47 (the spectral decomposition and the functional

calculus for unbounded operators), since the resolvent and the exponential

are bounded functions.

”ii)⇒ i)”: We will use Stone’s Formula.

For ε > 0 and a, b ∈ R, a < b, set

fε(x) :=
1

2πi

∫ b

a

(
1

x− λ− iε
− 1

x− λ+ iε

)
dλ .

If we denote by Γε the closed curve in C

given by the composition of γk,ε, k = 1, . . . , 45 (see figure above) then

fε(x) =
1

2πi

∫
Γε

1

x− z
dz − 1

2πi

∫
γ2,ε

1

x− z
dz − 1

2πi

∫
γ4,ε

1

x− z
dz .

5

γ1,ε : [0, 1]→ C, γ1,ε(t) = (1− t)a+ iε+ tb,

γ2,ε : [−1, 1]→ C, γ2,ε(t) = b− tiε,
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a b

−iε

iε
Γεγ1,ε

γ3,ε

γ4,ε γ2,ε

Figure 2.1: The integral contour Γε

γ3,ε : [0, 1]→ C, γ3,ε(t) = ta− iε+ (1− t)b,

γ4,ε : [−1, 1]→ C, γ4,ε(t) = a+ tiε,
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Using the Residual Theorem6, it follows that

1

2πi

∫
Γε

1

x− z
dz =


0 for x /∈ [a, b]

Res |x 1
x−z = 1 for x ∈ (a, b)

1
2

Res |x 1
x−z = 1

2
for x ∈ {a, b}

where in the last case, this is the principal value of the integral. Since in the

limit ε→ 0 the integrals over γ2 and γ4 converge to zero it follows that

fε(x) −→


0 for x /∈ [a, b]

1 for x ∈ (a, b)

1
2

for x ∈ {a, b}

=
1

2

(
χ[a,b] + χ(a,b)

)
as ε→ 0 .

6

Theorem 2.90 (Residual Theorem)

Let Ω ⊂ C be a domain, g : Ω→ C be meromorphic. Assume that G ⊂ Ω is compact and

such that there are no singularities of g on the boundary ∂G. Then∫
∂G

g(z) dz = 2πi
∑
z∈G

Res |zg ,

where Res |zg denotes the residue of g at the point z.

If g has at the point z0 a pole of order k, then

Res |z0g =
1

(k − 1)!
∂(k−1)
z |z0

(
(z − z0)kg(z)

)
.

If in the setting of Theorem 2.90 there are at most finitely many poles of order 1 on the

boundary ∂G, then

P
∫
∂G

g(z) dz = 2πi
∑
z∈G̊

Res |zg + πi
∑
z∈∂G

Res |zg ,

where P
∫
∂G

g(z) dz denotes the principal value of the integral
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Moreover, |fε| is bounded uniformly in ε. Thus by the functional calculus

(Theorem 2.44)

Φ̃A(fε)
strongly−−−−→ Φ̃A

(1

2
(χ[a,b] + χ(a,b))

)
as ε→ 0

or more explicit

1

2πi

∫ b

a

(
1

A− λ− iε
− 1

A− λ+ iε

)
dλ

strongly−−−−→
ε→0

1

2
(Π[a,b] + Π(a,b)) . (2.103)

This equation is called Stone’s Formula.

Since, moreover,

gε(x) =
iε

a+ iε− x
−→

1 , if a = x

0 , if a 6= x

as ε→ 0

it follows that

iεRa+iε(A)
strongly−−−−→
ε→0

ΠA
{a} .

Thus the spectral projections can be expressed as strong limits of resolvents.

”iii) ⇒ i)”: For this point we use the notion of Fourier transform and

some facts, which will be proved later.

Definition 2.91 (Fourier transform)

Suppose f ∈ S (Rn)2.66. The Fourier transform of f is the function f̂

given by

f̂(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξf(x) dx (2.104)

where x · ξ =
∑n

j=1 xjξj. The inverse Fourier transform of f , denoted by

f̌ , is the function

f̌(ξ) =
1

(2π)n/2

∫
Rn
eix·ξf(x) dx . (2.105)

We sometimes write f̂ = Ff and f̌ = F−1f .
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Let f ∈ S (R), then by Fubini’s theorem∫
R
f(t)〈eitAφ, ψ〉 dt =

∫
R
f(t)

(∫
R
e−itλ d〈ΠA

λφ, ψ〉
)
dt

=
√

2π

∫
R
f̂(λ)d〈ΠA

λφ, ψ〉 =
√

2π〈φ, f̂(A)ψ〉 .

Using iii) and Fubini’s theorem again,

〈φ, f̂(A)ĝ(B)ψ〉 =

∫
R

∫
R
f(t)g(s)〈φ, e−itAe−isBψ〉 ds dt = 〈φ, ĝ(B)f̂(A)ψ〉 .

Thus we have shown that

f̂(A)ĝ(B)− ĝ(B)f̂(A) = 0 for all f, g ∈ S (R) .

Now we use the following

Theorem 2.92 (Fourier Inversion Theorem)

The Fourier transform is a linear bicontinuous bijection from S (Rn) onto

S (Rn). Its inverse map is the inverse Fourier transform, i.e.

ˆ̌f = f =
ˇ̂
f for all f ∈ S (Rn) .

Moreover, setting pα(x) = (ix)α for all α ∈ Nn,(
pαD

β f̂
)

(ξ) = ̂Dα(−1)|β|pβf(ξ) . (2.106)

This shows that f(A)g(B)− g(B)f(A) = 0 for all f, g ∈ S (R).

Now we use that the Schwartz functions are dense in the set of bounded

measurable functions B(R). Thus there are uniformly bounded sequences

(fn)n∈N and (gn)n∈N in S (R) such that

fn(x)→ χ(a,b)(x) and gn(x)→ χ(c,d)(x) for all x ∈ R .
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By Theorem 2.44 (Functional Calculus), this implies

fn(A)
strongly−−−−→ ΠA

(a,b) and gn(A)
strongly−−−−→ ΠB

(c,d) .

Since the sequences are uniformly bounded and

fn(A)gn(B) = gn(B)fn(A) for all n ∈ N

it follows that ΠA
(a,b) and ΠB

(c,d) commute. �

It is not always easy to deal with the above definition of commuting

operators. A and B are often given only on sets of essential self-adjointness

and it may be difficult to construct the spectral projections, resolvents or

unitary groups generated by Ā and B̄. It would be nice to have a criterion

in terms of the operators themselves. This is not as easy.

The following two conjectures, which seem reasonable, are in fact false.

1) Let D ∈ H be dense and D ⊂ D(A) ∩D(B). Moreover, assume that

D is invariant under A and B. Then (AB − BA)φ = 0 for all φ ∈ D

implies that A and B commute.

2) Let D be a dense domain of essential self-adjointness for A and B,

which is invariant under A and B. Then (AB − BA)φ = 0 for all

φ ∈ D implies that A and B commute.

Both of these statements are false, the hypotheses are not sufficient for

commutativity. Although for all n,m ∈ N if follows from 1) and 2) that

AmBnφ = BnAmφ for all φ ∈ D, we can not conclude that the unitary

groups eitA and eisB commute on D. In the case of unbounded operators,

these operators are not given by the the power series.

This can be seen by the following example of Nelson.
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Example 2.93

Let M denote the Riemann surface of
√
z and H = L2(M) with Lebesgue

measure (locally).

Figure 2.2: The Riemann surface of
√
z. Horizontal axes: real and imaginary

parts of z. Vertical axis: real part of
√
z. Colors: imaginary part of

√
z, Leonid

2/CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

Let D denote the set of all infinitely differentiable functions with compact

support not containing 0. Set D(A) = D = D(B) with

A = −i ∂
∂x

and B = −i ∂
∂y

.

Then

i) A and B are essentially self-adjoint on D.

ii) D is invariant for A and B, i.e. A : D → D and B : D → D.

iii) ABφ = BAφ for all φ ∈ D.

iv) eitĀ and eisB̄ do not commute.
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The proofs of ii) and iii) are obvious by the definition of D.

To see i), we first remark that A and B are symmetric (by integration by

parts).

Now let Dx ⊂ D denote those functions in D, whose support does not contain

the x-axis on either sheet. Then Dx is dense in L2(M) and we define the

family of translation operators

(
Utφ
)
(x, y) = φ(x+ t, y) for all φ ∈ Dx .

Then for each t ∈ R the operator Ut is norm-preserving with dense range Dx

and extends to a unitary operator on L2(M). Since (Ut) is strongly continu-

ous on Dx, the family of unitary operators on L2(M) is strongly continuous.

Moreover, since for φ ∈ Dx

lim
h→0

1

h
(Uhφ− φ) = lim

h→0

1

h
(φ(x+ h, y)− φ(x, y)) =

∂

∂x
φ(x, y)

it follows that (Ut) is strongly differentiable on Dx with strong derivative iA.

Thus by Corollary 2.80, A is essentially self-adjoint on Dx and thus on D

(this follows from Corollary 2.22 since if Ran(A ± i Id)|Dx is dense in H ,

then Ran(A± i Id) is dense) and Ā generates (Ut). Similar arguments show

that B is the infinitesimal generator of Vtφ(x, y) = φ(x, y + t) defined on

Dy ⊂ D and is thus essential self-adjoint on D.

For iv), let φ ∈ D be supported in a small ball around the point (−1
2
,−1

2
)

on the first sheet. Then

U1V1φ 6= V1U1φ .

There is a similar effect in the following case.
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Definition 2.94 (Canonical commutation relation, Weyl rela-

tion)

Let H be a Hilbert space.

i) A pair of self-adjoint operators P and Q on H is said to satisfy the

canonical commutation relation :⇐⇒

There is a dense domain D ⊂ D(A) ∩D(B), which is invariant under

A and B, such that A|D and B|D are essentially self-adjoint and

PQφ−QPφ = −iφ for all φ ∈ D . (2.107)

ii) A pair of continuous one-parameter unitary groups (Ut)t∈R and (Vt)t∈R

on H is said to satisfy the Weyl relation :⇐⇒

UtVs = eistVsUt for all s, t ∈ R . (2.108)

As shown in Exercise 2.99, P and Q cannot both be bounded, if they

satisfy the canonical commutation relation.

The standard realisation used in quantum mechanics is the Schrödinger

representation, where H = L2(R) and P and Q are the closures of

P0φ(x) =
1

i

d

dx
φ(x) and Q0φ(x) = xφ(x)

with domain D(P0) = S (R) = D(Q0) (Exercise 2.99).

Then the groups eitP and eisQ satisfy the Weyl relation (Exercise 2.99).

The following theorem, which we will not prove here, tells us that in some

sense, these are the only such groups.
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Theorem 2.95 (von Neumann’s Theorem)

Let (Ut)t∈R and (Vt)t∈R be continuous one-parameter unitary groups on a

separable Hilbert space H satisfying the Weyl relation.

Then there are closed subspaces Hk so that

i) H =
⊕N

k=1 Hk (here N ∈ N or N =∞).

ii) Ut : Hk →Hk and Vs : Hk →Hk for all s, t ∈ R and for all k.

iii) For each k there is a unitary operator Tk : Hk → L2(R) such that

TkUtT
−1
k φ(x) = φ(x− t) and TkVsT

−1
k φ(x) = eisxφ(x) .

Corollary 2.96

Let (Ut)t∈R and (Vt)t∈R be continuous one-parameter unitary groups on a

separable Hilbert space H satisfying the Weyl relation. Let P be the gener-

ator of Ut and Q the generator of Vt. Then P and Q satisfy the canonical

commutation relation.

Thus any solution of the Weyl relation has infinitesimal generators satis-

fying the canonical commutation relation. The converse of this statement is

not true, as can be seen by the following example.

Example 2.97

In the setting of Example 2.93, let

P = A =
1

i

∂

∂x
and Q = Mx +B = x+

1

i

∂

∂y

with domain D given there. Then P and Q satisfy the canonical commutation

relation (the proof of the self-adjointness is as in Example 2.93). But the

groups they generate do not satisfy the Weyl relation (Exercise 2.98).
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2.4.1 Exercises

Exercise 2.98 (Canonical commutation relation)

Let X be a normed linear space and S, T ∈ L(X) with ST − TS = Id. Show

that

ST n+1 − T n+1S = (n+ 1)T n

holds for all n ∈ N0 and conclude that S and T can not both be bounded.

Exercise 2.99 (Canonical commutation relation - Weyl rela-

tion)

A pair of self-adjoint operators P,Q is said to satisfy the canonical com-

mutation relation if

PQ−QP = −i Id . (2.109)

Consider on H = L2(R) the operators

P0φ(x) =
1

i

d

dx
φ(x) and Q0φ(x) = xφ(x)

with domain D(P0) = S (R) = D(Q0).

i) Show that P0 and Q0 are essentially self-adjoint and that their self-

adjoint extensions P and Q satisfy (2.109) on S (R).

ii) Show that the generated unitary groups Ut = eitP and Vt = eitQ satisfy

the Weyl relation, i.e.

UtVs = eitsVsUt for all t, s ∈ R . (2.110)

Exercise 2.100 (Canonical commutation relation - Weyl rela-

tion)
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Work out the details of Example 2.97:

Let M denote the Riemann surface of
√
z and H = L2(M) with Lebesgue

measure (locally). Set

P = A =
1

i

∂

∂x
and Q = Mx +B = x+

1

i

∂

∂y

with domain D given by the set of all infinitely differentiable functions with

compact support not containing 0.

i) Show that P and Q satisfy the canonical commutation relation (2.109)

ii) Show that the generated unitary groups Ut = eitP and Vt = eitQ do not

satisfy the Weyl relation (2.110).

2.5 Trotters product formula

In this section, we give an approximation theorem for eit(A+B) in terms of

eitA and eitB, where A and B are (essentially) self-adjoint operators.

We start with the version for finite-dimensional matrices.

Theorem 2.101 (Lie product formula)

Let A and B be finite-dimensional matrices. Then

eA+B = lim
n→∞

(
e

1
n
Ae

1
n
B
)n
.

Proof. For n ∈ N let

Sn = e
1
n

(A+B) and Tn = e
1
n
Ae

1
n
B

then

Snn − T nn =
n−1∑
m=0

Smn (Sn − Tn)T n−1−m
n (2.111)
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and therefore

‖Snn − T nn ‖ ≤ n
(
max{‖Sn‖, ‖Tn‖}

)n−1‖Sn − Tn‖ ≤ n‖Sn − Tn‖e‖A‖+‖B‖ .

Since by the definition of Sn and Tn

‖Sn − Tn‖ =

∥∥∥∥∥
∞∑
m=0

1

m!

(
A+B

n

)m
−

(
∞∑
k=0

1

k!

(
A

n

)k)( ∞∑
`=0

1

`!

(
B

n

)`)∥∥∥∥∥
≤ C

n2
,

where C depends on ‖A‖ and ‖B‖, it follows that ‖Snn−T nn ‖ → 0 as n→∞.

�

This theorem can be extended to the case of contraction semigroups on

Banach spaces. We give the proof only in the following case.

Theorem 2.102

Let A and B be self-adjoint operators on a Hilbert space H and suppose that

A+B is self-adjoint on D = D(A) ∩D(B). Then(
e
it
n
Ae

it
n
B
)n strongly−−−−→ eit(A+B) as n→∞ .

Proof. Similar to the proof above, we set

Sn(t) = e
it
n

(A+B) = S1

(
t

n

)
and Tn(t) = e

it
n
Ae

it
n
B = T1

(
t

n

)
.

Let φ ∈ D, then by the properties of continuous unitary groups (see Theorem

2.75)

1

t

(
T1(t)− Id)φ =

1

t

(
eitAeitB − Id

)
φ =

1

t

(
eitA − Id

)
φ+

1

t
eitA
(
eitB − Id

)
φ

−→ iAφ+ iBφ as t→ 0 (2.112)
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and

1

t

(
S1(t)− Id

)
φ =

1

t

(
eit(A+B) − Id

)
φ −→ i(A+B)φ as t→ 0 . (2.113)

Setting (with s = t
n
)

K(s) :=
1

s

(
eisAeisB − eis(A+B)

)
=

1

s

(
T1(s)− S1(s)

)
,

it follows from (2.112) together with (2.113) that

K(s)φ −→ 0 as s→ 0 for any φ ∈ D . (2.114)

Since A+B is self-adjoint on D, it is closed and thus D is a Banach space

with respect to the graph norm

‖φ‖A+B := ‖(A+B)φ‖+ ‖φ‖ .

We denote this Banach space by D̃. Then for each fixed s ∈ R, the map

K(s) : D̃ → H is bounded (‖K(s)φ‖ ≤ 2
s
‖φ‖ for s > 0 and ‖K(0)φ‖ = 0).

Thus we have a family of bounded operators {K(s)}s∈R on the Banach space

D̃. Since, moreover, for each fixed φ ∈ D̃ the set {‖K(s)φ‖ | s ∈ R} is

bounded, it follows from the Principle of uniform boundedness (Theorem

3.31) that the family {‖K(s)‖}s∈R is uniformly bounded, i.e. there is a

constant C so that

‖K(s)φ‖ ≤ C‖φ‖A+B for all s ∈ R , φ ∈ D .

Thus on sets in D̃ which are compact (with respect to ‖ · ‖A+B), the con-

vergence K(s)φ → 0 is uniformly7. Since D̃ = D(A + B), it follows from

7Let ε > 0 and M ⊂ D̃ be compact. Cover M with balls of radius ε
2C and choose some
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Lemma 2.54 that eit(A+B)φ ∈ D̃ if φ ∈ D̃. Moreover by Lemma 2.51 the map

s 7→ S1(s)φ = eis(A+B)φ is a continuous map from R into D̃. Thus for each

fixed φ ∈ D̃

{S1(t)φ = eit(A+B)φ | t ∈ [−1, 1]} ⊂ D̃ is compact .

This shows that for any φ ∈ D̃, uniformly for s ∈ [−1, 1],

K(t)S1(s)φ −→ 0 as t→ 0 . (2.115)

Now we can proceed as in the proof of Theorem 2.101. The aim is to

show that ‖(Sn(t))n− (Tn(t))n‖ → 0 as n→∞ for any fixed t ∈ R. Remark

that Tn(t) = T1

(
t
n

)
and Sn(t) = S1

(
t
n

)
and therefore

(
Tn(t)− Sn(t)

)
=
t

n
K

(
t

n

)
.

We write for ψ ∈ D̃ as in (2.111)

((
Sn(t)

)n − (Tn(t)
)n)

ψ =
n−1∑
k=0

(
Tn(t)

)k t
n
K
( t
n

)(
Sn(t)

)n−1−k
ψ .

To estimate the norm of this term, we use that Tn(t) is unitary,

(
Sn(t)

)n−1−k
= ei

n−1−k
n

t(A+B)

finite subcover with balls around the points φ1, . . . φm. Then by (2.114) there is some s0

such that ‖K(s)φ`‖ < ε
2 for all s < s0 and 1 ≤ ` ≤ m. Let ψ ∈ D̃ be arbitrary. Then

there is φ` such that ‖ψ − φ`‖A+B < ε
2C and thus for all s < s0

‖K(s)ψ‖ ≤ ‖K(s)(ψ − φ`)‖+ ‖K(s)φ`‖ < C
ε

2C
+
ε

2
= ε .
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and s = n−1−k
n

t ≤ |t|. Thus by (2.115) for any fixed t ∈ R and φ ∈ D̃∥∥∥(Sn(t)
)n − (Tn(t)

)n
ψ
∥∥∥ ≤ |t|max

s≤|t|

∥∥∥∥K( tn)(S1(s)
)∥∥∥∥ −→ 0

as n → ∞. Since D is dense and the operators are bounded by one, this

proves the theorem. �

The following result, which we will not prove here, is stronger, since it

only requires essential self-adjointness of A+B on D(A) ∩D(B).

Theorem 2.103 (Trotter product formula)

Let A and B be self-adjoint operators on a Hilbert space H and suppose that

A+B is essentially self-adjoint on D = D(A) ∩D(B). Then(
e
it
n
Ae

it
n
B
)n strongly−−−−→ eit(A+B) as n→∞ .

A similar result (which we also will not prove) holds in the case of gener-

ators of contraction semigroups.

Theorem 2.104 (Trotter product formula)

Let A and B be generators of contraction semigroups (Tt)t≥0 and (St)t≥0 on

a Banach space X. Suppose that the closure of A + B restricted to D =

D(A) ∩D(B) generates a contraction semigroup (Ut)t≥0 on X. Then for all

φ ∈ X

lim
n→∞

(
Tt/nSt/n

)n
φ = Utφ .

If (A+B)|D is closed, the proof is exactly as the proof of Theorem 2.102.
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Chapter 3

Locally convex spaces,

Distributions, Fourier

transform

3.1 Locally convex spaces

The idea behind locally convex spaces is that instead of a norm the topology

is given by a family of seminorms.

3.1.1 Topology generated by families of seminorms

Definition 3.1 (Seminorm)

A seminorm on a vector space X is a map ρ : X 7→ [0,∞) obeying for all

x, y ∈ X and α ∈ K

a) ρ(x+ y) ≤ ρ(x) + ρ(y).
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b) ρ(αx) = |α|ρ(x).

A family of seminorms P := {ρα}α∈A, where A is any index set, is said to

separate points :⇐⇒ ρα(x) = 0 for all α ∈ A implies x = 0.

If B ⊂ A is finite and ε > 0 we set

UB,ε = {x ∈ X | ∀α ∈ B : ρα(x) < ε } and (3.1)

U = {UB,ε |B ⊂ A finite, ε > 0} .

The system U substitutes the set of all balls at 0 in a normed vector

space. It has the following properties:

1. 0 ∈ U for all U ∈ U .

2. For any UB1,ε1 , UB2,ε2 ∈ U there exists U ∈ U such that U ⊂ U1 ∩ U2

(in fact we can take UB,ε with B = B1 ∪B2 and ε = min{ε1, ε2}).

3. For any U ∈ U there is V ∈ U such that V + V ⊂ U (for U = UB,ε

take V = UB,ε/2).

4. Any U ∈ U is absorbing, i.e. the Minkowski functional

pU : X → [0,∞] , pU(x) := inf{λ > 0 |x ∈ λU} (3.2)

is finite for all x ∈ X.

To see this, take U = UB,ε and x ∈ U . Then x ∈ λU if maxα∈B ρα(x) <

λε, so pU(x) ≤ 1
ε

maxα∈B ρα(x) <∞.

5. For any U ∈ U and λ > 0 there is V ∈ U such that λV ⊂ U (if

U = UB,ε and V = UB,ε/λ, then λV = U).
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6. Each U ∈ U is balanced, i.e. γU ⊂ U for all γ ∈ K with |γ| ≤ 1.

7. Each U ∈ U is absolutely convex, i.e. U is balanced and convex

(i.e. tU + (1− t)U ⊂ U for all 0 ≤ t ≤ 1).

A set A is absolutely convex if for all x, y ∈ A and λ, µ ∈ C such that

|λ|+ |µ| ≤ 1 it holds that λx+ µy ∈ A.

Now let U be any system of sets in X obeying properties 1. to 6. Then

it is possible to define a topology1 on X by setting

M ⊂ X is open :⇐⇒ ∀x ∈M ∃U ∈ U : x+ U ⊂M . (3.3)

This is in fact a topology:

i) It is clear that ∅ and X are open.

ii) Let M1, M2 be open and x ∈M1 ∩M2. Then there exist Ui ∈ U such

that x + Ui ⊂ Mi for i = 1, 2. By 2. there is some V ∈ U such that

V ⊂ U1 ∩ U2 and therefore x+ V ⊂M1 ∩M2. Thus M1 ∩M2 is open.

1A topology τ on a set X is a system of subsets of X satisfying

i) ∅ ∈ τ and X ∈ τ .

ii) If O1, O2 ∈ τ , then O1 ∩O2 ∈ τ .

iii) If I is any index set and Oi ∈ τ for all i ∈ I, then
⋃
i∈I OI ∈ τ .

The elements of τ are called open sets. A neighbourhood of a point x ∈ X is a set

U ⊂ X such that there exists some O ∈ τ with x ∈ O ⊂ U . A neighbourhood base at

a point x ∈ X is a system Ux of neighbourhoods U of x, so that for each neighbourhood

V of x there is some U ∈ Ux with U ⊂ V . The boundary ∂M of a set M ⊂ X consists

of all points m ∈ X for which U ∩M 6= ∅ and U ∩M c 6= ∅ for each U ∈ Um. A sequence

(xn) in X is said to converge to x ∈ X, if for all U ∈ Ux there is some N ∈ N such that

xn ∈ U for all n ≥ N . Such a limit does not need to be unique.
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iii) Let Mi, i ∈ I, be open and x ∈
⋃
i∈IMi, take x ∈ Mi0 . Then there

exists some U ∈ U such that x + U ⊂ Mi0 ⊂
⋃
i∈IMi. Thus

⋃
i∈IMi

is open.

By construction, U is a neighbourhood base (or local base) at 0 of the

topology.

Lemma 3.2

In the topology given in (3.3), addition and scalar multiplication are contin-

uous2 with respect to the product topology on X ×X and C×X.

Proof. Let M ⊂ X be open. It has to be shown that

M̃ = {(x, y) |x+ y ∈M} and M ′ = {(λ, x) |λx ∈M} are open.

If x+y ∈M , then there exists U ∈ U such that x+y+U ⊂M . By 3. there

is some V ∈ U such that V +V ⊂ U . But this implies (x+V )+(y+V ) ⊂M

and thus (x+ V, y + V ) ⊂ M̃ . Therefore M̃ is open.

If λx ∈ M , then λx + U ⊂ M for some U ∈ U . Choose again V ∈ U

according to 3, i.e. such that V + V ⊂ U . Then by 4. there is some ε > 0

such that εx ∈ V . Since V is balanced, it follows that

(µ− λ)x ∈ V if |µ− λ| < ε .

2If X1 and X2 are topological spaces, then a map f : X1 → X2 is called continuous

at x0, if for each neighbourhood V of f(x0) the pre-image f−1(V ) is a neighbourhood of

x0. If Ux0
and Vf(x0) are neighbourhood bases at x0 and f(x0) respectively, then f is

continuous at x0 if for any V ∈ Vf(x0) there is some U ∈ Ux0
such that f(U) ⊂ V . The

function f is called continuous if it is continuous at all x ∈ X. This holds if and only if

the pre-images of all open sets in X2 are open in X1.
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Now by 5. and 6. there is W ∈ U such that µW ⊂ V if |µ| < |λ|+ ε. Thus

if |µ− λ| < ε and w ∈ W

µ(x+ w)− λx = (µ− λ)x+ µw ∈ V + V ⊂ U

proving that {µ | |µ− λ| < ε} × (x+W ) ⊂M ′. �

3.1.2 Definition, examples and fundamental properties

Definition 3.3 (Locally convex space)

Let X be a vector space and τ a topology on X.

i) (X, τ) is called topological vector space :⇐⇒ addition and scalar

multiplication are continuous.

ii) Let P = {ρα}α∈A be a family of seminorms on X and τ the associ-

ated topology defined in (3.3). Then (X, τ) is called locally convex

topological vector space or simply locally convex space.

It follows from Lemma 3.2 that a locally convex space is in fact a topo-

logical vector space.

Example 3.4 i) Let S be a set and X = CS the space of functions f :

S → C, then the family P = {pt}t∈S of seminorms with pt(f) := |f(t)|

generates the locally convex topology of pointwise convergence on X.

ii) Let (S, τ) be a topological space and X = C(S,C). For any compact set

K ⊂ S we define the seminorm

pK(f) := sup
t∈K
|f(t)| .
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Then the family P = {pK |K ⊂ S compact} generates the locally convex

topology of uniform convergence on compact sets.

iii) On X = C∞(Ω), where Ω = Rn or Ω ⊂ Rn open, consider the semi-

norms

pK,α(f) := sup
x∈K
|Dαf(x)| where K ⊂ Ω compact , α ∈ Nn .

The locally convex space generated by the family

P = {pK,α |α ∈ Nn, K ⊂ Ω compact }

is often denoted by E (Ω).

iv) The Schwartz space S (Rn)2.66 (infinitely differentiable functions of

rapid decrease) together with the family of seminorms ‖ · ‖αβ given by

‖f‖α,β := sup
x∈Rn

∣∣xαDβf(x)
∣∣ <∞ for all α, β ∈ Nn (3.4)

is a locally convex space (Exercise 3.35).

v) For Ω ⊂ Rn open and K ⊂ Ω compact set

DK(Ω) := {f ∈ C∞(Ω) | supp f ⊂ K } and pα(f) = sup
x∈Ω
|Dαf(x)| .

Then DK(Ω) together with the family of seminorms P = {pα}α∈Nn is a

locally convex space.

vi) For DK(Ω) as given in v) we denote the topology by τK. Set D(Ω) =⋃
K DK(Ω) and let P be the family of all seminorms p on D(Ω) such

that all restrictions p|DK are continuous with respect to τK.
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vii) If X is a vector space with norm ‖ · ‖, then the locally convex topology

generated by P = {‖ · ‖} is the norm topology.

viii) On a normed vector space X with dual space X∗, the locally convex

topology generated by the seminorms

p`(x) := |`(x)| , ` ∈ X∗,

is the weak topology σ(X,X∗) on X.

ix) On the dual space X∗ of a normed vector space X, the locally convex

topology generated by the seminorms

px(`) := |`(x)| , x ∈ X

is the weak-* topology on X∗.

x) If X and Y are normed vector spaces, then on L(X, Y ) there are

three topologies: the norm topology generated by the operator norm,

the strong operator topology generated by the seminorms

px(T ) := ‖Tx‖Y , x ∈ X

and the weak operator topology generated by the seminorms

px,`(T ) := |`(Tx)| , ` ∈ Y ∗ , x ∈ X .

xi) On any vector space X the seminorm p(x) = 0 generates the chaotic

topology, in which only X and ∅ are open. This ”family of seminorms”

does obviously not separate points.
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Lemma 3.5

Let X be a locally convex space, where the topology τ is generated by the family

of seminorms P = {pα}α∈A. Then the following statements are equivalent:

i) (X, τ) is a Hausdorff space3.

ii) P separates points.

iii) There exists a neighbourhood base U at 0 such that
⋂
U∈U U = {0}.

Proof. i)⇒ ii) : Let x 6= 0 and let U and V be neighbourhoods of 0 satisfying

(x+U)∩ V = ∅. Since τ is generated by P there are B ⊂ A finite and ε > 0

such that V = UB,ε = {x ∈ X | ∀α ∈ B : pα(x) < ε }. Therefore x /∈ V

implies that pα(x) ≥ ε for some α ∈ B.

ii)⇒ iii) : This follows from the fact that

x ∈
⋂
B,ε

UB,ε ⇐⇒ pα(x) = 0 for all α ∈ A

and if P separates points, the last statement is equivalent to x = 0.

iii) ⇒ i) : Let x 6= y, then by assumption there exists some U = UB,ε ∈ U

such that x − y 6= U , i.e pα(x − y) ≥ ε for all α ∈ B. Let V = UB,ε/4, then

(x+V )∩ (y+V ) = ∅. In fact, assume that x+ v = y+w for some v, w ∈ V .

It follows from the triangle inequality that

pα(x−y) = pα(x−v−y−w+v+w) ≤ pα((x+v)− (y+w))+pα(v)+pα(w)

and therefore for all α ∈ B by the definition of U and V

pα((x+ v)− (y + w)) ≥ pα(x− y)− pα(v)− pα(w) ≥ ε− ε

2
> 0

which contradicts the assumption. �

3Two different points have disjoint neighbourhoods
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This shows that all examples except the last are Hausdorff spaces. The

following proposition explains, why these spaces are called locally convex.

We start with a lemma.

Lemma 3.6

Let X be a vector space and U ⊂ X a subset. Then the Minkowski functional

pU defined in (3.2) is

i) sublinear4 if U is convex and absorbing.

ii) a seminorm, if U is absorbing, convex and balanced.

Proof. i) Since U is absorbing, pU is finite by definition.

From the definition of pU it follows by setting µ = tλ that

tpU(x) = t inf{λ > 0 | x
λ
∈ U} = inf{µ > 0 | tx

µ
∈ U} = pU(tx) (3.5)

for any t ≥ 0 and x ∈ X. In order to see the inequality

pU(x+ y) ≤ pU(x) + pU(y) for all x, y ∈ X (3.6)

let x, y ∈ X be fixed. Choose any ε > 0. Since the Minkowski functional

pU(x) is the infimum over all t > 0 such that x
t
∈ U , it follows that there are

λ, µ > 0 such that

λ ≤ pU(x) + ε and µ ≤ pU(y) + ε and
x

λ
,
y

µ
∈ U .

4 If V is a vector space, a map g : X → R is called sublinear if

(a) p(λv) = λp(v) for all λ ≥ 0 and v ∈ V .

(b) p(v + w) ≤ p(v) + p(w) for all v, w ∈ V .
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The convexity of U implies

λ

λ+ µ

x

λ
+

µ

λ+ µ

y

µ
=
x+ y

λ+ µ
∈ U .

Therefore

pU(x+ y) ≤ λ+ µ ≤ pU(x) + pU(y) + 2ε

and since ε > 0 was arbitrary, this proves (3.6).

ii) Since U is balanced, i.e. γU ⊂ U for all |γ| ≤ 1, it follows that U = λU

for |λ| = 1 and thus

pU(λx) = pλU(λx) = pU(x) = |λ|pU(x) for all |λ| = 1 , x ∈ X .

Combining this with (3.5) shows that

|λ|pU(x) = pU(λx) for any λ ∈ K , x ∈ X .

Together with (3.6) and the fact that pU is finite, this shows that pU is a

seminorm. �

Proposition 3.7

A topological vector space (X, τ) is locally convex if and only if it has a

neighbourhood base at 0 consisting of convex, balanced and absorbing sets.

Proof. ”⇒ ”: This follows at once from the construction of a locally convex

space.

”⇐ ”: Assume that τ has a neighbourhood base U and that any U ∈ U is

convex, balanced and absorbing. Then by Lemma 3.6, each pU is a seminorm.

Consider now the family of seminorms P = {pU}U∈U . This family gener-

ates a topology τ̃ on X with the neighbourhood base at 0 given by

Ũ = {UV ,ε | ε > 0, V ⊂ U finite }
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UV ,ε = {x ∈ X | ∀U ∈ V : pU(x) < ε} .

We show that the topologies τ and τ̃ are equal:

In order to see τ ⊂ τ̃ , we observe that

U{U},1 = {x ∈ X | pU(x) < 1} = U if 0 ∈ U ⊂ X open and convex .

(3.7)

In fact, if pU(x) < 1, then there exists λ < 1 such that x
λ
∈ U . Since 0 ∈ U ,

it follows from the convexity that

x = λ
x

λ
+ (1− λ)0 ∈ U .

Thus U{U},1 ⊂ U .

On the other hand, if pU(x) ≥ 1, then x
λ
6= U for all λ < 1. Since U c is

closed, it follows that

x = lim
λ↗1

x

λ
∈ U c .

This shows that U c
{U},1 ⊂ U c. Thus U = U{U},1 ∈ Ũ for any U ∈ U .

The inclusion τ̃ ⊂ τ holds, since for any finite V ⊂ U and ε > 0

UV ,ε =
⋂
U∈V

εU ∈ τ .

In fact, x ∈ UV ,ε if and only if pU(x) < ε which is equivalent to x ∈ εU for

all U ∈ V . �

This Proposition shows, that locally convex spaces can be determined

either by a family of seminorms or by an absolutely convex neighbourhood

base at 0.
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3.1.3 Continuous linear maps

The equivalence of continuity and boundedness for linear maps given in

normed vector spaces can be generalized to locally convex spaces. We start

with criteria for the continuity of a seminorm.

Lemma 3.8

Let X be a locally convex space with topology τ generated by the family of

seminorms P = {pα}α∈A.

i) Let q : X → [0,∞) be a seminorm. Then the following statements are

equivalent.

(a) q is continuous.

(b) q is continuous at 0.

(c) {x ∈ X | q(x) < 1} is a neighbourhood of 0.

ii) pα is continuous for all α ∈ A.

iii) A seminorm q on X is continuous if and only if

∃M > 0 ∃B ⊂ A finite : q(x) < M max
α∈B

pα(x) for all x ∈ X .

(3.8)

Proof. i): The implication (a) ⇒ (b) is clear. But q is continuous at 0

if and only if for each neighbourhood V of q(0) = 0, the pre-image is a

neighbourhood of 0. Thus (b)⇒ (c) is clear.

(c) ⇒ (a): Assume that (c) holds. Let x ∈ X and ε > 0 be given. We

have to show that the pre-image of the ε-interval around q(x) is open in X.
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Set

U := ε{y ∈ X | q(y) < 1} = {y ∈ X | q(y) < ε} .

Then for any y ∈ U

|q(x+ y)− q(x)| ≤ q((x+ y)− x) = q(y) < ε

and therefore

q(x+ U) ⊂ {λ ∈ R | |λ− q(x)| < ε} .

This proves the continuity of q.

ii): By the construction of τ the sets {x ∈ X | pα(x) < 1} are neighbourhoods

of 0 for all α ∈ A. The continuity of all seminorms in P thus follows from i).

iii): By i) it suffices to show that (3.8) is equivalent to the fact that N =

{x ∈ X | q(x) < 1} is a neighbourhood of 0.

N is a neighbourhood of 0 if and only if there exist ε > 0 and B ⊂ A

finite such that UB,ε ⊂ N . But this is equivalent to (3.8) for M = 1
ε

and the

same finite B ⊂ A, since 1
ε

maxα∈B pα(x) < 1 for any x ∈ UB,ε. �

It can be interesting to compare two different topologies (or two different

families of seminorms) on the same vector space X.

Definition 3.9

On the vector space X consider the families of seminorms P and Q generating

the topologies τP and τQ respectively. Then P and Q are called equivalent

:⇐⇒ τP = τQ.

Corollary 3.10

On the vector space X consider the families of seminorms P and Q generating

the topologies τP and τQ respectively.
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i) τP = τQ holds if

P ⊂ Q ⊂ {q seminorm | q is continuous with respect to τP} .

ii) P and Q are equivalent if and only if each p ∈ P is continuous with

respect to τQ and each q ∈ Q is continuous with respect to τP .

This lemma allows to get the following characterisation of a convergent

net.

Corollary 3.11

Under the assumptions of Lemma 3.8 a net5 (xγ)γ∈I converges to x ∈ X if

and only if

pα(xγ − x) −→ 0 , for all α ∈ A .

Proof. We have xγ → x if and only if (xγ − x) → 0, thus it suffices to

consider x = 0. ”⇒ ”: If xγ → 0 it follows from Lemma 3.8ii) together with

5A directed system is an index set I together with an ordering ≺ wich satisfies

i) If α, β ∈ I then there exists γ ∈ I such that γ � α and γ � β.

ii) ≺ is a partial ordering, i.e. α ≺ α for all α ∈ I and α ≺ β and β ≺ γ implies α ≺ γ

for all α, β, γ ∈ I.

A net is a mapping from a directed system I to X and is denoted by (xα)α∈I . A net

(xα)α∈I is said to converge to x ∈ X (written xα → x) if for any neighbourhood U of x

there is some β ∈ I so that xα ∈ U for all α � β.

Proposition 3.12

Let X and Y be topological spaces. A function f : X → Y is continuous at x0 if and only

if for every convergent net (xα)α∈I in X with xα → x, the net
(
f(xα)

)
α∈I converges in Y

to f(x).
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Proposition 3.12 that pα(xγ)→ 0 for all α ∈ A.

”⇐ ”: Let U ∈ U be a neighbourhood of 0, then by construction U = UB,ε

for some ε > 0 and B ⊂ A finite. By assumption, for any α ∈ A there is

γα ∈ I such that

pα(xγ) < ε for all γ � γα .

Since I is directed and B is finite, it follows that there is a β ∈ I such that

β � γα for all α ∈ B. This implies

pα(xγ) < ε for all γ � β and α ∈ B

and thus xγ ∈ UB,ε for all γ � β. This shows that xγ → 0. �

Definition 3.13 (Complete locally convex space)

A net (xγ)γ∈I in a locally convex space X generated by the family of semi-

norms P = {pα}α∈A is called Cauchy :⇐⇒

∀ε > 0 ∀α ∈ A ∃β0 ∈ I ∀ β, γ � β0 : pα(xβ − xγ) < ε .

X is called complete if every Cauchy net converges.

We now consider linear maps between locally convex spaces. The follow-

ing proposition generalizes the fact that linear maps between normed vector

spaces are continuous if and only if they are bounded.

Proposition 3.14

Let (X, τX) and (Y, τY ) be locally convex spaces where τX and τY are generated

by the families P and Q of seminorms respectively. Let T : X → Y be linear.

Then the following statements are equivalent.

i) T is continuous.
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ii) T is continuous at 0.

iii) If q is a continuous seminorm on Y , then q◦T is a continuous seminorm

on X.

iv) For any q ∈ Q there is a finite F ⊂ P and M > 0 such that

q(Tx) < M max
p∈F

p(x) for all x ∈ X . (3.9)

Proof. i)⇒ ii): clear

ii) ⇒ i): Since T is continuous at 0, for each neighbourhood V ⊂ Y of 0

there exists a neighbourhood U ⊂ X of 0 such that T (U) ⊂ V . But then for

any x ∈ X by the linearity of T we get T (x+U) = T (x)+T (U) ⊂ T (x)+V .

ii)⇒ iii): This follows from Lemma 3.8i), since the composition of continu-

ous maps is continuous.

iii) ⇒ iv): If q ∈ Q, then q is continuous by Lemma 3.8ii). Thus by iii) it

follows that q ◦T is a continuous seminorm on X. Lemma 3.8iii) implies that

iv) holds.

iv) ⇒ ii): Let V ⊂ Y be a neighbourhood of 0. Without loss of generality

we can assume that V = {y ∈ Y | qi(y) < ε} for some ε, where q1, . . . , qn ∈ Q.

For each i = 1, . . . n choose Mi and Fi according to (2.95). If we set

F :=
n⋃
i=1

Fi and M := max
i=1,...n

Mi ,

it follows that

max
i=1,...n

qi(Tx) ≤M max
p∈F

p(x) for all x ∈ X

and thus T (UF,ε/M) ⊂ V . �
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In the special case of a linear functional, this implies:

Corollary 3.15

Let X be a locally convex space with topology generated by the family P of

seminorms. A linear map ` : X → K is continuous if and only if there are

finitely many seminorms p1, . . . , pn ∈ P and M > 0 such that

|`(x)| < M max
i=1,...n

pi(x) , for all x ∈ X .

Definition 3.16 (Dual space)

Let X, Y be locally convex spaces.

i) L(X, Y ) denotes the set of all continuous linear maps from X to Y .

ii) X ′ := L(X,K) is called topological dual space of X.

It follows from Proposition 3.14 that X ′ and L(X, Y ) are vector spaces.

3.1.4 Hahn-Banach and Separating Hyperplane

Theorem 3.17 (Hahn-Banach-Theorem)

Let X be a locally convex space, U ⊂ X a subspace and ` ∈ U ′. Then there

exists an extension Λ ∈ X ′ of `.

Proof. Let P = {pα}α∈A be the family of seminorms generating the topol-

ogy τ on X. Then the relative topology6 on U is generated by the family

{pα|U}α∈A.

6The relative topology on U is given by τU = {O ∩ U |O ∈ τ}.
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By Corollary 3.15 there exists a continuous seminorm p on X (we can take

p := M maxi=1,...n pi) such that

|`(x)| ≤ p(x) for all x ∈ U .

Thus it follows from the general versions of the Hahn-Banach-Theorem (The-

orem 59 or Theorem 60) that there exists a linear extension extension Λ :

X → K of ` such that |Λ(x)| ≤ p(x) for all x ∈ X. Thus Λ ∈ X ′ by Corollary

3.15. �

In the following we will use this theorem to show a geometric statement

about a separating hyperplane.

Definition 3.18 (Hyperplane)

Let X be a locally convex space.

i) A hyperplane is the set of points x ∈ X where Re `(x) = a for some

` ∈ X ′ and a ∈ R.

ii) Two sets A,B ⊂ X are said to be separated by a hyperplane :⇐⇒

∃` ∈ X ′ ∃a ∈ R : ∀x ∈ A : Re `(x) ≤ a and ∀x ∈ B : Re `(x) ≥ a .

(3.10)

iii) If the inequalities in (3.10) are strict, A and B are called strictly

separated.

Before we state the Theorem, we give two lemmata used in the proof.

Lemma 3.19

Let W be an open, absorbing, balanced, convex neighbourhood of 0 in a lo-

cally convex space X. Then the Minkowski functional pW is a continuous

seminorm.

186



3.1. LOCALLY CONVEX SPACES

Proof. By Lemma 3.6, pW is a seminorm. The continuity follows from Lemma

3.8i) together with (3.7). �

Theorem 3.20 (Separating hyperplane theorem)

Let X be a locally convex space and let A and B be disjoint convex sets in

X.

i) If A is open and 0 /∈ A, there exists ` ∈ X ′ such that

Re `(a) < 0 for all a ∈ A .

ii) If A is open, then A and B can be separated by a hyperplane.

iii) If A and B are open, then they can be strictly separated by a hyperplane.

iv) If A is compact and B is closed, they can be strictly separated by a

hyperplane.

Proof. i): Let x0 ∈ A, y0 = −x0 and U = y0 + A. Then U is open and

convex, y0 /∈ U (since y0 − y0 = 0 /∈ A) and 0 ∈ U (since 0− y0 = x0 ∈ A).

Consider the Minkowski functional pU . Since U is open, there exists a

convex, balanced and absorbing neighbourhood W ⊂ U of 0. This shows

that pU is finite, since pU ≤ pW and W is absorbing. By Lemma 3.6, the

convexity of U implies that pU is sublinear4. Moreover pU(y0) ≥ 1 by (3.7)

since y0 /∈ U .

Set Y = {ty0 | t ∈ R} and define the R-linear functional λ : Y → R by

λ(ty0) = tpU(y0). Then

λ(y) ≤ pU(y) for all y = ty0 ∈ Y
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because

t ≤ 0 ⇒ λ(ty0) ≤ 0 ≤ pU(ty0) and

t > 0 ⇒ λ(ty0) = tpU(y0) = pU(ty0) .

Thus by the Hahn-Banach-Theorem (real version) (Theorem 59), there exists

an R-linear functional Λ : X → R such that

Λ(y) = λ(y) for all y ∈ Y and Λ(x) ≤ pU(x) for all x ∈ X .

Setting

` : X → C , `(x) := Λ(x)− iΛ(ix) ,

it follows that ` is C-linear7 and

Re `(x) = Λ(x) ≤ pU(x) for all x ∈ X . (3.11)

Since any a ∈ A can be written as a = u− y0 for some u ∈ U , it follows from

pU(y0) ≥ 1 and pU(u) < 1 for all u ∈ U (see (3.7)) that

Re `(a) ≤ pU(a) ≤ pU(u)− pU(y0) ≤ pU(u)− 1 < 0 .

The continuity of ` can be seen as follows: By (3.27) it follows that Re `(x) ≤

pW (x), since W ⊂ U . Since pW is a seminorm, we have pW (λx) = pW (x)

for all |λ| = 1. Thus choosing λ ∈ C, |λ| = 1, so that λ`(x) = |`(x)| ∈ R, it

follows that

|`(x)| = λ`(x) = `(λx) = Re `(λx) ≤ pw(λx) = pW (x) .

7For any z = a + ib ∈ C and x ∈ X, it follows from the R-linearity of Λ that

`(zx) = Λ((a+ ib)x)− iΛ(i(a+ ib)x) = aΛ(x)+ bΛ(ix)− iaΛ(ix)+ ibΛ(x) = (a+ ib)Λ(x)−

i(a+ ib)Λ(ix) = z`(x).
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Thus by Proposition 3.14, ` is continuous and thus ` ∈ X ′.

ii): Since A and B are disjoint and A is open, the set A − B is open and

convex and does not contain 0. Thus by i) there exists ` ∈ X ′ such that

Re `(x) = Re `(a− b) = Re `(a)− Re `(b) < 0 for all x = a− b ∈ A−B .

(3.12)

This implies that for some c ∈ R

sup
a∈A

Re `(a) ≤ c ≤ inf
b∈B

Re `(b)

and thus A and B are separated by the hyperplane `(x) = c.

iii) Let ` ∈ X ′ be such that (3.12) holds. Since ` is continuous and non-zero,

it maps open sets to open sets (i.e. ` is open)8. Thus Re `(A) and Re `(B)

are open in R, proving the strict inequality.

iv) Let U denote the absolutely convex neighbourhood base at 0 generating

the topology on X. We start showing that there exists V ∈ U such that

(A+ V ) ∩B = ∅ . (3.13)

If A = ∅, then A+V = ∅ and (3.13) is trivial. We therefore can assume that

A 6= ∅. Consider a ∈ A, then a /∈ B and since B is closed there is U ∈ U

such that (a+ U) ∩B = ∅.

By property 3. of U , there exists Va ∈ U such that Va + Va ⊂ U it

follows that

(a+ Va + Va) ∩B = ∅ . (3.14)

8In fact let V ⊂ X be open and let z ∈ `(V ). Then there exists v ∈ V such that

`(v) = z. Since V is open, there exists U ∈ U such that v+U ⊂ V . Since U is a balanced

neighbourhood of 0 ∈ X, the linearity of ` implies that `(U) is a balanced neighbourhood

of 0 ∈ C, i.e. `(U) contains some open ball K at 0 and z +K ⊂ `(v + U) =⊂ `(V )
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We assumed A to be compact, thus the open covering A ⊂
⋃
a ∈ A(a+ Va)

has a finite subcovering, i.e. there are points a1, . . . , an ∈ A such that

A ⊂
n⋃
k=1

(ak + Vak) .

Setting V :=
⋂n
k=1 Vak it follows that

A+ V ⊂
n⋃
k=1

(ak + Vak + V )
n⋃
k=1

(ak + Vak + Vak)

and since (3.14) holds for each ak and Vak , this proves (3.13).

Since (3.13) holds, the sets B and A + V , which is open, are separated

by a hyperplane by ii) given by some ` ∈ X ′. But `(A) is a compact subset

of `(A + V , because ` is continuous. This shows that A and B are strictly

separated by a hyperplane. �

Corollary 3.21

If X is a locally convex space, then X ′ separates points, i.e. for any x 6= y

there exists some ` ∈ X ′ such that `(x) 6= `(y).

Proof. Apply Theorem 3.20 iii) with A = {x} and B = {y}. �

Corollary 3.22

Suppose M is a subspace of a locally convex space X and x0 ∈ X. If x0 is

not in the closure of M , then there exists ` ∈ X ′ such that `(x0) = 1 and

`(m) = 0 for every m ∈M .

Proof. Apply Theorem 3.20 iii) to A = {x0} and B = M . Then there exists

`′ ∈ X ′ such that Re `′(x0) and Re `(M) are disjoint. Thus Re `′(M) is a

proper subset of R. Since `′ is linear and M is a subspace, this implies

`′(M) = 0. The functional ` is then given by `′/`′(x0). �
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3.1.5 Weak topologies

In Example 1viii) and ix) we introduced the weak and the weak-* topologies

on a normed vector space X. More general, we can consider two vector spaces

X and Y and a bilinear map B : X × Y → K (i.e. Bx : Y → K given by

Bx(y) = B(x, y) and By : X → K given by By(x) = B(x, y) are both linear).

Definition 3.23 (Dual pair)

For vector spaces X and Y and a bilinear map B : X × Y → K, the tuple

(X, Y,B) is called dual pair with respect to B :⇐⇒

∀x ∈ X \ {0} ∃y ∈ Y : B(x, y) 6= 0 and

∀y ∈ Y \ {0} ∃x ∈ X : B(x, y) 6= 0 .

For a given pair (X, Y,B) of vector spaces, the bilinear mapB can often be

chosen in a canonical way. Moreover, the spaces X (and Y ) can be identified

with a subspace ot the dual space of Y (and X respectively) separating

points, because the mappings x 7→ B(x, ·) and y 7→ B(·, y) are injective.

Example 3.24 (a) Let X be a locally convex space and X ′ the dual space,

then it follows from Corollary 3.21 that (X,X ′, B) is a dual pair with

respect to the canonical bilinear map B : X×X ′ → K given by B(x, `) =

`(x). Similarly (X ′, X, B̃) is a dual pair, where B̃ : X ′ × X → K is

given by B̃(`, x) = `(x).

(b) The set X of bounded continuous functions on R and the set Y of

regular finite signed or complex Borel-measures on B(R) are a dual

pair with respect to B(f, µ) =
∫
R f dµ.
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(c) Let X = RR be the set of functions f : R→ R and denote by δt : RR →

R the pointwise evaluation, i.e. δt(f) = f(t). Let Y = span{δt | t ∈ R},

then (X, Y,B) is a dual pair for

B
(
f,

n∑
j=1

λjδtj

)
=

n∑
j=1

λjf(tj) .

Definition 3.25

Let (X, Y,B) be a dual pair. The σ(X, Y ) (or σ(Y,X)) topology on X

(or Y respectively) is the locally convex topology generated by the family of

seminorms P = {py}y∈Y where py(x) = |B(x, y)| (or P = {px}x∈X where

px(y) = |B(x, y)| respectively).

Since by Definition 3.23 the family of seminorms P separates points (in

both cases), if follows from Lemma 3.5 that the σ(X, Y ) topology for a dual

pair is always Hausdorff.

In Example 3.24(a), the σ(X,X ′) topology is the weak topology and the

σ(X ′, X) topology is the weak-* topology. In (c) σ(X, Y ) is the topology of

pointwise convergence given in Example 1i).

In order to determine the topological dual space of (X, σ(X, Y )), we need

the following lemma.

Lemma 3.26

Let X be a vector space and `, `1, . . . , `n : X → K linear. Set

N = {x ∈ X | ∀ j = 1, . . . n : `j(x) = 0} .

Then the following statements are equivalent.

i) ` ∈ span{`j | j ∈ {1, . . . n}}.
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ii) ∃M ≥ 0 ∀x ∈ X : |`(x)| ≤M max1≤j≤n |`j(x)|.

iii) ` = 0 for all x ∈ N , i.e.
⋂n
j=1 Ker(`j) ⊂ Ker(`).

Proof. The implications i)⇒ ii)⇒ iii) are clear.

iii)⇒ i) : Let

V = {~̀= (`1(x), . . . `n(x)) ∈ Kn |x ∈ X} ,

then by iii) the map φ : V → K given by φ
(
~̀(x))

)
= `(x) is well defined and

linear on V . Thus there exists a linear extension φ̃ : Kn → K with φ̃(~ξ) =∑n
j=1 αjξj for some α1, . . . , αn ∈ K. Thus ` =

∑n
j=1 αj`j ∈ span{`1, . . . `n}.

�

Corollary 3.27

A functional ` on (X, σ(X, Y )) is continuous, if and only if `(x) = B(x, y)

for some y ∈ Y , i.e. the topological dual space of X with the σ(X, Y ) topology

is equal to Y .

Proof. Exercise 2.100 �

3.1.6 Fréchet spaces

Under some additional assumptions, locally convex spaces are metrizable,

i.e. there is a metric on X which is compatible with the topology, i.e. such

that the balls of radius 1/n at 0 build a neighbourhood base. Here it is not

necessary that the topologies are given by a norm.

Theorem 3.28

Let (X, τ) be a locally convex space. Then the following statements are equiv-

alent.
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i) X is metrizable.

ii) 0 has a countable neighbourhood base.

iii) τ is generated by a countable family of seminorms.

Proof. i) ⇒ ii): If there is a metric on X which is compatible with τ , then

the balls with radius 1
n

centred at 0 form a countable local neighbourhood

base at 0.

ii)⇒ iii): If 0 has a countable neighbourhood base, there is a neighbourhood

base of open, absorbing, balanced convex sets. Thus by Lemma 3.19, the

associated family of Minkowski functionals is a countable family of continuous

seminorms generating τ (see the proof of Proposition 3.7).

iii)⇒ i): Let {pn}n∈N be a countable family of seminorms generating τ . Set

ρ on X ×X by

ρ(x, y) :=
∑
n∈N

2−n
pn(x− y)

1 + pn(x− y)
. (3.15)

Then ρ(x, y) <∞ and ρ is a translation invariant metric (compare Exercise

3.35). Moreover, the topology τ̃ for which the open balls of radius 1/n at 0

are a neighbourhood base, is equal to τ . In fact, let

UM,1/n = {x ∈ X | ∀n ≤M ∈ N : pn(x) < 1/n } ⊂ U and

B1/n = {x ∈ X | ρ(0, x) < 1/n } .

Remark that for any M ∈ N

p1(x)

2(1 + p1(x))
≤ ρ(0, x) ≤

M∑
k=1

2−k
pk(x)

1 + pk(x)
+
∑

k≥M+1

2−k ≤ 2 max
k≤M

pk(x)+2−M .

Since 2−n ≤ 1/n for all n ∈ N, this implies that Un,1/(4n) ⊂ B1/n and that

B1/n+2 ⊂ U1,1/n for any n ∈ N. Thus τ = τ̃ . �
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Proposition 3.29

Let (X, τ) be a locally convex space generated by a countable family of semi-

norms P = {pn}n∈N. Let ρ be the metric given by (3.15). Then a net (xα)α∈I

is Cauchy with respect to τ if and only if it is Cauchy with respect to ρ.

Proof. ⇒: Assume that (xα)α∈I is Cauchy with respect to τ . Let ε > 0, then

by Definition 3.13 there is β ∈ I such that

pn(xγ − xδ) <
ε

2
for all γ, δ � β, n ∈ N .

By (3.15) it follows that ρ(xγ, xδ) < ε.

⇐: Assume that there exists some ε > 0 such that for any β ∈ I there exist

γ, δ � β and n ∈ N such that p(xγ − xδ) > ε. Then ρ(xγ, xδ) > 2−n ε
1+ε

. �

Definition 3.30 (Fréchet space)

A complete metrisable locally convex space is called a Fréchet space.

Since any Fréchet space is a complete metric space, it obeys the Baire

category theorem (Theorem 51), which allows to derive analogues of some

of its consequences. In particular, the following analogues to the principle

of uniform boundedness (Banach-Steinhaus-Theorem 52) and to the open

mapping theorem (Theorem 54) on Banach spaces hold.

Theorem 3.31 (Principle of uniform boundedness)

Let X, Y be Fréchet spaces and let F be a family of continuous linear maps

from X to Y . Assume that for each continuous seminorm q in Y and for

every x ∈ X the set {q(Tx) |T ∈ F} is bounded. Then for each continuous

seminorm q in Y there is a continuous seminorm p in X and a constant

C > 0 so that

q(Tx) ≤ Cp(x) for all x ∈ X , T ∈ F .
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Theorem 3.32 (Open mapping and Inverse Mapping Theorem on

Fréchet spaces)

Let X, Y be Fréchet spaces and T : X → Y a linear continuous map.

i) If T is surjective, then T is open.

ii) If T is bijective, then T has a continuous inverse.

For a proof of these theorems see e.g. [R].

Example 3.33 i) The most important example for a Fréchet space is the

Schwartz space S (Rn) of functions decreasing to 0 as |x| → ∞ faster

than any polynomial (see Exercise 3.35).

ii) Another example of a Fréchet space is DK(Ω) of infinitely differentiable

functions, supported in a compact set K ⊂ Ω ⊂ Rn introduced in Ex-

ample 1 v).

3.1.7 Exercises

Exercise 3.34 (Weak Topolgy)

Let (X, Y,B) be a dual pair. Show that a functional ` on (X, σ(X, Y )) is

continuous, if and only if `(x) = B(x, y) for some y ∈ Y .

Exercise 3.35 (Schwartz space)

The Schwartz space S (Rn) is the set of infinitely differentiable complex-

valued functions f on Rn which are rapidly decreasing, i.e. such that

‖f‖α,β := sup
x∈Rn

∣∣xαDβf(x)
∣∣ <∞ for all α, β ∈ Nn .
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For α = (α1, . . . , αn) ∈ Nn we set |α| =
∑

i αi,

xα :=
n∏
j=1

x
αj
j and Dβ :=

∂|β|

∂α1x1 . . . ∂αnxn
.

Show the following statements.

i) ‖ · ‖α,β is a seminorm for any α, β ∈ Nn.

ii) The family (‖ · ‖α,β) of seminorms can be used to define a metric d on

S .

iii) The metric space (S , d) is complete.

Rem.: This shows that S is a Fréchet space.

3.2 Generalized functions or Distributions

The theory of distributions allows to enlarge the set of functions, on which

several operators, in particular differential operators can be defined. Then

e.g. the derivative of functions, which are not differentiable, or even of more

general objects can be defined in a reasonable way.

In order to be useful, such an extension should have the following prop-

erties:

• it should include all continuous functions.

• on the subset of differentiable functions the definition of the derivative

should coincide with the usual definition.

• the usual formal rules of calculus should hold.
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• there should be convergence theorems allowing to handle limit pro-

cesses.

The main idea in the theory of distributions (or generalized functions)

is to identify functions f with linear functionals `f : X → K on a suitable

function space X via

`f (φ) :=

∫
f(x)φ(x) dx . (3.16)

Then the derivative of the function f (or the functional `f ) is defined by

integrating by parts, if φ is differentiable.

The set of functions, such that the integral in (3.16) exists, depends on

the choice of X. If X includes only compactly supported functions, there are

no restrictions on the behaviour of f at infinity.

Of course, not for every functional ` exists some f such that ` = `f given

by (3.16). However, even for the δx-functional, given by δx(φ) = φ(x), it

is common in physics to formally calculate with some δx-function, which is

assumed to satisfy φ(x) =
∫
R δx(y)φ(y) dy. Nevertheless, the definition of the

derivative of a functional by use of integration by parts can be extended to

larger class of functionals than those given by (3.16) for some f .

In order to be able to treat as many distributions as possible, the space

X ′ should be large. Thus X should be small (the integral in (3.16) should

exist for many functions f if φ ∈ X) and its topology should be fine (then it

is easier for a functional to be continuous).
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3.2.1 Definition of distribution spaces

There are three choices of (complete) locally convex function spaces on an

open set Ω ⊂ Rn or on Rn commonly used in this context:

i) The largest space is the space E (Ω) of infinitely differentiable functions

on Ω defined in Example 1 iii).

ii) The Schwartz space S (Rn) defined in Footnote 2.66 and Example 1 iv).

iii) The smallest space is D(Ω) defined in Example 1 vi) (with elements in

C∞0 (Rn)).

Definition 3.36 (Distribution spaces)

The elements of the space D(Ω) are called test functions. The elements

of its topological dual space D ′(Ω) are called distributions. The topological

dual space S ′(Rn) of the Schwartz space is called the space of tempered

distributions. The elements of E ′(Ω) are called distributions of compact

support. A distribution `, for which there exists a functions f such such

` = `f as defined in (3.16) is called regular distribution.

We start, discussing the topology on the space D(Ω) of test functions in

more detail. Explicitly, we have

D(Ω) =
⋃

K⊂Ω compact

DK(Ω) , (3.17)

where

DK(Ω) := {f ∈ C∞(Ω) | supp f ⊂ K } and pα,K(f) = sup
x∈Ω
|Dαf(x)| .

(3.18)
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Then the spaces DK(Ω) are locally convex spaces with topology τK generated

by PK = {pα,K}α∈Nn or equivalently by the seminorms

pm(f) := sup
|α|≤m

pα(f) .

The topology τ on D(Ω) is generated by be the family P of all seminorms

p on D(Ω) such that all restrictions p|DK are continuous with respect to τK ,

i.e. such that

∀K ⊂ Ω compact ∃ c,m ≥ 0 ∀φ ∈ DK(Ω) : p(φ) ≤ c pm(φ) . (3.19)

3.2.2 Properties of D(Ω)

Lemma 3.37

For an open set Ω ⊂ Rn let D(Ω) be the locally convex space defined in (3.17).

Then the following holds.

i) The relative topology of τ on DK(Ω) is equal to τK.

ii) DK(Ω) is τ -closed in D(Ω).

iii) D(Ω) is a Hausdorff space.

iv) Let Y is a locally convex space and L : D(Ω) → Y a linear map. L

is τ -continuous if and only if for all compact K ⊂ Ω the restrictions

L|DK(Ω) are τK-continuous.

Proof. i) : The relative topology on DK(Ω) is generated by the family QK

given by the restrictions p|DK(Ω) of seminorms p ∈ P , which by definition are

continuous with respect to τK . Since on the other hand, the family PK is a
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subset of QK by Lemma 3.8, the assertion follows from Corollary 3.10.

ii) : For x ∈ Ω, consider the seminorm qx(φ) := |φ(x)|. Then for all K ⊂ Ω

compact and φ ∈ DK(Ω) we have

qx(φ) ≤ p0,K(φ) for all x ∈ Ω

and thus qx ∈ P by (3.19). This implies by Lemma 3.8 that qx is continuous

with respect to τ . Since for any K ⊂ Ω compact, we have

x /∈ K → ∀φ ∈ DK(Ω) : qx(φ) = 0

it follows that

DK(Ω) ⊂
⋂
x∈Kc

Ker qx .

Since on the other hand(
∀x ∈ Kc : qx(φ) = 0

)
⇒
(
∀x ∈ Kc : |φ(x)| = 0

)
⇒ φ ∈ DK(Ω)

we have

DK(Ω) =
⋂
x∈Kc

Ker qx

and since intersections of closed sets are closed, it follows that DK(Ω) is

closed (with respect to τ).

iii) : If φ 6= 0, then φ(x) 6= 0 for some x ∈ Ω and thus qx(φ) 6= 0. Since

qx ∈ P , it follows from Lemma 3.5 that (D(Ω), τ) is a Hausdorff space.

iv) ⇒: If L : D(Ω) → Y is τ -continuous, then it follows from i) that all

restrictions L|DK(Ω) are τK-continuous.

⇐: Let q be any continuous seminorm in Y . Then by Proposition 3.14

and the assumption, q ◦ L|DK(Ω) is a continuous seminorm on DK(Ω) for all

compact sets K ⊂ Ω. By (3.19) this implies q ◦ L ∈ P and in particular

201



CHAPTER 3. LOCALLY CONVEX SPACES, DISTRIBUTIONS,
FOURIER TRANSFORM

q ◦ L is τ -continuous by Lemma 3.5. Thus again by Proposition 3.14 we can

conclude that L is τ -continuous. �

The following proposition is about convergence of sequences in D(Ω).

Proposition 3.38

Let (φn)n∈N be a sequence in D(Ω). Then the following statements are equiv-

alent.

i) φn → 0 as n→∞ with respect to τ .

ii) There exists a compact set K ⊂ Ω such that φn ∈ DK(Ω) for all n ∈ N

and φn → 0 as n→∞ with respect to τK.

iii) There exists a compact set K ⊂ Ω such that suppφn ⊂ K for all n ∈ N

and for all α ∈ Nn the sequence (Dαφn)n∈N converges uniformly to 0.

Proof. By the construction of D(Ω) and the definition of the seminorms in

(3.17) and (3.18), the statement in iii) is only another way to formulate ii).

The implication ii) ⇒ i) is clear by (3.19). Thus it remains to prove

i)⇒ ii):

Assume that φn → 0 with respect to τ . If there exists some K such that

φn ∈ DK(Ω) for all n ∈ N, then the statement follows from Lemma 3.37 i).

We prove by contradiction.

Assume that there is no such compact set K ⊂ Ω. Then there exists a

sequence of compact sets K1 ⊂ K2 ⊂ K3 . . . ⊂ Ω with

Ω =
⋃
n∈N

K̊n (3.20)
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and a subsequence (ψn) such that

ψn ∈ DKn(Ω) but ψ /∈ DKn−1(Ω) .

For each n ∈ N choose xn ∈ Kn \ Kn−1 such that an := |ψn(xn)| > 0. It

follows from the proof of Lemma 3.37 that the seminorms

qn : D(Ω)→ [0,∞) , φ 7→ a−1
n |φ(xn)|

are τ -continuous. Set q :=
∑∞

n=1 qn. Since by (3.20) each compact set K ⊂ Ω

is a subset of some Kn, it follows from (3.17) that D(Ω) =
⋃
n∈N DKn(Ω).

Since qn|DKm (Ω) = 0 for n > m, it follows that q(φ) is a finite sum for any

φ ∈ D(Ω). Thus the seminorm q is well-defined and

q|DK(Ω) =
N∑
n=1

qn|DK(Ω) , if K ⊂ KN .

Thus q ∈ P and τ -continuous. This implies that q(ψn)→ 0 as n→∞, since

ψn → 0 with respect to τ by assumption. But on the other hand, it follows

from the definition of q and qn that q(ψn) ≥ qn(ψn) = 1 for all n ∈ N in

contradiction to the convergence property. This shows ii).

�

The construction of D(Ω) is an example of a strict inductive limit of

Fréchet spaces.

Definition 3.39 (Strict inductive limit topology)

Let X be a vector space, {Xn}n∈N a family of subspaces such that Xn ⊂ Xn+1

for all n ∈ N and X =
⋃
nXn. Suppose that each Xn has a locally convex

topology τn and τn+1|Xn = τn. Let U be the collection of convex, absorbing,
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balanced sets U ⊂ X for which U ∩Xn ∈ τn for each n ∈ N and let τ be the

collection of all unions of sets of the form x + U with x ∈ X and U ∈ U .

Then (X, τ) is (a locally convex space) called strict inductive limit of the

spaces Xn.

It can be shown that the inductive limit of complete locally convex spaces

is complete.

3.2.3 Characterisation of distributions and examples

By the above results, distributions, i.e. elements of the topological dual space

D ′(Ω) of D(Ω), can be characterised as follows.

Proposition 3.40

Let ` : D(Ω) → C be a linear map. Then the following statements are

equivalent.

i) ` is a distribution, i.e. ` ∈ D ′(Ω).

ii) `|DK(Ω) ∈ D ′K(Ω) for all compact K ⊂ Ω.

iii) For all compact K ⊂ Ω there exist m ∈ N0 and c ≥ 0 such that

|`(φ)| ≤ cpm(φ) = c sup
|α|≤m

sup
x∈Ω
|Dαφ(x)| , for all φ ∈ DK(Ω) .

iv) If φn → 0 in D(Ω), then `(φn)→ 0 in C.

Proof. i)⇔ ii): This is a special case of Lemma 3.37 iv).

ii)⇔ iii): This follows from Corollary 3.15.
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i)⇒ iv): This holds by definition.

iv)⇒ ii): Since τK is generated by a countable family of seminorms, DK(Ω)

is metrizable by Theorem 3.28. iv) implies that `(φn)→ 0 whenever φn → 0

in DK(Ω) for any compact K ⊂ Ω. But on metric spaces, this is equivalent

to the continuity of `|DK(Ω) at 0 and by Proposition 3.14 it follows that

`|DK(Ω) ∈ D ′K(Ω). �

Example 3.41 i) Let g ∈ S (R) and define the functional `g on S by

(g, φ) := `g(φ) =

∫
R
g(x)φ(x) dx for all φ ∈ S (R) . (3.21)

Then `g is a linear functional and `g ∈ S ′(R) since

|`g(φ)| ≤ ‖g‖L1 ‖φ‖0,0 .

Moreover, if g1 6= g2 in S (R), then g1 6= g2 in S ′(R). Thus S (R)

is naturally embedded in S ′(R), i.e. each Schwartz functions can be

identified with a regular and tempered distribution.

ii) S (R) is a subset of each Lp(R) and the identity mapping of S into

Lp is continuous. This can be seen as follows: For p = 1, we write for

any φ ∈ S (R)

‖φ‖L1 =

∫ ∞
−∞

1

1 + x2

(
(1 + x2)|φ(x)|

)
dx

≤
(
‖φ‖0,0 + ‖φ‖2,0

) ∫ ∞
−∞

1

1 + x2
dx = π

(
‖φ‖0,0 + ‖φ‖2,0

)
.

For general p, notice that with 1
p

+ 1
q

= 1 we can write

‖φ‖Lp ≤ ‖|φ|1/p|φ|1/q‖Lp ≤ ‖φ‖1/p

L1 ‖φ‖1/q
0,0 .
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Now for g ∈ Lq(R) let `g be defined as in (3.21), then for any φ ∈ S (R)

by Hölder’s inequality

|`g(φ)| ≤ ‖g‖Lq ‖φ‖Lp ,

thus `g ∈ S ′(R). This defines a continuous embedding of Lq(R) in

S ′(R). Thus each g ∈ Lq(R) can be seen as a regular tempered distri-

bution.

iii) Let g ∈ L1
loc(Ω)9 and define `g on D(Ω) by

(g, φ) := `g(φ) =

∫
R
g(x)φ(x) dx for all φ ∈ D(Ω) . (3.22)

Then `g is linear and well-defined, since g is locally integrable. Since

for any K ⊂ Ω compact,

|`g(φ)| ≤
∫
K

|g(x)| dx p0(φ) for all φ ∈ DK(Ω)

it follows that `g ∈ D ′(Ω). `g is the regular distribution associated to g.

Since the mapping g 7→ `g is injective10, the function g ∈ L1
loc(Ω) can

be identified with the distribution `g ∈ D ′(Ω).

iv) For some a ∈ Ω fixed, define the functional δa(φ) := φ(a). Since

|δa(φ)| = |φ(a)| ≤ p0(φ) for any φ ∈ DK(Ω) ,

9A measurable function f : Ω → C is called locally integrable, if
∫
K
|f(x)| dx is finite

for any compact K ⊂ Ω. Two locally integrable functions are said to be equivalent if they

are equal almost everywhere. Then L1
loc(Ω) is the space of all equivalence classes of locally

integrable functions.
10Let g ∈ L1

loc(Ω) and `g as given in (3.22). If `g(φ) = 0 for all test functions φ, then

g = 0 almost everywhere.
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δa is continuous on all DK(Ω), thus δ is a distribution (i.e. δa ∈ D ′(Ω))

by Proposition 3.40. For a = 0, we usually write δ0 = δ.

Moreover, for φ ∈ S (Rn) we have |δa(φ)| ≤ ‖φ‖0,0, thus δa is a tem-

pered distribution (i.e. δa ∈ S ′(Rn)).

But δa is no regular distribution. This can be seen as follows: Set

Ωa := Ω \ {a}, then δ|D(Ωa) = 0. If there would be some function f

such that δa = `f as given in (3.21), it would follow from the injectivity

of f 7→ `f that f |Ωa = 0 almost everywhere and thus f = 0 almost

everywhere. But this would imply δa = 0, which is not the case.

v) Suppose that µ is a Borel measure on Ω and define the linear functional

`µ(φ) :=

∫
Ω

φ dµ .

If |µ|(K) <∞ for all compact sets K ⊂ Ω, then `µ is a distribution. If

µ is finite and Ω = Rn, it is a tempered distribution (here it suffices if

µ can be estimated by some polynomial). The map µ 7→ `µ is injective.

3.2.4 Adjoint operator and derivative of distributions

Before we can define the derivative of a distribution, we need the following

definition.

Definition 3.42 (Adjoint operator)

Let X, Y be locally convex spaces and L ∈ L(X, Y ). Then the linear map

L′ : Y ′ → X ′ , y′ 7→ L′(y′) = y′ ◦ L

is called adjoint of L.
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As already explained above, the idea is to extend the derivative of regular

distributions, which can be computed using integration by parts, to general

distributions. If f ∈ C1(R), then

`f ′(φ) =

∫
R
f ′(x)φ(x) dx = −

∫
R
f(x)φ′(x) dx = −`f (φ′) for all φ ∈ D(R)

and analogue for higher derivatives and partial derivatives.

Definition 3.43

For ` ∈ D ′(Ω) and α ∈ Nn set

(
D̃α`

)
(φ) = (−1)|α|`

(
Dαφ

)
.

If ` = `f for some f ∈ L1
loc(Ω), then D̃α`f is called αth distribution deriva-

tive or weak derivative of f .

Lemma 3.44

The map D̃α : D ′(Ω) → D ′(Ω) given in Definition 3.43 is well-defined and

σ(D ′,D)-continuous.

Proof. By definition, D̃α = (−1)|α|
(
Dα
)′

, i.e. the adjoint operator except for

the sign. Thus it suffices to verify that Dα : D(Ω) → D(Ω) is continuous.

By Lemma 3.37, it suffices to show that Dα : DK(Ω)→ DK(Ω) is continuous

for all K ⊂ Ω compact, but since

pm(Dαφ) ≤ pm+|α|(φ) ,

this holds. �

Example 3.45 i) If f ∈ Ck(Ω) and |α| ≤ k, then D̃α`f = `Dαf , i.e. the

operator D̃α extends the classical differential operator Dα.
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ii) The derivative ot the δ-distribution δa(φ) = φ(a) is given by

δ′a(φ) = −δa(φ′) = −φ′(a) .

iii) The Heavyside function H : R → C is the characteristic function of

[0,∞), i.e. H(x) = 1 if x ≥ 0 and H(x) = 0 if x < 0. Then H is not

differentiable in the usual sense, but we can differentiate in the sense

of distributions: For any φ ∈ D(R)(
D̃`H

)
(φ) = −`H(Dφ) = −

∫
R
H(x)φ′(x) dx

= −
∫ ∞

0

φ′(x) dx = [−φ(x)]∞0 = φ(0) = δ0(φ) .

Thus the delta-distribution is the distributional derivative of the Heavy-

side function.

3.2.5 Multiplication operator

This idea of extending a differential operator on D(Ω) or S (Rn) to the dual

spaces can be generalised to a greater class of operators.

The general philosophy is as follows:

We consider the locally convex space X, which is equal to D(Ω) or S (Rn),

via the identification f ∼ `f as subspace of its topological dual space X ′ of

distributions. Then to a continuous linear operator L : X → X we have the

adjoint L′ : X ′ → X ′. If L′|X : X → X, then we set for ` ∈ X ′ and φ ∈ X(
L`)(φ) = `(L′φ) .

Let f ∈ C∞(Ω) and ` ∈ D ′(Ω) a distribution. Let Mf denote the multi-

plication operator acting as Mfφ(x) = f(x)φ(x). Then it follows from the
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Leibniz formula that Mf : D(Ω)→ D(Ω) is continuous. We set for ` ∈ D ′(Ω)

(
M̃f`)(φ) := `(Mfφ) for all φ ∈ D(Ω) . (3.23)

Then M̃f` is a distribution, i.e. the multiplication operator extends to a

linear continuous operator M̃f : D ′(Ω) → D ′(Ω) and a direct calculation

shows that the Leibniz formula holds, i.e.

D̃αM̃f` =
∑
β≤α

cαβM̃Dα−βfD̃
β` for all ` ∈ D ′(Ω) . (3.24)

3.3 The Fourier Transform

We already gave the definition of the Fourier transform F on the Schwartz

space S (Rn) in Definition 2.91 and we stated the following theorem:

Theorem 3.46 (Fourier Inversion Theorem)

The Fourier transform is a linear bicontinuous bijection

F : S (Rn)→ S (Rn) , (Ff)(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξf(x) dx

with inverse

(F−1f)(ξ) =
1

(2π)n/2

∫
Rn
eix·ξf(x) dx .

Moreover, setting pα(x) := (ix)α for α ∈ Nn,(
pαD

βFf
)

(ξ) =
(
FDα(−1)|β|pβf

)
(ξ) (3.25)

and ∫
Rn
|f(x)|2 dx =

∫
Rn
|Ff(k)|2 dk for all f ∈ S (Rn) . (3.26)
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Proof. The linearity of the maps ·̂ and ·̌ is clear. For any f ∈ S (Rn)(
pαD

βFf
)

(ξ) = (iξ)αDβ
ξ f̂(ξ) =

1

(2π)n/2

∫
Rn
ξαDβ

ξ e
−ix·ξf(x) dx

=
1

(2π)n/2

∫
Rn

(iξ)α(−ix)βe−ix·ξf(x) dx

=
1

(2π)n/2

∫
Rn

(−1)|α|
(
Dαe−ix·ξ

)
(−ix)βf(x) dx

=
1

(2π)n/2

∫
Rn
e−ix·ξ

(
Dα(−ix)βf(x)

)
dx

=
(
FDα(−1)|β|pβf

)
(ξ)

where we used integration by parts. This proves (3.25). We conclude from

these equations that for any f ∈ S (Rn)

‖Ff‖αβ = sup
ξ∈Rn
|ξαDβFf(ξ)| ≤ 1

(2π)n/2

∫
Rn

∣∣∣Dα(−ix)βf(x)
∣∣∣ dx <∞

and thus Ff ∈ S (Rn). Furthermore, since
∫

(1 + x2)−k dx < ∞ for k

sufficiently large, it follows that

‖Ff‖αβ ≤
1

(2π)n/2

∫
Rn

(1 + x2)k

(1 + x2)k

∣∣∣Dα(−ix)βf(x)
∣∣∣ dx

≤ sup
x∈Rn

(
(1 + x2)k

∣∣Dα(−ix)βf(x)
∣∣) ∫

Rn
(1 + x2)−k dx .

Using Leibniz’s rule, it follows from Proposition 3.14 that F is continuous.

The proof for F−1 is similar.

Next we will prove that F−1Ff = f , i.e. F−1 is the left inverse of F .

Since F and F−1 are continuous linear maps on S (Rn), it suffices to prove

F−1F = Id on the dense subspace C∞0 (Rn). Let f ∈ C∞0 be given. For any

ε > 0 let Cε be a cube around 0 ∈ Rn of volume
(

2
ε

)n
. Choose ε such that

supp f ⊂ Cε and set

Kε = {k ∈ Rn | ∀j = 1, . . . n :
kj
πε
∈ Z} .
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Then the Fourier series of f is given by

f(x) =
∑
k∈Kε

〈( ε
2

)n/2
eik·( ), f

〉( ε
2

)n/2
eik·x =

∑
k∈Kε

Ff(k)eik·x

(2π)n/2
(πε)n . (3.27)

Since f is continuously differentiable, the series converges uniformly in Cε.

Rn is the disjoint union of the cubes of volume (πε)n centered about the

points in Kε, thus the right hand side of (3.27) is the Riemann sum for the

integral of the function Ff(k)eik·x

(2π)n/2
∈ S (Rn) and converges to the integral as

ε→ 0. This shows F−1Ff = f .

The proof that FF−1f = f is similar.

In order to show (3.26), assume that f ∈ C∞0 (Rn), then for ε > 0 small

enough, f is given by the Fourier series (3.27). Using that {
(
ε
2

)n/2
eik·x}k∈Kε

is an orthonormal basis for L2(Cε), it follows that∫
Rn
|f(x)|2 dx =

∫
Cε

|f(x)|2 dx =
∑
k∈Kε

∣∣∣∣〈( ε2)n/2 eik·( ), f

〉∣∣∣∣2
=
∑
k∈Kε

|Ff(k)|2(πε)n →
∫
Rn
|Ff(k)|2 dk as ε→ 0 .

Since F and ‖ · ‖L2 are continuous on S and C∞0 is dense, (3.26) holds on

S (Rn). �

The Fourier transform on the space of tempered distributions S ′(Rn) can

be defined as follows.

Definition 3.47

Let ` ∈ S ′(Rn), then the Fourier transform F` of ` is the tempered distribu-

tion defined by

F`(φ) = `(Fφ) .
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Appendix A

Appendix

A.1 Spectral Theorem for normal operators

- by Jan Möhring

In der Vorlesung wurden verschiedene Versionen des Spektralsatzes für beschränkte

selbstadjungierte Operatoren aus dem stetigen Funktionalkalkül (Theorem

1.2) hergeleitet. Thema dieser Note ist es, eine analoge Version des Funktion-

alkalküls für normale Operatoren aus der Version für selbstadjungierte Oper-

atoren herzuleiten. Hat man einen solchen Funktionalkalkül zur Verfügung,

so lässt sich der Spektralsatz für normale Operatoren fast wörtlich wie für

selbstadjungierte Operatoren formulieren und es ist in gewisser Weise auch

eine Ausdehnung auf unbeschränkte normale Operatoren möglich. Die fol-

gende Argumentation basiert auf dem Artikel von Whitley [1]. Im Text

werden einige Resultate herangezogen, die im Anhang (A.1.2) gezeigt wer-

den. Außerdem werden einige einfache Rechnungen interessierten Lesenden
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als Übungsaufgaben (Abschnitt (A.3)) überlassen. Der Autor dieser Arbeit

empfiehlt die Auseinandersetzung mit den Aufgaben ausdrücklich.

A.1.1 Der Beweis

Im Folgenden ist H immer ein komplexer Hilbertraum. Ein Operator ist

ein Element von L(H ), also ein beschränkter linearer Operator H −→H .

Mit N bezeichnen wir einen normalen Operator auf H .

Die Idee

Der Beweis des Spektralsatzes für einen selbstadjungierten OperatorA basierte

auf dem Funktionalkalkül ΨA, der ein isometrischer Isomorphismus von CR(σ(A))

nach L(H ) war, hierbei bezeichnet CR(σ(A)) die Menge aller stetigen Funk-

tionen σ(A) −→ C, wobei das ”R” von der bekannten Tatsache σ(A) ⊆ R

kommt. Das Bild von ΨA war dabei die von A und der Identität I erzeugte

abgeschlossene Unteralgebra von L(H ) und ΨA hat ein reelles Polynom p

dem Operator p(A) zugeordnet. Es soll jetzt zunächst betrachtet werden,

wie der Funktionalkalkül für normale Operatoren aussehen sollte.

Als ersten wesentlichen Unterschied zwischen dem selbstadjungierten und

dem normalen Fall bemerkt man, dass das Spektrum eines normalen Oper-

ators im Allgemeinen eine kompakte Teilmenge von C ist, sodass das Iden-

titäts-Polynom p(z) = z, das man mit einem normalen Operator N assozi-

ieren möchte, eine Abbildung C −→ C ist. Wir müssen also komplexe Poly-

nome und den Raum CC(σ(N)) betrachten.

Hierbei entsteht jetzt ein Problem. Man erinnert sich daran, dass der
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selbstadjungierte Fall bewiesen wurde, indem zunächst Polynome betrachtet

wurden und anschließend der Satz von Stone-Weierstraß in Kombination mit

dem Satz über die lineare Fortsetzung (BLT-Theorem) angewendet wurde.

Möchte man diese Argumentation jetzt übertragen, so benötigt man die kom-

plexe Version des Satzes von Stone-Weierstraß, die als eine der Forderungen

an die betrachtete Unteralgebra voraussetzt, dass die Unteralgebra selbstad-

jungiert ist. Das bedeutet, dass man, wenn man es wieder mit Polynomen

versuchen will, mit einem Polynom p(·) auch das Polynom p̄(·) in der Unter-

algebra enthalten haben möchte. Es zeigt sich allerdings, dass die komplexen

Polynome p(·) im Allgemeinen nicht dicht in CC(σ(N)) sind.

Um das einzusehen, betrachten wir den Einheitskreis S1 und den zugehörigen

Funktionenraum CC(S1) (das ist keine besonders künstliche Wahl — siehe

Aufgabe (A.40)). Bekanntlich gilt auf dem Einheitskreis z̄ = z−1. Es folgt

deswegen unmittelbar, dass mit p(z) auf dem Einheitskreis p̄(z) im Allge-

meinen kein Polynom, geschweige denn, überhaupt definiert ist. Der Satz

von Stone-Weierstraß lässt sich in dieser Form also nicht anwenden. Da es

sich dabei nur um ein hinreichendes Kriterium handelt, kann man sich dann

fragen, ob die komplexen Polynome nicht trotzdem noch dicht in CC(σ(N))

liegen. Diese Frage muss spätestens mit dem folgenden Argument endgültig

verneint werden. Es liegt z̄ nicht im uniformen Abschluss der Polynome:

Man weiß nämlich aus der Funktionentheorie, dass Polynome holomorph auf

dem Einheitskreis sind, dass der gleichmäßige Limes holomorpher Funktionen

holomorph ist, und dass z̄ nicht holomorph ist.

Man kann also nicht wie bisher vorgehen und einem Polynom p den Op-

erator p(N) zuordnen und diese Abbildung dann nach CC(σ(N)) fortset-
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zen. Einstweilen sei nun daran erinnert, dass nach dem Satz von Stone-

Weierstraß eine Unteralgebra dicht in CC(σ(N)) liegt, wenn sie die konstan-

ten Funktionen enthält, die Punkte von σ(N) trennt und unter Konjugation

abgeschlossen ist. Ist p(z) = z = x+iy das Identitäts-Polynom assoziiert mit

dem Operator N , so würde man analog das Polynom p̄(z) = z̄ = x− iy mit

dem Operator N∗ assoziieren wollen. Dies suggeriert, Polynome der Form

p(z, z̄) =
∑

aijz
iz̄j, aij ∈ C,

zu betrachten und ein solches Polynom mit dem Operator

p(N,N∗) =
∑

aijN
i(N∗)j

zu assoziieren. Zu zeigen ist jetzt, dass die Abbildung ΨN , die p(z, z̄) auf den

Operator p(N,N∗) abbildet, ein isometrischer Isomorphismus vom Raum P

der Polynome der Form p(z, z̄) in eine geeignete Teilmenge von L(H ) ist.

Sei dazu also P der Raum aller komplexen Polynome der Form p(z, z̄) =∑
aijz

iz̄j mit aij ∈ C, ausgestattet mit der Supremumsnorm

‖p‖∞ = sup{|p(z, z̄)| : z ∈ σ(N)}.

Es ist dann klar, dass P eine Algebra bezüglich der üblichen punktweisen Op-

erationen ist und weil P offenbar die Punkte von σ(N) trennt und abgeschlossen

unter Konjugation ist, ist P dicht in CC(σ(N)) (Aufgabe (A.41)). Sei nun

A die abgeschlossene Unteralgebra von L(H ), die von N,N∗ und I erzeugt

wird und definiere die Abbildung ΨN : P −→ A mit

ΨN : p(z, z̄) 7−→ p(N,N∗).

Dann ist ΨN(P) dicht inA wegen des Satzes von Stone-Weierstraß und wegen

der Stetigkeit von ΨN (Aufgaben (A.42) und (A.43)). Weiterhin ist klar,
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dass ΨN ein Algebrenhomomorphismus ist (Aufgabe (A.43)). Wir wollen

jetzt zeigen, dass ΨN eine Isometrie ist, das heißt,

‖p(N,N∗)‖ = ‖p‖∞,

und können dann ΨN zu einem isometrischen Homomorphismus von CC(σ(N))

nach A fortsetzen. Es wird sich zeigen, dass der Nachweis der Isometrieeigen-

schaft der wesentliche Teil der jetzt folgenden Betrachtungen ist.

Reduktion von Operatoren durch Unterräume

Definition A.1

Sei M ein abgeschlossener Unterraum von H . Es reduziert M einen Oper-

ator S ∈ L(H ) (oder S wird von M reduziert) genau dann, wenn sowohl M

als auch M⊥ invariant unter S sind.

Remark A.2

Mit der Notation aus Definition (A.1) sind die folgenden Aussagen äquivalent.

i) M reduziert S,

ii) M⊥ reduziert S,

iii) M reduziert S∗,

iv) M ist invariant unter S und S∗.

Für den Beweis beachte man einfach die Gültigkeit der folgenden zwei Aus-

sagen und die Aufgabe (1.36):

(a) M⊥⊥ = M ,
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(b) S(M) ⊂M genau dann, wenn S∗(M⊥) ⊂M⊥.

Dabei wurde (a) schon im letzten Semester gezeigt und (b) folgt aus

u ∈M, v ∈M⊥ =⇒ Su ∈M

=⇒ 〈u, S∗v〉 = 〈Su, v〉 = 0

=⇒ S∗v ∈M⊥.

Notation A.3

Ist S ∈ L(H ) und M ein abgeschlossener Unterraum von H , so bezeichnet

S|M die Einschränkung von S auf M .

Lemma A.4

Wenn M den Operator S reduziert, dann gilt (S|M)∗ = S∗|M .

Proof. Setze U = S|M und V = S∗|M . Dann gilt U, V ∈ L(M) wegen

Bemerkung (A.2). Sind x, y ∈M , so gilt nun

〈U∗x, y〉 = 〈x, Uy〉 = 〈x, Sy〉 = 〈S∗x, y〉 = 〈V x, y〉.

Das zeigt U∗ = V wegen der Abgeschlossenheit von M . �

Corollary A.5

Reduziert M den Operator S und ist S normal, so ist S|M normal.

Proof. Wir wenden Lemma (A.4) an und erhalten

(S∗S)|M = (S∗|M)(S|M) = (S|M)∗(S|M)

= (SS∗|M) = (S|M)(S∗|M) = (S|M)(S|M)∗.

�
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Lemma A.6

Sei N ein normaler Operator mit 0 ∈ σ(N) und ε > 0. Dann gibt es einen

abgeschlossenen Unterraum M 6= {0} derart, dass jeder Operator, der mit

NN∗ kommutiert, von M reduziert wird und ‖N |M‖ ≤ ε gilt.

Proof. Setze A = NN∗. Wegen 0 ∈ σ(N) gibt es wegen des Satzes (A.15) aus

dem Anhang eine Folge (xk) in H mit ‖xk‖ = 1 derart, dass ‖Nxk‖ −→ 0.

Daraus folgt Axk −→ 0 und der selbstadjungierte Operator A hat 0 ∈ σ(A)

(für ein alternatives Argument vergleiche Aufgabe (A.46)).

Zu ε > 0 betrachten wir jetzt die stetige (!) Funktion

f : R −→ R, t 7−→


1, |t| ≤ ε/2,

2(1− |t/ε|), ε/2 < |t| < ε,

0, |t| ≥ ε.

Weil A selbstadjungiert ist, kann der stetige Funktionalkalkül aus Theorem

1.2 angewendet werden, um f(A) zu definieren.

Sei nun M der abgeschlossene Unterraum M = {x ∈ H : f(A)x = x}

von H (siehe auch Aufgabe (A.47)) und sei B ein Operator, der mit A

kommutiert. Einstweilen sei daran erinnert, dass dann B auch mit f(A)

kommutiert. Es folgt also für alle x ∈M , dass

Bx = Bf(A)x = f(A)Bx,

weswegen M invariant unter B ist. Da B∗ auch mit A kommutiert, ist M

auch invariant unter B∗ und es folgt mit Bemerkung (A.2), dass M den

Operator B reduziert.
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Weil der Funktionalkalkül von A eine Isometrie ist, gilt für x ∈ M mit

‖x‖ = 1, dass

‖Ax‖ = ‖Af(A)x‖ ≤ ‖Af(A)‖ = sup{|tf(t)| : t ∈ σ(A)} ≤ ε.

Mit ‖x‖ = 1 folgt dann

‖Nx‖2 = 〈Nx,Nx〉 = 〈N∗Nx, x〉 = 〈Ax, x〉 ≤ ‖Ax‖ ≤ ε,

sodass sich ‖N |M‖ ≤
√
ε ergibt.

Schließlich muss noch M 6= {0} gezeigt werden. Man beachte dazu, dass

f(t) = 1 gilt, falls f(2t) 6= 0. Diese Aussage impliziert

‖(I − f(A))(f(2A))‖ = sup{|1− f(t)||f(2t)| : t ∈ σ(A)} = 0.

Es folgt, dass jedes Element im Bild des Operators f(2A) ein Element von

M ist, und dieses Bild ist nicht {0} wegen

‖f(2A)‖ = sup{|f(2t)| : t ∈ σ(A)} ≥ |f(0)| = 1.

�

Der Spektralabbildungssatz und eine Folgerung

Als nächstes zeigen wir eine Version des Spektralabbildungssatzes für Poly-

nome in zwei Variablen und einen normalen Operator.

Theorem A.7

Sei p(s, t) ein komplexes Polynom in zwei Variablen. Dann gilt

σ(p(N,N∗)) = {p(z, z̄) : z ∈ σ(N)}.
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Proof. Sei p(s, t) =
∑
aijs

itj und λ ∈ σ(N). Wegen des Satzes (A.15) aus

dem Anhang gibt es eine Folge (xk) in H mit ‖xk‖ = 1 so, dass ‖(λ −

N)xk‖ −→ 0 gilt. Lemma (A.14) besagt, dass in diesem Fall auch ‖(λ̄ −

N∗)xk‖ −→ 0 gilt, weil mit N auch (λ − N) normal ist (Aufgabe (A.45)).

Nun hat man

(p(N,N∗)− p(λ, λ̄))xk =
∑

aij(N
i(N∗)j − λiλ̄j)xk

=
∑

aij(N
i((N∗)j − λ̄j)xk + λ̄j(N i − λi)xk)

=
∑

aij

(
N i((N∗)(j−1) + · · ·+ λ̄j−1)(N∗ − λ̄)

+ λ̄j(N i−1 + · · ·+ λi−1)(N − λ)
)
xk

−→ 0.

Daraus folgt

p(λ, λ̄) ∈ σap(p(N,N∗)) ⊆ σ(p(N,N∗)),

wobei σap das approximierende Punktspektrum (Definition (A.11) im An-

hang) bezeichnet. Das zeigt ”⊇”.

Sei jetzt µ ∈ σ(p(N,N∗)). Der Operator B = p(N,N∗) − µ ist normal

und hat 0 ∈ σ(B). Wegen Lemma (A.6) gibt es für jedes n ∈ N einen

abgeschlossenen Unterraum Mn 6= {0}, der B reduziert und ‖B|Mn‖ ≤ 1/n

erfüllt. Da N mit B∗B kommutiert, reduziert jedes Mn auch N . Mit Korollar

(A.5) folgt, dass N |Mn normal ist. Sei λn ∈ σ(N |Mn) (das existiert!). Dann

gibt es eine Folge (yn) in Mn mit ‖yn‖ = 1 so, dass ‖(λn−N)yn‖ ≤ 1/n gilt.

Die Folge (λn) ist durch ‖N‖ beschränkt und hat daher eine konvergente

Teilfolge, die hier auch mit (λn) bezeichnet wird. Sei λ ∈ C der Grenzwert
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der Teilfolge. Dann gilt λ ∈ σ(N) wegen

‖(λ−N)yn‖ ≤ ‖(λ−λn)yn‖+‖(λn−N)yn‖ ≤ |λn−λ|+‖(λn−N)yn‖ −→ 0.

Im ersten Teil des Beweises wurde allerdings gezeigt, dass im Falle (λ −

N)yn −→ 0 folgt

(p(N,N∗)− p(λ, λ̄))yn −→ 0.

Andererseits ist yn ∈Mn, also gilt wegen ‖B|Mn‖ ≤ 1/n auch

‖Byn‖ = ‖(p(N,N∗)− µ)yn‖ ≤ 1/n.

Wegen der Eindeutigkeit des Grenzwertes schließt man µ = p(λ, λ̄). Das

zeigt ”⊆”. �

Das Ergebnis

Mit Satz (A.7) folgt nun die Isometrie genau wie im selbstadjungierten Fall.

Corollary A.8

Ist N ∈ L(H ) normal, so gilt

‖p(N,N∗)‖ = sup{|p(z, z̄)| : z ∈ σ(N)}.

Proof. Wir benutzen, dass (p̄p)(N,N∗) normal ist (Aufgabe (A.48)) und fol-

gern mit Satz (A.7), dass

‖p(N,N∗)‖2 = ‖p(N,N∗)∗p(N,N∗)‖

= ‖(p̄p)(N,N∗)‖

= sup
z∈σ((p̄p)(N,N∗))

|z|
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= sup
z∈σ(N)

|(p̄p)(z, z̄)|

=

(
sup

z∈σ(N)

|p(z, z̄)|
)2

.

�

Ist nun ΨN : P −→ L(H ) der Funktionalkalkül definiert über

ΨNp = p(N,N∗),

dann ist ΨN ein isometrischer algebraischer ∗-Homomorphismus von P nach

L(H ). Weil P dicht in CC(σ(N)) ist, kann ΨN zu einem isometrischen alge-

braischen ∗-Homomorphismus von CC(σ(N)) nach L(H ) fortgesetzt werden,

wobei die Fortsetzung auch ΨN heiße. Genau wie im selbstadjungierten Fall

folgert man dann weiter leicht, dass ΨN eindeutig ist, dass ΨN(f̄) = ΨN(f)∗

für jedes f ∈ CC(σ(N)) gilt und dass jeder mit N und N∗ kommutierende Op-

erator auch mit ΨNf für jedes f ∈ CC(σ(N)) kommutiert (Aufgabe (A.49)).

Insgesamt haben wir daher den folgenden Satz gezeigt.

Theorem A.9

Sei N ein normaler Operator auf H und f, g ∈ CC(σ(N)). Dann gibt es eine

eindeutige Abbildung ΨN : CC(σ(N)) −→ L(H ) mit

(a) ΨN ist linear und es gilt ΨN(fg) = ΨN(f)ΨN(g).

(b) ‖ΨN(f)‖ = ‖f‖∞.

(c) ΨN(f̄) = ΨN(f)∗.

(d) Es gilt σ(ΨN(f)) = {f(λ) : λ ∈ σ(N)}.
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(e) Kommutiert B ∈ L(H ) mit N und N∗, so kommutiert B auch mit

jedem ΨN(f).

Remark A.10 i) Es kann (e) in Satz (A.9) verbessert werden, wenn man

den Satz von Fuglede anwendet: Sind T,N ∈ L(H ) mit N normal, so

gilt: Aus TN = NT folgt TN∗ = N∗T .

ii) Eine ähnliche Konstruktion des Funktionalkalküls kann auch mit direk-

ten maßtheoretischen Argumenten vollzogen werden. Eine Anleitung

für den Beweis steht in [W] und in [Ha] ist der Beweis etwas detail-

lierter beschrieben. Außerdem ist es auch möglich, den Satz aus der

Theorie von C∗-Algebren zu erhalten, eine solche Vorgehensweise wird

beispielsweise bei [R] benutzt. In [Ha] ist außerdem beschrieben, wie

man vom stetigen Funktionalkalkül für normale Operatoren mit relativ

wenig Aufwand zu einer Multiplikationsoperator-Version für unbeschränkte

normale Operatoren kommt.

A.1.2 Das approximierende Punktspektrum

Im Text wird mehrmals eine Aussage benötigt, die aus einer Betrachtung

über das approximierende Punktspektrum für normale Operatoren folgt. Da

diese Ergebnisse von eigenem Interesse sind, sammeln wir sie hier im Anhang.

Definition A.11

Sei A ∈ L(H ).

(a) Ein λ ∈ C heißt genau dann approximierender Eigenwert von A, wenn

es für jedes ε > 0 ein x ∈H mit ‖x‖ = 1 so gibt, dass ‖Ax− λx‖ < ε

gilt.
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(b) Das approximierende Punktspektrum σap(A) ist die Menge aller approx-

imierenden Eigenwerte von A.

Remark A.12

Die Werte im approximierenden Punktspektrum sind jene, für welche die

Eigenwertgleichung Ax = λx nur approximativ gilt, das heißt, im Grenzwert.

Folgende Aussagen sind zu (a) aus Definition (A.11) äquivalent:

• Für jedes ε > 0 gibt es ein x 6= 0 mit ‖Ax− λx‖ < ε‖x‖.

• Es gibt eine Folge (xn) von Vektoren aus H mit ‖xn‖ = 1 für alle n

derart, dass λxn − Axn −→ 0 für n ↑ ∞ gilt. Das ist äquivalent zu

‖Axn − λxn‖ −→ 0 für n ↑ ∞.

Theorem A.13

Für jedes A ∈ L(H ) gilt σap(A) ⊆ σ(A).

Proof. Ist λ /∈ σ(A), so ist A− λ invertierbar und es folgt

‖x‖ = ‖(A− λ)−1(A− λ)x‖ ≤ ‖(A− λ)−1‖‖Ax− λx‖

für jedes x ∈H . Daraus folgt ‖Ax−λx‖ ≥ ε‖x‖ mit ε = 1/‖(A−λ)−1‖ für

jedes x, also λ /∈ σap(A). �

Für den Beweis des nachfolgenden Satzes erinnern wir noch an das fol-

gende einfache Lemma ([W], Lemma V.5.10).

Lemma A.14

Ist N ∈ L(H ) normal, so gilt für jedes x ∈H , dass

‖Nx‖ = ‖N∗x‖.
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Der folgende Satz besagt nun, dass für normale Operatoren das Spektrum

mit dem approximierenden Punktspektrum zusammenfällt.

Theorem A.15

Ist N ∈ L(H ) normal, so gilt σap(N) = σ(N).

Proof. Wegen Satz (A.13) reicht es aus, ”⊇” zu zeigen. Sei λ /∈ σap(N).

Dann gibt es ein ε > 0 mit

‖Ny − λy‖ ≥ ε‖y‖, y ∈H . (∗)

Weil mit N auch N−λ normal ist (Aufgabe (1.37)) und weiterhin (N−λ)∗ =

N∗ − λ̄ gilt, folgt mit Lemma (A.14), dass

‖N∗y − λ̄y‖ ≥ ε‖y‖, y ∈H . (∗∗)

Um λ /∈ σ(N) zu zeigen, also die Invertierbarkeit von N − λ, reicht es wegen

(∗) zu zeigen, dass das Bild von N − λ dicht ist. Äquivalent dazu ist, dass

das orthogonale Komplement des Bildes von N − λ nur aus der 0 besteht.

Sei also y orthogonal zum Bild von N − λ, dann gilt

0 = 〈(N − λ)x, y〉 = 〈x, (N∗ − λ̄)y〉

für alle x ∈H . Daraus folgt N∗y−λ̄y = 0. Wegen (∗∗) ergibt sich schließlich

y = 0. �

A.1.3 Aufgaben

Aufgabe A.16

Einstweilen sei daran erinnert, dass ein U ∈ L(H ) genau dann unitär heißt,

wenn U∗ = U−1 gilt.
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Zeigen Sie, dass σ(U) ⊆ S1 für jeden unitären Operator U gilt.

Zeigen Sie weiter, dass die Umkehrung der obigen Aussage falsch ist, das

heißt, aus σ(U) ⊆ S1 folgt im Allgemeinen nicht, dass U unitär ist.

Beweisen Sie schließlich, dass ein normales U ∈ L(H ) genau dann

unitär ist, wenn σ(U) ⊆ S1 gilt.

Aufgabe A.17

Zeigen Sie, dass der Raum P bezüglich der üblichen punktweisen Addition

und Multiplikation eine Algebra ist. Weisen Sie weiterhin nach, dass P

bezüglich ‖ · ‖∞ eine normierte Algebra ist, begründen Sie dabei insbeson-

dere die Wohldefiniertheit der Supremumsnorm auf P bezüglich σ(N).

Aufgabe A.18

Seien S und T topologische Räume, f : S −→ T stetig und E ⊆ S dicht in

S. Zeigen Sie, dass f(E) dicht in f(S) ist. Untersuchen Sie weiter, ob f(E)

stets auch dicht in T ist.

Aufgabe A.19

Zeigen Sie, dass die Abbildung ΨN : P −→ L(H ) ein stetiger Algebrenho-

momorphismus ist.

Aufgabe A.20

Geben Sie die Details des Beweises von Bemerkung (A.2).

Aufgabe A.21

Zeigen Sie, dass mit N ∈ L(H ) normal auch (λ−N) für jedes λ ∈ C normal

ist.
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Aufgabe A.22

Zeigen Sie mit einem anderen Argument als im Text: Ist N normal mit

0 ∈ σ(N), so gilt auch 0 ∈ σ(A) für A = NN∗.

Aufgabe A.23

Zeigen Sie, dass M = {x ∈H : f(A)x = x} ein abgeschlossener Unterraum

von H ist.

Aufgabe A.24

Zeigen Sie, dass (p̄p)(N,N∗) selbstadjungiert ist.

Aufgabe A.25

Folgern Sie analog zum selbstadjungierten Fall die restlichen Eigenschaften

von ΨN aus Satz (A.9).

A.2 The Gelfand-Naimark-Theorem by Pushya

Mitra

A.2.1 Introduction

Formulation and interpretation of quantum mechanics in some sense is dif-

ficult if one treats quantum mechanics completely through the notion of a

Hilbert space. Hilbert spaces do not have any analogy in the classical the-

ory and cannot be directly accessed by ”measurements”. In the meta-sense,

measurements can only be associated with observables of the theory and only

observables have counterparts in classical mechanics. Additionally, the no-

tion of states in a Hilbert space possess few mathematical difficulties as we
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shall see in the succeeding section where we try to set up the mathematical

identity required for the existence of hidden variables in quantum mechan-

ics.

The empiricists approach, where they do not mathematically clarify what

they mean by state and what they mean by observables, forces a lot of trou-

ble and with that approach for example one then has to start admitting

almost everything as definitions and notions like quasi states, contextual,

non-contextual, etc. which creates immense amount of confusions and some-

time may mislead to the conclusions which are not consistent with the theory.

This shouts for the need to formulate Quantum mechanics based on the Al-

gebra of observables. In quantum mechanics, the most general form for an

algebra of observables is a C∗-algebra. The dynamics of the quantum me-

chanical system is described through an element of a C∗-algebra.

In this talk, we discuss an important theorem which helps one to a deeper

understanding of the structure of a Banach-Algebra. This is the Gelfand-

Naimark-Theorem, which (in one of its forms) says that every commutative

C∗-algebra A is isometrically isomorphic to the space of continuous complex-

valued functions on its spectrum. In the classical reinterpretation of quantum

mechanics, this theorem helps one to formulate the theorem of Kochen and

Specker, which rules out the existence of hidden variables in quantum me-

chanics if the dimension of the Hilbert space is at least 3.

The following work is largely adapted from the book [HS] of Hirzebruch

and Scharlau, few intermediate results are from the books [?] of Reed and

Simon and [BR] of Bratelli and Robinson.
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A.2.2 Properties of an algebra

Definition A.26 (Algebra)

Let A be a C-vector space. The space A is called a complex algebra if it

is equipped with a multiplication law which associates the product to each

pair a, b ∈ A. The product is assumed to be associative and distributive, i.e.

∀a, b, c ∈ A, ∀α, β ∈ C

i) a(bc) = (ab)c

ii) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

iii) α(ab) = (αa)b = a(αb)

A subspace B of A which is also an algebra with respect to the operations of

A is called sub-algebra.

An algebra is commutative, or abelian if the product is commutative, i.e.

if ab = ba for all a, b ∈ A.

An algebra A is a normed algebra, if to each element a ∈ A there is associ-

ated a real number ‖a‖, the norm of a, satisfying the following requirements

for all a, b ∈ A and α ∈ C:

i) ‖a‖ ≥ 0 and ‖a‖ = 0 iff a = 0

ii) ‖αa‖ = |α|‖a‖

iii) ‖a+ b‖ ≤ ‖a‖+ ‖b‖- triangle inequality

iv) ‖ab‖ ≤ ‖a‖‖b‖.
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If a normed algebra A is complete, it is called Banach algebra.

A Banach algebra is called unital if there exists 1A ∈ A such that a1A =

1Aa = a, ∀a ∈ A and ‖1A‖ = 1. We call 1A unit.

The norm defines a metric topology on A also known as uniform

topology. A special (open) neighbourhood of an element a ∈ A in this

topology is given by U(a; ε) = {b ∈ A | ‖b− a‖ < ε}, where ε > 0; the open

ball around a with radius ε.

If there exists a unit then it is unique.

Definition A.27 (Homomorphism, Inverse)

Let A, B be complex unital algebras.

A linear map Φ : A→ B is called (algebra) homomorphism, if ∀a, b ∈ A

Φ(ab) = Φ(a)Φ(b) .

A linear functional ` on A, which is not identically zero, is called complex

homomorphism, if `(ab) = `(a)`(b) ∀a, b ∈ A.

An element a ∈ A is said to be invertible, if it has an inverse, i.e., if there

exists an element a−1 ∈ A such that

aa−1 = a−1a = 1A .

If follows that `(1A) = 1 for any complex homomorphism and if a has an

inverse, than `(a)`(a−1) = `(1A) = 1 and thus `(a) 6= 0.

The following discussion involves the spectrum of a ∈ A.

Definition A.28 (Spectrum and Resolvent)

Let A be a unital Banach algebra and a ∈ A.
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i) A complex number λ is said to be in resolvent set ρ(a) of a, if λ1A−a

has an inverse
(
λ1A − a

)−1 ∈ A.

ii) If λ /∈ ρ(a), then λ is said to be in spectrum σ(a) := C \ ρ(a) of a.

iii) The spectral radius of a is given by r(a) := supλ∈σ(a) |λ|.

Theorem A.29

Let A be a unital Banach algebra. Then every a ∈ A has non-empty spectrum

and |λ| ≤ ‖a‖ for any λ ∈ σ(a). Moreover r(a) = limn→∞ ‖an‖
1
n .

Proof. For |λ| > ‖a‖, let us do the following computation:

First remark that ‖an‖ ≤ ‖a‖n and ‖a‖
|λ| < 1. Then

SN(a) := 1A +
N∑
n=1

(a
λ

)n
form a Cauchy sequence. Since A is complete, there is some limit element

S(a) ∈ A. Since
(
a
λ

)n → 0 as n→∞ and

λ−1SN(a)
(
λ1A − a

)
= 1A −

(a
λ

)N+1

=
(
λ1A − a

)
λ−1SN(a)

it follows that Ra(λ) := λ−1S(a) is the inverse of a and thus λ ∈ ρ(a).

Moreover, ‖Ra(λ)‖ → 0 as |λ| → ∞. If σ(a) were empty, Ra would be

an entire bounded analytic function of λ with values in A. By Liouville’s1

theorem, Ra would be constant and and thus zero everywhere, which is a

contradiction. Thus σ(a) is non-empty.

Since Ra is analytic on {λ > r(a)}, the series converges uniformly on every

circle Γr around zero with radius r > r(a). Term by term integration gives

an =
1

2πi

∫
Γr

λnRa(λ) dλ .

1Liouville’s theorem says that every bounded entire function must be constant
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By the continuity of Ra we have

M(r) := max
θ∈[0,2π]

∥∥Ra(re
iθ)
∥∥ <∞ , r > r(a) .

Thus ‖an‖ ≤ rn+1M(r), giving lim supn→∞ ‖an‖
1/n ≤ r for all r > r(a) and

thus

lim sup
n→∞

‖an‖1/n ≤ r(a) . (A.1)

If λ ∈ σ(a), then λn1A − an = (λ1A − a)(λn−11A + . . . + an−1) and thus

λn1A − an is not invertible, i.e. λn ∈ σ(an) and |λn| ≤ ‖an‖ for n ∈ N. This

shows

r(a) ≤ inf
n∈N
‖an‖1/n . (A.2)

Combining (A.1) and (A.2) proves the third statement. �

We remark that σ(a) is always closed (as the complement of the resolvent

set ρ(a) which is always open).

Lemma A.30

Let ` : A→ C be an arbitrary complex homomorphism. Then `(a) ∈ σ(a) for

any a ∈ A and ` is bounded with ‖`‖ = 1.

Proof. For a ∈ A, set `(a) = λ, then `(a − λ1A) = 0. This implies that

(a − λ1A) is not invertible which then further implies that λ ∈ σ(a). Thus,

|`(a)| ≤ ‖a‖ for any a ∈ A, which gives ‖`‖ ≤ 1. On the other side, `(1A) = 1

implies ‖`‖ ≥ 1 �

Theorem A.31 (Theorem of Gelfand-Mazur)

Let A be a unital commutative Banach algebra in which every non-zero ele-

ment is invertible. Then Ψ : C→ A, λ 7→ λ1A is an isomorphism (i.e. A is

isometrically isomorphic to C).
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Remark The condition is equivalent to the unital Banach algebra being

a field. Typically in the notion of the field, the commutativity is contained.

So it stresses once-more the fact that the algebra is commutative.

Proof. In order to prove that Ψ is an isomorphism, we go through the stan-

dard procedure. It is clear that Ψ is an injective homomorphism. Thus it

remains to show surjectivity. Let a ∈ A, a 6= 0, then by Theorem A.19, it’s

spectrum is non-empty. Let λ ∈ C be a spectral value of a, then a − λ1A

is non-invertible by the definition of the spectrum. By assumption a − λ1A

must be the zero element, which then implies a = λ1A. Hence A = C1A. �

A.2.3 C∗-algebras

Definition A.32 (Involution, C∗-algebra)

Let A be a unital Banach-Algebra. An involution in A is a map ∗ : A → A,

a 7→ a∗ such that ∀a, b ∈ A and λ ∈ C, the following holds:

i) (a∗)∗ = a

ii) (a+ b)∗ = a∗ + b∗

iii) (λa)∗ = λa∗

iv) (ab)∗ = b∗a∗

A C∗-algebra is a unital Banach-algebra equipped with an involution ∗ such

that the C∗-identity

‖a∗a‖ = ‖a‖2

is satisfied for all a ∈ A.
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There are two important examples of C∗-algebras:

i) Let X be a compact Hausdorff space. The space C(X) of all complex

valued continuous functions over X is a C∗-algebra with point-wise

addition and multiplication, where for f ∈ C(X) the adjoint is given by

f ∗(x) = f(x) for x ∈ X and the norm is given by ‖f‖∞ = supx∈X |f(x)|.

ii) Let H be a separable Hilbert space and denote by L(H ) the set of

all bounded operators on H . We define the sum of elements of L(H )

pointwise, the product is given by the composition. The Hilbert space

adjoint defines an involution on L(H ). With respect to these opera-

tions and the operator norm, L(H ) is a C∗-algebra (non-commutative

for dim H > 1). To see this we verify the most important C∗-identity:

For a given a ∈ L(H ), we have

‖a‖2 = sup
‖ψ‖=1

‖aψ‖2 = sup
‖ψ‖=1

〈aψ, aψ〉

= sup
‖ψ‖=1

〈ψ, a∗aψ〉

≤ sup
‖ψ‖=1

‖ψ‖ · ‖a∗aψ‖ = ‖a∗a‖

≤ ‖a‖ · ‖a∗‖ = ‖a‖2

Hence ‖a‖2 ≤ ‖a∗a‖ ≤ ‖a‖2. This implies ‖a∗a‖ = ‖a‖2.

Let A be a C∗-algebra and denote by L(A) the Banach-algebra of con-

tinuous linear maps from A into itself. For any a ∈ A, we set Ta : A→ A by

Ta(x) = ax. Then A → L(A), a 7→ Ta is an algebraic homomorphism, also

known as Canonical Regular Representation.

Furthermore ‖Ta(x)‖ ≤ ‖a‖‖x‖ and ‖Ta(1A)‖ = ‖a‖ = ‖a‖‖1A‖ which then
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imply ‖Ta‖ = ‖a‖.

Moreover, σ(a) = σ(Ta): if Ta is invertible and T−1
a is its inverse map, then,

clearly aT−1
a (1A) = TaT

−1
a (1A) = 1A, which implies that a is also invertible

and T−1
a = Ta−1 .

A.2.4 Commutative Banach-Algebras

From now on we consider only commutative unital Banach algebras

Definition A.33 (Ideal)

An ideal Σ of a complex commutative algebra A is a vector subspace with

the additional property that xy ∈ Σ for all x ∈ Σ and y ∈ A.

Lemma A.34

Let Σ be an ideal of a commutative algebra A. Then the closure Σ of Σ is

also an ideal of A. If Σ contains any invertible element of A, then Σ = A.

Proof. Let a, b ∈ Σ and {an}, {bn} be sequences in Σ, which converge to a

and b respectively. Then clearly {an + bn} converges to a+ b. Which means

a + b ∈ Σ. If x ∈ A then {anx} is a sequence in Σ which converges to ax,

which implies ax ∈ Σ.

We assume that there exists a ∈ Σ such that a−1 exists. Then a−1a = 1A ∈ Σ,

which implies x = x1A ∈ Σ for all x ∈ A and thus Σ = A. �

Definition A.35 (Maximal Ideal)

Let A be a commutative algebra and M be an ideal. Then M is called proper

if M 6= A. A maximal ideal is a proper ideal M such that M = J for any

other proper ideal J with M ⊆ J .
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Corollary A.36

Every maximal ideal of a commutative algebra is closed.

Proof. Let M be a maximal ideal of A then M is also an ideal and M ⊆M .

As M is maximal, we must have either M = M or M = A. But since M

contains no invertible elements and the set of invertible elements in A is open,

the same is true for M , in particular 1A /∈M and thus M 6= A. �

Note that from now onward all our Banach algebras will be unital.

Lemma A.37

Let A be a commutative Banach algebra and Σ be any closed ideal. Then the

quotient space A/Σ is in a canonical way a Banach algebra.

Proof. By former results we know that A/Σ is a Banach space (denoting for

a ∈ A the equivalence class by ā = a + Σ ∈ A/Σ, we set ā + b̄ = a+ b and

λā = λa) with respect to the quotient norm

‖ā‖ = inf
s∈Σ
‖a− s‖ . (A.3)

For a−a′ ∈ Σ and b−b′ ∈ Σ it follows that (a′b′−ab) = (a′−a)b′+a(b′−b) ∈ Σ

(since Σ is an ideal). Therefore ab = a′b′, i.e. multiplication is well-defined by

āb̄ = ab. It is quite clear that A/Σ is a complex algebra and the map π : A→

A/Σ is a homomorphism. Since ‖ā‖ ≤ ‖a‖ by (A.3), π is continuous. And

now we have to show the norm properties with respect to the multiplicative

structure: For any xj ∈ A, j = 1, 2, and δ > 0 by (A.3) there exists sj ∈ Σ

such that

‖xj + sj‖ ≤ ‖x̄j‖+ δ . (A.4)
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Since (x1 + s1)(x2 + s2) ∈ x1x2 it follows that

‖x̄ȳ‖ = ‖xy‖ ≤ ‖(x1 + s1)(x2 + s2)‖ ≤ ‖(x1 + s1)‖‖(x2 + s2)‖ .

Thus by (A.4) we get

‖x̄ȳ‖ ≤ ‖x‖‖y‖ . (A.5)

It remains to show that A/Σ has a unit. Clearly, 1A is a unit in A/Σ by

the definition of the product. To see that the norm is one, first remark that∥∥1A

∥∥ ≤ ‖1A‖ = 1. Moreover, 1A 6= 0 since 1A /∈ Σ (otherwise Σ = A). Thus

by (A.5) we have on the other hand∥∥1A

∥∥2 ≥
∥∥∥1A

2
∥∥∥ =

∥∥1A

∥∥
it follows that

∥∥1A

∥∥ ≥ 1 and thus
∥∥1A

∥∥ = 1. �

If M is a maximal ideal in a commutative Banach algebra A, then by

Corollary A.26 it is closed and thus A/M is a Banach algebra by Lemma

A.27. Choose any a ∈ A, a /∈ M and put Ja = {ab + m | b ∈ A, m ∈ M}.

Then Ja is an ideal and Ja is larger than M since a ∈ J . Thus Ja = A

by the maximality of M , showing that there exist b ∈ A, m ∈ M such that

ab+m = 1A. It follows that ab = 1A, therefore each nonzero element of A/M

is invertible. Hence from the Gelfand-Mazur-Theorem (Theorem A.21), it

follows that A/M is isometrically isomorphic to the field C. If we denote this

isomorphism by j : A/M → C, the map hM = j ◦ π : A → C is a complex

homomorphism and its kernel is M . Thus each maximal ideal M is the kernel

of some complex homomorphism h.

If on the other hand h is any complex homomorphism on A, then its kernel

h−1(0) is an ideal. Since it has codimension 1, it is maximal.
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The above computations have also shown that an element a ∈ A is invertible

if and only if a lies in no proper ideal of A.

Definition A.38 (Spectrum of A, Gelfand transform)

Let A be a commutative complex Banach algebra. Then the set of all maximal

ideals of A is said to be the spectrum of A, written as σ(A).

We denote by ∆A the set of all complex homomorphisms of A. Then for each

a ∈ A, the function

â : ∆A → C , â(`) := `(a)

is called Gelfand transform of a. We denote by Â the set of all Gelfand

transforms.

The Gelfand topology of ∆A is the weakest topology such that every â is

continuous.

There is a one-to-one correspondence between ∆A and σ(A):

As described above, every maximal ideal M defines in a canonical way the

continuous complex algebra homomorphism

hM : A→ A/M → C

with kernel M and for any h ∈ ∆A, the kernel of h is a maximal ideal. Thus

we also can equip σ(A) with the Gelfand topology.

It follows that Â is a subset of C(σ(A)), the set of complex-valued continuous

functions on the spectrum σ(A).

By Lemma A.20, we may consider σ(A) as a subset of the unit sphere in

the (Banach space) dual A′. The Gelfand topology is the restriction of the

weak*-topology of A′ to ∆A (or σ(A)).
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Theorem A.39

Let A be a commutative Banach algebra. Then â(σ(A)) = σ(a).

Proof. Since `(a) ∈ σ(a) for any ` ∈ ∆A, it follows that λ ∈ σ(a) if λ = `(a)

for some ` ∈ ∆A. If on the other hand λ ∈ σ(a), then a−λ1A is not invertible

and thus the set {x(a − λ1A) |x ∈ A} does not contain 1A. It therefore is a

proper ideal, which lies in a maximal ideal M . Thus it is an element of the

kernel of hM constructed above, proving that λ = `(a) for some ` ∈ ∆A. It

follows that for each a ∈ A, the range of â is the spectrum of a. �

Theorem A.40

Let A be a commutative complex Banach algebra. Then σ(A) is closed and

thus a compact subset of the norm-closed unit sphere B in the dual space A′

with respect to the weak∗ − topology.

Proof. By the Banach-Alaoglu-Theorem, B is weak*-compact. Since σ(A) ⊂

B, it suffices to show that it is weak*-closed. Let {`n}n∈N be a sequence in

∆A so that {`nx} converges for all x ∈ A. Then, setting `(x) = limn→∞ `n(x),

it remains to show that ` is a complex homomorphism, i.e. `(xy) = `(x)`(y)

and `(1A) = 1 for all x, y ∈ A.

For x, y ∈ A and ε > 0 fixed, set

U := {f ∈ A′ | |f(a)− `(a)| < ε for a ∈ {1A, x, y, xy} } .

Then U is a weak*-neighbourhood of `, containing some f ∈ ∆A. By as-

sumption |f(1A) − `(1A)| = |1 − `(1A)| < ε, giving the second equation. To

see the first one, write

`(xy)− `(x)`(y) = (`(xy)− f(xy)) + (f(x)f(y)− `(x)`(y))
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= (`(xy)− f(xy)) + (f(y)− `(y))f(x) + (f(x)− `(x))`(y)

which gives

|`(xy)− `(x)`(y)| < (1 + ‖x‖+ |`(y)|)ε .

�

Thus, since σ(A) with the topology described above is a compact Haus-

dorff space, one obtains by standard arguments

Corollary A.41

The algebra C(σ(A)) of complex-valued continuous function on the topological

space σ(A) is a Banach-algebra.

Theorem A.42

Let A be a commutative complex Banach algebra. Then the Gelfand transform

G : A→ C
(
σ(A)

)
, G(a)(M) = â(hM) = hM(a) , M ∈ σ(A) (A.6)

is a continuous homomorphism and ‖G(a)‖ = ‖â‖ = r(a) ≤ ‖a‖ for any

a ∈ A, where r(a) is the spectral radius of a.

The kernel of G is the intersection of all maximal ideals of A (which is said

to be the radical rad A of A).

Proof. Since hM ∈ ∆A, it is straightforward by the definition that G is an

algebra homomorphism, e.g.

G(ab)(M) = âb(hM) = hM(ab) = hM(a)hM(b) =
(
G(a)G(b)

)
(M) .

G(a) is continuous by the definition of the Gelfand topology. Moreover, from

Lemma A.20 it follows that ‖hM‖ = 1 for all M ∈ σ(A) and thus ‖G‖ ≤ 1.
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The statement on the spectral radius follows from Theorem A.29.

The kernel of G consists of those a ∈ A for which h = 0 for all h ∈ ∆A. Since

the kernel of each h ∈ ∆A is a maximal ideal (see the discussion above the

definition of the Gelfand transform), the kernel of G is the intersection of all

these maximal ideals. �

A.2.5 The Gelfand-Naimark-Theorem

Theorem A.43 (Gelfand-Naimark-Theorem)

Let A be a commutative C∗-algebra. Then the Gelfand transform G : A →

C
(
σ(A)

)
is an isometric isomorphism and G(a) = G(a∗) for all a ∈ A, i.e.

G is a homomorphism of commutative C∗-algebras. In particular a ∈ A is

self-adjoint (i.e. a∗ = a) if and only if â is real-valued.

Proof. We start proving that G(a∗)(M) = G(a)(M) for all a ∈ A and M ∈

σ(A).

Let G(a)(M) = α+ iβ and G(a∗)(M) = γ+ iδ with α, β, γ, δ ∈ R. In order to

get a contradiction, we now assume that β + δ 6= 0 and set c = a+a∗−(α+γ)1A
β+δ

.

It is clear that c = c∗ and G(c)(M) = i.

For all λ ∈ R, G(c+ iλ1A)(M) = i(1 + λ). Hence, |1 + λ| ≤ ‖c+ iλ1A‖ and

(1 + λ)2 ≤ ‖c+ iλ1A‖2 = ‖(c+ iλ1A)(c+ iλ1A)∗‖

≤
∥∥c2 + λ21A

∥∥ ≤ ∥∥c2
∥∥+ λ2 .

But for significant large λ the above inequality does not hold. This contra-

dicts our assumption that β + δ 6= 0 and thus shows β + δ = 0.

We apply the same line of argument on the elements ia, (ia)∗ and the result

follows.
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Since A is commutative, each a ∈ A is normal, i.e. a∗a = aa∗, and thus

‖a‖2 = ‖a2‖. It follows that ‖a‖ = r(a) and thus, by Theorem A.32, the

homomorphism G is an isometry.

Now it is to be shown that G is surjective. We do this via the Stone-

Weierstrass Theorem (Theorem A.37 below). Since G is an isometry, the

set Â ⊂ C
(
σ(A)

)
of all Gelfand transforms is closed. Clearly Â is a subal-

gebra separating points in σ(A) and id ∈ Â, thus the prerequisites for the

application of the Stone-Weierstrass Theorem are given. Therefore G(A) is

dense in C
(
σ(A)

)
, proving the surjectivity. �

Stone-Weierstrass Theorem

This part is taken from the book of Folland [F].

Let X be a compact Hausdorff space and C(X,R) be a space of real-valued

continuous functions on X equipped with uniform metric. A subset A of

C(X,R) is said to separate points, if for every x, y ∈ X with x 6= y there

exists f ∈ A such that f(x) 6= f(y).

If A ⊂ C(X,R), A is called lattice if max(f, g) and min(f, g) are in A

whenever f, g ∈ A . Since lattice operations are continuous, one easily sees

that if A is an lattice, so it’s closure A in the uniform metric. Before we

discuss the Stone-Weierstrass theorem, we shall see a few ingredients needed

for it’s proof in form of the following lemmas (the proofs can be found in

[F]).

Lemma A.44

Consider R2 as an algebra under coordinate-wise addition and multiplication.

The only sub-algebras of R2 are R2, {(0, 0)}, and linear spans of (1, 0), (0, 1)
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and (1, 1).

Lemma A.45

If A is a closed sub-algebra of C(X,R), then |f | ∈ A if f ∈ A and A is a

lattice.

Lemma A.46

Suppose A is a closed lattice in C(X,R) and f ∈ C(X,R). If for every

x, y ∈ X there exists gxy ∈ A such that gxy(x) = f(x) and gxy(y) = f(y),

then f ∈ A .

Theorem A.47 (Stone-Weierstrass-Theorem)

Let X be a compact Hausdorff space. If A is a closed sub-algebra of C(X,R)

that separates points, then either A = C(X,R) or A = {f ∈ C(X,R) :

f(x0) = 0} for some x0 ∈ X. The first alternative holds if and only if A

contains the constant functions.

Proof. Given x 6= y ∈ X, let Axy = {(f(x), f(y)) : f ∈ A }. Then Axy is a

sub-algebra of R2 in the sense of Lemma A.34, because f 7→ (f(x), f(y)) is

an algebra homomorphism. If Axy = R2 for all x, y then Lemma A.35 and

Lemma A.36 imply that A = C(X,R). Otherwise, there exists x, y for which

Axy is a proper sub-algebra of R2. It cannot be {(0, 0)} or the linear span of

(1, 1) because A separates points, so by Lemma A.34 Axy is the linear span

of (1, 0) or (0, 1). In either case there exists x0 ∈ X such that f(x0) = 0 for

all f ∈ A . There is only one such x0, since A separates points, so if neither

x nor y is x0 we have Axy = R2. Lemma A.35 and Lemma A.36 now imply

that A = {f ∈ C(X,R) : f(x0) = 0}. Finally, if A contains the constant
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functions, there is no x0 such that f(x0) = 0 for all f ∈ A , so A must equal

C(X,R). �

The above theorem is quite general but for the application purposes one

typically encounters a sub-algebra B of C(X,R) that is not closed, and one

applies the theorem to A = B

Corollary A.48

Suppose B is a sub-algebra of C(X,R) that separates points. If there exists

x0 ∈ X such that f(x0) = 0 for all f ∈ B, then B is dense in {f ∈ C(X,R) :

f(x0) = 0}. Otherwise, B is dense in C(X,R).

This could also be extended to a complex sub-algebra. The following

theorem allows us to do so.

Theorem A.49

Let X be a compact Hausdorff space. If A is closed complex sub-algebra

of C(X) that separates points and is closed under complex conjugation, then

either A = C(X) or A = {f ∈ C(X) : f(x0) = 0} for some x0 ∈ X.

Proof. Since, Re f = (f + f)/2 and Im f = (f − f)/2i, the set AR of real

and imaginary parts of functions in A is a sub-algebra of C(X,R) to which

the Stone-Weierstrass Theorem applies. Since A = {f + ig : f, g ∈ A }, the

desired result follows. �

A.3 Solutions for some Exercises

Exercise 1.32: The first properties given by (i) are easily checked. We
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have (for 1(x) = 1)

Ψ(1) =
∞∑
n=0

1Πn =
∞∑
n=0

Πn = Id (A.7)

since H is the direct sum of the eigenspaces by Theorem 1.5. Furthermore,

for f(x) = x one has

Ψ(f) =
∞∑
n=0

λnΠn = A (A.8)

again by Theorem 1.5.

Now we come to linearity. Let f, g ∈ C(σ(A)) and λ ∈ σ(A), then

Ψ(f + g) =
∞∑
n=0

(f + g)(λn)Πn =
∞∑
n=0

(f(λn)Πn + g(λn)Πn)

=
∞∑
n=0

f(λn)Πn +
∞∑
n=0

g(λn)Πn = Ψ(f) + Ψ(g)

by convergence of all series and

Ψ(λf) =
∞∑
n=0

(λf)(λn)Πn = λ
∞∑
n=0

f(λn)Πn = λΨ(f).

This shows linearity. Next, we prove multiplicativity. This holds by

Ψ(fg) =
∑
n

(fg)(λn)Πn =
∑
n

f(λn)g(λn)Πn

=
∑
n

f(λn)
∑
k

g(λk)δnkΠn =
∑
n

f(λn)
∑
k

g(λk)Πn ◦ Πk

=
∑
n

f(λn)Πn

(∑
k

g(λk)Πk

)
=
∑
n

f(λn)Πn ◦
∑
n

g(λn)Πn

= Ψ(f) ◦Ψ(g).

The involution property is true by

Ψ(f) =
∑
n

f(λn)Πn =
∑
n

(f(λn)Πn)∗
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=

(∑
n

f(λn)Πn

)∗
= Ψ(f)∗.

Here, we have used that the map T 7−→ T ∗ is conjugate linear.

Finally, we show continuity (iii). This follows by

‖Ψ(f)‖ = ‖
∑
n

f(λn)Πn‖ ≤
∑
n

‖f(λn)Πn‖

≤
∑
n

‖f‖∞‖Πn‖ = ‖f‖∞
∑
n

‖Πn‖ ≤ ‖f‖∞.

Exercise 1.34:

i) We start by showing linearity. This is easy, since the properties follow

directly from the linearity of the integral. Let f, g ∈ B(σ(A)) and

α ∈ σ(A). Then we have

Φ̃A(f + g) = 〈ψ, Φ̃A(f + g)ϕ〉 =

∫
(f + g) dµψ,ϕ

=

∫
f dµψ,ϕ +

∫
σ(A)

g dµψ,ϕ = 〈ψ, Φ̃A(f)ϕ〉+ 〈ψ, Φ̃A(g)ϕ〉

= Φ̃A(f) + Φ̃A(g).

Furthermore, one has

Φ̃A(αf) = 〈ψ, Φ̃A(αf)ϕ〉 =

∫
(αf) dµψ,ϕ

= α

∫
f dµψ,ϕ = α〈ψ, Φ̃A(f)ϕ〉 = αΦ̃A(f).

Linearity is proven.
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Next, we consider multiplicativity. Therefore, we need some properties

of the measures µψ,ϕ which we first want to provide.

The first fact is from basic measure theory. We want to recall that if

m is a measure and f is a measurable function, f · m is the unique

measure µ such that

µ(E) =

∫
E

f dm (A.9)

holds for all measurable sets E. In other words, µ is the unique measure

such that dµ / dm = f (Radon-Nikodym-Theorem).

Now we need the

Lemma.

(a) For all g ∈ C(σ(A)) we have g · µψ,ϕ = µψ,ΦA(g)ϕ, where ΦA(g) is

the continuous functional calculus of g.

(b) For all f ∈ B(σ(A)) we have f · µψ,ϕ = µΦ̃A(f)∗ψ,ϕ.

Proof.

(a) Let f ∈ C(σ(A)). Then∫
f dg · µψ,ϕ =

∫
(fg) dµψ,ϕ = 〈ψ,ΦA(fg)ϕ〉

= 〈ψ,ΦA(f)ΦA(g)ϕ〉 =

∫
f dµψ,ΦA(g)ϕ .

(b) Let h ∈ C(σ(A)). Then∫
h df · µψ,ϕ =

∫
(hf) dµψ,ϕ =

∫
f dh · µψ,ϕ

(a)
=

∫
f dµψ,ΦA(h)ϕ = 〈ψ, Φ̃A(f)ΦA(h)ϕ〉

= 〈Φ̃A(f)∗ψ,ΦA(h)ϕ〉 =

∫
h dµΦ̃A(f)∗ψ,ϕ .
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�

Using the Lemma, we can now prove the multiplicativity of Φ̃A. Let

therefore f, g ∈ B(σ(A)). Then it holds that

〈ψ, Φ̃A(fg)ϕ〉 =

∫
(fg) dµψ,ϕ =

∫
g df · µψ,ϕ

(b)
=

∫
g dµΦ̃A(f)∗ψ,ϕ = 〈Φ̃A(f)∗ψ, Φ̃A(g)ϕ〉

= 〈ψ, Φ̃A(f)Φ̃A(g)ϕ〉.

This shows Φ̃A(fg) = Φ̃A(f)Φ̃A(g).

Finally we prove the involution property. To that end we first assume

f ∈ B(σ(A)) to be real. Then we have

〈ψ, Φ̃A(f)∗ϕ〉 = 〈Φ̃A(f)ψ, ϕ〉 = 〈ϕ, Φ̃A(f)ψ〉

=

∫
f dµψ,ϕ =

∫
f dµψ,ϕ = 〈ψ, Φ̃A(f)ϕ〉.

We have therefore shown viii) from Theorem 1.8: If f is real valued,

then Φ̃A(f) is self-adjoint. Now consider f = u + iv to be complex

valued with real functions u and v. By viii), the usual adjoint properties

and linearity the calculation

〈ψ, Φ̃A(f)∗ϕ〉 = 〈ψ, Φ̃A(u)∗ϕ〉+ 〈ψ, Φ̃A(iv)∗ϕ〉

= 〈ψ, Φ̃A(u)∗ϕ〉 − i〈ψ, Φ̃A(v)∗ϕ〉

= 〈ψ, Φ̃A(u)ϕ〉 − i〈ψ, Φ̃A(v)ϕ〉

= 〈ψ, (Φ̃A(u)− iΦ̃A(v))ϕ〉
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= 〈ψ, Φ̃A(u− iv)ϕ〉 = 〈ψ, Φ̃A(f̄)ϕ〉

reveals Φ̃A(f̄) = Φ̃A(f)∗.

ii) Let f ∈ B(R) and µ be a Borel measure. Then there is a sequence of

continuous functions (fn) such that
∫
fn dµ −→

∫
f dµ. The assump-

tion AB = BA implies Ψ̃A(fn)B = BΨ̃A(fn), since the claim is true for

polynomials and therefore for continuous functions (which are uniform

limits of polynomials) and since Ψ̃A is continuous in ‖ · ‖∞.

Now let x ∈ H, µx the corresponding spectral measure and fn as above.

Then we have

〈x, Ψ̃A(fn)x〉 =

∫
fn dµx −→

∫
f dµx = 〈x, Ψ̃A(f)x〉.

Since H is a complex Hilbert space, the Polarization formula yields

〈y, Ψ̃A(fn)x〉 −→ 〈y, Ψ̃A(f)x〉

for all x, y ∈ H. We conclude that Ψ̃A(fn)
w−→ Ψ̃A(f). Using this reveals

〈y, Ψ̃A(fn)Bx〉 = 〈y,BΨ̃A(fn)x〉 = 〈B∗y, Ψ̃A(fn)x〉

−→ 〈B∗y, Ψ̃A(f)x〉 = 〈y,BΨ̃A(f)x〉.

On the other hand, 〈y, Ψ̃A(fn)Bx〉 −→ 〈y, Ψ̃A(f)Bx〉. Thus we have

shown

Ψ̃A(fn)B = BΨ̃A(fn)
w−→ Ψ̃A(f)B,

Ψ̃A(fn)B = BΨ̃A(fn)
w−→ BΨ̃A(f).

The claim now follows since weak limits are unique.
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iii) Let f ∈ B(σ(A)) be real. We have

〈ψ, Φ̃A(f)∗ϕ〉 = 〈Φ̃A(f)ψ, ϕ〉 = 〈ϕ, Φ̃A(f)ψ〉

=

∫
f dµψ,ϕ =

∫
f dµψ,ϕ = 〈ψ, Φ̃A(f)ϕ〉.

Exercise 1.36:

i) Let d be the distance in question. Since σ(S) is closed, there exists a

λ0 ∈ σ(S) such that d = |µ − λ0|. Assume now to the contrary that

‖µ id−S−1‖ < 1/d. Then

‖ id−(S − µ)−1(S − λ0)‖ = ‖(S − µ)−1[(S − µ)− S − λ0)]‖

≤ ‖(S − µ)−1‖S − µ− S + λ0‖

<
1

d
· d = 1.

By Lemma 79 it follows that id−(id−(S − µ)−1(S − λ0)) = (S −

µ)−1(S − λ0) is invertible. But then (S − λ0) must be invertible, as it

is the composition of invertible operators:

(S − λ0) = (S − µ)((S − µ)−1(S − λ0)).

This is a contradiction because λ0 ∈ σ(S).

ii) For µ ∈ ρ(S) define the function rµ(s) := (µ − s)−1, where s ∈ σ(S).

Then rµ ∈ C(σ(S)) and for rµ(S) ∈ L(H) we obtain

(µ− S)rµ(S) = ((µ− id)rµ)(S) = rµ(S)(µ− S)

using the functional calculus for self-adjoint operators. This implies

rµ(S) = (µ Id−S)−1. Using the functional calculus one now concludes

‖(µ Id−S)−1‖ = sup
s∈σ(S)

|rλ(s)| =
1

infs∈σ(S)|λ− s|
=

1

dist(µ, σ(S))
.
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iii) We denote with GL(X, Y ) the set of continuous (and therefore bounded)

bijective linear maps from X to Y . First we remember the following

(Lemma 79):

If A ∈ L(X) such that ‖A‖ < 1, then I−A ∈ GL(X) (where I denotes

the identity on X) and (I − A)−1 =
∑∞

k=0A
k.

Proof By norm properties, one has ‖Ak‖ ≤ ‖A‖k and therefore

∞∑
k=0

‖A‖k ‖A‖<1
=

1

1− ‖A‖

with the geometric series. Using Weierstraß-M-test, it follows that∑∞
k=0 Ak is an absolutely convergent series in the Banach space L(X)

and in particular, B :=
∑∞

k=0 A
k is well-defined in L(X). One easily

sees AB = BA =
∑∞

k=1 A
k, therefore we also have (I − A)B = B(I −

A) = I and this is equivalent to (I − A)−1 = B. �

Now we prove our desired result:

The set GL(X, Y ) is open in L(X, Y ).

Proof. Let T0 ∈ GL(X, Y ) and T ∈ L(X, Y ) such that ‖T0 − T‖ <

‖T−1
0 ‖−1. We have

T = T0 + T − T0 = T0[I + T−1
0 (T − T0)].

Now we show: I+T−1
0 (T−T0) ∈ GL(X). This follows from the estimate

‖ − T−1
0 (T − T0)‖ ≤ ‖T−1

0 ‖‖T − T0‖ < 1

by our preceding result. All in all, we have shown that the open ball in

L(X, Y ) with center T0 and radius ‖T−1
0 ‖−1 is an element of GL(X, Y ),

so the proof is complete. �
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Exercise 1.38: We first do some basic observations. Let H be a finite

dimensional Hilbert space an A be a self-adjoint operator on H . Since H

is the only dense subspace, the condition of the existence of a cyclic vector

x ∈H for A is equivalent to

H = {Anx : n = 0, 1, 2, . . . }.

This expression can be also written as

H = {p(A)x : p ∈ C[t]}. (A.10)

Fix an orthonormal basis for H, then there exists a unitary matrix V and a

diagonal matrix D such that A = V DV †. Since we have p(A) = V p(D)V †,

(A.10) is equivalent to

H = {p(D)y : p ∈ C[t]}, (A.11)

where y = V †x. Note that {p(D) : p ∈ C[t]} is a vector space (for C[t] is)

and furthermore,

dim{p(D) : p ∈ C[t]} = number of distinct eigenvalues of A. (A.12)

To see this, we remark that p(D) is a diagonal matrix with diagonal elements

p(D11), . . . , p(Dnn), and that given λ1, . . . , λk distinct, the set {(p(λ1), . . . , p(λk)) :

p ∈ C[t]} equals Ck.

”=⇒”: Assume that equality holds in (A.10). Then the set on the right

hand side of this equation has dimension n and by (A.12) A has n distinct

eigenvalues.
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”⇐=”: If A has n distinct eigenvalues, choose y as the vector with all

coordinates equal to 1 (the sum of all unit eigenvectors of A) and the set on

the right hand side of (A.10) has dimension n, which implies that it is equal

to H .

To construct a measure µ on the spectrum of A and a unitary map U :

H → L2(σ(A), dµ) such that

UAU−1f(λ) = λf(λ) , for all λ ∈ σ(A), (A.13)

we set σ(A) = {λ1, . . . , λn},

µ =
n∑
j=1

δ(x− λj) .

(compare Example 1.28) and we identify functions f ∈ L2(σ(A), dµ) with

vectors f = (f(λ1), . . . , f(λn)) ∈ Cn. Choosing an orthonormal basis of

associated eigenvectors w1, . . . wn ∈H , we define

U : H → L2(σ(A), dµ), Uv(λj) = 〈wj, v〉H ∈ C .

Then U is bijective with U−1 : Cn → H given by U−1(a1, . . . , an) =∑n
`=1 a`w` ∈H . Moreover, U is unitary, since

〈Ux, Uy〉L2 =
n∑
j=1

Ux(λj)Uy(λj) =
n∑
j=1

〈wj, x〉H 〈wj, y〉H

=

〈
n∑
j=1

〈wj, x〉H wj, y

〉
H

= 〈x, y〉H .

To show (A.13), we write for f ∈ L2(σ(A), dµ), using the spectral decompo-

sition of A, i.e. Ax =
∑

k λk〈wk, x〉wj,(
UAU−1f

)
(λj) = 〈wj, AU−1f〉H = 〈wj,

∑
k

λk〈wk, U−1f〉wj〉H
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=
∑
k

λk〈wk, U−1f〉〈wj, wk〉H = λj

〈
wj,
∑
`

f(λ`)w`

〉
H

=
∑
`

λjf(λ`)〈wj, well〉H = λjf(λj) .

Exercise 2.34: We prove the statement in the following for the case

n = 1. After doing this, we explain how the argument can be easily extended

for the case of general n.

We begin with a

Lemma A.50

Every f ∈ C∞(R) is a uniform limit of continuous functions with compact

support.

Proof. Let f ∈ C∞(R). Given n ∈ N, there exists an N > 0 with |f(x)| < 1/n

when |x| > N . Take gn continuous with 0 ≤ gn ≤ 1 such that gn(x) = 1 when

|x| ≤ N and gn = 0 when |x| > N + 1 (recall that this exists by Urysohn’s

lemma). Then fgn ∈ Cc(R) and

|f − fgn| = |f(1− gn)| < 1/n (A.14)

implying fgn −→ f uniformly. �

Now let f ∈ C0(R). By the previous lemma we can assume without loss of

generality that f is continuous with compact support. We now have to show

that there is a sequence of functions in C∞0 (R) which converges uniformly to

f . Therefore, we start with

h0(x) =

e−1/x2 , x > 0,

0, x ≤ 0.

(A.15)
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Now notice that h(x) = h0(x)h0(1− x) ∈ C∞0 (induction on the order of the

derivatives) with support in [0, 1]. One can normalize h such that
∫
R h = 1.

For ε > 0 define the mollifiers

hε(x) = ε−1h(xε−1) (A.16)

and recall
∫
R hε =

∫
R h = 1. Now we form the convolutions

fε(x) =

∫
R
f(t)hε(x− t) dt . (A.17)

Because hε ∈ C∞ it easily follows that fε ∈ C∞, and since f and hε have

compact support, so does fε.

Given ε > 0, as f is continuous with compact support, it is uniformly

continuous. So given c > 0, there exists a δ > 0 such that |f(x)− f(y)| < c

if |x− y| < δ. Then

|fε(x)− f(x)| =
∣∣∣∣ ∫

R
[f(x− t)− f(x)]hε(t) dt

∣∣∣∣ (A.18)

≤
∫
R
|f(x− t)− f(x)|hε(t) dt (A.19)

≤ c

∫
|t|<δ

hε(t) dt+ 2‖f‖∞
∫
|t|≥δ

hε(t) dt (A.20)

≤ c+ 2‖f‖∞
∫
|t|≥δ

hε(t) dt . (A.21)

With δ fixed, the last integral goes to zero as ε ↓ 0 (because the support of

hε is contained in [0, ε]). Thus

lim sup
ε→0

|fε(x)− f(x)| ≤ c (A.22)

for all x and all c > 0. This shows ‖fε − f‖∞ −→ 0.
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Finally, we want to mention how one can extend the above arguments for

Rn. This is easily done, since

hn(x1, . . . , xn) = h(x1) · · ·h(xn) (A.23)

can be taken.

Exercise 2.35: ”=⇒”:

〈x, Tx〉 = 〈Tx, x〉 = 〈x, Tx〉. (A.24)

”⇐=”: Consider for λ ∈ C the real number

〈x+ λy, T (x+ λy)〉 = 〈x, Tx〉+ λ〈y, Tx〉+ λ〈x, Ty〉+ |λ|2〈y, Ty〉.

Taking the complex conjugate yields

〈x+ λy, T (x+ λy)〉 = 〈Tx, Tx〉+ λ〈Tx, y〉+ λ〈Ty, x〉+ |λ|2〈Ty, y〉.

Setting λ = 1 and λ = −i implies

〈y, Tx〉+ 〈x, Ty〉 = 〈Tx, y〉+ 〈Ty, x〉,

〈y, Tx〉 − 〈x, Ty〉 = −〈Tx, y〉+ 〈Ty, x〉.

Adding both equations reveals 〈Ty, x〉 = 〈y, Tx〉.

Exercise 2.36: Let y ∈ D(T ∗S∗) and let x ∈ D(ST ). Then S∗y ∈

D(T ∗) and x ∈ D(T ), so

〈Tx, S∗y〉 = 〈x, T ∗S∗y〉. (A.25)

On the other hand, y ∈ D(S∗), so

〈STx, y〉 = 〈Tx, S∗y〉. (A.26)
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Hence

〈STx, y〉 = 〈x, T ∗S∗y〉, (A.27)

which implies that (ST )∗y = T ∗S∗y for each y ∈ D(T ∗S∗), that is, T ∗S∗ ⊂

(ST )∗.

Suppose now that S ∈ L(H ), hence S∗ ∈ L(H ), for which D(S∗) = H .

Let y ∈ D((ST )∗). For x ∈ D(ST ),

〈Tx, S∗y〉 = 〈STx, y〉 = 〈x, (ST )∗y〉. (A.28)

This implies that S∗y ∈ D(T ∗) and hence y ∈ D(T ∗S∗), showing

D((ST )∗) = D(T ∗S∗). (A.29)

Exercise 2.37: We start showing:

Claim: Let A : X ⊃ D(A) −→ Y (with X, Y Banach spaces) be closed

and B ∈ L(X, Y ). Then A+B with D(A+B) = D(A) is closed.

To see this, let xn ∈ D(A+B), n ∈ N, and x ∈ X, y ∈ Y such that xn −→ x

in X and (A + B)xn = Axn + Bxn −→ y in Y for n −→ ∞. Since B is

bounded, Bx = limBxn exists, implying Axn −→ y − Bx for n −→ ∞.

Because A is closed, it follows that x ∈ D(A) = D(A+B) and Ax = y−Bx,

or Ax+Bx = y.

Now let λ ∈ C be such that (λ − T ) : D(T ) → H is bijective and has

bounded inverse (λ− T )−1 : H → D(T ) ⊂ H . Then by the Closed Graph

Theorem1, the graph Γ((λ− T )−1) is closed.

Let (xn)n∈N be a sequence in H such that xn → x ∈ H and yn :=

(λ − T )−1xn → y. Then (λ − T )−1x = y and thus yn, y ∈ Ran(λ − T )−1 =
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D(λ − T ) and (λ − T )y = x. Therefore, for any sequence (yn) in D(λ − T )

such that yn → y and (λ−T )yn = xn → x, it follows that y ∈ D(λ−T ) and

(λ− T )y = x. This shows that (λ− T ) is closed. Using the above claim for

B = −λ Id shows that T is closed.

Exercise 2.40: Let A be a densely defined, closed, symmetric operator

on H with σ(A) ⊂ R. Then ±i ∈ ρ(A) and thus (A∓ i Id) : D(A)→H is

bijective with bounded inverse. This implies Ran(A∓ i Id) = H . It follows

from Theorem 2.21 that A is self-adjoint.

Exercise 2.85:

i) We want to show that Ts+tf = γs+t ∗ f = γs ∗ (γt ∗ f) = TsTtf holds for

all f and s, t > 0. Since convolution is associative, it therefore suffices

to show that γs+t = γs ∗ γt holds for all s, t > 0. We remark that this

identity can be obtained by elementary multivariable integral calculus.

We however give here a slightly other proof using facts from the theory

of partial differential equations.

Recall first that γ is a so-called fundamental solution of the heat-

equation. This means that given f bounded and continuous on Rn,

the function

u(t, x) = γt ∗ f(x)

is C∞ in R+ × Rn, satisfies the heat equation

∂tu = ∆u
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and the initial data u|t=0 = f in the sense that

u(t, x) −→ f(x) as t −→ 0

locally uniformly in x (in the distributional sense, the convolution ist

δ0). We now use this in order to show γt−s∗γs = γt for all 0 < s < t. Let

f be continuous in Rn with compact support. Then ut = γt ∗ f solves

the bounded Cauchy problem with the initial function f . Consider

now the Cauchy problem with the initial function us. Then ut gives

the bounded solution to this problem a time t− s. On the other hand,

the solution at time t − s is given by γt−s ∗ us. Hence, we obtain the

identity

ut = γt−s ∗ us,

that is

γt ∗ f = γt−s ∗ (γs ∗ f).

Because convolution is associative, we have

γt−s ∗ (γs ∗ f) = (γt−s ∗ γs) ∗ f,

whence

γt ∗ f = (γt−s ∗ γs) ∗ f.

Since this is true for all f , we conclude γt = γt−s ∗ γs.

ii) Let

γ(x, y, t) =
1

(4πt)d/2
· e−|x−y|2/(4t)

and set

u(x, t) =

∫
Rd
γ(x, y, t)f(y) dy .
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Then (Ttf)(x) = u(x, t). The statement limt→0 Ttf = f follows if we

show that limt→0 u(x, t) = f(x) for every x ∈ Rd and f : Rd −→ R

bounded and continuous.

To this end, we use
∫
Rd γ(x, y, t) dy = 1 and calculate

|f(x)− u(x, t)| =
∣∣∣∣f(x)−

∫
Rd
γ(x, y, t)f(y) dy

∣∣∣∣
=

∣∣∣∣∫
Rd
γ(x, y, t)(f(x)− f(y)) dy

∣∣∣∣
=

∣∣∣∣ 1

(4πt)d/2

∫ ∞
0

e−r
2/(4t)rd−1

∫
Sd−1

(
f(x)− f(x+ rξ)

)
do(ξ) dr

∣∣∣∣
=

∣∣∣∣ 1

πd/2

∫ ∞
0

e−s
2

sd−1

∫
Sd−1

(
f(x)− f(x+ 2

√
tsξ)

)
do(ξ) ds

∣∣∣∣
=

∣∣∣∣· · · ∫ M

0

· · ·+ · · ·
∫ ∞
M

· · ·
∣∣∣∣

≤ sup
y∈B(x,2

√
tM)

|f(x)− f(y)|+ 2 sup
Rd
|f | dωd
πd/2

∫ ∞
M

e−s
2

sd−1 ds .

Given ε > 0, we first choose M so large that the second summand is

less then ε/2 and we then choose t0 > 0 so small that for all t with

0 < t < t0, the first summand is less than ε/2 as well. This implies the

continuity.

iii) We recall first that in Analysis it was shown that ‖γt‖ = 1 (use polar

coordinates and Fubini). Then an application of Young’s inequality

with r = p and q = 1 shows

‖Ttf‖p = ‖γt ∗ f‖ ≤ ‖γt‖1‖f‖p = ‖f‖p,

implying ‖Tt‖ ≤ 1.

Exercise 2.87: We want to apply the theorem of Lumer-Philipps (The-

orem 2.68). First of all, A is densely defined since D(A) contains D(0, 1) and
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D(0, 1) is dense in X (here, D(0, 1) is the test function space on (0, 1) and

the density follows by a similar argument as given in Exercise 2.34).

Next, we want to show that A is dissipative. Take f ∈ D(A). Then f is

continuous on a compact set and hence it exists some x0 such that |f(x0)| =

‖f‖∞. Set a = f(x0) and consider the functional `(f) = aδx0(f) = af(x0).

Then l ∈ J(f) and

Re `(f ′′) = Re a(f ′′)(x0) ≤ 0

since the real valued function Re af takes its maximum at x0.

Finally, we want to show that (Id−A) is surjective. This is equivalent to

the statement that the boundary value problem

f − f ′′ = g, f(0) = f(1) = 0

is solvable for each g ∈ X. This is proven e.g. in [Wa].
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