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Introduction

In many settings, namely in biology and medicine, we are lead to take several
measurements of a certain time-varying process (e.g drug concentration, tumour
size, neutrophil levels...) in a set of different individuals, who form a population.

In order to study this data and formulate an adequate model for the studied
process, we naturally turn towards a mixed effects model setting, which allows
for intra-individual variability (like measurement errors) and inter-individual
variability, meaning that each person has a different parameter defining his un-
derlying process.
Usually, the studied process (xt)t≥0 is defined by an ODE, which depends on
a function f , called the structural model , and on a vector ϕi , the individual
parameter : dxt = f(t, xt, ϕi) dt .
The structural model usually stems from physiological, chemical or physical
equations. However, this presupposed structural model could be wrong, for a
myriad of reasons. In a pharmaceutical and pharmacological setting, this could
lead to catastrophic results. As such, diagnosing whether the structural model
is significantly incorrect is crucial.

One possibility for testing for model misspecification is to add another parame-
ter accounting for error: that is, adding a diffusion term to the ODE, effectively
modelling the studied process with an SDE : dxt = f(t, xt, ϕi) dt+γ dWt. Thus,
if we find a diffusion term that is too large, then the discrepancy between model
and data will have to have come from a structural error, and not just from
parameter variability.

During our internship, we have expanded this idea from a single individual
study, to a hierarchical setting (composed of a whole population of individuals),
and so needing the manipulation of latent variables. We will see how studying
a population increases greatly the power of our test, at the cost of needing a
much more complex and robust algorithm for parameter estimation.

In this report, we will first present rigorously the model, and the test of struc-
tural misspecification. Then, we will explain the algorithm we coded for esti-
mating population parameters in an SDE non-linear mixed effects model, which
will use an SAEM-Metropolis-Hastings-within-Gibbs algorithm, coupled with
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an Euler scheme method or a Kalman filter. We will also study the implemen-
tation and coding of this algorithm, that we have done in R. Finally, we will
check the efficacy of the test on a simple pharmacological model, with simulated
data.

This internship was conducted at Potsdam University, under the supervision of
Dr Niklas Hartung. It is the continuation of a previous Master thesis, where we
try to extend from an individual setting to a population model. This research is
a topic of interest of CRC1294 Data Assimilation, a DFG funded Collaborative
Research Center.
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Chapter 1

Misspecfication of
mixed-effects structural
models

1 ODE based mixed-effects model

Suppose that you are conducting clinical trials of a new drug: you have a set
of I individuals, to whom you give a certain dose. Then, you measure the drug
concentration yi,j for the i

th patient at times ti,j > 0.
You now have a set of I independent trajectories: here’s how they can be
modelled to account for intra-individual and inter-individual variability: for
i ∈ {1, ..., I} and j ∈ {1, ..., Ji}

dX
(i)
t = f(t,Xt, ϕi) dt (1.1)

yi,j = X
(i)
ti,j + ϵi,j (1.2)

ϵi,j ∼ N (0, σ2Id) iid (1.3)

ϕi ∼ Π( · ; θ) iid (1.4)

� X ∈ F(R+,Rd) is the underlying process that we wish to study: it could
represent drug concentration, or tumour size, or, in finances, the value of
a stock, or the position of a particle in statistical physics... In this report,
we will mainly focus on clinical applications, however.

� f : R+ × Rd × Rp → Rd is called the structural model: it is what will
define the evolution of X, and is usually chosen according to some more
or less physiological or phenomenological reasoning.

� The ϵi,j are the errors which occur when measuring the process X. They
are the source of intra-individual variability in the model.
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� ϕ ∈ Rp is the individual parameter: it is a latent random variable (mean-
ing, that we cannot measure it directly), which will change the drift func-
tion f , and allow for inter-individual variability.

� The (ϕi) are supposed to be sampled from a distribution defined by a vec-
tor θ ∈ Θ, which is called the population parameter; it defines the general
trends of the population, and correlations between individual parameters.
When studying mixed effects models, the objective often is to estimate θ,
and possibly later estimate the parameters ϕi by a Maximum a Posteriori
method (a Bayesian estimation, basically).

� Often, we take the distribution Π to be normal or log-normal: in that
case, we may write θ as (ϕpop,Ω, σ

2) and ϕ ∼ N (ϕpop,Ω) or log(ϕ) ∼
N (ϕpop,Ω). We will suppose normality of the individual parameters in
the rest of this report; the methods here presented are easily generalizable
to more general distributions (from exponential families, as we will see in
part II-5).

� We can also consider the case where we only have a partially observed
process: meaning that we have yi,j = h(Xti,j )+ϵi,j , where h is a function.
We often choose h to be a logarithm (so we get log-normal residuals), or
a projection into a lower dimensional space. In what follows, we will not
consider X to be partially observed.

2 SDE based mixed-effects models

Sometimes, the underlying process we wish to study may be too complex to be
modelled as an ODE solution, or may be intrinsically stochastic: the position
of a physical molecule, or a biological/physiological characteristic may come to
mind.

In this case, a generalization of the classical non-linear mixed-effects model
is in order: the main difference being the addition of a diffusion term to the
definition of the underlying process, which becomes stochastic:

dXt = f(t,Xt, ϕi) dt+ γ(t,Xt) dWt (1.5)

where W is a brownian process.

In what follows, we will consider a constant diffusion term, with γ(t,Xt) = γ .
The methods that we will present in this report are easily generalizable to any
diffusion term (for γ(t,Xt) = γXt , it suffices to consider log(Xt)), but we will
make this constance assumption to simplify notation and implementation.

This diffusion term γ adds a new layer of error to the model: while the mea-
surement errors ϵi,j only allow for independent residuals, using an SDE-based
model allows us to account for correlation between such residuals. This is why
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Figure 1.1: On the left, we have the best linear fit for an exponentially generated
data (xi = eti), and on the right, the plot of the residuals with relation to the
time. This inter-residual correlation cannot be explained by a classical linear
fit, and would thus indicate model misspecification

we will attempt, in this paper, to diagnose model misspecification through SDE
mixed effects modelling.

Indeed, inter-residual correlation often indicates model misspecification (in the
classical ODE model): suppose, for instance, that we try to fit an exponential
curve with a linear model (as shown in figure 1.1). Then, our estimation over-
fits at some periods in time, and underfits in others. We see a clear correlation
between residuals (and some Markov properties of them) , or, at the very least,
some time-dependence of the residuals.

More precisely, consider some data (yi,j)i,j observed from a process X, with
dXt = f(t,Xt, ϕ) dt.
Now, we try to model it through a wrong process dX̃ = f̃(t, X̃t, ϕ̃) dt. We have:

yi,j = Xti,j + ϵi,j

=

∫ ti,j

0

f(t,Xt, ϕ) dt+ ϵi,j

= X̃ti,j +

∫ ti,j

0

(
f(t,Xt, ϕ)− f̃(t, X̃t, ϕ̃)

)
dt+ ϵi,j

= X̃ti,j + g(ti,j) + ϵi,j

And so, we get residuals of the form ϵ̃i,j = g(ti,j) + ϵi,j .
Thus, we cannot guarantee iid residuals: we then turn to SDE-based error mod-
els to account for it.
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Of course, we could also use a time-dependent or state-dependent ϵi,j : how-
ever, we would need to know in advance the profile of the function g. Moreover,
seeing as the measurements are usually taken with the same tools throughout an
experiment, it is not very realistic to model the measurement errors by a time-
varying function (although we could model it through an error proportional to
Xt ; but in that case, considering the logarithm the process makes such a term
vanish).

3 SDE based test for misspecfication diagnosis
in ODE models

We have seen that fits with correlated residuals are often indicative of struc-
tural misfit, and that an SDE model could model such a correlation. And so,
we present here a test for diagnosing whether a model is misspecified:

H0 : γ = 0 vs H1 : γ > 0

Let us explain this test a bit more:
Suppose you have some data y generated by an ODE mixed-effects model M1.
We model it through an SDE-based model M2 with the same variability and
structural model as M1 : if the structural function f is correctly specified, then
the estimate of γ should be close to 0, since
M1 = M2 ∩ {γ = 0}.

However, if f is misspecified, then, to account for residual correlation, we would
find a high estimate of γ.

Thus, in our diagnostic test, H0 is ”the model is correctly specified” , and
H1 is ”the model is misspecified”.

In order to be able to use this test, we need the distribution of the estimated
parameter γ̂ under the null hypothesis: this distribution, of course, depends
on what estimator is used. While we try to estimate it through likelihood
maximization, we will see in chapter 2 that there is no straightforward way of
computing it.
We have different algorithms and methods for approximating the MLE γ̂MLE ,
which thus have different distributions. Since we do not know beforehand which
distribution this estimate follows, we use a Monte-Carlo method to estimate it.
Here is a sketch of how the test is conducted on some data y :

1. We estimate the population parameters θ̂ODE of y under the assumption
H0 : γ = 0 ; that is, we estimate the population parameters using the
ODE mixed-effects model.
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Figure 1.2: A figure representing the MC method for testing fitness; figure taken
from a previous master’s internship at Potsdam University

2. We simulate y(1),y(2), ...,y(M) different datasets using the ODE mixed-
effects model, and θ̂ODE .

3. Using the SDE-based model, we estimate the diffusion terms γ̂(1), γ̂(2), ..., γ̂(M)

of the generated datasets.

4. We estimate γ̂ the diffusion term of y using the SDE-based model, adn
we calculate the empirical quantile of it in the set {γ̂(1), γ̂(2), ..., γ̂(M)}

5. If the quantile is above a certain threshold (which will be 0.95 in this
report) , then the model is deemed misspecified; else, we don’t reject the
null hypothesis.

Basically, we take our data, and calculate the ”total residual error” contained
in σ2 , using an ODE-based estimation. Then, using an SDE-based model, we
can distribute this error into two different categories: measurement error, and
stochastic error, each having distinct correlation and time-dependency proper-
ties.
We apply the same procedure to generated data, which have the same total
error, and we compare the percentages of error attributed to stochasticity, as
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Figure 1.3: Illustration of the effect of adding a new error accountability param-
eter ; a misspecified model will shift much of the ”total error” estimated through
an ODE model to the diffusion term γ2, as in the bottom ; while almost all of it
will be accounted by the measurement error σ2 for a correctly specified model.

opposed to measurement error.
And thus, this test has the advantage of not needing comparison between the
data’s ”total error” with the one from other experiments, or with expected val-
ues from the measurement tools used. The model fitness can be tested in a
vacuum, without the use of prior data and textbook reference values (for the
measurement error σ, for instance).
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Chapter 2

Parameter estimation in
SDE mixed-effects models

In order to apply the test to our data, we must first be able to estimate the
population parameters in an SDE/ODE mixed-effects model. This chapter will
focus on methods and algorithms to efficiently estimate them.

4 Challenges

Usually, when we wish to esimate a parameter in any statistical model, the Max-
imum Likelihood estimator is favoured: it has several useful properties, such as
consistency, asymptotic normality, and it reaches asymptotically the Cramer-
Rao bound.

However, sometimes, we do not have direct access to the likelihood of our model:
it is the case in our model.
An SDE-based mixed effects model likelihood cannot be written in closed form,
as it has two different intractabilities:

Latent Variables

This intractability is common to all types of mixed-effects models: the presence
of the individual parameters (ϕi)i∈J1;IK do not allow for direct calculation of the
likelihood. Indeed, since we can not measure the variables ϕi (they are latent),
the likelihood can only be written as:

pθ(y) =

I∏
i=1

pθ(yi) (2.1)

=

I∏
i=1

∫
Rp

pθ(yi | ϕi)Π(ϕi; θ) dϕi (2.2)
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The likelihood is thus not in closed form, as the integrals involved are very
usually not analytically calculable.
To circumvent this problem, two main algorithms can be used: EM, and FOCE.

The EM (expectation-maximization) algorithm is the most widespread, and
has several variations, like the SAEM algorithm, which is the one we will use in
our report. We will present them in section 5 in more detail.
The FOCE (first-order conditional estimation) algorithm, also called Laplace’s
method, relies on a second-order expansion of the complete log-likelihood func-
tion li : ϕ→ log(pθ(yi, ϕ)) around its maximum ϕ̂i, yielding:∫

Rp

pθ(yi | ϕi)Π(ϕi; θ) dϕi =

∫
Rp

eli(ϕi) dϕi (2.3)

≈
∫
Rp

eli(ϕ̂i)+
1
2∆li(ϕ̂i)·(ϕi−ϕ̂i)

2

(2.4)

= eli(ϕ̂i)

√
2π

∆li(ϕ̂i)
(2.5)

This method is further explained by Christoffer W. Tornøe et. al [1], but it will
not be our focus.

These two algorithms are very different, conceptually, and so have different
pros and cons:
As we will see in section 5, SAEM is an iterative and stochastic algorithm, whose
convergence will greatly depend on different choices of parameters (such as num-
ber of iterations, convergence criteria, proposal distributions...), while FOCE is
less complicated to implement. Moreover, results stemming from FOCE can be
better replicated.
However, SAEM is very good at avoiding local maxima, because of its stochas-
tic nature, and works better when the initial conditions given are far from the
MLE (since FOCE is based on a Taylor expansion around it). Since it is very
hard to visually have an idea of the value of γ̂MLE , SAEM could work better
for SDE-based models.
We have made the choice in this paper to use the SAEM algorithm.

Intractable trajectories

Almost all SDEs do not possess closed-form trajectories, and the randomness of
them adds another layer of intractability to the likelihood function: we cannot
write pθ(yi | ϕi) in closed form.
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We can, however, use the Markov property of a classic SDE solution to write:

pθ(yi | ϕi) = pθ(yi | ϕi, Xt1 , ..., XtJi
)pθ(Xti,1 , ..., Xti,Ji

| ϕi, )

=

Ji∏
j=1

pσ(yi,j | Xti,j ) ·
Ji−1∏
j=1

pγ(Xti,j+1
| ϕi, Xti,j ) · pθ(Xti,1 | ϕi)

Usually, the value of Xt,1 is either considered to be known in advance, or is
a parameter of the statistical problem.

We know how to calculate the first product term explicitly (it is just a normal
distribution, or a log-normal distribution). The key to correctly approximate
the complete log-likelihood for an SDE relies then on correctly approximating
the term pγ(Xti,j+1 | ϕi, Xti,j ), which does not have closed form.

We have found two different methods to approximate this conditional likeli-
hood:

� The Kalman filter method is very widespread in many different fields,
which relies on the assumption that Xti,j+1

follows a Gaussian distribution
conditionally to ϕ and Xti,j . It was used when coupled with the SAEM
algorithm by Marc Lavielle and Maud Delattre [2] ; we will explain it in
further detail in section 7.

� Another method was to consider a slightly different model, which approx-
imates the SDE trajectories with an Euler-Maruyama scheme, presented
by Donnet, S. and Samson, A [3]: we will also explain this method in
further detail in section 6.

We will see that (in theory), these methods also have different pros and
cons:
The Euler-Maruyama scheme is computationally expensive, and the use of a
huge amount of latent variables make it very hard to implement; however, it
should also work better in sparse data, when compared to a Kalman filter, seeing
as it relies on data ”enrichment”, and an Extended Kalman filter uses lineariza-
tion between data points.

5 SAEM algorithm

EM algorithm

The EM algorithm is a very widespread and well known method of dealing with
latent variables (i.e variables that cannot be directly measured, but only inferred
from some other variable) in statistical problems.
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It is an iterative algorithm to find the maximum of the (incomplete) likelihood of
a model containing hidden variables. EM stands for expectation-maximization,
which are the two main steps of this algorithm.

Suppose the value of θ(k) at step k is known. Then, we follow the following
procedure:

� Expectation step (E) : We calculate

Q(θ | θ(k)) = Eϕ∼Π(·;θ(k))[log pθ(y, ϕ)] (2.6)

the expectation of the complete log-likelihood, conditionally on the distri-
bution defined by the previous step’s population parameter.

� Maximization step (M) : We update θ as

θ(k+1) = argmax
θ

Q(θ | θ(k))

It has been shown [4], [5] in many different settings, and under very relaxed
assumptions, that the EM algorithm converges to a local maximum of the like-
lihood.

However, the implementation of the EM algorithm requires for us to be able
to calculate the function Q(θ | θ′), which is intractable in most cases. This is
why we must use an alternate version of the EM algorithm, called SAEM.

SAEM algorithm

The SAEM (stochastic approximation expectation-maximization) algorithm uses
a Monte-Carlo method of estimating the needed expectation.

At step k, we generate M(k) realizations ϕ1, ..., ϕM(k) of the individual pa-
rameter under the complete distribution pθ(y, ϕ) . Then, we define recursively

Q̂k(θ) = Q̂k−1(θ) + αk(
1

M(k)

M(k)∑
j=1

logL(y, ϕj ; θ)− Q̂k−1(θ))

with

� Q̂0(θ) =
1

m(0)

∑M(0)
j=1 log pθ(y, ϕ

j)

� (αk)k≥1 is a non-increasing positive sequence such that α1 = 1 ,
∑
αk = ∞

and
∑
α2
k <∞.

First, notice that in the case αk = 1, we estimate the expectation using a simple
Monte-Carlo method (which is called MCEM, Monte Carlo EM).
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More generally, we have that Q̂k(θ) is a convex combination of a ”memory term”

Q̂k−1(θ) and a stochastic term 1
m(k)

∑m(k)
j=1 log pθ(y, ϕ

(m)), which is a moments

estimation of the expectation.
The advantage of SAEM is that we are able to balance the stochastic and mem-
ory terms; the memory term helps with the convergence of the sequence, while
the stochastic term may allow us to avoid local minima/maxima (or saddle
points). This is why, usually, at the beginning of the algorithm (ie for small k),
we set αk close to 1, and for k large, we get closer and closer to 0 (the usual
choice is αk ∼ 1

k ).
Indeed, at the start of the algortihm, we allow ourselves a very large window to
move; the algorithm relies more on randomness/”stochasticness”, thus, θk will
fluctuate more. This reduces the risk of getting stuck in a non-global minimum
or a saddle point. Then, to have convergence, we add the memory term, which
will give some Cauchy properties to the sequence.

Convergence of the SAEM algorithm relies on the Robbins-Monro theorem for
convergence of stochastic procedures, studied by Kushner and Clark (1978) [6].
Under some quite broad assumptions, Bernard Delyon, Marc Lavielle and Eric
Moulines [5] proved the convergence of θ(k) to a local maximum of the likelihood.

It is very hard to directly implement the SAEM algorithm directly, however:
optimizing a function which calls previous ones recursively has an extreme com-
putational cost, especially if we have to go through tens or hundreds of steps.
A solution to bypass this problem is to use minimal sufficient statistics of the
complete model: if there are ψ, ν functions of θ and S a function of y and ϕ ,
such that

log
(
pθ(y, ϕ)

)
= ψ(θ) + S(y, ϕ) · ν(θ) (2.7)

(i.e pθ(y, ϕ) belongs to the exponential family, and verifies the conditions of
the Fisher–Neyman factorization theorem), then updating the sufficient statistic
S will give us access to all the needed information about the estimation through
each step, without having to compute the function recursively.
More specifically, if we set s0 = 0, and update the sufficient statistic as such:

sk+1 = sk + αk(S(y, ϕ)− sk) (2.8)

then we can easily prove recursively that

Qk(θ) = ψ(θ) + sk · ν(θ) (2.9)

and we only need to know the sufficient parametric statistic sk to optimize Qk.

Metropolis-Hastings (within-Gibbs) sampler

A crucial step of the SAEM algorithm is the sampling of the individual parame-
ters ϕ under the complete probability distribution. Seeing as it is hard to sample
directly from this intractable and multidimensional probability distribution, we
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must use a Metropolis-Hastings type algorithm.

A Metropolis-Hastings (MH) algorithm creates an ergodic discrete-time Markov
chain whose stationary distribution is π , the one from which we want to sample:
thus, iteratively updating values according to this chain’s transition matrix will
yield an approximation of a sample under π.
More specifically, supposing that we have xr at step r:

1. Propose a candidate value xc. It is a sample from a simpler distribution
which will depend on xr, called g(· | xr) the proposal distribution.

2. Calculate the acceptance ratio

A(xc, xr) = min

(
1,
π(xc)g(xr | xc)
π(xr)g(xc | xr)

)
(2.10)

3. Generate u ∼ U([0, 1]) . If u < A, we accept the proposed state, and
xr+1 = xc. Else, we reject the candidate and keep xr+1 = xr.

Thus, we have built a Markov chain, with transition kernel

K(x′ | x) = g(x′ | x) ·A(x′, x) (2.11)

Now, by noticing that A(x, x′) = A(x′, x)−1 , then either A(x, x′) = 1 , or
A(x′, x) = 1. And so, supposing that A(x, x′) = 1, we find that the detailed
balance property is verified for the distribution π, since

K(x′ | x)π(x) = g(x | x′)π(x′) = K(x | x′)π(x′) (2.12)

Thus, if the chain is ergodic , it has a unique stationary distribution which will
be π.
Namely, if the proposal distribution g has the same support as the target π ,
then the chain is clearly irreducible (since we can go from any state to any other
in just one step with positive probability ).
If we have a probability > 0 of getting a rejection (some values will yield an ac-
ceptance ratio < 1), the chain stays in the same state with positive probability;
thus, it is also aperiodic.
Under these two assumptions, the chain is irreducible and aperiodic, and so is
ergodic. These two theoretical conditions ensure the convergence of the distri-
bution of the chain generated by M-H towards the stationary distribution π.

An MH algorithm has some parameters that are very important for the
correct convergence of the chain that have to be chosen. Namely, we have an
extremely vast choice of possible proposal distributions, and choosing one may
be quite a challenge, especially when the sample space is very high-dimensional
(see section 6, in the Euler-Maruyama case).
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In order to apply the MH algorithm in our case, we need to be able to esti-
mate efficiently (up to a normalizing factor) the complete likelihood pθ(y, ϕ), so
we may compute the acceptance ratio A. Being able to estimate this intractable
function with a Kalman filter or an Euler scheme is thus key to the use of SAEM.

6 Euler-Maruyama method

Theoretical overview

To estimate pθ(y, ϕ) , Donnet S. and Samson A. [3] consider a slightly different
enriched model, by introducing a new set of latent variables w.
Basically, wi will be the value of the stochastic process X(i) at intermediate
time steps t1 = τ1 < ... < τNi = tJi , verifying that for all j, there is an integer
nj such that tj = τnj

.
Then, we will approximate the processX with a classic Euler-Maruyama scheme
between each τn, yielding:

hn = τn − τn−1 (2.13)

wi,n = wi,n−1 + hnf(τn−1, wn−1, ϕi) + γ
√
hnξi,n (2.14)

ξn ∼ N (0, 1) (2.15)

yi,j = wi,nj
+ ϵi,j (2.16)

ϵi,j ∼ N (0, σ2) (2.17)

This new model will depend on the Euler time-steps h = (h1, ..., hn). We
will consider that all hi’s are equal to h > 0 for notation simplicity, and denote
this new approximate model Mh.

Now, by adding w as a latent variable, we are able to write the complete likeli-
hood in closed form:

pθ(y, ϕ, w) =

I∏
i=1

pθ(yi, ϕi, wi)

=

I∏
i=1

pθ(yi | ϕi, wi)pθ(wi | ϕi)pθ(ϕi)

=

I∏
i=1

(
pσ2(yi | wi)

N∏
n=1

pγ2(wi,n | wi,n−1, ϕi)Π(ϕi; θ)

)
and

pσ2(yi | wi) =
Ji∏
j=1

pσ2(yi,j | wi,nj )
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where we used the independence between subjects, and the Markov property
for a SDE solution.

All terms in the product may be written in closed form:

� yi,j | wi,nj
∼ N (wi,nj

, σ2)

� wi,n |
(
wi,n−1, ϕi

)
∼ N (wi,n−1 + hf(τn−1, wn−1, ϕi), hγ

2)

� ϕi ∼ N (ϕpop,Ω) (or possibly some other distribution)

Moreover, we may see that the complete model belongs to an exponential family
(supposing the parameter ϕ to be in R) , since:

− log
(
pθ(y, ϕ, w)

)
=

I∑
i=1

Ji∑
j=1

(yi,j − wi,nj
)2

2σ2

+

I∑
i=1

N∑
n=1

(wi,n − wi,n−1 − hf(τn−1, wi,n−1, ϕi))
2

2γ2

+
1

2

I∑
i=1

(ϕi − ϕpop)
TΩ−1(ϕi − ϕpop)

+ IJ log(
√
2πσ2) + IN log(

√
2πγ2) + I log(

√
2π detΩ)

And so, setting ψ(θ)− 1
2

I∑
i=1

ϕTpopΩ
−1ϕpop as the last line of the equation , with

a sufficient statistics

Sh(y, ϕ, w) =



1
M(k)

M(k)∑
m=1

I∑
i=1

Ji∑
j=1

(yi,j − wi,nj
)2

1
M(k)

M(k)∑
m=1

I∑
i=1

N∑
n=1

(wi,n − wi,n−1 − hf(τn−1, wi,n−1, ϕi))
2

1
M(k)

M(k)∑
m=1

I∑
i=1

ϕiϕ
T
i

1
M(k)

M(k)∑
m=1

I∑
i=1

ϕi


and

ν(θ) =


1/(2σ2)
1/(2γ2)
Ω−1/2
Ω−1ϕpop


we find the required exponential property.

Moreover, the optimization of Qk(θ) in the M-step of SAEM defined in (2.9)
actually has closed form, which greatly reduces computation time. Simply by
differentiating Qk along each coordinate of θ, we get that
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σ(k) =
(sk)1
IJ

(2.18)

γ(k) =
(sk)2
IN

(2.19)

ϕ(k)pop =
(sk)4
I

(2.20)

Ω(k) =
(sk)3
I

− (sk)
2
4

I2
(2.21)

It is important to notice, however, that this version of SAEM converges to
a local maximum of the likelihood of the approximate model Mh , which we
name θ̂h.
Thankfully, it has been proven [3] that there exists a constant C > 0 independent
of θ such that

|| θ̂MLE − θ̂h ||∞≤ Ch (2.22)

And so, while the estimator θ̂h is not actually consistent, we know that it can
be arbitrarily close to a consistent estimator.

Proposal distribution

The main problem with this Euler scheme method is the introduction of a huge
dimensional latent space (the dimension of w can be in the order of thousands)
: it is victim of the curse of dimensionality.
As such, the MH algorithm encounters some difficulties: namely, it cannot ex-
plore the latent space in a realistic amount of runs. While theoretically the
created Markov chain is ergodic, in practice, the amount of steps needed to go
from some state to another can be extremely high.

And thus, the proposal distribution actually has a great impact on the con-
vergence of the algorithm, even if it theoretically verifies the required assump-
tions: it needs to explore efficiently the latent space, and more specifically, the
w space. The candidates wc must be likely trajectories of the stochastic process.

For this, we use a Metropolis-Hastings-within-Gibbs sampler:

1. we propose a candidate of the individual parameter ϕc, using either ϕc ∼
N (ϕpop,Ω) or ϕc ∼ N (ϕ, δ2) ; the second option, which consists of a
random walk MH, is the one we opt for; δ is a parameter that we have to
tune.

2. we then propose wc conditionally on the candidate ϕc , following
g(wc | w, ϕ, ϕc)
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There are quite a few possibilities for the distribution g(wc | w, ϕ, ϕc) ; let
us consider, for instance, a data-independent Euler scheme: :

wci,0 = yi,0 + ϵi,0

wci,n = wci,n−1 + hnf(τn−1, w
c
i,n−1, ϕ

c
i ) + γ

√
hnξi,n

ϵi,0 ∼ N (0, σ2)

ξi,n ∼ N (0, 1)

In the case αk = 1 in (2.8) , we get that

γ̂(k+1) =
1

INM(k)

M(k)∑
m=1

I∑
i=1

N∑
n=1

(wi,n − wi,n−1 − hf(τn−1, wi,n−1, ϕi))
2

which is proportional to a variable of law 1
INM(k)χ

2(INM(k)); thus

V[γ̂(k+1)] ∝ 1

INM(k)
(2.23)

Seeing as N is huge, of order 104 or more, this indicates that the γ parameter
will vary very slowly between iterations. This can be seen in the plot (2.1) ,
where we ran the algorithm with this proposal distribution on data generated
by the model presented in 3.1 , and 10 individuals : while all other parameters
are close to convergence in less than 50 iterations, the γ parameter takes around
600 iterations to be ready for the phase αk = 1/k

In order to circumvent this problem, we thought of another proposal distri-
bution:

� wci,nj
= yi,j + ϵi,j

� wci,n = wci,n−1 + hnf(τn−1, w
c
i,n−1, ϕ

c
i ) + γ

√
hnξi,n if n /∈ {nj}j

This way, the error of the sampled trajectory would be transferred from σ
to γ ; the variability of γ would be much higher from iteration to iteration. We
now have, however, V[σ̂(k+1)] ∝ 1

IJM(k) , but since J << N , the variability of

σ is not too compromised.

A big issue with this proposal, however, is that such a trajectory is highly un-
likely (as the stochastic will often be concentrated in a few very specific points),
and γ will be grossly overestimated as a result.
An option would be then to consider a convex combination of both proposals:

wci,n = βw
(1)
i,n + (1− β)w

(2)
i,n (2.24)

Choosing β, however, is not simple, and we will see that varying the value of β
will change the estimates of σ and γ that we get (but not the estimates of ϕpop

19



Figure 2.1: Plot of the variation of the estimates wrt the iteration number of
SAEM. The red horizontal lines represent the true value of the parameters.
We first distinguish a first phase, where αk = 1 and the estimates fluctuate
heavily (as the expectation in the E step is approximated by a purely stochastic,
Monte-Carlo approach). Then, we have a second phase, where we set αk = 1/k
, and the estimates properly stabilize and converge.

and Ω ), which, unfortunately, is precisely the values that we need to estimate
correctly to run the structural misspecification test.

It is worth noting, however, that these proposal distributions verify the re-
quired theoretical properties required for convergence of Metropolis-Hastings
presented in section 5: since the support of a normal distribution is R, then w
can take any value in RIN . Moreover, if we write down the acceptance ratio
A(w,wc) , we see that it converges to 0 when || wc ||∞→ ∞ ; meaning that
there will be a region of RNI attainable with positive probability by w, in which
A(w,wc) < 1/2 ; we conclude that we stay in the same step after an iteration
with strictly positive probability. The chain is thus ergodic, and satisfies the
required properties for MH convergence.

7 The Kalman filter method

Kalman filtering is a very widespread method for estimating parameters in SDEs
; the R package, ctsmr [7] , uses this algorithm for singular-individual (no latent
variables) cases. We included this package in the coding of our SAEM-Kalman
algorithm.

The coupling of SAEM with a Kalman filter has been studied by M Delat-
tre and M Lavielle [2] ; in that paper, however, it was one of the individual
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parameters which was an SDE solution, instead of the process per se.

We have seen that, using the Markov property of SDE solutions, we may write

pθ(yi, ϕi) = pθ(yi,0)

J∏
j=1

pθ(yi,j | yi,j−1, ϕi)Π(ϕi; θ)

The Kalman filter, then, supposes normality of this likelihood to estimate this
value: yi,j | yi,j−1, ϕi ∼ N (ŷi,j|j−1, Ri,j|j−1).
With this approximation, we find that

pθ(yi, ϕi) ∝ pθ(yi,0)

J∏
j=1

1√
det(Ri,j|j−1)

e
−∆i,jR

−1
i,j|j−1

∆T
i,j/2Π(ϕi; θ)

where ∆i,j = yi,j − ŷi,j|j−1.
Thus, to estimate the complete likelihood, it suffices to have adequate values
for the sequences (Ri,j|j−1)j and (ŷi,j|j−1)j . The idea will be to estimate this
sequence recursively.

First, let us define the following:

x̂t|j = E[Xt | y0, . . . , yj ]
x̂l|j = E[Xtl | y0, . . . , yj ]
Pt|j = V[Xt | y0, . . . , yj ]
Pl|j = V[Xtl | y0, . . . , yj ]
Rl|j = V[yl | y0, . . . , yj ]

We have the following relationships:

ŷj|j−1 = x̂j|j−1 (2.25)

Rj|j−1 = Pj|j−1 + σ2 (2.26)

x̂j|j = x̂j|j−1 + Pj|j−1R
−1
j|j−1∆j (2.27)

Pj|j = Pj|j−1 − PTj|j−1R
(−1)
j|j−1Pj|j−1 (2.28)

Equations (2.25) and (2.26) come directly from yi,j = xti,j + ϵi,j . For (2.27)
and (2.28), we write

x̂j|j = E[Xtj | y0, . . . , yj ]

= E
[
E[Xtj | yj ] | y0, . . . , yj−1

]
Conditionally to y0, . . . , yj−1 , we have that Xtj ∼ N (x̂j|j−1, Pj|j−1) and yj ∼
N (ŷj|j−1, Rj|j−1) .
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Moreover, covy0,...,yj−1(Xtj , yj) = V[Xtj | y0, . . . , yj−1] = Pj|j−1, since the ϵi,j
are independent of the process. Thus,

Xtj | yj ∼ N (x̂j|j−1 + Pj|j−1R
−1
j|j−1∆j , Pj|j−1 − PTj|j−1R

−1
j|j−1Pj|j−1)

which directly yields the relations (2.27) and (2.28).

We know how to calculate Rj|j and ŷj|j from Rj|j−1 and ŷj|j−1 ; if we manage
to give an expression of Rj+1|j and ŷj+1|j from these, than we will be able to
calculate the target sequence recursively.

Linear case First, suppose the SDE equation to be linear:

dXt = (AϕXt + bϕ(t)) dt+ γ dWt (2.29)

Then, we have, by switching expectation and differentiation:

dx̂t|j = E
[
dXt | y0, . . . , yj

]
= E

[
(AϕXt + bϕ(t)) dt+ γ dWt | y0, . . . , yj

]
= (Aϕx̂t|j + bϕ(t)) dt

Similarly, we find that, by using Itô’s lemma,

()

By solving these simple ODEs, we may then calculate Pj+1|j and x̂j+1|j ,
which will allow us to compute the needed likelihood.

Non-linear case In the more general case, we linearize the drift function f
between the time points tj ; if we set f̃(t) = f(t, x̂t|j , ϕi), then

dXt ≈ f̃(t) + ∂xf(t, x̂t|j , ϕi)

(
Xt − x̂t|j

)
dt+ γ dWt

And so, using the same method as previously, we get

dx̂t|j = f̃(t) dt

dPt|j = 2∂xf(t, x̂t|j , ϕi)Pt|j + γ2

These are both classical 1D ODEs, and can be solved by several methods, in-
cluding implicit/explicit Euler schemes, or a Runge-Kutta algorithm.
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Chapter 3

Running the algorithms

8 Implementation

In order to realize the misspecification diagnosis test, we first searched for pack-
ages or softwares in the literature that could realize parameter estimation in
SDE based mixed effects models.
We found an R package, called PSM [10], but it was not functional: the package
was removed from the CRAN repository, and the source doe ran into a core
error that we could not repair (as it was coded in FORTRAN). So, we had to
code the estimator from scratch, in R, with the help of the software Monolix
and the package ctsmr [7].

This proved to be very challenging and time consuming: the SAEM algorithm
has many different parameters to be tuned to ensure good convergence. For
instance:

� We must set the condition upon which we change from the fluctuating
regime (αk = 1) to the converging regime (αk = 1/k). We chose to
use the following condition: if the empirical likelihood varies less than a
certain ϵ in Nvar iterations, then we change regimes. (we still have then
2 parameters to tune: ϵ and Nvar)

� We must choose the number of iterations of SAEM in the converging
regime.

� We must choose the sequence M(k)

� In the Euler case, we must choose h the step of the latent variable scheme.

� In the MH sampler, we always sample ϕc ∼ N (ϕ, δ2) as a proposal distri-
bution. δ is a parameter to be tuned: if it is too small, then we will not
explore correctly the latent space, and converge will be very slow. If it is
too high, however, the acceptance rate (i.e the amount of proposals that
are accepted) will be too low, and the algorithm will converge poorly.
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Moreover, consecutive runs of the algorithms can be very computationally ex-
pensive, as one SAEM run can take from 20 to 40 minutes, depending on the
number of iterations and the method used. This means that one misspecifica-
tion test could take a day to run, if we estimate the test distribution with 40-50
samples.
Not only does this mean that the tests take very long to run, but it also made
testing and repairing errors in the code quite a long process.

9 Algorithms convergence

Euler-SAEM

Using the non-saturable model described in section 3.8, we ran the Euler-SAEM
algorithm on data generated using the set of parameters ϕ∗pop = 1 , Ω∗ = 0.01 ,

γ∗
2

= 0.01, σ∗2

= 0.05 , I = 10 , and 11 measurements in the first cycle.
The initial values given were ϕpop0 = 1.5 , Ω0 = 0.05 , γ20 = 10−5 and σ2

0 = 0.01

The figure (2.2) shows that, while the structural parameters ϕpop and Ω con-
verge consistently, and quite fast (∼ 30 iterations) , the error parameters do not
converge to the same values depending on the value of β ; if β increases, then
so does γ̂, while σ̂ decreases, as is shown in figure (2.3).
Here, β indicates the convexity factor in equation (2.24), for the proposal dis-
tribution of the MH algorithm.

Figure 3.1: Evolution of the different parameters at each SAEM interation:
redder lines represent lower βs , while yellower lines represent a higher β value,
which are in {0, 1/10, . . . , 9/10, 1}.
The blue line represents the true value of the parameter.
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Figure 3.2: Plot of log(γ̂) wrt σ̂ ; each point represents the estimations stemming
from SAEM-Euler with a specific β ∈ {0, 1/20, 2/20, . . . , 19/20, 1} . The value
of β used is decreasing from left to right.
We have used 2 different sets of parameters for the two different colored dots
(the red represents γ∗

2

= 0.01 and σ∗2

= 0.05, and the black γ∗
2

= 0.01 and

σ∗2

= 0.1)

Since different β values yield the same (and correct) values of ϕpop and Ω,
but different error parameter estimates, we may believe that the fit is similar
along a certain direction of the plane (σ2, γ2) . To verify this, we plot in figure
(2.3) a log-likelihood profile, that is, a 3D plot of the likelihood, when ϕ∗pop and
Ω∗ are fixed to be the parameters with which the data was generated.
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Figure 3.4: Contour plot of the likelihood

Figure 3.3: 3D log-likelihood profile, for ϕpop and Ω fixed, and varying γ and σ

We see that there is a line on which the likelihood is very flat (it is not
constant, however), and we verified that the values on figure (2.2) appear on
this flat 1D surface.
A hypothesis for the variability of the parameter error estimates would thus be
that they get ”stuck” in this flat surface, and that the proposal distributions do
not allow for a proper exploration of the latent space, and thus, of this flat line.
And so, there is an α that would yield a correct estimate, but it is impossible
to know (or even estimate) its value in a real-life scenario.
Maybe running Euler-SAEM many times, with different values of β , and then
choosing the estimate with higher empirical likelihood could work, but such a
method would be very computationally expensive.
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Kalman-SAEM

In order to quantify the convergence of the SAEM-Kalman algorithm, we sim-
ulate data using the model in chapter 4, and a population parameter θ∗ ; then,
we run the algorithm on this data to estimate θ̂k. After doing this M times, we
calculate the values

RMSE =

√√√√ 1

M

M∑
k=1

|| θ̂k − θ∗ ||2
|| θ∗ ||2

bias =
1

M

M∑
k=1

θ̂k − θ∗

θ∗

A low relative mean square error (RMSE) and bias indicate good convergence
properties of the algorithm.
Here, we will run M = 40 different simulations and estimations.
We will use 2 sets of parameters for this: the design 1 is ϕ∗pop = 1 , Ω∗ = 0.01
, γ∗ = 0.3 , σ2 = 0.1 ; design 2 is design 1, but with γ∗ = 0 (to see how the
algorithm performs in the context of our Monte-Carlo test).

Parameter ϕpop Ω γ σ
RMSE 3.2 % 27.5 % 22.2 % 16 %
bias 0.06 % - 6.1 % 5.3 % - 3.9 %

Table 3.1: Kalman Filter Algorithm Convergence for design 1

We may compare these results with the ones obtained in [3] ; we find slightly
smaller RMSE’s and biases for all parameters, which could also be indicative of
the simpler model that we chose, with only one individual parameter.
We see that we have an extremely good convergence of ϕpop (RMSE < 5%), and
satisfactory convergence of the other population parameter (RMSE < 30%).
However, our algorithm underestimates σ to overestimate γ, as seen in the sign
of the bias for these parameters. This bias is quite small (< 10%) , so we still
consider the convergence to be satisfactory, but we see here again a challenge
in separating the error stemming from iid measurement errors σ, from inherent
process stochasticity γ (refer to the flat surface seen in the Euler-SAEM con-
vergence diagnosis).

We see, all in all, that for the simple model we will use, the convergence is
satisfactory, and will allow us to run the structural misfit test in section 11.
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Chapter 4

Simulation study

10 Compartmental Models in pharmacology

The methods studied in this report all had pharmacology in mind as an ap-
plication; pharmacology is the study of the action of drugs and medication in
organisms, namely the human body.

The individuals in our population are patients, to whom we give a certain dose
of a drug; then, after a fixed amount of time, we re-administer the same dose
to each patient.
The measured process, Ct , will be the drug concentration in the patient’s blood.
Knowing, and being able to predict the variation of a drug’s concentration in
someone’s body allows for precision and individualised dosing, which allows for
optimization of drug effect, in tandem with harm reduction from secondary ef-
fects.
In certain specific cases, such as with chemotherapy, it is crucial not to give a
patient too high of a dose, at the risk of having him too immunosuppressed.
This drug dose optimization, as explained in Maier C et al [8] , is key to give a
patient the correct therapy.
It is clear to say that a structural misspecification in such a model could lead
to disastrous consequences.

A very widespread model for drug concentration in pharmacology is the com-
partment model.
The human body is modeled as a certain amount of compartments, each rep-
resenting an organ, or a part of the body: the blood, the liver, the lymphatic
system, the kidneys, the plasma, and so on. Each of these compartments rep-
resent an important function in the metabolization of the studied drug.
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Figure 4.1: Sketch of a one-compartment pharmacological model

10.1 The studied model

In our case, we will consider a model with only one compartment. We choose
this very simplified model for clarity, and for a faster implementation of the
SAEM algorithm that we coded.

Figure (3.1) shows how the model works: first, we administer a certain
amount D of the drug to the patient at times τ1, . . . , τncyc

∈ ∆, creating then
ncyc sequential cycles; this might be a bolus/IV infusion (which is almost in-
stantaneous) , or an oral administration (which will make C increase gradually,
as opposed to the almost Dirac-like peak gotten from IV infusion).
Then, the drug is excreted, with a clearance parameter ϕ. The more of it you
have in your system, the more the body will excrete it; and so, we consider a
proportional clearance of it. In total, we get the model equation

dCt = −ϕCt dt+
D

V
δ∆ dt+ γ dWt (4.1)

where k and V are individual parameters of the model, and K is a constant.
In what follows, we will however consider V to be a known constant; we have
checked that the test power varies very little when we fix V , and we will use
the simplified model for simplicity of implementation.

Another clearance model is possible, however. Usually, the body has a limit
as to how much of the drug can be flushed out of its system; this would suggest
a saturable clearance, and we would change equation (3.1) to

dCsatt = −ϕ Csatt

K + Csatt

dt+
D

V
δ∆ dt+ γ dWt (4.2)

Notice that we have

dCsatt ≈ dCt if C
sat
t << K

dCsatt ≈ −ϕ dt+ D

V
δ∆ dt+ γ dWt if C

sat
t >> K
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Figure 4.2: Two plots, for different K values, of Csatt and its (ODE) linear
clearance fit

The non-saturable model is used in practice, with real data, as, for instance,
to model absorption and clearance of the drug warfarin [11], a drug which pre-
vents blood clots, and the saturable model has been used to model the absorp-
tion of phenytoin [12], an anti-epileptic medication.

A saturable model can be very similar to a non-saturable one, and as shown
in figure (3.2) , they can be very hard to distinguish, graphically and numerically.
Being able to distinguish between the two can as such be quite challenging, even
if done heuristically.

We choose C0 = 5 , DV = 5 , ∆ = {1, 2, . . . , 16} , ncyc = 16, and K will vary
according to the experiments that we do.
The measurements are taken n>2 times, uniformly, in the first cycle, and then
we take measurements right before and right after each new dose.

10.2 Model distinction

We may wonder how different the two structural models are, in a more quan-
titative manner. For this, we will compare the trajectory means of the SDE
solutions, that is, the solutions of the ODEs generated by the different drift
functions.

Let us first consider the case where ncyc = 1 (that is, with only one drug
administration).
We write Xϕ,k(t) = E[Csatt ] the trajectory average of a saturable clearance pro-
cess, and Yψ(t) the same for a non-saturable clearance.
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The following theorem will give inequalities involving the distance betweenXϕ,K

and its best non-saturable fit.

Theorem 1. For all ϕ , T , there are constants C1 > 0, C2 > 0, C3 > 0, such
that for all t ∈ [0, T ] , all K > 0

min
ψ

| Xϕ,K(t)− Yψ(t) |≤
C1t

K2
(4.3)

min
ψ

| Xϕ,K(t)− Yψ(t) |≥ C2 − C3tK (4.4)

Proof. For inequality (4.3), we consider the process Yϕ/K , with initial value
X0; then, we have

d(Xϕ,K − Yϕ/K)

dt
(t) = − ϕ

K

(
Xϕ,K(t)−

Yϕ/K(t)

1 +Xϕ,K(t)/K

)
= − ϕ

K

(
Xϕ,K(t)− Yϕ/K(t)

)
+

ϕ

K2

Xϕ,K(t)2

1 +Xϕ,K(t)/K

≤ − ϕ

K

(
Yϕ/K(t)−Xϕ,K(t)

)
− ϕ

K2
X2

0

Where we used the positivity and monotonicity of X. Moreover,

d(Yϕ/K −Xϕ,K)

dt
(t) ≤ − ϕ

K
(Yϕ/K(t)−Xϕ,K(t))

Thus, using Gromwall’s lemma, we have

0 ≤ Xϕ,K(t)− Yϕ/K(t) ≤ X2
0

K
(1− e−

ϕ
K t) ≤ ϕX2

0

K2
t (4.5)

which yields inequality (4.3).
For (4.4), if we consider Z(t) = X0 − ϕt , then

0 ≤ (X ′
ϕ,K − Z ′)(t) =

ϕK

Xϕ,K(t) +K
≤ ϕ

Xϕ,K(T )
K

Then, supposing that X0 − ϕT > 0,

| Xϕ,K(t)− Z(t) |≤ ϕ

X0 − ϕT
Kt

Now, since Z is not in the closure of E− = {t → Ce−at, a > 0, C > 0}, then
d(Z, E−)∞ = C2 > 0, which yields (4.4) through a triangle inequality.
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Thanks to this theorem, we may consider that we have made a good model
choice for our test: now we know that, by increasing K, we may test the misfit
for a model arbitrarily close to the real one. And so, we can ”test the limits”
of our test.
We may also check that decreasing K will indeed increase the test power, to see
if the test efficiency is consistent with how different two models are, de facto.

11 Results and Discussion

Now that we have a model, and the necessary algorithm to estimate the target
parameters, we can run the structural misfit test on simulated data, in order to
estimate empirically the test power.

We generate data through a classic ODE Euler scheme, either using a saturable
or a non-saturable model, as per the models in 10.1. Then, we test for structural
misfit.

In all generated data, we kept
ϕpop

K as a constant, equal to 1.75, and Ω = 0.1.
We also considered V first to be a known constant with no inter-individual vari-
ability, equal for all individuals: another implementation and battery of tests
including V as an individual parameter showed us that the inclusion of volume
variability did not visibly influence the power of the test.

For our tests, we varied 3 different design parameters: K, n, σ and I:

� varying K, as shown 10.2, changes how similar the two opposing models
are, and allows us to see how distinct 2 models have to be to be separated
by our test.

� varying σ allows us to see to what extent noise can muddle the test results

� n is the number of measurements in the first cycle; varying it allows us to
see how well the test fares when the data is sparse.

� I will show us how increasing the population size (and thus, the amount
of data) will affect the test power

We ran the tests using both the Euler and the Kalman filter method, coupled
with SAEM. For the case I = 1, which was studied during a previous master’s
internship in Potsdam university, only the Kalman method was used, without
the need for an SAEM-type algorithm (since a population approach for 1 indi-
viduals does not make sense, and yields a non-identifiable problem).

For the Euler method, we had to choose a value of β for the proposal dis-
tribution, as per the problem that we raised in chapter 3.
We decided to fix a ”reference value” σref of σ (that we took to be σ∗), and
chose the β value for which we get σref as an estimate (basically, we ran SAEM
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Test power I = 1 I = 5 I = 10 I = 20
Design 1 K = 7, σ2 = 0.05 , n = 11 48 % 100 % 100 % 100 %
Design 2 K = 7, σ2 = 0.05 , n = 3 37 % 100 % 100 % 100 %
Design 3 K = 9, σ2 = 0.1 , n = 11 12 % 55 % 73 % 83 %
Design 4 K = 9, σ2 = 0.1 , n = 3 10 % 35 % 42 % 58 %
Design 5 K = 7, σ2 = 0.1 , n = 11 29 % 95 % 100 % 100 %
Design 6 K = 7, σ2 = 0.1 , n = 3 22 % 90 % 98 % 100 %

Table 4.1: Kalman Filter Method test powers

Test power I = 1 I = 10 I = 20
Design 1 K = 7, σ2 = 0.05 , n = 11 55 % 53 % 77 %
Design 2 K = 7, σ2 = 0.05 , n = 3 37 % 43 % 60 %
Design 3 K = 9, σ2 = 0.1 , n = 11 12 % 21 % 20 %
Design 4 K = 9, σ2 = 0.1 , n = 3 10 % 19 % 21 %

Table 4.2: Euler-Maruyama Method test powers

with ∼ 20 different β values, and realized a regression to estimate a β value to
be used).

The results are summarized in tables 4.1 and 4.2. The type I error ranges
between 3% and 8%.

The first thing that we notice, is that a Kalman Filter -based method out-
performs an Euler-Maruyama implementation in every considered design choice;
the estimated test power is much higher when using a Kalman filter.
We could attribute this to the fact that SAEM convergence with an Euler
method is shaky, as per chapter 3. However, we should also consider the fact
that the model design also favour a Kalman filter, theoretically: the drift func-
tion is linear between doses (i.e when the data is sparse); and when we find
non-linearities, the time points are very close (as the measurements are taken
just before and just after dosing). And so, the main downside of a Kalman filter,
which is the linearization of the drift between data points, is not very present
in our case study.
Though, seeing as this model design, dosing regimen and measurement times
are very commonplace in pharmacology, our choice of model is quite relevant,
and the use of a Kalman filter is to be considered. And so, our discussion will
mainly focus on the results yielded by a Kalman-SAEM coupling.
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� As expected with section 10.2, increasing K will decrease the test power.
Its efficacy is thus consistent with model similarity, and models more dis-
tant (in the ”L∞ norm for their respective processes sense) are easier to
distinguish using our Monte-Carlo test. The choice of K is very defining
of the test power: for 5 individuals, changing K from 7 to 9 in design 5
makes the test go from almost flawless to not very good (95 % → 55 %)

� Increasing the size of the dataset, either longitudinally (with n), or trough
population size (with I) also increases test power. This is a quite obvious
and expected result. What really is interesting, however, is the drastic
increase in test power when going from a single individual study (I = 1)
to a population setting: in design 3, we see an increase of almost 5 times
the power (12% → 55%) , and in design 2, an increase almost threefold
(37% → 100%) with only 5 individuals; in design 6, we go from a poor
test power (22 %) to a very good test efficiency (90 % power). The jump
from a single individual study to a population approach is very effective.

� In the master’s internship preceding this one [13], it was also found that
the test for a single individual was very numerically unstable; in our pop-
ulation approach, we did not find any divergence or numerical instability
when running our algorithm.

� We also find that increasing the noise level σ decreases test power, more
so when K is large then when it is small: the noise σ has to be of the order
of the distance between models to have a significant impact on the test
power. When K = 7, the power decrease of increasing σ2 from 0.05 to 0.1
is barely noticeable, with variations in power of ≤ 5% in the population
approach; whenK = 9, however, the drop in power is much larger: ≥ 20%.
Numerically, using R simulations and non-linear individual fits, we saw
that the L∞ distance between a saturable process with K = 9 and its
best non-saturable fit is of order 0.1.

All in all, we see that the test has very positive results, and that the misfit
diagnosis (and thus our method) works extremely well with our model. When
looking at figure 4.2, we see that distinguishing visually and graphically a sat-
urable model from a non-saturable one is nearly impossible when K becomes
large (∼ 9 or 7). However, we find extremely good results for K = 7, as with
just 5 individuals we get a perfect test power of 100 %; for K = 9, that is, with
extremely similar models, and only 20 individuals, we find very good results
with frequent measurements (84 %), and a decent test power with sparse data
(58 %).
The test seems to scale very well with the amount of patients considered, and
can confidently automate a diagnosis and selection of structural model that
would have otherwise been done manually and graphically.
However, the test (or at least our implementation of it) was very computation-
ally expensive, with a run time of sometimes more than one or two days, when
using only 20 individuals. When treating very rich and extensive data (with 100
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or 1000 individuals), our algorithm would simply take too long; a more efficient
implementation, or another method would be in order.

Moreover, we should attempt to run this test on more complex models, either
with more parameters and inter-parameter correlations, with more important
non-linearities, or with covariates. A good performance of our misfit test on
such a complex model could show definitively the usefulness and efficiency of it,
as we showed in our considered simple model.
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Chapter 5

Outlook

A mixed population model

In what precedes, we have always considered that either the whole population
is correctly specified, or everyone else is misspecified.

We could, however, consider the possibility of having a mixed population: some
individuals fit the model correctly, and some don’t.
Some extreme conditions can account for such a discrepancy: obesity, interfer-
ence with other treatments, very old/young age, and others. And so, being able
to diagnose that an individual is misspecified, and identify him in a population
can be crucial for treating him appropriately.
This task can be modelled in the following manner:

dX
(i)
t = f(t,Xt, ϕi) dt+ γi dWt (5.1)

yi,j = X
(i)
ti,j + ϵi,j (5.2)

ϵi,j ∼ N (0, σ2Id) iid (5.3)

ϕi ∼ Π( · ; θ) iid (5.4)

γi ∈ 1ci=0N (0, δ21) + 1ci=1N (γ, δ22) (5.5)

ci ∼ Be(πs) (5.6)

This model is very similar to the one considered previously, with a main
difference being the transformation of the diffusion term from a population
parameter to an individual parameter.
Each individual has a different diffusion term, and so, the test could be extended
to account for individuals separately within a population.
We have opted for a Gaussian mixture as a prior distribution for the diffusion
term, which is dependent on a newly added latent, ci : simply put, ci denotes
to which ”subpopulation” the individual i belongs: the correctly specified sub-
population, or the misspecified one. If ci = 1, then γi ∼ N (γ, δ22) indicates a
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structural misspecification, as per the test we considered in this report.

In this model, the population parameters to be estimated by SAEM are thus
θ, σ2, δ1, δ2, γ, πs.
The model is thus considerably more complex, and may also be non-identifiable:
in the plane {πs = 0}, the likelihood is constant when varying γ and δ2. A popu-
lation where all individuals are correctly specified is not identifiable. Moreover,
we would have to fix γ above a certain threshold, since in the plane {γ = 0} ,
the parameter πs is non-identifiable.

Population estimation in such a model is also quite challenging; while trying
to code such an estimator in R, we found a problem with the classic SAEM al-
gorithm: the Markov chain created by Metropolis-Hastings is no longer ergodic,
because of the existence of absorbing states. More specifically, in M-H-within-
Gibbs, at step k:

� We simulate ci ∼ Be(π(k)
s )

� However, if π
(k)
s = 0 or π

(k)
s = 1 , then all ci will have the same value as

πs.

� In the optimization step, we set π
(k+1)
s as the empirical average of the ci;

if π
(k)
s = 0 , then π

(k+1)
s = 0.

� We have the presence of 2 absorbing states, which can stop prematurely
SAEM.

M. Lavielle [9] proposed a new algorithm, an extension of SAEM called
MSAEM to circumvent this issue; however, it is only applied to a classic ODE
model; with no diffusion term. We have not yet seen a Kalman-MSAEM cou-
pling in the literature, and did not have time to try to formulate and implement
it.

A proposed method for identifying misspecified
individuals within a population

Here is a proposal for such a method:

1. We estimate the population parameters θ̂ with our data, using the mixture
model previously presented, through MSAEM.

2. π̂s indicates the estimated fraction of misspecified individuals within our
population

3. We realize a MAP (maximum a posteriori) to estimate the individual
parameters γi: this is done by maximizing

pθ̂(ϕi, γi, ci | yi) ∝ pθ̂(yi | ϕi, γi, ci)pθ̂(ϕi, γi, ci)
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4. Then, the individuals with ci = 1 are considered misspecified; we may also
consider the I(1−π̂s) individuals with highest γi values to be misspecified.

This method, however, may not work well in situations where the whole
population is either misspecified or correctly specified, in part because of the
identifiability issue. It also requires an implementation of the MSAEM algo-
rithm for SDEs, which may prove challenging to tune correctly, and we have
not found an implementation, or theoretical article in the literature.
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