Existence of minimizers for weighted L^p -Hardy inequalities

Ujjal Das

A joint work with Yehuda Pinchover, Baptiste Devyver

Abstract

Let $p \in (1, \infty)$, $\alpha \in \mathbb{R}$, and $\Omega \subsetneq \mathbb{R}^N$ be a $C^{1,\gamma}$ -domain with a compact boundary $\partial\Omega$, where $\gamma \in (0, 1]$. Denote by $\delta_{\Omega}(x)$ the distance of a point $x \in \Omega$ to $\partial\Omega$. Let $\widetilde{W}_0^{1,p;\alpha}(\Omega)$ be the completion of $C_c^{\infty}(\Omega)$ with respect to the norm

$$\|\varphi\|_{\widetilde{W}^{1,p;\alpha}_{0}(\Omega)} := \left(\| |\nabla\varphi| \|_{L^{p}(\Omega,\delta_{\Omega}^{-\alpha})}^{p} + \|\varphi\|_{L^{p}(\Omega,\delta_{\Omega}^{-(\alpha+p)})}^{p} \right)^{1/p}.$$

We study the following two variational constants: the weighted Hardy constant

$$H_{\alpha,p}(\Omega) := \inf \left\{ \int_{\Omega} |\nabla \varphi|^p \delta_{\Omega}^{-\alpha} \mathrm{d}x \, \left| \, \int_{\Omega} |\varphi|^p \delta_{\Omega}^{-(\alpha+p)} \mathrm{d}x = 1, \varphi \in \widetilde{W}_0^{1,p;\alpha}(\Omega) \right\},$$

and the weighted Hardy constant at infinity

$$\lambda_{\alpha,p}^{\infty}(\Omega) := \sup_{K \in \Omega} \inf_{W_{c}^{1,p}(\Omega \setminus K)} \left\{ \int_{\Omega \setminus K} |\nabla \varphi|^{p} \delta_{\Omega}^{-\alpha} \mathrm{d}x \ \bigg| \ \int_{\Omega \setminus K} |\varphi|^{p} \delta_{\Omega}^{-(\alpha+p)} \mathrm{d}x = 1 \right\}.$$

We show that $H_{\alpha,p}(\Omega)$ is attained if and only if the spectral gap $\Gamma_{\alpha,p}(\Omega) := \lambda_{\alpha,p}^{\infty}(\Omega) - H_{\alpha,p}(\Omega)$ is strictly positive. Moreover, we obtain tight decay estimates for the corresponding minimizers.