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Preface

The present book deals with the spectral geometry of infinite graphs.
This topic involves the interplay of three different subjects: geometry,
the spectral theory of Laplacians and the heat flow of the underlying
graph. These three subjects are brought together under the unifying
perspective of Dirichlet forms.

The spectral geometry of manifolds is a well-established field of
mathematics. On manifolds, the focus is on how Riemannian geom-
etry, the spectral theory of the Laplace—Beltrami operator, Brownian
motion and heat evolution interact. In the last twenty years large parts
of this theory have been subsumed within the framework of strongly
local Dirichlet forms. Indeed, this point of view has proven extremely
fruitful.

The spectral geometry of graphs concerns discrete objects. For
graphs, geometry is encoded in combinatorial notions, the Laplacian
is a difference operator and the heat evolution is given by a Markov
jump process. Developments in this area often come about as a dis-
crete analogue to the situation on manifolds. In particular, the spectral
geometry of graphs appears in approximation procedures. However, it
can also be studied without any reference to manifolds.

Our point of view is fundamentally different: our perspective is that
of Dirichlet forms. In this context, manifolds and graphs are treated on
an equal footing. Specifically, manifolds provide the prototype for local
Dirichlet forms and graphs provide the prototype for non-local Dirichlet
forms. Therefore, conceptually, the similarities result from the common
context of Dirichlet forms and the differences are a consequence of the
local as opposed to non-local character.

Beyond the conceptual beauty of this approach, it also offers vari-
ous practical advantages. As far as results are concerned, there is no
need for restrictive boundedness assumptions on the geometry of the
underlying graph. At the same time, the reader is offered a very ac-
cessible introduction to the powerful theory of Dirichlet forms. In fact,
our approach enables the reader to quickly reach cutting-edge research
topics with a minimum number of prerequisites.

The structure of this book. We now discuss the structure of this
book. The Prelude, Chapter [0 presents many of the relevant ideas in
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vi PREFACE

the context of finite graphs. In this part of the book, the reader will
already encounter the main players and concepts in a finite-dimensional
context. This chapter will be accessible to undergraduate students who
have seen basic linear algebra, analysis, some probability theory and
ordinary differential equations. It can be used for a one-semester topics
course at this level. Alternatively, individual sections can be used to
motivate topics studied in full generality in later chapters, or Chapter 0]
can be skipped altogether.

The actual discussion of infinite graphs starts after the Prelude with
Chapters [I] and [2 Here, Chapter [I] covers all of the basic notions and
concepts needed for a discussion of infinite graphs. This material is
used virtually everywhere in the book. Chapter [2| on the other hand,
covers some more advanced tools as well as additional aspects needed in
specific places only. So, the reader may skip Chapter [2] at first reading
and only come back to the relevant parts of it as needed.

In fact, the first section of Chapter (] already presents the setting of
infinite graphs and the connection to Dirichlet forms and the Laplacian.
Besides introducing basic quantities, this section also has the character
of a summary as it collects all essential definitions. Therefore, having
read the first section of Chapter [I} the reader can jump into any of
the following chapters as they should now be familiar with the basic
concepts and notations. In fact, the reader is invited to explore the
topics of the book by browsing through the chapters. Each chapter
starts with a summary and care has been taken to ensure that the
chapters can be used independently of each other. Thus, depending on
the interest of the reader, any of the numerous topics can be pursued,
offering substantial flexibility.

In this way, Chapter [I|together with a choice of subsequent chapters
can serve as a basis for a one-year graduate course. This course will only
require some basic topics from functional analysis. The more advanced
tools which are necessary to deal with the material are provided in a
series of appendices at the end of the book. In this way, the spectral
geometry of graphs gives a wonderful opportunity to learn abstract
operator-theoretic concepts “on the job.”

Following Chapter [0 the book is divided into three parts. Part [I]
which consists of Chapters 1] to[7] deals with “Foundations and funda-
mental topics.” As discussed already, the first chapter discusses all of
the basic objects needed for the theory. A core theme of the remain-
ing chapters is how various quantities and concepts of interest can be
investigated via generalized solutions.

Part 2, Chapters [§] to [10] deals with “Classes of graphs.” In this
part, we study graphs with a uniformly positive measure, graphs with
a spherical symmetry and graphs with suitable sparseness properties.
Taken together, these are the most common models encountered in the
study of infinite graphs.
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Part 3, Chapters [11]to[14] deals with “Geometry and intrinsic met-
rics.” In this part, the geometry of graphs is approached via the re-
cently developed tool of intrinsic metrics for graphs.

Each part of the book starts with a brief synopsis and each chapter
begins with a summary giving an overview of the contents. As men-
tioned previously, the Prelude, Chapter [0 is an independent portion
of the book which can be used for an undergraduate course. As such,
Chapter [0 has an extended nontechnical introduction to give a general
mathematical and scientific context for our viewpoint on graphs. Fi-
nally, the book concludes with a series of appendices summarizing the
required background from spectral theory and the theory of Dirichlet
forms required for parts of the book starting with Chapter

A word about the * sections. There are a few sections where
neither the results nor the notations are necessary to understand the
remaining parts of the book. To indicate this, these sections are marked
with a * in the title.

A word about the exercises. There are three types of exercises
found at the end of each chapter, separated into the categories of Ex-
cavation, Example and Extension.

The Excavation Exercises serve the purpose of recalling (and in
this sense “excavating”) prerequisites from linear algebra, probability
and functional analysis and applying them in the context of the book.
These exercises can be used in a course to bring students up to speed
and to enliven their background knowledge. However, as their purpose
is to make the prerequisites transparent, they are only mentioned at
the beginning of each section so that they do not interrupt the flow of
the presentation.

The Example Exercises let the reader apply the theory to concrete
examples. In some cases, the topics of an entire chapter can be worked
out for a particular example. These exercises may either serve as a
review and summary of the chapter or they may be split up and used
to illuminate topics found in specific sections. Thus, they are usually
not explicitly mentioned within the text.

Finally, the Extension Exercises consist of material that goes be-
yond the core of our theory and in this sense “extends” the perspective
of the reader. In some cases, these are interesting observations that
illuminate a certain aspect and, in other cases, they provide a link to
related topics which are not treated exhaustively in the book. These
exercises appear as remarks within the text.
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A word about the historical notes. Each chapter ends with
notes discussing the history of the subject as well as pointing out cor-
responding references. Furthermore, at the end of the notes of Chap-
ters [0] and [I} we include standard references which intersect with the
topics treated in this book.
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Synopsis

A graph is a geometric structure on a set of vertices. At the same
time, a graph comes with both a Dirichlet form and a Laplacian defined
on the set of functions on its vertices. The interplay between this
geometric structure and the spectral theory of the Laplacian is a main
focus of this book. Certain unboundedness features of the geometry
as well as boundary structures can only occur if the underlying set of
vertices is infinite. Still, many phenomena of interest already appear
in the case of finite graphs. This is discussed in this part. The material
of this part is not necessary in order to understand the later parts. On
the other hand, the reader may glance through this part in order to
gain perspective and motivation for later considerations.



CHAPTER 0

Finite Graphs

The concept of a graph is one of the most fundamental mathe-
matical concepts ever conceived. Graphs inherently appear in many
branches of mathematics and natural sciences. Occurrences of graphs
in real world questions range from the spreading of diseases in biology
to computer and electrical networks in engineering to lattice gauge the-
ory in elementary particle physics, amongst other manifestations. In
mathematics, graphs are unavoidable as they appear (implicitly) when-
ever there is a relation between objects. In particular, they play a most
prominent role in various combinatorial questions. At the same time,
graphs often come about via approximation schemes when dealing with
a continuous setting.

At its core, the concept of a graph allows us to give a precise mean-
ing to the notion of a neighbor. This naturally extends to a notion of
a neighborhood and, more generally, to the idea of a space being con-
nected. These notions clearly have a geometric flavor, which starts on a
local scale and extends outwards. As such, many questions investigated
for graphs can be seen as dealing with the interplay between local and
global geometric features of the graph. This perspective underlies our
book.

A very natural question in the context of graphs concerns the prop-
agation in time of various quantities within a graph. This includes, for
example, quantities such as information, energy, or heat. Clearly, the
geometry of the graph will determine the change in the distribution of
the entity in question over time. Hence, understanding the geometry
will allow us to understand the propagation. Conversely, investigation
of the propagation can be used to understand the geometry.

The basic model for such propagation is given by a heat equation
in Section 5| In analytic terms, the solution of a heat equation is pro-
vided by a semigroup of operators satisfying certain positivity prop-
erties. The operators which arise from graphs automatically satisfy
these properties. Conversely, any semigroup of operators on a discrete
space with such positivity properties can be seen to arise from a graph.
Hence, there is a one-to-one correspondence between graphs and such
semigroups. Having set up this framework, the long-term behavior of
systems modeled by the heat equation can then conveniently be de-
scribed via spectral theory, see Section [7]
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It turns out that probability theory allows us to give a completely
different (though equivalent) approach to the heat equation via the
theory of Markov processes on discrete spaces. This is discussed in
Section [I0l It is rather remarkable that these two different branches
of mathematics give solutions to the same problem and this underlines
the relevance of our models.

While propagation deals with dynamics arising from graphs and
their geometry, there is also a more static point of view given in Sec-
tion 4 In this view, graphs serve as a basic model in the description
of the electric currents in a system of wires in electrostatic equilib-
rium. Equivalently, one may think of the flow of a liquid in a system of
tubes. In this context, graphs are often referred to as networks. Cru-
cial problems in this context are the Poisson equation and the capacitor
problem. Graphs then give rise to solutions of the capacitor problem
with certain properties and vice versa. So, here again, we encounter a
one-to-one correspondence between graphs and solutions of an analytic
problem with specific properties.

It is by no means obvious and, in fact, rather surprising that graphs
can serve as models for the description of so many different physical
problems. These problems include both the heat equation and elec-
trostatics in the discrete setting. Analytically, the connection comes
about via a self-adjoint operator known as a graph Laplacian which is
introduced in Section [T} This Laplacian generates the semigroup aris-
ing in the study of the heat equation and, at the same time, gives rise
to resolvents in the study of the capacitor problem. These semigroups
and resolvents are introduced in Section [6 It turns out that graph
Laplacians share a feature with the negative of the ordinary second
derivative of a function on the real line, specifically, that they are posi-
tive at a maximum of the function. More importantly, graph Laplacians
are even characterized by this property, as discussed in Section 3] This
shows that graph Laplacians and the Laplacian on Euclidean space
are connected by deep structural ties rather than just by a superficial
analogy.

A convenient way to deal with self-adjoint operators is by means of
quadratic forms. These are mappings of pairs of functions to numbers.
The forms corresponding to graph Laplacians are characterized by com-
patibility with normal contractions. Forms with such a compatibility
are known as Dirichlet forms. They are in a one-to-one correspondence
with graphs, as shown in Section [2|

The preceding discussion unfolds a rather remarkable panorama:
the compatibility of a form with normal contractions is equivalent to
the operator associated to the form sharing features with the second
derivative. This, in turn, can be characterized via solutions to both the
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heat equation and to the capacitor problem. An alternative, but equiv-
alent, point of view is provided by probability via Markov processes.
Any of these features characterizes the structure of a graph.

None of these considerations are restricted to finite graphs. In fact,
as investigated in later chapters, they also apply to infinite graphs.
More generally, the theory of Dirichlet forms encompasses a variety
of other geometric situations which includes Laplacians on Euclidean
space and manifolds. However, what is so special about graphs, and
especially about finite graphs, is that they allow us to give both a
precise and panoramic view of the topic without having to bother with
numerous technical details.

In the context of the overall structure of the present chapter and
of the book, one more remark may be in order. A very convenient
feature of the theory of Dirichlet forms is that it not only deals with
the geometry of the underlying object, which in this case is a graph,
but, at the same time, also includes the concept of something “outside”
of the object. In the language of physics, this means that we are dealing
with an open system. In our context, this leads to having an additional
ingredient, which we call the killing term, in our definition of a graph
when compared to what is usually found as the definition of a graph
in textbooks on graph theory. Having this killing term at our disposal,
we are able to capture numerous phenomena without having to look at
case distinctions.

1. Graphs, Laplacians and Dirichlet forms

In this section we introduce the three key objects of our consid-
erations. These are graphs, Laplacians and Dirichlet forms. We will
show in the subsequent sections that these three types of objects are
in one-to-one correspondences with each other.

To recall and apply some basic facts from linear algebra and analysis
the reader may want to solve the Excavation Exercises [0.1], [0.2]
and found at the end of the chapter. These exercises review the
basics of the discrete topology, quadratic forms, the Hilbert space of
interest and the notion of self-adjointness.

1.1. Graphs. We introduce the basic concepts of graphs and the
arising degree function.

Finite graphs are usually defined as combinatorial objects with a
finite set of vertices and a set of edges connecting the vertices. More
generally, graphs can be considered as having weights on the edges. In
the subsequent definition, these notions are captured via a finite set X
and a suitable function b on X x X. Moreover, the definition features
an additional ingredient given by a function ¢: X — [0,00). This
ingredient may come as a surprise to the reader familiar with graphs
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from other contexts. It is intimately linked to the overall perspective of
Dirichlet forms taken in this book. As such, the relevance of ¢ unfolds
in detail in subsequent sections. Here, we already comment on this
relevance in the remarks following the definition.

DEFINITION 0.1 (Graph over finite X). Let X be a finite set. A
graph over X or a finite graph is a pair (b, c) consisting of a function
b: X x X — [0, 00) satisfying
e b(z,y) =0b(y,x) for all z,y € X
o b(z,z)=0forallz e X

and a function ¢: X — [0,00). If ¢(z) = 0 for all z € X, then
we speak of b as a graph over X (instead of (b,0)). The elements of
X are called the vertices of the graph. The map b is called the edge
weight. More specifically, a pair (z,y) with b(z,y) > 0 is called an edge
with weight b(z,y) connecting x to y. The vertices x and y are called
neighbors if they form an edge. We write x ~ y in this case. The map
c is called the killing term.

FIGURE 1. A subgraph of the two-dimensional Euclidean lattice and
the graph induced by the edges and vertices of the icosahedron.

FIGURE 2. The first spheres of a regular tree and a rooted regular tree.

REMARK. In Figures [1] and [2| some basic examples of finite graphs
are displayed. While ¢ = 0 in the first three examples, in the case of
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the rooted tree in Figure [2| the dotted line at the root indicates that
¢ does not vanish at this vertex. How these figures relate precisely to
our definition of a graph is elaborated in the next remark.

REMARK (How our definition compares to definitions found in
graph theory). As the function b is symmetric, there is an edge con-
necting = to y if and only if there is an edge (with the same weight)
connecting y to x. As b vanishes on the diagonal, there is no edge from
a vertex to itself. Thus, our graphs are weighted undirected graphs
without loops in the sense of graph theory. On the other hand, c¢ is
not usually included in the definition of a graph. It is a special feature
arising from the perspective on graphs we take, that is, the perspective
of Dirichlet forms on discrete spaces. As we will show later, with b
and ¢, graphs and symmetric Dirichlet forms over X are in a one-to-
one correspondence, see Theorem [0.22] Similarly, graphs and operators
satisfying a maximum principle are in a one-to-one correspondence, see
Theorem [0.24] Such operators are called graph Laplacians. These two
correspondences give analytic characterizations of graphs.

The presence of ¢ as well as b also naturally connects to the sto-
chastic point of view, as seen when we first look at solutions of the
heat equation. Here, it is natural to expect that given a positive ini-
tial distribution of heat which is bounded above, the amount of heat
should remain positive and bounded above (with the same bound).
This turns out to be exactly the case when the semigroup is associated
to a graph Laplacian arising from a graph involving both b and ¢, see
Theorem [0.49] Analytically, the presence of ¢ captures the possibility
of losing heat during the time of the heat flow as can happen geomet-
rically due to boundary conditions. This possibility of losing heat is
described in Corollary and Theorem [0.65]

We also note that restrictions to subsets of forms associated to
graphs are again forms associated to graphs only if we allow for a non-
vanishing ¢ (Exercise [0.31)).

Finally, the presence of both b and ¢ gives a one-to-one correspon-
dence between graphs and Markov processes (which, in turn, are deter-
mined by either the Dirichlet form or the Laplacian). This is discussed
towards the end of Subsection [10.1] From this viewpoint, b encodes
how the process jumps between points of X and ¢ captures the pos-
sibility of the process leaving X. One way of visualizing ¢ is that the
value of ¢ indicates the weight of a connection from that vertex to some
additional point (often called the graveyard or cemetery) outside of X.
This explains the name killing term for c.

In summary, it is only by including ¢ in the definition that we are
able to capture natural analytic and probabilistic aspects of discrete
Dirichlet spaces.
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ExXAMPLE 0.2 (Graphs with standard weights). If b takes values in
{0,1} and ¢(x) = 0 for all € X, then we speak of a graph b with
standard weights. In this case, the set of edges E' is given by

E={(z,y) € X x X | b(z,y) = 1}.

An important geometric quantity that comes with a graph (b, c)
over X is the vertex degree. In our context, this is defined as follows.

DEFINITION 0.3 (Degree). Let (b, ¢) be a graph over a finite set X.
The degree is the function deg: X — [0, 00) given by

deg(z) = > b(z,y) + ().

yeX

ExAMPLE 0.4 (Combinatorial degree). If b is a graph with standard
weights over X, then

deg(z)= > 1=#{yeX|y~uz}

yEX,b(z,y)=1

for x € X. In this case, deg(z) is the number of neighbors of x and
deg is called the combinatorial degree.

NOTATION. Whenever f is a real-valued function on X, we write
f=0if f(x) =0 for all z € X. Likewise, we write f >0, f <0, f >0
or f < 0 whenever these inequalities hold at all vertices of X. We will
call functions satisfying f > 0 positive and functions satisfying f > 0
strictly positive.

Furthermore, we will use the notation Zx,ye « for the double sum
Yorex O yex starting with the next subsection and throughout the rest
of the book.

1.2. Forms and Laplacians on graphs. Any graph over a finite
set comes with a form, a Laplacian and a matrix. We now introduce
these objects.

To a finite set X we associate the real vector space C(X) of all
functions f: X — R. A natural basis for C'(X) consists of charac-
teristic functions 1, which take the value 1 at z and are 0 otherwise.
For f € C(X) we denote by supp f the support of f, which is the set
where f is non-zero, that is, supp f = {x € X | f(x) # 0}. We say
that a function has full support if f is non-zero everywhere, that is,
supp f = X.

A linear map L: C(X) — C(X) is called an operator on C(X).
Clearly, to any operator L, there exists a unique function /: X x X —

R with
Lf(x)=> Uz,y)f(y)
yeX
for all f € C(X) and z € X. A direct calculation gives that I(z,y) =
L1,(x). We say that L is the operator on C(X) induced by the matrix
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[ and [ is the matriz associated to L. Of particular relevance to us is
the case when [ is symmetric, i.e., satisfies

l(z,y) =y, z)

for all z,y € X. We say that L is an operator on C(X) with symmetric
matriz if [ is symmetric or call L a symmetric operator in this case.
A form over X is a map

Q:C(X)xC(X)—R
which is bilinear, i.e., satisfies

Qaf +g,h) = aQ(f,h) +Q(g, h)
and

Q(f,ag+h) =aQ(f,g9) +Q(f.h)
for all f,g,h € C(X) and all « € R. A form @ is called symmetric if
Q satisfies Q(f,g) = Q(g, f) for all f,g € C(X). For the values of @
on the diagonal {(f, f) | f € C(X)} of C(X) x C(X) we will use the

notation

Q(f) = QU ).

In particular, when @ is symmetric, we get

Q(f +9) = Q(f) +2Q(f,9) + Q(g).

If Q is a form, then there exists a unique function I: X x X — R

with
QUf,9) = Y Uz, y)f(x)g(y)
z,yeX

for all f,g € C(X). We call @) the form induced by the matrix [ and
[ the matriz associated to ). We note that Q(1,,1,) = l(x,y) for all
v,y € X and Q(1,,1) = Y, l(z,2) where 1 denotes the function
which is 1 on all vertices. In particular, () is symmetric if and only if
the associated matrix [ is symmetric.

If [ is a symmetric matrix over X with associated form () and
associated operator L, then

Q(f,9) = Y Uz ) f(@)gly) = > (LN ()gy) = f(=)(Lg)(x)

z,yeX yeX zeX

for all f,g € C(X). In this case, we will speak of L as being the
operator associated to the form @) and ) being the form associated to
the operator L. Hence, defining any one of these three objects, namely,
either the matrix [, the form @) or the operator L, uniquely determines
the other two associated objects.

After this general introduction to matrices, operators and forms,
we now focus on the matrix, operator and form which arise naturally
from a graph (b, c) over X. We start with the form Q..
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DEFINITION 0.5 (Form associated to a graph). Let (b, ¢) be a graph
over a finite set X. The form Q. acting on C(X) x C(X) b

Q.o 9) Z bz, y)(f ()= f(1)(9(x) = g(v)) + > _ c(x) f(x)g(w)

xyEX zeX
is called the form associated to the graph (b,c) or the energy form.

We note by direct calculation that
Qb.e(1) bey + c(z) = deg(x)

yeX

and
Qb,c(lxa 1y) = —b(l',y)

whenever x # y. Furthermore,

Qbe(1z,1) = c(x)

for all z € X.

Clearly, Q. is symmetric. Furthermore, by definition, Q). has the
following feature: if f, g € C(X) satisfy |f| < |g| and |f(z) — f(y)| <
lg(x) — g(y)]| for all x,y € X, then

Qb,c(f) S Qb,c(g)'

Symmetric forms with this feature are referred to as Dirichlet forms.
We will see that all symmetric Dirichlet forms arise as forms associated
to graphs.

We next introduce the operator associated to the form Q.

DEFINITION 0.6 (Laplacian). Let (b, ¢) be a graph over a finite set
X. The operator L, acting on C'(X) by

Liof(@) = " bla, y) (f(2) — F) + (@) f(x)

yeX

is called the Laplacian associated to the graph (b, c).

This Laplacian satisfies a remarkable feature known as the maxi-
mum principle, namely,

Lb,cf<x) 2 O

whenever f has a non-negative maximum at x € X. While this is a
direct consequence of the definition, a rather surprising amount of infor-
mation can be extracted from this maximum principle. Furthermore,
as we will see later, the validity of this maximum principle actually
characterizes Laplacians arising from graphs.

A direct computation shows that @), . and L; . are induced by the
same matrix [, ., which we introduce next.
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DEFINITION 0.7 (Matrix associated to a graph). Let (b,¢) be a
graph over a finite set X. The matrix [, . given by

B —b(z,y) if z#y
lb,c(l'a y) - { ZZEX b(x’ Z) + C(Q?) it x= Yy

is called the matriz associated to the graph (b,c). We say that (b,c)
induces the matrix [ .

As b is symmetric, so is /.. As the form and the Laplacian associ-
ated to a graph (b, c) are both induced by the matrix [, ., we immedi-
ately obtain the following relation between them.

PROPOSITION 0.8 (Green’s formula). Let (b,c) be a graph over a

finite set X. Let Q. and Ly, be the form and Laplacian associated to
(b,c). Forall f,g € C(X),

Qb,e(fa g) - Z(Lbcf Zf Lbcg

zeX reX

One of the goals of this chapter is to characterize the matrices,
forms and operators induced by graphs within the class of all sym-
metric matrices, forms and operators. We will start by characterizing
symmetric matrices induced by graphs.

LEMMA 0.9 (Characterizing matrices arising from graphs). Let X
be a finite set. Let [: X x X — R be a symmetric matriz. Then, the
following statements are equivalent:

(i) There exists a graph (b,c) such that | = l. ( “Graph”)
(ii) The matriz 1 satisfies

l(z,y) <0
for all x,y € X with x # y and

Zl(x,z)zo

zeX
forallz € X. ( “Matriz”)
Moreover, if (i) and (ii) hold, then the graph (b,c) which induces [
satisfies ¢ = 0 if and only if Y . l(x,2) =0 for all x € X.
PROOF. (i) = (ii): Let | = [, be the matrix associated to a graph

(b,c). By the definition of ., l(z,y) = —b(z,y) < 0 for all x # y as
b(z,y) > 0. Furthermore,

Zl(z,z):l(w,m)—i—Zl(xz bez )+ c(z bez

zeX zF#T zeX zZF#T
=c(x) >0

for all € X as b(x,x) = 0. This gives (ii).
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(ii) = (i): Define b: X x X — R for x # y by
b(z,y) = —l(x,y) and b(x,z)=0.
Define ¢: X — R by
c(x) = Zl(m, z).

zeX
Then, (b, c) is a graph over X by (ii) and the symmetry of .
Furthermore, by construction, l,.(z,y) = —b(z,y) = l(z,y) for
x # y and
bho(z,2) =Y b(w,2) + c(z) = Y b(x,2) + c(x)
zeX zF#x
=— Zl(x,z) + Zl(m, z) =l(x,x).
z#x zeX

Therefore, [ is the matrix associated to the graph (b, ¢). This gives (i).
The last statement is clear from the considerations above. 4

1.3. Laplacians and forms on graphs with a measure. We
will next discuss Laplacians as operators on a finite-dimensional Hilbert
space. Although these notions will not be used until Section [§, we in-
troduce them at this point because of the importance of this viewpoint
for the overall theory.

We start by introducing measures on a finite set X. If m: X —
(0,00) is a strictly positive function on X, then we can extend m to a
measure of full support on X via

m(A) =Y m(z)
z€A
for all subsets A C X. Therefore, the pair (X, m) can be seen as a
measure space.

REMARK. Technically, we could allow for the function m to take
values in [0,00). However, in this case, all further considerations are
carried out on the support of m, which is the same as passing from X
to the subset of X where m does not vanish. Hence, for convenience,
we exclude this and only consider the case when m is strictly positive.

NoOTATION. When m is assumed to be strictly positive, then we say
that (X, m) is a finite measure space.

DEFINITION 0.10 (Graph over finite (X, m)). If (X, m) is a finite
measure space and (b, ¢) is a graph over X, then (b, ¢) is called a graph
over (X, m).

There are some measures which occur naturally in our setting. Two
of these are introduced next. The first one is general, the second one
requires a graph structure (b, ¢) over X.
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EXAMPLE 0.11 (Counting measure). Let m = 1. Then m is called
the counting measure on X. In this case, the measure of a set A C X
is the number of vertices in the set, i.e.,

m(A) =) 1=4#A.

€A
ExAMPLE 0.12 (Normalizing measure). Given a graph (b, c) over
X, we let m(z) = deg(z) = >_,cx b(x,y) + c(x). Whenever we use deg
in the spirit of a measure, we denote it by n and call n the normalizing
measure, i.e., n = deg is given by

n(x) = Z b(z,y) + c(x).

We note that in the case of graphs with standard weights, i.e., b
taking values in {0,1} and ¢ = 0, the normalizing measure n satisfies

n(A) = #E + S#0pA
for A C X where 4 = {(z,y) € Ax A|z ~y} and
OpA = {(z,y) € (Ax (X\A))U((X\A) xA)|z~y}

That is, the normalizing measure counts the number of edges within A
plus the number of edges leaving A (Exercise .

An important geometric quantity which comes with a graph (b, ¢)
over (X, m) is another type of a vertex degree. This is introduced next.

DEFINITION 0.13 (Weighted degree). Let (b,c) be a graph over
a finite measure space (X, m). The weighted degree is the function
Deg: X — [0, 00) given by

Deg(z) = ﬁ (Z b(z,y) + c(m)) :

We note that
d
Deg = E,
m
where deg is the degree function.

ExXAMPLE 0.14 (Weighted degree for counting and normalizing mea-
sure). Let us discuss the function Deg in the case of the counting and
normalizing measures introduced above. In the case of the counting
measure m = 1, we have

d
Deg:ig:deg.
m

In particular, for standard weights and m = 1, Deg is the same as the
combinatorial degree.
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For the normalizing measure m = n = deg, we have
de
Deg = 8 _ 1,
n
which justifies the name of n. In this case, the weighted degree does
not distinguish between vertices.

Given a measure m, the space C'(X) inherits a Hilbert space struc-
ture in a natural way. In this context, we can make full use of the
theory of self-adjoint operators on Hilbert spaces in order to analyze
Laplacians on graphs, especially in the case of infinite graphs considered
later. Here, we introduce the corresponding notations and concepts in
the finite setting.

The vector space C(X) with inner product

(fo9) =Y f(@)g(x)m(x)

and induced norm

£l = (f, F)12

is complete and, therefore, a Hilbert space. This Hilbert space will be
denoted by ¢?(X, m). Note that we work here with spaces of real-valued
functions.

A linear map L,,: *(X,m) — (*(X,m) is called an operator on
(*(X,m). Such an operator L,, can be uniquely represented by a matrix
[: X x X — R with

(Lifr9) = > U, y) f(y)g(x)

z,yeX

for all f,g € *(X, m). Equivalently,
1
Ly f(z) = W?JEZXZ(%:U)JE(?J)

for all f € *(X,m) and x € X. In fact, a direct calculation gives

l(z,y) = (Lnly, 1,).

We call L,, the operator induced by the matriz | on (*(X,m) and we
call [ the matriz associated to L,,.
An operator L,, on (*(X,m) is called self-adjoint if L,, satisfies

(L f,9) = (f, Lmng)
for all f,g € (*(X,m). Clearly this holds if and only if (L,,1,,1,) =
(1,, Lyy1,), that is, if and only if
l(z,y) = l(y, ©).

Hence, an operator L,, is self-adjoint on *(X,m) if and only if the
matrix associated to L,, is symmetric.
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It is clear from the preceding discussion that self-adjoint operators
are in one-to-one correspondence with symmetric matrices. Further-
more, if L,, is a self-adjoint operator with an associated symmetric
matrix [, then we can associate a symmetric form ) induced by the
matrix [ as before by

QUf,9) = D Uz, y)f(x)g(y).

z,yeX

This form will then satisfy
QUf,9) = (Lunf,9) = (f, Lmg)-

In this case, we denote the form by (), and note that the map
L,, — @y, provides a one-to-one correspondence between self-adjoint
operators and symmetric forms.

Let us emphasize that we do not need the measure m in order to
define the form or to define matrices. The measure only enters when
we want to speak about operators on a Hilbert space.

We next define the operator on ¢2(X,m) that is most prominent
throughout our work.

DEFINITION 0.15 (Laplacian on ¢*(X,m)). Let (b,c) be a graph
over a finite measure space (X,m). The operator L., acting on
2(X,m) via

5 e ()~ ) +

Lb,c,mf(x) =

m

is called the Laplacian on (*(X,m) associated to the graph (b,c).
We note the following immediate relationship between the Lapla-
cian Ly . and the Laplacian Ly, on £*(X,m):
1
L c,m = ——L c
b,c, f(.’lf) m(x) b, f(x)

for all f € £>(X,m) and all x € X. In particular, we note that
(Lbe;mly, 13) = Lpemly(x)m(z) = Ly 1,(x).

Therefore, the matrix associated to Lj ., is just the matrix [, . asso-
ciated to the graph (b, c) as in Definition . In particular, Ly, is
self-adjoint as Iy, is symmetric. Furthermore, Q. is the form asso-
ciated to both L. and L., and Green’s formula, Proposition ,
transfers to Ly, as

Qb,c(f: g) = <Lb,c,mf7 g> = <f7 Lb,c,mg>
for all f,g € (2(X,m).
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2. Characterizing forms associated to graphs

In this section we give a structural characterization of forms as-
sociated to graphs. This will be based on the concept of a normal
contraction. In fact, we will show that forms associated to graphs are
exactly the forms compatible with normal contractions.

A map C: R — R is called a normal contraction if
C0)=0 and |C(s)—=C(t)] <|s—1t

for all s, € R. In particular, we note that |C(s)| < |s| for all s € R
when C'is a normal contraction.
In the context of normal contractions it is convenient to define

sAt=min{s,t} and sVt=max{s,t}
for real numbers or for real-valued functions s and ¢.

ExXAMPLE 0.16. The following maps C': R — R are normal con-
tractions.
(a) C(s) = [s.
(b) C(s) = (£s) V0.
(c) C(s) =sA 1
(d) C(s) =0V (sAl).

The last normal contraction in the example above maps a real num-
ber s to the number closest to s in [0,1]. We will denote this normal
contraction as Clg qj, that is,

C[O,l](S) =0V (S N 1)

The normal contraction Coy will play a special role in some of the
characterizations below.

Given a form @ on C(X) and a normal contraction C, we will say
that @ is compatible with C' if

Q(Co f) <Q(f)

for all f € C(X). Here C o f denotes the composition of C' and f.
From the defining properties of a normal contraction we directly infer
the following compatibility of normal contractions and forms associated
to graphs.

PROPOSITION 0.17 (Compatibility of graph forms with normal con-
tractions). Let (b,c) be a graph over a finite set X and let Qy. be the
form associated to (b,c). If f € C(X) and C is a normal contraction,
then

Qb,c(C o f) S Qb,c(f)'
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PROOF. As C'is a normal contraction, we clearly have |C(f(x))| <
|f(2) and [C(f(2)) = C(f(y)] < [f(x) = f(y)| for all 2,y € X. Taking

squares we obtain

(C(f(@)? < f2x) and (C(f(z)) = C(f(y)* < (f(z) — f(y))*.
This gives the desired statement after multiplying by c¢(x) and b(z,y)
and taking sums. O

The characterization of forms associated to graphs that we are after
will follow from a converse to this proposition. Our proof of this con-
verse is based on studying forms () which are compatible with suitable
normal contractions. This will be of interest in other situations as well.
We will need the following auxiliary proposition.

PROPOSITION 0.18 (Representing forms via differences). Let X be

a finite set. Let () be a symmetric form over X with associated matriz
[: X xX — R. Definebg: X x X —Randcg: X — R by

—l(z,y if x#y
bQ(xay):{ (0 ) if l’iy

and

colz) =Y Uz,y).
yeX
The form @ satisfies

Q(f.9) :% > bola,y)(f (@)= F)(g@)—gW)+ ) col) f(x)g(x)

z,yeX reX
for all f,g € C(X).
Proor. This follows by a direct computation. By definition,

QUf9) = Y U, y)f(x)g(y).

Furthermore, by using the definitions of cg and bg, we get

l(o,2) = 3" Usy) = 1w y) = cqle) + 3 bale,y).

yeX yF#T yeXx
Therefore,
Q(f,9)
= > Uz,y)f(2)g(y)
= U, 2) fla)g(@) + DD U, y) f(2)g(y)
z€X rEX y#x
= <CQ(as) + ZbQ(x,y)> f(@)g(x) = Y bolz,y)f()g(y)
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= N bolay) f@)(9(@) — g(y) + Y cola)f(2)g(x)

= % Y bolay)(f(2) = fy)(9(x) = 9(y)) + Y cqla)f(2)g(x),

where in the last equality we use the symmetry of by, which follows
from the symmetry of [. O

We note that whenever (bg, cg) is a graph over X, the proposition
above says that ) = Qg ¢,- We will now show that compatibility with
certain normal contractions implies that (bg, c¢g) is indeed a graph. We
start by characterizing the symmetric forms which are compatible with
the absolute value and those which are compatible with the normal
contraction Cjqj0 f =0V (f A1) introduced above.

LEMMA 0.19 (Characterization of compatibility with normal con-
tractions). Let X be a finite set. Let Q) be a symmetric form over X
with associated matriz [: X x X — R.

a e following statement are equivalent:
The foll [
(i) The form Q satisfies, for all f € C(X),
Q(lf) < Q(f)
(ii) The matriz | satisfies, for all x # y,
l(z,y) <0.
e following statements are equivalent:
b) The foll l
(i) The form Q satisfies, for all f € C(X),
Q(Cpyo f) <Q(f).
(ii) The matriz | satisfies, for all x € X and y € X with x # v,
l(z,y) <0 and Zl(m,z) > 0.
zeX

REMARK. The proof of the implication (i) = (ii) in (a) given
below actually shows that Q(|f|) < Q(f) for all f € C(X) is also
equivalent to

Q(f-‘m f—) S 0
for all f € C(X), where the positive and negative part fi of f are
defined by

fr=fVv0 and f_=(—f)VO.
PROOF. As shown in Proposition [0.18] we have

QU = 5 X bale)(F() — W)Y + 3 calw)(x)

£y zeX
with
bo(z,y) = —l(x,y) for x #y
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and
co(x) = Zl(m, z).
zeX
This shows the implication (ii) = (i) in both (a) and (b), compare
the reasoning in the proof of Proposition [0.17

(i) = (ii) in (a): Assume that @ satisfies Q(|f]) < Q(f) for all
feC(X). Let x,y € X with x # y and consider f = 1, — 1,, where
1, denotes the characteristic function of z € X. Then, |f| =1, + 1,.
Hence, the assumption on @) gives

Q(lx + 1y) < Q(lz - 1y)-
Invoking the bilinearity and symmetry of (), we can easily infer
4Q(1,,1,) <0.

Since I(z,y) = Q(1,, 1,), the desired statement follows.

(i) = (ii) in (b): Assume that @ satisfies Q(Cp 0 f) < Q(f) for
all f e C(X).

We start by showing that [(z,y) < 0 for all z # y. By part (a),
which has already been proven, it suffices to show that Q(|f|) < Q(f)
holds for all f € C(X).

Let f € C(X). After replacing f by af with a suitable a > 0, we
can assume without loss of generality that |f| < 1. Now, consider the
decomposition of f into positive and negative parts f = f, — f_ where

f+(x) = f(z) VO and f_(x) = —f(x) V0. Clearly, |f| = f+ + f-. For
s > 0 set

fs = f+ —sf-.
Then, Cjoqj 0 fs = f4 for all s > 0. Thus, our assumption gives
Q(f+) =Q(Cpa o fs) < Qfs) = Q(f+ —sf-).

Invoking the bilinearity of () and dividing by s > 0, we can then easily
infer

0<=2Q(f+, f-) +sQ(f-)
for all s > 0. Letting s — 0, we obtain

0 S _Q(f-H f—)
Given this inequality, it follows that

QUM = QU+ + /)
= QUf+) +2Q(f+, f-) + Q(/-
< Qfy) —2Q(f+, f-) + Q(f-
= Q).

This gives the desired compatibility of ¢ with |- |.

~— —
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We now turn to proving that ) _ l(z,2z) > 0 for all z € X. Let
r € X and consider f =1+ sl, with s > 0. Then, Cjo;j0 f =1 for all
s > 0 and we obtain by assumption that

Q) =Q(Cpyof) <Qf) = Q(L+s1,).
By the bilinearity of () and dividing by s, this implies

0<2Q(1,1,) + sQ(1,).
Letting s — 0, we obtain
0<Q(LL) = Ix,2).
zeX
This gives the desired inequality for every x € X. O
We are now in position to prove our characterization of symmet-

ric forms associated to graphs in terms of compatibility with normal
contractions.

THEOREM 0.20 (Characterization of forms associated to graphs).
Let Q) be a symmetric form over a finite set X. Then, the following
statements are equivalent:

(i) There exists a graph (b, c) over X with

Q= Qb,c- ( “Graph”)
(ii) The matriz 1 associated to Q satisfies, for x,y € X with x # vy,
l(z,y) <0 and Z l(z,z) > 0. ( “Matriz”)
zeX

(ili) For all f € C(X),
Q(Cpay o f) < Q).

( “Form compatible with one normal contraction”)
(iv) For all normal contractions C and f € C(X),

Q(Co f) < Qf).

( “Form compatible with normal contractions”)

(v) If f,g € C(X) satisfy, for all z,y € X,

f1<lgl  and  [f(2) = f(y)] < lg(@) — 9(y)],
then

Q(f) < Q(g).

REMARK. Note that the above shows that compatibility with a
particular normal contraction, namely Cjo;j, is equivalent to compat-
ibility with all normal contractions. It can also be shown that this
is equivalent to compatibility with the contraction C(_. 1 given by

Cieooal(s) = s A1 e, Q(f A1) < Q(f) for all f € C(X) (Exer-

cise [0.29).
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ProOF. This follows from the preceding considerations. Indeed,
Lemma [0.9] gives the equivalence between (i) and (ii). The equivalence
between (ii) and (iii) is the content of Lemmal[0.19|(b). The implication
(i) = (v) can be directly read off from the definition of Q. and was
also already noted in Subsection (compare Proposition for a
similar reasoning as well). The implication (v) = (iv) is clear from
the definition of a normal contraction. Finally, (iv) = (iii) is obvious
as Co,) is a normal contraction. O

The previous result indicates that we should single out forms satis-
fying any one of the equivalent conditions appearing in Theorem |0.20]

DEFINITION 0.21 (Dirichlet form over a finite set). Let X be a finite
set. A form @ on C(X) is called a Dirichlet form if Q) satisfies

Q(Co f) <Q(f)

for all f € C'(X) and all normal contractions C': R — R.

Given the notion of a Dirichlet form, the preceding considerations
directly imply the following result.

THEOREM 0.22 (Correspondence Dirichlet forms and graphs). Let
X be a finite set. The map (b, ¢) — Qb gives a bijective correspondence
between graphs (b, c) over X and symmetric Dirichlet forms over X.

REMARK. It is also possible to characterize graphs with ¢ = 0 via
forms which are compatible with certain contractions. This will be
discussed in Section

3. Characterizing Laplacians associated to graphs

The Laplacian A acting on smooth functions on Euclidean space via
Af = —f" has the property that Af(z) > 0 whenever a smooth func-
tion f has a maximum at x. Here, we are going to see that Laplacians
on graphs are characterized by a very similar feature. This feature is
called the maximum principle. The validity of this principle means that
Laplacians on graphs can be seen as the negative of taking the second
derivative in a discrete setting. The maximum principle also has strong
consequences for solutions u of equations of the form (L + a)u = f for
a > 0.

Excavation Exercise [0.5] recalls the equivalence of injectivity, sur-
jectivity and bijectivity for an operator on a finite-dimensional vector
space, which will be used throughout this section.

We start by defining the maximum principle that will characterize
all Laplacians on finite graphs.
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DEFINITION 0.23 (Maximum principle). Let X be a finite set and
let L be an operator on C'(X). The operator L is said to satisfy the
mazimum principle if

Lf(z) 20
whenever f € C(X) has a non-negative maximum at z € X.

REMARK. Clearly, L satisfies the maximum principle if and only if
Lf(z) <0 whenever f € C(X) has a non-positive minimum at = € X.

REMARK. We have phrased the definition of the maximum principle
without any reference to a measure. However, the inequality in question
remains unchanged if both sides are multiplied by the inverse of the
measure of x. Thus, the operator L associated to a matrix [ satisfies
the maximum principle if and only if for one (all) m: X — (0, 00) the
operator L,, associated to the matrix [ on £*(X,m) satisfies

L,.f(z) >0
whenever f € £2(X,m) has a non-negative maximum at z € X.

REMARK. The definition raises the question if Lf(z) > 0 whenever
f has a non-negative maximum at z. Our subsequent discussion will
show that the vanishing of Lf(z) for all such z is indeed possible if f
is constant. Moreover, under suitable connectedness assumptions, we
will see that the only case when L f(z) vanishes is when f is constant.

We now show that the maximum principle characterizes Laplacian
operators within the set of symmetric operators on C(X).

THEOREM 0.24 (Maximum principle and graphs). Let X be a finite
set and let L be a symmetric operator on C(X). Then, the following
statements are equivalent:

(i) The operator L satisfies the mazximum principle.
(ii) There exists a graph (b, c) over X such that L = Ly is the Lapla-
cian associated to (b, c).

PROOF. (i) = (ii): Let [ be the matrix associated to L. By
Lemma it suffices to show that [(z,y) < 0 for all x # y and
Y sexl(z,2) > 0 for all x € X. Applying the maximum principle
to f = 1, we directly obtain L1(z) = >, yIl(z,2) > 0 for all z € X.
Applying the maximum principle at x € X to f = —1, for an arbitrary
y € X with y # = we infer —L1,(z) = —I(z,y) > 0 so that I(z,y) <0
for all x #£ y.

(ii) = (i): As L = Ly is the Laplacian associated to a graph (b, c)
it follows that if f has a non-negative maximum at z, then

Lf(x) =Y blz,y)(f(z) = f(y)) + () f(x) = 0,

which completes the proof. Il
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The maximum principle discussed in the previous theorem is not a
strict analogue to the maximum principle satisfied by the Laplacian A
on Euclidean space alluded to at the beginning of this section. In fact,
there is no restriction on the sign of the maximum in the Euclidean
case. This is due to the presence of ¢ in our setting. We now give a
strict analogue.

DEFINITION 0.25 (Strong maximum principle). Let X be a finite
set and let L be an operator on C'(X). The operator L is said to satisfy
the strong maximum principle if Lf(x) > 0 holds whenever f € C(X)
has a maximum at x € X.

Hence, the strong maximum principle removes the assumption found
in the maximum principle that the maximum attained by f at x is non-
negative. As such, the maximum principle holds whenever the strong
maximum principle holds. In fact, the relationship between these two
principles can be described as follows.

LEMMA 0.26 (Maximum principle and strong maximum principle).
Let X be a finite set and let L be an operator on C(X) satisfying
the mazimum principle. The operator L satisfies the strong mazimum
principle if and only if

L1=0.

PROOF. Assume L satisfies the strong maximum principle. Con-
sidering f = 1 and any x € X, we then obtain L1(x) > 0. Similarly,
considering f = —1 and any x € X we obtain —L1(x) > 0. This
implies L1 = 0.

Conversely, assume L1 = 0. Let f € C(X) have a maximum at
x € X. Then, for any s € R, f + sl also has a maximum at z.
Choosing s so that this maximum is non-negative then gives

Lf(x)=Lf(z)+ sLl(x) = L(f + sl)(z) > 0,

where the last inequality is due to the fact that L satisfies the maximum
principle. Therefore, L satisfies the strong maximum principle. U

Note that for a Laplacian L. associated to a graph (b, c), Ly .1 =0
if and only if ¢ = 0. Therefore, combining the previous lemma with
Theorem [0.24], we immediately infer the following characterization of
the vanishing of the killing term.

COROLLARY 0.27 (Strong maximum principle and vanishing c¢). Let
X be a finite set and let L be a symmetric operator on C(X). Then,
the following statements are equivalent:

(i) L satisfies the strong maximum principle.
(ii) There exists a graph (b,c) over X with ¢ = 0 such that L = Ly, is
the Laplacian associated to b.
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The maximum principle has strong consequences for solutions u of
equations of the form (L + a)u = f for f with a fixed sign and a > 0.
Here, L + « is shorthand notation for L + al, where [ is the identity
operator on C(X). We will now discuss these consequences in some
detail. We will need the following topological assumption in order to
deal with the existence and uniqueness of solutions, i.e., bijectivity of
L 4+ «. The maximum principle will then yield additional features of
the solutions.

DEFINITION 0.28 (Connected component and paths). Let (b, ¢) be
a graph over a finite set X. Given z,y € X we call a sequence

(20, 1, ..., x,) of pairwise distinct vertices a path from z to y if o =
z,x, =y and x; ~ x;41 for j = 0,1,...,n — 1. We say that a path
(20,21, ..., x,) connects the vertices zo and z,,. We call a subset Y of

X connected if any two vertices in Y can be connected by a path of
vertices in Y. Furthermore, Y is a connected component of X if YV is
connected and Y is not contained in a strictly larger connected subset
of X. A graph (b, c) is called connected if (b, c) has only one connected
component.

REMARK. There is an equivalent (and maybe even more elegant)
definition of connected components via saturated sets for which one
does not have to define what it means for a set to be connected first

(Exercise [0.30)).

REMARK. Whenever a graph without a killing term is connected,
taking a proper subset and restricting the associated form to functions
on the subset gives rise to a graph with a non-vanishing killing term.
In this sense, graphs with non-vanishing ¢ are unavoidable if one wants
compatibility of the forms with restrictions to subsets (Exercise [0.31]).

It turns out that connectedness of the graph together with non-
triviality of ¢ makes L. injective (and, therefore, bijective). Specifi-
cally, the following holds.

LEMMA 0.29 (Non-vanishing ¢ characterizes the bijectivity of Ly ).
Let (b,c) be a graph over a finite set X and let Ly, be the associated
Laplacian on C(X). The operator Ly . is bijective if and only if ¢ does
not vanish identically on any connected component of (b, c).

PROOF. As L, is a linear operator on a finite dimensional vector
space, bijectivity is equivalent to injectivity. Thus, it suffices to char-
acterize injectivity. By restricting attention to a specific connected
component, we can assume without loss of generality that the graph is
connected.

If ¢ = 0, then clearly L;.1 = 0. Therefore, L. is not injective in
this case.
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Now, suppose that ¢ does not vanish at all x € X. Let u € C(X)
satisfy Ly u = 0. Green’s formula, Proposition [0.8] gives

0= Z uw(x) Ly cu(z) = Qpe(u)

zeX

1
= 5 3 b)) — ()P + Y cla)el ().
z,yeX reX
As all terms appearing in the sums are non-negative, we infer u(z) =
u(y) whenever b(z,y) > 0 and u(zr) = 0 whenever c¢(z) # 0. As the
graph is connected, the first set of conditions implies u is constant
and the second set of conditions implies © = 0 as ¢ does not vanish
identically. Therefore, L. is injective. U

REMARK. Note that injectivity of L; . is equivalent to (. being
an inner product.

THEOREM 0.30 (Maximum principle and solutions to (L+a)u = f).
Let X be a finite set and let L be a symmetric operator on C(X) which
satisfies the mazimum principle. For any o > 0 and f € C(X) the
equation

(L+aju=f
has a unique solution w. Furthermore, 0 <u < 1/a if 0 < f < 1.

PROOF. As L satisfies the maximum principle, by Theorem
there exists a graph (b, ¢) over X such that L = L; .. Therefore, L + «
is the Laplacian associated to the graph (b,c¢ 4+ «). As ¢+« > 0 for
a > 0, the operator L + « is bijective by Lemma [0.29] This gives the
existence and uniqueness of the solution u as u = (L + )7 f.

Assume now additionally that 0 < f < 1. We first show u > 0. Let
u have a minimum at € X and assume u(z) < 0. We can then apply
the maximum principle to —u at x to obtain

—Lu(z) > 0.
As u(z) < 0, this gives the contradiction
0 < f(z) = Lu(z) + au(z) < au(z) < 0.
By a similar reasoning we can show u < 1/« as follows: Let u have a

maximum at z € X and assume u(z) > 1/a > 0. We can then directly
apply the maximum principle to v at x to obtain the contradiction

1> f(x) = Lu(z) + au(x) > au(z) > 1.
This completes the proof. O

REMARK. By the characterization of Theorem the assumption
that L is symmetric and satisfies the maximum principle can be re-
placed by the assumption that L = L. for a graph (b,c) over X. A
converse to this theorem also holds, as will be discussed in Section [6]
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The preceding theorem deals with the case a > 0. Thus, it raises
the question of what happens when o = 0, that is, when we wish to
solve Lu = f for a given function f € C(X). In order to address this
problem, we will look at the injectivity of the operator L, i.e., we look
at solutions of Lu = 0.

For Laplacians on graphs, this question has already been addressed
above. Functions u € C'(X) which satisfy

Lb,cu =0

for the Laplacian associated to a graph (b,c¢) over X are called har-
monic. It is clear that if L. is bijective, then u = 0 is the only
harmonic function. By Lemma [0.29] the operator Ly, is bijective if
and only if ¢ # 0 on every connected component of (b,c). In the case
of ¢ =0,

Ly1 =0,

so that all constant functions are harmonic. If, furthermore, the graph
b is connected, then these are the only harmonic functions, as we will
show below, see also the proof of Lemma [0.29

This discussion implies that the existence and uniqueness as well as
the estimates found in Theorem for solutions u of (L+a)u = f for
a > 0 cannot be valid for a = 0 and all symmetric operators satisfying
the maximum principle. However, the existence and uniqueness of so-
lutions to Lu = f is clear when L is a bijective operator. Furthermore,
when L = L. is bijective and the graph is connected we recover a
variant of the estimates found in Theorem [0.30) for the solution w.

In order to show this, we will first discuss some versions of a “Liou-
ville property” for Laplacians associated to graphs.

LEMMA 0.31 (Liouville-type properties). Let (b,c) be a connected

graph over a finite set X.

(a) If u € C(X) is harmonic, then u is constant.

(b) If L. on C(X) is bijective, u € C(X) has a non-negative maximum
and Ly u(z) = 0 for all x € X at which u takes this mazimum,
then u = 0.

REMARK. The famous Liouville Theorem asserts that harmonic
functions (i.e., functions satisfying Af = 0) in the plane are constant
if they are bounded. Lemma [0.31] gives some variants of this theorem.

PROOF. (a) The argument for this already appeared in the proof
of Lemma [0.29, Namely, if u is harmonic, then Proposition gives

0= ulw)Lyeuw) = 5 3 blay)(ule) — uly)? + 3 cla)u(x).

reX T,yeX zeX

As the graph is connected, we obtain that u is constant.
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(b) If w has a non-negative maximum at x, then

0= Lycu(x) =Y bla,y)(u(x) = uly)) + c(x)u(x)

yeX

implies u(y) = u(z) for all y ~ = and c¢(x)u(r) = 0. Repeating this
argument, we infer that u is constant by the connectedness of the
graph. Since L;. is assumed to be bijective, it follows that ¢ # 0
by Lemma Letting = be such that ¢(z) # 0, we obtain u(z) = 0.
As u is constant, u = 0, which gives the conclusion. O

COROLLARY 0.32. Let (b,c) be a connected graph over a finite set
X such that the associated Laplacian Ly, on C(X) is bijective. For
any f € C(X), the equation

Lb,cu = f

has a unique solution. Furthermore, if f satisfies f > 0 and f # 0,
then u > 0.

PROOF. As L, . is bijective, u = L,;clf is the unique solution of
Lb,cu = f

Assume now that f > 0 with f # 0. Then, u satisfies u # 0
as otherwise L,.u = 0. It remains to show u > 0. Assume there
exists a y € X with u(y) < 0. Consider v = —u. Then, v has a non-
negative maximum. Moreover, at each x where v attains this maximum
we have L, .v(z) = —Lpu(x) = —f(z) < 0. Since L. satisfies the
maximum principle by Theorem [0.24] it follows that L, v(z) > 0 and
thus Ly .v(z) = 0 at every maximum. Therefore, by Lemma (0.31] we
infer v = 0 and thus v = 0. This is a contradiction. O

REMARK. The proof of the corollary uses the strong Liouville prop-
erty. In fact, it is not hard to generalize the proof to even characterize
a variant of this Liouville property in the following way: If L is a bi-
jective operator on C'(X) which satisfies the maximum principle, then
the following statements are equivalent:

(i) The inverse L~! is positivity improving, i.e., L™'f > 0 whenever
f>0and f#0.

(ii) Any function u with a non-negative maximum and Lu < 0 satisfies
u=0.

Indeed, the implication (ii) = (i) follows exactly as in the proof of
the corollary. To show the implication (i) = (ii) let v with Lu < 0
have a non-negative maximum. Assume that u # 0. It follows that
f = —Lu does not vanish identically (as L is injective) and satisfies
f > 0. Therefore, (i) implies L™ f = —u > 0, which is a contradiction
to the assumption that v has a non-negative maximum.
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4. Networks and electrostatics

In this section we will discuss a context from physics in which graphs
appear naturally. More specifically, we will show how graphs serve as
the right objects to study electrostatics in a discrete setting. We will
first introduce the necessary background and notations and then turn
to the basic equations of electrostatics and their solutions. The main
focus will be on harmonic functions and three fundamental problems
of electrostatics: the Poisson problem, the Dirichlet problem and the
capacitor problem.

We start by describing our situation and fixing terminology. For
now, we consider a graph (b, ¢) with ¢ = 0 over a finite set X. Such a
setting is sometimes referred to as a network and written as (X, ). We
will write b for (b,0), @, for Qpo and Ly, for Lyo. A pair (z,y) € X x X
with b(z,y) > 0 is called an edge. Since (z,y) is an ordered pair, it
is natural to think of edges as being directed, that is, (z,y) is an edge
going from z to y. The set of all edges is denoted by F = E(X,b). The
function w: F — R given by

w((z,y)) =

b(w,y)

is called the resistance and b is called the conductance in the context
of networks.

For an edge e = (x,y), we call z = s(e) the source of e, y = r(e)
the range of e and € = (y, x) the reverse edge of e. As b is symmetric,
it follows that e € E if and only if € € E. An n-tuple (eq,...,e,) of
edges is called a cycle if

r(e;) = s(ejr1), j=1,...,n,

where we set e,,1 = €.
A map ¢: E — Ris called a flow if ¢(e) = —¢(€). The energy of
a flow ¢ is defined by

£¢) = 5 3 Feue).

eeE

For our subsequent considerations, it may be helpful to keep the
following interpretations of the quantities introduced above in mind:
Consider a static situation of currents in a system of wires or water in
a system of tubes connected at certain joints. This is modeled by a
network with the following correspondences:

e Functions on the vertices correspond to potentials, i.e., (differences
in) voltage or pressure on the joints.

e Flows correspond to electrical currents or water flows.

e Resistance corresponds to electrical resistance or thickness of tubes.
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e Charge distribution corresponds to the Laplacian applied to the po-
tential (Poisson equation of electrostatics).

In this setting, Ohm’s law applies and says that the potential dif-
ference U and the current I are connected to the resistance R via
R=U/I, e,
potential difference

resistance =
flow
The corresponding energy is then given by
1 102 1
Ul = —— = -I’R.
2 2R 2

We will come back to these interpretations from time to time in what
follows.

We will now investigate flows satisfying certain additional proper-
ties. The first property states that the total low times the resistance of
edges, i.e., the total potential difference, is equal to 0 along any cycle.

DEeFINITION 0.33 (Kirchhoff cycle rule). Let b be a graph over a
finite set X and let ¢: E — R be a flow on (X, b). Then, ¢ is said to
satisfy the Kirchhoff cycle rule (KCR) if

Z p(ej)w(e;) =0

for any cycle (eq,...,e,).

ExAMPLE 0.34 (Flows induced by functions). Let f € C(X). One
checks directly that ¥;: £ — R defined by

is a flow satisfying the Kirchhoff cycle rule. It is called the flow induced
by f. Clearly,

Wing =¥y + )\\I/g
forall f,g € C(X) and A € R.

In fact, the preceding is not just an example but rather the example
of a flow satisfying the Kirchhoff cycle rule. This is the content of the
next proposition.

PROPOSITION 0.35 (Characterization of flows satisfying (KCR)).
Let b be a graph over a finite set X and let p: E — R be a flow on
(X,b). Then, the following statements are equivalent:

(i) The flow ¢ satisfies the Kirchhoff cycle rule.

(ii) There exists an f € C(X) with ¢ = Wy.

In this case, Uy, = Wy, if and only if fi — fo is constant on each
connected component of the graph.
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REMARK. The last statement is known in physics as the arbitrari-
ness in fixing the zero of the potential.

PROOF. (ii) = (i): This is discussed in Example [0.34]

(i) = (ii): Without loss of generality, let (X,b) be connected
as, otherwise, we argue on each connected component of the graph
separately. Fix o € X and let f be a function on X with f(0) = 0. For
any € X let (zo,...,x,) be a path in X with zy = 0 and z,, = x and
define

—

n—

f(z) = (g, vj1))w((zg, Tj41)).

[
Il
o

This is well-defined since ¢ satisfies the Kirchhoff cycle rule. By con-
struction, we then have for z,y with x ~ y

f) = f(@) + o((z,y)w((z,v)),
that is,

This gives (ii).

We now turn to the last statement: Assume again without loss of
generality that the graph is connected and let Wy = Wy, Thus,

0=y _p,.
Letting f = f1 — fo, we infer
f(r(e)) — f(s(e))
w(e)

for any edge e. As the graph is connected, we conclude that f is
constant. OJ

The proposition says that functions on the vertices are in one-to-one
correspondence with flows on edges satisfying the Kirchhoff cycle rule.
Accordingly, it is possible to “translate” statements from the world of
functions to the world of flows and vice versa. This will be studied
next.

PROPOSITION 0.36 (Energy via flows and via functions). Let b be
a graph over a finite set X with associated form Q. If p: E — R is
a flow on (X, b) with ¢ = Yy for f € C(X), then

E(p) = Qu(f)-

REMARK. This is a version of the equality %% = %[ 2R discussed
in connection with Ohm’s Law.
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Proor. This follows by a direct computation as

£p) = 5 3 F (el

ecE

=2 3 )

(z,y)ER

_ % S b, y)(f(@) - £(©))* = Qulf).

z,yeX

b(z,y)

Here, we used ¢ = Uy, ie., o((z,y)) = b(z,y)(f(y) — f(x)) in the next
to last line. 0

We now turn to a second important property that a flow may satisfy.
This property may be interpreted as stating that the flow into a vertex
equals the flow out of the vertex.

DEFINITION 0.37 (Kirchhoff vertex rule). Let b be a graph over a
finite set X and let x € X. A flow ¢: E — R on (X, b) satisfies the
Kirchhoff vertex rule (KVR) at x if

> ple)=0.
e€E,r(e)=x

If a flow satisfies the Kirchhoff vertex rule at every vertex, then it is
said to satisfy the Kirchhoff vertex rule (KVR).

REMARK. If a flow ¢ satisfies the Kirchhoff vertex rule at x € X,

then
> ple)=0
ecE,s(e)=x
(and conversely). This follows since e € F if and only if ¢ € E and
ple) = —p(e).

Furthermore, for any decomposition of the edge set E\UE, = E, =

{e | r(e) = z} we have
D ple) =) ol@).

eckn eclE»

This gives the interpretation that the flow into a vertex equals the flow
out of a vertex mentioned above.

REMARK. By the laws of electrostatics, the current in a network of
wires satisfies both the Kirchhoff cycle rule and the Kirchhoff vertex
rule. Similarly, both Kirchhoff rules are “obvious” for the (static) flow
of water in a network of pipes.

We now give an interpretation of the Kirchhoff vertex rule for flows
coming from functions. We start with the definition of a harmonic
function for a graph. This concept was already introduced in Section [3]
We now extend the definition to subsets of the vertex set.
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DEFINITION 0.38 (Harmonic functions on graphs). Let (b,¢) be a
graph over a finite set X with associated Laplacian L;.. Let A C X. A
function f € C(X) is called harmonic on A (with respect to the graph
(b,c)) if

Lb7cf(ZL‘) =0
for all x € A. If f is harmonic on A = X, then f is called harmonic.

REMARK. The concept of a harmonic function is defined without
reference to a measure on X. However, f is clearly harmonic on A C X
with respect to (b, c) if and only if Ly.,,f = 0 on A for the operator
Ly c.m associated to (b, c) over the measure space (X, m) for one (all)
choices of m : X — (0, c0).

It is not hard to characterize under which conditions ¢ = W satis-
fies KVR. Note that by Lemma this characterizes flows satisfying
KVR within the class of flows satisfying KCR.

LEMMA 0.39 (Harmonic functions and Kirchhoff vertex rule). Let
b be a graph over a finite set X with associated Laplacian L. Let
f e C(X) and let ¢ = VU be the flow induced by f. Then, the following
statements are equivalent:

(i) The flow ¢ satisfies the Kirchhoff vertex rule at x € X.

(ii) Lyf(z) = 0.

In particular, ¢ = Wy satisfies the Kirchhoff vertex rule if and only if
f is harmonic.

PROOF. Due to

o((z,y)) = (fy) — f(2))b(z,y)

this is immediate from the definitions. O

We now study a fundamental problem in electrostatics of networks.
This problem consists of finding the flow generated by a given charge
distribution and subject to fixed voltages at certain points. Giving a
mathematical description of the ideas from physics behind this prob-
lem leads to equations involving the Laplacian of the network. Three
instances of such equations have received special attention. These are
presented next. To do so, we will assume that our network is modeled
by a connected graph (b, c) over a finite set X (even though we could
restrict to the case ¢ = 0).

The Dirichlet problem (DP). There are no charges in the interior
and we are given the voltage at certain points. The desired flow will
then satisfy the Kirchhoff cycle rule. Thus, it is induced by a function.
This function must then be harmonic at all points where there is no
voltage given since the flow satisfies the Kirchhoff vertex rule at all
such points. Thus, we are led to the Dirichlet problem:

Given a subset B C X (“the boundary”) and a function g on B,
find a function v on X satisfying:
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e [,, u=0on A=X\B (“w is harmonic on A”)
e u=gonB. (“u takes the value g on the boundary”)

The capacitor problem (CP). There are no charges outside of two
given sets (e.g., metal plates) on which the voltage is fixed as zero and
one, respectively. The desired flow will then satisfy the Kirchhoff cycle
rule. Thus, it is induced by a function. This function must then be
harmonic at all points where there is no voltage given since the flow
satisfies the Kirchhoff vertex rule at all such points. Thus, we are led
to the capacitor problem:

Given two subsets F,G C X (“the metal plates”), find a function
u on X satisfying:

e [, u=0o0n X\ (FUG) (“w is harmonic on X \ (F UG)"”)
e u=1and Ly.u>0on F (“u is 1 and is superharmonic on F”)
e u=0and Ly,u<0onG. (“w is 0 and is subharmonic on G”)

The Poisson problem (PP). We are given charges but no further
conditions on the voltage. Thus, we are led to the Poisson problem:
Given a function g on X, find a function u on X satisfying:

o Lb,cu =9

We will now show how these problems can be solved. In fact, we
will show even more and discuss how unique solvability of the capacitor
problem characterizes Laplacians on graphs.

We begin with a discussion of the Poisson problem. In fact, we have
already discussed problems of this type in Section 3| As the constant
function 1 is in the kernel of L;, for ¢ = 0, in general, there is neither
uniqueness nor existence of the solution of L, .u = g for a graph (b, c)
over X. However, a slight strengthening of the requirements will give
both existence and uniqueness. This strengthening consists in fixing
the voltage to be zero at one point. This is known as “fixing the gauge.”

THEOREM 0.40 (The Poisson problem with a fixed gauge). Let (b, c)
be a connected graph over a finite set X. Let p € X and let g: X \
{p} — R. Then, the Poisson problem with a fized gauge:

o Ly,u=gonX\{p}
o ulp) =0
has a unique solution. Moreover, if g > 0, then u >0 on X \ {p}.

PROOF. Set X = X \ {p} and consider the graph (b,é) over X
with b(z,y) = b(z,y) and é&(z) = ¢(x) + b(x,p) for z,y € X. A direct
calculation shows that u is the desired solution of the Poisson problem
with a fixed gauge if and only the restriction of u to X, that is, v = ug
satisfies

Lyv=g.
Note that if we start with v defined on X, we extend it by 0 to define
uon X.
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Now, ¢ does not vanish identically on any connected component
of (Z;, ¢) since the graph (b,c) is connected and, hence, p must have
at least one neighbor in every connected component of X. Thus, by
Lemma @, Lj - is bijective so the equation Lj v = g on X has a
unique solution v.

Now, suppose g > 0. We wish to show that u > 0. Let z € X \ {p}
be a minimum for u on X \ {p} such that u(z) < 0. We obtain

0 < g(x) = Lycu(z) = Y blw.y)(ulz) —uly)) + e(x)u(z) <0

yeX

and thus L, .u(z) = 0. Therefore, u(y) = u(x) for all y ~ x. Repeating
this argument shows that u is constant on the connected component of
X \ {p} which contains . Now, this connected component has at least
one vertex x, which is connected to p. As u(p) = 0, we have u = 0.
Therefore, u > 0. U

After this discussion of the Poisson problem we now turn to a dis-
cussion of the Dirichlet problem. We note that our analysis of the
Dirichlet problem below actually yields unique solvability of the ca-
pacitor problem. It also gives the existence of the effective resistance
metric found in the literature on networks.

THEOREM 0.41 (The Dirichlet problem). Let (b,c) be a connected
graph over a finite set X. Let B C X with B # 0, A = X \ B and
g: B — R. Then, the Dirichlet problem (DP):

o Ly,u=0o0nA
eu=gonB
has a unique solution. Moreover, for the set
A, ={heC(X)|h=g on B}
and f € Ay the following statements are equivalent:

(1) Qoe(f) = nf{Quc(h) | h € Ag}.
(ii) The function f solves the Dirichlet problem (DP).

In particular, there exists a unique minimizer in (1). Moreover, if 0 <
g<1, then0< f<1.

REMARK. The theorem above says that the solution of the Dirichlet
problem minimizes energy, as is sensible for a solution to a physical
problem.

REMARK. For B = (), the corresponding statement is wrong in
general. For example, L, .u = 0 does not have a unique solution if
c=0.

ProoOF. We will show a series of claims which will prove the theo-
rem (and a bit more).

Claim 1. The solution of (DP) exists and is unique.
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Proof of Claim 1. We transform the problem to an equivalent prob-
lem for which we will establish existence and uniqueness. Let f be a
solution of L,.f = 0 on A with f = g on B, that is, let f solve (DP).
For any x € A, we then have

OZZAL@cf(ﬁ)

= b(a,y)(f(z) = f(y) + c(x) f(x)

= b, y)(f(x) = W) + Dbz, y)(f(z) = f(y) + c(z) f(x)

= b, y)(f(z) — fv) + <C($) +> bz, y)) fl@) =Y blw,y)g(y)
= b(a,y)(f(x) = f(v) + d(z) f(z) — h(x)

with

d(x) = c(x)+ Y blz,y) and h(z)=>> b(z,y)g(y).

yeB yeB

Note that both d and h do not depend on f.

We let L;D) = Ly, 4, which we call the Dirichlet Laplacian associ-
ated to the graph (b, d) over A, given by bu(z,y) = b(x,y) for z,y € A,
d as above and the restriction f4 of f to A, we obtain from the above
that

(P) L' f4 = h on A

Now, if f is a solution of (DP), then f4 solves (P), as shown by the
above calculation. Conversely, any solution fof (P) becomes a solution
f to (DP) after extending f by g on B. This gives:

f solves (DP) <= f4 solves (P).

Therefore, it suffices to show that (P) has a unique solution, that
is, L(AD) is bijective. By construction, LE4D) is the Laplacian associated
to the graph (b4, d) over A. Thus, by Lemma [0.29] it suffices to show
that d does not vanish on any connected component of A, where the
connected components are defined with respect to by. Let Z be such
a connected component. Invoking the definition of d, it suffices to find
x € Z and y € B with b(x,y) > 0. First, we choose an arbitrary
y € B and o € Z. As the graph is connected there exists a path
(0,21, ..., x,) in (X, ) with 2y = 0 and x,, = ¢/. Let j be the smallest
index such that x; does not belong to Z. Then, letting y = z;, y
belongs to B as otherwise it would belong to Z since Z is a connected
component. Thus, z = z;_; € Z and y = z; € B satisty b(z,y) > 0.
This finishes the proof of Claim 1.

Claim 2. Any minimizer of Q. on A, solves (DP).
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Proof of Claim 2. Suppose that there exists an f € A, with

Qbe(f) = min{ Qs (h) | h € Ag}.

Let ¢ be an arbitrary function supported on A. Then, f + Ay belongs
to A, for all A € R. Thus, the function

)‘ — Qb,c(f + )\QO) = Qb,c(f) + 2>‘Qb,c(f7 QO) + )\ZQb,C((p)

has a minimum at A = 0. Taking the derivative at A = 0 yields

0= Qb,c(f, 90) = Z Lb,cf(x)gp(x)

zeX

by Green’s formula, Proposition [0.8] As ¢ supported in A was arbi-
trary, we conclude that L,.f = 0 on A.

Claim 3. There exists a minimizer of (). on A,.
Proof of Claim 3. Let (f,) be a sequence in A, with

T Que(f) = min{Que(h) | h € Ay).

It follows that (Qp.(f.)) is a bounded sequence. Let o be an arbi-
trary point in B. Then, f,(0) = g(o) for all n € N as f,, € A,. As
we will show below, the boundedness of (Qy.(f,)) together with the
boundedness of (f,,(0)) implies that (f,(x)) is bounded for any =z € X.
By choosing a suitable subsequence we can, without of loss of general-
ity, assume that (f,,) converges pointwise to a function f. Obviously,

f €A, and

Que(f) = Que (lim fu) = lim Que(fu) = min{Que(h) | h € Ay},

Thus, f is a minimizer of Q). on A,.

It remains to show the desired boundedness of (f,(x)) for z € X.
Let x € X and let v = (zq, ..., z,) with o = 0 and z,, =  be a path
from o to x. Then, for any function u, we have by the Cauchy—Schwarz
inequality

[u(z) — u(o)]
< Z lu(r;) — u(w)1)

n—1
1
= 2 lulag) = ulasen) b 230) -
j=0

1/2
Tj, Tjy1) /

1 12 spq 1/2
< (Z(U(%’) — u(x;41))°b(x;, %‘H)) <Z b(z;, %‘H)l)
< QLM
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1/2
with C'(y) = Z?Zl b(xj,xjﬂ)*l) . Applying this to f,, and noting
that f,,(0) = g(o0) for all n since o € B, we get

[fa(2) = 9(0)] < CONQE(f).

As (Qpc(frn))n is bounded and C(v) does not depend on n, it follows
that (f,(z)), is bounded.

Claim 4. f 0 < g <1,then 0 < f <1.

Proof of Claim 4. Recall that Clgqjo f =0V f AL If f € Ay, then
Cpyjof € Agsince Cjgqj0g9 = g. Therefore, Cg jjo f is also a minimizer
of Q. as Qy is a Dirichlet form and thus Qp.(Cp110f) < Qpe(f). The
already proven uniqueness then gives f = Cjo1j0 f, which is equivalent
to0 < f< 1.

By combining the preceding statements we now prove the theo-
rem: Claim 1 yields the existence and uniqueness of solutions to (DP).
Claim 2 shows the implication (i) = (ii). Furthermore, in Claim 3, we
have shown the existence of a minimizer of (), . on 4,. We next turn to
(ii) = (i): The solution of (DP) and the minimizer of Q). on A, both
exist and are unique by the considerations above. As the minimizer of
Qv on A, solves (DP) by Claim 2, it coincides with the unique solu-
tion of (DP). Thus, this unique solution minimizes @, . on A,. Finally,
the last statement of the theorem follows from Claim 4. U

A consequence of Theorem [0.41] is the existence of the so-called
effective resistance Weg. We discuss this next. By letting B = {z,y}
for z,y € X with x # y and g: B — R by g(z) = 0 and g(y) = 1, we
obtain the following result.

COROLLARY 0.42 (Existence of effective resistance). Let b be a con-
nected graph over a finite set X and let v,y € X with © # y. Then,
there exists a unique f = f,,, with f(z) =0, f(y) =1 and Lyf =0 on
X\ {x,y}. This f is the minimizer of Q on

Ary = {h € C(X) | h(x) = 0,h(y) = 1}.

REMARK (Effective resistance and the resistance metric). The name
effective resistance arises from an interpretation in electrostatics as fol-
lows: Put a normalized voltage between x and y. The effective resis-
tance Weg(x, y) of the entire network is then determined via Weg(z,y) =
U/I where U =1 — 0 is the difference in voltage between x and y and
I is the arising current. As the energy F is given by E = UI, we can
replace I by E/U and obtain Weg(x,y) = U?/E = 1/E. Now, the
energy F is given by Q(f.,) and the formula

1
Qb(fwvy)

Weff(l'7 y) =

follows.
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The effective resistance can be expressed by the following remark-
able formula (Exercise [0.32 (a))

Weg(w,y) = max{(f(z) — f(1))* | @u(f) < 1}.

Indeed, the effective resistance defines a metric (Exercise [0.32] (¢*)).
However, it is somewhat easier to see that

r(z,y) =Wei'(ey),  x#y
and 7(z,y) = 0 for z = y defines a metric as well (Exercise [0.32] (b)).

As another consequence of Theorem [0.41], we also obtain the exis-
tence and uniqueness of solutions to the capacitor problem.

COROLLARY 0.43 (Capacitor problem). Let (b,c) be a connected
graph over a finite set X with associated Laplacian Ly.. Let F,G C X
be subsets of X with FNG =0 and F UG # (. Then, the capacitor
problem (CP):
eu=1and Ly.u>0 on F
e u=0andLy.u<0onG
e Ly,u=0o0onX\(FUG)

has a unique solution. This solution is given by the unique minimizer
Of Qb,c on

A={heC(X)|h>10onF, h<0 on G}
and satisfies 0 < u < 1.

ProoOF. By Theorem [0.41], the problem

e [, u=0o0n X\ (FUG)
euyu=1lonFandu=0o0ondG

has a unique solution which satisfies 0 < uw < 1. Furthermore, for
r e F,

Lycu(z) = Y bz, y)(ulz) = u(y)) + c(x)u(z)

= bz, y)(1 —ul(y)) + c(x) > 0.
For z € G,
Lycu(r) =Y bz, y)(u(x) — u(y)) + c(@)uly) = =Y _ b(z,y)u(y) < 0.

Therefore, u is a solution of the capacitor problem. It is unique as the
solution of the Dirichlet problem is unique by Theorem [0.41]
Moreover, this solution is the unique minimizer of (). on
A, ={heC(X)|h=1on F, h=0on G}

with g = 1p. Now, obviously A, C A. As Q. is a Dirichlet form and
Cpo1)A = Ay, the desired statement on the minimizer follows. O
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We are now ready to prove a characterization of Dirichlet forms
in electrostatics. Note that, although we have always formulated the
capacitor problem for Ly, it can just as well be formulated for a general
symmetric operator L. However, if we have unique solutions, L is
immediately the Laplacian associated to a connected graph, as the
following result shows.

THEOREM 0.44 (Characterization of graphs in electrostatics). Let
X be a finite set and let Q) be a symmetric form over X with associated
operator L. Then, the following statements are equivalent:

(i) There exists a graph (b, c) over X such that b is connected or ¢ does
not vanish identically on any connected component with L = Ly,

and Q - Qb,c'
(ii) Fwvery capacitor problem (CP) for L on X has a unique solution.

PRrROOF. (i) = (ii): By Corollary there is a unique solution
on every connected component of the graph whose intersection with
the set ' U G from the capacitor problem is non-empty. In the case
of a connected component whose intersection with F' U G is empty,
the capacitor problem reduces to finding a harmonic function on this
component. Clearly, the constant function 0 is harmonic and non-
vanishing ¢ on this component yields uniqueness of this solution.

(ii) = (i): Let I be the matrix of L, so Lf(z) = >_ . l(z,y)f(y)
for all f € C(X) and z € X. By Lemma[0.9] in order for L to be equal
to Ly, for a graph (b, c) over X we need to show I(z,y) < 0 for x #y
and ) v l(2,y) >0 for all z € X.

Let x € X and let 1, be the characteristic function of {z}. If
F = {z} and G = X \ {z}, then the unique solution u of (CP) must
satisfy u = 1,. Since u solves (CP) for L, we get Lu < 0 on G and,
hence, for all y # x,

l(y,z) = L1,(y) < 0.
By the symmetry of @ it also follows that {(z,y) < 0. If F = X, then
u, the unique solution of (CP), must satisfy u = 1 so we obtain from
(CP) that Lu > 0 and, hence,

> lz,y) = Li(z) > 0

yeX
for all x € X. This shows that L and @) are associated to a graph by
Lemma [0.9

We now show that the graph (b, ¢) must be connected if ¢ vanishes

on some connected component. Suppose not and let U be a connected
component of (b, c) where ¢ vanishes. Let F,G C X \ U be such that
FUG # () and FNG = (), which is possible since we assumed that (b, ¢)
is not connected. Since (FUG)NU = () the capacitor problem reduces
to Ly.u = 0 on U. Thus, all constant functions on U are solutions to
the capacitor problem on U since ¢ = 0 on U. This contradicts the
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uniqueness of the solutions of the capacitor problem and, therefore,
implies that (b, c) must be connected. O

From Lemma [0.29 we know that ¢ being non-vanishing on any con-
nected component is equivalent to injectivity of the operator Ly ., which
is equivalent to (). being an inner product. This gives the following
immediate corollary.

COROLLARY 0.45. Let X be a finite set and let Q) be a symmetric
form over X which is an inner product with associated operator L.
Then, the following statements are equivalent:

(i) There exists a graph (b,c) over X with L = Ly, and Q = Qp..
(ii) Every capacitor problem (CP) for L on X has a unique solution.

5. The heat equation and the Markov property

In this section we present another way of looking at graphs and their
associated forms and Laplacians. More specifically, we will show that
Laplacians on graphs are exactly the operators describing a “heat equa-
tion” on a finite set. The mathematical formulation of this connection
requires the concepts of a semigroup and of the Markov property.

See Excavation Exercises [0.6], [0.7] and [0.§] for some of the required
background. More specifically, these exercises review the concept of
the norm of an operator on a Hilbert space, the basics of the semi-
group associated to an operator and how the semigroup behaves for
commuting operators.

Let (X, m) be a finite measure space. We will deal with operators
on ?(X,m). In order to simplify the notation, we will write L instead
of L, for such operators. Let L: ¢*(X,m) — (*(X,m) be a self-
adjoint operator. A continuously differentiable function ¢: [0, 00) —
(%(X,m) is a solution of the parabolic equation associated to L with
initial condition f € (?(X,m) if ¢ satisfies
e Oipy = —Lyp, fort >0
® v =f.

In this context we think of z € X as a space variable and ¢ € [0, c0) as
time.

We want to investigate conditions on L such that the preceding
equation can be thought of as a “heat equation” and the time evolution
gives a “heat diffusion” on the graph. A rather detailed discussion of
such conditions will be given in Section Here, we just note that it
is natural to aim for the following properties:

o If f >0, then ¢, >0 for all t > 0.
o If f <1, then ¢, <1 forallt>0.
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Indeed, the first condition states that the amount of heat remains
positive if the initial distribution is positive and the second condi-
tion implies that the diffusion process does not contribute to the total
amount of heat but rather distributes it in time. If L is such that the
above are satisfied for any solution of the parabolic equation, then we
will call the associated equation the heat equation.

Given f € (*(X,m), there exists a unique solution of the parabolic
equation above given by

—tL
pr=¢e"f.
L is defined via the power series

—tL __ - (_t>n n
et =2 L

n=0

Here, e™!

We call e=* for t > 0 the semigroup associated to the operator L.
Motivated by the above considerations, we say that the semigroup is
positivity preserving if f > 0 implies

for all ¢ > 0. Recall that a function satisfying f > 0 is called positive.
Therefore, the semigroup e~** is positivity preserving if it maps positive
functions to positive functions.

We say that the semigroup is contracting if f < 1 implies

for all ¢ > 0. If the semigroup e~* is both positivity preserving and

contracting, then e * is called a Markov semigroup and is said to
satisfy the Markov property. We note that the Markov property cor-
responds exactly to the two properties aimed at above. As e™* satis-
fies the parabolic equation associated to L, it follows that if e * is a
Markov semigroup, then e ** f is a solution of the heat equation with
initial condition f.

We now start towards characterizing the Markov property for semi-
groups e . We will need an auxiliary lemma which does not involve
graphs. In what follows, if A: ¢*(X, m) — ¢*(X,m) is an operator on
(*(X,m), then ||A]| denotes the operator norm of A which is defined
by ||A|l = sup{||Af]| | f € (X, m),||f|| = 1}. In particular, if A and
B are operators on (*(X,m), then ||AB]|| < [|A]|||B].

LEMMA 0.46 (Lie-Trotter product formula on finite sets). Let (X, m)
be a finite measure space. If A and B are operators on (*(X, m), then

: 141
eMB = lim (en?enP),
n—oo

PROOF. Set S,, = enA+B) and T, = endenB for n € N. We want
to show that ||S" — 7| — 0 as n — oc.
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We first note that for any operator L on ¢?(X, m) we have |lel]| <
elllll Consequently, it follows that

1Tl < llen|llen®|| < exl4lenlBl = nlAl+IBD)
and
< enl 4Bl < o (1AI+IBI)
[Snll < e Se .

A telescoping argument gives
n—1
Sy =Ty => Si(Sy—T)Ty .
j=0
Therefore,
15 = Tl < Cunl|Sn = Toll,

where C; = el4I+IBI  Moreover,

21 (A+BY X1 /A& 1 /BY
1S, — Toll = Zﬁ( n ) ‘ZH(E) Zﬁ(ﬁ)
§=0 k=0 1=0
SIS (AEBY Dy LAY (B
= n ENY \ n n
Jj=2 k+1>2
1
SCE
for some constant C'. Therefore,
C,C
ISy =Tl < —,
which yields the desired statement. U

We now characterize when a semigroup is positivity preserving in
terms of the matrix and the form associated to a self-adjoint operator.

THEOREM 0.47 (First Beurling-Deny criterion). Let (X, m) be a
finite measure space. Let L be a self-adjoint operator on (*(X, m) with
associated matriz | and form Q = Q. Then, the following statements
are equivalent:

(i) The matriz elements of the operator L satisfy, for all x,y € X

with x # v,
l(z,y) <0. ( “Operator”)
(i) The form satisfies, for all f € (*(X,m),
Q(If]) < Q(f). (“Form”)

(iii) The semigroup satisfies, for all f >0 andt > 0,
et f > 0. ( “Semigroup”)
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REMARK. The proof below gives yet another characterization of
when a semigroup e 'f, t > 0, is positivity preserving, namely, if and
only if
(iv) le7*Ef| < e ™| f| for all f € C(X).

Indeed, the “if” is clear and the “only if” is shown at the beginning of
the proof of (iii) == (ii). This is a useful characterization in various
situations.

PROOF. (i) = (iii): We first decompose L into a diagonal and an

off-diagonal part. More specifically, we write
L=L+D,
where L has matrix elements equal to those of L on the off-diagonal
and matrix elements equal to zero on the diagonal and D has matrix
elements equal to those of L on the diagonal and matrix elements equal
to zero on the off-diagonal. The Lie-Trotter formula, Lemma|0.46| then
gives
t

_ . _t7 _tp\"
e = lim <e nle nD> .
n—oo

Now, by assumption, L has only non-negative entries. This is then
also true of e nL. Also, e »P has only non-negative entries as it is a

diagonal matrix with exponential functions on the diagonal. Putting
this together, we infer that e~* has only non-negative matrix entries.
This gives (iii).
(ili) = (ii): From (iii) we easily obtain
e f < e ).
Indeed, write f = f, — f_ with f, = fVv0and f_ = —f V0. Note that
f+ >0, f->0and |f| = fy + f-. Now, a direct computation gives
] = et = e
< e el leT A
— e—th+ + e—th_
= e "Hf].

Here, we used assumption (iii) in the next to last step. From this
preliminary consideration we infer

(€ L, ) < Ke™ 01 < (e I 1)
Moreover, (|f|,|f]) = (f, f). This gives

(e = DIfLIf) = (e = DF, f).
Dividing by ¢ > 0 we infer

1

(e = DIfLIfI) = (

n (e_tL_I)f7f>‘

~ | =
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Noting that de ' = —Le ' so that dye |,—y = —L and letting
t — 0% in the inequality above then yields

—QUf) = (LIS [f) = (=Lf, /) = =Q(f).
This gives (ii).
(ii) == (i): This has already been shown in Lemma (a). O

REMARK. There is another characterization of the first Beurling—
Deny criterion involving the form and taking the maximum and mini-
mum of two functions (Exercise |0.33]).

Having dealt with the positivity preserving part of the Markov prop-
erty, we are now going to characterize the contracting part.

THEOREM 0.48 (Second Beurling—Deny criterion). Let (X, m) be a
finite measure space. Let L be a self-adjoint operator on £2(X,m) with
associated matriz | and form Q = Q. Then, the following statements
are equivalent:

(i) The matriz elements of the operator L satisfy, for all z,y € X

with © # vy,
l(z,y) <0 and Zl(m,z) > 0. ( “Operator”)
zeX
(i) The form satisfies, for all f € (*(X,m),
QOV fAL) <Qf). (“Form”)
(iii) The semigroup satisfies, for allt >0 and 0 < f <1,
0<ef<1. ( “Semigroup”)

PROOF. (i) <= (ii): This was already shown in Theorem [0.20]

(i) <= (iii): The equivalence of I(z,y) < 0 for = # y and the semi-
group being positivity preserving was already shown in Theorem [0.47]
For the remaining part, we start with a preliminary consideration. Set
f = L1 so that the statement of (i) is equivalent to f > 0. Consider
now the function u; = e7*1. This function satisfies uy = 1 and

@ut = —LeitLl = —eitLLl = —€7th
for all £ > 0. In particular,

1
lim —(u; — ug) = Oug|i—0 = — f.
vt t( t 0) | —o /
We now turn to proving the desired equivalence. If (i) holds, then
u satisfies vy = 1 and duy = —e ' f < 0, where the last inequality
follows as e~ is positivity preserving and f > 0 due to (i). This shows

that u; is non-increasing in ¢ and gives

et < 1.
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Now, let 0 < f < 1. Then the inequality above implies
0<elf<et1<i

as el is positivity preserving. This shows (iii).
Conversely, if (iii) holds, then we infer
1
71— a,—tL T L (o—tL
L1 = 9™ imp = lim — (e 1) <0
from which ) _ I(x,z) > 0 follows. O
REMARK. From the proofs of Theorem [0.20] and Theorem

above we actually see that, under the assumption [(z,y) < 0 for = # y,
the following statements are equivalent:

(i) The matrix elements of the operator L satisfy, for all z € X,
Z l(x,z) > 0.
zeX

(ii) The form satisfies, for all f > 0,

Q(f A1) <Q(f).

(iii) The semigroup satisfies, for all ¢ > 0,
et < 1.

Furthermore, we note that the condition Q(f A1) < Q(f) is equivalent
to the fact that @ is a Dirichlet form (Exercise [0.29)).

We now conclude this section with a characterization of the validity
of the Markov property via graphs.

THEOREM 0.49 (Characterization of the Markov property). Let
(X,m) be a finite measure space. Let L be a self-adjoint operator on
(%(X, m) with associated form Q = Qr. Then, the following statements
are equivalent:

(i) There exists a graph (b,c) over (X, m) with
Q=Qp. and L= Ly.m. ( “Graph”)
(ii) The semigroup e~ 'L, t > 0, satisfies the Markov property, i.e.,
0<ef<1 forall 0<f<I1. ( “Semigroup”)

PROOF. The statement directly follows by combining the first and
second Beurling-Deny criteria, that is, Theorems and with
Lemma [0.9 d

REMARK. By Theorem [0.22| graphs are in a one-to-one correspon-
dence with Dirichlet forms. Therefore, the preceding theorem implies
that Dirichlet forms are in a one-to-one correspondence with semi-
groups satisfying the Markov property.



46 0. FINITE GRAPHS

6. Resolvents and heat semigroups

It is rather remarkable that the same mathematical structure (i.e.,
Dirichlet forms) appears prominently in both the theory of the heat
equation and electrostatics. This is not only true in the discrete set-
ting considered in this book but also in the continuous setting. In
the continuous setting, instead of the Laplacian L, one considers the
continuous Laplacian A.

In this section, we will discuss some of the general mathematics
connecting the heat equation and electrostatics. Although the results
hold for general self-adjoint positive operators on an arbitrary Hilbert
space, we will stick to the setting of a finite set X with a measure m
and the associated Hilbert space (X, m). In order to simplify the
notation, we will write L instead of L,, for operators on this Hilbert
space.

The Excavation Exercises and review some facts of
linear algebra, in particular, the spectral theorem for self-adjoint oper-
ators which is used below.

Our considerations in Section [o| show that the heat equation leads
to the study of semigroups e~* for t > 0 with the Markov property.
This Markov property means that L is associated to a Dirichlet form or,
equivalently, to a graph. On the other hand, as discussed in Section [4]
electrostatics deals with the energy of a network which is encoded by
a Dirichlet form and leads one to consider basic problems of electro-
statics. These problems, which have various manifestations such as the
Poisson problem, the Dirichlet problem and the capacitor problem, all
involve the Laplacian L associated to a graph. As seen in our discussion
in Section {4} this yields equations of the form

Lu =g,

where it is sometimes necessary to modify the underlying graph.

In this sense, electrostatics naturally leads to the study of the
inverse of the operator L. As L itself may not be invertible, see
Lemmal0.29| for a characterization of the invertibility of L, this leads to
the study of the operators (L +a)~! for a > 0. As by Green’s formula
all of the eigenvalues of L are non-negative, it follows that L 4+ « is al-
ways invertible for o > 0, in fact, even for a > —\g, where )y denotes
the smallest eigenvalue of L. The operators (L + «)~! are known as
resolvents associated to L.

Mathematically, semigroups and resolvents are intimately related.
In fact, each one can be obtained from the other. The corresponding
formulae which we prove in this section are the following:

(L+a)_1 :/ e—tae—tLdt
0
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—tL . n ny\~1\"
~ —<L —)
et =t (5 (1+5))

for all t > 0. The first formula above is referred to as the “Laplace
transform.”

To make sense of these formulae, we think of the arising operators
as matrices and treat the formulae as being meant to hold in each
component separately. A more structural interpretation is possible but
not necessary for the subsequent considerations of this chapter. We
will, however, need this more general interpretation in later chapters.

We will require some preparation in order to provide a proof of
these formulae. Although we think of L as being the Laplacian arising
from a graph, the connection between semigroups and resolvents men-
tioned above hold for general self-adjoint operators with non-negative
eigenvalues.

The Laplacian L is self-adjoint on £2(X, m). As such, all eigenvalues
of L are real. The set of eigenvalues of L is called the spectrum of L
and denoted by o(L). For any A € o(L), we let £\ be the orthogonal
projection onto the eigenspace of A\. In this situation, the following
simple version of the “spectral theorem” is known from basic linear
algebra:

o [LZE, =0 for A # p.
o [ = Z)\EO’(L) E.

o [ = Z)\EU(L) AE,.
Moreover, by

for « > 0 and

(f,.Lf)=Q(f.f) =0

we infer that all of the eigenvalues of L are non-negative.

This allows us to express both the semigroup e ** and the resolvents
(L + a)7! easily via the projections Ey. Indeed, the above formulae
directly give

L" = A" E)
Ao (L)

for any natural number n. This immediately implies

o0

chL”: Z ©(N)Ey

n=0 Aeo(L)

whenever p(z) =Y 0 ¢,2" is a power series converging for all z € C.

In particular, we infer for the semigroup that
et — Z e_t)‘E)\
Xeo(L)

for any t > 0.
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As for the resolvents, we note for o > 0 that

1
R, = A 1By =
> eyt Y b
Aeo(L) A€o (L)

clearly satisfies the equations
R(L+a)=(L+a)R,=1.
Thus, R, is the inverse of (L + «) and we obtain
(L+a)'= Z (A +a)'E).
Ao (L)
Furthermore, as above,
(L+a)™= > (Aa)"E
A€o (L)

for all natural numbers n.

The above considerations clearly hold for any self-adjoint operator
with non-negative eigenvalues and not only the Laplacian L. For the
proof of the following lemma, we recall the elementary identity e* =
limy, oo (1 + £)™, which implies that

1 1\ n ny-1\"
—tA _ 4 _ n n
- () - (F00)7)

LEMMA 0.50 (Laplace transform). Let (X, m) be a finite measure
space. Let L be a self-adjoint operator on £*(X,m) with non-negative
eigenvalues.

(a) For all a >0,

(L+a)t = / e teetht,
0

( “Laplace transform”)

—tL . n ny\—1\"
— lim (2 (L —> .
¢ T (t 3 )

PROOF. (a) The discussion above gives

—ta —tL _ Z oz-‘r)\)E and L+a
A€o (L) €o(L)

(b) For allt >0,

Now, the desired statement follows easily by integration.

(b) As follows from the discussion above, for all natural numbers n

we have
Z e t/\E)\ and (? (?—{—L)l) = Z <%j_}\) E/\.

Xeo(L A€o (L)
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Now, the desired statement follows easily from

: 1 ! —tA
Jim <1+—@> =

This completes the proof. Il

The previous lemma is valid for any self-adjoint operator with non-
negative eigenvalues. If L is the Laplacian associated to a graph, then
et also satisfies the Markov property and this gives another charac-
terization of the Laplacian on graphs as follows.

COROLLARY 0.51. Let (X, m) be a finite measure space. Let L be a
self-adjoint operator on (*(X, m) with non-negative eigenvalues. Then,
the following statements are equivalent:

(i) For allt >0 and all f € (*(X,m) with 0 < f <1,
0< e’th < 1.
(i) For all « >0 and all f € (*(X,m) with 0 < f <1,
0<a(lL+a)'f<1.
(iii) There ezists a graph (b,c) over (X, m) with L = Ly ¢ .

PROOF. The equivalence between (i) and (ii) follows easily from
the formulae given in Lemma above. The equivalence between (i)
and (iii) was shown in Theorem |0.49| O

7. A Perron—Frobenius theorem and large time behavior

In this section we study positivity improving semigroups, existence
of ground states and large time behavior of the heat equation. In a
sense, we study how heat spreads both instantaneously (small time
behavior) and as time goes to infinity (large time behavior).

Excavation Exercises [0.9] [0.10] and [0.11] giving the spectral theo-
rem used for the previous section will also be helpful for this section.
Furthermore, Exercise [0.12| recalls the variational characterization of
the bottom of the spectrum while Exercise [0.13| reviews the concepts
of direct sums of Hilbert spaces and operators.

We start by identifying the property of operators which will be of
interest.

DEFINITION 0.52 (Positivity improving). An operator A: (*(X, m) —
(*(X,m) is called positivity improving if Af > 0 whenever f > 0 with
f#0.

Recall that functions satisfying f > 0 are called positive and func-
tions satisfying f > 0 are called strictly positive. Hence an operator is
positivity improving if it maps non-trivial positive functions to strictly
positive functions.
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We next show that, for semigroups and resolvents, positivity im-
provement can be characterized by connectedness of the graph. Recall
from Definition that we call a subset of a graph connected if any
two vertices in the subset can be connected by a path in the subset.
A maximal connected subset is called a connected component of the
graph and a graph is called connected if the graph consists of a single
connected component.

We note that for any subset U C X, the space ¢*(X,m) can
naturally be decomposed into ¢*(U,my) & (*(X \ U,mx\v), where
my and mx\py denote the restrictions of m to U and X \ U, respec-
tively. Furthermore, we note that if U is a connected component of X,
then L = Ly, maps (*(U,my) to (*(U,my) and (*(X \ U, mx\p) to
(X \ U,mx\y). Hence, L can be written as Ly @ Lx\y acting on the
direct product ¢*(U, my) & (*(X \ U,mx\v), where Ly means that L
is restricted to £2(U, my). This will be used in what follows.

PROPOSITION 0.53 (Characterization of positivity improving semi-
groups and resolvents). Let (b, ¢) be a graph over a finite measure space
(X, m) with associated Laplacian L = Ly . Then, the following state-
ments are equivalent:

(i) The semigroup e is positivity improving for one (all) t > 0.
(i) The resolvent (L+«)~" is positivity improving for one (all) o > 0.
(iii) The graph (b, c) is connected.

PROOF (i) = (ii): This follows immediately from the fact that

(L + ) fo e '@e~tEdt, which is shown in Lemma m (b).

(i) = (iii): Suppose that (b,c) is not connected so that there
exists a non-empty connected component U of X with U # X. We
may then write L = Ly @ Lx\y, where Ly is the restriction of L to
(U, my) and Lx\p of L to (2(X \ U,mx\y). It follows that

(L+a)=(Ly+a) o (Lxw+a)
Let f € (*(U, my) be positive and non-trivial. Then (f,0) € ¢2(U, my)®
(X \U, mx\v), which can be unitarily identified with ¢*(X, m), is pos-
itive and non-trivial but
(L+a) " (f,0) = ((Lv +a) " f,(Lxw + @) 7'0) = (Ly + )" f,0)
is not strictly positive. Hence (L + «)~! is not positivity improving.
(ii) = (i): Let f > 0 with f # 0. Let ¢: [0,00) x X — [0, 00)

via
pi(a) = e f(2).
By Corollary [0.51] we have ¢,(z) > 0 for all ¢ > 0 and z € X. We wish
to show that ¢ (z) > 0 for all t > 0 and x € X.
Assume that ¢y, (z9) = 0 for some tg > 0 and some zq € X. Then,
t — (o) has a minimum at ty. Thus,

8tg0t0 (33'0) = 0.
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As ¢y solves O,y = — Ly, this implies

0= L<pt0 (]70)
= m(lmo) D b0, y) (1 (0) — @1 () + ;1((? 0)) Pty (2o0)

— _ﬁ Z b(wo,Y)pr, (Y)-

By ¢ > 0 we conclude ¢y, (y) = 0 for all y ~ 2. By connectedness of
the graph, we obtain inductively that ¢, = 0. This gives the contra-
diction f = efolyp, = 0. O

REMARK. If the heat semigroup is positivity improving, then heat
spreads “instantaneously” over the entire space. This is often referred
to as the infinite propagation speed for the heat equation. Positivity
improving semigroups are also sometimes called ergodic.

REMARK. A positivity preserving semigroup P, = e~ is positiv-

ity improving if and only if only the trivial subspaces of ¢*(X,m) are
invariant under the semigroup and multiplication by functions on X

(Exercise [0.34)).

We will now focus on the behavior of the semigroup as time goes
to infinity. This will be investigated in two steps. We first show con-
vergence of the semigroup to the eigenspace of the smallest eigenvalue
and then study this eigenspace.

LEMMA 0.54 (Speed of convergence). Let L be a self-adjoint op-
erator on (*(X,m). Let \g < \; be the smallest and second smallest
eigenvalues of L, respectively, and let a« = XNy — N\g. If Ey is the orthog-
onal projection onto the eigenspace of \g, then

He)\oteftL . EOH < efat'

In particular,
le™" = Eo|| < e

if Ao = 0.

ProOF. We write L = 7 A;E; with pairwise different eigenval-
ues \g < A\ < ... <\, of L and E; the associated pairwise orthogonal
spectral projections onto the eigenspaces. These are the projections
denoted by E) in Section [6] As discussed there,

e—tL _ Z e—tAjEj‘
=0
This yields
e/\ote—tL — EO + Z €_t(>\j_/\0)Ej-

i=1
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From this we derive
He)\oteftL . EOH < e*(>\1*>\o)t

as follows: Let f € £*(X, m). We use the fact that the E; are pairwise
orthogonal twice to get

H(e/\ote—tL N EO)fHQ _ Z e—t()\j—)\o)e_t(/\k—)\o)<Ejf7 Ekf>
k=1

(E; pairwise orthogonal) = Z 6_2t()‘j—)\0)||Eij2

j=1

n
< 25 BP
=0

(E; pairwise orthogonal) = e ¥ Z E;f|?
j=0
= |
Since this holds for all f € ¢*(X,m), taking square roots yields the
conclusion. O

The result above shows that e*ote™* converges exponentially to Ej,

the orthogonal projection onto the eigenspace of \g. In particular, if
Ao = 0, we get that the semigroup e ** converges exponentially to Ej.
We will now investigate the properties of Ej in the case when the
graph is connected. The following result is known as the Perron—
Frobenius theorem and states that the eigenspace of A\ is one-dimensional.
We recall that by the variational characterization of the bottom of the
spectrum we have \g = inf Q(f), where the infimum is taken over all
f e A(X,m) with || f|| = 1.

THEOREM 0.55 (Perron—Frobenius). Let (b, c) be a connected graph
over a finite measure space (X, m). Let L = Ly.,, be the associated
Laplacian with form QQ = Q. and let Ny be the smallest eigenvalue of
L with Ey the associated orthogonal projection. Then, the eigenspace
of Ao is one-dimensional and there exists a unique normalized strictly
positive eigenfunction u corresponding to \g with

E()f = <u7f>u
for all f € (X, m).

Proor. We first note the following general fact.

Claim. A normalized function u is an eigenfunction corresponding
to Ao if and only if Q(u) = Ao.

Proof of the claim. If Lu = Aou with |ul| = 1, then Q(u) =
(Lu,u) = Xo||lul|? = Xo.
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Conversely, let u be normalized with Q(u) = Ag. Let A\g < ... < A,
denote the eigenvalues of L. Writing L = Z?:o AjE;, we note that

Mo = Qu) = (u, Lu) = (u, Y~ N;Eju) =Y Nj||Ejul?
j=0 J=0

with 37 o [[Ejull® = [lul|* = 1. This shows Eju = 0 for j > 1 and
FEou = u, so that Lu = A\yu.

We now show that any eigenfunction corresponding to A is either
strictly positive or strictly negative:
Let u be a normalized eigenfunction corresponding to Ag. Then,

Ao < Q(Jul) < Qu) = .

Here, we used the variational characterization of Ag in the first inequal-
ity and that @ is a Dirichlet form in the second inequality. Therefore,

Ao = Q([ul).

As |u] is normalized as well, we infer that |u| is also an eigenfunction
corresponding to A\g by the claim.

We now write u = uy —u_, where uy =uV0and u_ = —-uV0, so
that |u| = uy + u_. Then

1 1
wy=5(ul+w) and u = (ul—u)

are also eigenfunctions corresponding to Ag (or vanish identically). As-
sume, without loss of generality, that u, # 0. As e 'f is positivity
improving for all £ > 0 by Proposition [0.53] we infer

L

0<etu, =eMu,.

This implies
uy >0 and wu_ =0.

These considerations show that any eigenfunction corresponding to
Ao has a strict sign. We conclude that the eigenspace of )y is one-
dimensional as eigenfunctions with a strict sign cannot be orthogonal
to one another.

Now, as the eigenspace of )y is one-dimensional, we then obtain

EOf = <u7 f>u

for any normalized eigenfunction v and f € ¢*(X,m). Hence, any
normalized strictly positive u has the desired properties and is uniquely
determined by these properties. O

We note that A\g = 0 is equivalent to L being not invertible. We now
use Theorem [0.55( above to give another proof of Lemma [0.29| which
characterizes this property in the case when the graph is connected.
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COROLLARY 0.56 (Characterization of \g = 0). Let (b, ¢) be a con-
nected graph over a finite measure space (X, m), L = Ly cm, Q@ = Qpe
and Ay be the smallest eigenvalue of L. Then, A\g = 0 if and only if
c=0.

PROOF. From Theorem and its proof, we know that
1
Yo = Q) =3 3 bla,y)(ue) — u)* + 3 ela)u(e),

z,yeX rzeX

where u is the unique strictly positive normalized eigenfunction corre-
sponding to Ao which minimizes Q(f) over ||f|| = 1. If Ay = 0, then
¢ = 0 since u > 0. Conversely, if ¢ = 0, then taking u to be a constant
function such that ||u|| = 1 will minimize Q(f) with value \y =0. O

REMARK (The case ¢ = 0). In fact, if ¢ = 0, the dimension of the
eigenspace of A\g = 0 is equal to the number of connected components

of the graph (Exercise [0.35)).

We now introduce some terminology related to the quantities pre-
sented above.

DEFINITION 0.57 (Ground state and ground state energy). Let
(b,c) be a connected graph over a finite measure space (X, m) with
associated Laplacian L = Lj.,,. The smallest eigenvalue Ay of L is
called the ground state energy and the normalized positive eigenfunc-
tion u corresponding to Ag is called the ground state.

We also introduce the heat kernel, which arises from the heat semi-
group e~ '~

DEFINITION 0.58 (Heat kernel). Let (b, c) be a graph over a finite
measure space (X, m) with associated Laplacian L = Ly .,,. The map

p:[0,00) x X x X — [0, 00)
defined by
e f(x) = pilx. ) fy)m(y)

yeX
for all t > 0, f € £*(X,m) and x € X is called the heat kernel.

REMARK. From the symmetry of the semigroup, which follows from
the self-adjointness of the operator, we note that

p(r9) = L @)/ my) = (1)
1 —tL _ e—tL m(zx
= m@ Lo, 1y) = e 1o (y)/m().

The next result connects the heat kernel and the ground state and
ground state energy.
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THEOREM 0.59 (Convergence to the ground state and ground state
energy). Let (b,c) be a connected graph over the finite measure space
(X,m). Let L = Ly, be the associated Laplacian with ground state
energy Ao, ground state u and heat kernel p. Let \y > Xy be the second
smallest eigenvalue of L and let av = Ay — Ag.

(a) Forall z,y € X,

e—at

m(w)m(y)
( “Theorem of Chavel-Karp for finite graphs”)

|2 pe(z, y) — u(@)uly)] <

(b) For allx,y € X,

o1
fim = logpe(z,y) = =Ao.
( “Theorem of Li for finite graphs”)

PROOF. To prove (a), first observe that for any f € (X, m) we
have |f(z)| < ||fl|/+/m(z). Now, the formula for £y in Theorem [0.55
gives Fol,(z)/m(y) = u(z)u(y) while p(z,y) = e L1,(z)/m(y) by
definition. From Lemma [0.54 we then obtain

|6A°tpt(x,y) . u(x)u(y” _ |e ote—t 1y(:E) — Egly(l‘)l

m(y)
le*te™*" — Ey|[|| 1y
m(y)y/m(z)
e—at
— Vm(z)m(y)
This gives (a).
To prove (b), note from the above that
67017& efat
u(@)uly) — —m=——== < M'py(a,y) < u(2)uly) + ——.
m(z)m(y) m(x)m(y)
As w is strictly positive by Theorem [0.55] (b) follows after taking log-
arithms for large t, dividing by ¢ and letting ¢ — oo. U

We now give an immediate corollary which states that the only
eigenvalue which has a strictly positive eigenfunction is the ground
state energy.

COROLLARY 0.60 (Positive eigenfunctions are multiples of ground
states). Let (b,c) be a connected graph over the finite measure space
(X,m). Let L = Ly, be the associated Laplacian with ground state
energy Ao and ground state u. If there exists A € R and v > 0 which is
non-trivial and satisfies Lv = \v, then

A= N and v = au

for a > 0.
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PROOF. As ) is an eigenvalue, it follows that \y < A since )\ is the
smallest eigenvalue of L by definition. Now, from Lv = Av we get

Since v > 0, it follows that

e Mu(z) = e o(x) =D pilz, y)vy)mly) = e, y)o(y)m(y)
yeX
for all x € X. Now, choose zy € X such that v(zg) # 0. Then, by
Theorem [0.59] (b) and the estimate above, we get

1 1
—A = lim —log (@_MU(%)) > lim —log (p¢(o, zo)v(xo)m(z0)) = —Xo.
t—oo ¢ t—oo

Therefore, A < \y. Combining the two inequalities gives A = \y. That
v = au for a > 0 then follows as the eigenspace of \q is one-dimensional
by Theorem [0.55] d

We finish this section by looking at consequences for the case when
the killing term ¢ vanishes.

COROLLARY 0.61 (The case ¢ = 0). Let b be a connected graph over
a finite measure space (X, m). If L = Ly, is the associated Laplacian,
A1 is the second smallest eigenvalue of L and e~'F is the heat semigroup
with heat kernel p, then

Pt(%y) -

1 e—t)\l

’ < |
m(X) m(z)m(y)

PROOF. Since ¢ = 0, the ground state energy is 0 by Corollary
and the normalized strictly positive eigenfunction is given by the con-

stant function with value 1/4/m(X) by connectedness. Now, the state-
ment follows from Theorem [0.59] (a). O

Combining the above results yields the following characterization
of the case of a vanishing killing term.

COROLLARY 0.62 (Characterization of ¢ = 0). Let (b,c) be a con-
nected graph over a finite measure space (X, m) and let L = Ly, be

the associated Laplacian with heat semigroup e~** and heat kernel p.
Then,

lim py(z,y) =0
for all x,y € X if and only if

c# 0.

ProOOF. If ¢ = 0, then p;(z,y) — 1/m(X) # 0 as t — oo by Corol-
lary On the other hand, if ¢ # 0, then Ay > 0 by Corollary [0.56]
Therefore, p;(z,y) — 0 as t — oo by Theorem [0.59| O
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REMARK. In Theorem [0.59] and Corollary one obtains expo-
nential convergence towards the ground state. The rate depends on
the distance between the first two eigenvalues, i.e., the so-called spec-
tral gap. This motivates the study of the spectral gap, which is an
important topic of research.

8. When there is no killing

In the previous sections we have seen various characterizations for
matrices, forms and operators associated to graphs where both an edge
weight and a killing term are present. In this section we consider
characterizations for the case when the killing term vanishes. As such,
this section will provide both a summary of the preceding material and
introduce several new ideas.

We let [ be a symmetric matrix on X with associated symmetric
form @) and operator L. That is,

> Uz y) f(x)g(y) = Q(f.9) = Qg, f)

z,yeX

— Z Lf(z)g(x) = Z f(z)Lg(z)

zeX rzeX

for all f,g € C(X). We note that if any one of I, @ or L is associated
to a graph, then all three are associated to the same graph. That is,
any one of the equalities | = ., Q = Qp. or L = Ly, for a graph (b, ¢)
over X, implies that all three equalities are true. The same is clearly
true for a graph b over X.

We will first recall the characterizations for matrices, forms and
operators associated to graphs (b,c). We will then discuss the case of
no killing, i.e., when ¢ = 0 for each of the objects. In some cases, this
has already been done in the previous sections, in other cases, we will
introduce new ideas.

We start with matrices. Lemma [0.9 shows that [ is associated to a
graph (b, ¢) if and only if

I(z,y) <

> lzy) >

yeX

0 forall z# y and
0 forallzelX.

Furthermore, Lemma [0.9] also shows that [ is a matrix associated to a
graph b if and only if

I(z,y) <

> Uy

yeX

0 forall z # y and
0 forall z e X.
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Hence, we see that the difference between graphs with ¢ # 0 and ¢ =0
is precisely encoded in the sum ) _ I(7,y). Indeed, it is the case that

(@) = S U, y)
yeX
when connecting graphs and matrices. This gives the matrix perspec-
tive on both graphs (b, ¢) as well as graphs b over X.
We next discuss the Dirichlet form characterization for graphs. We
recall that () is a Dirichlet form if and only if () is compatible with all
normal contractions C, that is,

Q(Co f) <Q(f)

for all f € C'(X) and all normal contractions C. Theorem shows
that Q = Q. if and only if @ is a Dirichlet form. In fact, Theorem 0.20]
gives even more information as it states that @) is a Dirichlet form if
and only if @ is compatible with Cjo;j, where Cjgqyo f = 0V f A1,
if and only if |f(z) — f(y)| < |g(x) = g(y)| and [f] < |g| imply that
Q(f) < Q(g) for all f,g € C(X). This gives the form perspective on
graphs (b, ¢).

For the form perspective on graphs b over X, i.e., graphs without
killing, we start by defining the notion of a contraction. We call a map
C: R — R a contraction if

[C(s) = C()| < |s — 1

for all s,t € R. Hence, the difference between a contraction and a
normal contraction is that we do not require that C'(0) = 0 for a
contraction. Note, in particular, that

C(s) = sV 1=max{s, 1}

is a contraction which is not normal. We now present a counterpart to
Theorem |0.20] characterizing symmetric forms which are associated to
graphs b over X.

THEOREM 0.63 (Characterization of forms associated to graphs
with no killing). Let @ be a symmetric form over a finite set X. Then,
the following statements are equivalent:

(i) There exists a graph b over X such that QQ = Qy.
(ii) For all f € C(X),

Q(f) =0 and Q(f V1) <Q(f)
(iii) For all contractions C' and f € C(X),

Q(Co f) <Q(f).
(iv) If f,g € C(X) satisfy | f(x)—f(y)| < |g(x)—g(y)| for allz,y € X,

then
Q(f) < Qg).
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PRrROOF. (i) = (iv): If |f(z)—f(y)| < |g(x)—g(y)| for all z,y € X,
then clearly
bz, y)(f(2) — f(y)* < bz, y)(9(x) — g())*

so that Qu(f) < Qu(g).

(iv) = (ili): Since |C(f(x)) — C(f(y))| < |f(x) — f(y)| for all
contractions C, it follows that Q(C o f) < Q(f).

(iii) = (ii): Since C'o f = f Vv 1 is a contraction, it follows that
Q(f v 1) < Q(f). Furthermore, taking the contraction C' o f = 0 for
all f e C(X) gives

0=0Q(0) =Q(Co f) <Q(f)
for all f e C(X).
(ii) = (i): We first note that

0<Q(1)=Q(OV1)=<Q0)=0
so that Q(1) = 0. By applying the Cauchy—Schwarz inequality to the
matrix elements of @), it then follows that Q(f,1) = 0 for all f € C(X).
Next, we observe that f, = fV 0 = limg,o(f Vs). For s # 0,
fVvs=s((f/s) V1) so that
Q(s((f/s) V1)) =s*Q((f/s) V1) < s°Q(f/s) = Q(f)

by our assumption on (). Therefore,

Q(f+) = QS V0) <Q(f)

for all f € C(X) by letting s — 0. A similar reasoning for f_ = —f V0,
gives that

Q(f-) < Q).

Now, by checking cases, we obtain

FALl=—(f—1)_+1

Therefore,
QUANL =Q(=(f—1)-+1)
=Q((f —1)-) —2Q((f —1)-,1) + Q1)
=Q((f —1)-)
<Q(f—-1)
=Q(f) —2Q(f.1) + Q1)
= Q(f).

Hence, as we have shown that both Q(f vV 0) < Q(f) and Q(f A1) <
Q(f) for all f € C(X), it follows that

Q(Cpyo f) <Q(f).
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Now, Theorem implies that there exists a graph (b, ¢) over X such
that @ = Qpe. As Q(1) = > v c(x) =0, it follows that ¢ = 0. This
completes the proof. Il

We now recall some of the operator characterizations for graphs
(b,c). First, by Theorem [0.24] L = L. if and only if L satisfies the

maximum principle, that is,
Lf(z)>0

for any f which achieves a non-negative maximum at z € X. Fur-
thermore, by Corollary [0.51 from the heat semigroup and resolvent
viewpoint, we get that L = L; . if and only if

0<e'™f<1
if and only if
1
0<(Lta)'f<—

for all f € 2(X,m)with0< f<1andallt>0anda>0.

We now turn to the operator perspective on ¢ = 0. In Corollary[0.27]
we have proven the so-called strong maximum principle, which says
that Lf(z) > 0 for any € X which is a maximum for f. We just
recall it here.

THEOREM 0.64 (Characterization of operators associated to graphs
with no killing). Let L be a symmetric operator over a finite set X.
Then, the following statements are equivalent:

(i) There exists a graph b over X such that L = L.
(ii) The operator L satisfies the strong mazimum principle.

Furthermore, in the case of L = L;, where (b,¢) is a connected
graph and )\ is the smallest eigenvalue of L, Lemma [0.29] and Corol-
lary give that ¢ = 0 is equivalent to L being not bijective, which
is equivalent to Ay = 0. In particular, this is also equivalent to the
existence of non-zero harmonic functions for L (which are the constant
functions).

We will now look at the semigroup and resolvent viewpoint on the
lack of a killing term. We have already seen one manifestation of this
in Corollary which stated that, in the long term, the heat kernel
will tend to O if and only if there is a killing term. Thus, as X is a
finite set, it follows that

eftLl(a:) = Zpt(l’, y)ym(y) — 0

as t — oo if and only if ¢ # 0. This gives the long-term perspective on
heat loss in the presence of a killing term.
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We will now consider the case of short-term behavior. In particular,
we will look at the validity of the equation

e 1 =1

for all ¢t > 0. We note that e **1 can be interpreted as the total
amount of heat found within the graph at time ¢. Hence, the equality
above indicates that no heat is lost at any time during the heat evolu-
tion. Heat semigroups which satisfy this equation are called stochasti-
cally complete or conservative. Otherwise, the heat semigroup is called
stochastically incomplete or non-conservative.

A natural way for this property to fail is to have a killing bound-
ary condition at some vertices, that is, that heat is removed as soon
as it reaches a vertex where killing occurs. As, by Proposition [0.53|
heat spreads instantaneously over any space, it follows that heat is lost
instantaneously in this case. As the result below shows, this killing
is exactly encoded in ¢ and is one of the reasons for the name killing
term.

THEOREM 0.65 (Characterization of semigroups associated to graphs
with no killing). Let L be a self-adjoint operator on ¢*(X,m). Then,
the following statements are equivalent:

(i) There exists a graph b over (X, m) such that L = Ly.
(ii) The semigroup e~tL is positivity preserving and satisfies

e 1 =1

for allt > 0.
(iii) The resolvent (L + «)~! is positivity preserving and satisfies

a(L+a) 1 =1
for all a > 0.

PROOF. (i) = (ii): That e~* for L = L, is positivity preserving
for all ¢ > 0 follows from Corollary [0.51] Furthermore, as ¢ = 0 we get
L1 =0 and thus L"1 =0 for all n € N. As e = > (—tL)"/n! it
follows that

e1=1.

(ii) = (i): We first note that e7*£1 = 1 and the positivity preserv-
ing property of e~ implies that e~** is contracting, i.e., e **f < 1 for
all f € (X, m) with f < 1. This follows as when f < 1, we obtain
0<e ™1 —-f)=el—etf=1—e""Lf so0 that

e—th S 1
for all f € ¢*(X,m) with f <1 and all ¢ > 0.
Therefore, as 0 < e L' f <1 for all f € (2(X,m) with 0 < f <1t

follows that L = L, for a graph (b, ¢) over (X, m) by Corollary |0.51]
Our aim is now to show that ¢ = 0.
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Suppose not, i.e., suppose that ¢ # 0. Without loss of generality,
we may assume that (b,c) is connected as otherwise we work on a
connected component where ¢ # 0. It follows from Corollary
that A\g > 0 where Ay is the smallest eigenvalue of L. Therefore, the
semigroup e~*Y converges exponentially to 0 by Theorem . As such,
there exists some ¢ > 0 such that e=**1 < 1. The contradiction shows
that ¢ = 0 so that L = L.

(ii) <= (iii): This is immediate from the identities

—1\ " oo
et = lim (E (L + %) ) and (L+a)*t= / e e th gy
0

n—oo \ t

found in Lemma [0.501 O

REMARK. It is also possible to base a proof of the fact that ¢ =
0 for (ii) = (i) in Theorem above on the Lie-Trotter product
formula (Exercise . Furthermore, stochastic incompleteness is an
instantaneous phenomenon, i.e., if it happens for one ¢ > 0, then it

happens for all ¢ > 0 (Exercise [0.37)).

9. Turning graphs into other graphs*

In this section we study the effect that changing the graph has on
the resolvent. We first show that sending the potential or killing term
to infinity at a point introduces a boundary with Dirichlet boundary
conditions. While no convergence for the operators can be expected, we
show convergence of the resolvents. Secondly, we show how gradually
disconnecting a graph decouples the resolvent.

Let (X, m) be a finite measure space. For two bijective operators
A and B on ¢*(X, m) the equalities

At B t'=AYB-AB'=B"YB-A)A"!

hold. These equalities can be checked directly and are essential for the
considerations of this section. Whenever A~! and B~! are resolvents,
these equalities are called the resolvent identities.

PROPOSITION 0.66 (Monotonicity of resolvents). Let (b,c) be a
graph over a finite measure space (X,m) and let L = Ly, be the
associated Laplacian. If ¢ < c and L' = L then

/
b,c/m>

(L+a)'f.g) <((L'+a)'f,g)
for alla >0 and f,g € (*(X,m) with f,g > 0.

PROOF. It suffices to consider the case of ¢ and ¢’ being equal except
at a single vertex o where (0) < ¢(0). Let v, = 1./m(z), A =
c(o) — d(0) and let A: (2(X, m) — £*(X, m) be given by

A() = <'7 QOO>(:00~
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A direct calculation gives L — L' = AA. By the resolvent identity, for
all f,g € ?(X,m) with f, g > 0, we have

(L'+a) " f9) = ((L+a)"f,9)
=ML +a) 'A(L+ )7 f, 9)
=ML+ ) f, 0o) (L' + ) o, g).

The statement follows since A\ > 0 and resolvents are positivity pre-
serving, that is, they map positive functions to positive functions by

Corollary Il

Given a graph (b,c) over (X, m) we recall the definition of the
Dirichlet Laplacian for a subset K C X. We let bx = b|gxx, mg =
m|x and

dic(z) = c(z) + Y blw,y)
yeX\K
for v € K. The Dirichlet Laplacian with respect to K is the Laplacian
LY

= LbK7dK7mK

on (*(K,mg). Equivalently, if mr: (2(X,m) — (*(K,myg) is the
canonical projection and i : (*(K,mg) — (*(X,m) is continuation
by zero on K, then Lg(D) = T L cmiK-

THEOREM 0.67 (Turning the potential up to infinity at a vertex
yields a Dirichlet Laplacian). Let (b,c) be a connected graph over a
finite measure space (X,m) and let o € X. Let X' = X \ {o} and
for X > 0 let (b,cy) be the graph on (X, m) with ¢x = ¢+ Al,. If
f,9€>2(X,m) and a > 0, then

Hm ((Lpeym + @) fr9) = (L) + o) 'y f, mx0g).

A—00

PROOF. For x € X, let ¢, € £*(X,m) be given by ¢, = 1,/m(z)
and denote i = iy, and T = 7wy/. Let Ly = Ly, m and Gy = (Ly+a)™?
for A > 0. The function

A= G)\(fl:, y) = (L/\ + 04>_1(10:0(y) = <(L)\ + a)_lgpx’ 903/>

is monotone decreasing by Proposition and bounded below by 0
by Corollary [0.51} Thus, the following limit exists for all z,y € X

G00<x7y) = )\h_g)lo G)\(l’,y).

Let A(-) = (-, po)¢o, and note that L, — Ly = (u — A\)A. From the
resolvent formula we infer

G)\ — GM = GX(LM - L)\)G'u = (,u - )\)G)\AGH
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Taking the matrix elements at z,y € X, setting = 0 and using the
symmetry of the operators involved gives

Ga(z,y) — Go(7,y) = —MGA\AGops, 90y>
= =Mz, GAAGopy)
= =M@z, Gapo) (Gowys Po)
= —AGx(7,0)Go(0,y).

Since the graph is connected, by Proposition the resolvents are
positivity improving so that Gy(o,y) > 0. Therefore, we obtain
Ga(z,y) — Go(z,y) _ Guol@,y) — Go(z,y)

1_ L _
A AGA(z,0) = = lim == o) Golo,y)

for all z,y € X. In particular, we get limy_,o, Gx(z,0) = 0 for all
x € X. Therefore, if f =1, or g =1,, then, since 71, = 0,

lim ((Ly +0)7'f.g) = 0= (L") + a)"'nf, mg).

Furthermore, setting y = o in the limit above, we get

_ Go(z,0)
1 _ Zo\%,9)
Jim MGy (z,0) Gol0,0)

Since Goo(z,0) = 0, we arrive at
Goo<x7 y) = G()(I', y) - )\1;11{;10 )\G)\<LU, O)G0<07 y)

B Go(z,0)
Go(o,0)

= Go(z,y) Gol0, ).

We now show that
WGOOi(Lg{D,) +a)= (Lg?) +a)rGoi =1
on 2(X’ m’), where m’ = m|x/, which will complete the proof. Note

that LY f(2) = Lof (x)+ %52 f(0). Let goo(+) = 7Goo(, ) = Goo(a,-),
go(+) = Go(z,-) and ho(-) = Go(o, -). By what we have shown above

go(0)
o = Jo — —=hy.
g 90 ho(o) 0

We calculate, for y # o,

(L) + )gn) = (L + @)an(s) ~ AL + )
_ N _ 9o(0) N b(y, o) _ ),
= Lo+ alauls) — 2020+ o) + L2 ()~ 2400 )
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Since {pztrexro 18 a basis for (2(X',m') and goo(y) = TG ips(y),
this yields
(LY + a)rGoi = 1.
On the other hand, since im = I—m/(0)A, ng) = mLgi on 2(X',m/),
GooA = 0 and Aip = 0 for ¢ € (*(X',m’), we get
Gooi(ng) + a)p = Gooim(Ly + )iy
= Goo(I —m(o)A) (Lo + a)ip
= lim G\(Lo + a)ip.
A—00
Using the resolvent formula Gy = Gog — A\G,\AGy we proceed
.= Go(Lo + a)ip — )\lim AGAAGo(Lo + a)ip
—00
=ip — lim MG \Aip
A—00
= .
Hence,
TGoi(LY) + ) = I
Thus, we have shown
TGosi = (LY + )7,
which finishes the proof Il

THEOREM 0.68 (Turning off an edge disconnects the graph in the
resolvents). Let (by,c) be a graph over a finite measure space (X, m)

with two connected components Xy and X5 and let x1 € X1 and x5 €
Xy. Let by = by + ALy(z, @2),(x2,21)}- Then, for all a >0,

. 1 -
)\llgl_'_«[/b)\,c,m + a) fa g> =0

whenever supp f C Xy and suppg C Xs.

PROOF. Let Ly = Ly, ¢ for A > 0. We start with a claim.
Claim. There exists a C > 0 such that for all A > 0 and all
f,9 € (X, m)
((La+ ) £, 9] < ClfIgll.
Proof of the claim. Let @)\ be the form associated to Ly for A > 0.
Then, since by(z1,x2) > 0 = by(x1, x2) and by = by otherwise, one has

Qa(p) = Qoly)

for ¢ € £*(X,m). In particular, for the smallest eigenvalue M1 ) of Ly
with normalized eigenfunction wl ,

uN = (LY 0Py = Q) > QoY) > .
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Let the eigenvalues of L) be given by 0 < ug/\) <...< ,ug\),‘) with
orthonormal eigenfunctions ?ﬁi’\), e ,w](\?‘). It follows that, for all f, g €
2(X,m),

N
Z f 1/1 >< )

1 —l—a

Z! (N, )|
. N 172 , N 1/2
< m (Z(fa ¢1(g/\)>2> (Z@’ /E;)\)>2>
1

[{f.(Lx+0a)"g)| =

I/\

= k=1
1
= —o—— I/ gl
o
using |21 = || 32, BLVAI2 = 32, [(h, w2 for b € £2(X,m) since the
eigenfunctions are orthonormal and (L, + a)_lwl(g’\) = —5 (’\) . This

u +a
proves the claim.

Now, let ¢, = 1,/m(z) and let xq, x9 be as assumed. Set

A() = 0u (@) = (5 022)) + 0 (5 P) — {5 021))
and, for A > 0,
Ry=(Ly+a)™!
It follows that Ly — Ly = AA and, by the resolvent identity, R\ =
Ry — AR\ARy. Therefore, we get for f, g such that supp f C X; and
supp g € Xo,
(f, Rag) = (f, Rog) — M(f, RaARog)
= (f, Rog) — M[f, Rapwy) ((Rog. pz1) — (Rog, P,))
= M/, Bapa,) ((Rogs ) — (Rogs 0i1))
= Mf, Bz, ) (Rog; P, ),

where the other terms vanish since Ly leaves the subspaces KQ(X 1,M1)
and (*(X,,my) invariant (where m; = m|x, and my = m|x,) and so
does Ry = (Lo + a)~'. Thus, by the claim above, there exists a C' > 0
such that

[(f, (L + )" g)] < A% fllllgll — O

as A — 0 and the statement follows. O

10. Markov processes and the Feynman—Kac formula*

In this section we discuss the connection between the semigroups

et arising from the Laplacian L = Ly ., and a Markov process.

Therefore, we connect the analytic perspective of Laplacians on graphs
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presented thus far with a probabilistic view. Although this viewpoint
is both interesting and of conceptual importance, the results presented
here are not used in most of the book.

The reader may want to solve Excavation Exercise for the
purposes of this section.

We start by giving an idea of how to think about the process. To
this end, we will take the point of view that we already know that et~
is a semigroup giving the transition probabilities of a Markov process.
We then sketch how the key quantities of the Markov process can be
identified in terms of the graph.

These consideration will be made precise later when we introduce
the corresponding process in detail. We will first recall some basic
notions from probability. We then construct an explicit process and
calculate some basic properties such as the expected jumping times
and jumping probabilities.

The link between the semigroup and the constructed process is then
established via the Feynman—Kac formula, which we prove at the end
of the section.

10.1. A basic intuition. In this subsection we give an idea of
how to think about the process associated to the semigroup. We will
not go into too much technical detail since this will be taken care of in
later parts of the section.

A continuous time Markov process on X consists of a memoryless
particle moving in time between the vertices of X. This process is
essentially characterized by two functions

p: X XX —[0,00) and ¢: X — [0,00)
with the following interpretations:

e p(z,y) is the probability that the particle jumps from x to y.
e ¢~ %) is the probability that a particle starting at z at time 0 is still
at x at time ¢.

Given these quantities, we can define P: [0,00) x X x X — [0, 1],
(t,z,y) = Pi(z,y), as

P,(x,y) = the probability that the particle is at y at time ¢

if the particle starts at = at time 0.

We can then compute the quantities p and ¢ from the short time be-
havior of P, as follows.

First, P,(z,x) is the probability that the particle that started at x
is found at x at time ¢. This means that the particle has either stayed
at x up to time t or has returned to x after leaving x. The probability
of staying at x is given by e~*®). On the other hand, the probability
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of leaving is 1 — e %®) and the probability of returning to z is given
by a probability r(¢) which tends to zero as ¢ — 0. Hence, we infer

Py(z,x) = e @) 1+ o (1)

where ¢, expresses the probability of returning to x and is given by
(1—e~*@)r(t). Therefore, @, has derivative zero at t = 0. We conclude
that

O Py (x, %) |t=0 = —q(z) + ‘:0;:(0) = —q(7).

In a similar way, one argues that the probability P,(x,y) for small
t and x # y is governed by the probability m;(z,y) of the event that
the particle starts at x and reaches y in one jump and then stays there
up to time t. That is,

Pt(x7y) = ﬂ-t(xay> + ww,y(t)v

where 1, ,(t) has derivative 0 at ¢ = 0. The probability m;(x, y) for this
event can be bounded by

(1= e p(a, y)e 0 < my(z,y) < (1— " )p(a, ),

where the term e *®) in the lower bound accounts for the probability
of not leaving y after reaching y. This leads to

O Pi(x,y)li=0 = q(x)p(x,y) + ¢, (0) = q(z)p(z,y).

Now, we connect these findings with the structure of the underlying
graph b over (X, m) via the semigroup. For the sake of simplicity, we
assume that ¢ = 0 first and discuss the case of arbitrary ¢ > 0 later.
We assume that the process given above is linked to a semigroup via
the identity

ey (z) = Po(x,y)

for z,y € X, t > 0 where e~F is the semigroup of the operator L =
Ly o.m on £2(X,m) for the form Q. In particular, for f, g € (*(X,m),

(e fg) = e f(a)glx)m(z) = (Z By(x, y)J‘(?J)) g(x)m(z).

zeX zeX \yeX
Thus, we may compute g and p using this identity as follows

Z b(l‘, Z) = Q(1$7 1:6)

zeX
= =0 (e "1, 12) im0
= —0e 1, (2)m(2)] =0
= =0 P(x,z)m(x)]=o
)
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Similarly, for x # y,
b(z,y) = —Q(1y, 1)
= 0i{e "1, 1) |i=0
= 91, (@)m() g
= 0, Pi(w, y)m(x)|i=o0
= q(@)p(z, y)m(z).
This gives

Y an x) = b x
p(x,y)—zzexbwz) d q() m(l“)y;(b( )

for z,y € X. Note that the symmetry of b does not imply the symmetry
of p but rather that

q(x)p(z, y)m(z) = q(y)py, z)m(y).
If ¢ is non-vanishing, then the considerations above yield

b(z,y)
vex bz, 2) + ()

<Z b(x,z) + c(x))

for x,y € X. This has two consequences. First, the process jumps
faster, as can be seen by the increase in ¢(x). Second, there is a prob-

ability of
> .ex bz, 2)

D eex b, 2) + c(x)

that if the particle jumps away from x it does not jump to any vertex of
X but rather leaves the system whenever ¢(x) > 0. The point to which
the particle leaves in this case is often referred to as the graveyard or
cemetery. In probability, one often says that the particle is killed at x
due to the presence of ¢(x) > 0. For this reason c is often referred to
as the killing term.

Note that the preceding discussion has shown that any Markov
process on a discrete set naturally comes with a graph. The aim of the
subsequent subsections is to show that, conversely, any graph gives a
Markov process. Thus, putting these together, we will show a one-to-
one correspondence between Markov processes on discrete spaces and
graphs.

In Section @ we introduced the heat kernel of the semigroup e~
for t > 0 as the function p: [0,00) x X x X — [0, 00) such that

e f(x) =Y el y) fly)mly)

yeX

and

p(x,y) = Z

1
q(z) = (@)

k(x)=1-—

tL
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for z € X,t > 0. By the calculations above, one sees that we have the
identity

1
pe(x,y) = Py(z,y
t( ) ﬂl(y) t( )
for z,y € X,t > 0.

10.2. Some probabilistic background. In this subsection we
want to make the considerations above rigorous. To this end, we need
some basic notions from probability, in particular, from the theory of
stochastic processes. For the convenience of the reader we briefly recall
these notions. For more details and background we refer to [Nor9§|.

Let (€2, F,P) be a probability space and let X be a finite or count-
ably infinite set. This also covers the case of stochastic processes on
infinite sets because the definitions of this section will be used in later
parts of the book on infinite graphs. We denote by P(A | B) the prob-
ability of the event A conditioned on event B. Moreover, for a random
variable Z: 0 — X we denote by E(Z) the expected value of Z and
by E(Z | A) the expected value of Z conditioned on A.

A family Y of random variables Y,,, n € Ny, taking values in X is
called a discrete time Markov chain if for all x1, ... xp,y € X we have

PYipi =y | Yo=21,....Ys =a) =PV =y | Vi = z).

The distribution of Yy is called the initial distribution of Y. If the
initial distribution is supported on x € X, then we say that Y starts
at z.

To define a continuous time Markov chain or Markov process, we
consider a right-continuous process X = (X;);~o on X with an initial

distribution. We define the sequence of jump times J: Ny — [0, 00)
by Jo = 0 and

Jpr = inf{t > J, | X, # X}

for n € Ny, where inf ) = co. We define the sequence of holding times
S: N — [0, 00| by

00 otherwise.

. {Jn—Jnl it J, < o0

The lifetime or explosion time ( is defined by

¢ = sup J,.
n€eNyp
After explosion, the process can be thought to have left X. It is con-
venient to introduce an additional point x,, to X which is often called
the cemetery. We then set X; = z, for ¢ > (. Such a process is called
minimal. The terminology minimal refers to the fact that after leaving
X the process does not return to X again. We call Y = (Y}, )nen, given
by Y, = X, for n € Ny the jump chain associated to X.
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A continuous time Markov chain or Markov process is a minimal
right-continuous process X = (X;);~o on X such that the jump chain
Y of X is a discrete time Markov chain and, for each n € N, the
holding times Si,..., S, conditioned on Yj,...,Y, | are independent
exponential random variables where the parameter of S; is given by
q(Y;) for j =1,...n and for some function ¢: X — [0, 00).

Such a process can be constructed via a discrete time Markov chain
Y over X and a sequence & = (&,)nen of independent exponentially
distributed random variables of parameter 1 that are also independent
of Y. Setting

1
—  \Sn Jp=51+...+5,, = sup J,
o) 1 ¢ = s

we can define a Markov process X: [0,00) x Q@ — X via

Sp =

X| i dni)x0 = Ya and X]i¢,00)x0 = Too

for n € Nj.

A random variable T: Q — [0, 00| is called a stopping time for X
if the event {T' = to} depends only on (X;);<4,. It turns out, and here
we only give a reference to the book of Norris [Nor98, Theorem 6.5.4]
as the proof is highly probabilistic, that every Markov process on X is
a strong Markov process, that is, for any stopping time T, the process
Xr = (X¢)¢>0 conditioned on T' < oo and X7 = z is a Markov process.

Given a Markov process X over X and x € X, we use the notation

P.(-) =P( | Xog=2) and E,(-)=E(|Xy=2x).

10.3. Construction of the process associated to the semi-
group. We next construct a process which we later show to be asso-
ciated to the semigroup. We start with the case ¢ = 0 and discuss the
case of non-vanishing ¢ at the end of this subsection. Exercise |0.14
concerning the number of jumps of a process will be used in this sub-
section.

Let b be a graph over a finite measure space (X, m). If ¢ = 0, the
two degree functions deg and Deg are given, for x € X, by

deg(z) = Zb(x,y) and Deg(z) = 2517) Zb(x,y).

m
yeX

We next define the Markov process X = X® associated to @, via
the semigroup e~F of the operator L = Lyg,,. Let (Q,F,P) be a
probability space and let Y = (Y, )nen, be a discrete time Markov
chain over X such that

b(z,y)
]P) YTL = YTL* = =
( Y ‘ 1 iB) deg(:c)
for n € Ny. This corresponds to the quantity p(z,y) which we calcu-
lated in the first subsection.
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Let (&,)nen be a sequence of independent exponentially distributed
random variables of parameter 1 which are also independent of Y. We
define the sequence of holding times S, n € N, and jumping times J,,,
n € Ny, via

1
Sp =
Deg (Yn—l )

with the convention that Jy, = 0. That is, in the notation of the
subsection above, the function ¢ is given by Deg. The probability for
Sp = Spa1 vanishes for some n € Ny so, for convenience, we restrict
the process to when this does not happen.

Since X is assumed to be finite, it is easy to check that ( =
SUP,en, Jn = 00 P-almost surely. So, for convenience, we will consider
the process only for ( = oco.

We define X = X°: [0,00) x 2 — X via

&n and J,=5+...+95,

Xt - YTL lft < [Jn, Jn+1).

Let us make some basic observations which will help us to interpret
the behavior of the process. First, we calculate that the expected
holding time from a vertex z is given by Deg(z). Hence, the larger the
sum v b(z,y) and the smaller m(z), the faster the particle jumps
when at z.

LEMMA 0.69 (Expected holding time). Let b be a graph over a finite
measure space (X, m) and let X = X be the associated process. Then,
for all n € Ny,

1

Deg(z)

PROOF. The random variables &, in S, = £, /Deg(Y,_1) are expo-
nentially distributed with parameter 1. So, we compute

E(an+1 ’ Xjn — x) —

S 1
E(Spi1 | Xy, =2) =E(Sp1 | Yo =2) = Deg() /o se”°ds = Deg(z)

This gives the statement. U

Next, we compute the probability of making zero, one or more
jumps from a vertex x at time ¢t. To this end, we denote the random
variable counting the number of jumps up to time ¢ by N(t), i.e.,

N(t) =sup{n e Ny | J, < t}.

With the help of the next lemma, we can make the considerations of the
first subsection rigorous. In particular, as the first statement shows, the
function ¢ of the first subsection coincides with the function ¢ chosen
here.
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LEMMA 0.70 (Probability of jumping). Let b be a graph over a finite
measure space (X, m) and let X = X° be the associated process. Then,

P, (N(t) = 0) = e~ Pes)t

P, (N = Py = 1AXy, =y)
yeX
_ Z b(x,y) (efDeg(y)t _ efDeg(:Jc)t) N Z b(iC, y) tG_Deg(y)t-
& m(z) (Deg(x) —Deg(y)) & m(z)

Deg(z)#Deg(y) Deg(f) Deg(y)

Additionally, equality holds for each term under the sum over y € X.
In particular,

lim ————>——~ = (.
t—0 t

PrRoOOF. We calculate in a straightforward manner

]P)gc(N(t) = 0) - IP’I(Sl > t) = ]P)(fl > tDeg(m)) _ /‘oo e Sds — e—Deg(az)t.

tDeg(z)
This gives the first statement. For the second statement, we calculate

Po(N(t) =1) =) P.(N(t) =1AX,, =)

yeX
=D PN () =1 Xy = y)Pu(Xy, = y).
yeX
Now, by the definition of X, we get
b(z, y)
deg(z)’
Using the independence of Y,, and &, we proceed to compute
Po(N(t) =1 X5, =y)
=PS <t<S1+5|YI=yY=2x)

P.(Xy, =y)=PYi=y|Yo=12) =

:]P’(Deg(yo)fl <t< Deg(Yo)&+ D oV, )52 |Y: =9, :x>
1
~* (B =< Bea® " Deaty >52>

t
:/ Deg(x)eDeg(x)s/ Deg(y)e "W drds
0 t—s

t
— —Deg(y)t —(Deg(z)—Deg(y))s
Deg(x)e e ds,
0

where the last two equalities stem from the fact that for an exponen-
tially distributed random variable £ with parameter 1, the density of
¢/a for a > 0 is exponentially distributed with parameter a.
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Plugging these findings into the calculation above and distinguish-
ing between the cases Deg(z) # Deg(y) and Deg(x) = Deg(y) we arrive
at

P.(N(t)=1)
- Z]P’Z(N(t) = 11Xy, =y)P(X;, =)
yeX
= Deg(z) (¢-Dest)t _ g-Destayy &:Y)
y€X,Deg(x)#Deg(y) (Deg(2) — Deg(y)) deg(z)
_ b(x,y)
D Deg(y)t ’ .
+ Z eg(x)te dea(r)

y€X,Deg(z)=Deg(y)

Given the definitions of Deg and deg, we obtain the statement for
P,.(N(t) = 1). The statement about the limit of P,(N(t) > 2)/t as
t — 0 follows easily via the formula P, (N(t) >2) =1—P,(N(t) <1)
and the first two statements. U

We next define the Markov process Xb¢ associated to a graph (b, c)
over (X, m) with a possibly non-vanishing c. In this case, the definitions
of the two degree functions deg and Deg read as

deg(x) = Z b(x,y) +c(x) and Deg(z) =

yeX

(zy@w+m»

for x € X. Let Y = (Y,,)nen, be a discrete time Markov chain over X
such that for n € Ny

1
m(z)

b(z,y)/ deg(x) ifz,y e X

c(x)/ deg(x ifre X, y=u2xy

P (Y = ylYoor = 2) = § O/ deel) e Xy
1 ifr=y=2xy

0 else,

where z, is the cemetery. Let (§,)nen again be a sequence of indepen-
dent exponentially distributed random variables of parameter 1 which
are also independent of Y. The sequence of holding times S,,, n € N,
and jumping times J,, n € Ny, are given via

1
Sp = ——F—
Deg(Yn—l)
with the convention that Jy = 0. In the case that ¢ # 0 it can be
checked rather easily that ( < co P-almost surely since the process will

reach z, in a finite time almost surely.
As before, we define X = X°: [0,00) x Q — X U {24} via

Xt — Yn lft S [Jn, Jn+1>~

& and  J, =S +...+8S,,
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10.4. The Feynman—Kac semigroup. In this subsection we in-
troduce the Feynman—Kac semigroup. We will later show that this
semigroup is equal to the semigroup of the Laplacian. To do so, we
compute the generator of the Feynman—Kac semigroup and discover
that the generator is the Laplacian.

We will introduce the Feynman-Kac semigroups for subgraphs and
show that their generator is the corresponding Laplacian with Dirichlet
boundary condition. This is slightly more general than what we need
for the Feynman—Kac formula on finite graphs. However, this consid-
eration for subgraphs is not very complicated and will be used later to
extend the result to infinite graphs.

Let (b, c) be a graph over (X, m) and let K C X be a subset. We
denote the restriction of m to K by myg. The graph (bg,ck) over
(K, mg) is given by bx = b|gxx and cx: K — [0,00) by

ck(z) =c(x) + Z b(z,y).
yeX\K
The corresponding Dirichlet Laplacian of (b, ¢) over (K, mg) with re-
spect to K is defined as an operator LY : 2(K, my) — (2(X, m)

CK,MK *

Let X = X® be the process associated to a graph b over (X, m) and
let K C X be a subset. Let 75: Q@ — [0,00) be the first exit time,
i.e., T is the time where the process first leaves the set K or

T =inf{t >0|X;, € X\ K}.

Clearly, Tk is a stopping time and 7x = J, = oo almost surely.

Next, we define the operators which turn out to be a semigroup.
We say that a family of operators S;: £*(X,m) — (*(X, m) for t > 0
defines a semigroup if for all ¢,# > 0 we have S;,» = S;Sy. This
implies, in particular, that Sy = I.

LEMMA 0.71 (Feynman—Kac semigroup). Let (b, c) be a graph over
a finite measure space (X, m) and let X = X° be the associated process.
For K C X, let L%D) be the Dirichlet Laplacian of (b, c) over (K, mg)
and let T be the first exit time. If Ty: (*(K,mg) — (*(K,mg) for
t >0 is defined by

ﬂf(x) — EIE (1{t<’7'K}6_ fOt(C/m)(XG)de(Xt)> ,
then T, is a semigroup such that

o @) = Tif (@)

t—0t t

for f e (K,mg) and z € K.

=L f()
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REMARK. Note that for v: X — [0, 00) the integral

/o v(Xy)ds = Z (Jn = Jn-1)v(X,) + (= In )o(Xiy,)

n<N(t)

defines a random variable which is almost surely finite since ( < oo
P-almost surely.

Proor. We first use the Markov property of X to show that T}
is a semigroup with T, = I. Denote by X' a copy of the process X.
Furthermore, we define the stopping time 7j to be the first time that
X' leaves K. We then compute, using the strong Markov property of
X, that

T,y f(x (1{t< -l (c/m)(XS)dsTt/f(Xt)>

) =
(1{t< e — [t (e/m) (K)ds g, (1{t,<7, e — [ (e/m)(Xs) s £ (X, )>)
(1{t+t/<7 e — i te/m)()ds = [ (c/m)(X,)ds f(xm,))

=E, <1{t+t’<7 e I c/m)(XS)de(XtH/))

= Tirv f ().

Therefore, T, Ty = Ty . Furthermore, the equality Ty = I is clear.
We next compute the derivative of T} f(z) at time ¢t = 0. Since X is
finite, we can assume without loss of generality that f > 0. To take the
derivative of T} f(x) at t = 0, we divide the expected value into three
parts according to the number of jumps up to time ¢. We compute

T,f(x) — 1 )
M =K. (1{t<TK,N(t)=0}€_ hermiaa g (Xt)>

1 — t c/m S
+ ZECE (1{t<TK,N(t):1}€ Jote/m)(Xs)d f(Xt)) + 1y ()
with

1
Uil(w) = %Em (1{t<7'1< N(t)>2}€ = Jo (e/m)(Xs s £(X ))

< C%P(t <, N(t) > 2)

— 0

as t — 07, where C' = sup,x f(z) and we used Lemma in taking
the limit.
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Next, we turn to the first term on the right-hand side of the equality
above and use Lemma [0.70] again in the third step to get

% <Ex (1{t<TK,N(t):0}€7 ofelmzat g (Xt>) -/ (x)>
_ %(e—t(c/mxm F(@)PL(N(t) = 0) — f(x))
_ % (e (Xyex baw)te@)/m@) £(1) — f(z))
1
o

oy (2o b)) )

ast — 0T,

Finally, we turn to the second term on the right-hand side of the
equality above and calculate

]' — t c/m S
?E“’ (1{t<TK,N<t>:1}€ Jo(e/m)()ds ¢ (Xt))

1
-2 S E, (1{N(t):1’xh:y}edl(c/m)(x%(tdl)(c/m)(y)) F(y).

yeK

To estimate the exponential terms on the right hand side we introduce
go = mingex(c/m)(y) and ¢ = maxyex(c/m)(y). Then, for every
y € K, we obtain the two-sided estimate on the summands of the right
hand side above

P, (N(t)=1,X;, =y)e " <E, <1{N(t):17XJ1:y}e—Jl(C/m)(w)—(t—Jl)(C/m)(y))
<P (N(t) = 1,X,, = y) e,

Summing over y € K and dividing by ¢, we can use Lemma to
estimate

1 o,

S PN = 1%, = 9) J(y) e

yeK

1 —Deg(y)t _ e—Deg(:c)t)

(e
T G A T s A

yekK,
Deg(x)#Deg(y)

1
t

+ D b(:v,y)teDeg(y”f@))-etq”'
yeEK,
Deg(x)=Deg(y)

— mzm) > b y) f(y)

ast — 07 for 7 = 0,1. As these sums are lower and upper bounds for
the term we are interested in, we get by recalling the equation on the
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expected value above

1 — [He/m s 1
zEI <1{t<TK,N(t)=1}e Jo(e/m)(Xs)d f(Xt)> — W Z b(x7 y)f(y),
yeK

ast — 0.
Putting all of these calculations together yields

t—0+ t

yeX yeK

= Li f(2).
This finishes the proof. O

10.5. The Feynman—Kac formula. We now prove the main re-
sult of this section. It links the semigroup of the Laplacian of a graph
with the corresponding process. We start with a general version from
which we deduce two corollaries that both offer different perspectives.

Excavation Exercise will be relevant for this subsection.

The following general version, which is formulated for subgraphs,
will also serve to prove a corresponding result for infinite graphs.

THEOREM 0.72 (Feynman-Kac formula for subgraphs). Let (b, c¢)
be a graph over a finite measure space (X, m) and let X = X be the

process associated to b. For a subset K C X, let Lg) = Ly ciomy be
the Dirichlet Laplacian and Tk be the first exit time. Then,

(D)

e_tLK f(x) = ]ECC (1{t<TK}€_ fo (c/m)(xs)dsf(xt)>
forall f € *(K,mg), x € K and t > 0.
PrOOF. By Lemma [0.71], the semigroup

Ef(gj) = Ea: (1{t<TK}e*fo(c/m)(Xs)d5f<Xt)>
satisfies

o T (@) = [ (@)
t

t—0

=L f(a).

Thus, L%)) generates both semigroups 7; and e 1%’ Since for any
given linear operator A on the finite-dimensional Hilbert space £2(X, m)

the ordinary differential equation
Op(t) = Ap(t),  »(0) =u

has a unique solution ¢: [0,00) — ¢*(K,m) for any u € (*(K,m), the
claim follows. O

)
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Next, we come to two corollaries. The first corollary shows how,
on the level of processes, the killing term can be decoupled from the
process. That is, we link the semigroup for a graph (b,c¢) with the
process associated to b.

COROLLARY 0.73 (Feynman—Kac formula for finite graphs for X°).
Let (b, c) be a graph over a finite measure space (X, m) with associated
Laplacian L = Ly . Let X = X? be the process associated to b. Then,

€_th(I) —E, (6_ fot(c/m)(Xs)de(Xt))
forall f € (*(X,m), x € X and t > 0.

PRrROOF. The statement follows immediately with the choice K = X
since Tx = ( = oo almost surely. O

REMARK. A direct consequence of the Feynman—Kac formula is the
inequality

e—tLb,c,mf < e—tLb,o,mf

for all positive f € £2(X, m). The inequality is strict if ¢ # 0 and ¢ > 0.
In particular, if ¢ # 0, then

e thhem] <1

for ¢t > 0, where 1 denotes the function which is constantly one on X.
This gives a probabilistic proof that e~**t.em1 < 1 for all ¢ > 0 if and
only if ¢ # 0, which was already shown via analysis as Theorem [0.65
in Section [§] We shall further explore the question of how such a strict
inequality can occur in the case of infinite graphs even when ¢ = 0 in

Chapter [7]

The final result of this section connects the semigroup of the Lapla-
cian directly with its associated process.

COROLLARY 0.74 (Feynman-Kac formula for finite graphs for Xb¢).
Let (b, c) be a graph over a finite measure space (X, m) with associated
Laplacian L = Ly . Let X = X% be the process associated to (b, c).
Then,

e[ (@) = Ba (Lo F(X0)
for all f € 2(X,m), v € X and t > 0.

PRrROOF. We embed the graph (b, ¢) over (X, m) into a supergraph
(0',0) over (X', m') via

X'= XUHzs}
Blows =b, W (tm2) = bz, 1) = c(a)

for x € X with m/|x = m and m(z,) arbitrary, where z, is the ceme-
tery introduced in Subsection [10.2l We apply Theorem [0.72| with the
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choice K = X C X' and observe that the restriction of the Lapla-
cian L' = Ly o, to X with Dirichlet boundary conditions is exactly
L = Ly, Furthermore, for the first exit time 7% of the process X’
associated to b’ and the explosion time ( of the process X associated
to (b, c), we have

{¢ >t ={rx >t}
Thus, we have by Theorem with the choice K = X C X,

e f(z) =R, (1{Tx>t}f(st)) = Ex<1{<>t}f(xt))7

where the last equality follows as the processes X; and X} agree before
they leave X. This finishes the proof. O

REMARK. The Feynman-Kac formula can also be presented via
supergraphs (Exercise [0.38). Furthermore, the formula can be used to
characterize the lack of killing (Exercise [0.39)).

We finish the section with yet another characterization of graphs
which is an immediate consequence of what we have proven above.

THEOREM 0.75 (Characterization of Markov semigroups and Markov
processes). Let (X, m) be a finite measure space and let L be a self-
adjoint operator on (*(X,m). Then, the following statements are equiv-
alent:

(i) e~ is a Markov semigroup for t > 0.
(ii) There exists a Markov process X = X% associated to a graph (b, c)
over (X, m) such that

et f(z) =E, (1{C>t}f(Xt)>
forall f € (*(X,m), v € X and t > 0.

PROOF. (i) = (ii): If e'L satisfies the Markov property, then
L = Ly, for a graph (b, c) over (X, m) by Theorem [0.49 Hence, the
statement follows directly from the corollary above.

(i) = (i): For 0 < f <1, we obviously have

0< Ex<1{<>t}f(Xt)> <1

tL is a Markov semigroup for ¢ > 0. O

Therefore, e~
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Exercises
Excavation exercises.

EXERCISE 0.1 (Discrete topology and continuity). Consider a finite
set X with the discrete topology which comes from the discrete metric
daise(z,y) = 1if x # y and dgisc(z,y) =0 if z = y.

(a) Show that every function f: X — R is continuous.

(b) Show that the space C'(X) of real-valued functions on X is a real
vector space with respect to pointwise addition and scalar multi-
plication.

(c) Give an example of a basis for C'(X).

EXERCISE 0.2 (Quadratic form). Let (b, ¢) be a graph over a finite

set X. Show that Qp.: C(X) — [0,00), f = Qvc(f) = Que(f. f)isa
quadratic form, i.e., for s € R and f,g € C(X), Qp. satisfies

Qve(sf) = SQQb,c(f)
and
Qve(f +9) + Quelf — 9) = 2(Qne(f) + Quel9)).

EXERCISE 0.3 (Hilbert space). Let (X, m) be a finite measure space.

(a) Show that
Gog) =3 F@)glaym()
zeX
defines a scalar product on C'(X) and

IFIF = <F £2
defines a norm on C(X).

(b) Let (*(X,m) be C(X) equipped with (-,-). Show that ¢*(X,m) is
a Hilbert space, that is, £2(X,m) is complete with respect to the
norm || - ||.

(c) Show that {e, | # € X} with e, = 1,/m'?(z) for z € X, where
1, is the characteristic function of {z}, is an orthonormal basis of
2(X,m).

(d) Show that ¢2(X,m) is unitarily equivalent to R*! where |X| de-
notes the cardinality of X.

EXERCISE 0.4 (Laplacian is self-adjoint). Let (b, ¢) be a graph over
a finite measure space (X, m). Show that the Laplacian Ly.,, is a
self-adjoint operator on (X, m).

EXERCISE 0.5 (Characterization of bijectivity). Let X be a finite
set and let A: C'(X) — C(X) be an operator. Show that the following
statements are equivalent:

(i) A is bijective.
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(ii) A is injective.

(iii) A is surjective.

EXERCISE 0.6 (Operator norm bound for the Laplacian). Let (X, m)
be a finite measure space.

(a) Let A be an operator on ¢2(X,m). Show that
1Al = sup{[IAfI| | f € (X, m), | fIl = 1}

defines a norm on the vector space of operators on £*(X,m). We

call || - || the operator norm.
(b) Show that if A and B are operators on £*(X,m), then
IAB| < [|AJIB]-

(c) Let (b,c) be a graph over (X, m) and let Ly.,, be the associated
Laplacian. Prove that

| Lb.em|| < 2sup Deg(z)
rxeX

where Deg(z) = —L~ (ZyeX b(z,y) + c(m)) is the weighted vertex

degree.

EXERCISE 0.7 (The semigroup solves the heat equation). Let (X, m)
be a finite measure space and let A be a self-adjoint operator on
2(X,m).

(a) Show that the sum

o0

1
—tA E n
n=0

converges absolutely for all ¢ > 0 with respect to the operator norm
| - || defined in Exercise [0.6]

(b) Show that the function ¢, = e f for f € 2(X,m) is the unique
solution of the differential equation

Oipr = —Apy
for t > 0 with ¢y = f.

EXERCISE 0.8 (Commuting operators and the exponential func-
tion). Let (X, m) be a finite measure space. Let A and B be operators
on ¢*(X,m) such that AB = BA. Show that

eAtB = 4B,
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EXERCISE 0.9 (Existence of eigenvalues for self-adjoint operators).
Let (X, m) be a finite measure space. Let A be a self-adjoint operator
on 2(X,m). Let ||A] be the operator norm of A as defined in Ex-
ercise above. Show that either ||A] or —||A]| is an eigenvalue for
A.

(Hint: Suppose that ||A|| # 0. Let f € ¢*(X,m) be such that
IIfll =1 and |JAf|| = ||A|| (why does this exist?). Let g = Af/||Af||
so that Af = ||A|lg and use this to show that Ag = ||A||f. Then either
f—g#0or f+ g # 0, which can be used to give an eigenvector for
LAl

EXERCISE 0.10 (Reducing subspaces). Let (X, m) be a finite mea-
sure space. Let A be a self-adjoint operator on £2(X,m). Suppose that
M is a subspace of £*(X,m) such that AM C M. Let M=+ denote the
orthogonal complement of M, that is, M+ = {f € (*(X,m) | {f,g) =
0 for all g € M}. Show that M~ is a subspace of £*(X,m) and AM+ C
M+

Such a subspace is called a reducing subspace for A.

EXERCISE 0.11 (Spectral theorem). Let (X,m) be a finite mea-
sure space. Let A be a self-adjoint operator on £2(X, m) and let o(A)
denote the set of eigenvalues of A. For every A € o(A), let E, de-
note the orthogonal projection onto the eigenspace of A\. That is, if
{f) f2,..., f)} is an orthonormal basis for the eigenspace of A, then
Ex(f) = 222, (f, f) 7. Show that:

(a) ErE, =01if X # p.
(b) I'=2 xco(a) En
(c) A= Z)\EU(A) AE).

(Hint: Use Exercises and above, note that eigenspaces are

reducing subspaces for A and use induction.)

EXERCISE 0.12 (Variational characterization of bottom of the spec-
trum). Let (X, m) be a finite measure space. Let @) be a symmetric
quadratic form with associated self-adjoint operator L on £2(X,m). Let
Ao be the smallest eigenvalue of L. Show that

Ao = Qf)-

min
fe2(Xm),llfll=1

EXERCISE 0.13 (Direct sums of Hilbert spaces and operators). Let
(Hy,({-,+)1) and (Ha,(-,-)2) denote Hilbert spaces, that is, complete
inner product spaces.

(a) Show that H; @ Hs, which is defined as H; x Hy with inner product

(-,-) given by

((w1,91), (T2,92)) = (21, Z2)1 + (Y1, Y2)2,



84 0. FINITE GRAPHS

is a Hilbert space.
(b) Let A; be an operator on H; and As be an operator on Hy. Show
that A; @ As, which is defined by

(A1 & A2)(z,y) = (A1z, Agy),

is an operator on H; & H,.

(c) Let || - || and || - ||o denote the operator norm on the space of
operators on H; and Hs, respectively, as defined in Exercise
above. If || || denotes the operator norm for operators on H; & Ho,
show that

| A1 @ Aol = max{[|As||1, [|Ar]]2}.

EXERCISE 0.14 (Finitely many jumps in finite time almost surely).
Let (6,)nen be a sequence of real positive random variables that take
values in a finite set and let (&,),en be a sequence of independent ex-
ponentially distributed random variables of parameter 1 which are inde-
pendent of #,,. Show that the random variable ¢ = sup,cy (0161 + - .. + 6,65)
satisfies ( = oo almost surely.

Example exercises.

EXERCISE 0.15 (Normal contractions). Show that the following
functions C': R — R are normal contractions.

(a) C(s) = |s].

(b) C(s) = (£s) V0
(c) C(s) =s AL

(d) C(s) =0V (sAl)

EXERCISE 0.16 (Positivity preserving but non-contracting). Give
an example of a self-adjoint operator on £2(X,m) whose semigroup is
positivity preserving but not contracting.

EXERCISE 0.17 (Non-positivity preserving and non-contracting).
Give an example of a self-adjoint operator on £?( X, m) whose semigroup
is neither positivity preserving nor contracting.

EXERCISE 0.18 (Smallest eigenvalue 0 but no graph). Give an ex-
ample of a self-adjoint operator on ¢?(X,m) whose smallest eigenvalue
is \p = 0 with constant eigenfunction ¢y = 1 but which is not associ-
ated to a graph.

Next, we present various examples which illustrate our theory. As
usual, it takes work to compute anything concrete. The examples below
are presented in order of increasing difficulty.
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EXERCISE 0.19 (Complete graphs). Let X = {1,..., N} for some
N € N. The complete graph with N vertices is given by by (z,y) = 1
for all x,y € X with  # y and cx = 0. Take your favorite number N
with NV > 5.
(a) Draw the graph.
(b) Write down the matrix [, ., of the Laplacian Ly, ...
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, ¢, m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = 1 and g =
In —1n-1.
(f) Solve the Dirichlet problem for B = {1,...,[N/2]} and g = 1.
(g) Solve the capacitor problem for

F={1,...,[N/4|} and G = {|N/4],...,[N/2]}.
(h) Solve the heat equation for the initial distributions f = 1{n;.

EXERCISE 0.20 (Star graphs). Let X ={0,1,..., N} for some N €
N. The star graph with N+1 vertices is given by b5(0, z) = bg(z,0) =1
for all z € X, x # 0 and bg(x,y) = 0 for all z,y # 0 and cg = 0. Take
your favorite number N with N > 5.

(a) Draw the graph.

(b) Write down the matrix [, ., of the Laplacian Ly .

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
cigenfunctions of the Laplacian Ly ¢ -

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem with fixed gauge for p = N and g =
L, -1y

(f) Solve the Dirichlet problem for B = {0,1,...,[N/2]} and g = 1.

(g) Solve the capacitor problem for F' = {1,...,|[N/2|} and G = {N}.

(h) Solve the heat equation for the initial distributions f = 1yy;}.

EXERCISE 0.21 (Line graphs). Let X = {1,..., N} for some N € N.
The line graph with N vertices is given by by (x,y) = 1 for all z,y € X
with |x —y| = 1 and by (x,y) = 0 otherwise and ¢, = 0. Take your
favorite number N with N > 5.

(a) Draw the graph.

(b) Write down the matrix [,, ., of the Laplacian Ly, ., .

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, ¢, m-

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem with fixed gauge for p = N and g = 1(n3.

(f) Solve the Dirichlet problem for B = {1, N} and ¢ = 1.

(g) Solve the capacitor problem for F' = {1} and G = {N}.

(h) Solve the heat equation for the initial distributions f = 1{n;.
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EXERCISE 0.22 (Cycle graphs). Let X = {1,..., N} for some N €
N. The cycle graph with N vertices is given by bo(z,y) = 1 for all
z,y € X with |[x—y| =1or {z,y} = {1, N} and be(z,y) = 0 otherwise
and cc = 0. Take your favorite number N with N > 5.
(a) Draw the graph.
(b) Write down the matrix [, ., of the Laplacian Ly .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly c.m.-
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = N and g = 1.
(f) Solve the Dirichlet problem for B = {1, |N/2|} and g = 1.
(g) Solve the capacitor problem for F' = {1}, G = {| N/2]} and g = 1¢.
(h) Solve the heat equation for the initial distributions f = 1{n;.
EXERCISE 0.23 (Wheel graphs). Let X = {0,1,..., N} for some
N € N. The wheel graph with N+1 vertices is given by by (z,y) = 1 for
allz,y € X with |[z—y| = 1or {z,y} = {1, N}, bw(0,2) = by (2,0) =1
for all x # 0 and by (x, y) = 0 otherwise and ¢y = 0. Take your favorite
number N with N > 4.

(a) Draw the graph.

(b) Write down the matrix I, ., of the Laplacian Ly, ., -

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, ¢y m.-

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem with fixed gauge for p = N and g =
L, N-1y-

(f) Solve the Dirichlet problem for B = {0,1,..., |N/2]} and g = 1.

(g) Solve the capacitor problem for F' = {1,...,|N/2|}, G = {N} and
g = 1g.

(h) Solve the heat equation for the initial distributions f = 1{n;.

EXERCISE 0.24 (Hypercube graphs). Let X = {0,1}" for some
N € N. The N-dimensional hypercube graph is given by by (z,y) = 1
forall x,y € X with |x—y| =1 and by(z,y) = 0 otherwise and ¢y = 0.
Take your favorite number N with N > 3.

(a) Draw the graph.

(b) Write down the matrix [, .,, of the Laplacian Ly, .,

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, c; m-

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem with fixed gauge for p = (1,...,1) and

9= l..0)-
(f) Solve the Dirichlet problem for B = {z € X | |z| < N/2} and

gle.
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(g) Solve the capacitor problem for F' = {(0,...,0)}, G ={(1,...,1)}
and g = 1g.

-----

EXERCISE 0.25 (Tree graphs). Take your favorite numbers k, N
with N,k > 2. Let by over X be the graph given by the first N spheres
of the rooted k-reqular tree with root o with edge weights equal to 1
and let ¢z = 0. (A tree is a graph without cycles. A tree is k-regular
rooted if every vertex except for the root o has k + 1 neighbors while
o has k neighbors. The n-th sphere is the subset of vertices whose
combinatorial graph distance is less than n, where the combinatorial
graph distance between two vertices is the smallest number n such that
the vertices can be connected by a path of n + 1 vertices.)

(a) Draw the graph and write down by.

(b) Write down the matrix [, ., of the Laplacian Ly, ...

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, c; m-

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem for g = 1;5y where B is the N-th sphere
and with p = o where o is the root of the tree.

(f) Solve the Dirichlet problem where B is the N-th sphere of the tree
and g = 15.

(g) Solve the capacitor problem for F' = {o} with the root o, G being
the N-th sphere and g = 1.

(h) Solve the heat equation for the initial distributions f = 1,y for the
root o.

EXERCISE 0.26 (Complete bipartite graphs). Let X = {1,..., N, N+
1,..., N+ M} for some N, M € N. The complete bipartite graph with
N + M vertices is given by bg(z,y) = bp(y,z) = 1 for all z,y € X
with x < N, y > N and bg(z,y) = 0 otherwise and cg = 0. Take your
favorite numbers N, M with N > 2, M > 3.

(a) Draw the graph.

(b) Write down the matrix [, ., of the Laplacian Ly, .

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, ¢, m-

(d) Compute the resolvents and the semigroup.

(e) Solve the Poisson problem for g = 1¢ . ny.

(f) Solve the Dirichlet problem for B = {1,...,|[N/2]} and g = 1.

(g) Solve the capacitor problem for F' = {1,...,[N/2]}, G = {M}
and g = 1g.

(h) Solve the heat equation for the initial distributions f = 1.
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EXERCISE 0.27 (Petersen graph™*). Let
X={(G,k)]|j=01k=1,... 5}
The Petersen graph is given by bp which defines a cycle graph on

{(0,1),...,(0,5)}, bp((1,k), (1,1)) = 1if k—l mod 5 = 2, bp((0, k), (1,k)) =

bp((1,k),(0,k)) =1for k=1,...,5 and ¢r = 0.

(a) Draw the graph.

(b) Write down the matrix [,, ., of the Laplacian Ly, ..

(c) Let m = 1. Determine the eigenvalues and a set of orthonormal
eigenfunctions of the Laplacian Ly, cpom.-

Solve the Dirichlet problem for B = {(1, 1) ,(1,5)} and g = 1p.
(g) Solve the capacitor problem for F' = {(0,1)} G = {(1,5)} and
g = 1g.
(h) Solve the heat equation for the initial distributions f = 1¢1);-

Challenge!

)
) Solve the Poisson problem for g = 11,05} and p = (0,0).
)
)

Extension exercises.

EXERCISE 0.28 (The normalizing measure counts edges). Let X be
a finite set. Let b be a graph with standard weights over X, i.e., b takes
values in {0,1} and ¢ = 0. Let A C X. Show that the normalizing

measure n(x) =3 b(z,y) = #{y | y ~ z} satisfies

n(A) = #E4 + %#GEA,

where Ey = {(z,y) € Ax A|z ~y}and 0gA = {(z,y) € (A x (X \
AN U XN\ A) x A) [z ~y}.

EXERCISE 0.29 (Characterizing Dirichlet forms). Let @ be a sym-
metric form over X. Show that the following statements are equivalent:

() QU A1) < Q(f) for all f € C(X).
(i) Q(Cpoao f) < Q(f) for all f € C(X) where Cpoyf =0V f AL

(Hint: Show that = ((—ef) A1) — fy = fV0ase — c0.)

EXERCISE 0.30 (Saturated sets and connected components). Let
(b, ¢) be a graph over a finite set X. A subset Y of X is called saturated
in (b,c) if z € X with z ~ y for y € Y implies that € Y. Show that a
subset Y saturated in (b, c) is a connected component of X if and only
if Y cannot be decomposed into two disjoint non-empty saturated sets.
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EXERCISE 0.31 (Restricting forms to subsets). Let b be a connected
graph over a finite set X and let () = @y be the form associated to b.
Let U be a proper subset of X. For a function f: U — R, we deﬁne

f the extension of f to X, via f( ) = f(z) for x € U and f( ) =

otherwise. Define the form Qy on C(U) by Qu(f) = Q(f). Show that
Qu is associated to a graph (by, cy) with non-vanishing ¢y .

EXERCISE 0.32 (Effective Resistance). Let b be a connected graph
over a finite set X and let L = L, be the associated Laplacian with
associated form Q) = Q.

(a) Show that the effective resistance defined by
1

Vet =000

where f = f,, is the unique function satisfying f(z) =0, f(y) =1
and Lf =0 on X \ {z,y} for x # y, satisfies

Wen(z, y) = max{(f(z) — f(y))* | Q(f) < 1}.

(Hint: Let x,y € X with z # y. Using Q(f) = Q(f + A1) for any
A€ R and Q(f) = Q(—f) it is possible to show (how?) that

. i Q(f)
F@)=ouf (=1 QU = r@#rw) (f(x) = f(y)?

This allows us to conclude the statement.)
(b) Show that

r(z,y) = W (@, y), T#y

and r(x,y) = 0 for x = y defines a metric on the graph.
(c*) It can actually be shown that

r’(z,y) = We(z,y),  x#y
and r(x,y) = 0 for x = y is a metric. Challenge!

EXERCISE 0.33 (Characterizing the first Beurling-Deny criterion).
Let ) be a positive quadratic form. Show that () satisfies the first
Beurling-Deny criterion, i.e., Q(|f]) < Q(f) for all f € C(X) if and
only if for all f, g € C(X)

QUf V) +QUf Ng) < QM) +Q(g)-

EXERCISE 0.34 (Positivity improving semigroups and invariant sub-
spaces). Show that a positivity preserving semigroup P; = e~*F is pos-
itivity improving if and only if only the trivial subspaces of £*(X,m)
are invariant under the semigroup and multiplication by functions on
X.
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EXERCISE 0.35 (Characterization of A\g = 0). Let (b, ¢) be a graph
over X with ¢ = 0 and let Ay be the smallest eigenvalue of L., =
Ly o.m. Prove the following statements:

(a) )\0 = 0.

(b) The space of eigenfunctions Vj corresponding to A\g = 0 consists of
all functions that are constant on each connected component.

(¢) The dimension of Vj is equal to the number of connected compo-
nents of the graph.

(d) Show that Lyg,, is not surjective and determine its range.

EXERCISE 0.36 (Stochastic incompleteness and the Lie-Trotter prod-
uct formula). Let (b,¢) be a connected graph over (X,m) and let
L = L., denote the associated Laplacian. Use the Lie-Trotter for-
mula to show that e7*£1 < 1 for all ¢ > 0 if and only if ¢ # 0.

(Hint: A symmetric matrix with non-negative entries whose rows
(or columns) sum up to 1 is called stochastic and whose rows sum
up to less than 1 is called substochastic. Show that these properties
are preserved under taking products of matrices so that e et is
substochastic if and only if ¢ # 0.)

EXERCISE 0.37 (Stochastic incompleteness is instantaneous). Let
(b,c) be a connected graph over (X,m) and let L = L;.,, be the
associated Laplacian. Show that if e7**1 < 1 for some ¢ > 0, then
e 1 < 1 forall t > 0.

(Hint: Use the semigroup property, i.e., that e~
for all s,¢ > 0.)

(s+t)L _ e—sLo—tL

EXERCISE 0.38 (Feynman—Kac formula via supergraphs). Let (V/, )
be a graph over a finite measure space (X', m’) with associated Lapla-
clan L' = Ly o . Show that there is a graph b over a finite (X, m)
such that X’ C X, m|x = m/, b|xxx» = 0’ and that for the Markov
process X associated to b we have

e f(2) = By (Licry f(X0))
for all f € (*(X',m'), z € X', where Tx- is the first exit time of X'.

EXERCISE 0.39 (Characterizing ¢ = 0). Let (b, ¢) be a graph over a
finite measure space (X, m). Show that the process (X;) does not leave
X for all t > 0 if and only if ¢ = 0.
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Notes

With the exception of Section [9], the material found in this chapter
is certainly well known, though scattered throughout the existing liter-
ature (see the discussion at the end of these notes) and not necessarily
presented via our perspective of bringing together Dirichlet forms, ge-
ometry of graphs and spectral theory.

The crucial references for us are the papers of Beurling/Deny [BD58|,
BD59]. These works announce and outline a general theory connecting
electrostatics and heat diffusion through what is there called a Dirichlet
form. The setting for these papers is that of locally compact topolog-
ical spaces allowing for a Radon measure of full support. They do
not provide proofs in this general setting. These proofs were provided
later in various papers, see the monograph of Fukushima [Fuk80] for a
detailed treatment and further references. However, in [BD58|, Beurl-
ing/Deny give a complete treatment for the special case in which the
locally compact space in question is a finite set and the measure is 1
at every point. Roughly speaking, we follow the treatment of [BD58]
by considering a finite set but with an arbitrary measure.

The notions introduced in Section [I] are completely standard.

Section [2| rephrases the basic setting of Beurling/Deny [BD58| us-
ing the language of graphs. In particular, Part (a) of Lemma is
Remarque 2 in [BD58] and Part (b) which characterizes the compat-
ibility with normal contractions can already be found in the proof of
Théoreme 1 in [BD58]. The correspondence between Dirichlet forms
and graphs found in Theorem (and the underlying equivalence of
(i) and (iii) in Theorem are Théoreme 1 in [BD58§].

Although maximum principles for Laplacians on graphs appear
throughout the literature, we could not find an earlier treatment of the
material presented in Section |3| which fully characterizes Laplacians on
graphs in terms of maximum principles.

The use of graphs in electrostatics as found in Section []is standard
at this point and goes back to at least the work of Kirchhoff [Kir45]. In
particular, the characterization of graphs given via the capacitor prob-
lem in Theorem is Théoreme 2 in [BD58]. The resistance metric
discussed in the remark following Corollary appears in Remarque
3 in [BD5§].

Section [f]is essentially contained in Beurling/Deny [BD58]. In par-
ticular, Theorem characterizing the Markov property is Théoreme
6 in [BD58]. The splitting of the Beurling—Deny criteria into two, as
found in Theorems and [0.48] cannot be found in the quoted works
of Beurling/Deny. We have not been able to ascertain the first source
of this splitting. It can be found under the name of “Beurling—Deny
criteria” in [RS78| or [Dav89)].
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Resolvents and semigroups are connected by general principles, the
special features of the Markov property found in Corollary in Sec-
tion [6] can be found on page 219 of [BD58].

The Perron—Frobenius Theorem found in Section [7] goes back at
least to the works of Perron [PerQ7] and Frobenius [Fro08, [Fro09),
Frol2]. This material can be found in textbooks. We essentially follow
the presentation in [RS78] for the proof of Theorem [0.55 It is also
standard to use the Perron—Frobenius Theorem to treat convergence
to the ground state of Markov chains as treated in many places, e.g.
[Nor98]. This is also found for finite Markov chains in [SC97]. The-
orem [0.59] and Corollary are certainly well known; however, we
have not been able to find them in this form in any textbook.

Section || partially serves as a summary of previous considerations.
As such, we refer to the notes above concerning previously discussed
results. Many graph theory textbooks discuss graphs without killing
as their basic object, therefore, disappearance of the killing term is not
an issue. As such, we have not found the characterization of graphs in
terms of special Dirichlet forms that we present in Theorem [0.63in any
standard reference. On the other hand, conservativeness or stochastic
completeness of semigroups, which is characterized in Theorem [0.65),
is a standard topic in the theory of Markov chains on a discrete space
state with continuous time. See, for example, [Nor98§|.

Section [9] is not standard. It provides a study of certain geometric
questions which arise naturally in our perspective.

Section is standard and discussed in any textbook on Markov
processes in continuous time, e.g., [Nor9§].

Of course there is a great body of excellent textbooks that intersect
with some of the topics treated in this and the forthcoming chapters.
However, the notes at the end of the chapters have a primarily his-
torical character, rather than attempting to provide an extensive bib-
liography. Nevertheless, we take this opportunity to give the reader
at least a partial glimpse of the broad variety of the subject by listing
some standard references that we are aware of. For the books that we
missed, we apologize in advance for our ignorance.

For finite graphs, various aspects of the geometry and spectral the-
ory of Laplacian and Markov processes have been studied and presented
in books by Chung [Chu83|, Biggs [Big93] and Colin de Verdiere
[CAV98] and the recent and delightful book by Grigor'yan |Gril§],
which also deals with infinite graphs. The book chapters by Saloff-
Coste [SC97] study the connections between analytic inequalities and
geometry in the context of mixing times of continuous time Markov
chains.
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The main focus of the remaining texts we mention is on infinite
graphs. The textbook of Woess [Woe00|] provides a standard refer-
ence for discrete time Markov chains with a strong focus on discrete
groups, see also [Woe09]. Moreover, there is an excellent survey arti-
cle on the spectral theory of graphs by Mohar/Woess [MW89]. The
potential theory and the electrical network point of view have been
developed in the books of Doyle/Snell [DS84], Soardi [Soa94] and,
more recently, in the text by Levin/Peres/Wilmer [LPW09] and by
Jorgensen/Pearse [JP]. Percolation, electric networks, random walks
and other stochastic aspects are covered, with a particular focus on
trees, in the book by Lyons/Peres [LP16]. There is also a text by
Barlow [Bar17] that is particularly worth mentioning because it com-
plements this book in the sense that it treats heat kernel estimates,
which are completely omitted here. A further topic which is not cov-
ered in this book concerns discrete notions of curvature, for which we
refer the reader to [NR17]. Moreover, we also mention the recent
book of Kostenko/Nicolussi [KN21], which presents some connections
between discrete and metric graphs.
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Synopsis

This is the first part of our general study of infinite graphs. We
introduce basic quantities associated to graphs such as Dirichlet forms,
Laplacians and semigroups in Chapter [T} Chapter [2 expands upon the
material developed in Chapter [If and collects several useful tools that
are needed at later points. The main focus of the subsequent chapters
in Part [1] is the investigation of certain features of graphs and their
Laplacians via solutions (or their absence) to generalized eigenvalue
equations. We start with a discussion of essential self-adjointness in
Chapter [3] then turn to studying characterizations of the ground state
in Chapter 4] and the convergence of the semigroup to the ground state
in Chapter 5l The final two chapters of this part deal with fundamen-
tal stochastic properties in terms of generalized solutions. These are
recurrence in Chapter [0l and stochastic completeness in Chapter[7} Our
general point of view in this part is that of functional analysis based on
Dirichlet forms. Various topics of this part will be taken up in Part [3
The main focus there will be the investigation of the behavior of so-
lutions to generalized eigenvalue equations in terms of the underlying
geometry of the graph.



CHAPTER 1

Infinite Graphs — Key Concepts

In this chapter we discuss key concepts in the spectral geometry of
infinite graphs. We first introduce in Section[l|the setting and the main
objects of study found throughout the remainder of the book. These
include graphs, the associated Laplacians and Dirichlet forms, and the
induced semigroups and resolvents. Our definition of a graph includes
weights on the edges as well as a killing term. We also introduce a few
key tools, such as minimum principles, which will be used throughout.

We then turn to the connection between graphs and Dirichlet forms
in Section [2| where we show that graphs are in a one-to-one correspon-
dence with regular Dirichlet forms. In Section |3 we use tools such as
approximation by finite graphs, domain monotonicity and maximum
principles to prove the Markov property of the semigroup and resol-
vent associated to a regular Dirichlet form. An additional property of
the semigroup and resolvent, namely, that they are positivity improv-
ing, is shown to be equivalent to the connectedness of the graph in
Section [4]

We discuss certain special cases of the general theory in the subse-
quent two sections: In Section [5|we give criteria for when the associated
Laplacians are bounded operators and in Section [ we discuss what we
call graphs with standard weights. These are graphs where the edge
weights are either one or zero and the killing term is absent.

1. The setting in a nutshell

In this section we introduce our basic setting. We will use the
material and notation of this section tacitly throughout the remainder
of the book. Thus, we assume that the reader is familiar with this
section throughout. On the other hand, given familiarity with this
section, the reader should be able to read essentially any other part of
the book.

Excavation Exercises[.T]and [[.2 recall basic facts about the Hilbert
space which will be introduced in this section.

Throughout, we let X be a discrete and countable set. More pre-
cisely, we equip X with the discrete topology and by countable we
mean that there is an injective map from X to N. We denote the set
of all real-valued functions on X by C(X). For f € C(X), we write

97
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supp f for the support of f, i.e.,

supp f={z € X | f(z) # 0}.

We denote the set of all functions on X with finite support by C.(X).
For z € X, we denote the characteristic function of the set which
consists of the element x by 1,. We call a function f € C(X) which
satisfies f > 0 positive and a function which satisfies f > 0 strictly
positive.

If, additionally, there is a measure m on X, we call (X, m) a discrete
measure space. To avoid pathologies we will always assume that the
measure m has full support, i.e., that every point of X has positive
measure. In this situation the set of square summable functions

CX,m)={f e C(X)| Y f*(z)m(z) < oo}

zeX

has a natural Hilbert space structure with inner product given by

(fr9) = f(w)g(x)m(x)

zeX

for f,g € (*(X,m) and norm || f|| = /(f, f)-

DEFINITION 1.1 (Graph over X). A graph over X is a pair (b, c)
consisting of a function b: X x X — [0, 00) satisfying

o b(z,y) =0b(y,z) forall z,y € X
o b(z,x) =0forall x € X
® > exb(zy) <occforallz e X

and a function ¢: X — [0,00). Whenever ¢ = 0, when referring to
(b,0) we speak instead of b as a graph over X. We call the elements of
X the wvertices of the graph. We call a pair (x,y) with b(z,y) > 0 an
edge with weight b(x,y). We will also say that x and y are connected
by an edge with weight b(x,y). We call the vertices x and y neighbors
if there exists an edge connecting them and write z ~ y in this case.
We call the map c the killing term.

We note that we speak of neighbors as being connected by an edge.
More generally, we say that two vertices x and y are connected if there
exists a sequence (xy)}_, in X with x; pairwise distinct, b(xy, 241) > 0
for k=0,....,n—1, zo = x and x,, = y. We call such a sequence a
path connecting x and y. We call a subset of X connected if all pairs
of vertices in the subset are connected by a path consisting of vertices
in the subset. A connected component of the graph is a maximal con-
nected subset of X. If X has only one connected component, i.e., if
any two vertices x,y € X are connected, then we say that the graph
(b, ¢) is connected.
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We say that a graph (b, c) is locally finite if for every x € X the
number of neighbors of x is finite, i.e.,

#HyeX|y~a} <oo

for all z € X. In general, we will not assume that graphs are locally
finite.

The degree of a vertex x € X is the function deg : X — [0,00)
defined by

deg(z bey +c(z

yeX

If (b,c) is a graph over X and m is a measure on X with full support
we refer to (b, c) as a graph over (X, m). In this case, we will also refer
to the weighted degree Deg: X — [0,00) as

(bey + c(x )

ExAMPLE 1.2 (Counting and normalizing measure). Let (b, ¢) be a
graph over X. We now introduce two natural choices for a measure on
X. The first is the counting measure given by the constant function
m = 1. In this case, Deg = deg. The second natural measure, called
the normalizing measure n, is defined as n = deg. Whenever we use
deg in the spirit of a measure we denote it by n. In this case, Deg = 1.

Deg(x

To a graph (b,¢) over X, we associate the subspace D = D, . of
C(X) given by

D={feCX |—Zb$y Z x) < 0o}
and the bilinear map
Q:Qb7CSDXD—>R
defined by
9) = % > bz y)(f(x) = F)(9(x) = g(y) + > c(z) f(x)g(x)
z,yeX zeX

We note that the sums defining Q(f,g) are absolutely convergent on
D due to

[b(z,y)(f () = fF())(9(x) — g(y))| <
S ) () — F))? + 5h() (o) — 9(y)?

and

@) f()g(@)] < el) () + g*(x)
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We call Q the energy form and refer to elements of D as functions
of finite energy. Clearly, Q is symmetric, i.e., satisfies

Q(f,9) = (9. f)
for all f,g € D. The form Q is also positive, i.e., satisfies

Q(f, f) =0

for all f € D.
We will often be interested in the values of Q on the diagonal only.
In this case, we will use the notation

Q(f)=Q(f, f)
for f € D. We can then extend Q to a map on C(X), again denoted
by Q, defined by Q: C(X) — [0, 00| via

Q(f):{Q(f) it feD

00 else.
This map has the following semi-continuity property.

ProposITION 1.3 (Lower semi-continuity of Q). Let (b,c) be a
graph over X. If a sequence (f,) in C(X) converges pointwise to
fel(X), e, folr) = f(x) asn — oo for all x € X, then

Q(f) < liminf Q(f,).
PrRoOOF. This is a direct consequence of Fatou’s lemma. Indeed,

consider the measure space X x X with the measure B and X with
the measure C' given by

B(M) = % Z b(z,y) and C(N)= Zc(a:)
(zy)eM xeN

for M C X x X, N C X, and the functions F,,, F': X x X — [0, 00)
defined by

Fo(w,y) = (ful@) = fa(y))® and  F(z,y) = (f(z) = f(y))".

Then, clearly F,(z,y) — F(z,y) for all z,y € X, f*(z) — f*(z) for
all z € X as n — oo and

| pap+ [ pac-ou. [ Ras+ [ grc-om)

Now, Fatou’s lemma gives the desired statement. U

Besides the energy form Q associated to (b, ¢) we will also consider
the formal Laplacian L. acting on

F=F={f€CX)|Y bay)f(y) <oo forallze X}

yeX



1. THE SETTING IN A NUTSHELL 101
by
Ly f(z Z b(z,y)( — f(y)) +clx)f(x).

yeX

We note that the formal Laplacian £ . depends on both b and ¢ while
the domain F depends only on b.

The operator L. has a certain symmetry property and the form
Q and operator L;. are related by an integration by parts formula
which we refer to as Green’s formula. This is the content of the next
proposition.

PROPOSITION 1.4 (Green’s formula). Let (b,c) be a graph over X.
(a) Every ¢ € C. (X) belongs to F and for all f € F

ZSD ﬁbcf ZﬁchO

zeX zeX

=2 3 b)e() — W) (F) — F) + 3 el f(a)

z,yeX zeX

where all of the sums are absolutely convergent.
(b) We have

DCF
and thus for all f € D and ¢ € C(X)

ZSO Cbcf Zﬁb&@

zeX reX

PROOF. (a) By the assumptions on f, ¢ and b we have

> bz ) f)e@)] =D o) > bz, y)|f(y)| < oo

T,yeX reX yeX

Y @y f@)e(@)] =Y 1f@)e@)] ) bl,y) < oo

z,yeX reX yeX

and

Given this finiteness, the desired equalities follow easily by direct com-
putations.

(b) Given (a), it suffices to show that every f € D belongs to F.
To see this, we calculate

> by F ) <D bla,y)lf () = f)l + > b, y)l f(2)
yGX yEX yGX

Now, the first term can be seen to be finite via the Cauchy—Schwarz
inequality as

1/2 1/2
(Z bla, y>) (Z b, y)(f(x) = f(y))2> < deg?(x)QV(f)

yeX yeX
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and the second term is bounded by deg(x)|f(z)| < oo. This gives the
desired statement. U

In most of our subsequent considerations we not only have a graph
(b, c) over X but also a measure m of full support on X. In this situa-
tion, suitable restrictions of the form O will yield self-adjoint operators
on the Hilbert space ¢*(X,m). These operators will be our prime con-
cern. To describe how these operators arise we will need the norm
|- llo: DNE(X, m) — [0,00) given by

1/2
1flle = (QUF) + IIFII*)
where || f]| is the £*(X,m) norm of f.
We define the form QW) = Qéjz)m as the restriction of Q to

D(Q™) =DnNA(X,m).

Then, clearly, Q") is symmetric and positive as Q has these properties.
As above, we set

QM) ="M (1)
and extend QW) to all of £2(X,m) by setting it to be oo outside of
DN (X, m). We think of Q) as arising from some sort of Neumann
boundary conditions and this is the reason for the superscript (N). We
will refer to Q) as the Neumann form.
If a sequence (f,,) from £%(X,m) converges to f in £*(X,m), then
it clearly converges pointwise and from Proposition [1.3] we obtain

QM (f) < limint QWM(f,).

Thus, Q™) is a lower semi-continuous map on a subspace of £2(X,m).
By standard theory, see Theorem in Appendix QW) is closed,
i.e., D(Q™) is complete with respect to || - | o.

In some sense, Q) is the “maximal” form associated to a graph.
We will be even more concerned with the “minimal” form. This form
comes about by considering all symmetric closed forms which are re-
strictions of Q) (or Q) and whose domain contains C,(X). The in-
tersection over the domains of all such forms will be a closed subspace
of D(Q™)). Hence, the restriction of Q to this domain will yield a

positive closed form. We denote this form by QP = Q,()g?m and its
domain by D(Q®)) = D(Q'?) ).

b,c,m
By construction Q) is the smallest closed form extending the re-
striction of Q to C.(X) x C,(X). Thus, we can also obtain D( (D) )

b,c,m
by taking the closure with respect to || - ||g of C.(X), that is,

We think of Q(P) as arising from some sort of Dirichlet boundary con-
ditions and this is the reason for the superscript (D).
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By the standard theory of closed forms, see Lemma and Corol-
lary [B.12] there exists a unique self-adjoint operator L(P) = Lz(;lz)m on

(X, m) whose domain D(L) is contained in D(Q”)) and which
satisfies

(9. L7 f) = QP)(g, f)
for all f € D(LP)) and g € D(Q™). We call L”) the Dirichlet
Laplacian or just the Laplacian associated to a graph. We denote the
spectrum of L'P) by o(LP)) and the bottom of the spectrum of L")
by Ao(L™)). We note that L") is positive and thus o (L)) C [0, c0)
and /\O(L(D)) Z 0.

In general, it is rather hard to describe explicitly the domain of
L(P) Still, the action of this operator is easy to describe. To do so, we
introduce the formal operator £ = Ly, associated to a graph (b, c)
over the measure space (X, m). This operator has domain F and acts
via

£1(w) = s Locl o (wa f<y>>+c<a:>f<a:>>.

From Proposition we immediately infer the following variant of
Green’s formula in the case when we have a measure.

PROPOSITION 1.5 (Green’s formula for £). Let (b,c) be a graph
over (X,m). For all f € F and ¢ € C. (X) we have

> e(a)Lf(x = Lo(x)f(z)m(x)

zeX zeX
1
=3 > bz, y)(e(@) — o) (f () = W) + Y c(@)p(@) f ()
z,yeX zeX
If f € D, then the last term reads as Q(p, f). In particular, if f € D
satisfies Lf € (2(X,m), then for all ¢ € C.(X)
Ap. f) = (v, Lf).
Finally, if f € DN (X, m) and LC.(X) C *(X,m), then for all
p € Co(X)
Qe f) = (Lo, [).

Comparing this with the defining property of L(”) and using the
fact that Q™) is a restriction of Q, we immediately infer the following
theorem.

THEOREM 1.6 (Action of the Dirichlet Laplacian). Let (b,c) be a
graph over (X, m) and let L'®) be the Dirichlet Laplacian. Then,

LW f(x) = Lf(x)
for all f € D(L'P) and x € X.
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PROOF. By definition, L”) is the unique self-adjoint operator with
D(LP) C D(QP) which satisfies (g, LP f) = QW)(g, f) for all
f € D(LP) and g € D(QP). Furthermore, as QP) is a restric-
tion of @ and C.(X) C D(Q") C D C F, from Green’s formula,
Proposition [1.5) we have

(0. L) = QP (o, f) = Q. f) = Y pla)Lf(x)m(z)

zeX

for all ¢ € C.(X) and f € D(QP)). The conclusion follows by choosing
¢ = 1, /m for arbitrary x. d

Next, we discuss an innocent-looking feature of the form Q whose
surprising consequences will unfold later. We let C' denote a normal
contraction, i.e., C: R — R satisfies C(0) = 0 and |C(s) — C(t)| <
|s — t| for all s,t € R. Then, the form Q is compatible with C' in the
sense that if f € D, then

Q(Co f) < Q).

In particular, it follows that C'o f € D for all f € D. It is obvious that
this formula also holds if Q is replaced by Q™). It is less clear but still
true that it also holds for Q”). A proof can be found in Section . A
closed form which is compatible all with normal contractions is called
a Dirichlet form. Thus, we will see that Q®) and Q™) are Dirichlet
forms. We further discuss Dirichlet forms in Section [2|

We mention here that this compatibility has strong consequences
for both the semigroup e "= and resolvent (L) 4 o)~ associated
to L) where ¢t > 0 and a > 0. Namely, this semigroup and resolvent
satisfy

0< e_tL<D>f <1 and 0< a(L(D) +a)lf <1

for all f € ¢*(X,m) with 0 < f < 1. This is known as the Markov
property of the semigroup and resolvent. With this property, we can
extend the semigroup and resolvent to all #(X,m) for p € [1,00].
Details will be discussed in Section [l

For o € R we say that a function u is a-subharmonic if w € F and

(L+ a)u<0.

We say that u is a-superharmonic if —u is a-subharmonic, i.e., u € F
satisfies (£ + a)u > 0. We say that u is a-harmonic if u is both a-sub
and a-superharmonic, i.e., u € F satisfies

(L4 a)u = 0.

When « = 0, we say that u is (sub/super)harmonic. We will see
that various features of such functions are intimately related to the
geometric, spectral and stochastic properties of graphs.
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We next present three basic results concerning solutions of the equa-

tion

(L+aju=f
which will be used in various later considerations. We refer to this
equation as the Poisson equation. As a special case, we note that wu is
a-harmonic when f = 0.

We will use the notation uAv = min{u, v} and uVv = max{u, v} for
the minimum and maximum of two functions, respectively. We start
with a minimum principle for certain supersolutions of the Poisson
equation.

THEOREM 1.7 (Minimum principle). Let (b, ¢) be a graph over (X, m).
Let U C X. Assume that a function u € F satisfies
e (L+a)u>0o0onU for some a >0

o u A0 attains a minimum on U
eu>0o0nX\U.

If a > 0 or if every connected component of U is connected to X \ U,
then uw > 0. In fact, on each connected component of U either u = 0
or u > 0.

Proor. Without loss of generality we can assume that U is con-
nected. If v > 0 there is nothing to show. Therefore, assume there
exists a vertex « € U with u(z) < 0. As u A 0 attains a minimum on
U, there then exists a vertex zo € U with u(zg) < 0 and u(xg) < u(y)
forall y € U. As u(y) > 0 for y € X \ U, we obtain u(zg) — u(y) <0
for all y € X. By the supersolution assumption we then find

0 < (L+ a)u(xo)

= m(ll’()> (Z b(x(]? y) (u(l'o) - U(y)) + C(l’o)u($0)> + CKU(Q?Q) <0.

yeX

Therefore, if a > 0, then 0 = u(zo) and u(y) = u(zy) = 0 for all
y ~ xo. As U is connected, iteration of this argument shows that u = 0
on U.

On the other hand, for &« = 0, we obtain by the same argument
that u is constant on U. As U is connected to X \ U, namely there
exist z € U and y € X \ U such that z ~ y, we conclude that u = 0
on U. U

For the following lemma, given a sequence of functions (u,) and a
function u we write
un(x) 7 ufz)
as n — 00 if up(x) < upyi(x) for all n € Ny and if u,(x) — u(x) as
n — oo for x € X. In other words, the sequence converges at = in a
monotonically increasing manner. We will write u,, ' u pointwise if
this happens at all x € X.
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LEMMA 1.8 (Monotone convergence of solutions). Let (b,c) be a
graph over (X,m). Let o € R and let u, f € C(X). Let (u,) be a
sequence of functions in F with u, > 0. Assume that u,(z) / u(z)
and (L + a)u,(x) = f(x) for allx € X asn — co. Then, u € F and

(L+a)u=f.

Proor. Without loss of generality, we assume that m = 1. By
assumption

(L + a)up(x Z b(z,y)(un(x) — un(y)) + (c(x) + a)u,(z)

converges to f(z) for any x € X. As > _\ b(z,y)un(x) converges in-
creasingly to u(z) ),y b(z,y) < oo, the assumptions on (u,) show
that > _+ b(z, y)u,(y) must converge as well and, in fact, must con-

yeX
verge to ), - b(x, y)u(y) by the monotone convergence theorem. From
this, we easily obtain the conclusion. U
We let
uy =uVO0 and u_=—uVO0o

denote the positive and negative parts of u so that v = v, —u_ and
lu| = uy + u_. The next lemma then shows that the positive and
negative parts of a a-harmonic function are a-subharmonic.

LEMMA 1.9 (a-subharmonic and a-superharmonic functions). Let
(b, ¢) be a graph over (X,m). Leta € R. Ifu,v € F are a-subharmonic
(a-superharmonic, respectively), then uV v is a-subharmonic (uw A v is
a-superharmonic, respectively). In particular, if u is a-harmonic, then
uy,u_ and |u| are all a-subharmonic.

PrROOF. Let u,v be a-subharmonic for some o € R and let w =
uVov. Let x € X and assume without loss of generality that w(z) =
u(x) > v(x). Then,

w(z) —wy) = u(z) —uly) ifuly) > v(y)
@) ) { v(y) else

Thus, (£ + a)w < (L + a)u < 0 so that w is a-subharmonic.

Now, let u,v be a-superharmonic. We first observe that u A v =
—((—u) V (—v)). Hence, by what we have shown above, (—u) V (—v) is
a-subharmonic as —u and —v are a-subharmonic. Therefore, uAv is a-
superharmonic. The “in particular” statement follows as uy = (£u)V0
and |u| = uy +u_. O

We now introduce the heat equation. More specifically, a function
u: [0,00) x X — R is called a solution of the heat equation if, for
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every x € X, the mapping t — wu;(x) is continuous on [0,00) and
differentiable on (0,00), u; € F for all ¢t > 0 and

(£ + 3)u(z) = 0

for all z € X and ¢t > 0. The equation (£ + 0;)u = 0 is called the heat
equation. If u has all of the properties above but instead of equality in
the heat equation satisfies (£+ 0;)u > 0, then we call u a supersolution
of the heat equation. If u is a solution of the heat equation and uy = f
for f € C(X), then f is called the initial condition for u. We will say
that u satisfies the heat equation with initial condition f in this case.
We think of x as a space variable and ¢ as time.
We note that if f € ¢2(X,m), then the function

w(w) = e f ()

is a solution of the heat equation with initial condition f, as follows
from the spectral theorem. For details and a proof, see Theorem
in Appendix [A]

We now prove a minimum principle for the heat equation. In par-
ticular, for supersolutions of the heat equation on certain subsets, pos-
itivity on the boundary propagates to positivity on the subset. This
will be used later to establish the minimality of certain solutions.

THEOREM 1.10 (Minimum principle for the heat equation). Let
(b,c) be a graph over (X,m). Let U C X be a connected subset and
suppose that U contains a vertex which is connected to a vertex outside
of U. Let T > 0 and let u: [0,7] x X — R be such that t — u(x)
is continuously differentiable on (0,T) for every x € U and u, € F for
allt € (0,T]. Assume u satisfies
e (L+0)u>0o0n(0,T)xU
e u A0 attains a minimum on U x [0,T
e u>0on ((0,7] x (X\U))U ({0} xU).

Then, u>0 on [0,T] x U.

PROOF. Let (t,z) be a point where u A 0 attains a minimum on
U x [0, T]. If ug(x) > 0, the conclusion follows so we assume wu;(z) < 0.
Since wu is positive on {0} x U we have ¢ > 0. Furthermore, since u
attains a minimum at (¢,x) with respect to ¢ we obtain Jyus(z) = 0 if
t<T and Ouuy(z) <0ift =T.

Since u also attains a negative minimum at (¢, z) with respect to x,
we have

c(z)

Lu(z) = ()

S b ) () — ) + () < 0,

() 4

Therefore, (£ + ;) u(x) < 0. As u also satisfies (£ + dy)u > 0 we
obtain

(£ + ) w(z) =0
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and hence Luy(x) = 0. Therefore, u;(y) = w(z) < 0 for all y ~ z.
[terating this argument and using the assumption that U is connected
implies that u; is a negative constant on U. At the vertex x € U which
has a neighbor not in U, the equation Lu;(z) = 0 then contradicts the
assumption u > 0 on (0,7] x (X \ U). O

In most parts of this book, we focus on the form Q™) and the op-
erator L(P). However, as has already been seen, other forms inducing
operators naturally appear, e.g., the Neumann form Q®). A conve-
nient way to deal with this situation is to introduce the following more
general notion.

DEFINITION 1.11 (Associated forms and operators). We say that a
form @ with domain D(Q) is associated to a graph if Q) is closed,

D) C D) CDQEM)  and Q=QW

on D(Q). We then say that the arising operator L is associated to a
graph or an associated operator.

REMARK. An equivalent formulation is that ) is a restriction of
Opc, the domain D(Q) of @ contains C.(X) and D(Q) is complete
with respect to || - ||o (Exercise [1.10). As @ is a symmetric positive
closed form, L is a self-adjoint operator with spectrum contained in
[0, 00), see Appendix (Bl for details.

The statement and proof of Theorem directly carry over to
operators associated to graphs by replacing Q”) by @ and L") by L.

THEOREM 1.12 (Action of associated operators). Let (b,c) be a
graph over (X, m). Let L be an associated operator. Then,

Lf(z)=Lf(z)
for all f € D(L).

We note, in particular, that the result above applies to the oper-
ator L) = ngjg)m with domain D(L™)) arising from the Neumann

form QW) = I(fz)m We will refer to LOV) = Léj\cf)m as the Neumann
Laplacian.

NOTATION. As already seen in the preceding discussion, we will
often suppress the subscripts b, ¢ or b, ¢, m in various quantities if the
graph is clear from the context. The most prominent role in the book
will be played by Dirichlet boundary conditions, i.e., the form QP) =

m
suppress the superscript (D) if no confusion should arise. Thus, if not

stated otherwise (as is the case, for example, in the next section) we
will often write Q instead of Q®) and L instead of L(P),

Ql()i)m and the operator L(P) = L,(fz) . For this reason, we will often
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REMARK. We note that our definition of a graph allows for the
vertex set X to be finite. However, most of the statements from this
point on are trivially true if X is finite. As this is not the focus of
the remaining parts of the book, we will not discuss the finite case
explicitly. However, there are a few instances when we need X to be
infinite for the statement to be true. Whenever this is the case, we
include this explicitly in our assumptions and discuss the finite case
via remarks. On the other hand, we note that any set which allows for
a connected graph structure b must be countable (Exercise [1.11]).

2. Graphs and (regular) Dirichlet forms

In this section we show that graphs and regular Dirichlet forms are
in a one-to-one correspondence. To this end, we use some of the fun-

damental theory of closed forms on Hilbert spaces, which is discussed
in Appendix [B]

Let X be a countable set and let m be a measure on X with full
support. A symmetric positive form over (X, m) is given by a dense
subspace D(Q) of £2(X,m) called the domain of the form and a bilinear
map

Q:D(@Q) x D@Q) —R

satisfying
* Q(f,9) = Qg f) (“Symmetry”)
e Q(f,f)>0 ( “Positivity”)

for all f,g € D(Q). From now on, all forms are assumed to be sym-
metric and positive so we do not mention this explicitly.

We note that such a map is already determined by its values on the
diagonal as

Qf.0) = {(QU +9.7+9) = QUf ~ 9.1~ 9)).

For f € (*(X,m), we then define Q(f) by

of) = {Q(f, f) it f € DQ)

00 otherwise.

If the map ¢*(X, m) — [0, 00|, f — Q(f), is lower semi-continuous,
then @ is called closed. If () has a closed extension, then () is called
closable and the smallest closed extension is called the closure of Q.

The form @ is closed if and only if D(Q) with the form norm
|- llq - D(Q) — [0, 00) given by

Iflle = (QUF) +1I£1)

1/2



110 1. INFINITE GRAPHS - KEY CONCEPTS

is complete. If @ is closable with closure @, then for any f € D(Q),
there exists a sequence (f,,) in D(Q') with

Tim [|f = fulle = 0.

For details and further background on these concepts for general Hilbert
spaces we refer the reader to Appendix [B] Here, we only note the fol-
lowing direct consequence of lower semi-continuity in our case.
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PrOPOSITION 1.13 (Consequence of lower semi-continuity). Let @
be a closed form on (*(X,m). If (f,) is a sequence in D(Q) satisfying
o f,— fin(*(X,m)

e (Q(fn)) is bounded,
then f € D(Q) and
Q) < liminf Q).

PROOF. By f, — f in (*(X,m) it follows that f, — f pointwise
and we can invoke lower semi-continuity of ) to infer that

Q(f) <liminf Q(f,) < co.
n—oo
This is the desired inequality, which also implies f € D(Q). O

Let C: R — R be a normal contraction, i.e., a map with C'(0) =0
and |C(s) — C(t)| < |s —t|. If Q is both closed and satisfies

Q(Co f) <Q(f)

for all f € D(Q) and all normal contractions C, then @ is called a
Dirichlet form on (X, m).

For a graph (b, c) over (X, m), we show next that Q) = QIE]Z)m is
a Dirichlet form. This form was introduced in the last section as the
restriction of @ = Q. to D(Q™)) =D N 2(X,m).

PRrROPOSITION 1.14 (Q™) is a Dirichlet form). Let (b,c) be graph
over (X, m). Then, Qéjz)m is a Dirichlet form.

PRrROOF. As Q(N ) is a restriction of Q, it is lower semi-continuous
by Proposition [1.3] By Theorem in Appendix [B] this implies that
QW) is closed. Clearly, for all normal contractions C' and f € £2(X,m),
it follows that C' o f € (*(X,m). Furthermore, for f € D(QW)) =
DN (X, m),

QW(Co f)=Q(Co f) < Q(f) = Q™(f).

Thus, QW) is closed and compatible with normal contractions. There-
fore, QN is a Dirichlet form. O

Let || - ||oo denote the supremum norm on C.(X). A Dirichlet form
Q on (X, m) is called regular if D(Q) N C.(X) is dense in both C.(X)
with respect to || - ||oc and in D(Q) with respect to the form norm || ||o.

It turns out that a Dirichlet form @ on (X, m) is regular if and only
if @ is the closure of the restriction of @) to the subspace C.(X). The
“if” direction is immediate from the definition of a regular Dirichlet
form. The “only if” direction is shown next.

LEMMA 1.15. Let Q be a reqular Dirichlet form over (X, m). Then,
C.(X) is contained in D(Q). In particular, Q is the closure of the
restriction of @ to C.(X) x C.(X).
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PrROOF. Let x € X be arbitrary and let ¢ = 2 -1, so that ¢ €
C.(X). We will show that ¢ € D(Q). As x is chosen arbitrarily, this
will imply the first statement.

As @ is regular, C.(X) N D(Q) is dense in C.(X) with respect to
the supremum norm, so there exists a ¢ € D(Q) with 1 < ¢(z) < 3
and |[(y)| < 1 for all y # z, i.e.,

I = Plloo < 1.

As @ is a Dirichlet form, D(Q) is invariant under taking the modulus
and we can assume v > 0. Furthermore, as taking the minimum with 1
is also a normal contraction, Yy A1 € D(Q). As D(Q) is a vector space
it contains ¢ —1) A1 and this is a nonzero multiple of ¢ by construction.
Thus ¢ € D(Q) and as « € X is arbitrary, the first statement follows.

As @ was assumed to be regular, the space C.(X) = C.(X)ND(Q)
is dense in D(Q)) with respect to the form norm and the “in particular”
statement follows. O

We have already encountered a regular Dirichlet form. More specif-
ically, whenever (b, c) is a graph over (X, m) and Q = Q) = Qz()lz)m is
the form defined in the previous section with domain

D) = Cu(x)"°

and acting as a restriction of Q. i.e., Q,(fc))m is the closure of Q.
restricted to C.(X) x C.(X), then @ is a regular Dirichlet form as we

now show. In particular, we will show that the domain of Qg?m is
preserved by normal contractions.

LEMMA 1.16 (Q') is a regular Dirichlet form). Let (b, c) be a graph

over (X, m). Then, Ql(,ﬂ)m is a reqular Dirichlet form.

Proor. We first show that @Q = Ql()i) is a Dirichlet form. We

denote the restriction of Q to C.(X) x C.(X) by chomp Whenever C
is a normal contraction and ¢ € C.(X), we find by a direct computation

QI (C o p) = Z b(z,y)(C o p(x) — C o p(y))®

+ Z c(x) (Cop(z )2
<5 3 W) ) + Y o))
= Q™ ()

Here, we used the defining properties of a normal contraction in the
middle step.
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We will extend this inequality to D(Q). In particular, we will show
that C'o f € D(Q) for f € D(Q). As @ is the closure of its restriction

Ql(f:mp) to C.(X) x C.(X), there exists a sequence (¢,) in C.(X) with
¢, — [ with respect to || - |- In particular, p, — f in £*(X,m).
Then, clearly, the sequence (C o ,,) belongs to C.(X) and converges
to C o f in £?(X,m). Moreover, the sequence (Q(C o ¢,)) is bounded
as

Q(C o pn) = Q™ (C o pn) < Q™ (pu) = QL) = Q)
as n — oo. From Proposition [I.13] we then infer C o f € D(Q) and

Q(Co f) < Q(f).

Therefore, () is a Dirichlet form.
(comp)

By construction, @) is the closure of vac . Hence, @ is regular.
This finishes the proof. O

It turns out that the converse to the previous lemma holds as well.

LEMMA 1.17 (Regular Dirichlet forms arise from graphs). Let Q) be

a reqular Dirichlet form over (X, m). Then, there exists a graph (b, c)
over (X, m) with @ = Q(D)

b,e,m”

PrROOF. By Lemma [1.15, C.(X) is contained in D(Q). Define
b: X x X — R by

b(z,y) = —Q(14,1,)
for z # y and b(x,z) = 0 and define ¢: X — R by
o) = QL) = ) _ bl y).

yeX

We will show that (b, ¢) is a graph with Ql()Dc)m = Q. This will also show
that the sum appearing in the definition of ¢ is absolutely convergent.

Claim. (a) For any =,y € X with x # y, we have Q(1,,1,) <0. In
particular, b(z,y) > 0.
(b) For any finite K C X and z € K, we have Q(1x,1,) > 0.

Proof of the claim. (a): Consider for x # y the function f =1, —1,,.
As the modulus is a normal contraction and @ is a Dirichlet form we
obtain

Q(l: +1,) = Q(f]) <Q(f) = Q1. — 1,).
As @ is bilinear, this gives
Q1) +2Q(1s, 1) + Q(Ly) < Q1) — 2Q(14, 1) + Q(1y).
Therefore,

4Q(1,,1,) <0,
which gives the conclusion.
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(b): Consider now for z € K the function g, = 1x + s1, for s > 0.
As taking the minimum with 1 is a normal contraction we infer

Qlx) = Q(1 A gs) < Q(gs) = Qlk + 51,).
As (@) is bilinear,
0 <2Q(1x, 1) + 5Q(1,).
Letting s — 07 then yields
0 < Q(lk, Lo).

From (a) of the claim, b is positive. Moreover, for any K C X finite
and any r € K we compute

Q(lx) = Q(lKa 1z) - Z Q(lyv 13&)

yEK y#x
Q(lk, 1, Z b(x,y)
yeEK y#z
Q(lg,1,) + Zb z,y).
yeK

As, by the claim, both Q(1,1,) and b are positive, we can now con-
clude

> b(z,y) < QL)

yeK
for any K C X finite and this gives
> b, y) < QL) < 00
yeX

From this we infer

—Zb(w,y) >0

yeX

for all x € X. Thus, ¢ defined at the beginning of the proof exists and
is positive. Hence, (b, ¢) is indeed a graph.

Moreover, from the very definitions of b and ¢ we conclude for z,y €
X with z # vy

Qe 1,) = —b(z,y) = Q2 (1,,1,)

and for x € X

QL) = (@) + > blz,y) = Q42 (1.).

yeX

By bilinearity, ) and Qz(,,lz,)m agree on C.(X). As both are regular
Dirichlet forms, they must then be equal. Il
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REMARK. In the preceding proof we have shown the following: Let
QmP) bhe a form on C.(X) x C.(X) with Q™P)(C o ) < QLeomP) (i)
for all ¢ € C.(X) and all normal contractions C. Then, there exists
a graph (b,c) over X such that Q™) is the restriction of Q. to
Ce(X) x Co(X) (Exercise [1.12)).

THEOREM 1.18 (Regular Dirichlet forms and graphs). The map
(b,c) — Qéﬁ?m is a bijective correspondence between graphs (b, c) over
(X, m) and regular Dirichlet forms over (X, m).

ProOOF. This is a direct consequence of Lemmas and[1.17] In
particular, injectivity of the map follows directly from the first lines of
the proof of Lemma [I.17] O

We finish this section by providing a structural characterization of
the domain of the unique regular Dirichlet form associated to a graph.
We recall that D denotes the space of functions of finite energy. We
let Dy denote the subspace of f € D for which there exists a sequence
(pn) in Co(X) with ¢, — f pointwise and Q(f — ¢,) — 0 as n — oc.

THEOREM 1.19 (Domain of D(QP))). Let (b,c) be a graph over
(X, m) with associated energy form Q.. Then, Q) = Ql()i)m is the
restriction of Qp . to

D(QP)) = Dy N (X, m).

REMARK. To put this result into perspective, we compare it with
the corresponding statement for the Neumann form QW) = Ql(;]?m By
definition, QW) arises as a restriction of Q. to

D(QW™) =DnA(X,m).

So, we see that the difference between the Dirichlet and Neumann

boundary conditions comes from a corresponding difference between D
and Dy.

PRrOOF. We let Q = QP in the proof. To show
D(Q) = Do N *(X,m)
we will prove two inclusions.
D(Q) € DyN¢*(X, m): By definition, D(Q) is the closure of C,(X)
with respect to || - [lo given by || fllo = (Q(f) + |If])*?. This imme-

diately gives the statement as £2(X,m) convergence implies pointwise
convergence.

Do N L2(X,m) C D(Q): Let f € DynN (X, m). As Q is a closed
form, the restriction of () to the diagonal is lower semi-continuous.
Thus, by Proposition m it suffices to find a sequence (x,) in C.(X)
with x,, — f in £2(X,m) as n — oo and (Q(x,)) bounded.
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Since f € Dy we can find a sequence (p,) in C.(X) with ¢, — f
pointwise and Q(f — ¢,) — 0 as n — oco. This implies, in particular,
that the sequence (Q(¢n)) = (Q(¢y,)) is bounded. We will modify the
sequence (p,) in order to obtain a sequence (x,) converging to f in
(*(X,m). Consider

Claim. We have:

e i, € C.(X) for all n.
e v, — f pointwise as n — oo.
e The sequence (Q(y,)), is bounded.
Proof of the claim. The first two statements are straightforward.
The last statement follows from

[V () = U (Y)| < [onl) = on()] + | [f(@)] = |f(y)] |
<len(®) = en()| + [f(z) = f(¥)].

Consider now x,, = 1, V —|f|. Then, we clearly have
Xn = _(_wn A ’f|)

Thus, we can apply the reasoning of the previous claim to obtain:

e X, € C.(X) for all n.
e Y\, — f pointwise as n — oo.
e The sequence (Q(xn))n is bounded.

Moreover, by construction the sequence (x,) satisfies

Thus, by Lebesgue’s dominated convergence theorem, the sequence
(Xn) converges to f in ¢*(X,m). Hence, the sequence (y,) has all
of the desired properties. This finishes the proof. O

REMARK. It is possible to elaborate on the approximation of f and
C o f by a sequence in C.(X) (Exercise [1.13]).

3. Approximation, domain monotonicity and the Markov
property

A basic idea in the study of regular Dirichlet forms is to first inves-
tigate their restrictions to compact sets. In our context, this amounts
to looking at restrictions to finite subsets of X. We will discuss various
instances of this idea in this section. Together, they will provide very
basic features of regular Dirichlet forms and the associated operators.

Excavation Exercise discussing convergence of operators will be
used in the proof of Lemma below.

We recall that if (b,¢) is a graph over (X, m), then the Laplacian
L = L) associated to the regular Dirichlet form Q = Q) satisfies
o(L) C [0,00), where o(L) denotes the spectrum of L. This follows
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as @ is a symmetric positive closed form, see Appendix [B] for details.
In particular, we can then use the spectral theorem to define the semi-
group and resolvent associated to L, that is, e7*X for ¢t > 0 and (L+a)™*
for a > 0.

Using the spectral theorem, we can also show that both the semi-
group and resolvent are bounded operators on ¢*(X,m) with |le7*| <
1 and |ja(L + a)7'] < 1 for all ¢ > 0 and o > 0, see Proposi-
tions [A.32] and [A.34] in Appendix [A] We refer to the fact that the
norm of both the semigroup and resolvent is uniformly bounded by
1 by saying that the semigroup is a contraction semigroup and the
resolvent is a contraction resolvent.

The facts mentioned above follow from the general theory of forms
and operators. In this section we will use the graph structure and the
method of exhaustion via finite sets to establish a further property of
both the semigroup and the resolvent associated to L. More specifically,
if (X, m) is a discrete measure space and A: 2(X,m) — (2(X,m) is
a bounded operator, then A is said to have the Markov property or to
be Markov if

0<Af<1

for any f € £2(X,m) with 0 < f < 1. We will show that both e~* and
a(L + a)~t are Markov for every t > 0 and o > 0.

We note that the Markov property consists of two separate inequal-
ities. We recall that a function f € C(X) is called positive if f > 0.
We call an operator mapping positive functions to positive functions
positivity preserving. We call an operator mapping functions bounded
above by 1 to functions bounded above by 1 contracting. Hence, we
see that a bounded operator has the Markov property if and only if
the operator is positivity preserving and contracting. For an abstract
treatment of the Markov property and its relation to Dirichlet forms
see Appendix [C]

After this discussion of the property of interest, we now introduce
the basic ideas for the exhaustion process. For (b,c¢) over (X, m) let
Q = Q. be the associated energy form. For any finite set K C X,

we denote the restriction of m to K by my and let Qg?) be the form
defined on (*(K, mg) by

QP (f) = Qlixf)

for f € (*(K,mg). Here, if: C(K) — C(X) is the canonical em-
bedding, i.e., ik f is the extension of f € C(K) to X by setting i f
to be identically zero outside of K. Clearly, Qg?) is a closed form

on (*(K,mg) since the domain of Qg) is the entire Hilbert space
€2<K, mK)



118 1. INFINITE GRAPHS - KEY CONCEPTS

A short calculation then gives

D) = Qlinf) = Quger (/) + Y dic(@) f2(x),

rzeK

where by is the restriction of b to K x K, ¢k is the restriction of ¢ to

K and
yeX\K
describes the edge deficiency of a vertex in K compared to the same
vertex in X. Thus, Q(I?) is the Dirichlet form associated to the graph
(b, ci + dg) over (K, mg), i.e.,
D

g() = QbK7CK+dK'
Clearly, Q%D) is regular as K is finite.

We denote the self-adjoint operator associated to Q%’) by L%D) and

call it the Dirichlet Laplacian with respect to K. As K is finite, this
operator is bounded and defined on the entire Hilbert space ¢( K, mp).
We infer from Theorem [L.6] that

Ly f(w) = (Z b(x,y)(f(x) = fy) + (dx(z) + C(x))f(x)>

1
m(x)
for all f € /*(K,mg) and € K. In particular,

Ligf)(x) = Ly f(z)

for all z € K and thus Lf = Lg?)f if f is supported on K.

We can use this explicit formula to obtain some information on
the semigroup and resolvent of L%D), which is gathered in the next
proposition. Part of this proposition can be inferred from the material
presented in Chapter [0] To make the presentation self-contained, we
provide a complete proof here.

PROPOSITION 1.20 (Features of restrictions to finite sets). Let (b, c)

be a graph over (X, m).

(a) If K C X is finite, the eigenvalues of Lg?) are non-negative. If the
graph is additionally connected and infinite, then the eigenvalues
of Lg?) are strictly positive and Lg?) is invertible.  ( “Positivity”)

(b) If K C X is finite and f € (*(K,mg) with 0 < f <1, then

0< a(Lg?) +a)'f <1 (“Markov”)

for a > 0. Furthermore, (L(I?))*lf > 0 if the graph is connected
and infinite.
(¢) If K C H are finite subsets of X and a > 0, then

(L + o) f < (LY + ) f
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on K for all f € (*(K,mg) with f > 0, where f is extended by
zero on H \ K. If the graph is connected and infinite, then the
statement holds also for o = 0. ( “Domain monotonicity”)

PROOF. (a) The first statement is clear from the inequality

(L) = Q0(f) = Qlixf) > 0

applied to the eigenfunctions of Lg)

an fo such that Lg)fo = 0. Then,
0= (fo, L fo)

. Now, assume that there exists

= Qi (fo)
=Y bz, y)(folz) - 2+ (e(@) + d(2)) f5 (@)

yields that fy is constant on every connected component of K. By
the fact that the graph is connected and infinite, there exists a vertex
x € K with y € X \ K such that b(z,y) > 0. Therefore, dg(z) > 0.
Indeed, this is true for every connected component of K. Hence, we
have

0= (fo, Li fo) > dic(2) f3(w) > 0
Thus, fo = 0 and, therefore, 0 is not an eigenvalue. This shows the
strict positivity of the eigenvalues of Lg?) and invertibility follows.

(b) By (a) the resolvent (Lg?) + a)~! exists for every a > 0 and
also for « = 0 if the graph is connected and infinite. Consider now
f € (K, mg) with 0 < f <1 and set u = (L?) + a)~'f. Then,

fla)ym(z) = (L + a)u(z)m()
=" b(w, ) (u(z) — u(y)) + (di(@) + c(z) + am(x))u(x).

We will investigate this equality for zp, € K such that u(zy) is the
maximum of v and zy € K such that u(z) is the minimum of u on K.
For x(, we have

> blo,y)(ulzo) = uly)) <0

yeK
and we infer from f(xg) > 0 that u(zg) > 0. For z); we have

> b y)(u(zar) = uly)) >0

yeK
and we infer from f(xy) < 1and u(xy) > u(zg) > 0 that au(zy) < 1.
This gives

0 < ulo) < u(w) < ulz) <

Q|+

for all z € K and we have shown (b).
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(0) Set ug = (L' + ) f, uyr = (L) + )~ f and v = upg — uk.
Then, on K we have

(Lg,)) +a)v = (Lg)) + a)(ug — ug)

We use this to show v > 0.

Clearly, v > 0 on H \ K as ug vanishes outside of K and uy > 0 by
(b). Consider now xy € K such that v(x) is the minimum of v on K.
Assume that v(zg) < 0. Then, we obtain from the previous equality

and the explicit formula for Lgf) the contradiction
0= (L + a)v(zo)m()
=D blzo,y)(v(x0) — v(y)) + (da (o) + elwo) + am(ao)) v(o)

yeH
< 0.

This contradiction shows v(zg) > 0 and thus v > 0. O

Our next result will show convergence of the restrictions to finite
subsets for both the resolvent and the semigroup. In order to be able
to state the result conveniently we will use the following notation.

NOTATION. Let (b,c) be a graph over (X, m), let Q = Ql()?m be
the associated regular Dirichlet form and Q%)) be the restriction of
(@ to the finite set K C X with associated Dirichlet Laplacian Lg?)
acting on (*(K,mg) as defined above. We extend Lg) by zero on
the orthogonal complement of (?(K,my) in 2(X,m). We will extend
functions ® of Lg?) accordingly, that is, for f € ¢*(X,m), we write
@(LE;?)) for iK@(Lg?))(ﬂK). This is, in particular, used for the function
PN =(A+a) 'l ie,

(L +a) ' f for (LD + a) " (f]),

but also applies to ®(A\) = (A + @) or ®(\) = e . The extended
operators will be denoted by the same symbols as the original ones.

LEMMA 1.21 (Convergence of finite approximations). Let (b,c) be
a graph over (X, m) and let Q) be the associated regular Dirichlet form

with Laplacian L. Let (K,) be an increasing sequence of finite subsets
of X with X =, K.
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(a) If f € 3(X,m) and a > 0, then

lim (L) + )" f = (L +a)" f.

n—oo

(b) If f € (X, m) and t > 0, then

. LDy _ L
fim et = e
Furthermore, if additionally f > 0, then the sequences in both state-
ments converge not only in (*(X,m) but also pointwise monotonically
increasingly, i.e.,

(L +a) f S (L+a) ' and e HRf Al
pointwise as n — 00.

REMARK. The proof of (b) will actually show

lim ®(Ly))f = (L) f

n—o00 n
for any f € £*(X,m) and any function ®: [0,00) — R which is con-
tinuous and satisfies lim,_,., ®(x) = 0. We say that such functions
vanish at infinity.

PROOF. (a) In the proof we will use the following characterization
of resolvents: Whenever () is a positive closed form with associated
self-adjoint operator L, the function f is an arbitrary element of the
underlying Hilbert space and o > 0, then v = (L+ )~ f is the unique

minimizer of
2

Q) + « v—éf

over v € D(Q). See Theorem for a proof of this characterization.
After decomposing f into positive and negative parts, we can re-
strict attention to f > 0. Define

w, = (L + )71,

Then, u, > 0 by the Markov property in Proposition [1.20] (b).

By domain monotonicity, Proposition[L.20] (c), the sequence (u,(z))
is monotone increasing for any z € X. Moreover, we have ||u,| <
a~1||f|| since the operators (L&g} +a)~! are bounded uniformly in norm
by 1/a, as follows from the spectral theorem, see Proposition .
This implies that (u,(z)) is also bounded for any z € X. Thus, the
sequence (u,) converges pointwise and in £*(X,m) to a function u €
(*(X,m) by Lebesgue’s dominated convergence theorem.

Let ¢ € C.(X). Assume without loss of generality that the support

of ¢ is contained in Kj. Then, Q(p) = Qgg}(gp) for all n sufficiently
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large. Since @ is closed and thus lower semi-continuous, convergence
of (u,) to u and the minimizing property of u,, then give

Q)+ fJu= 3" < imint (Qun) + o fu—2/1F)
:ligginf( U, +06Hun__fH>

:liminf( (wn) + a|Jun — f||2)
(QK +aH90——fH)

= Q) +afle - 2"
As p € C.(X) is arbitrary and @ is regular, this implies
Q) +afu= /" < Q@) +alo - I
for any v € D(Q). Thus, u is a minimizer of
Q) +alo =3I

so that w must then be equal to (L + «)~! f by the characterization of
the resolvent stated at the start of the proof.

< hm mf

(b) Let Cy([0,00)) be the vector space of all continuous functions
®: [0,00) — R with lim, ,, ®(x) = 0. Define for @ > 0 the function
®,: [0,00) — R by

P, (z) = (x+a)™t
Then, clearly @, € Cy([0,00)) for any a > 0 and ®,(L) = (L + o) !
by the functional calculus, see Definition in Appendix [A]

Let A be the closure in the supremum norm of the linear span of

®,, for @ > 0. Then, by (a) we have

hm@( ) =(L)f

for all ® € A and f € (?(X,m). We will show that for every ¢t > 0,
the function [0,00) — R given by x — e~ belongs to A, which will
complete the proof. The statement for ¢ = 0 is clear, so we assume
that ¢ > 0.

We note that it suffices to show that

We will do so by proving the following claim and then applying the
Stone—Weierstrass theorem.
Claim. The set A has the following properties:
e A separates the points of [0, 00) (i.e., for any x,y € [0, 00) with z # y
there exists a ® € A with ®(z) # ®(y)).
e A does not vanish identically at any point (i.e., for any x € [0, 00)
there exists a ® € A with ®(z) # 0).
e A is an algebra.



3. APPROXIMATION, DOMAIN MONOTONICITY, MARKOV PROPERTY 123

Proof of the claim. The first two points follow directly by consid-
ering & = ®;. As for the last point, by definition, A is a vector space.
Thus, it suffices to show that A is closed under multiplication. To show
this it suffices to show ®,®s € A for any «, 5 > 0. For a # 3 this is

clear as
1

O, 05 = —(Ps — D,).
5= 5( 5= Pa)
For a = 8 we can consider a sequence (3,) of positive numbers with
B, — =« and (, # [ for all n. Then, by what we have just shown
®,05, € A as 3, # a. Thus, ®,05 € A as lim,,_,o, ,Ps, = ¢, P in
the supremum norm. This finishes the proof of the claim.

Given the claim, the desired statement that 4 = C([0, 00)) follows
directly from the Stone—Weierstrass theorem. This concludes the proof
of (b).

In the case of f > 0, the fact that the sequence (u,) given by

Uy = (L(Ig) + )1 f is monotonically increasing pointwise follows from
t

(D)
Lemma [1.20| (¢). The corresponding statement for e *“x» follows from
the connection between resolvents and semigroups. That is, from the

formula
k
k x+ﬁ 7 - 1+t—x _k—>e*m
t t N k

as k — oo for any t > 0, it follows that

k
k E\
el f = lim (- (L&Q}Jr—) ) f
k—oo \ T t

for any f € (*(X,m) and ¢t > 0, see Theorem for more details. [

REMARK. The convergence given in the previous lemma is a char-
acterization of regularity (Exercise |1.14]).

Combining the Markov property of the resolvents of restrictions to
finite sets proven in Lemmal[l.20] (b) along with the convergence state-
ments in Lemma [1.21]| gives the Markov properties for the semigroups
and resolvents associated to the regular form on the entire graph.

COROLLARY 1.22 (Markov property of resolvents and semigroups).
Let (b, ¢) be a graph over (X, m) with associated reqular Dirichlet form
Q and Laplacian L. Then, for any f € (*(X,m) with 0 < f <1,

0<a(lL+a)'f<1 and 0<ef<i
for alla >0 and t > 0.

REMARK. It is not necessary for the function to be bounded in order
for the positivity preserving property above to hold (Exercise |1.15]).
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PROOF. After suitable approximation procedures, it suffices to con-
sider ¢ € C.(X) with 0 < ¢ < 1. Consider now an increasing sequence
K, of finite subsets of X with X = (J, K. In particular, we may
assume that the support of ¢ is contained in K, for all n € N. By
Lemma [[.2T] we have

(L+a) ' = lim (L&?) +a) .
N—00 "

By the Markov property for finite sets, Lemma [1.20] (b), we have 0 <
a(ngb) + a) "ty < 1. Combining these two observation we obtain the
desired statement for the resolvents.

We now turn to proving the statement for the semigroups. The

case t = 0 is clear so we restrict attention to the case t > 0. As above,

the equality
k
k K\
—tLp _ 7 L I
e f—klglolo(t (L+t> > f

for any f € £*(X,m) given in Theorem gives the statement from
the already shown statement for the resolvents. U

REMARK (Second Beurling—Deny criterion). The preceding corol-
lary also follows immediately from the general theory of Dirichlet forms,
where it is referred to as one direction of the second Beurling—Deny
criterion. Indeed, this is one of the characterizing features of Dirichlet
forms. For finite sets this was discussed in Chapter [0] The case of
arbitrary Dirichlet forms is treated in Appendix [C|] Here, we gave a di-
rect proof as this method of proof is rather instructive and has further
consequences which we establish below.

We now show that the resolvent generates the minimal solution to
the Poisson problem for a positive function. This follows directly from
the considerations above, the minimum principle and the convergence
to solutions.

LEMMA 1.23 (Resolvents as minimal solutions to (£ + a)u = f).
Let (b, c) be a graph over (X, m) with associated reqular Dirichlet form
Q and Laplacian L. Let a« > 0 and f € (*(X,m). Ifu= (L +a)7'f,
then u belongs to F and satisfies

(L+ a)u=f.

Furthermore, if additionally f > 0, then u is the smallest v € F
with v >0 and (L + a)v > f.

ProOOF. We first show that u is a solution as stated. For o > 0, we
note that the resolvent (L + )~ maps ¢2(X, m) into D(L) C D(Q) C
D C F, where the last inclusion follows by Proposition (b) and

the other inclusions follow from the definitions. By Theorem [I.6], the
operator L is a restriction of £ so that u = (L + «)~!f € F satisfies

(L+o)u=f,
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as claimed.

We now establish the minimality of u when additionally f > 0. We
first note that w > 0 whenever f > 0 as the resolvent is positivity
preserving by Corollary [1.22] Now, let v > 0 be another function
with v € F and (£ + a)v > f. Let (K,) be an increasing sequence

of finite subsets of X with X = |, K, and let ng} be the Dirichlet

Laplacian on ¢*(K,,mg,). We recall that L%Dn) agrees with £ on the

set of functions supported in K,,. Let f, = flk,,
w, = (L) + ) fy

and extend u,, by 0 to X \ K. Then, letting w,, = v — u,, w, satisfies

. (/j—i—oz)wn:(£+a)v—(ngL)+a)unZf—fn:OonKn

e w, A 0 attains a minimum on K, since K, is finite
e w,=v>0o0n X\ K,.

Hence, we can apply the minimum principle, Theorem [1.7, and find
w, =v —1u, > 0 on X. Therefore, v > u,, on X.

Finally, we show that u, converges to v and thus v > wu, which will
complete the proof. Indeed, this can be seen by first fixing £ € N and

considering (L(Igl) + )7t fy for n > k. Then, Lemma |1.21] (a) gives

lim (L) + )™ fiy = (L+a) ™ fi.
Furthermore, Proposition gives
la@+a) <1 and fa(Li) +a)7 <1
for all n € N and all « > 0. Therefore, as fr — f in £*(X, m) we have
lim (L+a) ' fy = (L+a)'f
k—oo
and

n

_ 1
IZEE) + @) (o = Sl < —llfu = fill =0
as k,n — oo. Thus, the triangle inequality implies
lun — ull < (L) + )™ (fo — )l + ILE + @) fe — (L + ) fill
+ L+ )" (f = D,

where we have shown that all three terms go to 0 as k,n — oo. U

As the resolvent associated to the operator coming from the regular
Dirichlet form generates the minimal positive solution of the Poisson
equation, so does the semigroup generate the minimal solution of the
heat equation. This is discussed next.

We recall that a function

u: [0,00) x X — R
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is called a solution of the heat equation with initial condition f if
for all x € X, the mapping t — wu;(x) is continuous on [0, 00) and
differentiable on (0,00), u; € F for all t > 0 and

(£ + 3)u(z) =0

for all z € X and t > 0 with ug = f. We call u a supersolution of the
heat equation with initial condition f if u satisfies all the assumptions
above and instead of equality in the heat equation we have

(L + 0p)ug(z) > 0.

We now show that if the initial condition is positive, then the semigroup
of the associated Laplacian generates the minimal positive supersolu-
tion of the heat equation.

LEMMA 1.24 (Semigroup as the minimal solution of the heat equa-
tion). Let (b, c) be a graph over (X, m) with associated regular Dirichlet
form Q and Laplacian L. Let f € (*(X,m). If

u(x) = e~ f (@)

fort > 0 and x € X, then u is a solution of the heat equation with
wnitial condition f.

Furthermore, if additionally f > 0, then u is the smallest positive
supersolution of the heat equation with initial condition greater than or
equal to f.

PROOF. As L is a restriction of £ by Theorem the fact that
uy(x) = e L f(x) is a solution of the heat equation with initial condition
f for f € ¢*(X,m) is a consequence of the spectral theorem and can
be found as Theorem in Appendix [A]

We now show minimality. Let f additionally satisfy f > 0. Then,
by Corollary we have uy(x) > 0 for all ¢ > 0 and = € X as the
semigroup is positivity preserving. Thus, u is a positive solution of
the heat equation with initial condition f. Now, suppose that w is a
positive supersolution of the heat equation with wy > f. Let (K,) be
an increasing sequence of finite subsets of X with X =, K, and let

L%i) be the Dirichlet Laplacian on ¢*(K,,mg,). We recall that L%i)
agrees with £ on functions supported in K,,. We let f,, = flg, and

uf" (@) = e~ (@)
for € K, and t > 0. We extend u™ by 0 to [0,00) x X \ K,,. If
w™ = w — 4™ then w™ satisfies
e (L+9)w™ >0o0n (0,T) x K,
e w(™ A0 attains a minimum on the compact set [0, T x K, since w™

is continuous
e w™ >0on ((0,7] x (X \ K,))U ({0} x K,,).
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Hence, we can apply the minimum principle for the heat equation,
Theorem m to obtain w™ = w —u™ > 0 on [0,T] x K, for all
n € N. Therefore, w > u™ on [0,T] x X as u(™ vanishes outside of
K, and w is positive.

We now show that (™ converges to u from which it follows that
w > u, thereby completing the proof. Indeed, this can be seen by first

fixing k € N and considering etk fr forn > k. Then, Lemmall.21{(b)
gives

. —+D) _
lim e Fxn f, = e L.
n—oo

Furthermore, by Proposition in Appendix [A] we have
le ™ <1 and et <1
foralln € Nand all t > 0. As fi — f in £2(X, m) we have

lim et f, = et f
k—o0

and )
le™5n (fr = fu)l < W fu = frll =0

as k,n — oo. Thus, the triangle inequality implies

n ) ) _ _
[ut™ —ull < fle” w0 (fo = fi)ll + lle™Fwn fir — e fill + le™ (f = N5
where we have shown that all three terms go to 0 as k,n — oo. U

We have shown that the resolvent of an operator coming from a
regular Dirichlet form is positivity preserving for a > 0. We will now
finish this section by showing that, in some cases, we can even deal
with  which are not positive. This will be used later in Chapter [4

We will write () > C' for a Dirichlet form () and C' € R if

Q(f) = C| fI?
for all f € D(Q).

COROLLARY 1.25. Let (b, c) be a graph over (X, m) with associated
reqular Dirichlet form @) and Laplacian L. Let Q > C for C € R. If
a > —C, then (L + )~ is positivity preserving, i.e.,

(L+a)'f>0
for [ € 2(X,m) with f > 0.

PRrROOF. By Corollary [1.22] we have e L' f > 0 for all f € (*(X,m)
with f > 0. From () > C we note by the variational characterization of
the bottom of the spectrum that \o(L) > C and thus (L) C [C, 00),
see Theorem . In particular, (L + o)~ ! exists for all « > —C.

This allows us to extend the Laplace transform formula from The-
orem [A37] as follows: From

([L’—i—&)_l :/ e_to‘e_mdt,
0
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which holds for all x > C' and o > —C, we obtain
(L+a)?t= / e~ teethdt
0

for all & > —C. As et f > 0, this completes the proof. O

REMARK. We note, in particular, that this result extends the cor-
responding statement from Corollary to allow a to be negative
when C' > 0. In particular, for any connected finite set K C X which
contains a vertex which is connected to a vertex outside of K, it follows
that the Dirichlet form Qg?) satisfies the assumptions of the corollary
above by Proposition m (a). Therefore, the above result applies to

the resolvent of any Dirichlet Laplacian Lg?) for K C X finite which
is connected to a vertex outside of K.

4. Connectedness, irreducibility and positivity improving

In this section we discuss some of the consequences of connectedness
of the graph. This geometric property translates directly into proper-
ties of the form as well as the associated semigroup and resolvent.
Specifically, connectedness of the graph is equivalent to irreducibility
of the form, a property which can be understood as stating that the
form cannot be decomposed into two orthogonal parts. Furthermore,
connectedness is equivalent to the fact that the semigroup or resolvent
maps non-vanishing positive functions to strictly positive functions.
This property is called positivity improving.

In the previous section we showed that the semigroup and resolvent
associated to L always map positive functions to positive functions.
This property is called positivity preserving. Here, we will show that
connectedness is equivalent to a strict strengthening of this property.

We recall that a subset of X is called connected if any two points
in the subset can be connected by a path consisting of vertices in the
subset. A maximal connected subset is called a connected component
and (b, ¢) is called connected if it consists of one connected component.

We now introduce the necessary concepts of irreducible forms and
positivity improving operators. A quadratic form @ on ¢*(X,m) with
domain D(Q) is called irreducible if the only subsets U C X such that
1yD(Q) € D(Q) and

Q(f) = Qv f) + Q(lx\w/f)

for all f € D(Q) are either U =0 or U = X.
An operator A on £*(X,m) is called positivity improving if Af >0
for all non-trivial f € D(A) with f > 0.

THEOREM 1.26 (Characterization of connectedness and positivity
improving). Let (b,c) be a graph over (X, m) with associated regular
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Dirichlet form Q) and Laplacian L. Then, the following statements are
equivalent:
(i) (b,c) is connected.
(il) @ is irreducible.
(iii) (L + )™t is positivity improving for all o > 0.
(iv) et is positivity improving for all t > 0.

PROOF. (i) = (iv): Let ¢ € C.(X) be positive and non-trivial.
Let (K,,) be an increasing sequence of connected finite sets such that
X =, K. Denote by Lg{? the operators corresponding to the re-
strictions of @ to C.(K,,). By Proposition |1.20 (b), (L%jn) +a)lp>0
for all o > 0. Therefore,

1\ "
i (3 (00 2)) 20

(D) e .
Lk is positivity preserving.

so that the semigroup e~
(D)

Now, let u(x,t) = e "xnp(z) > 0 and assume that n is large
enough so that the support of ¢ is included in K,. We want to show
that u(x,t) > 0 for all x € K,, and ¢ > 0. If there exists zg € K, and
to > 0 such that u(z,to) = 0, then (¢, %) is @ minimum for u in both

variables. Having a minimum at ¢y gives
0= 8tu(x0, to) = —L%L)U(Io, to)

Now, having a minimum at z, yields u(y, ty) = 0 for all y ~ z. As K,
is connected, this implies u(z,ty) = 0 for all x € K,,. However,

(D)
el u(z, to) = ¢(x),

so that ¢ = 0 on K, which gives a contradiction to the assumption on

(D) (D), e
¢. Therefore, e Fknp > 0 for all t > 0, so that e "“kn is positivity

improving.

(D)
As we assume that ¢ > 0, by Lemma [1.21] we get e~tLic, o — ety

as n — oo where the convergence is pointwise monotonically increasing.
Therefore, we infer that et > 0.

For a non-trivial positive function f € ¢*(X,m), let f, = 1g, f €
C.(X). Then, f, converges monotonically increasingly to f in £*(X,m)
as n — 0o. By Corollary applied to the functions f,.1 — fn, we
have that 0 < e7*f, — e 'f where the convergence is pointwise
monotonically increasing. Therefore, e ** f > 0.

(iv) = (iii): This follows directly from the Laplace transform
formula in Theorem [A.35] that is,

(L+a)t= / e et
0
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(ili) = (ii): If the form @ is not irreducible, then there exists a
proper non-trivial subset U C X such that L decomposes into a direct
sum of operators Ly ® Lx\p on (U, my)®0*(X \U, mx\y). Hence, the
resolvent also decomposes into a direct sum (Ly +a) '@ (Lx\p +a) ™.
In this case, taking a non-trivial function f € ¢?(U,my) with f > 0
yields a non-trivial function (f,0) € 2(U, my) ®€*(X \ U, mx\p) which
is non-negative. However,

(L+a)7(f,0) = (Lv + &) f, (Lxw + @) 10) = (Ly + )7 £, 0),

which is not strictly positive.

(i) = (i): For any connected component U, we clearly have that
lyp € D(Q) and

Qp) = Q(lyy) + Q(1x\uyp)

for any ¢ € C.(X). We want to show that the same holds for f € D(Q)
so that we may apply irreducibility to conclude connectedness.
Let f € D(Q) and let ¢, € C.(X) be such that ||¢, — f|lg — 0 as

n — oo. Then, (1yg,) is a Cauchy sequence in || - || since
Q(luen — lupm) < Q(Llu(en — om)) + QUUx\u(Pn — ¢m))
= Q(¢n — ¥m)

and ||1ygn — luem|l < [lon — @l for all n,m € Ny. Hence, (1yp,)
converges in D(Q) so that 1y f € D(Q). Furthermore, as Q(1yp,) —
Q(lyf) and Q(vn) — Q(f) as n — oo, it follows that

Q(f) = Qv f) + Q(lx\w/f)-

By irreducibility, we infer that either U = () or U = X. This shows
that (b, c) is connected. O

5. Boundedness and compactly supported functions

In this section we study basic facts about the domain of the oper-
ators. More specifically, we first characterize boundedness of the oper-
ators and the form. We then characterize when the formal Laplacian
maps the finitely supported functions into ¢2.

We start with a characterization of boundedness. For a graph (b, ¢)
over (X, m) we let @ = Q. and L = Ly, and recall that

(Z b(z,y) + c(x))

for x € X denotes the weighted degree. Furthermore, we recall that a
closed form @ with domain D(Q) is associated to the graph if D(Q”)) C
D(Q) € D(Q™)) and Q is a restriction of Q. We say that the corre-
sponding operator L, which is a restriction of L, is associated to the

Deg(z) = mzx)
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graph as well. The boundedness statement below shows that there is
a unique such form whenever the weighted degree is bounded.

THEOREM 1.27 (Characterization of boundedness). Let (b,c¢) be a
graph over (X, m) and let L be a Laplacian associated to the graph with
form Q. Then, the following statements are equivalent:

(i) The weighted degree Deg is a bounded function on X.

(i) The form Q and, thus, Q is bounded on (*(X,m).
(iii) The operator L and, thus, L is bounded on (*(X,m).
The equivalent statements, in particular, imply that Q) = Q = QW)
Moreover, if Deg is bounded by D < oo, then QQ < 2D and L is bounded
by 2D on (*(X,m).

PROOF. (i) == (ii): Suppose Deg < D, i.e., >y b(z,y) +c(x) <
Dm(x) for all z € X. Then for f € ¢*(X, m) we have

> (Z b(z,y) +c<w>) ©) <D feym(z) = D f|”

zeX \yeX zeX

Therefore, if f € (*(X,m), then

z,yeX zeX
< b ) (@) + L)+ D el
z,yeX rzeX
<2 3 b)) + Y el
z,yeX zeX
< 2D||fI]*,

where we used the symmetry of b and Fubini’s theorem in the second
inequality above. This shows that £2(X,m) C D and that Q is bounded
by 2D on (X, m).

(i) = (iii): The statements for L follow directly from the fact
that

ILl= sup (Lf,f)= sup  Q(f)
feD(L),|IflI<1 feD(L),|IfII<1

as L is self-adjoint. In particular, if Deg < D, then L is bounded by
2D from the argument above. As L is thus bounded, it follows that
D(L) = ¢*(X,m) and since L and £ agree on D(L) by Theorem [1.6]
the statement for £ follows.

(i) = (i): Let e, = 1,//m(z) for x € X and observe that
lle|| = 1 and

(Leg, e,y = Q(e) = Deg(z).

As we assume that L is bounded, this shows the statement. U
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We next investigate the issue of whether the space of functions of
compact support C.(X) is in the domain of an associated operator
L. We start by giving an example where £ does not map C.(X) into
(*(X,m), in which case C.(X) cannot be included in D(L).

EXAMPLE 1.28 (LC,(X) not in £2(X,m)). Let X = Ng and b(0, k) =
b(k,0) = k=2 for k > 1 and b(k,l) = 0 for k,l > 1 with ¢ = 0. Fur-
thermore, let m be given by m(k) = k=2 for k > 1 with m(0) = 1.
Then,

;O(mow))zm(k) > ; bng(z};? = ;
Thus, L1, is not in £2(X,m).

The next theorem characterizes C.(X) C D(L) and gives some
sufficient conditions for this to hold. In particular, C.(X) C D(L) if
the graph is locally finite.

THEOREM 1.29 (Characterization of C.(X) C D(L)). Let (b, c) be

a graph over (X, m) and let L be a Laplacian associated to the graph.
Then, the following statements are equivalent:

(i) Ce(X) € D(L).

(i) LO(X) C (X, m).
(iii) The functions X — [0,00), y +— b(z,y)/m(y) are in (*(X,m)

forallx € X.

(iv) £2(X,m) C F.

Furthermore, the equivalent conditions above are satisfied if

= OQ.

o=

inf m(y) > 0

Yy~
for all x € X which holds, in particular, if the graph s locally finite.

PROOF. (i) <= (ii): Let @ be the form associated to L. From
general properties, see Theorem in Appendix [B],

B there exists a unique g € ¢*(X, m) with
by = {1 e @) | e e bl |
By Green’s formula, Proposition , we have for all h € D(Q) C F,
p € Ce(X) and g = Lo
Q(h,p) =Y h(x)g(w)m(z).
zeX

The right-hand side is equal to (h, g) if and only if g = Lo € (*(X,m).
Along with the fact that L is a restriction of £ by Theorem this
shows the equivalence between (i) and (ii).

(i) <= (iii): Let ¢, be given by ¢, (y) = b(x,y)/m(y). We observe
that

L1, = Deg(z)1, — ¢q,
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which yields £1, € £*(X,m) if and only if ¢, € (*(X,m).

(ili) <= (iv): Assume that ¢, given by ¢.(y) = b(x,y)/m(y) are
in (2(X,m) for all z € X. Then, for f € ¢*(X,m), we get by the
Cauchy—Schwarz inequality

S b)) = 3 e ) @) m) < eI
yeX yeX

Hence, f € F.

On the other hand, assume that ¢*(X,m) C F and let x € X. De-
fine N, =
{y € X |y~ x}. Then, (*(N,,b(x,")) = {f € F | suppf C N,}
and we have

(N, mly,) C {(N,,b(z,)).

By the closed graph theorem we infer the existence of a constant C' > 0
such that for all f € (2(X,m) and all z € X

> b, ) @) = 11 llaw, sy < ClANI < CIF.
yeX
Therefore,
> eay) = b 9lf W) < CIf-
yeX yeX

Hence, ¢, € (?(X,m) by the Riesz representation theorem.

Finally, the condition inf,.,m(y) = C, > 0 implies that ¢, €
(*(X,m) for x € X, since

el =2

yeX

V(z,y) _ 1
<) B (ay) < o0
m(y) ~ Co
This shows the “in particular” statement. Il

6. Graphs with standard weights

In this section we discuss a class of examples which have been of
special interest in the literature, namely, graphs with standard weights.
They appear as a special case in our framework. In particular, we apply
the results of the previous section to characterize when the associated
forms and operators on such graphs are bounded.

DEFINITION 1.30 (Graphs with standard weights). Let (b,c) be a
graph over X. If b takes values in {0,1} and ¢ = 0, we say that b is a
graph with standard weights.

We denote the edges of the graph by
E={(z,y) e X x X |z ~y}
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For graphs with standard weights, the degree function deg given by
deg(x) = > , cx b(%,y) is the combinatorial degree, i.e., if z € X, then

deg(z) = #H{y € X [z ~y} = # (BN ({z} x X)).

The assumption zye < b(x,y) < oo clearly implies that graphs with
standard weights are locally finite.

6.1. The energy form and the formal Laplacian for graphs
with standard weights. We now explicitly write out the energy form
and the Laplacian in the case of standard weights.

For a graph b with standard weights, the energy form Q is given by

of)=5 S (@) - )

z,yeX,xrvy
for f € C(X). Furthermore, by local finiteness, the domain F of the
formal Laplacian consists of all functions, i.e.,

F=C(X).
We denote the formal Laplacian £; o for graphs b with standard weights
by A. This operator acts as

Af(@) =Y (f@) = f©).

yeX,y~x

6.2. The counting measure. We now introduce the counting
measure and give a boundedness criterion for the resulting combinato-
rial Laplacian.

The counting measure m = 1 counts the number of vertices in a
subset of X. In this case, the degree and the weighted degree satisfy

deg = Deg
and are equal to the combinatorial degree.

In this case, we denote the Laplacian Ll()l()))l associated to Qz(;,lg)1 by

A. By Theorem , A is a restriction of A.
We deduce the following corollaries from the results of the previous
sections.

COROLLARY 1.31 (Characterization of boundedness). Let b be a
graph with standard weights and let m = 1 be the counting measure.
Then, the following statements are equivalent:

(i) The combinatorial degree deg is a bounded function on X.
(ii) The form @ is bounded.
(iii) The operator A is bounded.

ProOF. This follows directly from Theorem and the equality
of the combinatorial and weighted degrees, deg = Deg, in this case. [J



6. GRAPHS WITH STANDARD WEIGHTS 135

COROLLARY 1.32 (C.(X) C D(A)). Let b be a graph with standard
weights and let m = 1 be the counting measure. Then, C.(X) C D(A).

PROOF. As m = 1 is uniformly bounded from below by a positive
constant, the statement follows directly from Theorem [T1.29 O

6.3. The normalizing measure. We now introduce the normal-
izing measure and discuss how the resulting Laplacian is always bounded.

The normalizing measure n is given by deg which is the combina-
torial degree in the case of standard weights. This measure counts the
number of edges for a subset of vertices, more specifically,

n(A) = #E4 + %#&EA
for A C X, where B4 = EN(Ax A) and
OpA = BN (X A) x A)U (A x (X \ A)
(cf. Exercise . Letting m = n, the weighted degree Deg satisfies
Deg = 1.

For the normalizing measure n = deg, we denote the Laplacian
ng?n associated to Qgﬁ)n by A, and refer to A, as the normalized

Laplacian. By Theorem , A, is a restriction of %E, that is

M) = o 3 (1)~ 1)

yeX,y~x

for f € D(A,) and z € X.

COROLLARY 1.33 (A, is bounded). Let b be a graph with stan-
dard weights and let n be the normalizing measure. Then, the normal-
ized Laplacian A, is a bounded operator on (*(X,n). In particular,

C.(X) C D(A,) = (X, n).

PROOF. This follows directly from Theorem and the equality
Deg = 1 in this case. U
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Exercises
Excavation exercises.

EXERCISE 1.1 (The Hilbert space £*(X,m)). Let (X, m) be a dis-
crete measure space. Show that

CX,m)={f: X —R| > f(x)m(z) < oo}
zeX
is a real Hilbert space with inner product given by

(f,9) = f(x)g(zx)m(x).

zeX

EXERCISE 1.2 (Denseness of C.(X) in £2(X,m)). Let (X, m) be a
discrete measure space. Show that C,(X) is dense in £*(X,m).

EXERCISE 1.3 (Closure convergence). Let (L,) be a sequence of
self-adjoint operators on a Hilbert space and let L be a self-adjoint
operator. Assume that for a family {®,}ae; of measurable bounded
functions from R to R and some index set I we have

li_)rn Do (Ln)f = Pa(L)f

for all f in the Hilbert space and for all « € I. Let A be the closure of
{®4}aecr with respect to the supremum norm. Show that

lim ®(L,)f = ®(L)f

for all ® € A and f in the Hilbert space.

Example exercises.

EXERCISE 1.4 (Mutual independence of positivity preserving and
contracting). Let (X, m) be a discrete measure space.

(a) Give an example of a self-adjoint operator with a positivity pre-
serving but not contracting semigroup.

(b) Give an example of a self-adjoint operator which is neither positiv-
ity preserving nor contracting.

(c) Give an example of a self-adjoint operator whose semigroup is con-
tracting but not positivity preserving.

EXERCISE 1.5 (Graph with strictly positive b). Give an example of
a graph b over an infinite set X with b(z,y) > 0 for all z,y € X with

T #y.
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EXERCISE 1.6 (Infinite star graph). Consider the infinite star-graph
with X = Ny = NU {0}, m: X — (0,00) and b: X x X — [0, 00)
satisfying b(z,y) = 0 whenever {z,y} C N and b(x,y) > 0 whenever
x # y with 0 € {z,y}. Let @ be an associated form and L be the
corresponding Laplacian.

(a) Characterize the boundedness of the associated form Q.
(b) Characterize the validity of C.(X) C D(L).

EXERCISE 1.7 (Dirichlet form not satisfying C.(X) C D(Q)). Give
an example of a discrete measure space (X, m) and a Dirichlet form @
on (X, m) which does not satisfy C.(X) C D(Q).

(Hint: Any expression of the form Q(f) = %ny b(x,y)(f(x) —
f(y))? with symmetric b > 0 will be compatible with contractions. If
>, b(x,y) < oo does not hold for all z € X, the domain of () cannot

contain all of C.(X).)

EXERCISE 1.8 (Dirichlet form with D C ¢*°). Give an example of
a Dirichlet form over an infinite set X such that all functions of finite
energy are bounded.

(Hint: An example may be given based on X = Nand b: X x X —
[0, 00) with b(x,y) = 0 whenever |z — y| > 1. To achieve the desired
boundedness it suffices (why?) to show finiteness of | f(n)— f(n+
1)] for all functions of finite energy. Note that such functions satisfy

(why?) >, cnb(n,n+ 1) f(n) — f(n+1)]* < 00.)

EXERCISE 1.9 (Dirichlet form with D C ¢*(X,m)). Give an exam-
ple of Dirichlet form over an infinite set such that all functions of finite
energy belong to (*(X,m).

(Hint: Have a look at the preceding exercise.)

Extension exercises.

EXERCISE 1.10 (Forms associated to a graph). Show that a form
Q with domain D(Q) C ¢?(X,m) is associated to a graph if and only if
C.(X) C D(Q), the form @Q is a restriction of Q and D(Q) is complete
with respect to || - || o-

EXERCISE 1.11 (Graphs over arbitrary sets). Let X be an arbitrary
set and assume that b: X x X — [0,00) satisfies b(z,y) = b(y, ),
b(x,z) =0 and

Zb(m,z) = sup Zb(m,y) < 00

e X UCX finite yel

for all x,y € X. Call a subset Y of X connected if for arbitrary
x,y € Y there exists n € N and xg,...,z, € Y with 2o =z, z, = vy
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and b(zy, gr1) > 0 for all £ =0,...,n — 1. Show that any connected
subset of X is countable.

EXERCISE 1.12 (Graphs and forms on C,(X)). Let Q™) be a
form on C.(X) x C.(X) with Q™) (C o ¢) < QmP)(p) for all ¢ €
C.(X) and all normal contractions C: R — R. Show that there
exists a graph (b, c) over X such that Q™) is the restriction of Dp.c
to Co.(X) x Cu(X).

EXERCISE 1.13 (Approximating f and F'f). Let (X, m) be a dis-
crete measure space. Let Q(°™) be a closable form on C.(X) x C.(X)
with closure Q. Let F: (2(X,m) — (*(X,m) be a continuous map
with F(C.(X)) C C.(X) and assume that Q(™P)(Fy) < Q(comp) ()
holds for all ¢ € C.(X).

(a) Show that F'f € D(Q) for all f € D(Q) and Q(F'f) < Q(f).
(b) Show that for any f € D(Q) there exists a sequence (¢,,) in C.(X)
with ¢, — f with respect to || - ||¢ and F, — Ff with respect to

Il

EXERCISE 1.14 (Regularity and resolvent convergence). Let (X, m)
be a discrete measure space. Let () be a Dirichlet form on (X, m) such
that C.(X) C D(Q) and let L be the self-adjoint operator associated
to (). For an increasing sequence of finite sets K, C X such that
X =, Ky, let Lk, be the operators corresponding to the restriction
of @ to C.(K,). Assume

lim (Lg, +a) o= (L+a)

n—oo

for all @ > 0 and ¢ € C.(X). Show that @ is regular.

EXERCISE 1.15 (Positivity preservation). Let A be a bounded op-
erator on ¢?(X,m) for any p € [1, 00] which has the Markov property,
ie, forall f € P(X,m) with 0 < f <1 we have 0 < Af < 1. Show
that A is positivity preserving, i.e., Af > 0 for all f > 0.
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Notes

Most of the material found in this chapter is known to experts. Very
roughly speaking, substantial parts of the chapter can be seen as an
elaboration on the well-known Beurling—Deny formulae in the specific
(and most simple) situation where the underlying locally compact space
is just a discrete topological space. For a treatment of the general case,
we refer to the monograph of Fukushima [Fuk80| and the subsequent
textbook of Fukushima/Oshima/Takeda [FOT11]. Our presentation
here is determined by our perspective of bringing together the geome-
try of graphs, spectral theory and Dirichlet forms. In this, we follow
to a large extent the treatment of Keller/Lenz [KL12| and the subse-
quent discussion in Haeseler/Keller/Lenz/Wojciechowski [HKLW12].
Of course, this chapter generalizes the corresponding material in Chap-
ter [0] which deals with finite sets, compare the notes there.

Section [1| can be seen as summarizing the setting and the basic
perspective on Dirichlet forms on discrete sets developed in [KL12,
HKILW12]. The Green’s formula as it appears in Propositions
and [1.5| was first presented in [HK11].

The main result of Section 2, Theorem [I.18] shows the correspon-
dence between graphs and regular Dirichlet forms on discrete sets. This
can be derived from the Beurling-Deny formula as given in [FOT11].
Here, we follow [KL12].

Approximation of regular Dirichlet forms by exhaustions of the
space and related topics such a domain monotonicity, as presented in
Section [3, appear in many places and are, indeed, a main tool in the
study of regular Dirichlet forms. For manifolds, the fundamental paper
on the construction of the semigroup by approximation is by Dodziuk
[Dod83]. For graphs with standard weights and counting measure,
the corresponding treatment goes back to the thesis of Wojciechowski
[Woj08|, see the articles [Woj09, Web10] for related material as
well. The discussion here follows [KL12], which in turn is inspired by
[Woj08|. Here, we also use approximation to prove the Markov prop-
erty of the semigroup given in Corollary [1.22] This Markov property
is, of course, well known and can be derived from abstract theory of
Dirichlet forms, see e.g. [FOT11].

The fact that the heat semigroup on a connected Riemannian man-
ifold is positivity improving is shown in [Dod83] with corresponding
results for graphs with standard weights and counting measure found
in [Woj08]. The statement for graphs as considered in our presen-
tation can be found in [KL12]. The characterization of connectivity
in terms of positivity improving semigroups found in Section [4] is from
[HKLW12]. That the concepts of irreducibility and positivity improv-
ing agree for semigroups is standard and can be found, for example, in
[FOT11, RS75].
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The main result of Section [f] is Theorem [1.27] It is certainly a
part of mathematical folklore. In the form stated here, it can be found
in [HKLW12]. The equivalence between (i), (ii) and (iii) given in
Theorem [1.29) goes back to [KL12]. The equivalence of these conditions
to (iv) seems not to have appeared in print earlier.

Section [6] presents the main classes of examples found in the liter-
ature. It seems fair to say that a large part of the existing literature
treats the normalized Laplacian as an analogue to the Laplace—Beltrami
operator on a manifold. From this point of view, the general weighted
graphs presented in this book and their Laplacians then correspond to
weighted manifolds and the associated Laplacian.

For complementary textbooks on infinite graphs we refer the reader
to the corresponding comments at the end of the notes to Chapter[0, As
mentioned above, the textbook of Fukushima/Oshima/Takeda [FOT11]
offers an excellent exposition on the theory of Dirichlet forms, but we
also mention [BH91l, Dav89, MR92]. Furthermore, the theory of
Markov diffusion semigroups developed in [BGL14] is, in some sense,
complementary to the discrete setting we treat here. Textbooks treat-
ing analysis on Riemannian manifolds include [Cha84l,|Cha06, (Gri09),
Jos17].



CHAPTER 2

Infinite Graphs — Toolbox

In this chapter we extend the theory of the key concepts introduced
in the previous chapter. In particular, we collect various tools that
are needed at later parts of the book and provide further conceptual
insights. However, in contrast to the previous chapter, the material
here is not required for all of the subsequent considerations. So, it is
possible to skip over this chapter, dive into the material that follows
and only come back here when coming across a topic where the material
is needed.

A remarkable feature of semigroups and resolvents associated to
graphs is that they can be extended to all /7 spaces. This is ultimately
a consequence of the Markov property. We discuss this extension in
Section [l This material is used in parts of Chapters [ and [§] and is
crucial for the considerations in Chapter [7]

In Section 2l we discuss restrictions of forms to subsets. While we
already touched upon this topic in Section |3| for restrictions to finite
sets, the general case is discussed here. This material puts the results
of Section [3|in a wider perspective and is relevant for the material in
Chapter

A special feature of graphs, which is going to play a major role in
subsequent developments, is the non-locality of the Dirichlet form. A
direct consequence of the non-locality is the lack of a pointwise Leibniz
rule and, even worse, the lack of a chain rule. This poses various
challenges in applying standard techniques from analysis. We discuss
this non-locality and give an extensive presentation of ways to deal
with it in Section [3] This material will be used in Part [3| specifically
in Chapters [12] and [L3]

Most of the theory developed in this book needs a discrete set with
a graph structure and a measure. However, certain parts can be de-
veloped without a measure. While this is not necessary for any of our
main applications later, it is quite instructive to see this. We present
the corresponding considerations in Section [l This section can be
omitted and is marked as optional.

We present a stochastic interpretation of the semigroup and a Feynman—
Kac formula in the also optional Section[5] The general theory as devel-
oped in these sections is not really specific to discrete sets. In essence,
it holds for general Dirichlet forms.

141
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1. Generators, semigroups and resolvents on (7

In this section we discuss how a Dirichlet form gives rise to a semi-
group and a resolvent on ¢?(X,m) for every p € [1,00]. The basic idea
is that a Laplacian L associated to a Dirichlet form induces a con-
traction Markov semigroup e~** for ¢ > 0 and a contraction Markov
resolvent (L + «)~! for a > 0 on ¢*(X, m). The Markov property then
allows us to extend these to every (P space while preserving the con-
traction and Markov properties. The arising semigroups and resolvents
agree on their common domains and have a symmetry property in that
the semigroup and resolvent on ¢?(X,m) are adjoint to the semigroup
and resolvent on ¢4(X,m) for 1/p+1/q = 1. Moreover, for p € [1, 00),
the semigroups and resolvents are strongly continuous.

We then discuss the generators of the semigroups and resolvents and
show that their action agrees with that of the formal Laplacian. Fur-
thermore, we show that the resolvent generates the minimal solution of
the Poisson equation and the semigroup generates the minimal solution
of the heat equation. Finally, we give criteria for the boundedness of
the generators on (X, m).

We start this section with a short discussion of /7 spaces. We then
consider semigroups and resolvents associated to graphs and their gen-
erators in the subsequent subsections. Throughout this section we will
make extensive use of general operator theory. So, for general back-
ground on spectral theory see Appendix [A] for closed forms see Appen-
dix B} for Dirichlet forms see Appendix [C] and for general semigroups
and resolvents on Banach spaces see Appendix [D] Excavation Exer-
cises 2.1, and [2.3] recall basic facts about (7 spaces which will be
used throughout this section.

Let (X, m) be a discrete measure space. For every p € [1,00), we
define

0(X,m) ={f € C(X) | Y _If(@)P'm(x) < oo}.

zeX
Then, (P(X,m) is a vector space with norm || - ||, given by
1/p
11l = (Z [F@)Pm( ) .
zeX

For p = oo, we define
(Xm) ={f € C(X) | sup|f(z)] < oo}

This is a vector space with norm given by

[fllee = sup [f ()]
rzeX

In fact, neither ¢>°(X, m) nor the norm ||- ||« depend on the underlying
measure. Therefore, whenever (*°(X, m) appears independently of the
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other /?(X,m) spaces, we will write £*°(X) for /*°(X,m). The spaces
(?(X,m) are complete with respect to || - ||, for p € [1, o0].

1.1. Semigroups, resolvents and their generators. In this
subsection we give a brief overview of the general theory of semigroups
and resolvents on (X, m). This will be applied to graphs in the next
subsection. For full details and proofs, we refer the reader to Appen-
dix Dl

We start with the definition of a strongly continuous contraction
Markov semigroup. For p € [1,00], we denote the bounded linear
operators on /?(X, m) by

B(P(X,m)) ={L: °(X,m) — (°(X,m) | L is linear and bounded}.
DEFINITION 2.1 (Semigroup). Let (X, m) be a discrete measure
space and let p € [1,00]. A map S: [0,00) — B(¢*(X,m)) is called a
semigroup on (X, m) if
S(s+t) = S(s)S(t)
for all s,t > 0. A semigroup S is called strongly continuous if
lim S(t)f =
lim S()f = f
for all f € ?(X,m). A semigroup S is called a contraction semigroup
if
1S, <1
for all £ > 0. Finally, a semigroup is called a Markov semigroup if
0<St)f<1
forallt > 0 and f € P(X,m) with 0 < f < 1.

REMARK. Strong continuity of the semigroup on (X, m) implies
that the map [0, 00) — [0, 00) given by

t= [1S@)
is continuous for all f € ?(X, m), see Proposition in Appendix D]

EXAMPLE 2.2. If A € B({?(X,m)), then e * for t > 0 gives a
strongly continuous semigroup which generates a solution of the para-
bolic equation involving A (Exercise . Furthermore, given an initial
condition, this solution is unique (Exercise .

Any strongly continuous semigroup S defines an operator called the
generator of the semigroup.

DEFINITION 2.3 (Generator of a semigroup). Let (X, m) be a dis-
crete measure space and let p € [1,00]. If S is a strongly continuous
semigroup, then the operator A with

—S(t

D(A) = {f € 0(X.m) | g = tim L0

t—0t

exists in (X, m)}
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and
Af =y
for f € D(A) is called the generator of S.

It follows that D(A) is dense in P(X, m) and that A is a closed
operator. If S is additionally a contraction semigroup, then it can be
shown that A + « is a bijection for o > 0 with inverse given by

(A+a)! = /Ooo e 'S (t)dt.

See Theorem for further details. We note that, in order to de-
fine the integral above, we need the notion of integration of Banach
space-valued functions. This is defined as a Riemann integral via ap-
proximation by Riemann sums of step functions. Furthermore, we note
that the properties of the generator of a strongly continuous semigroup

characterize such generators (Exercise [2.9)).

We now introduce resolvents and point out their connections to
semigroups.

DEFINITION 2.4 (Resolvents). Let (X, m) be a discrete measure
space and let p € [1,00]. A map G: (0,00) — B(*(X,m)) for p €
[1,00] is called a resolvent on (P(X,m) if G satisfies the resolvent iden-
tity

G(a) = G(P) = —(a = B)G()G(B)
for all a, 5 > 0. A resolvent G is called strongly continuous if
lim aG(a)f = f
a—r00
for all f € (X, m). A resolvent G is called a contraction resolvent if
laG ()], <1
for all & > 0. Finally, a resolvent G is called a Markov resolvent if
0<aG(a)f <1
for all @ > 0 and f € (X, m) with 0 < f < 1.

REMARK. Strong continuity of the resolvent on ¢?(X,m) implies

that the map (0, 00) — [0, 00) given by
a = [|[G(@)flp
is continuous for all f € P(X, m) (Exercise [2.10)).

Resolvents, as semigroups, have generators. In order for the defini-
tion to be meaningful, we note that the range of G(«) is independent
of a for any resolvent. Furthermore, G(«) is a bijection onto its range
and the expression G (o)™ f — af is independent of « for any strongly
continuous resolvent, see Proposition This allows us to define
the generator of a resolvent.
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DEFINITION 2.5 (Generator of a resolvent). Let (X, m) be a discrete

measure space and let p € [1, 00]. If G is a strongly continuous resolvent
on /?(X,m), then the operator A with D(A) = Range(G(«)) and

Af =Gla)'f - af
for f € D(A) is called the generator of the resolvent G.

It follows that the generator A is closed and that A+« is a bijection
with inverse G(a), see Corollary

We now highlight the connection between resolvents and semigroups.
Namely, if S is a strongly continuous contraction semigroup, then

G(a) = /Ooo e 'S (t)dt

defines a strongly continuous contraction resolvent. If A denotes the
generator of S, then

Gla) = (A+a)™!
so that A is also the generator of G. Therefore,

(A+a) = /OOO e '*S(t)dt,

which is referred to as the Laplace transform formula. For further
details and a proof, see Theorem [D.18]

1.2. Graphs and Markov semigroups and resolvents on dis-
crete spaces. We have seen that graphs gives rise to a strongly contin-
uous Markov contraction semigroup and resolvent on ¢£2(X,m). In this
subsection we discuss that these semigroups and resolvents naturally
extend to all ¢7(X,m) for p € [1,00].

Let (b,c) be a graph over a discrete measure space (X, m) and let
L be an operator associated to the graph, see Definition [1.11, Using
the functional calculus, see Proposition [A.32] we define the operator
S:[0,00) — B({*(X,m)) via

S(t) = et

We refer to S as the semigroup associated to L. If L = L(P), the Lapla-
cian arising from the regular Dirichlet form, we denote S by S .., and
call it the semigroup associated to the graph (b, c) over (X, m). Indeed,
S is a strongly continuous contraction semigroup and whenever the
form () associated to L is a Dirichlet form, S even becomes a Markov
semigroup. For the Dirichlet Laplacian L"), the Markov property was
already shown in Corollary in the last chapter. For a general
Dirichlet form () this is a consequence of the second Beurling—Deny
criterion, Theorem in Appendix [C] These considerations are sum-
marized in the next proposition.
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PROPOSITION 2.6 (Markov property on ¢?(X, m) — semigroup). Let
(b, ¢) be a graph over (X, m) and let L be an associated operator. Then,
S is a strongly continuous contraction semigroup with values in the self-
adjoint operators on (*(X,m). If the form associated to L is a Dirichlet
form, then S is even a Markov semigroup on (*(X,m). This holds, in
particular, for L'?) and L&)

Proor. That S is a strongly continuous contraction semigroup
with values in the self—adjoint operators follows from functional cal-

culus, see Proposition 2 in Appendix [A] for details. That S is a
Markov semlgroup follows by Corollary [1.22/ for L = L(P) and by The-

orem [C.4]in Appendix [C] for a general L. O

The Markov property will allow us to extend S to all ¢7(X,m)
spaces for p € [1,00]. A crucial ingredient in this extension process is
the fact that a Markov matrix defines a bounded operator on 7(X,m)
for p € [1, o0].

DEFINITION 2.7 (Markov matrix). Let (X, m) be a discrete measure
space. A function a: X x X — R is called a Markov matriz if a
satisfies the following properties:

e a(z,y) = aly, z)

° a(z,y) >0

® > exalz,z)m(z) <1
for all z,y € X.

With this notion we now show that a Markov matrix can be used
to define a bounded operator on /?(X,m) for all p € [1, o0].

LEMMA 2.8 (General bound for a Markov matrix). Let (X, m) be
a discrete measure space. Let a be a Markov matriz. Then, for all

fedX),
supZIa:c ) f()lm(y) < sup|f(x)],

zEX reX

and for p € [1,00),

Z(Z!a(x,y)f(y)\ (y ) < If@)Pm(x

zeX \yeX z€X

Here, the value oo s allowed to occur.
In particular, for p € [1,00] the matriz a induces a bounded operator
A®) with norm not exceeding 1 on each (P(X,m) by

AP fx) =" alz,y) f(y)m(y).

PrROOF. The “in particular” statement is a direct consequence of
the inequalities. Thus, it suffices to show these inequalities. The case
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p = oo is clear. Consider now p € (1,00). Let ¢ € (1,00) satisfy
1/p+1/q = 1. Then, we can estimate

> (Z a(z, y)lf(y)lm(y)) m(x)

zeX \yeX

=> <Z Ia(w,y)m(y)l”qla(w,y)m(y)l””|f(y)!> m(z)

zeX \yeX

p/q
<Y (Z a(:v,y)m(y)) (Z a(xvy)lf(yﬂpm(y)) m(z)

zeX \yeX yeX

<D > al@y)lfy)Pmy)m(z)

zeX yeX

=D IfwPmly) Y ale,y)m(z)

yeX reX

<3 1 wPm)

yeX
where we used the Holder inequality in the third line, the fact that

D yex ol y)m(y)

< 1 in the fourth line, Fubini’s Theorem in the fifth line, and a(z,y) =
a(y,z) and Y _ya(y,z)m(z) < 1 in the last line. The case of p = 1
follows in a similar manner by using Fubini’s Theorem. This finishes
the proof. O

REMARK. Another approach to the result above is to observe that
the bound holds easily for p = 1 and p = co. The result then follows
for general p € [1, 00| by interpolation, see Theorem [E.21]

We need a further piece of notation. Whenever p, ¢ € [1, oo] satisfy
1/p+1/q = 1 (where the cases p =1, ¢ = oo and p = oo, ¢ = 1 are
allowed) we can appeal to the Holder inequality to infer that

9) = f@)gla)m(a

zeX
exists as an absolutely convergent sum for f € (X, m) and g €
(9(X,m). Then, (-,-) is called the dual pairing between ¢?(X, m) and
01(X,m). Of course, for p =q =2, we just have

=Y flx)g = (f.9).

zeX

THEOREM 2.9 (Extension theorem — semigroups). Let (b,¢) be a
graph over (X,m). Let S be the semigroup of an operator associ-
ated to the graph arising from a Dirichlet form. Then, there exists
a unique family of contraction Markov semigroups S® on (P(X,m) for
p € [1, 00] satisfying the following properties:
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e SW =g, ( “Extension”)
e [orallt >0 and all p,q € [1,00] with 1/p+1/q=1

(8P ()f.9) = (f.59(t)g)
for f € P(X,m) and g € (1(X,m). ( “Symmetry”)
e [orallt >0 and all p,q € [1, 0]
S t)f = S@) (t)f
for all f € (P(X,m)NLI(X,m). (“Consistency”)
For p € [1,00), the semigroup S®) is strongly continuous. For p = oo,
the semigroup S is weak™* continuous, i.e., the map

t= (S()f, 9)
is continuous for all f € £>°(X,m) and g € (*(X, m).

REMARK. The weak* continuity of S(>) can be seen to be equiva-
lent to pointwise continuity in the discrete setting (Exercise [2.11)).

Proor. We first deal with the uniqueness statement. By consis-
tency and the extension property, the semigroups are defined on C,(X).
As C,(X) is dense in P(X,m) for p € [1,00) and all S® are bounded,
this shows that the semigroups are uniquely determined on (X, m)
for p € [1,00). For p = 0o, we note that the semigroup on ¢*°(X,m) is
uniquely determined by the semigroup on ¢!(X,m) by the symmetry
condition.

We now turn to proving existence. By Proposition , S(t) = et
for t > 0 is a Markov semigroup of self-adjoint operators on £%(X,m).
Now, for every ¢t > 0, there exists a p;: X x X — R with

St f(x) = pilw,y) f(y)m(y)
yeX
for all f € ¢*(X,m). This p is called the heat kernel of the semigroup
of S. We will now show that p; is a Markov matrix for every ¢ > 0.
First, note that by direct calculation S(t)1,(z) = pi(x, y)m(y). As
S(t) is self-adjoint, we get
pe(@, y)m(y)m(z) = (S(t)1y, 1) = (1, S(t)1.) = pe(y, 2)m(x)m(y)
so that py(x,y) = pi(y, x) for all x,y € X and t > 0.
Since S(t) is Markov, it follows that

0 < S(t)1y(x) = pul@, y)m(y).
Therefore, p;(z,y) > 0 for all z,y € X and t > 0.

Finally, letting K, C X be finite such that K,, C K,,;; and X =
\U,, Kn, it follows by the Markov property that 0 < S(t)1k, < 1 and

thus
0< Y plw, )k, (W)mly) = > pulz,y)m(y) < 1.

yeX yeKy,
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By the monotone convergence theorem

> pi(xy)mly) <1

yeX

for every x € X and t > 0.

Hence, for every t > 0, p; is a Markov matrix and Lemma [2.8| gives
for any p € [1,00] that the operator S®)(t): P(X,m) — (P(X,m)
given by

SO f(x) = pela,y) f(y)m(y)
yeX

is bounded with norm not exceeding 1. We now show that these oper-
ators have the desired properties.

Markov property. As each p; is a Markov matrix for every ¢t > 0,
each operator S satisfies

0< S f<1
whenever 0 < f <1 for f € P(X,m).

Consistency. By definition, we have

SO f(x) =D pul,y) fly)mly) = SO(1) f (=)
yeX
for any ¢t > 0 whenever f € 7(X, m) N {4(X,m).
S(?) = §. This is clear from the definition of S®.
Semigroup property for S®) . By the consistency of the family the
space
c= ) #X.m)

PE[1,00]

is invariant under any S®(t) for t > 1 and p € [1,00]. Moreover,
the action of S® on C agrees with the action of S. As S satisfies
S(s)S(t) = S(s +t) for all s, > 0, the same will hold for S® on C.
As C contains C.(X), the space C is dense in *(X,m) for p € [1,00).
Then, the semigroup property follows on ¢#(X,m) for p € [1,00) as
each S®)(t) is a bounded operator. To deal with the case p = oo,
it suffices to consider f > 0. Any such function can be written as a
monotone limit of functions in C.(X). By the Markov property, the
operators S>)(¢) on (X, m) are compatible with monotone limits
and the desired statement follows.

Symmetry. The symmetry property is clear for f,g € C.(X). It
then follows in the generality stated by approximating f € ¢P(X,m)
and g € (9(X,m), where 1/p+ 1/q = 1, by sequences (f,) and (g,) in
C.(X).

Strong continuity for p € [1,00). From the strong continuity of S
on (*(X,m) we infer pointwise continuity of p; for ¢ — 07 in the sense
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that we have

[
pe(z,y) = m(y)e 1,(x) —

mly(fﬁ)

ast — 0% for every x,y € X.
We now treat the general case and let f € ?(X,m) for p € [1, 00).
In order to simplify the notation we set

u(w) = SO f(x) = pul,y) f(y)m(y)-
yeX
Let € > 0. Since C.(X) is dense in ?(X,m) for p € [1,00) we can
choose as finite subset K C X with
11— 1) fIl; <e
so that

Ik fll5 > 1[5 — e
For ¢ sufficiently close to 0, we then infer from the pointwise continuity

and the finiteness of K that
115 (ue = Il <e.
Therefore, combining with the above, we obtain
1wy > 1F1I} — 2¢.
Moreover, as each S® () has norm not exceeding 1 we also have

el < 11715

Therefore, for small enough ¢ > 0, we infer from the last two inequalities

115 = Nlwellp = [kl + 111 = L )welly > [[F11 — 28 + (1 = Lr)we[}.
Hence,

(1 — 1K)ut||§ < 2e.
This gives the desired continuity at 0 as

lue = fllp < (0= T )ullp + [1ac(ue = F)llp + (1= 1) fllp-

Weak* continuity for p = oo. This follows from the strong continu-
ity for p = 1 and the symmetry of the family. O

As, by the previous theorem, S is a strongly continuous contrac-
tion semigroup for all p € [1,00), it follows that S® has a generator,
see Definition . We denote the generator of this semigroup by L®).
For p = oo, we do not have a strongly continuous semigroup. However,
we can define L(>) to be the Banach space adjoint of L), i.e.,

L) — (L(l))*.
After this discussion of semigroups we now turn to resolvents. We
start by discussing the resolvent on ¢*(X,m) and the connection be-

tween the resolvent and the semigroup in this case. We recall that
as a Laplacian L associated to a graph comes from a positive form,
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it follows that o(L) C [0, 00), where (L) denotes the spectrum of L,
see the discussion in Appendix [B] In particular, for every o > 0, the

resolvent (L + «)~! exists and is a bounded operator on £2(X, m). We
define G: (0,00) — B({*(X,m)) by

Ga)=(L+a)!

and refer to it as the resolvent associated L. For L = LP) we denote

G by Gpem and call it the resolvent associated to the graph (b, c).

PROPOSITION 2.10 (Markov property on ¢*(X,m) — resolvents).
Let (b, c) be a graph over (X, m) and let L be an operator associated to
the graph. Then, G is a strongly continuous contraction resolvent with
generator L which takes values in the bounded self-adjoint operators.
Moreover, for o > 0,

Gla)=(L+a)'= / e 'S (t)dt, ( “Laplace transform”)
0

where S is the semigroup associated to L. If the form associated to L
15 a Dirichlet form, then G is even a Markov resolvent. This holds, in
particular, for L'?) and LW,

PRrROOF. The spectral theorem easily gives that GG is a strongly con-
tinuous contraction resolvent, see Proposition[A.34]in Appendix[A] The
Laplace transform formula can also be shown by the spectral theorem,
see Theorem in Appendix[A] Finally, the Markov property follows
from the Markov property of the semigroup, Proposition [2.6] U

Theorem shows that the semigroup S on ¢?(X,m) can be ex-
tended to all #(X, m) for p € [1,00]. An analogous extension theorem
for the resolvents is discussed next.

THEOREM 2.11 (Extension theorem — resolvents). Let (b,c) be a
graph over (X, m). Let G be the resolvent of L which is associated to
the graph and arises from a Dirichlet form. Then, there exists a unique
family of strongly continuous contraction Markov resolvents G) on
?(X,m) forp € [1,00] satisfying the following properties:

e (¥ =@G. ( “Extension”)
e forall >0 and all p,q € [1,00] with 1/p+1/q=1

(G () f. 9) = (f,GV(a)g)

for f e P(X,m) and g € 19(X,m). ( “Symmetry”)
e forall >0 and all p,q € [1, 0]

CP(0)f = GO ()]
for fe P(X,m)NL1(X,m). ( “Consistency”)
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If S®) s the contraction Markov semigroup with generator L®) | then
G satisfies

GP(a) = (LW + o)™ = / e~ @) ()dt
0

for all a> 0 and p € [1, c0]. ( “Laplace transform”)
In particular, L) is also the generator of G,

PRrROOF. Uniqueness. This is easy by the statement on the genera-
tor.

FEzistence. We define the resolvent, for & > 0 and p € [1,00), by
GP(a) = / et SW) ()t
0

and we define the resolvent for p = oo to be the dual of GV
G(a) = (GV) (@)

for @ > 0. As S is a strongly continuous contraction semigroups for

p € [1,00) by Theorem 2.9} from Theorem and Proposition [D.21]
G® are strongly continuous contraction resolvents. They are Markov

since S®)(t) is Markov for every ¢t > 0 and all p € [1,00]. Then,
integrating the corresponding statements of Theorem [2.9] we find that
this family has the claimed properties.

The Laplace transform. We first consider the case p € [1,00). Then,
in the existence part of the proof we have defined

G (a) :/ et SW) (t)dt
0

for a > 0. Now, as L® is the generator of S®), Theorem directly
gives the formula

/ e SO (tydt = (LW + o)~
0

We now turn to the case p = co. Here, by Proposition [D.21] we have
G(a) = (GV(a)" = (LW+a)™)" = (LW) +a) ™ = (L +a) 7

where the last equality follows by the definition of L(®). This finishes
the proof. O

REMARK. It is also possible to base a direct proof of the previous
result on Lemma [2.8 and the properties of G given in Proposition [2.10

(Exercise [2.12)).
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1.3. Minimal solutions and the action of the generators.
Given the generators on (X, m), we now extend several results pre-
viously proven for £2(X,m) to (X, m) for general p. In particular,
we show the existence of minimal solutions to the Poisson and heat
equations and describe the action of the generators on ?( X, m).

We start with the Poisson equation. Here, we show that the resol-
vent on /P(X,m) generates the minimal solution. For p = 2, this was
already shown in Lemma [I.23] in Section [3] by using exhaustion tech-
niques. We now extend this result to cover all /7(X, m) spaces and all
operators associated to graphs. To this end, we denote the extension

of the resolvent Gy, associated to LP) to (P(X,m) by Gw

b,e,m:

THEOREM 2.12 (Resolvents as minimal solutions to (£ +a)u = f).
Let (b,c) be a graph over (X, m) and let L be an associated operator
arising from a Dirichlet form. Let p € [1,00] and let G®) be the resol-
vent on (P(X,m) associated to L. If f € (P(X,m), a >0 and

u= GV (),
then u belongs to F and satisfies the Poisson equation
(L+a)u=f. ( “Poisson equation”)

Furthermore, if additionally f > 0, then u > 0 and for the resolvent
Gy em associated to L) we have that

u=Gyln(@)]
is the smallest v € F with v > 0 and (£ + a)v > f.

PROOF. Let f € ¢?(X,m) for p € [1, 00]. Without loss of generality,
we assume f > 0. For a general f € ¢?(X,m), we can decompose
f = f+ — f— into its negative and positive parts.

Let (K,) be an increasing sequence of finite subsets of X with

X =U, K, and let f, = flk, so that f, € C.(X) for all n € N. Let
As G?) is Markov by Theorem [2.11) u, > 0 for all n € N and

the sequence (u,) is monotonically increasing and converges to u =
GW(a)f € (7(X,m) by the monotone convergence theorem.

As the resolvents agree on their common domain due to the consis-
tency statement in Theorem and f, € C.(X) C (X, m) for all
p € [1, 00|, we have

= G (a) = G0

for all n € N. By Theorem we infer that L = £ on D(L) =
G (a)?(X,m) 2 GPC,(X) and thus

(L + Q)un = (L + a)GP(a) f, = fn
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for all n € N. We conclude that u € F solves the Poisson equation by
taking monotone limits, Lemma . Furthermore, u = G® (a)f > 0
for f > 0 since G® is Markov and, therefore, positivity preserving by
Theorem 2.111

Now, let v € F with v > 0 satisfy (£ + «)v > f. Therefore,

(L+ a)v > f, for all n € N and as u,, = Gl(,?im(&)fn is the minimum
positive solution of this inequality by Lemma [1.23| we obtain u, < v

for all n € N. Taking the limit gives u < v. O

We now turn to determining the action of the generators on 7( X, m)
for p € [1, 00]. We will show that the generators are restrictions of the
formal Laplacian. This generalizes Theorem , dealing with L(”) on
(*(X, m), and Theorem , which deals with all associated operators
on *(X,m). We recall by Theorem that the generators of the
extended semigroup and the extended resolvent on ?(X, m) agree.

THEOREM 2.13 (Action of the generators on 7(X,m)). Let (b,c)
be a graph over (X, m) and let L be an associated operator arising from
a Dirichlet form. For p € [1,00], the generator L®) of the semigroup
(and the resolvent) extended to (P(X,m) is a restriction of the formal
operator L. In particular, D(L®)) C F.

PrOOF. If f € D(L™), then g = (L +a)f € *(X, m). Moreover,
by Theorem [2.12 f = G®(a)g = (L® 4+ a)~'g solves

(L+a)f=g=(L" +a)f.
This gives Lf = L@ f for all f € D(L®) and p € [1, ). O

REMARK. It is a non-trivial problem to determine explicitly the
domains of the generators L® . We will have more to say about this
topic in the next subsection for the case of bounded operators as well

as in Sections and [3

We now show that the semigroups generate minimal solutions of the
heat equation. This extends the result of Lemma from ¢3(X,m)
to D(LW) C (P(X,m). In order to show existence, we restrict our
attention to the case of p € [1,00) and use the general theory found
in Appendix |D] for strongly continuous semigroups. The case of p =
00, when the semigroup is not strongly continuous, will be handled in
Chapter |7, where we explore bounded solutions of the heat equation.

We recall that a function u: [0,00) x X — R is called a solution
of the heat equation with initial condition f if u; = u(t,-) € F for all
t > 0, t — u(x) is continuous on [0, 00) and differentiable on (0, c0)
for all z € X and u satisfies

(L+0)u(x) =0

for x € X and t > 0 with ug = f. Furthermore, u is called a supersolu-
tion with initial condition f if u satisfies the inequality (£ + 9;)u > 0
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instead of equality in the above. For the proof of the next theorem, we
invoke general semigroup theory, which is developed in Theorem

THEOREM 2.14 (Semigroups as minimal solutions to (£L+0;)u = 0).
Let (b,c) be a graph over (X,m). Let p € [1,00) and let SP be the
semigroup on (P(X,m) to an associated operator arising from a Dirich-
let form. If f € D(L®), t >0 and

Uy = S(p)(t)fa
then u is a solution of the heat equation
(L4 0)ur(x) =0

with initial condition ug = f. ( “Heat equation”)
Furthermore, if additionally f > 0, then u > 0 and for the semi-
group Spc.m associated to L) we have that
u=S5(a)f
15 the smallest positive supersolution of the heat equation with initial
condition greater than or equal to f.

ProoF. By Theorem S®) is a strongly continuous semigroup
for p € [1,00) with generator L), Hence, by Theorem in Appen-
dix @, uy = S®P)(t) f is a solution of the equation (L™ + ,)u, = 0 with
up = f and has the required differentiability and continuity properties.
Now, by Theorem directly above, L® is a restriction of £. Thus,
uy € F is a solution of the heat equation with initial condition f. This
shows the first statement.

If f >0, then u is positive as S® is Markov by Theorem We

now show the minimality of u; = Séi{m(t) f for the semigroup associated
to the Dirichlet Laplacian. Let w be a positive supersolution of the heat
equation with wg > f. Let (K,) be an increasing sequence of finite
subsets of X with X =], K, and let f,, = flk, so that f, € C.(X)
for all n € N. Let

u™ =S () f.

- ~b,e,m
pem(t) is Markov for every ¢ > 0 by Theorem , the sequence
(n)

(u; ) consists of positive functions, is monotonically increasing and
converges to u € fP(X, m) by the monotone convergence theorem.
From what we have shown above, u(™ satisfies

for t > 0 and ul” = f, for all n € N. Furthermore, u{” = S{* (),

- Mb,e,m
by Theorem[2.9as f, € Co(X) C *(X,m) for n € N. Asw is a positive
supersolution of the heat equation with wy > f, we obtain (™ < w
by Lemma [1.24] Letting n — oo gives © < w, which completes the

proof. O

AS S(p)
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1.4. Boundedness of the (P generators. Having determined
the action of the generators on P in the previous subsection, we now
characterize when the generators are bounded. We also give applica-
tions to graphs with standard weights. This extends the considerations
of Section [5l from ¢2 to 7.

Given a graph (b,c) over (X,m), we recall the definition of the
weighted degree as

Deg(z) = ﬁ (Z b(z,y) + c(ac)) :

In Sectionwe have shown that any associated Laplacian on 2( X, m) is
a bounded operator if and only if Deg is a bounded function on X. We
now extend this result to all (X, m) spaces. Furthermore, we show
that if the formal Laplacian is a bounded operator on one (X, m)
space, then it is a bounded operator on all ¢?(X,m) spaces. In order
to achieve this, we need the Riesz—Thorin interpolation theorem, see

Theorem in Appendix [E]

THEOREM 2.15 (Boundedness of L®)). Let (b,c) be a graph over
(X,m). Let p € [1,00] and L) be the generator of the extended semi-
group of an associated operator arising from a Dirichlet form. Then,
the following statements are equivalent:

(i) The weighted degree Deg is a bounded function on X.
(ii) The operator £ and, thus, L™ is bounded on (*(X,m) for all
p € [1,00].
(iii) The operator L and, thus, L) is bounded on (P(X,m) for some
p € [1, 0]
Specifically, if Deg is bounded by D < oo, then £ and L™ are bounded
by 2D on ¢*(X,m) forp € [1,00].

In order to prove the theorem we first show a duality statement.

LEMMA 2.16 (Duality and boundedness). Let (b, c) be a graph over
(X,m) and let p,q € [1,00] be such that 1/p+1/q=1. If*(X,m) C F
and the restriction of L to (*(X,m) is bounded, then ¢1(X,m) C F and
the restriction of L to £4(X, m) is bounded with the same bound.

PrROOF. We denote the dual pairing of p and g with 1/p+1/g =1
by (-,-), i.e., for f € P(X,m) and g € (9(X,m),

(f,9) = fl@)g(x)m(x).
zeX
To prove the statement of the lemma we treat the cases p = 1 and
p > 1 separately.
For p = 1, we first notice that ¢>*(X) C F. Then, from Green’s
formula, Proposition [1.5] and Hélder’s inequality, we infer that for all
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fere(X)and p € Co(X)

Y (LH@)e@m(x)| = > f@)(Le)@)m(@)] < Cllelllf oo
zeX reX
where C'is a bound for £ on ¢*(X,m). Letting ¢ = 1,/m(z) gives that
[Lf ()] < C[[flls

for all x € X so that C' is a bound for £ on (X, m).
For p > 1, let ¢ € C.(X) C ¢9(X,m) and let f € P(X,m). Then,
again by Green’s formula, Proposition [L.5, we get

> (L) (@) f(x)m(z)

zeX

Y e@)(Lf)(@)m(z)

zeX

< Cllgllgllf1lp,

where C' is a bound for £ on 7(X,m). As ||gll; = supsemx,m)(h, 9)
for ||h||, = 1, the inequality above shows that LC.(X) C ¢¢(X,m) and
ILoll, < Cllell, for all ¢ € C.(X). This yields that £ is a bounded
operator on a dense subspace of (9(X, m). Thus, £ can be extended to
a bounded operator on ¢?(X,m) with C' as a bound for £ on ¢4(X, m).

Since functions in ¢9(X,m) can be approximated monotonically
from below by functions in C.(X), this bounded operator can be seen
to agree with the restriction of £ to £9(X, m) by monotone convergence.
This proves the lemma. U

We now turn to the proof of our boundedness result.

OF THEOREM [2.15 By Theorem the generator L) of an ex-
tended semigroup on (X, m) is a restriction of £. Thus, boundedness
of £ on ¢?(X,m) implies boundedness of L") for p € [1, o).

(i) = (ii): Assume that Deg is bounded. Then, for f € (*°(X)
and z € X,

£1w) € s ba) (@) + 1))+

< 2|/ fllocDeg(x).

Thus, if Deg is bounded, then the restriction of £ to ¢>°(X) is bounded.
By Lemma [2.16] we obtain that the restriction of £ to ¢1(X,m) is
bounded. By the Riesz—Thorin interpolation theorem, Theorem [E.21]
we obtain that the restriction of £ to ¢?(X,m) is a bounded operator
for all p € [1,00]. Furthermore, we note that if Deg is bounded above
by D, then the bound on the operator is 2D. This proves (ii) and the
“specifically” statement at the end of the theorem.

(ii) = (iii): This is obvious.
(ili) = (i): Assume L is bounded on ¢?(X, m) for some p € [1, o0].
By Lemma L is then also bounded on ¢9(X,m) for ¢ such that
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1/p+1/q = 1. By the Riesz—Thorin interpolation theorem, Theo-
rem [E.21] £ is bounded on ¢*(X,m) for all s between p and ¢ and,
in particular, for s = 2. Then, with e, = 1,/y/m(z) for x € X, we
deduce from the boundedness of £ on (X, m) that

C > (Ley,e,) = L1,(x) = Deg(x)
for all z € X. Thus, Deg is a bounded function. O

We end this section by discussing the case of graphs with standard
weights and counting measure.

EXAMPLE 2.17 (Graphs with standard weights and counting mea-
sure). We let m = 1 and denote the Banach spaces ¢#(X,1) for p €
[1,00] by #(X). We consider a graph with standard weights, i.e.,
b: X x X — {0,1} and ¢ = 0. As in Section [6| we denote the
Laplacian Ll(>,D0,)l associated to Qz(),Do,)1 by A. Then, A is a restriction of
A: C(X) — C(X) acting as

Afx)= Y (f@) = fW).
yeX,y~x
Furthermore, we denote the generators of the semigroup of A on /#(X)
by A® . By Theorem [2.13] the operators A®) are also restrictions of
A. Moreover, we recall that the combinatorial degree deg: X — Nj
is given by
deg(z) = #{y € X |y ~ z},

which is equal to the weighted degree Deg = deg in this case. Then, we
obtain by Theorem the equivalence of the following statements:

(i) The combinatorial degree deg is a bounded function on X.
(ii) The operator A® is bounded for all p € [1, 00
(iii) The operator A® is bounded for some p € [1, o0].

2. Forms associated to graphs and restrictions to subsets

In this section we consider the restrictions of the energy form to
subsets of X. We have already encountered one iteration of this idea
in Section [3] where we restricted the form to finite sets. Here, we
restrict to arbitrary sets, thus extending this theory. Furthermore, we
also discuss the idea of extending a form.

Excavation Exercises [2.4] and [2.5] which recall facts about weakly
convergent subsequences in a Hilbert space and the Banach—Saks the-
orem, will be used in this section.

Let (b,c) be a graph over (X, m) and let Q = Q. be the energy
form over X. The main focus of our investigations is on Q). This form
comes about as a restriction of Q to the smallest subspace of ¢*(X, m)
containing C.(X) and giving a closed form. However, restrictions to
other subspaces are also of interest. For example, we have already
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encountered the form Q®). This is the restriction of Q to the largest
subspace of £?(X,m) giving a closed form, that is, all functions of finite
energy in ¢*(X,m). A study of various relevant restrictions is provided
in this section.

We will first develop some pieces of the general theory of restricting
forms and then apply this theory to our setting of graphs. Let @
be a form on ¢?(X,m), which we assume is positive and symmetric
throughout, with domain D(Q) such that C.(X) C D(Q). Let U C X
and let C'(U) denote the set of real-valued functions on U. Furthermore,
let my denote the restriction of m to U. Then, we can define the
restriction of ) to U, denoted by Q)y, as the restriction of () to those
functions which are supported in U. More specifically, we let

iv: O(U) — C(X)

be the extension by zero of functions on U to X and define Qy as a
form with domain D(Qy) defined by

D(Qu) ={f € (Umy) | ivf € D(Q)}
and

Qu(f) = Qlivf)
for f € D(Qu) and Qu(f) = oo for f ¢ D(Qu).
We now establish some properties of )iy which follow from proper-
ties of Q.

ProOPOSITION 2.18 (What Qp inherits from Q). Let Q be a form

on (2(X,m) with C.(X) C D(Q) and let U C X.

(a) If Q is a closed form, then Qu is a closed form with C.(U) C
D(Qu).

(b) If Q is a Dirichlet form, then Qu is a Dirichlet form.

(¢) If Q is a regular Dirichlet form, then Qu is a regular Dirichlet
form.

PROOF. (a) From the definitions, it is clear that C.(U) C D(Qu)
if C.(X) C D(Q) and that Qp is a form if @ is a form. We now show
that Qp is closed if @) is closed. This amounts to showing that Qy is
lower semi-continuous on ¢2(U, my), see Theorem . Therefore, let
fn — fin £2(Umy) as n — oo. Then, iy f, — iyf in £2(X,m) as
n — oo and from the assumption that () is closed, we have

Qu(f) =Qlivf) < ligng(iUfn) = hggg}f Qu(fn)-

(b) Let f € D(Qu) and let C' be a normal contraction. As f €
(2(U,my), it follows that C' o f € £2(U, my;). Furthermore, iy f € D(Q)
by definition and so C' oiyf € D(Q) as @ is a Dirichlet form. As
ig(C o f) = Coiyf since C(0) = 0, it follows that C' o f € D(Qy).

Finally, as () is compatible with normal contractions, we find

Qu(Co f)=Q(iu(Co f) =Q(Coiyf) <Qivf) = Qu(f)
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This shows that QQyy is a Dirichlet form.

(c) In (b) we have already shown that @y is a Dirichlet form if @) is a
Dirichlet form. To establish the regularity of )y under the assumption
that @ is regular requires some work. Note, however, that we will later
only need the case when U is finite or cofinite, i.e., the case when X \ U
is finite, and these two cases can be treated with substantially less work
(Exercise [2.13).

Let f € D(Qu) so that iy f € D(Q). As Q is regular, there exists
a sequence (¢,) in C.(X) with

Pn — ZUf n €2(X7 m) and Q(lUf - (pn) — 0

as n — oo. We will modify ¢,, to become a sequence with support in
U and which still satisfies the above properties. This will prove the
statement.

To this end, we define

1% - <|ZUf| A ¢n) \4 (_|ZUfD
As iy f has support in U, it follows that v, has support in U. Fur-
thermore, |f — .| < |f — ©,| and, hence, 1, — f in £2(U,m) and
Q/Jn — ZUf in gQ(X’ m)
For functions g, h € C(X) it is easy to see that

_gth—lg—h| g+h+lg—n

2 2 '
As @Q is positive, it follows that Q(g + h) < 2(Q(g) + Q(h)) for g, h €
D(Q). Therefore, if g,h € D(Q) we find, using that @ is a Dirichlet
form,

gAh

and g¢gVh=

QoA ) < 3 (@9 + 1) +Qllg — )
<5 (Qlg+ 1) +Qlg — 1)
= Qlg)+QUh),

and similarly,

Qg Vv h) <Qg) +Q(h).
Given this, it is immediate that the sequence (Q(v,)) is bounded since
(Q(pn)) is bounded.

Note that (g,h)g = Q(g,h) + (g, h) is an inner product on D(Q)
with associated norm || - ||g. Moreover, as @ is a closed form, D(Q) is
complete with respect to this inner product. Hence, by Theorem [B.9]
Hg = (D(Q), (-, -)q) is a Hilbert space.

The boundedness of (Q(v¢,)) and the fact that (¢,) converges in
(*(X,m) then gives that we can consider (¢,) as a bounded sequence
in the Hilbert space Hgy. Hence, it contains a weakly convergent sub-
sequence. Without loss of generality, we assume that the sequence
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itself converges weakly to some g € D(Q). Now, by the Banach—Saks
theorem we can find a subsequence (1, ) such that

~ 1 X

in the Hilbert space Hgy as N — oo. Then, {va must also converge to
g in (2(X,m). As 1, converges to iy f in £2(X,m), we conclude that
ivf = g. So, we conclude that QZN converges in || - ||o to iy f. Clearly,
{ZIN are still supported on U and this finishes the proof. U

REMARK. The considerations of the preceding proposition can be
adapted to treat restrictions to substantially more general subspaces

than ¢2(U, my) (Exercise [2.14)).

REMARK. Subspaces of the form ¢?(U,my) are clearly invariant
under normal contractions. In particular, they are closed under taking
the modulus. In fact, they may be characterized by the order ideal or
the multiplicative ideal properties (Exercise .

If @ is a closed form, then @)y is closed by the previous proposition
for U C X. Hence, the restriction of @) to C.(U) x C.(U) is closable

and we denote its closure by QgD).

As follows by Lemmal[L.15] part (c) of Proposition says that the
form Q) can also be defined as a closure when @) is a regular Dirichlet
form. In this sense, restriction to subsets and taking closures commute.
We note that when @) is a regular Dirichlet form, () must come from a
graph by Theorem [I.18|

COROLLARY 2.19 (Closure of restriction equals restriction of clo-
sure). Let Q be a regular Dirichlet form on (*(X,m) and U C X.
Then,

D
Qu = QY.

PROOF. By Lemmall.15|and the proposition above we have C..(U) C
D(Qu). Since iyC.(U) = C.(U), the restriction of ) and @y coincide
on C.(U) and the result follows as @y is closed by the previous propo-
sition. U

The preceding results give not only information on restrictions of
regular forms but also on restrictions of any form associated to a graph.
Recall that a form @ on *(X,m) is associated to a graph (b,c) if Q
is closed, D(Q") C D(Q) € D(QW)) and Q is a restriction of Q™).
Equivalently, @ is a closed restriction of Q. with C.(X) C D(Q).

COROLLARY 2.20. Let (b,c) be a graph over (X,m). Let Q be a

form associated to (b,c) and let U C X. Then, Qu is an extension of
(D)
U
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PROOF. As @ is associated to (b, ¢), the domain D(Q) of @ contains
C,(X) and Q is a restriction of Q). So, the domain of Qy must
contain C,(U) from Proposition [2.18) (a) and Qs is a restriction of Q.

We now show that @)y must be an extension of QED). Let f €
D(Q\P)). Then f € 2(U,my) and iy f € D(QP) C D(Q) as Q is
associated to the graph. In particular, f € D(Qy). Furthermore,

Qi () = QW iw f) = Qlivf) = Qu(f).
Therefore, (Qyy is an extension of QED). O

The preceding result naturally raises the question if the form Qy
is associated to a graph whenever () is associated to a graph. This is
indeed the case. We now give the details on this connection.

Let (b, c) be a graph and let U C X. We define the graph (by, cy +
dy) over (Uymy) by by: U x U — [0,00) via

bU(x7y> = b(l’,y)7

cy via the restriction of ¢ to U and dyy: U — [0, 00) via

= > by

yeX\U
Then we show next that Qpc(f) = Quycptay (f) for all f € D with
support contained in U.

PROPOSITION 2.21 (Restricting energy forms to subsets). Let (b, c)
be a graph over (X, m) and let U C X. Then, the restriction of Q. to
the set of functions in D with support in U is given by Qb cy+dy -

PRrROOF. Let f € D have support in U. Then, a short calculation
gives that

0ulf) =5 3 b)) — [ + 3 (o) ()

ff,yGX zeX

= LY e ()~ F) LYY b))

z,yel yeU ze X\U
1 2 2
52 D ey a) + Y el@) )
zeU yeX\U zeU
1
=5 D b)) = F©)* + D (e(@) + du(@)) f(2),
x,yGU zeU
which proves the statement. Il

Denote the formal operator associated to Qp, ¢, +4, by Lv and its
domain by Fy. Specifically,

Fy={feC@)|> bu(zylfy)l <o foralzelU}

yelU
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with
Lyf(x ZbU z,y)(f(x) = f(y) +

for all f € Fy andme U.
Applying the above to forms associated to graphs gives the following
result.

COROLLARY 2.22 (Restricting forms associated to graphs). Let
(b,c) be a graph over (X,m). Let Q be a form associated to (b,c)
and let U C X. Then, Qu 1is associated to the graph (by,cy + dy) and
the self-adjoint operator associated to Qu is a restriction of Ly .

It is worth noting that the action of £y on a function f can essen-
tially be though of as the action of £ on iy f. More specifically, the
following is true.

PROPOSITION 2.23 (Action of the restriction of £). Let (b,c) be a

graph over (X, m) and let U C X. Then,
Lof(0) = g S b o )= i) + S

forallz e U andeFU.

PROOF. Due to iy f =0 on X \ U and, by the definition of dy, we
have

beyzyf bey Vv f(z) —ivf(y))
yeX\U yeX\U

for x € U. Now, a direct computation gives

- ﬁ 2}){ b, )i (2) — ivf (9)) + cla)ivf (2)
for x € U, which proves the proposition. [

REMARK. It is very tempting to write the equality in the proposi-
tion above as
Ly f = (Livf)lv.
Indeed, this is just the statement of the proposition whenever iy f be-
longs to F. However, in general, i;; f will not belong to F when f € Fy
and Liy f is not defined in this case.

Whenever @ is a form on ¢2(X,m) and U is a proper subset of X,
the form )y is defined on a different Hilbert space than (). This poses
a problem if we want to compare ) and ()y. For this reason, it is
sometimes desirable to extend Qp to a form on ¢*(X,m). Here, the



164 2. INFINITE GRAPHS - TOOLBOX

natural extension is by setting the form to be zero on /(X \U,mx\y) C
¢*(X,m). We finish this section by discussing some details of this
extension process.

For U C X, we let my: C(X) — C(U), muf(z) = flu(x) = f(z)
for z € U and f|y is the restriction of f € C(X) to U. We define the
extension @U of Qu by

D(@U) ={fel(X,m)|muf e DQu)}
and, for [ € D(@U), ~
Qu(f) = Qu(muf).

Now, clearly igymy f = 1y f, where 1y is the characteristic function
of U. So, we arrive at the following representation of Qi

D(Qu) ={f € #(X,m) | 1uf € D(Q)}
and, for f € D(@U), ~
QU(f) = Q(lUf>-

PROPOSITION 2.24. Let Q be a closed form on (*(X,m) and let

U C X. Then, @U is a closed form on (*(X,m). Moreover, identifying
(X, m) with *(U,my) ® (X \ U,mx\v), we have

D(Qu) = D(Qu) & (X \U;mx\p)  and  Qu =Qu &0,
In particular, we have
Ly=Ly®0

for the operators EU and Ly associated to @U and Q.

PRrROOF. We first show that @U is closed. As usual, we extend all
forms by oo outside of their domain. Let now f,, — f in (?(X,m) as
n — oo. Then, clearly 1y f, — 1y f in £2(U, my) as n — oco. Hence, by
the fact that () is closed, we obtain that

Qu(f) =Quf) < 1igiofolfQ(1Ufn) = liminf Qu(fn).
This shows that @U is closed. The other statements follow easily. [

3. The curse of non-locality: Leibniz and chain rules

A major difficulty in applying methods from analysis on manifolds
and partial differential equations to discrete settings is the absence of
a pointwise Leibniz rule and the absence of a chain rule. In this section
we collect several estimates which allow us to circumvent this absence.

We first briefly discuss what we mean by non-locality. A form @
is called local if Q(f,g) = 0 whenever f and g have disjoint supports.
Unlike in the case of energy forms appearing in the context of mani-
folds, this property clearly fails for the energy form on graphs whenever
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the supports are disjoint but are connected by an edge. This has con-
sequences for local rules such as the Leibniz and the chain rule.

For the Leibniz rule, there exist three alternative formulas which
follow from basic algebraic manipulations. Furthermore, we have an
integrated Leibniz rule. We discuss this in Subsection [3.1]

For the missing chain rule, a first remedy is provided by the mean
value theorem. More specifically, the mean value theorem states that
for a given differentiable function ¢: R — R and f: X — R and
x,y € X there exists a £ € (f(x) A f(y), f(x) V f(y)) such that

e(f(2) —(f(y) = () (f(x) = fy)).

As £ is, for the most part, not given explicitly, ¢'(§) has to be estimated,
for example, by ¢'(f(x) A f(y)) or ¢'(f(x) V f(y)) if ¢ is monotone.
However, this is often not sufficient for the purpose at hand. Therefore,
we give more explicit estimates for functions ¢ that will find application
in the chapters that follow. We address this in Subsection |3.2]

3.1. The Leibniz rule. We first discuss variants of the Leibniz
rule on graphs.

In the continuous setting, there is a canonical Leibniz rule. In the
discrete setting, this is not the case. Instead there are several options
for the Leibniz rule. We list three such options in the lemma below.
For a function f: X — R and z,y € X, to shorten notation we write

Voyf = fx) = f(y).

LEMMA 2.25 (Pointwise Leibniz rule). Let f,g € C(X) and let
x,y € X. Then,

Vey(f9) = f(@)Vayg + 9y)Vayf

= f(y)va:,yg + g(x)vx,yf
= f(m)vm,yg + g(x)vz,yf - vm,yf ) Vm,yg
PRroOOF. The statement follows by direct computation. U

We next present an integrated form of the Leibniz rule.

LEMMA 2.26 (Integrated Leibniz rule). Let w: X x X — [0, 00)
be symmetric and let f,g,h € C(X). Then,

Z w(z,Y)Vay(fg) - Vayh

z,yeX
- Z w(x, y)f(x)vx,yg : Vx,yh + Z w(x, y)g<x)vx,yf : Vx,yh
z,yeX z,yeX
whenever any two of the above sums converge absolutely.

PRrROOF. The statement follows from the first equality in the lemma
above and symmetry. O
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3.2. Alternatives for the chain rule. We now give some alter-
natives for the chain rule. We first use the mean value theorem to give
an estimate. Afterwards, we present more elaborate inequalities for
powers and exponentials.

We start with a mean value theorem estimate.

LEMMA 2.27 (Mean value estimate). Let ¢: R — R be differen-
tiable, f € C(X), z,y € X and I = (f(z) A f(y), f(x) V f(y)). Then,

il ()| Vayf| < [Vaulpo f)] < sup ¢ ()IVayfl-

PROOF. By the mean value theorem,

Vey(pof) =@ (E)Vayf

for some £ € I. Thus, the statement follows. O

The next lemma deals with differences of powers of a function.

LEMMA 2.28 (Estimates for differences of f?). Let f € C(X) with
f >0 and let x,y € X. Furthermore, assume that f > 0 whenever
p € [0, 1] in the statements below.
(

a) For all p € [0, 00),

Vauf"I < Cp (f77H @) + 177 (W) [Vau 1,

where C, = p/2 for p € [0,1] U [2,00) and C, =1 for p € (1,2).
(b) For allp € [1,00),

Vo fl = (LAP/2) (77 @) + 771 W) [Vay fl-
(c) For all p € ]0,00),

Vau 7l = (LAD) (f(@)V f () | Vayf-

PROOF. We assume, without loss of generality, that f(y) < f(z)
and let a = f(y) and b = f(z). Furthermore, recall that we assume
a > 0if p € [0,1] and note that the only non-trivial cases are 0 < a < b
and p # 0,1, 2, which we assume from now on.

The key identity for the proofs of (a) and (b) is
W —a?=(b—a) (P +a"") +ab (P> —a"?).

Therefore, the main goal is to estimate ab(bP~? — aP~?), which we do
by cases below.

For p € (1,00), the function t — t17P7 is convex, i.e., concave up-
wards, on (0, 00). Thus, its image lies below the line segment connect-
ing the points (b=!,b°71) and (a=!,aP~1). So the integral of the function
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can be estimated from above by the sum of the area of a triangle and
the area of a rectangle. Therefore, we estimate, for p > 1,p # 2,

1 -2 p-2 _/al 1-p
p—_2(bp a >_b71t dt

bp—l _ . p—1
< (a7t —b7) (—2 . ap_l)
1
2ab

For p € (0, 1), the function ¢ — t'~7 is concave, i.e., concave down-
wards, on (0,00) and, therefore, by the same arguments as above, we
can estimate the integral from below by an area so that

-1
1 “ 1
—— (P —a"? :/ tPdt > —(b—a) (0P +aP7) .
p—2 ( ) p-1 B 2ab( ) ( )

(b—a) ("' +a").

To prove (a), observe that the case p > 2 is given by the first
inequality combined with the equality given at the beginning of the
proof. The case p € (0,1) is given by the second inequality since p—2 <
0 in this case. Finally, for p € (1,2), we observe that b~2 — a?~2 < 0,
which immediately implies the statement of (a) in this case. This
finishes the proof of (a).

For (b), we note that the statement for p € (1,2) follows from the
first inequality and the equality in the beginning of the proof since
p—2 < 0 in this case. For p > 2 we observe that b2 —a?~2 > 0 which
immediately implies the statement of (b) in this case from the equality.

For (c), note that the case p > 1 follows directly as b — a? >
b — abP~! = P 1(b — a). The case p € [0,1] follows from the mean
value theorem. U

Finally, we turn to the exponential function. The proof uses the
lemma above.

LEMMA 2.29 (Estimates for differences of e/). Let f € C(X) and
let x,y € X.

(a) Then,
|Vw€f‘ < % (ef(x) + ef(y)) Ve fl-
(b) If [Vayyf] <1 and B >0, then
(e — 1) (2@ 4 2BI®)1/?
(14 e |Vay fI?)1?

PROOF. For part (a) assume, without loss of generality, that f(z) >
f(y). Secondly, we may also assume without loss of generality that
f(y) >0, since, if f(y) < 0, then we multiply the inequality by e~/®)
and we estimate |V, ,e?| with g(z) = V,,f > 0 and g(y) = 0.

Vaye™| < Vaufl.



168 2. INFINITE GRAPHS - TOOLBOX
(a) Noting that the inequality
Ve /'l <5 (fp H2) + 7)) (Ve /]
from Lemma m (a) for p > 2 is also true for p = 1 we get

;N Veol” — ST @2) + ()
Ve Z pl QVWf; (»—1)!

p=1

1
= §(ef(w) + ef(y))nyyf.
This gives the desired inequality.
(b) Assume as in (a) that f(z) > f(y). Let t € [0,1] and 8 > 0.
First, observe that

[oe) t oo
S ol

k=1 ’ k=1

- 1.

w|m

Secondly, the function r — r?/(1+ (r+1)?) is monotonically increasing
on [0,00). Applying this with r = /" — 1 < t(e” — 1) we conclude

(eft —1)2 B (eft —1)2 < t2(ef —1)? - t2(ef —1)2
T+e2t 14 (P —141)2 7 1+ (t(e? —1)+1)2 = 142

Letting t = f(z) — f(y) and multiplying both sides of the inequality
by €/ and taking square roots we obtain the statement. U

4. Creatures from the abyss*

The main focus of our investigation is on the spectral geometry
of graphs over measure spaces. Indeed, we need a measure on the
underlying set in order to have a Hilbert space and to define self-adjoint
operators. It turns out, however, that certain parts of the basic theory
can be set up without reference to a measure. We discuss this approach
in this section. We will start to work in a slightly more general setting
than is needed for graphs and only return to graphs at the very end.
Neither the results nor the notation used in this section are necessary
to understand the remaining parts of the book.

Consider a discrete topological space X. Let C(X) denote the
set of all real-valued function on X and let C.(X) be the set of real-
valued functions with finite support. For any finite subset K C X, the
space C'(K) of real-valued functions on K can naturally be embedded
into C.(X) by setting the functions equal to zero outside of K. This
embedding is denoted by

ix: C(K) —s Cu(X).

Let C'(K) have the topology arising from the supremum norm. The
embeddings ix then induce on C.(X) the inductive limit topology. By
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definition, this is the largest topology making the embedding ix con-
tinuous for each K C X finite. This topology can be understood in
a number of ways. In particular, a set U is open in C.(X) with the
inductive limit topology if and only if i'(U) is open in C(K) for all
K finite. Furthermore, a map T from C.(X) into a topological space
is continuous if and only if T o ik is continuous for any finite K C X.
Finally, a sequence (¢,) converges to ¢ if and only if ¢,, — ¢ pointwise
and there exists a finite K C X which contains the supports of ¢,, and
¢ for all n (Exercise 2.16)).

By the Riesz—Markov theorem, the dual space of C.(X), i.e., the
space of all linear continuous mappings from C.(X) into R, is the space
M(X) of all signed Radon measures on X. Thus, any element g in the
dual space can be uniquely written as p, — p— and we have

w(e) = py (@) — p-(p)

for all ¢ € C.(X), where pu4 are positive measures on X assigning finite
mass to finite sets of points and satisfying p(p) = > . ¢(x)u({x}).
Of course, any such measure can naturally be identified with a function
fu € C(X) with f,(z) = ps({z}) — p—({z}) for all z € X. In this
sense, M(X) is naturally isomorphic to C(X). In fact, it is easy to
see directly that C'(X) can be seen as the dual of C.(X) in a natural
way. For a structural understanding of the subsequent considerations,
however, it will be useful to rather think of the dual of C.(X) as a
space of measures.
Consider now a bilinear form

Q:DxD—R

such that the domain of definition D of Q contains the space C.(X).
Then, for any f € D, we can consider the map

The restriction of this map to any C(K) with K C X finite is a linear
map on a finite-dimensional space and, hence, continuous. Thus, this
map is continuous. Hence, by the Riesz—Markov theorem, there exists
a unique measure puy € M(X) with

pr(e) = Q(f, ¢)

for all ¢ € C.(X). Clearly, the map f — puy is linear as Q is bilinear.
Thus, we can define a linear operator Lp: D — M(X) via

Lpf = py
with
Q(f,v) = (Lpf)(p)

for all ¢ € C.(X). Letting ¢ = 1, be the characteristic function of
r € X, we then obtain

(Lof)({z}) = Q(f, L)
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For any measure p € M(X), we let || be the absolute value of p,
i.e., |u| is the positive measure with |u|({z}) = |u({z})| for all z € X.
Thus, for any ¢ € C.(X), we have

X (Lpp)) = {f € C(X) | D If(@)(Lpp)({z})| < oo}

zeX
We then define
() (X, [Loel).
peCe(X)
For any f € F and ¢ € C.(X), we define

(Lop)(f) =Y _(Lop)({z}) f(x),

zeX
where the sum exists by the definition of F. Clearly, the map

CC(X) — Rv 2 = (‘CDQD)(f)

is continuous for each fixed f € F as its restriction to C'(K) for K C X
finite is continuous by the same reasoning as given above. Thus, there
exists a unique operator

£]:2 F — M(X)
with
(Lxf)() = (Lpp)(f)
for all f € F and ¢ € C.(X).

To develop the theory further we now make the following two ad-
ditional assumptions:

(A1) Q is symmetric, i.e., Q(f,g9) = Q(g, f) for all f, g € D.
(A2) For any f € D and z € X,

> f)Q(1.,1,) = QL. ),
yeX
where the sum is absolutely convergent.
The second assumption is a form of continuity. It implies, in par-
ticular, that

whenever (f,) is a sequence in C.(X) satisfying

o fu(z) = f(z) forall x € X

o [ful < If].

Indeed, this is a direct consequence of the dominated convergence the-

orem. In fact, it turns out that (A2) is equivalent to this form of
continuity (Exercise [2.17)).

REMARK. It is not hard to see that both assumptions are satisfied
by the form Q. arising from a graph (b, ¢) over X on its domain D
We will discuss this at the end of this section.
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We now give some consequences of the additional assumptions.

THEOREM 2.30. Assume (A1) and (A2). Then, the following state-
ments hold:

(a) F={feCX) | Xex f(¥)QLs 1)) < o0 forall z € X}.
(b) We have D C F and Lx is an extension of Lp.
(c) “Green’s formula”
(Lrf)(p) = (Lre)(f)
holds for all f € F and all ¢ € C.(X). If f belongs to D, then

Af. ) = (Lrf)(p)
(d) If fu, [ € F with |f,| < |f| and f, — [ pointwise for n — oo, then

nli_}rgo(ﬁffn)({a:}) = (Lrf){z})
forallz € X.

PRrOOF. (a) We clearly have
F =) (X, |Lpli).
reX

Now, as shown above,

ﬁDlw({y}) - Q(lxa 1y)-

Combining these observations, we easily obtain the desired statement

for F.
(b) By (A2) and (a) we have D C F. Moreover, for f € D we find
that for all p € C.(X),
Lrf(p) = Loy(f)

(definition of Lp) = Z(ﬁpgo)({x})f(l‘)

zeX

— Y Qe L) f(2)

zeX

(A2) = Qo f)
(Al) = Q(f.¥)
= Lopf(p).
This shows that L and Lp agree on D.
(c) From the definition of L and (b) we obtain

Lrf(e) = Lpo(f) = Lro(f)

for all f € F and ¢ € C.(X). Similarly, from the definition of Lp and
(b) we obtain

Q(f,#) = Lof(y) = Lrf(p)
for all f € D and ¢ € C.(X).
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(d) This follows from the definitions and Lebesgue’s dominated con-
vergence theorem. Namely, since f, — f pointwise, |f,| < |f| and
feFsothat } o |(Lple)(y)f(y)| < oo forall z € X, we get

E}'fn({x}) = EDlx(fn)
(deﬁnition Ofﬁp) == Z(ﬁDlz)({y})fn(y)

yeX

= > (LoL)W)f ()

yex
(Lpl.)(f)
Lrf(z).
This completes the proof. Il

If (b, ¢) is a graph over X, then the previous theorem can be applied
to Q = Qp. on D = Dy.. Indeed, in this case we have

Qla; 1y) = —b(x,y)
for x # y and
Qly) = bz, 2) + c(x)

for all x € X. From these equations we easily find that (Al) and (A2)
are satisfied. Moreover, from these equations we can also directly infer

F = fb,c and ﬁ]: = £b,c'

This gives a structural understanding of how F;, . and £, come about
in our theory. Along the way, we also obtain that the form Q. has
the continuity property (A2).

Furthermore, the local finiteness of the graph is equivalent to the
fact that Lp(C.(X)) C C.(X), which is equivalent to F = C(X) (Ex-
ercise . Also, it is possible to elaborate a theory of the dual of an
operator in this context (Exercise .

Finally, we mention that the question of when a form Q arises
from a graph can be addressed via the associated operator satisfying a

maximum principle (Exercise [2.20)).

5. Markov processes and the Feynman—Kac formula redux*

In this section we establish a connection between Dirichlet forms
and the corresponding Markov processes. In particular, we prove a
Feynman—Kac formula. Although the focus of the book is analytic
rather than probabilistic, this connection is one of the major historical
motivations for the theory and, therefore, of great conceptual impor-
tance. The intention of this section is to give a glimpse of these proba-
bilistic aspects. However, in most of the book, we will not refer to this
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section, so it can safely be skipped by the reader only interested in the
analytic aspects.

The proof of the Feynman—Kac formula is mainly an approximation
argument that uses considerations for finite graphs. We briefly recall
the construction of the process and refer to Section [10| for background
and further details.

Let (b,c) be a graph over the measure space (X,m). Let Q =

b o be the associated form and L = L' be the associated Dirichlet

Laplacian. We first construct the Markov process X = X’ associated
to b.

Let Y = (Y,)nen, be a discrete time Markov chain on X over a
probability space (€2, F,P) such that

bcm

b(z,y)

deg(z)

for n € N and z,y € X, where the degree is given by deg(z) =
> yex b(,y) since we work with b only.

To define the sequence of holding times S,, for n € N and jumping
times J, for n € Ny, we let (&,)nen be a sequence of independent
exponentially distributed random variables of parameter 1 which are
also independent of Y and let

1
Deg(Y,,—1)

with the convention that Jy = 0 where Deg(z) = deg(x)/m(z).
Since X is assumed to be infinite, the random variable

PV, =yYnr=2) =

Sn: €n7 Jn251++8n

¢ = sup Jy,
n€eNp

which is called the lifetime or explosion time of the process, may take
a finite value with positive probability. Characterizations of this phe-
nomenon will be discussed in the context of stochastic completeness of
graphs in Section [9 of Chapter [7]

The Markov process X = X: [0,00) x Q2 — X is defined via

Xt - Yn lf t € [Jn, Jn+1>.

For an event A, we define E,(A) = E(A | Xy = z).
The Feynman—Kac formula on infinite graphs reads as follows.

THEOREM 2.31 (Feynman-Kac formula). Let (b, c) be a graph over
(X, m) with associated Laplacian L = LP) and let X = X be the
process associated to b. Then,

(@) = B (Lpege BEmE £(x,)
for all f € (*(X,m), z € X and t > 0.
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We need the following lemma to transfer the Feynman-Kac formula
proven in Section [10] to infinite graphs. In particular, Theorem [0.72] is
shown for processes on finite graphs which are restricted to subgraphs.
In what follows we consider restrictions to finite graphs first, however,
the background process is defined on an infinite graph. We show that
each process on an infinite graph restricted to a finite subgraph can be
replaced by a process on a finite graph.

We recall the definition of the Dirichlet Laplacian on subsets. For
a finite subset K C X, we let mx: (2(X,m) — (*(K,myg) be the
canonical projection, ix: (*(K,mg) — ¢*(X,m) be the canonical
embedding which is continuation by zero on X \ K and let

Lg(D) - iKLT('K.

In particular,

LY f(x) =

: ] (Z b(x, y)(f(x) = f(y)) + (dK(xHC(x))f(w))

for all f € (K, mx) and x € K where dg(z) = 3 v\ g 0(,y). See
Section [3 for further details.

For the process X = X® we define the first exit time for K C X to
be the random variable 75 given by

T =inf{t >0|X, € X\ K}.

LEMMA 2.32. Let (b,c) be a graph over (X,m) and let X = X

be the process associated to b. For a subset K C X, let L ) be the
Dirichlet Laplacian and let T be the first exit time for K. Then,

K f(r) = B, (1{t<rm<}€ Jote/m S)dsf(Xt)>
forall f € (*(K,m), z € K and t > 0.

PROOF. For a finite set K C X, let K = K U {oo}. Let i be
defined by m = m on K and with m(co) arbitrary, say m(co) = 1. We

define a graph (b A) over the measure space (K m) by letting ¢ be the
extension of ¢ to K by zero and letting b=bon K x K with
b(z, 00) = b(0o, z) = bey

yeX\K

We denote the Laplacian for the graph (b, ¢) over the finite measure
space (K m) by L and the restriction of L to K with Dirichlet bound-

ary conditions by L X D), By construction, we have for the restriction of
L to K with Dirichlet boundary conditions,

D — @
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on ?(K,mg) and, in particular,

7D (D)
ot — oL

for t > 0.

Furthermore, let X be the process associated to b over the finite
measure space (K,m) and let X be the process associated to b over
(X, m). Conditioning the processes X and X on not leaving K, these
processes are equivalent. More specifically, these conditioned processes
are Markov processes associated to graphs on the finite set K, how-
ever, this time with a non-vanishing killing term, see Subsection [10.3]
Furthermore, ¢ = ¢ on K and, therefore,

E, (1 tr<rye o te/m) s f(%)) ~E, (1 fr<rgye™ o te/m)(E)ds f(Xt)) ’

where Tk is the exit time of the process X for K and E, is the expec-
tation with regard to the probability measure of X conditioned on X
starting at x.

Thus, we obtain from Lemma [0.72

et (o) = e f(a)
=E, <1{t<ﬁ<}€7 fg(c/m)(gs)dsf(gt))
—E, (1 frmgye o (E/mI)ds ¢ (Xt)> '

Since the event {¢ < 7k} has probability zero, the events {t < 74} and
{t < 7k A (} have the same measure. This completes the proof of the
statement. g

oF THEOREM [2.31] Let X}, for k& € Ny be an exhausting sequence
of X, ie.,, X C X are finite subsets with X, C Xy for k € Ny
and X = |, Xp. Let mp: £2(X,m) — (*(Xy, my,) be the canonical
projection and ¢ be its dual, i.e., the canonical embedding.

Then, the Laplacians L,(CD) = 1, L7, with Dirichlet boundary con-
ditions form a sequence of operators on the finite dimensional Hilbert
spaces ?(Xy, my,). By Lemma [1.21] we have

¢t tL

lim e~ kD)gp =e "y

k—o00

for all p € C.(X). By the uniform boundedness in ¢ of the semigroups
and the density of C.(X) in £*(X,m), we get

. _1P) _
kh_{goe tL, kaG th

for all f € 2(X,m) and f; = 1x, f. By Lemma2.32 the Feynman-Kac
formula holds on X}, so, we are left to show the convergence

E, (1{t<TXk/\§}€_ fot(C/m)(Xs)dek(Xt)) —E, (1{t<C}€_ fot(C/m)(Xs)dch(Xt)>
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as k — oo for all f € *(X,m) and z € X.

Assume first that f > 0. Since the sequence 7y, A ( converges
monotonically increasingly to ¢ and fi(X;) converges monotonically
increasingly to f(X;), the statement follows by monotone convergence.

Now, let f € ¢*(X,m) be arbitrary. We then split f into positive
and negative parts and apply the argument above. This completes the
proof. O
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Exercises
Excavation exercises.

EXERCISE 2.1 (The Banach spaces (). Let (X, m) be a discrete
measure space. Define, for p € [1, 00),

FXm)={f: X —R| Y [f@)Pm(x) < oo}

zeX
with
1/p
£ 1o = (Z (@) Pm(a ) .
zeX
For p = oo, let
>*(X,m)={f: X — R | fisbounded }
with

I = sup | £(a)].

(a) Show that the /?(X,m) are subspaces of C'(X) for any p € [1, o00].
(b) Let p,q € [1,00] with 1/p+1/q = 1 (where the cases p =1,¢ = 0o
and p = 00,q = 1 are allowed). Show that for any f € (X, m)
and g € ¢1(X, m) the product fg belongs to /!(X, m) and satisfies

gl < I£1lpllgllo-

(Hint: You may (why?) restrict attention to f,g with || f]|, =
1 = ||lg||, and use the inequality ab < a?/p+ b?/q which is valid for
all a,b>0.)
(c) Show that || - ||, is a norm on ¢?(X,m) for any p € [1,00] which
makes (?( X, m) into a Banach space, i.e., a complete normed space.

EXERCISE 2.2 (Dual spaces of the ¢P-spaces). Let (X, m) be a
discrete measure space. Consider p € [1,00) and ¢ € (1,00] with
1/p+1/q = 1 (where the case p = 1,q = oo is allowed). Show
that ¢7(X,m) is the dual space of /7(X,m) in the sense that the map
J: 01X, m) — (P(X,m))* defined by

= fl@)gle)m(z

zeX

is bijective and isometric.

EXERCISE 2.3 (Inclusions among the ¢P-spaces). Let (X, m) be a
discrete measure space. Set

I=1inf m(z) and S = Zm(x)

zeX

Show the following statements for 1 < p < ¢ < oc:
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(a) Assume that I > 0. Then, (X, m) C ¢9(X, m) and
sup{||fllq| f € P(X,m),||fll, <1} = JY/a-1/p.
(b) Assume that S < co. Then, ¢9(X,m) C ¢?(X, m) and
sup{[| f|l, | f € €/(X,m), ||f|l, < 1} = /P14,

(¢) For I = 0 or S = oo, the inclusions given in (a) and (b) do not
hold.

EXERCISE 2.4 (Weakly convergent subsequences). Let H be a Hilbert
space. Show that any bounded sequence in H has a weakly convergent
subsequence.

EXERCISE 2.5 (Banach-Saks theorem). Let H be a Hilbert space.
Let (f,) be a sequence in H which converges weakly to f. Show that
there exists a subsequence (f,, ) of (f,) such that the Cesaro means

~ 1 X
fn=5 2 fn
k=1
converge in norm to f.

Example exercises.

EXERCISE 2.6 (L oiy # Ly). Give an example of a graph (b, c)
over (X, m) with U C X and f € Fy such that iy f does not belong to
F. In particular, this shows that Liy f = Ly f does not hold.

(Hint: Consider the infinite star graph and let U consist of all
vertices other than the center of the star.)

Extension exercises.

EXERCISE 2.7 (Solving the heat equation for bounded generators).
Let E be a Banach space, B(FE) denote the space of bounded linear
operators on F and A € B(E).

(a) Show that for every ¢ € R, the series

n!
n=0

is absolutely convergent with [|S4(¢)| < e~tI4ll.
(b) Show that the map Sa: [0,00) — B(FE) given by (a) is a strongly
continuous semigroup which is continuously differentiable with

0pSa(t) = —ASA(t) = =Sa(t)A
for any ¢ € [0, 00).
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EXERCISE 2.8 (Uniqueness of semigroups). Let E be a Banach
space, B(F) denote the space of bounded linear operators on E and
A € B(E) with Sa(t) = 3200, ©° A for t > 0. Show the following
statements:

(a) If w: [0,00) — E is a solution of
orw = —Aw

with w(0) = w, then w(t) = Sa(t)u for all t > 0.
(b) If T is a semigroup with generator B € B(E) and B C A, then
T = SA and B = A.

EXERCISE 2.9 (Characterizing generators of semigroups). Let A be
a closed operator on a Banach space E with dense domain of definition
such that A+a is bijective with |[(A+a)™| < 1/a for all @ > 0. Show
that A is the generator of a uniquely determined strongly continuous
semigroup.

EXERCISE 2.10 (Strongly continuous resolvents). Let (X, m) be a
discrete measure space. Let G be a strongly continuous resolvent on
(?(X, m). Show that strong continuity of the resolvent implies that the
map (0, 00) — [0, 00)

a = |[Gafllp

is continuous for all f € 7(X, m).

EXERCISE 2.11 (Weak™® continuity and pointwise continuity). Let
S be contraction semigroup on ¢*°(X) for a discrete measure space
(X,m). Show that the following statements are equivalent:

(i) S is weak™ continuous, i.e., t — (S(t)f,g) is continuous on [0, c0)
for all f € ¢>°(X) and g € (*(X,m).

(ii) S is pointwise continuous, i.e., t — S(t) f(x) is continuous on [0, 0o)
for all f € ¢>°(X) and z € X.

EXERCISE 2.12 (Direct proof of resolvent properties). Give a direct
proof of Theorem by using Lemma and the properties of G .
established in Proposition [2.10]

EXERCISE 2.13 (Restrictions to cofinite sets inherit regularity). Let
(X, m) be a discrete measure space. Consider a closed form @ with
domain D(Q) C (*(X,m) with C.(X) C D(Q). Let U C X be such
that X \ U is finite. Show that the following statements hold:

(a) The restriction f|y of f € D(Q) belongs to D(Qu), so that the
map 7y : D(Q) — D(Qu) given by my f = f|u is well-defined.
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(b) The map 7y is continuous, where the form domains are equipped
with the corresponding form norms.
(Hint: Use the closed graph theorem.)

(c) If C.(X) is dense in D(Q) with respect to || - ||g, then C.(U) is
dense in D(Qp) with respect to || - ||g, -
(Hint: Use (b).)

EXERCISE 2.14 (Extending Proposition to general subspaces).
Let (X,m) be a discrete measure space and let @@ be a closed form
on (?(X,m). Let W be a not necessarily closed subspace of £*(X,m).
Show the following;:

(a) The restriction of @ to WND(Q) admits closed extensions. Denote
the smallest such extension by Q.

(b) Consider the Hilbert space W N D(Q), where the closure is taken
in 2(X,m). Show that Qy is a closed form on this Hilbert space.

(c) If @ is a Dirichlet form and W is invariant under normal contrac-
tions, then Q) is a Dirichlet form.
(Hint: For (c) you can mimic the reasoning in the proof of (c) of

Proposition [2.18])

EXERCISE 2.15 (Characterizing subspaces of the form ¢*(U, my)).
Let (X, m) be a discrete measure space.

(a) Show that the following three assertions for a closed subspace V' of
(*(X,m) are equivalent:
(i.a) There exists a U C X with V = *(U, my).
(ii.a) The subspace V is invariant under taking the absolute value
|-] and if g € £2(X,m) with 0 < g < f for some f € V, then

geV. ( “Order ideal property”)
(iii.a) For any f € V and g € £*(X,m) N £>*(X) the product fg
also belongs to V. ( “Multiplicative ideal property”).

(Hint: Define
U = {z € X | there exists an f € V with f(z) # 0}.

Show that (ii.a)/(iii.a) imply that V' contains C.(U).)
(b) Show by counterexamples that a closed subspace:
(i.b) May be invariant under taking modulus without satisfying
(ii.a) or (iii.a).
(ii.b) May satisfy that C.(X) NV is dense in V' without being of
the form (2(U, my).
(Hint: V = {f € 2(X,m) | f(z1) = f(xs) for x; # x5}.)

EXERCISE 2.16 (Inductive limit topology). Let X be a discrete set.
Let C.(X) have the inductive limit topology induced by the embeddings
ig: C(K) — C.(X) for finite K C X. Here, ix extends a function by
0 and C'(K) is given the topology arising from the supremum norm.
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(a) Show that U C C.(X) is open if and only if i ;' (U) is open in C(K)
for every finite K C X.

(b) If Y is a topological space, show that any mapping 7: C.(X) — Y
is continuous if and only if T o ix is continuous for every finite
K C X.

(c¢) Show that ¢, — ¢ in the inductive limit topology if and only if
©, — @ pointwise and there exists a finite K C X such that the
supports of ¢, and ¢ are contained in K for all n.

EXERCISE 2.17 (Characterizing (A2)). Let Q: D x D — R be a
bilinear form over a discrete set X with C.(X) C D. Show that the
following statements are equivalent:

(i) For any f € D and z € X,
> f)Qls 1) = QL ),

yeX

where the sum is absolutely convergent.
(ii) For any f € D and x € X,

whenever (p,,) is a sequence in C,(X) satisfying ¢, (z) — f(z) for
all z € X and |p,| < |f] for all n.

EXERCISE 2.18 (Characterizing local finiteness). Let (b,¢) be a
graph over X. Show that the following statements are equivalent:
(i) The graph (b, c) over X is locally finite.
(i) Lp(Ce(X)) € Ce(X).
(i) F = C(X).
(Hint: Show that ¢!(X,g) # C(X) if and only if the support of g is
infinite.)

EXERCISE 2.19 (Domains of dual operators). Let X be a discrete
set. For any subset V' of C'(X) define V* by

Vi={feCX)| Y |f(x)p(x)| < oo for all p € V}.

rxeX
Show that:
(a) (Ce(X))" = C(X) and C(X)" = Ce(X).
(b) (*(X,m))* = (*(X,1/m) for any measure m on X with full sup-
port.
Furthermore, for a linear operator £: C.(X) — C(X) define the dual
operator L* as having domain

D(LY) = (LC(X))"
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and L£*f as the unique element of C'(X) with
S Lif@el@) = f(x)Lo(x)
rzeX rzeX
for all ¢ € C.(X). Show that:
(c) V* C D(L*) for any subspace V of C(X) with £(C.(X)) C V.
(d) L(C.(X)) CV for any subspace V of C(X) with V* C D(L*) and
(V5)*=V.
(e) L(Cu(X)) C Cu(X) if and only if D(L*) = C(X).
(f) L(C.(X)) C (X, m) if and only if (*(X,m) C D(L*).

EXERCISE 2.20 (Maximum principle). Let X be a discrete set and
let Q be a bilinear form on C.(X). Let £ be a linear operator acting
as

Lo(r) = Q(f, 1)
for ¢ € C.(X) and = € X. Show the following statements:
(a) There exists a graph (b, ¢) over X such that
1
Q) =5 Y b, y)pl) =) + ) cle)e’(z)
zyeX zeX

for all ¢ € C.(X) if and only if Lo(x) > 0 at every non-negative
maximum z of ¢ with ¢ € C.(X).
(b) There exists a graph (b,0) over X such that

QAp) =5 3 bl y)e(a) — oly)

z,yeX

for all ¢ € C.(X) if and only if Ly(x) > 0 at every maximum z of
¢ with ¢ € C.(X).
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Notes

With the exception of Section [4, the material found in this chapter
is certainly known to experts.

The theory of semigroups and their generators as well as the appli-
cations to Dirichlet forms and Markov processes is standard, see e.g.
the book [HP57] for a discussion of semigroups and the work [FOT11]
for a treatment of semigroups in the context of Dirichlet forms. In Sec-
tion (1| we apply this general theory to extend semigroups and resolvent
to all /P spaces.

Restriction to compact subsets play a prominent role in the inves-
tigation of regular Dirichlet forms. Accordingly, as discussed in the
notes to Section [3| restrictions to finite subsets of graphs appear in
many places in the literature. As for restrictions to arbitrary subsets,
we have not been able to locate a source covering the material presented
in Section

The Laplace-Beltrami operator on a manifold leads to a local Dirich-
let form. Non-locality is the crucial feature of the Dirichlet form as-
sociated to a graph. Various tools and concepts have been developed
for different applications in order to deal with this non-locality. In
Section |3 we bring them together in a systematic way. The non-local
Leibniz rules are standard. We also present various estimates that can
be used instead of a chain rule for specific functions such as powers and
the exponential function. While these estimates are certainly known
in some context or other, we were particular inspired by calculations
found in [HS97] and [Amg03].

The material presented in Section [4] is new.

Feynman—Kac type formulae, as discussed in Section [5] are valid
for rather general Dirichlet forms [FOT11]. Specific treatments for
graphs can be found in the Diploma thesis of Metzger [Met98] and
the article by Giineysu/Keller/Schmidt [GKS16] where the main focus
lies on a more general model including magnetic fields. Moreover, on
graphs there is also a path integral formula for the unitary group which
can famously be formulated only heuristically in the continuum setting
IGK20].

For complementary textbooks on infinite graphs we refer the reader
to the corresponding comments at the end of the notes of Chapter [0}






CHAPTER 3

Markov Uniqueness and Essential Self-Adjointness

The uniqueness of self-adjoint and Markov extensions of a symmet-
ric operator on a Hilbert space is a classical topic in operator theory.
In this chapter we consider these problems from the viewpoint of so-
lutions to equations involving the Laplacian and the viewpoint of the
domains of both the operators and the forms.

In Section |1 we characterize the equality of the Dirichlet and Neu-
mann form domains in terms of the Dirichlet Laplacian domain, a
Green’s formula and the triviality of a-harmonic functions in the Neu-
mann form domain for positive a. In Section [2] we study essential
self-adjointness via the Dirichlet Laplacian domain and the triviality
of a-harmonic functions in ¢*(X,m) for positive a. Finally, Section
addresses the question of when the form arising from a self-adjoint
positive restriction of the formal Laplacian is a Dirichlet form. In par-
ticular, we show that the case when such a form is unique, a property
which we call Markov uniqueness, is equivalent to the equality of the
Dirichlet and Neumann form domains discussed in Section [Il

We note that ¢°(X, m) theory, as developed in Section[I] appears in
some places in Sections[I] and 2l The reader who has skipped Section
can safely let p = 2 for all statements presented in these sections as
then the statements do not require the material on 2(X, m) spaces.

1. Uniqueness of associated forms

In this section we characterize the equality of the Dirichlet and
Neumann forms. One characterization involves the absence of non-
trivial a-harmonic functions in the Neumann form domain for o > 0.
Further characterizations involve explicitly describing the domain of
the Dirichlet Laplacian and the validity of a Green’s formula.

Throughout this section various basic facts about self-adjoint op-
erators are used. Some of these facts are recalled in Excavation Exer-
cise [3.1] which is used in the proof of Theorem For basic definitions
of operator theory, see Appendix [A]

We start by recalling the definition of a-harmonic functions and
variants of this notion called a-super(sub)harmonic. These notions will
play a prominent role in the forthcoming considerations in this chapter
and beyond. For a graph (b, ¢) over (X, m) and o € R, a function u € F
is called a-harmonic (a-superharmonic or a-subharmonic, respectively)

185
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if
(L+a)u=0 (L+a)u>0or (L+ a)u <0, respectively).

We will show that the triviality of a-harmonic functions in the
Neumann form domain for o > 0 is equivalent to Q¥ = QW). We
recall that Q(P) is the minimal closed restriction of @ which has domain

DQ®) = C(x)"e
and that Q(N ) is the maximal closed restriction of Q with domain
D(Q™W) =DnNA(X,m).

Furthermore, we recall that a form @ with domain D(Q) is associated
to a graph if () is a closed restriction of Q such that

D(Q™)) € D(Q) € D(Q™).

Hence, if Q) = QW) then there is a unique form associated to a
graph.

We have shown in Proposition (b) that the space of functions
of finite energy D is included in the formal domain of the Laplacian
F,ie., D C F. Therefore, as D(Q™N)) = D N (X, m) by definition,
it follows that D(Q) C F for any form associated to the graph. This
allows us to apply Green’s formula, Proposition |1.5] in various places
below.

For the sake of contrast with the definition of D(Q™W)), we recall
that by Theorem we have D(Q)) = Dy N £2(X,m), where Dy
is the space of functions in D which can be approximated by finitely
supported functions pointwise and with respect to Q. Hence, in the
case that QP) = QW) we see that D and D, give the same spaces when
intersected with ¢2(X,m). The question of when they are actually
equivalent, that is, when D = D,, will be taken up in the study of
recurrence in Chapter [0}

We recall that an operator L is associated to a graph or just associ-
ated if it arises from a form which is associated to a graph and that any
such operator L is a restriction of £ by Theorem [1.12] Furthermore,
by general theory,

B there exists a g € £2(X, m) such that
D(L) = {f € D(Q) ’ Qh, f) = (h, g) for all h € D(Q) }

in which case Lf = g, see Theorem in Appendix [B] for more
details. Therefore, Q(h, f) = (h, Lf) for all f € D(L) and h € D(Q).
In particular, these statements apply to L(P) and LM,

Let us also highlight the following immediate statement, which will
be used several times below.
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LEMMA 3.1. Let (b, c) be a graph over (X, m). Let L be an operator
associated to the graph with domain D(L). Then,
D(L) C{f e D@)| Lf € *(X,m)}.
Proor. This follows from the facts that L maps D(L) C D(Q)
into £2(X,m) and that L is a restriction of £ by Theorem [1.12] O

With these preparations, we now state and prove our characteriza-
tions of form equality.

THEOREM 3.2 (Characterization of Q) = QW)). Let (b,c) be a
graph over (X, m). Then, the following statements are equivalent:
(i) DQ™) = D(QW).
(i) DLD) = {f € DQ™) | £f € (X, m)}.
(iii) For all f,g € D(QW)) such that Lf € *(X, m) we have
QN(f,9) = (LF,g).  (“Green's formula”)
(iv) If u € D(Q™) is a-harmonic for a > 0, then u = 0.
(iv.a) Ifu € D(Q™W)NeP(X,m) for all p € [1,00] is a-harmonic
fora >0 and u > 0, then u = 0.

PROOF. (i) = (ii): It is immediate that D(L") = D(L™) if
D(QP) = D(QW)). As L™ is an associated operator, it follows that
D(LM) C{f € D(QW)) | Lf € £*(X,m)} by Lemma [3.1] Therefore,
it suffices to show

{f € D@Q™) | Lf € *(X,m)} C DLP).

Now, for f € D(QW)) with Lf € ¢*(X, m) from Green’s formula,
Proposition (1.5, we have

Qe f) = (v, L)
for all ¢ € C.(X). As D(QP)) = C'C(X)”'”Q it follows that

Qg, f) = {9, L)
for all g € D(Q™). We thus conclude f € D(L®)), which completes
the proof.

(ii) = (iii): As D(LW)) C {f € D(QW)) | Lf € *(X,m)} by
Lemma we have D(LN)) C D(LP)) by assumption. As both L)
and LN) are restrictions of £ by Theorem , the operator L") is
a restriction of L”) and thus LP) = L™) as both operators are self-
adjoint. Hence, for all f,g € D(Q™) with Lf € (*(X,m), we have
f € D(LP) = D(L™) and, therefore,

QM (f,9) = (LW f,g) = (LS, g).

(iii) = (iv): If u € D(Q™W)) is a-harmonic for a > 0, then Lu =
—au € (*(X,m) since u € £*(X,m). Therefore, by (iii), we get

0< Q(N)(u) = (Lu,u) = —OzHuH2 <0
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since a > 0. Hence, u = 0.

(iv) = (iv.a): This is immediate.

(iv.a) = (i): Assume that Q) # QW) Tt follows that L(P) #
LW and, therefore, (L?) + a)~! # (L) 4+ a)~! for a > 0. Since the
set consisting of functions 1, for x € X is total in £2(X, m), there exists
an z € X such that

u= (L™ +a)™ = (L) +a)™) 1, £ 0.

To finish the proof we argue that u is a positive a-harmonic func-
tion in D(Q™) N ¢P(X,m) for all p € [1,00]: Since LP) and LW
are restrictions of £ by Theorem and the resolvents map into the
corresponding domains of the operators, we infer that u is a-harmonic.
Furthermore, as Q) and Q™) are Dirichlet forms, both (L(P) +a)~'1,
and (L) + o)1, are positive as both resolvents are positivity pre-
serving by Proposition [2.10L This also follows by the general theory
of Dirichlet forms, see Theorem in Appendix [C] Thus, both of
these functions are positive solutions of the equation (£ + a)v = 1,.
However, (L") + a)~'1, is the smallest such solution by Lemma m
Thus, we have u > 0. Furthermore, both resolvent map into D(Q")) as
D(Q™) € D(Q™) so that u € D(Q™)). Finally, both resolvents ex-
tend to Markov resolvents on (X, m) for p € [1, 00] by Theorem [2.11]
Thus, u € P(X, m) for all p € [1, 00]. O

REMARK. In the proof of the implication (iv.a) = (i) presented di-
rectly above, we constructed a positive non-trivial a-harmonic function
whenever Q?) £ QW) It turns out that such functions are automati-
cally strictly positive when they exist and the graph is connected. This
theme will be taken up in the next chapter as a consequence of the local
Harnack inequality, see Corollary

REMARK. We can also characterize D(QP)) = D(Q™)) in terms
of a-subharmonic functions with additional properties (Exercise .

We note the following immediate corollary which gives the domain
of all operators associated to graphs in the case that the Dirichlet and
Neumann restrictions agree.

COROLLARY 3.3. Let (b,c) be a graph over (X,m). Let L be an
operator associated to the graph. Then, Q) = QW) if and only if

D(L)={feDnNF(X,m) | Lf € F(X,m)}.

Proor. If L is an operator associated to the graph and @ is the
associated form, then D(QP)) C D(Q) € D(Q™)) and all forms are
restrictions of Q. Hence, if D(Q®)) = D(Q™)), then all forms agree
so that D(L) = D(L")) and the statement follows by Theorem .

On the other hand, assume D(L) = {f € DNE(X,m) | Lf €
(*(X,m)} for an operator L associated to the graph. Now, let u €
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D(Q™) be a-harmonic for & > 0. Then, Lu = —au € (*(X,m)
since u € (*(X,m) and, therefore, u € D(L) C D(Q) for the form Q
associated to L. We thus obtain

0<Qu) = (Lu,u) = —aljul* <0

since @ > 0. Hence, u = 0. Thus, we have shown statement (iv) of
Theorem [3.2] and, therefore, D(QP)) = D(QW)). This completes the
proof. U

2. Essential self-adjointness

In this section we consider the question of the uniqueness of self-
adjoint extensions of the restriction of the formal Laplacian to the
finitely supported functions. In order for this question to make sense,
we have to make an additional assumption on our graphs. Our charac-
terization will then be in terms of the Dirichlet Laplacian domain and
the triviality of square summable a-harmonic functions for a > 0.

The reader may wish to consult Excavation Exercises and for
some general facts about adjoint operators and essential self-adjointness
which will be used in the proof of Theorem [3.6]

A symmetric operator defined on a dense subspace of a Hilbert
space is called essentially self-adjoint if the operator has a unique self-
adjoint extension. For further details on the general theory of adjoints
and self-adjointness, see Appendix [A]

In our situation, it is natural to consider the question of whether
the restriction of £ to C.(X) is essentially self-adjoint. Of course, this
question only makes sense if LC,(X) C ¢*(X, m) and, in this case, this
restriction is indeed symmetric by Green’s formula, Proposition [I.5]
Another natural question in our situation is if the Dirichlet Laplacian
is the “maximal” restriction of £ to an operator on ¢*(X,m), i.e., if

DL = {f e A(X,m) | Lf € *(X,m)}.

It turns out that the essential self-adjointness of the restriction of £
to C.(X) is equivalent to the maximality of the Dirichlet Laplacian.
Furthermore, both of these questions are equivalent to the absence of
non-trivial a-harmonic functions in ¢*(X,m) for « > 0. This is the
content of Theorem [3.6l

The characterization of the maximality of the Laplacian domain in
terms of a-harmonic functions is not restricted to the £(X, m) setting
but rather works for the generators of semigroups on all (X, m). This
is the content of Theorem [3.8

After this summary of results, we start by discussing some of the
properties of the restriction of £ to C.(X). Specifically, we let L,
denote the restriction of £ to

D(Lmin) = CC(X)
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whenever £LC.(X) C (3(X,m). By Green’s formula, Proposition [L.5]
Ly is then a symmetric operator.

We recall that £LC.(X) C £2(X,m) is characterized in Theorem [1.29]
In particular, some conditions equivalent to LC.(X) C ¢*(X,m) are
that (2(X, m) C F or that C.(X) C D(L®). In particular, this condi-
tion is always satisfied if the graph is locally finite or if inf,c x m(x) > 0.
As a consequence, if LC.(X) C ¢(3(X,m), then there exists at least one
self-adjoint extension of Ly, namely, L(P). The question of essen-
tial self-adjointness then boils down to if there exist other self-adjoint
extensions of L.

By the definition of the adjoint operator and L, = £ on C.(X),
the domain of the adjoint of L, is given by

D(Liy) = {f e P(X.m)

there exists a g € £2(X, m) such that }
(Lo, f) = (@, 9) for all p € C(X)
in which case L},

rinf = g. As Ly, is symmetric, it follows that L7 is
an extension of L,;,. We now give an explicit description of D(LZ; )
and the action of L

min*

LEMMA 3.4 (Domain and action of L% ). Let (b, c) be a graph over
(X, m) such that LC.(X) C (2(X,m). Let Ly, be the restriction of L

to D(Lmin) = Co(X). Then,
D(Lyw) = {f € (X;m) | Lf € (X, m)}

and L. is a restriction of L.

PROOF. Let f € D(L:;,), which is a subspace of (*(X,m) by def-
inition. As LC.(X) C (X, m), it follows that ¢*(X,m) C F by
Theorem [1.29] Therefore, f € F.

Furthermore, by the definition of D(L ;) it follows that (Lo, f) =
(p,g) for some g € £2(X,m) and all ¢ € C.(X). Using f € F and

invoking Green’s formula, Proposition (1.5 we then obtain

> w(@)g(z)m(z) = (o, 9) = (Lo, f)

zeX

=Y Lo(x)f(x)m(z)
=Y @) Lf(z)m(z).

zeX
As this holds for all ¢ € C.(X) we infer Lf = g € (*(X, m). Hence,
we have f € (*(X,m)NF and Lf € (*(X,m). Furthermore, L}, f =
g = Lf and thus L} is a restriction of L.
On the other hand, if f € ¢*(X, m) C F is such that Lf € ¢*(X,m),
then

(Lo, f) = (@, L)
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for all ¢ € C.(X) by Green’s formula, Proposition [L.5| Therefore,
fe D(L:,,) with L. f = Lf by definition. O

min ) min

As an immediate corollary of the above, we can explicitly determine
the self-adjoint extensions of L. It turns out that these are exactly
the self-adjoint restrictions of L.

COROLLARY 3.5 (Self-adjoint extensions of L,). Let (b, c) be a
graph over (X,m) such that LO.(X) C (*(X,m). Let Ly be the
restriction of L to D(Lymin) = Ce(X) and let L be an operator with
domain D(L) C (*(X,m). Then, L is a self-adjoint extension of Luyin
if and only iof L is a self-adjoint restriction of L.

PROOF. Any self-adjoint extension of L, is a restriction of L} ;. by
general properties of adjoint operators. Therefore, if L is a self-adjoint
extension of L, then L is a restriction of £ by Lemma [3.4

On the other hand, if L is a self-adjoint restriction of £, then clearly
D(L) € D(Lys) as D(Lyy,) = {f € 2(X,m) | Lf € (X, m)} by

Lemma [3.4 Thus, D(L%;,) € D(L*). Furthermore, it is easy to see

min

from the definition of the adjoint and Green’s formula that C.(X) C

D(L::,). In summary, we obtain
CL(X) € D(Lis) € D(I*) = D(L).
So that C.(X) € D(L) and L is an extension of Ly;,. O

With this preliminary discussion of the domain and action of Lj ;.

we can now state and prove our characterization of the essential self-
adjointness of Ly;,. As L, is an extension of L,,,, by general theory
the essential self-adjointness of L,;, is equivalent to the self-adjointness
of L*. . This will be used in the proof below.

THEOREM 3.6 (Characterization of essential self-adjointness). Let
(b,c) be a graph over (X, m) such that LC.(X) C (*(X,m). Then, the
following statements are equivalent:

(i) The restriction of L to C.(X) is essentially self-adjoint.
(ii) D(LP)) = {f € 2(X,m) | Lf € (*(X,m)}.
(i) If u € (*(X, m) is a-harmonic for a > 0, then u = 0.

REMARK. We remark that in contrast to Theorem (iv.a), we
cannot assume that u > 0 in statement (iii) above. The reason is that
we do not know if forms associated to self-adjoint extensions of L,
are necessarily Dirichlet forms and, as such, have positivity preserving
resolvents. A necessary condition for the arising form to be a Dirichlet

form will be given in Theorem in Section [3]

PROOF. (i) = (ii): Let Ly, denote the restriction of £ to C.(X).
Since LC.(X) C £2(X,m), it follows that C.(X) € D(LP)) by Theo-
rem|1.29] so that L(P) is a self-adjoint extension of Ly,. As we assume
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*

that Ly, is essentially self-adjoint, L?, is also a self-adjoint extension
of L, by general theory so that L(P) = L*. and, therefore,

D(LW)) = D(Lyy,) = {f € (X, m) | Lf € (X, m)}
by Lemma |3.4]

(ii) = (iii): If u € ¢*(X,m) is a-harmonic, then Lu = —au €
/2(X,m) so that u € D(LP)) by assumption. As D(LP)) C D(QW)),
we get

0 < QW(u) = (L, u) = —al|ul* <0
since a > 0. Therefore, u = 0.

(iii) = (i): Assume that there exist two distinct self-adjoint ex-
tensions L; and Ly of Ly, Then (Ly +a)™! # (Ly+a)™t on £2(X,m)
for a > 0. As the set of functions 1, for x € X is total in 2(X,m),
there exists an € X such that

u=((Li+a)" = (La+a)"") 1, #0.

Clearly, u € £*(X,m). Furthermore, since both L; and L, are restric-
tions of £ by Corollary [3.5| we infer that

(L4+a)u= (L +a)(Li+a) ', — (Ly+a)(Ly+a) ', = 0.
Hence u is a non-trivial, a-harmonic function in ¢?(X,m). O

REMARK. The result above can also be formulated in terms of asso-
ciated operators. More specifically, essential self-adjointness is equiva-
lent to

D(L)={f € (X,m) | Lf € *(X,m)}
for some (all) associated operators L (Exercise [3.9).

Combining the characterizations above with Theorem [3.2] gives the
following immediate corollary.

COROLLARY 3.7 (Essential self-adjointness implies form equality).
Let (b, c) be a graph over (X, m) such that LC.(X) C ¢*(X,m). If the
restriction of L to C.(X) is essentially self-adjoint, then

D(Q”) = D(Q™).

REMARK. It can be shown by example that the opposite implication
does not hold, see Exercise [3.6]

Part (ii) of Theorem [3.6|above determines the domain of the Dirich-
let Laplacian explicitly when a-harmonic functions in £2(X, m) are triv-
ial for a > 0. We now prove a similar statement for the generators of
semigroups and resolvents on #(X,m) for p € [1,00). These genera-
tors L) were obtained by extending the semigroups e > of L = L")
to (X, m) and then taking the generator of each semigroup, see Sec-
tion The domain of the operators is then defined via either the
semigroup or the resolvent by general theory.
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THEOREM 3.8 (Domain of L®). Let (b,c) be a graph over (X, m)
and let p € [1,00). Then, the following statements are equivalent:
() D(ILW) = {f € B(X,m) | LF € ¢/(X, m)}.
(ii) If u € *(X,m) is a-harmonic for a > 0, then u = 0.

PRrOOF. (i) = (ii): If uw € (X, m) is a-harmonic for p € [1, c0)
and a > 0, then Lu = —au € (P(X,m) so that u € D(L®) by
assumption. Since L) = £ on D(L®) by Theorem , we infer from
the existence of resolvents, Theorem [2.11] that

uw= (L 4+ a) Y (L® + a)u = (L 4+ )" (L + a)u = 0.
This gives the conclusion.
(ii)) = (i): Let
D,={felP(X,m)|Lf e€P(X,m)}.

By Theorem m, the generator satisfies L) = £ on D(L®)). This
easily implies D(L®)) C D,

On the other hand, let f € D, and let & > 0. Then, (L+ a)f €
(P(X,m) so that we may apply the resolvent to get

(LP +a) (L +a)f € D(LW).
We let g = (L™ 4+ o)~ (£ + ) f. By Theorem again, we see that
(L+a)g=(L+ a)f.

Therefore, f — g € (?(X,m) is a-harmonic and so f — g = 0 by as-
sumption. This implies f € D(L®) and completes the proof. O

3. Markov uniqueness

In this section we consider the uniqueness of Markov restrictions
of the formal Laplacian. By definition, these restrictions are such that
the arising forms are Dirichlet forms. We will see that there is a unique
such Markov restriction if and only if the Dirichlet and Neumann forms
agree.

We will draw heavily from Appendix [C| which develops the theory
of Dirichlet forms. We will also need Excavation Exercises 2.4 and 2.5
which recall a basic fact about the existence of weakly convergent se-
quences and the Banach—Saks theorem.

In Section (1| we considered the question of when there is a unique
form associated to a graph. In Section [2] we similarly explored the
question of when the restriction of the formal Laplacian to the finitely
supported functions has a unique self-adjoint extension under the as-
sumption that the formal Laplacian maps finitely supported functions
to square summable functions. In this section we will consider the
question of when restrictions of the formal Laplacian have a unique
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Dirichlet form, i.e., a unique positive closed form which is compatible
with normal contractions.

It is intuitively clear that when there is a unique positive self-adjoint
operator, then both the associated form and the arising Dirichlet form
should be unique and this is indeed the case. Let us highlight, however,
that we do not know if the forms arising from restrictions of the formal
Laplacian £ are restrictions of the energy form ©Q in general. Hence, as
we do not know the action of the form on all functions in the domain,
we must take particular care throughout our considerations and rely
on the general theory of Dirichlet forms.

On the other hand, it is relatively easy to establish that a Dirichlet
form coming from a restriction of the formal Laplacian acts as the
energy form on the finitely supported functions. Furthermore, let us
note that we have already seen in Section [2| that there is a one-to-one
correspondence between graphs and regular Dirichlet forms. In this
section, we drop the regularity assumption, which makes the analysis
significantly more difficult. However, we will use the results of Section 2]
along the way to our understanding of more general forms arising from
the formal Laplacian in that we use approximating forms, which are
regular forms, and then pass to the limit.

After this preliminary discussion, we start by defining the restric-
tions which will be of interest.

DEFINITION 3.9 (Markov realization and Markov uniqueness). Let
(b,c) be a graph over (X,m). A positive operator L with form @ is
called a realization of L if

L=L onD(L) and Ce(X) € D(Q).

An operator L is called a Markov realization of L if L is a realization of
L and @ is a Dirichlet form. The operator L is said to satisfy Markov
uniqueness if there exists a unique Markov realization of L.

We start by pointing out that we have seen at least two Markov
realizations thus far.

EXAMPLE 3.10 (L(P) and L™ are Markov realizations). An oper-
ator L is associated to a graph if L comes from a closed form () which
is a restriction of the energy form Q and whose domain D(Q) contains
C.(X). As @ is a symmetric positive closed form, it follows that L
is positive. Furthermore, any such operator is a restriction of £ by
Theorem [1.12} Hence, any associated L is a realization of £. If @)
is additionally a Dirichlet form, it follows that L is a Markov realiza-
tion of £. In particular, as both Q”) and QW) are Dirichlet forms,
see Lemma and Proposition , both L®) and L™N) are Markov

realizations.
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REMARK. We observe that if L with form () is a realization of L,
then for all f € D(L) and ¢ € C.(X) C D(Q),

Qf,0) = (Lf,p) = (Lf,p) = Qf, »),

where the first equality follows by the connection between () and L,
see Corollary the second equality holds since L is a restriction of
L and the third equality is Green’s formula, Proposition [1.5]

Using the reasoning of Theorem if LC.(X) C ¢*(X,m), then
C.(X) C D(L) (Exercise[3.10)). In this case the formula above holds for
all f € C.(X). By approximation we can, therefore, show Q = Q")
on D(Q™)) in this case. For the general case this is not clear but
in the case when L is a Markov realization we will show this below.
Furthermore, we give a lower bound on @ by Q™) on D(Q) in this
case.

Forms on ¢?(X,m) can be naturally ordered as follows: If Q; and
Q) are forms with domains D(Q;) and D(Q5) in ¢*(X, m), then we will
write
Q1 < Q2
if
D(Q2) € D(Q1) and  Qi(f) < Q2(f)
for all f € D(Q2).

Having established the relevant concepts and notations, we now
state the main result of this section.

THEOREM 3.11 (Characterization of Markov restrictions). Let (b, c)
be a graph over (X,m). If L is a Markov realization of L and Q is the
associated Dirichlet form, then

QW <@ <™.
REMARK. We note that it follows from QW) < @ < Q") that
)

QW) < Q) <QW(f) =Q™(f) = Q

for all f € D(Q™)). In particular, this determines the action of Q on
C.(X).

REMARK. Naively, one might think that the form @) associated to
a Markov realization of L is a restriction of Q. However, the point of
this section is that this naive view is not clear as Green’s formula only
allows us to test with functions in C.(X).

REMARK. We note that not all forms associated to realizations of £
satisfy the inequalities in Theorem [3.11] as can be shown by example,

see Exercise [3.7] In particular, not all operators which are realizations
of L are Markov.
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The proof of Theorem [3.11| will require some work. However, let us
note the following immediate consequence, which states that Markov
uniqueness is equivalent to uniqueness of associated forms.

THEOREM 3.12 (Characterization of Markov uniqueness). Let (b, ¢)
be a graph over (X,m). Then, L satisfies Markov uniqueness if and

only if QP) = QW)

PRrROOF. If £ satisfies Markov uniqueness, then L(?) = L) ag both
are Markov realizations of £ so that Q) = Q™). On the other hand,
if Q) = QW) and L is a Markov realization of £ with associated form
@, then, by Theorem [3.11, we have

DQ™) € D(Q) € D@Q™) = D(Q™)
and
QM << =W
so that Q = QP) = QW). O

Therefore, to characterize Markov uniqueness, we may use any of
the equivalent statements found in Theorem [3.2] We also highlight the
following immediate connection between essential self-adjointness and
Markov uniqueness.

COROLLARY 3.13 (Essential self-adjointness and Markov unique-
ness). Let (b,c) be a graph over (X,m) with LO.(X) C *(X,m). If
the restriction of L to C.(X) is essentially self-adjoint, then L satisfies
Markov uniqueness.

ProoF. Combine Theorem [3.12] with Corollary [3.7] O

We now begin the proof of Theorem [3.1I] We will have several
occasions to use the following lemma, which gives a Green’s formula
for forms associated to Markov realizations. Here and throughout the
section the space £*°(X) of bounded functions on X plays an important
role.

LEMMA 3.14 (Green’s formula). Let (b,c) be a graph over (X, m).
Let L be a Markov realization of L and @ be the associated Dirichlet
form with domain D(Q). If ¢ € C.(X) and f € D(Q)N{*(X) C F,
then

Qe ) =D pl)Lf(x)m(z).

zeX

PRroOF. This is essentially a consequence of Lebesgue’s dominated
convergence theorem and the functional calculus, see Proposition
and Lemma . More specifically, for f € D(Q) we have (L+a)™1f €
D(L) and ¢ € C.(X) C D(Q) by assumption. By the spectral calculus
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we get
Qg f) = lim Q(p,a(L +a)™'f)
= lim (go, La(L +a)7'f)

1
C}g&;s@ (L + )L f)(x)m(z),
where we use that L is a restriction of £ in the last line.

We now note that, as @ is a Dirichlet form, o(L + )" is contract-
ing, i.e., |a(L+ o) f(z)] < ||f]le for all z € X and f € (3(X,m), see
Theorem @ in Appendix . Moreover, a(L+a)™ ' f — f asa — oo by
Theorem in Appendix[A]l Consequently, by Lebesgue’s dominated
convergence theorem, we get

ah_)mZba:y a(L+a)  f(y) bey

yeX yeX

and, therefore,
lim L(a(L +a) ' f)(x) = Lf(z).
a—r 00
Putting all of this together we obtain
hmng L+ ) f)(x ng VLf(x)m(x),
rzeX rzeX
where the sum has finitely many non-zero terms since ¢ € C.(X). This

completes the proof. O

We now prove the upper bound by Q) in Theorem by using
the previous lemma.

PROPOSITION 3.15 (Q < QW)). Let (b,c) be a graph over (X, m).
If L is a Markov realization of L and Q) is the associated Dirichlet form
with domain D(Q), then Q = QP) on C.(X) and

Q<Q”
PrOOF. By Lemma we get
=Y Lo(z)p(x)m(z)
zeX

for all p € C.(X) C D(Q)N¢>*°(X). Furthermore, by Green’s formula,
Proposition and the fact that Q) is a restriction of Q by definition
we get
QP (p) = Q) =Y _ Lo(x)p(x)m(z) = Q(p).
zeX

As @ is a closed form and @) and Q agree on C.(X), we get that they
agree on D(QP)) = C’C(X)”.”Q C D(Q). Therefore, @ is an extension
of QP so that Q < Q). O
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In order to proceed further, we will need two general facts about
Dirichlet forms. The first one states that the set of bounded functions
in the domain of a Dirichlet form is an algebra, i.e.,

D(Q) N £=(X)

satisfies fg € D(Q) N ¢>°(X) whenever f,g € D(Q) N{>(X). For the
space of functions of finite energy, this can be shown directly (Exer-
cise [3.11]). The general case follows from abstract theory, see Corol-

lary in Appendix [C]

The second general fact, which is proven next, states that the al-
gebra D(Q) N ¢>(X) is dense in D(Q) with respect to the form norm
|| - [|o which arises from the scalar product

{f,9)q =Q(f.9) + ([, 9)-
We denote this Hilbert space by
Ho = (D(Q).()q)-

LEMMA 3.16. Let (b, c) be a graph over (X, m). Let Q) be a Dirichlet
form with domain D(Q) C (*(X,m) and let f € D(Q).

(a) Forn € N the functions f, = (f An)V —n are in D(Q) N >°(X)

and converge to f with respect to || - ||g as n — oc.
(b) For a > 0 the functions fo = f — ((f Na) V —a) are in D(Q) and
converge to f with respect to || - ||g as o — 0%

PRrOOF. (a) Let f € D(Q). Forn € N, let f, = (fAn)V—n. Then,
clearly each f, is bounded and since @) is a Dirichlet form and cutting
above by a positive number and below by a negative number are normal
contractions we have f,, € D(Q). Thus, f, € D(Q) N{=(X).

Observe that since f,, — f pointwise and |f,(z)| < |f(x)| for all
r € X, it follows that f, — f in ¢*(X,m) by Lebesgue’s dominated
convergence theorem.

We will show that every subsequence of (f,,) has a further subse-
quence that converges to f with respect to || - ||g, which will complete
the proof. We first note that as ) is a Dirichlet form, it follows that
Q(fn) < Q(f), so that (f,) is a bounded sequence in the Hilbert space
Hg. Now, any subsequence of (f,,) is also bounded in Hy, so it has
a weakly convergent subsequence, say (gi) with weak limit g. By the
Banach-Saks theorem, there exists a subsequence (g;,) of (¢;) whose
Cesaro means converge to g strongly, i.e.,

XN
N2 Y
N=

strongly as N — oo. In particular, since f,, — f pointwise and (g, ) is
a subsequence of (f,), it follows that f = g, so that f is the weak limit

of (g1)-
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Therefore, using the fact that @ is a Dirichlet form and thus || ¢g;||¢ <
Il fllo, we obtain

g — fI5 = Nlgilly — 2(a Fo + 1£15 < 2017115 — 2(9, flo = 0

as | — oco. So, if (f,) does not converge to f in || - || it has a sub-
sequence where each element has a uniformly positive distance to f.
However, this is not possible since every subsequence has a convergent
subsequence.

(b) The proof follows exactly along the same lines as the proof of
(a) by noting that the functions (f A a) V —a for @ > 0 are in D(Q)
and converge to 0 with respect to || - |- O

REMARK. The convergence above can also be obtained via other

means (Exercise 3.12]).

COROLLARY 3.17 (Bounded functions are dense in the form do-
main). Let (b,c) be a graph over (X,m). Let QQ be a Dirichlet form
with domain D(Q). Then D(Q)N{*(X) C D(Q) is dense with respect
to the form norm || - ||o-

PROOF. Use the sequence constructed in (a) of Lemma ie.,
for any f € D(Q), fn = (f An)V —n € D(Q)NL>*(X) converges to f
with respect to || - |- O

The corollary is significant as it allows us to reduce all arguments for
D(Q) to those for D(Q)N¢>(X), which is an algebra by Corollary[C.6]
In particular, we will prove that @ > Q™) for functions in D(Q) N
¢>°(X) and then pass to D(Q) by using the corollary.

By the fact that D(Q) N ¢*°(X) is an algebra, we can make the
following definition. For f,g € D(Q) N ¢>(X) and ¥ € D(Q) with
0<y <1, we let

Qu(f,9) = QW f,vg) — QW [fg,¥).

As @ is a symmetric form, it follows easily that (), is a symmetric form
as well. In particular,

Qu(f) = QW f) — QW f*v)

is a quadratic form.

We note that we do not assume that 1 is finitely supported. How-
ever, when 1 is finitely supported we get the following proposition for
the energy form by a direct computation.

PROPOSITION 3.18. Let (b, c) be a graph over (X, m). Then,

OWf) ~ Q%) = 5 3 bl )ul@)bl)(f(x) — F(1))

z,yeX

for allp € Co(X) and f € C(X).
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PRrRoOOF. We have

QWf) =5 3 b)) — N+ 3 cw)wh)?)

and
Qv f?, )
= 2 3 b ()~ () ) (o) )+ ) ()P,

Now, a direct computation shows

(W) @) = @) ®)) = (W) () = W) (W(z) = (y))
= v(@)v(y)(f(2) — fy)*.

Putting this together, we arrive at the statement of the proposition. [

REMARK. Letting
Qu(f) = > bz, (@) (f(x) — f(y))?

and invoking the Green’s formula we obtain from the proposition

Qf) = Qu(f) + (f, (L) f)

for all ¢, f € C.(X). Now, it is not hard to see that this can be
extended by simple limiting procedures to an arbitrary @ € F with
¥ > 0and f € C.(X). In particular, if £1) = A for some non-negative
Y € F and A € R, we obtain

Q) = Qu(f) + AlefI*.

This is the starting point of the technique of the ground state transform,
to be investigated in the next chapter.

We can apply the preceding proposition to calculate @), for 1 equal
to the characteristic function of a finite set.

LEMMA 3.19. Let (b,c) be a graph over (X,m). Let W C X be a
finite set. If L is a Markov realization of L and () is the associated
Dirichlet form with domain D(Q), then

Qulf) =35 3 b)) — f))

zyew
for all f € D(Q)NI{>(X).
ProoF. We note that by definition
Quy (f) = Q(lw f) — QUw %, 1w).
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As W is a finite set, 1y f € C.(X). Therefore, as Q = Q”) on C.(X)
by Proposition [3.15] we get

Qlwf) = QP (1w f) = Qlwf) and Q(lwf* 1w) = Q1w f*, 1w).

Now, the statement follows from the previous proposition. O

We now decompose our Dirichlet form into two parts. For f €
D(Q) N{>=(X), we define

Qu(f) = sup Qw(f)

YeD(Q)
0<y<1

as the main part of () and let

Qr(f) = Q(f) — Qu(/[)
denote the killing part of (). Therefore,

Q(f) = Qu(f) + Qk(f).

Before we justify these definitions, let us mention the main idea. As
already seen in Lemma [3.19] when we let v = 1y for a finite set
W C X, we get that Q1,,(f) gives the energy of f coming from b over
W. Thus, taking the supremum over all such functions shows that
Qi (f) bounds Qpo(f) from above. We will show later that the killing
part Qg (f) controls the part of the energy coming from the killing
term ¢, that is, Qx (f) > Qo.(f). Combining these two estimates gives
that Q(f) > Q(f), which will finish the proof of our main result.

These estimates will be proven after some preliminary technicalities.
In particular, we first have to justify that 0y, and Q) take finite values
and establish several properties listed in Lemma/|3.21} In order to carry
out the proof, we will use the general theory of approximating forms
for a quadratic form. Specifically, for a quadratic form ) with operator
L and a > 0, we let

Q(f,9) = alf,(I —a(L+a) ")g)

denote the approzimating form. These are bounded forms which satisfy
lim Q°(f,9) = Q(f,9)

for all f,g € D(Q), which is a consequence of the spectral calculus and
is proven in Corollary in Appendix [B] Furthermore, when Q is a
Dirichlet form, it follows that Q¢ is a Dirichlet form for every a > 0,
see Corollary in Appendix [C] for details.

As Q“ are bounded, they are defined on all of /*(X,m) and, as
such, they are regular Dirichlet forms whenever () is a Dirichlet form.
Therefore, we may apply the theory developed in Section 2, which
says that every such form on a discrete space is given by a graph, see
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Theorem |1.18] In particular, to every Q¢ there exists a graph (b%, %)
over (X, m). By the proof of Lemma [L.17] this graph satisfies

0 (z,y) = —Q%(1a, 1)
for x # y with b*(z,z) = 0 and

(2) = Q"(L) + ) Q(1s,1,)
y#z
where the sum is absolutely convergent.
We now calculate the action of (Q“), on functions of finite support
and compare the results to those for Q®. In particular, for ¢ € C.(X)

with W = supp ¢ being the finite support of ¢, we get by a direct
calculation that

@ DIEIE DEDILHO

z,yeW zeW

where

by (z,y) = =(Q%)y(1a: 1)
for z # y and b (7, z) = 0 and

(@) = (Q)y(Le 1)) = (Q")y (L, 1w).

yew

We will compare the coefficients b°(z,y) with b} (x,y) and c¢*(z) with
cfﬁ(m) over W, which gives the core of the argument in the lemma below.

To this end, we observe that resolvents associated to operators com-
ing from Dirichlet forms are both positivity preserving and contracting,
see Theorem [C.4] In particular,

0<allL+a) <1

for all ¢ € (*(X,m) with 0 < ¢ < 1, where the lower bound comes
from the positivity preserving property and the upper bound from the
contracting property.

We next calculate the action of (Q%), explicitly. In particular, we
show that (Q%), is bounded.

LEMMA 3.20. Let (b,c) be a graph over (X,m). Let L be a Markov
realization of L and () be the associated Dirichlet form with domain
D(Q). Let f,g,9 € (3(X,m) NL>°(X) with 0 <+ < 1. Then

(Q@)u(f,9) = a ((¥fg, L+ a) ') = (I f,a(L +a) "vg)).

In particular, (Q%)y gives rise to a bounded form on (*(X,m).
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PROOF. As (Q%)4(f,9) = Q*(1:f, bg) — Q*(1'fg, ), we calculate
directly that

(Q@")u(f:9)
= a(f, (I —a(L+a)™ ") pg) - a<¢fg,( —a(L+a))y)
— a ((¢fg,a(L+a)"'W) — (¢, a(L + a) " 'vg))

for f,g,% € (*(X,m)N¢>(X) with 0 < < 1.
Setting g = f, for f,¢p € 3(X,m) N ¢>*(X) with 0 < ¢ < 1 we
obtain

Q@) (f) = a ({f, fa(L+a) ) — (W f,a(L+a) P f)).

Therefore, we estimate, using the Cauchy-Schwarz inequality and the
fact that the operator norm of a(L + «)~! is bounded by 1,

(@) (f) < a(IflllfalL + ) 0l + [ f (L + )~ f]))
< o ([l + @) ool £IP + [l + ) RIS A1)
< 2a]/f]*.

The boundedness of (Q%),, follows directly as £2(X, m)N¢>®(X) is dense
in (2(X,m). d

With these preparations, we can now state and prove our main
technical lemma concerning @y, @ and Q.

LEMMA 3.21 (Basic properties of Qy and Q). Let (b, ¢) be a graph
over (X,m). Let L be a Markov realization of L and Q) be the associated
Dirichlet form with domain D(Q). Let f,g € D(Q) N {>*(X).

(a) [fwlan € D(Q) with 0 < ¢1 < w2 < 1; then

0< Ql/n(f) < sz(f)
<Qu(f) <Q(f) and 0 < Qx(f) < Q(f).
M

are quadratic forms.
g(x)| for all x € X, then

Qr(f) < Qk(9).

PROOF. (a) From the discussion above for the form (Q%), and ¢ €
C.(X) with finite support W we get

LY Seeta) -+ o
:cyGW zeW
where bg(z,y) = —(Q%)y(1s,1,) for  # y, by (z,2) = 0 and cj(z) =
(Q%)y(1,, 1) for all € D(Q) with 0 < ¢ < 1.
Applying Lemma with f =1, and g = 1, for x # y, we see
that

(Q)y(14,1,) = —a{a(L 4+ a) "1, ¥1,) .
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Therefore,

by (2, y) = aa(L +a) Pl 9ly)
for all # # y. From this it follows that if 0 < ¢); < 1y < 1 are in D(Q),
then

as resolvents associated to Dirichlet forms are positivity preserving.

We now calculate caW(x) = ew(@)y(1s, 1) = (Q%)p(1e, 1w)
for x € W, where we emphasize the dependence on W in the nota-
tion. Using the symmetry of the resolvent, we see from the general
calculation of (Q%)y(f,g) above that for z € W

(QMy(la, Iw) = & ((V1e1w, oL + @) ) = (Plo, (L + ) "¢lw))
= a (Yl a(L+a) 7 (¥ = dlw))
=a (Yl a(L+a) Wlxw).
From this, it follows that if 0 < vy < 9 < 1 for 11,15 € D(Q), then
0< czlw(x) < cz;w(m)
for all x € W as (L + «)~! is positivity preserving.

Combining all of the above, if 0 < ¢); < by < 1 for ¥y, € D(Q)
and ¢ € C.(X) with support in W, then

(Qa d)1 Z bw:l xr y + Z 61/11

xyGW zeW
<= Z b, (. ) (p(x) — )* + Y iV ()¢ (x)
= (Q“)w(@)-

As (Q%)y are bounded by Lemma|[3.20, we obtain 0 < (Q%)y, (f) <

(Q%)y, (f) for all f € (X, m). Finally, 0 < Qy, < Qy, by letting

a — o0.
(b) Similar to the proof of (a) above, we can calculate for x # y
b (z,y) = —Q%(1,, 1) = « <1I, a(L + a)_11y> )
Since
by (7, y) = a <¢1x, alL + a)_1¢1y>
we get
by (z,y) < b%(z,y)

for all 0 < ¢ <1 with ¢ € D(Q) and all = # y as resolvents associated
to Dirichlet forms are positivity preserving.

Similarly, letting W C X be any finite set such that z € W and
using the symmetry of the resolvent we obtain

W(z) = Q%(Le, lw) = a {1y, 1w — a(L + @) ') .
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Furthermore, for ) € D(Q) with 0 <1 <1 we get from the above

CZ7W(x) = Qi(la:? 1W) = <¢1l‘7 OZ(L + a)_1¢1X\W>
<a(ly,all+a) Wlnw)

as resolvents are positivity preserving. Combining these two calcula-
tions, we obtain

é (e (@) = g™ (@) = (Lo lw = AL+ 0) " (Iw = 1)) > 0

since 1y — Y1\ < 1 implies that a(L + a) ' (1w — Ylxaw) < 1.
From the above, we see that b (z,y) < b%(z,y) and that cz’w(x) <
W (z) for all z,y € W so that

(QY)y(p) < Q%(w)

for ¢ € C.(X) with support in W and ¥ € D(Q) with 0 < ¢ < 1.
Therefore, since (Q“),, are bounded by Lemma(3.20, we get (Q%)4(f) <
Q°(f) for all f € £3(X,m)N¢>°(X) and letting o — oo we obtain

Qu(f) <Q(f)

for all f € D(Q)N{>*(X) and ¢ € D(Q) such that 0 <1 < 1.
This shows
Qu(f) = sup Qu(f) <Q(f)

YeD(Q)
0<y<1

for all f € D(Q)NE>(X). As we have shown that Q,(f) > 0in part (a),
it follows that Qa(f) > 0. Therefore, we obtain 0 < Qu(f) < Q(f).
As Qk(f) = Q(f) — Qu(f) it follows that 0 < Qx(f) < Q(f) as well.

(c) We now show that @), and Q are quadratic forms. As @ is
a quadratic form and Qx = QQ — Qy, it suffices to show that @, is a
quadratic form, that is,

Qu(af) = a*Qu(f)
for all a € R and f € D(Q) N ¢>*(X) and

Qu(f+9)+Qu(f—9) =2Qu(f)+Qu(g))

for all f,g € D(Q) N{>*(X).
Since () is a quadratic form, it follows that ) is a quadratic form
for all ¥ € D(Q) with 0 <1 < 1. Therefore,

Qu(af) = sup Qulaf) = sup a’Qu(f) = a’Qu(f).
$YeD(Q) YeD(Q)
0<y<1 0<y<1
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Furthermore, using that @), is a quadratic form again, we get

Qu(f+9)+Qu(f—g)= sup Qu(f+g)+ sup Qu(f—g)
heD(Q) YeD(Q)

0<y<1 0<y<1

> sup (Qu(f+9) +Qu(f —9))
ooy

=2 sup (Qu(f) +Qu(9))

YeD(Q)
0<y<1

=2(Qu(f) + Qumlg))

This gives half of the required equality. The other half is obtained by
what we have already shown as follows

4(Qu(f) +Qu(g)) = Qu(2f) + Qu(29)
=Qu((f+9)+(f—9)+Qu((f+g9) —(f—9))
>2(Qu(f+9)+Qu(f—9g)).

Combining the two inequalities we obtain

Quf +9)+Qu(f —9)=2(Qu(f) +Qum(g)),
which completes the proof.

(d) Let f,g9 € D(Q)NE>=(X) be such that | f| < |g|. We have to show
that Qx(f) < Qk(g). We break down the proof into two steps. We
first assume that there exists a ¢y € D(Q) such that 1g,p, < 1o < 1.

Let € > 0. As we have already shown that @), is monotone in ¢ in
part (a) and since @y is the supremum over all ¥ € D(Q) such that
0 < @ < 1 by definition, for all ¢y € D(Q) with ¢y < ¢ < 1 large
enough, we have

Qu(g) — Qulg) <e.
Using Qx = Q — Q) as well as Q—Qu < Q — @y and the definition

of @y, we get for all ¢ € D(Q) with ¢y <1 < 1 large enough that
Qr(9) — Qx(f) = Qg) — Qu(g) — (Q(f) — Qu(/f))
= Q(g) — Qulg) — (Q(f) — Qu(f)) —¢
= Q(9) — Q¥g) + Q(vg*, )

—(QUH) = QW) + Qb f*,v)) —&.

Since the support of f is included in the support of g, we note that
1®» = 1 on both the support of f and the support of g. Therefore,
f=14f and g = vg. Hence, we conclude

Qx(9) — Qx(f) 2 Qg ¥) = Q(f*,¥) —e = Q9" = f*,¥) —e.

As g? — f2> 0,0 < <1 with ¥ = 1 on the support of g2, we get for
any s > 0 that (¢ + s(g*> — f?)) A1 = 1. Since Q is a Dirichlet form,
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it follows that, for s > 0,
QW) =Q(( +s(g®— %)) A1)
< Q¥ +s(g®— 1)
= Qv) +25Q (¥, 9" — f*) +5°Q (¢° — f?) .

Therefore,

—sQ (9" = f?) <2Q (v, ¢ — f*) =2Q (¢* — f*,¥)
for all s > 0 and letting s — 0, we get that

0<Q(9° — 2 ¢).
Putting everything together, we get

Qk(9) — Qk(f) = —¢
and, thus,
Qk(9) = Qk(f)

as € > 0 was arbitrary. This completes the proof in the case that there
exists a ¢y € D(Q) such that lgppe < 1 < 1.

In the general case, we argue as follows. We let

fo=f—=((frna)V—-a) and  ga=g-((gNa)V—a)
for & > 0. By Lemma [3.16] (b) we get fo, — f and go — g as o — 0T
with respect to ||-]|g. Now, as |f| < |g|, we get | fo| < |gal. Furthermore,

we let
«Q

Clearly 0 < v, < 1. Furthermore, we observe that x is in the support
of g, if and only if ((g A a) V —a) () # g(z), that is, if and only if
lg(x)| > « and for all such x we get that ¢,(z) = 1. Hence, we have
Lsuppga < Yo < 1. Finally, as () is a Dirichlet form, we get ¢, € D(Q).
Therefore, we infer
QK(ga) Z QK(foz)

by what we have already shown above. Now, since Qg < () as we have
already shown in part (b) and since Q(g — go) — 0 and Q(f — fo) — 0
as o — 0, we get Qx (g9 — go) — 0 and Qi (f — fo) = 0 as @« — 0. By
(c) we know that Q is a quadratic form, so, we obtain

Qk(9a) = Qx(g)  and  Qx(fa) = Qk(f)
as a — 0. Therefore, we conclude
Qx(g) > Qk(f),
which completes the proof. Il

REMARK. In the proof of (c¢) above we see that in order for a form
to be quadratic it suffices that one of the equalities only has to be an
inequality. This is, in fact, true for both inequalities (Exercise [3.13)).
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Given the lemma above, we can now give the lower estimate on @)
as follows.

PROPOSITION 3.22 (Q™N) < Q). Let (b,c) be a graph over (X, m).
If L is a Markov realization of L with associated Dirichlet form @), then

Q™M < Q.
ProoOr. We will show

Qu(f) = Quo(f) and  Qr(f) = Qoc(f)
for all f € D(Q) N ¢>(X). Assuming we have shown this, we get, as
both Qu(f) and Q(f) are finite by Lemma [3.21] (b) and (c),
.o (f) = o(f) + Qo f) < o0,
so that f € DN AZ(X,m) = D(QW)) and

QM(f) = Q(f) < Qu(f) + Qx(f) = Qf)
for all f € D(Q)NI>(X).

Now, for f € D(Q) it follows from Corollary [3.17]that there exists a
sequence f, € D(Q)N¢>(X) such that f,, — fin |- ||¢. In particular,
by what we have already shown above, f, € D(Q")) and using the
lower semi-continuity of Q) we infer

QW) < liminf QV)(£,) < liminf Q(f,) = Q(f) < oo,

which shows f € D(Q™W)) and QW) (f) < Q(f) for all f € D(Q).

We now show the two required inequalities.

Qum(f) > Quo(f): Let W, C X be finite with X = J,, W,. Then,
by Lemma [3.19] we get

QulN = s Qu(N=Qu, (N =7 3 bey)(f) )"

€D
%Sw(SQI) z,y€Wn,

Now, letting n — oo gives the required inequality.

Qkr(f) > Qoc(f): Let € > 0. Since @, is monotone in ¢ by
Lemma [3.21] (a), we get that there exists a ¢y € D(Q) with 0 <15 <1
such that

Qu(f) < Qu(f) +e
for all ¢ € D(Q) with ¥y < ¢ < 1. Let W C X be finite and choose

o such that 1y > ly.. As |f| > |1y f], it follows from Lemma[3.21] (d)
that

Qr(f) 2 Qx(lwf) =Q(wf) —Qu(lwf) > Qwf) — Qu(lwf) —¢

for all v € D(Q) with ¢y < < 1. Now, as ¥ly = 1y for all ¥ with
1w <1 <1, we see that

Qu(lwf) = QWlwf) — QW (1w f)* ) = Q(lw f) — Q(Lw 2, 1).



3. MARKOV UNIQUENESS 209

Therefore,

Qx(f) = QUlwf) — Qu(lwf) —e = QIw f* ¢) —¢
for all ¢ € D(Q) with ¢y < < 1.

As 1y f? € C.(X) and ¢ € D(Q) N£>=(X), applying Lemma m,
we get

QUw /% v) =Y lw(@) f2 (@) Lp(x)m(z) = ) f2(x)Lo(x)m(x).

Now, we can apply the above estimate to a sequence 1, which satisfies
Yo < ¥, < 1 and such that ¢, — 1 pointwise as n — co. By applying
the Lebesgue dominated convergence theorem to such a sequence, it

follows that
L, (z)m(z) — c(x)
as n — oo. This gives

QUw S ) = Y @) Ln(@)m(z) = Y c(x) f*(x)

zeW zeW
as n — 0o. Therefore,

Q(f) > QUlw ) —e = Y c(w) f(x) —¢,

zeW

f)=) ela)f(x)
zeW
Finally, as W C X is an arbitrary finite set, we conclude

Qr(f) =D clw) (@) = Qoclf).

zeX

which implies

This completes the proof. O

oF THEOREM B.11. To show that Q) < Q@ < Q™) simply com-
bine Proposition [3.15] which gives the upper bound, and Proposi-
tion [3.22, which gives the lower bound. U
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Exercises
Excavation exercises.

EXERCISE 3.1 (Adjoint operator inclusions). Let H be a Hilbert
space and let A; and As be densely defined operators with domains
D(A;) and D(As), respectively. We say that A, is an extension of
Ay if D(A;) € D(Ay) and Ayf = A f for all f € D(A;). We write
Ay C A, in this case.

(a) Show that if A; C A,, then A; C Aj.
(b) Show that if A; and A, are self-adjoint and A; C Ay, then A; = A,.

EXERCISE 3.2 (Adjoint operators and essential self-adjointness).
Let H be a Hilbert space and let A be a densely defined symmetric
operator with domain D(A) C H. Let A denote the closure of A, that
is, the smallest closed extension of A. Show that:

(a) A= A™. B
(b) A is essentially self-adjoint if and only if A is self-adjoint.
(c) A is essentially self-adjoint if and only if A* is self-adjoint.

EXERCISE 3.3. Let H be a Hilbert space and L be a positive op-
erator with associated form . Let (1,) be a sequence of bounded
real-valued functions which converges pointwise to a bounded function

¢ Show that ¢, (L) f — $(L)f for all f € D(Q) with respect to | -[|o,
where || f[|3 = Q(f) + [ £]|*

Example exercises.

EXERCISE 3.4 (Infinite star graphs). Let (b,c¢) be an infinite star
graph over (X, m). That is, let X = Ny with 6(0,n) = b(n,0) > 0 for
all n € N such that ) _6(0,n) < oo and b = 0 otherwise.

(a) Show that D(QP)) = D(QWM)).

(b) Characterize the condition LC.(X) C ¢*(X,m).

(c¢) Show that the restriction of £ to C.(X) is essentially self-adjoint
when LC.(X) C *(X,m).

EXERCISE 3.5 (QP) # Q™). Give an example of a graph which
satisfies LC.(X)
C 2(X,m) but for which Q) # QW) so that, in particular, Ly, is
not essentially self-adjoint and £ does not satisfy Markov uniqueness.

(Hint 1: Consider a-harmonic functions on an infinite path graph.)
(Hint 2: If you have tried for a sufficiently long time without success,
then try to work out the following: Let (b,0) be an infinite path graph
over (X, m). That is, let X = Ny with b(n,n+1) =b(n+1,n) > 0 for
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all n € N and b = 0 otherwise. Assume, additionally, that m(X) < oo
and that

= 1
I ——
= b(n,n+1)

Show by induction that any u € F = C(X) such that (L +a)u =0
for a > 0 satisfies

(67

u(n+1) —u(n) = bt D)

> ulkym(k).

k=0

Use this to show that, under the additional assumptions on b and m,
u has finite energy and is bounded.)

EXERCISE 3.6 (Equality of form domains does not imply essential
self-adjointness). Give an example of a graph for which Q) = QW)
and LC,(X) C (*(X,m) and for which L, is not essentially self-
adjoint.

(Hint 1: Try a two-sided path graph.)

(Hint 2: If you have tried for a sufficiently long time without suc-
cess, then try to work out the following: Let (b,0) be the two-sided
path graph over (X, m) with standard weights. That is, let X = Z
with b(n,n+ 1) = b(n+ 1,n) = 1 for all n € Z and b = 0 otherwise.
First, show that there do not exist any non-trivial a-harmonic func-
tions with finite energy on this graph for a > 0. Then, consider the
function u(z) = x, which is a-harmonic for @ = 0, and show that for
an appropriate measure, v € D(LZ, ). However, u does not have finite
energy.)

EXERCISE 3.7 (Non-Markov operator). Give an example of a self-
adjoint operator which is a realization of £ but is not Markov.

(Hint 1: Use Exercise |3.6| above.)

(Hint 2: If you have tried for a sufficiently long time without success,
then try to work out the following: Take the example above and let L
be the restriction of £ to D(Lg) = C.(X) + Lin{u}. Show that L, is
symmetric and take the Friedrichs extension of Ly.)

Extension exercises.

EXERCISE 3.8 (Form uniqueness and a-subharmonic functions).
Let (b,c) be a graph over (X,m). Show that D(Q®P)) = D(QW)) if
and only if every u € D with « > 0 such that Lu € (*(X,m) and
(L + a)u <0 for a > 0 satisfies u = 0.
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EXERCISE 3.9 (Essential self-adjointness and associated operators).
Let (b,c) be a graph over (X, m) with LC.(X) C (X, m). Show that
the restriction of £ to C.(X) is essentially self-adjoint if and only if

D(L)={f € (X,m) | L € (*(X,m)}

for some (all) associated operators L.

EXERCISE 3.10 (Realizations and finitely supported functions). Let
(b, ¢) be a graph over (X, m). Let L be a realization of £. Show that
LC.(X) C 2(X,m) if and only if C.(X) C D(L).

EXERCISE 3.11 (Bounded functions of finite energy form an alge-
bra). Let (b, c) be a graph over X. Let D denote the functions of finite
energy and let (>°(X) denote the bounded functions on X. Show that
DNe>(X) is an algebra, i.e., fg € DNL>®(X) for all f,g € DNL®(X).

EXERCISE 3.12 (Convergence in || - ||g). Let (b,¢) be a graph over
(X,m). Let Q be a Dirichlet form with domain D(Q) C ¢*(X,m) and
let |fllo = (Q(f) + |If]I2)"/ for all f € D(Q). Show that f, — f in
| - |l if and only if

\fo—fll —0 and lim sup Q(f) < Q(f).

n—oo

EXERCISE 3.13 (Quadratic forms). Let ¢ be a form on ¢*(X,m)
with domain D(q). Show that ¢ is a quadratic form, i.e., ¢ satisfies

q(af) = a*q(f) and q(f + g) + q(f — 9) = 2(q(f) + q(g)) for all a € R
and f, g € D(q) if and only if

glaf) < a’q(f) and  q(f+g)+q(f —9) <2(q(f) +alg))
if and only if

glaf) <a’q(f) and  q(f+g)+aq(f —9) >2(q(f) +alg))
for all a € R and f,g € D(q).
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Notes

In large part, the material in this chapter can be understood as
working out the general abstract theory of form uniqueness as well as
the uniqueness of self-adjoint and Markov extensions in the concrete
setting of weighted graphs. For the general theory, we merely reference
some standard textbooks such as [FOT11, RS75, RS80, Weil0] as
well as the historical works [Fri34l, vIN30].

For the concrete setting that we consider, the equivalence of (i)
and (ii) in Theorem can be inferred from [Sch17b]. The equiva-
lence of (i) and (iv) in Theorem can be found as Corollary 4.3 in
[HKLW12]. The equivalences found in Theorem [3.6|are worked out in
the proof of Theorem 6 in [KL12]. The characterization in Theorem [3.§]
is used in the proof of Theorem 5 in [KL12]. The characterization of
Markov realizations as presented in Theorem is proven for locally
finite graphs as Theorem 5.2 in [HKLW12]. The general case, that
is, for not necessarily locally finite graphs, is shown as Theorem 11.6.5
in [Sch20b] found within [KLW20]. In particular, the theory of the
main and killing part of a Dirichlet form is developed more generally in
Chapter 3 of [Sch1T7al, see [Sch20a] as well. We follow the presenta-
tion in [Sch20b]. Some further general connections between essential
self-adjointness and Liouville properties can be found in [HMW21].






CHAPTER 4

Agmon—Allegretto—Piepenbrink and Persson
Theorems

In this chapter we take a first step towards studying the spectral
theory of the Laplacian L = LI()Dc)m associated to the regular form

Q = Qéi}m of a graph (b,c¢) over (X,m). We will characterize the
bottom of the spectrum and the bottom of the essential spectrum of
L via strictly positive generalized eigenfunctions. The corresponding
results are known as Agmon—Allegretto—Piepenbrink theorems. Along
the way, we will also show a Persson theorem relating the essential
spectrum of L to the spectra of restrictions of L to complements of
finite sets.
More specifically, we let o(L) denote the spectrum of L and let

Mo(L) =info(L)

denote the bottom of the spectrum of L. We will characterize \o(L)
in terms of the existence of positive a-superharmonic functions for
a > —Xo(L) on X. We recall that for « € R a function u is called
a-harmonic if v € F and (£ + a)u = 0 (and a-superharmonic if
(L4 a)u > 0), where L = L4 ,. Furthermore, u is called positive
if w > 0. On connected graphs, we will show that any positive non-
trivial a-harmonic function u is automatically strictly positive, i.e.,
satisfies u > 0. We then present the characterization of the bottom of
the spectrum in terms of such functions in Section [3

The proof uses techniques that are interesting on their own. On one
hand, the ground state transform shows that if a positive a-harmonic
function exists, then a@ > —Xg(L). We establish this in Section [2|
On the other hand, in Section [1| we prove a Harnack inequality which
allows us to construct strictly positive a-superharmonic functions for
a > —Xo(L) via a limiting procedure. Combining these two results
yields our characterization of Ag(L) in terms of strictly positive a-
superharmonic functions.

In Section 4] we study the bottom of the essential spectrum of L.
The essential spectrum is the complement in the spectrum of the iso-
lated eigenvalues of finite multiplicity. We will denote the essential
spectrum by ces(L) and the bottom of the essential spectrum by

AP (L) = inf 0ess(L).

215



216 4. AGMON-ALLEGRETTO-PIEPENBRINK AND PERSSON THEOREMS

By general theory, see Theorem the essential spectrum is stable
under compact perturbations. Now, under a suitable condition on the
graph, the removal of a compact, i.e., finite, set is a compact pertur-
bation and this allows us to prove a Persson theorem which gives

NS(L) = sup Ao(LE)-
KCX,K finite

Here, LS?\)K denotes the Laplacian associated to the closure of the re-

striction of @ to C.(X \ K), denoted by Qg?\)K. Combining the Persson
result with the characterization of the infimum of the spectrum shown
in Section [3] we can then characterize the infimum of the essential
spectrum via functions which are strictly positive and a-superharmonic
outside of a finite set.

1. A local Harnack inequality and consequences

In this section we first present a local Harnack inequality for pos-
itive a-superharmonic functions. A slight extension of this statement
allows us to then prove a Harnack principle which yields a procedure
for constructing a-superharmonic functions for o« > —\o(L) via two
approximation procedures. These procedures involve approximating
on both the level of a and on the level of geometry as we exhaust
the vertex set by finite connected subsets. Finally, we show that a-
superharmonicity can be improved to a-harmonicity under certain ad-
ditional assumptions such as local finiteness.

The reader may consult Excavation Exercise to recall the diag-
onal subsequence trick which will be used in the proof of Theorem [4.4]

We start with a local Harnack inequality that allows us to estimate
the maximum of a positive a-superharmonic function v on a finite
connected set by the minimum.

THEOREM 4.1 (Local Harnack inequality). Let (b,c) be a graph
over (X,m) and let W C X be finite and connected. Then, there exists
a monotonically increasing function Cy : R — [0,00) such that for
every a € R and every uw € F with u > 0 and

(L4 a)u>0
on W we have

max u(z) < Cy(a) min u(z).

In particular, u > 0 whenever u # 0 on W.

PROOF. Let o € R and let u > 0 satisfy (£L+ a)u>0on W C X.
Rewriting (£ + a)u(x) > 0 we arrive at the inequality

(deg +am)(z)u(z) = Y bla, y)uly) = blz, z)u(z)

yeX
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for all z € W and z ~ x, where deg(z) = >_ . b(x,y) + c(z). Let
r,y € Wandletx =29 ~2xy ~ ... ~x, =ybeapathin W. Iterating
the above gives

wlzn) < (deg +ozm)(a:1)u(x1) . (ﬂ (deg +am)($j+1)> w(z),

b(xo, 1) o T

Using the finiteness and connectedness of W, we can then define
cw(a) for a € R via

n—1

d )
cw (@) = max min H (deg —|—am)(:zzj+1)‘
T,YyeW z=z0~...~Tn=y <o b(xj, Tj41)

Choosing = to be the vertex where u attains its maximum on W and
y to be the vertex where u attains its minimum on W we find

max u < ¢y (o) min w.
W W

The function ¢y is clearly monotonically increasing with respect
to a. If ew () < 0, then there are no non-trivial positive functions
with (£ + «)u > 0 on W by what we have shown. Hence, we can
set Cy = cw V 0. The “in particular” statement is clear since if u is
non-trivial on W, then Cy > 0. U

The local Harnack inequality has some immediate consequences.
The first states that positive non-trivial a-superharmonic functions
are immediately strictly positive whenever the underlying graph is con-
nected.

COROLLARY 4.2. Let (b,c) be a connected graph over (X,m). Let
a € R and let u > 0 be a non-trivial a-superharmonic function. Then,
u > 0.

PROOF. Since v > 0 is non-trivial there exists an € X such
that u(z) > 0. Let y € X. By connectedness, there exists a path
r=x9~ ...~ T, =y. Let W = {wg,...,2z,}. By Theorem 4.1
we obtain w > 0 on W and, in particular, u(y) > 0. Asy € X was
arbitrary, u > 0. U

We recall that an operator is called positivity improving if the op-
erator maps positive non-trivial functions to strictly positive functions.
As a second consequence of the local Harnack inequality we show that
(L + o)~ ! is positivity improving for o > —\¢(L). This extends one of
the implications of connectedness found in Theorem [1.26]

We recall by the variational characterization of the bottom of the
spectrum that

W)= o @ina OV

see Theorem [E.§ In particular, Q > Ao(L), i.e., Q(f) > Ao(L)]|f||? for
all f € D(Q).
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COROLLARY 4.3. Let (b, c) be a connected graph over (X,m). Let
a > —X(L) and let f € (*(X,m) with f > 0 be non-trivial. Then,

(L+a)™'f>0.

PROOF. As a > —)\g(L), it follows that —« is not in the spectrum
of L so that (L + «)~! exists. Furthermore, as Q > \o(L), (L + a)7?

is positivity preserving for a > —\¢(L) by Corollary [1.25] Thus, (L +
a)tf > 0. As L is a restriction of £ by Theorem [1.6] we obtain

(L+a)(L+a) ' f=(L+a)(L+a)'f=Ff=>0.

Therefore, (L + «)~!f is positive a-superharmonic and non-trivial and
thus
(L + )~ f is strictly positive by Corollary [4.2] O

From the local Harnack inequality we now deduce the Harnack prin-
ciple. This principle gives a procedure for creating strictly positive
a-(super)harmonic functions on X from a sequence of non-trivial pos-
itive, and, thus, strictly positive by Corollary , ay,-(super)harmonic
functions on connected increasing sets K,, with X = J, K, and o =
lim,, .o o, This allows us to pass from local properties of solutions to
global properties.

In what follows, we call any sequence of increasing connected sets
K, such that X =, K,, an ezhaustion sequence of X. In particular,
we note that we do not require the K, to be finite sets for the Harnack
principle.

THEOREM 4.4 (Harnack principle). Let (b,c) be a connected graph
over (X,m). Let o € X and let (K,) be an exhaustion sequence of X
with o € K, for alln. Let (a,) be a sequence in R with o = lim,, o vy, .
Let (uy,) be a sequence of positive functions in F satisfying

(L+ ay)u, >0

on K, with u,(0) = 1 for all n € N. Then, there exists a subse-
quence (uy,,) of (uy,) that converges pointwise to a strictly positive c-
superharmonic function u on X.

Furthermore, assume that one of the following properties holds:

e The graph is locally finite.
e The subsequence (uy,, ) is monotonically increasing in k.
o There exists an f € F such that u,, < f on K, for all k.

Then,

lim Lu,, = Lu.
k—o0

In particular, under any of the additional assumption above, if u,, are
oy, -harmonic on K, , then u is a-harmonic on X.
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PRrROOF. Let x € X. We claim that there exists a constant C, > 0
such that u,(z) < C, for all n € N. Let ny € N be the smallest
index such that x € K,,. Then, by the connectedness of K, there
exists a path o = 29 ~ ... ~ 7, = x in K,,, connecting o and z. Let
W = {xg,...,xr}. As (K,) is an increasing sequence of subsets of X,
it follows that W C K, for all n > ny.

Now, as (L+a,)u, > 0on W, u, > 0 and u,(0) = 1, it follows that
u, > 0 on W by the last statement of Theorem [4.1] Thus, applying
the rest of Theorem [£.1], we get

1 mingew un, (y) < up(x)  maxyew un(y)
Cw(on) — maxyew Un(y) = up(0) — mingew un(y)

where

IN

S CW(an);

1 (de +a,m)(x;
OW(an):-ll( ;;g(xzaxz+1)>< )

Since Cy(a,) — Cw(a) as n — oo, it follows that (Cy(cv,)) is a
bounded sequence and letting

C, = sup Cw () Vmax{ui(z), ug(x),. .., upy—1(x)}

we get

1
— < u,(z) < C,

for all n € N as u,(0) = 1 for all n € N. Therefore, by a diagonal
subsequence argument, it follows that there exists a subsequence (u,, )
of (u,) such that u,, — u pointwise as k — oco.

We are left to check that « > 0 and that u is a-superharmonic.
The functions w,, satisty (£ + a,,)u,, > 0 on K, . Let x € X. There
exists an N € N such that € K,,, for all n, > NN so that

D b2, y)un, (y) < (deg +an,m)(@)un, ()

yeX

for all ny > N. Therefore, by Fatou’s lemma, we infer

> bl y)uly) < liminf bz, y)un, ()

< lim (deg +a,, m)(x)uy, (z) = (deg +am)(z)u(z).

k—o0

Thus, v € F and (£ + «a)u > 0. Since u,, > 0 and u,, (0) = 1, we have
u > 0 and u(o) = 1. Hence, u > 0 by Corollary [£.2] This finishes the
proof of the first part of the theorem.

We now prove the convergence statements, that is, Lu,, — Lu
as k — oo under the additional assumptions. If the graph is locally
finite, then all sums involve only finitely many terms. Therefore, we
can interchange the sum with the limit by Fatou’s lemma. If (u,, ) is
monotonically increasing in k (respectively, u,, < f € F for all k),
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then we can apply the monotone convergence theorem of Beppo Levi
(respectively, the dominated convergence theorem of Lebesgue) to get
the convergence Lu,, — Lu as k — oo. This completes the proof. [J

We now present two ways to apply the Harnack principle to con-
struct positive a-superharmonic functions for « > —\o(L). Both con-
structions involve resolvents. In the first construction, we use the re-
solvent of the Laplacian on the entire space and in the second con-
struction, we use the resolvent of the Dirichlet Laplacian associated to
a finite subset of X.

For the first construction we recall that for a > —\o(L) the resol-
vent (L+a«)~! is positivity improving by Corollary . This is relevant
for the definition of the sequence.

COROLLARY 4.5. Let (b, c) be a connected graph over (X,m). Let
a, > —X(L), n € N, be a sequence which converges to a. Let z,, € X
for n € Ny. Then, the sequence

1
(L + an) g, (20)
for n € N has a subsequence which converges pointwise to a strictly
positive a-superharmonic function u.

Furthermore, if the graph is locally finite and (z,,) is chosen to leave
every finite set, then u is a-harmonic.

(L +a,) ',

Up —

PROOF. For a, > —\g(L), the resolvent (L + )" is positivity
improving by Corollary 4.3l Thus, the definition of u, makes sense.
As L is a restriction of £ by Theorem it follows that wu, satisfies
(L + an)u, > 0on X. As u,(zg) = 1 for all n € N, we may ap-
ply the Harnack principle, Theorem [{.4] with K,, = X for all n € N
to obtain the required subsequence converging to a strictly positive
superharmonic function wu.

Furthermore, we note that, (£ + a,)u, = 0 on X \ {z,}. Hence,
if (x,) eventually leaves every finite set, we can take an exhaustion
sequence (K,) such that z, ¢ K, for all n € N. In this case, the
functions u,, are «a,,-harmonic on K, so that u is a-harmonic when the
graph is locally finite by the additional statements in Theorem 4.4l [

For the second construction we will use the resolvent of the Dirichlet
Laplacian on a finite subset of X. We now briefly recall the basic
properties of this operator. We recall that for a finite set K C X,
we let Qg?) be the restriction of @ to C.(K) = (*(K, mg) where mx
denotes the restriction of m to K. It follows that Qg?) is a Dirichlet
form and the associated operator Lg?) is the restriction of £ to C.(K).
See Section |3| for a thorough discussion.
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COROLLARY 4.6. Let (b,c) be a connected graph over an infinite
measure space (X, m). Let (K,) be an exhaustion sequence of X con-
sisting of finite sets and let x, € K, for n € N. Then, ngl) + s
invertible for « > —\o(L) and the sequence

1
(D) — ( o -1
U Kn + a) ]‘xn
(i) + )1y, (x0)

for n € N has a subsequence which converges pointwise to a strictly
positive a-superharmonic function wu.

Furthermore, if the graph is locally finite and (z,,) is chosen to leave
every finite set, then u is a-harmonic.

ProOF. Let K C X be finite. Since Q%D) is a restriction of @, it
follows directly from the variational characterization of the bottom of
the spectrum, Theorem , that A\o(L) < )\O(Lg?)). In fact, we can
even show

M(L) < Ao(Ly)
as follows: Suppose that \o(L) = )\O(Lg?)). As K is finite, there exists

a normalized eigenfunction fr € ¢*(K, mg) corresponding to )\O(L%})).
Now, considering |fx| we get

ML) < QR (k) < QR (fi) = ML),
where we used the variational characterization for the first inequality
and that Qg?) is a Dirichlet form for the second. Thus, |fx| is also an
eigenfunction corresponding to )\O(L%))) by Theorem . Hence, by
replacing fx by |fx|, we can assume that fr > 0. We can then extend
fx > 0 to be zero outside of K and, as Qg) and @) agree on K, we
obtain

M(L) < Q(fic) = Qi (f) = ML) = Mo(L).
Thus, by Theorem again, fx is an eigenfunction for L correspond-
ing to A\o(L). As fx is positive and the graph is connected, it follows
by Corollary that fx is strictly positive on X, which contradicts
that fx is zero outside of K. This implies A\o(L) < )\O(Lg)).

Hence, Lg?) + « is invertible and the inverse is positivity improving

for « > —X\o(L) > —)\O(L%})) by Corollary . In particular, this

shows that the definition of 4! makes sense for all n € N and that
u%D) > 0. Since ng} and L agree when applied to u,(lD), it follows
that (£ + a)uéD) > 0 on K,. Furthermore, u%D)(aro) =1forall n €
N. Therefore, by the Harnack principle, Theorem [£.4] we obtain a
subsequence of (uq(zD)) converging pointwise to a strictly positive a-
superharmonic function wu.

In the locally finite case, when (z,) leaves every finite subset, we

can consider ugD) as defined above and restrict u%D) to an exhaustion
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(D)

sequence K, C K, such that z,, ¢ K/. In this case, u, ' satisfies
(L + oz)u%D) = 0 on K] so that u is a-harmonic by the additional
statements in Theorem 4.4 O

REMARK. We note that if X is finite and o > —\o(L), then the
limiting functions u in the corollaries above are only superharmonic
and not harmonic for @ > —Xo(L) (Exercise [£.5). This shows one
of the contrasts between finite and infinite graphs, as from Corollar-
ies [4.5] and above, for infinite locally finite graphs, there always
exist a-harmonic functions for all a > —\g(L).

REMARK. We will show later in Lemma [6.27] in Section [ that the
sequences (u,,) and (u$”)) constructed above converge for o = 0 without
choosing subsequences.

2. The ground state transform

In this section we prove variants of a ground state transform. A
generalized ground state is a strictly positive generalized eigenfunction
for the bottom of the spectrum. Such a generalized eigenfunction yields
a transform of the operator. However, this transform not only works
for a generalized ground state but also for more general functions. This
is how we present it in this section.

Excavation Exercise introduces the form associated to multipli-
cation by a function and recalls the fact that this form is closed if the
function is bounded below.

The starting point for the material in this section is the following
observation: Whenever £ = Lj ., is the formal Laplacian and Uy is
the formal operator of multiplication by a function f € C'(X), then for
any u > 0 with u € F, the operator U, LU, — U,, with w = Lu/u
is also a formal Laplacian arising from a graph which does not have a
killing term. A precise formulation of this in the context of forms is
given by the equality

Qe (up) — (wup, up) = Qp, o(¢)

for all ¢ € C.(X) with a suitable modification b, of b.

This formula is most often applied with u being a generalized ground
state, i.e., u € F with u > 0 and Lu = Agu for the bottom of the spec-
trum Ao = Ao(L). Accordingly, this formula is often referred to as
a ground state transform. As O, is an energy form arising from a
graph, Qp, o(¢) > 0 for all ¢ € C.(X). Thus, as a corollary of the
ground state transform, we obtain the lower bound

Qb.em(p) = (W, @)
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for any v > 0 and any ¢ € C.(X) where w = Lu/u. In particular, if
u > 0 is a-harmonic, i.e., w = Lu/u = —a, we find

Qb,c,m Z —«

and this gives that the spectrum of the Laplacian associated to Qp cm 1s
bounded below by —a. A closer inspection of the underlying consider-
ations gives that this inequality persists for a-superharmonic functions
and we can also bound the bottom of the spectrum in terms of such
functions. A converse to this was discussed in the last section and the
combination of these two results then gives a version of the Agmon-—
Allegretto-Piepenbrink theorem in the next section.

As usual, we will denote Ly, by £, Qp. by Q and Q.. by Q.
However, we will write the subscripts when they are not the standard
ones or when we want to emphasize the dependence on the graph, as
will often happen throughout this section.

After this preliminary discussion, we now work towards making the
concepts introduced above precise. In order to state our results we will
need two ingredients. One ingredient is the operator of multiplication
by a function. The other is the modification of the original graph.

For a function u € C(X), we let U, denote the formal operator of
multiplication by u. That is, we define U,,: C(X) — C(X) by

U, f =uf.

The restriction of U, to £2(X,u*m) will be denoted by U, and can be
seen to map into 2(X,m), i.e.,

Uu: (X, u*m) — 2(X,m)

via U, f = uf. By direct calculation, if u(x) # 0 for all z € X, then U,
is unitary and

U, ' =Uy =U,..
This gives the first ingredient. For the second ingredient, let u € C'(X)
and define

bu(z,y) = bz, y)u(z)u(y)
for all z,y € X. Clearly, b, is symmetric and has vanishing diagonal.
Moreover, b, > 0 if u > 0 or v < 0. Furthermore, if u € F, then it
follows directly that >, bu(z,y) < oo for all z € X. Hence, b, is a
graph over X whenever u € F and u > 0 or v < 0. Finally, u?>m is a
measure of full support whenever v > 0 or u < 0.

Summarizing the above considerations, b, is a graph over (X, u?m)
and /%(X, u?m) is unitarily equivalent to £*(X,m) whenever u € F and
u > 0 or u < 0. This is the required modification of the underlying
graph.

We now show that the operator U, cu, — U, acts like the formal
Laplacian of the graph b, on C.(X) when w = Lu/u for u € F with
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u > 0. This can be seen as a first version of the ground state transform
in terms of formal Laplacians.

LEMMA 4.7. Let (b,c) be a graph over (X,m), L = Ly cm and let
u € F. Then, for all f € C(X) such that U,f € F,

EMJ@%=ﬂ@£M@+;%5§:M%waU@%—ﬂw)

for all x € X. If, additionally, uw > 0 or u < 0 and w = Lu/u, i.e.,
Lu = wu, then L, = Ly, o.u2m satisfies

L,=U"LU, —U,
on C.(X).

PROOF. The first statement follows by a direct computation using

(uf) (@) = (uf)(y) = (w(z) —uly)) f(x) +uly)(f(x) = f(y)), which gives
Ebaf(x)=:;j%5 <§E:b@zy)GUf)@ﬁ-—(Ufﬂy))+%i$XUf)@ﬁ>

= f@)Lule) + s 3 b ) (/) — )

If u>0o0rwu< 0and w = Lu/u, then dividing this formula by
u(z), applying Lu = wu and rearranging the terms gives the second
statement. 0

The preceding lemma deals with formal operators. Using Green’s
formula we can then easily derive a variant in terms of forms. This is
the content of the next lemma.

LEMMA 4.8. Let (b,c) be a graph over (X,m). Let u € F with
u>0oru<0andlet w e C(X) satisfy Lu > wu. Then, for all

v € C.(X),
Qbu,O(SO) S Q(Z/{UQO) - <wuu907uu()0>
If Lu = wu, then we get equality in the above equation.

PROOF. If ¢ € C.(X), then U,p = up € C.(X) C FNLEA(X,m).
By Green’s formula, Proposition (1.5, we obtain

Now, by the first statement in Lemma [4.7] and the assumption that
Lu > wu, we obtain

Unple) (L Ug) () > <ww2u2><m>+% S b, )u(e)u(y)(o(x)—o(y).
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Putting these together, we get
QUup) — (wlhp,Unp) > > @) > bla, y)u(z)uly)(p(z) — (y))

zeX yeX
The statement for equality in the case Lu = wu follows analogously.
This proves the lemma. Il

For later use we state the following convenient reformulation of the
second statement of the lemma.

COROLLARY 4.9. Let (b,c) be a graph over (X, m). Let u € F with
u>0oru<0 and set w= Lu/u. Then, for all p € C.(X),

%0 (£) = Qle) = (we, ).

We now turn to consequences for Laplacians and forms on Hilbert
spaces. We first discuss a direct consequence of the previous lemma.
We note that when u is a-harmonic, i.e., u € F and (£L+ «a)u = 0, then
—a = Lu/u whenever u > 0. We denote by

Lu = Lbu,O,u2m
the operator associated to the form

Qu = Qbu,&uzm
acting on £2(X,u?m).
COROLLARY 4.10 (Ground state transform — preliminary version).
Let (b,c) be a graph over (X, m) and let o € R. Let uw € F with u > 0

be a-harmonic. Then, the forms Q, = Qb, 0.u2m and Q+a are unitarily
equivalent via U, and so are the associated operators. Specifically,

D(Qu) =U,'D(Q),  Qu(f) = QU.f) + al|U.fI?
for all f € D(Q,) and for the operator L, = Ly, o .u2m
D(L,)=U,'D(L), L,=U;'LU,+ .

PROOF. As unitary equivalence is passed on from forms to opera-
tors, it suffices to show the statement for the forms. As U, is a unitary
operator mapping C.(X) C (X, u?m) onto C.(X) C ¢*(X,m) and
C.(X) is dense in the form domains, it suffices to show the statement
about forms for ¢ € C.(X). This is a direct consequence of the equality
statement in Lemma [£.8] that is,

Qu((p) = Q(UMO) + O‘HUMOHz
for all p € C.(X). O
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REMARK. We note that in the corollary above, we trade a graph
with an arbitrary killing term ¢ for a graph without a killing term.
This is achieved by changing the edge weight and the measure using
the a-harmonic function. This is particularly convenient for a = 0.

In fact, Lemma [4.8| allows us to derive a substantial generalization
of Corollary [4.10] This generalization gives a more complete version of
the ground state transform.

In order to state this generalization, we need one more piece of
notation. For w € C(X) bounded below, we denote by ¢, the form
associated to the operator of multiplication by w. That is,

D(qw) = {f € *(X,m) | Y w(x)f*(x)m(z) < oo}
with
0u(f) = (f.wf)

for all f € D(qy). It is of the essence for the arguments below that
quw is closed and, therefore, lower semi-continuous, see Theorem for
the equivalence between closed and semi-continuous forms.

THEOREM 4.11 (Generalized ground state transform). Let (b, c) be
a graph over (X,m). Let uw € F with uw > 0 be such that Lu/u is
bounded below and let Q, = Qp, 0u2m- Then, for any w € C(X) which
is bounded below with w < Lu/u, we obtain

U, ' D(Q) € D(Qu)
and for all f € D(Q),

Qu(U; ) < Q) — qu(f)-

Furthermore, if w is bounded and w = Lu/u, then we get equality of
the form domains and equality in the estimate above.

REMARK. The assumption that Lu/u is bounded below is non-
trivial. The most relevant situation in which it is true is when u > 0
is a-superharmonic for some « € R, in which case Lu/u > —c«. This
includes the case a =0, i.e., Lu > 0.

PROOF. Let v € F, u > 0 and w € C(X) bounded below be such
that w < Lu/u.

From Lemma 4.8 we immediately obtain the following:

Fact 1: For all p € C.(X),

Qu(Uy'9) < Q) = qu(w)-
We will extend this to all functions in D(Q) using the regularity of @,
i.e., the density of C.(X) in D(Q). Some care has to be exercised as
both the behavior of ), and of ¢, has to be controlled.
Let C' be a lower bound for w. The control on ¢, which we need is
stated in the next fact.
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Fact 2: For all ¢ € C.(X),

Cllell? < qule) < Qp).

Here, the first estimate follows as w is bounded below by C' and the
second estimate is a direct consequence of the inequality above and
Qu > 0.

Consider now an arbitrary f € D(Q). By regularity, there exists
a sequence (¢,) in C.(X) with [|f — .|| = 0 and Q(f — ¢n) — 0 as
n — 00. As g, is a closed form, we obtain from Fact 2 that ¢, (f) < oo
since ¢, is lower semi-continuous. Therefore, f € D(q,,). Furthermore,
using the fact that ¢, is closed again, as well as that ||f — ¢,| — 0
and q,(¢n — pr) — 0 as n, k — oo, it follows that ¢, (f — ¢,) — 0 as
n — 0o.

As @, is a closed form and ¢, — f in 2(X,m), so that U, '¢, —
Ul fin 2(X,u*m) as n — oo, we then find using Fact 1

Qu(U, ' f) < liminf Qu(U, ")

n—

= Q(f) = qu(f).

As Q(f) — qu(f) < oo this implies Q,(U,'f) < oo and since Q(f —
©n) — 0and q,(f —¢n) — 0 as n — oo, it follows that U, tp, — U f
in || - ||g,. Therefore, U;'f € D(Q,) as well as

Qu(U ' f) < Q(f) — au(f).

This proves the first statement.

The last statement can be proven along very similar lines using the
additional assumptions as follows: By w = Lu/u and Lemma we
obtain equality in the statement above, i.e.,

Qu(U, ') = Qe) — quly)

for all ¢ € C.(X). As w is both bounded below and bounded above
there exists a C' > 0 with

—CIfI* < qu(f) < CIIfIP

for all f € £2(X,m). Given this, the equality above easily gives that a
sequence (p,,) in C.(X) converges to f with respect to || - ||g if and only
if (Uy,-15) converges to U,-1 f with respect to || - ||g,. This implies the
desired statement. O

REMARK (Note on the name of the ground state transform). As
mentioned in the introduction, a generalized ground state is a general-
ized strictly positive eigenfunction for the bottom of the spectrum, i.e.,
a function v € F with v > 0 and Lu = A\gu where Ay = \o(L) is the
bottom of the spectrum of L. Note that, in contrast to other contexts,
we do not assume any minimality properties of u.
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In general, such a generalized ground state may or may not exist.
For locally finite connected graphs, it exists by Corollaries and [4.6]
In this case, we can use Corollary [4.10]as u is —\o-harmonic and strictly
positive. More generally, if we assume that the graph is connected but
not necessarily locally finite, then there still exists a strictly positive
superharmonic function for the bottom of the spectrum by Corollar-
ies and We think of such functions as generalized ground states
and use them in Theorem [4.11} However, let us reiterate that both re-
sults hold for much more general functions.

Theorem [.11] has two immediate corollaries. The first one will be
used in our study of recurrence later.

COROLLARY 4.12. Let (b, ¢) be a graph over (X, m). Letu € F with
u > 0 be such that Lu/u is bounded below. Then, for any w € C(X)
which is bounded below and satisfies w < Lu/u, we get

Q(f) = qu(f)

for all f € D(Q).
ProoOF. This is an immediate consequence of Theorem H.11| as
Qu = Qbu,07u2m Z 0. [

The second corollary will be used in the proof of the Agmon-—
Allegretto-Piepenbrink theorem found in the next section.

COROLLARY 4.13. Let (b,c) be a graph over (X,m). Letu € F
with u > 0 be a-superharmonic. Then,

Q(f) > —allfI?
for all f € D(Q).
PRroOF. This is a direct consequence of the previous corollary with
w=—a< Lu/u. O

3. The bottom of the spectrum

In this section we provide a characterization of the bottom of the
spectrum in terms of strictly positive a-superharmonic functions. More
specifically, we show that energies & > —\o(L) are characterized by the
existence of strictly positive a-superharmonic functions.

Excavation Exercise recalls a basic fact about the spectrum of
an orthogonal sum of operators which will be used in the proof below.

In this section we prove the Agmon—Allegretto—Piepenbrink theo-
rem for the bottom of the spectrum. This theorem characterizes A\o(L)
in terms of a-superharmonic functions, i.e., v € F with v > 0 and
(L+a)u > 0 for o € R, where £ = Ly ,,. The proof naturally reduces
to:
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e Proving the existence of strictly positive a-superharmonic functions
for a > —Xo(L).

e Showing that —\¢(L) is bounded above by « whenever there exists
a strictly a-superharmonic function.

For connected graphs, this characterization is a direct consequence
of the results of the preceding two sections with Section [1| giving the
first point and Section [2| giving the second. In fact, the results in
Section [2| do not even require connectedness of the graph, in contrast
to the existence statements in Section [II

Now, for the applications in the next section, we need a version for
graphs without a connectedness assumption. For this reason, we state
and prove a statement without such an assumption. The only remain-
ing task in the proof is to reduce the general case to the connected case
by restricting attention to connected components.

THEOREM 4.14 (Agmon-Allegretto-Piepenbrink — spectrum). Let
(b,c) be a graph over (X,m) and let o« € R. Then, the following state-
ments are equivalent:

(i) o > —=Xo(L).

(ii) There exists a strictly positive a-superharmonic function.
Furthermore, if the graph s infinite and locally finite, then the above
are also equivalent to the following statement:

(iii) There ezists a strictly positive a-harmonic function.

PROOF. As the operator L decomposes into an orthogonal sum of
restrictions of L to the connected components of the graph, we can
assume that the graph is connected.

(i) = (ii)/(iii): We apply Corollary 4.5 (or Corollary to con-
clude the existence of a strictly positive a-(super)harmonic function.
This finishes the proof of this direction.

(ii)/(iii) = (i): Assume that there exists a strictly positive a-
superharmonic function u. Then, the desired statement follows from
Corollary , ie., Q(f) > —al|f||* and the variational characteriza-
tion of the bottom of the spectrum, i.e., \g(L) = inf Q(f), where the
infimum is taken over all normalized f € D(Q), see Theorem |[E.8 [

REMARK. If the graph is connected, then we can replace the as-
sumption of strict positivity of the a-(super)harmonic function in (ii)
and (iii) by non-triviality together with positivity. This follows by
Corollary [4.2]

REMARK. We can deduce from the theorem above that if the graph
is connected, then the only possible eigenvalue of L with positive eigen-

function is Ag(L) (Exercise [4.6)).

REMARK. Clearly, (iii) fails in the case of finite graphs for a >
—MXo(L) as a-harmonic functions are eigenfunctions for finite graphs.
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We next give an example that shows that also in the non-locally finite
case there do not always exist non-trivial a-harmonic functions for all
a > —=Ao(L).

EXAMPLE 4.15 (No a-harmonic function for o > 0). Let X = Ny,
m = 1 and let b be an infinite star graph with center 0, i.e., b(0,k) =
b(k,0) > 0 for k € N satisfying > ;- b(0,k) < oo and b(k,n) = 0

otherwise and ¢ = 0. Let u > 0 be a-harmonic for o > 0. Then,
(£ + a)u(0) = b(0, k)(u(0) — u(k)) + au(0) = 0
k=1

and
(L4 a)u(k) = b(k,0)(u(k) — u(0)) + au(k) =0
for k£ € N. Hence, as b(0, k)(u(0) — u(k)) = au(k) from the second set

of equations above, we get in the first equation that

« (u(O) + ib(o, k)u(k)) =0,

which implies that v =0 as « > 0 and a > 0.

4. The bottom of the essential spectrum

In this final section we turn to characterizations of the bottom of
the essential spectrum. We will present two such characterizations.
One is given in terms of the spectra of restrictions of the operator
to complements of finite sets. Combined with the Agmon—Allegretto—
Piepenbrink theorem for the bottom of the spectrum, this then gives the
second characterization via functions which are both a-superharmonic
and strictly positive outside of a finite set.

We recall that the essential spectrum is the complement in the spec-
trum of the isolated eigenvalues of finite multiplicity. We will denote
the essential spectrum by e (L) and denote the bottom of the essential
spectrum of L by

AP (L) = inf 0egs(L).

A basic fact about the essential spectrum is that it is not altered by
compact perturbations of the operator. In fact, this can even be shown
to characterize the essential spectrum, see Theorem and the sub-
sequent remark in Appendix 2] Hence, compactness in one form or an-
other is always crucial when dealing with the essential spectrum. In our
considerations below this is reflected in the fact that changes on com-
pact, i.e., finite sets lead to compact perturbations, see Lemmald.18 As
a consequence, such changes do not alter the essential spectrum, which
is proven in Corollary [£.19] Given this, we can easily obtain a Pers-
son result which characterizes the bottom of the essential spectrum in
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terms of the bottom of the spectrum of the perturbed operators. Com-
bining this theorem with the Agmon—Allegretto—Piepenbrink result of
the previous section, we then obtain a characterization of the bottom of
the essential spectrum via positive a-superharmonic functions outside
of a finite set.

Indeed, we need to specify what we mean by a-superharmonic out-
side of a finite set. Given a finite set K C X, the most intuitive way
to say u > 0 is a-superharmonic on X \ K is to assume u is in F and
satisfies

(L+a)u>0 on X\ K.

There are, however, two modifications we have to make in order to
define a-superharmonicity outside of a set K. First we have to assume
that v = 0 on K. Secondly, we do not need that u is in F, which
imposes the assumption »_ y b(z,y)|u(y)| < oo for all z € X. We
only need to assume that 3 v\, b(z,y)|u(y)| < oo forallz € X \ K
since we evaluate Lu only outside of K and v =0 on K.

This space of functions already has appeared in Section [2| as Fx\x
on which the operator Lx\x acts similarly to £. Now, we say that
a function w is «a-superharmonic outside of K if u = 0 on K, the
restriction u|x\x is in Fx\x and

(,Cx\K + a)u|X\K 2 0.

Similarly, we say that u is a-harmonic outside of K if u satisfies the
above and (Lx\x + a@)u|x\x = 0. In summary we say that there exists
an a-(super)harmonic function outside of a finite set whenever there
is a finite K C X and a function u such that u is a-(super)harmonic
outside of K.

The basic argument connecting compactness in space with com-
pactness of the operators can be seen as establishing the compatibility
of geometry with operator theory. This requires an additional assump-
tion, namely that

LC(X) C (X, m).
This assumption is characterized in Theorem [1.29| and is for example
satisfied if the graph is locally finite or if inf,ex m(x) > 0.

Following this preliminary discussion and these definitions, we now
state the theorem, which we will ultimately prove in this section, giving
a characterization of the bottom of the essential spectrum in terms of
functions which are superharmonic outside of a finite set.

THEOREM 4.16 (Agmon—Allegretto—Piepenbrink — essential spec-
trum). Let (b, c) be a connected graph over (X, m) such that LC.(X) C
2(X,m).

(a) Ifao > —A{®(L), then there exists a strictly positive a-superharmonic
function outside of a finite set. If the graph is locally finite, then
this function can be chosen to be a-harmonic.
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(b) If there exists a strictly positive a-superharmonic function outside
of a finite set, then a > —A{*(L).

In particular,

ASP(L) = sup {—oz eR ‘

there exists a strictly positive function
a-superharmonic outside of a finite set [~

REMARK (Idea of the proof). Before we turn to the actual proof
of the theorem we present the core of the argument in a nutshell: As
is clear from the statement, the theorem deals with restrictions of op-
erators to complements of finite sets. Thus, the proof of the theorem
will rely on a closer look at such restrictions. Such restrictions can
be seen as the difference between the operator acting on the entire
space X and the operator on a finite subset. The assumption that
LC.(X) C ?(X,m) allows us to show the smallness, in the sense of
compactness of the operator, of this difference from the finiteness of the
set. Compactness, in turn, is the crucial property underlying the stabil-
ity of the essential spectrum. To make all of this precise we need some
further notation and concepts to deal with restrictions to complements
of sets.

We will need the restriction of the form () to subsets U of X with
X \ U being finite. An extensive discussion of restrictions of forms to
arbitrary subsets of X was given in Section [2] Here, we briefly discuss
the essential points and the simplifications arising from the finiteness
of X \ U. In particular, we also include a proof of regularity in our
situation as this is substantially easier than the proof given in Section [2]
for the case of general subsets.

For U C X, we recall the definition of )y with domain

D(Qu) = {g € (U,my) | ivg € D(Q)}
and acting as

Qu(g) = Q(ivg).
In the definition
iv: C(U) — C(X)
is extension by zero. The associated self-adjoint operator to Qu is
denoted by L. Since Q) = Q,()i)?m is a regular Dirichlet form, we have

by Corollary
Qu=0Qy

where QP) is the closure of the restriction of Q to C.(U) x C,(U) and,
therefore,

Ly =LY,

where ngD) is the associated operator to QéD).
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For f € C(X) the restriction of f to U is denoted by f|y. We

will also need the extension @U of Qu to £2(X,m). This extension is
defined on the set

D(Qu)={f € D) | flv € D(Qu)}
via
Qu(f) = Qu(flv).

By construction, @U may be viewed as an orthogonal sum of () on
*(U;my) and 0 on ¢*(X \ U;mx\py) and this implies that the self-
adjoint operator Ly associated to (Qy is the orthogonal sum of Ly and
the zero operator on (*(X \ U,mx\v).

If X\ U is finite, then we can say much more. We collect some facts
next. Although parts of this result are contained already in Section
we give a short proof here as well.

LEMMA 4.17. Let (b, c) be a graph over (X, m). Let U C X be such
that X \ U is finite. Then, Qu is a reqular Dirichlet form with

D(Qu) ={flv | f € D(Q)}

as well as

D(Qu)=D(Q) and Qu(f)=Q(luf).

PROOF. Note that whenever g belongs to D(Qu) we have g =
(ivg)|v with iyg € D(Q) and, conversely, whenever f belongs to D(Q)
we find

iv(flv) =1lvf=f—-1xwf e D)
as Ix\uf € Ce(X) € D(Q). This implies the first statement and, in
particular, that the map 7y : D(Q) — D(Qu) given by

7TUf:f|U

is well-defined. Since both iy and 7y commute with normal contrac-
tions, Qy is a Dirichlet form.

If we equip D(Q) with ||-||g and D(Qr) with ||-||¢,,, we see that 7y is
closed. Hence, the closed graph theorem implies that 7y is continuous.
This allows us to show the regularity of @)y in the following simple
manner: Let ¢ € D(Qy) be arbitrary and set f =iy f for f € D(Qyu).
Then, by the regularity of ) there exists a sequence (¢,) in C.(X)
with ¢, — f with respect to || - ||g. As 7y is continuous, this implies
convergence of Ty, — mpf in || - ||g, for n — oo and this gives the
desired regularity statement. Thus, Qy is a regular Dirichlet form.
Since f|y belongs to D(Q) for any f € D(Q) and i,(f|y) = 1y f we

o~

then conclude the equality of the domains of @y and Q. O

Having this description of @U at our disposal, we can now provide
the necessary perturbation theory.
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LEMMA 4.18. Let (b, c) be a graph over (X,m). Let U C X be such
that X \ U is finite. If LC.(X) C (*(X,m), then there exists a unique

self-adjoint compact operator A with

(Q = Qu)(f.9) = (/. Ag)
for all f,g € D(Q) = D(@U). In particular, L = Ly + A.

PROOF. By the preceding lemma, D(@U) = D(Q). Hence, Q — @U
is also defined on D(Q). By C.(X) C D(Q) we then directly infer the
uniqueness of A.

We now turn to showing existence. Set K = X \ U. Then, K
is a finite set. Hence, 1xh belongs to D(Q) for any h € (*(X,m) as
1xh € C.(X). Moreover, by the previous lemma again, we have that

@U(fa g) = Q(1yf,1yg) for all f,g € D(Q). Thus, we obtain for all
f,9 € D(Q),

Q(f.9) — Qu(f.9) = QUuf + 1k f, lyg + 1xg) — Q(lu f, 1)
= Q(luf,1xg) + Q(lk f, 1lvg) + Q(1k f, 1k9g).
Now, as K is finite, the operator associated to the form (f,g) —

Q(1k f,1xg) can easily be seen to be finite-dimensional and, hence,
compact. So, it remains to consider the forms (f,g) — Q(1yf, 1kg)

and (f7 g) = Q(lea 1Ug)
We first deal with the form (f,g) — Q(1yf,1xg). Using the as-
sumption on £ we can define for z € X the function
v, = L1, € (*(X,m).

By Green’s formula, Proposition we then find that Q(1yf, 1,) =
(1yf, L£1,) = (1y f, v). Therefore,

QUuf,1kg) = 9(@)Q(luf, 1)

zeK

_Zg ]-Uf Ua:

zeK

fazg 1Uvm

reK
= <f7 AU,KQ)-

Here, Ay is the finite-dimensional and, hence, compact operator de-
fined by

Aykg = Z 9(z)1yv,.
zeK
As for the form (f, g) — Q(1xf, 1yg), an analogous computation can
be carried out yielding

Q(kf, 1ug) = (f, AK,Ug>

with the compact operator Axy = Ay k-
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The last statement follows from the preceding considerations by
standard theory. For the convenience of the reader we include a proof:
Let f € D(L). By the definition of L, there exists an h = Lf €
2(X,m) with Q(f,g) = (h,g) for all ¢ € D(Q). By what we have

shown already this implies

Qu(f,9) = (h,g) + (f. Ag) = ((h + Af), g)

for all ¢ € D(Q) = D(Qu). By the definition of Ly we infer that
f € D(Ly) with Ly f = Lf + Af. Analogously, we can show that any
f € D(Ly) belongs to D(L) and Lf = Ly + Af. O

By the last lemma and the fact that compact perturbations do
not effect the essential spectrum we obtain the following immediate
corollary.

COROLLARY 4.19 (Stability of essential spectrum under removing
finite sets). Let (b, c) be a graph over (X,m). Let U C X be such that
X\ U is finite. If LC.(X) C (*(X,m), then

Uess(L> = Uess(LU) .

PROOF. By the previous lemma, the Laplacians associated to @
and Q) differ only by A, which is a compact operator, i.e., we have
L = Ly + A. This implies

Uess<L) = Uess(LU)
as a compact operator does not change the essential spectrum, see

Theorem . By definition, we furthermore have that ZU = Ly®0x\v

and, hence, aeSS(EU) = Oess (L) U 0ess(0x\07). As X \ U is finite, the
essential spectrum of Ox\y is empty. Putting all of this together, we
obtain the desired statement. O

As alluded to above, we need one more ingredient in order to prove
our main result. This ingredient is a Persson theorem.

THEOREM 4.20 (Persson theorem). Let (b, ¢) be a graph over (X, m).
If LC.(X) C %(X,m), then

AS(L) = sup A(LE).

KCX,K finite

PROOF. Set

o = sup )\O(LX\K)
KCX,Kfinite

and recall that Lx\x = Lg?\)K. We show two inequalities:

a < A&®(L): Invoking the preceding corollary, with U = X \ K for
K finite, we find that

Mo(Lx\k) <A (Lxvk) = AGFE(L).
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Thus, the desired inequality follows.

A$¥(L) < a: We first note the following monotonicity property of
the infimum of the spectrum. For K; C K5 we have

Quxle) o o Oxly)
peCe(X\K1)  lpl]? T peceX\a) o]
as Qx\k, and Qx\k, agree on C,(X \ K3). From this monotonicity we
obtain that we can, without loss of generality, increase the finite sets
K in question in our subsequent considerations.

Choose a sequence of finite sets (K,) with

)\O(LX\Kl) = = )‘O(LX\Kz)

a= lim A(Lx\x,).

By increasing the sets if necessary, we can then assume without loss
of generality that the sets K, are an exhaustion, i.e., K,, C K, and
U,, K» = X. Choose ¢, in C.(X \ K,,) with ||¢,| =1 and

1
Qx\k,(Pn) < Xo(Lx\k,) + -

for all n € N.

As the sets K, are increasing and their union covers the space we
can assume, without loss of generality, that the support of ¢, is con-
tained in K, ; for all n as otherwise we can pass to a subsequence.
Hence, the supports of the ¢, are pairwise disjoint, so that the ¢,
themselves are pairwise orthogonal. Note that, by construction, the ¢,
are normalized. Altogether we then find that the ¢, form an orthonor-
mal sequence and this gives that they converge weakly to 0, i.e.,

(fyon) = 0asn— oo

for all f € (?(X,m). Given this, the desired inequality follows directly
from Theorem [E.12 O

OF THEOREM [4.16] (a) Let @ > —A&*(L). By the Persson theo-
rem, Theorem [£.20] there exists a finite set K C X such that
o > =Xo(Liy).
By the Agmon—Allegretto—Piepenbrink theorem for the bottom of the
spectrum, Theorem [£.14] there exists a u > 0 which is a-superharmonic
on X \ K. Furthermore, by the additional statements in Theorem m,
if the graph is locally finite, then v > 0 is even a-harmonic.

(b) Let K be a finite set and let u be a function on X which vanishes
on K and is strictly positive and a-superharmonic function on X \ K.

Then, u is a-superharmonic for Lg?\)K. Thus, the Agmon—Allegretto—
Piepenbrink theorem for the bottom of the spectrum, Theorem [{.14]
gives that

o > =Xo(Liy).

Moreover, from the Persson theorem, Theorem 4.20 we find
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No(LiUe) < AS™(L)

so the desired statement follows. O
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Exercises

Excavation exercises.

EXERCISE 4.1 (Diagonal subsequence). Let (f,,) be a sequence with
fn € C(X) such that for every x € X there exists a constant C, with
|fu(x)|] < C, for all n € N. Show that there exists a subsequence of
(fn) which converges pointwise at all x € X.

EXERCISE 4.2 (Multiplication by a lower bounded function gives
a closed form). Let (X,m) be a measure space. Let w € C(X) be
bounded below. Let @, be the form associated to multiplication by w
on (X, m), i.e.,

D(Qu) = {f € A(X,m) | Y w(x)f*(z)m(z) < oo}
zeX
with
Qu(f) = (f,wf)
for f € D(Q,). Show that @, is a closed form.

EXERCISE 4.3 (Spectrum and orthogonal sums). Let H be a Hilbert
space and let A be an operator on H with domain D(A). Suppose that
A can be written as an orthogonal sum of operators, i.e., A = @, A,.
Show that

Example exercises.

EXERCISE 4.4 (Ao for anti-trees). Let (b,0) be a graph with stan-
dard weights over (X, 1). That is, b(z,y) € {0,1} with ¢ =0 and m =
1. Let X = J,2, Sn, where S, are disjoint sets with #S,, = (n + 1)
Suppose that b(z,y) =1 for all z € S,, and y € 5,41 for n € Ny. Show
that Ao(L) > 2.

(Hint: Apply the Agmon-Allegretto—Piepenbrink theorem for the
bottom of the spectrum to the function u which takes the value (n+1)?
on S,.)

Extension exercises.

EXERCISE 4.5 (a-harmonic functions for finite graphs). Let (b, c¢)
be a connected graph over a finite measure space (X, m). Let L denote
the Laplacian associated to (b,c) over (X, m). Show that for every
a > —)\g(L) any a-superharmonic function u is not harmonic.
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EXERCISE 4.6 (Positive eigenfunctions). Let (b, c) be a connected
graph over a measure space (X, m). Let L denote the Laplacian as-
sociated to (b,c) over (X, m). If there is an eigenvalue A of L with a
positive eigenfunction, then A = Ag(L). Show that this statement is
false if the graph is not connected.
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Notes

There is a long history for the corresponding results on (subsets
of) Euclidean space, manifolds and strongly local Dirichlet forms. As
for graphs, various parts of the results in this chapter are scattered
around the literature. Our main inspiration is [HK11]. We give a
more specific discussion of each section below.

The Harnack inequality goes back to work of Harnack [Har87]. In
the context of graphs, it appears already in the work of Dodziuk in
[Dod84]. A Harnack principle can be found (in a special case) in the
book of Woess [Woe00]. Our presentation in Section (1| mainly follows
[HK11]. In the discrete setting such a Harnack inequality is surpris-
ingly simple to obtain, while it requires a much more thorough analysis
in the setting of strongly local Dirichlet forms, see e.g. [BM95].

The ground state transform is well known for Schrodinger operators
and the Laplacian on manifolds. A recent treatment in the non-linear
case along with various classical references is contained in [FS08]. In
the discrete setting it appeared for the first time in [FSWOS8] in the
context of Jacobi matrices. For general regular Dirichlet forms, the
ground state transform is discussed in [FLW14]. In probability the-
ory, the corresponding method is often discussed under the name of
h-transform or Doob-transform. For functions with finite support on
graphs, a treatment is given in [HK11]. Our considerations in Sec-
tion [2l extend this discussion.

A characterization of the infimum of the spectrum via positive solu-
tions for Schrodinger operators on Euclidean domains appears in work
of Agmon in [Agm83]. For the Laplacian on manifolds, it is dis-
cussed in [CY75, [FCS80, [Sul87|. A generalization to strongly local
Dirichlet forms can be found in [LSV09]. The result for connected
graphs with standard weights and counting measure can be found in
[Woj08|, [Wo0j09] and for general weights and measure in [HK11]. In
the generality presented in Section [3] the results seem to be new. In
the context of random walks or, more generally, positive matrices, a
corresponding result is known as the Perron-Frobenius Theorem, see
[Pru64l, VJ67, VJ68, Woe00].

The investigation of the infimum of the essential spectrum via
positive solutions outside of finite sets for Schrodinger operators on
Euclidean domains goes back to the work of Allegretto [AIl74] and
Piepenbrink [Pie74]. For Laplacians on locally finite graphs it can be
found in [BG15] and for Schrodinger operators on graphs in [KPP20].
Our treatment in Section M is similar to these last two works. In the
continuum setting the Persson theorem goes back to [Per60]. For local
Dirichlet forms, see [Gri98], and for general regular Dirichlet forms, see
[LS19]. On a different note, the existence of a positive supersolution at
the bottom of the essential spectrum can be characterized by finiteness



Notes 241

of the number of eigenvalues below the essential spectrum [Sim11], see
also [Dev12| and [FCS80, [FFC85| for the case of manifolds.

A word about the name Agmon—Allegretto—Piepenbrink theorem
may be in order: The original work of Allegretto [AIl74] and Piepen-
brink [Pie74], see also [MP78], deals with Schrédinger operators on
Euclidean space. It provides a characterization of the infimum of the
essential spectrum in terms of superharmonic functions. Thus, it is
basically a precursor of the results in Section [dl However, it seems
that subsequent to their work, the name Allegretto—Piepenbrink theo-
rem was often assigned to results like those in Section [3| dealing with
the infimum of the spectrum. In fact, this is how the names are given
in the influential monograph [CFKS87| and subsequent articles, e.g.,
[LSV09]. On the other hand, the work of Agmon [Agm83| treats
the bottom of the spectrum of Schrodinger operators and provides a
characterization in terms of superharmonic functions. Thus, it is a
precursor of the results in Section [3] Clearly, the results in Section
and Section {] and their proofs are related. For this reason, one may
speak about Agmon—Allegretto—Piepenbrink theorems as we do in this
chapter.






CHAPTER 5

Large Time Behavior of the Heat Kernel

In this chapter we study the large time behavior of the semigroup.
We will show two convergence results: In the first result, the limit is
either the 2 ground state, i.e., the strictly positive normalized eigen-
function corresponding to the bottom of the spectrum, or zero, in the
case that there is no ¢? ground state. In the second result, the limit
is the ground state energy, i.e., the bottom of the spectrum. To this
end, we consider kernels of the semigroup. These convergence results
are presented in Section

The statements on convergence hold not only for the Dirichlet and
Neumann Laplacians L") and L®Y) but also for all operators arising
from Dirichlet forms associated to graphs. In order to carry out the
proofs for all such operators, we extend certain previously established
positivity properties of the semigroup associated to L"), We also show
that if the ground state exists for such operators, then it is unique. We
carry this out in Section [1}

Finally, in Section [3[ we turn our focus to the Neumann Laplacian
LN) . We characterize when the bottom of the spectrum of LYY is zero
in terms of finiteness of the measure of the entire space. We combine
this characterization with the large time convergence results to discuss
when the heat kernel associated to L") converges to zero.

1. Positivity improving semigroups and the ground state

Any semigroup coming from an operator associated to a Dirichlet
form is positivity preserving. In this section, we will show that if the
operator comes from a Dirichlet form which is associated to a connected
graph, then the semigroup is positivity improving. We will also show
that for any such operator, if there exists a ground state, then there
exists a unique strictly positive normalized ground state.

We start with some general facts. For any self-adjoint operator
L associated to a positive symmetric closed form @ on ¢*(X,m), the
semigroup e~** for t > 0 is a bounded self-adjoint positive operator,
see Appendices [A] and [B] for more details. By the discreteness of the
space X, the semigroup has a kernel, i.e., there exists a map

p:[0,00) x X x X — R

243
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such that

e f(x) = Zpt($7 y) f(y)m(y)

yeX

for all f € (3(X,m), x € X and t > 0. We call p the heat kernel
associated to L. An easy calculation gives that

1

m@my) e W)

De <$, y) =
for all z,y € X and t > 0.

These are general facts concerning all forms and operators on dis-
crete spaces. We will now focus on the case of graphs. If (b, ¢) is a graph
over (X,m), Q\P) = Ql(f;)m is the minimal form and QW) = Ql()]\c[)qn is
the maximal form, then recall that a form @ with domain D(Q) is
associated to (b, c) if @Q is closed, D(QP)) C D(Q) € D(QW)) and
Q = Q™) on D(Q). We say that the self-adjoint operator L arising
from @ is also associated to (b, c) and note that by Theorem Lis
a restriction of the formal Laplacian L.

We recall that an operator is called positivity preserving if the op-
erator maps positive functions to positive functions and positivity im-
proving if the operator maps nontrivial positive functions to strictly
positive functions. By the general theory of Dirichlet forms, see The-
orem [C.4] in Appendix [C] the semigroup of an operator associated to
a Dirichlet form is positivity preserving. Furthermore, we have pre-
viously shown that the semigroup associated to the Laplacian L(P) is
even positivity improving if the graph is connected. Combining this
with the fact that L(”) generates the minimal semigroup gives the fol-
lowing result.

LEMMA 5.1 (Positivity improving semigroups). Let (b, c¢) be a con-
nected graph over (X, m). Let Q) be a Dirichlet form associated to (b, c)
with operator L. Then, the semigroup et is positivity improving for
all t > 0.

PROOF. As L is an operator associated to a Dirichlet form, it fol-
lows that e~* is positivity preserving for all ¢ > 0, see Theorem |C.4]
Therefore, e7t£g > 0 for all g € /2(X,m) with ¢ > 0. As L is a re-
striction of £ by Theorem it follows that v = e~*Lg is a positive
solution of the heat equation with initial condition g, i.e., —Lv = 0;v
with vy = ¢, see Theorem . Since e~tL!"” ¢ is the minimal positive
solution by Lemma we have

— —tL(D)
etLg>6tL g

for all g € £(X,m) with g > 0 and ¢ > 0. As the graph is connected,

by Theorem we get e_“:(mg > 0if ¢ > 0 and g # 0. This shows
that the semigroup e~ is positivity improving for all ¢ > 0. O
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As we assume that the form () is a Dirichlet form, it follows by
general theory that the semigroup is also contracting, i.e., e ' f < 1
whenever f < 1, see Theorem |C.4, That e ' is positivity improv-
ing and contracting for any L arising from a Dirichlet form which is
associated to a graph and any ¢ > 0 will be used repeatedly below.

We denote the spectrum of an operator L by o(L) and the bottom
of the spectrum by

Ao = info(L).

By the variational characterization of the bottom of the spectrum, The-
orem it follows that

Ao = inf = inf LY.
°= seo@ina O = jepBhpn L0
The following lemma considers the bottom of the spectrum for con-
nected graphs. Specifically, whenever the bottom of the spectrum is
an eigenvalue, then there exists a unique strictly positive normalized
eigenfunction.

LEMMA 5.2 (Uniqueness of eigenfunctions to Ag). Let (b,c) be a
connected graph over (X,m). Let Q) be a Dirichlet form associated
to (b,c) with operator L such that the bottom of the spectrum Ao =
inf o(L) is an eigenvalue. Then, there ezists a unique strictly positive
normalized eigenfunction corresponding to \g.

PROOF. Letu € D(L) be a normalized eigenfunction corresponding
to A\g. We will show that u must be strictly positive or strictly negative.
Without loss of generality, we may assume that u(z) > 0 for some
r € X. Let upy =uV0and u- = —u V0 sothat u = uy —u_ and
|u| = us + u—. From the variational characterization of the bottom of
the spectrum, Theorem and the fact that () is a Dirichlet form we
get

Ao < Qlu]) < Q(u) = Ay
so that Q(|u|) = Q(u). Therefore, |u| is also a normalized eigenfunction

corresponding to Ag by Theorem . As both w and |u| are eigenfunc-
tions corresponding to Ay, we get that

s ||
- 2
is also an eigenfunction corresponding to Ag. We note that u is non-
zero as we assumed that u(z) > 0 for some z € X.

The semigroup e~** on a connected graph is positivity improving
by Lemma [5.1} Therefore, as u; > 0 satisfies Luy = Agu and is non-
zero, by the functional calculus and the positivity improving property
we obtain

—tL __—tXo
0<e uy =e Puy
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for any ¢t > 0. Hence, u, > 0 so that u = u; > 0. Therefore, any
eigenfunction corresponding to Ay which is positive at some vertex is
strictly positive.

From the argument above, it follows that any eigenfunction cor-
responding to A\g has a strict sign, i.e., is strictly positive or strictly
negative. It is clear that any two functions of strict sign are not or-
thogonal in £2(X,m). This gives the uniqueness of u. g

If L is a self-adjoint operator arising from a Dirichlet form asso-
ciated to a connected graph and )\ is an eigenvalue, then we have a
unique strictly positive eigenfunction which minimizes the energy by
the lemma above. In this context, we will refer to this eigenfunction as
the ground state and )y as the ground state energy.

We now discuss the case when the ground state energy is zero.

EXAMPLE 5.3 (When )y = 0 is an eigenvalue). Suppose that (b, c)
is a connected graph over (X, m) and L is an operator coming from a
Dirichlet form @ associated to (b,c). If Ay = 0 is an eigenvalue for L,
then ¢ = 0 and m(X) < oo.

Indeed, this follows as if u > 0 is a ground state for \g = 0 given
by the lemma above, then

1 2 2
0= 2= Q) =1 3 bl y)(u(r) —uln)) + 3 elw)u
z,yeX xeX

This shows that u is constant and ¢ = 0. As v € D(L) C *(X,m), it
follows that m( X ) < oo. In particular, as u is normalized, we obtain
u=1/y/m

We Wlll see that ¢ =0 and m(X) < oo implies that \g = 0 is an
eigenvalue for the Neumann Laplacian, i.e., L = L") in Section .

Furthermore, in the next chapter we will see that Ay = 0 is an
eigenvalue for L(P) if and only if ¢ = 0, m(X) < oo and the underlying
graph is recurrent.

REMARK. Recall that a function u € F is called a-superharmonic
for « € Rif (£ + a)u > 0. It is called a-harmonic if the above is an
equality. In the case of locally finite connected graphs, by the spectral
version of the Agmon—Allegretto—Piepenbrink theorem, Theorem [4.14]
we get that there exists a —\g(LP))-harmonic function. This gives a
generalized ground state at the bottom of the spectrum for L), To
be a ground state, we additionally require that the function is in the
domain of the operator.

Furthermore, Theorem also gives the existence of a strictly
positive a-superharmonic function if and only if o > —X\o(LP)). Com-
bining this with Lemma/[5.2]above we immediately obtain that the only
eigenvalue of L”) which has a positive eigenfunction is Ag(L()). In the
next section, we will extend this to all operators arising from Dirichlet
forms associated to graphs.
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2. Theorems of Chavel-Karp and Li

In this section we prove two convergence results. The first result
implies that the heat kernel decays at a certain rate. In particular, if the
bottom of the spectrum of the operator is positive, then the heat kernel
must decay exponentially. The second result gives the convergence of
the logarithm of the heat kernel to the bottom of the spectrum.

Both convergence results hinge on the use of the spectral theorem,
see Appendix [A] for the necessary background. Furthermore, Exca-

vation Exercise [5.1] recalls a standard fact concerning superadditive
functions which will be used in the proof of Theorem [5.6]

We now present the first of our convergence results. We recall that
the heat kernel of an operator L on ¢*(X,m) is given by

(1,,e71,)

P = S ymy)

The following result connects the heat kernel, the bottom of the spec-
trum and the ground state.

THEOREM 5.4 (Theorem of Chavel-Karp). Let (b, c) be a connected
graph over (X,m). Let Q be a Dirichlet form associated to (b, c) with
operator L. Let \g = inf o(L). Then, there ezists a function u: X —
[0, 00) such that

lim e*'p, (x,y) = u(z)u(y)

t—o0
for all x,y € X. If Ay is not an eigenvalue, then uw = 0. If Ay is
an eigenvalue, then w is the ground state, 1.e., the unique normalized
positive eigenfunction corresponding to .

PRrOOF. The proof is a direct application of the spectral theorem.
Let E = 1(5,1(L) be the spectral projection onto the eigenspace of Aq.
By Proposition E = 0if )y is not an eigenvalue and, if \g is an
eigenvalue, then £ = (u, -)u, where u is the unique positive normalized
eigenfunction corresponding to A\g given by Lemma [5.2]

Let 1 be the signed spectral measure of L associated to 1,1, for
x,y € X. That is, p is the unique signed measure which is characterized

by

ot(L)1) = [ (s)du(s)

Ao

for all bounded measurable functions on [\, 00), see Proposition |A.26]
Assume that \g is an eigenvalue so that 1;,,3(L) = (u,-)u. We then
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get
m(@)m(y)le™ pe(,y) — u(z)u(y)| = [(Ls, (€™ = 1y (L)1)

[ e 1) dns)

Ao

— 0

as t — oo by Lebesgue’s dominated convergence theorem. Note that
i is a finite measure so that the bounding function can be chosen
as 1. If )y is not an eigenvalue, then a similar argument gives the
conclusion. O

We highlight one immediate corollary of the theorem above which
characterizes when there exists a ground state.

COROLLARY 5.5 (Characterization of existence of a ground state).
Let (b,c) be a connected graph over (X, m). Let Q be a Dirichlet form
associated to (b, c) with operator L. Let \g = inf o(L). Then, \g is an
eigenvalue for L if and only if

lim e*'p, (2, ) # 0
for any (all) z,y € X.

We will now state and prove the second of our convergence state-
ments, which gives that the logarithm of the heat kernel converges to
the bottom of the spectrum.

THEOREM 5.6 (Theorem of Li). Let (b, c) be a connected graph over
(X,m). Let Q be a Dirichlet form associated to (b, c) with operator L.
Let A\g = info(L). Then,

1
tliglozlogpt(%y) =—X
forall z,y € X.

PROOF. Let e, = 1,/y/m(x), z € X and observe that {e,}.cx is
an orthonormal basis for £*(X, m). Let

—tL

ar(z,y) = (ez, e Vey)

for x,y € X, t > 0 and let a;(z) = a;(z,x). We will show that the
function t — loga:(x) on [0, 00) is superadditive for all z € X.

Note that, as L is an operator coming from a Dirichlet form, e~
is positivity improving for ¢ > 0 by Lemma [5.1] above and clearly
positivity preserving for t = 0. Therefore, for all z € X, s,t > 0, we

tL
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obtain

as(T) = (e, e_(SH)Lex)

= (e’SLex, e’tLex)

= Z(e_SLem, e,) ey, e e,)
yeX

> (e ey, en)er, e e,)

= as(x)a(x).

Lemma implies a;(x) > 0 for all ¢ > 0, thus, we may take the
logarithm of a;(x) for all z € X and ¢t > 0. The estimate above then
shows that t — log a;(x) is superadditive, i.e., satisfies

log as(z) + log ay(z) < logasy(x)

for s,t > 0. Furthermore, a;(r) < 1 since a;(z) = e L1,(z) and
semigroups associated to operators coming from Dirichlet forms are
contracting by Theorem |C.4, Therefore, loga,;(z) < 0. Putting all of
this together, we get that the following limit exists for every z € X

1 1
lim —1 = -1 .
fim —logay(x) S og az(x)

Now, for t > 1 and =,y € X, by a similar reasoning as above we
obtain

at—l(x)al(xv y) = <ei(t71)L6x; 6x> <627 €7L€y>

< (e Ve, e (e, e hey)

zeX
= (e_(t_l)Lex, e_Ley)
= {e,,e e,)
= as(x,y).
By the same arguments for ¢ > 0,
ar(z, y)a(z,y) < Z<€_L€y, e:)(es, e Pey) = ara(y).
zeX
Hence, as a1(z,y) > 0, we get
1
matﬂ(y)-

Combining this line of inequalities with the fact that lim;_,, % log a;(z)
exists and a;(z,y) = a,(y, z) gives that lim;_ 1 log a;(z, y) exists and
is independent of z,y € X.

Let

at,l(:c)al(:v,y) < at('r?y) <

1
lim —loga;(x,y) = —A\.
t—oo ¢
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Since

a(z,y) = (ex,e”"Ve,) = /m(z)m(y)pi(z, y)

we conclude that

1 1
-\ = lim = log a;(z,y) = lim —log py(x,y).
t t—oo ¢

t—o00

We will now show that A = \g, which will complete the proof. First,
we note that

1
lim n log (e’\otpt(az, y)) =X — A

t—o0

forall x,y € X. If Ay is an eigenvalue for L, it follows from Theorem [5.4
that lim; o e™'py(z,y) = u(z)u(y) > 0 so that

R
Jim —log (e*'pi(z,y)) =0

and, hence, A = )\ in this case.

If Ay is not an eigenvalue for L, then Theorem states that
e*'p,(z,y) — 0 as t — oo. Therefore, log (e*'p,(z,y)) < 0 for all
t large enough and since %log (ertpt(x,y)) — X — Aast — oo, it
follows that Ag < A.

We will now show that A\g > \. Let € > 0. From Proposition

we get

Iporote) (L) # 0

since \g € o(L). As the set of functions 1, for z € X is total in
(%(X,m), it follows that there exists an z € X such that

Linonoe) (L)12 # 0.

Let u, be the spectral measure of L associated to 1,. Proposition
gives

Ao+e
pgij(’xx)) = (L, e"1,) = / e~ dpiy(s) 2 e (Ao, Ao +€])
Ao

as the spectral measure pu, is supported on [Ag, A\g + €] by Proposi-
tion Therefore,
1
A= lim - logpi(,7) > —(h +¢),
t—oo t

that is, A < A\g +¢&. As ¢ > 0 was arbitrary, it follows that A < Ag,
which concludes the proof. O

From the theorem above we immediately obtain the following corol-
lary which states that the existence of a positive eigenfunction implies
that the eigenvalue is the bottom of the spectrum.
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COROLLARY 5.7 (Positive eigenfunctions are multiples of ground
states). Let (b, c) be a connected graph over (X, m). Let Q) be a Dirichlet
form associated to (b,c) with operator L. Let \g = info(L). If there
exists a non-trivial w > 0 with uw € D(L) such that

Lu = \u

i.e., u 1S a positive eigenfunction corresponding to X\, then A = Ag.
Furthermore, uw > 0 and u is the ground state.

PROOF. As A is an eigenvalue, A € (L) so that A\g < A by defini-
tion. Now, if « > 0 in D(L) is non-trivial and satisfies Lu = Au, then
the functional calculus gives

ety = e .

Therefore, for an arbitrary x € X, using the positivity of u we get

pelz, 2)u(@)m(z) <Y pilz,y)uly)m(y) = e Fulr) = e u().

Applying Theorem [5.6 and choosing x € X such that u(z) # 0, we get
1 1
—Xo = lim = log (ps(x, z)u(x)m(x)) < lim - log (e_t’\u(x)) = -\
t—oo ¢ t—oo t

so that \g > A. Therefore, A\g = A.
The strict positivity of u follows from the proof of Lemmal5.2] which
shows that u = u, > 0 and also gives the uniqueness of u. U

REMARK. One criterion for the existence of such u is given in Corol-
lary [5.5] In the next section, we discuss this question for the Neumann
Laplacian L) when ¢ = 0. Furthermore, such u exist whenever the
spectrum of L is discrete. Conditions for the discreteness of the spec-
trum will be given in later parts of the book, see Chapters [9] and

REMARK. There is an alternative approach to proving the corollary
above using the results of Chapter (4| (Exercise [4.6)).

3. The Neumann Laplacian and finite measure

To conclude this chapter we take a look at the case of graphs with
finite measure, i.e., graphs with m(X) < oco. We will show a charac-
terization of finiteness of the measure in terms of the domain of the
Neumann form Q) the domain of the Neumann Laplacian L™ and
Mo = 0 being an eigenvalue for L&V). We will then combine this charac-
terization with the convergence results presented in the previous section
to discuss when the heat kernel associated to the Neumann Laplacian
converges to 0.

We start by recalling some generalities about QW) and LN). By
definition, QW) is a restriction of Q to D(QW)) = DN (2(X, m) where
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D denotes the functions of finite energy. Furthermore, by standard
theory,

Ny N there exists a g € D(Q™)) with
DY) = {f € D@™) ’ QW(h, f) = (h, g) for all h € D(Q™) }
in which case LY) f = g, see Theorem m

We will write ¢1(X) for the space £}(X,1) in what follows and 1 €
C(X) for the function which is 1 on all vertices. We note that as soon
as 1 is in a subspace of ¢*(X,m), then all constant functions are in that
subspace. Hence, our result below can also be phrased in terms of all

constant functions being in the corresponding domains.
We now characterize graphs over finite measure spaces.

THEOREM 5.8 (Characterization of finite measure). Let (X, m) be a
discrete measure space. Then, the following statements are equivalent:

(i) m(X) < oc.

(i) 1 € D(Qbo ) for all graphs (b,0) over (X, m).

(i) 1 € D(Qb ) for all graphs (b, c) over (X, m) with ¢ € (*(X).
(iii) 1 € D(L l() ) for all graphs (b,0) over (X, m).
(i) 1 € D(L bcm) for all graphs (b, ) over (X, m) with c/m € (*(X,m).
(iv) Ao = 0 is an eigenvalue for Lb()m for all graphs (b,0) over (X, m).

REMARK (Reason for considering the Neumann Laplacian). We
briefly discuss the reason why the theorem above concerns L), As
already mentioned, D(QW)) = D N (*(X,m). Therefore, if ¢ = 0,
then 1 € D so that 1 € D(QW)) if and only if 1 € ¢2(X,m) which
can be characterized by the finiteness of the measure. In contrast,
D(QP)) = DyN?(X, m), where Dy denotes those functions in D which
can be approximated by finitely supported functions pointwise and with
respect to energy. If ¢ = 0, it turns out that 1 € Dy is equivalent to
recurrence. The question of when a graph is recurrent will be taken
up in Chapter [6] However, aspects of the above result can still be
recovered for general operators associated to graphs (Exercise .

Proo¥r. Throughout the proof, we use the fact that m(X) < oo is
equivalent to 1 € ¢7(X,m) for some (all) p € [1, 00).

(i) = (ii): As noted above, m(X) < oo implies 1 € ¢2(X,m) and,
as Qpo(1) =0, it follows that 1 € D(Q%}m).

(i) = (it): If 1 € D(Q}Y)), then 1 € 2(X,m). As Qy (1) =
Y owex c(@) < oo if ¢ € £1(X), it follows that 1 € D(Q,()]Z)m)

(ii') = (ii) and (ii) == (i): These are obvious.

(it) = (ii): If 1 € D(Q}Y),), then Q) (A, 1) = 0 = (h,0) for all
h e D(Q,()fg?m) This implies 1 € D(L,() O)m)
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(iii) = (ii): This is obvious since D(L%’)m) - D(Ql(,]g)m)

(iit) = (iif): If 1 € D(L}y),), then m(X) < co. Therefore, if
c/m € £?(X,m), then by the Cauchy—Schwarz inequality

2 1/2 1/2
> cla) < (2 mg;) (Z m<x>> <o,

zeX zeX rzeX

which gives that ¢ € ¢}(X). Therefore, as (iii) implies (ii), which is
equivalent to (ii’) by what we have already shown, we get 1 € D(Ql(,]\c[)m)
Hence,
N c
Qia(h1) = > el@)h(a) = (h.—)
zeX

for all h € D(QW)) since ¢/m € 2(X,m) by assumption. Therefore,
le D(Ll()]\cf)m) for all ¢ with ¢/m € 2(X,m).

(iii') = (iii): This is obvious.

(i) = (iv): If 1 € D(LY,), then L} 1 = 0 so that 1 is an
eigenfunction corresponding to A\g = 0.

(iv) = (i): If u is an eigenfunction corresponding to Ay = 0 for

Ll()fg,)m where (b,0) is a connected graph over (X, m), then

N N
Q) (w) = (L), u) = 0.

In particular, u is a nontrivial constant function in D(Q,()]g)m). As
u € *(X,m) is then constant, it follows that m(X) < cc. O

REMARK. In the case of ¢ = 0 and m(X) < oo, it is possible
to characterize the dimension of the eigenspace of A\ = 0 for L%}m
geometrically by the number of connected components of the graph

(Exercise [5.5)).

The following immediate corollary gives another way of thinking
of finiteness of the measure for the Neumann kernel in the case of no
killing term. Namely, the Neumann kernel goes to zero in the long term
if and only if the measure of the entire graph is infinite. This makes
precise the limit found in Corollary for the case of the Neumann
Laplacian.

COROLLARY 5.9. Let (b,0) be a connected graph over (X, m). Let
p be the heat kernel associated to L'™N). If m(X) < oo, then for all
r,ye X
lim py(z,y) = m(xX)
Furthermore, limy_,o pi(z,y) = 0 for allx,y € X if and only if m(X) =
0.
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PROOF. By Theorem above, if m(X) < oo, then the constant
functions for are eigenfunctions corresponding to the eigenvalue Ay = 0
for LN). The positive normalized eigenfunction u corresponding to this
eigenvalue is then v = 1/4/m(X). Hence, by Theorem , we infer

lim pi(,y) = lim (2, y) = u(x)uly) = —==.

This gives the conclusion in the case of finite measure.

On the other hand, if m(X) = oo, then 0 is not an eigenvalue for
LW by Theorem Now, if A\g > 0, then as lim;_,, e*!p;(z,y) exists
by Theorem , it follows that lim; . pi(z,y) = 0. If \y = 0, then
limy o pe(x,y) = 0 by Corollary since 0 is not an eigenvalue. [

REMARK. Parts of the corollary above hold for more general oper-
ators coming from Dirichlet forms associated to graphs (Exercise .
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Exercises
Excavation exercises.

EXERCISE 5.1 (Superadditive functions). Let f: (0, 00) — (—00, 0]
be a continuous function such that f(s)+ f(t) < f(s+t). Show that

f@ S

lim 22 — EANY

t—oo t >0 1t

Example exercises.

EXERCISE 5.2 (Two-sided path graph). Let X = 7Z with b(z,y) = 1
if |z —y| = 1 and 0 otherwise. Let ¢ = 0 and choose m such that
m(X) < oo. Show that:

(a) Ao(L™M) =0 is an eigenvalue for L™Y).
(b) Xo(LP)) = 0 is an eigenvalue for L(P).
(Hint: Construct a sequence ¢, € C.(X) such that ¢, — 1
pointwise and Q(¢,) — 0, i.e., show that 1 € Dy.)
(c¢) The function u(x) = z satisfies Lu = 0 but is not an eigenfunction
for L) or L™ for any choice of m.
(Hint: Calculate the energy of u.)
(d) The function u(x) = x is an eigenfunction for the operator L ..
which is a restriction of £ to the set D(L%,.) = {f € *(X,m) |

min

Lf e *(X,m)} whenever Y, 2*m(z) < co.

Extension exercises.

EXERCISE 5.3 (Theorem of Chavel-Karp for resolvents). Let @ be

a Dirichlet form associated to (b, ¢) with operator L and \g = inf o(L).
Let

g:(0,00) x X x X — R

be such that
(L+a) " fl2) = gala,y)f(y)m(y)
yeX

for all f € 2(X,m), z € X and @ > 0. Show that g, > 0 and that
there exists a u: X — [0, 00) such that

lim age(z,y) = u(z)u(y)

a—0t

for all x,y € X. Show furthermore that Ao = 0 is an eigenvalue of L if
and only if u # 0, in which case u is the ground state, i.e., the unique
normalized positive eigenfunction for Ay = 0.

EXERCISE 5.4 (Ao = 0 for general L). Let (b,c) be a graph over
(X,m) and let @ be an associated form with operator L. Show that
1€ D(Q) and Q(1) = 0 if and only if 0 is an eigenvalue for L.
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EXERCISE 5.5 (Eigenspace of Ao = 0 for the Neumann Laplacian).
Let b be a graph over (X, m) with m(X) < co. Show that the dimension
of the eigenspace associated to the eigenvalue \g = 0 for L,()]g?m is equal
to the number of connected components of b. 7

EXERCISE 5.6 (Vanishing of the heat kernel). Let (b, c) be a con-
nected graph over (X, m) with m(X) = co. Let @) be a Dirichlet form
associated to (b, ¢) with operator L. Let p be the heat kernel associated
to L. Show that

pt(x7 y) —0
ast — oo for all z,y € X.
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Notes

The convergence results in this section are directly inspired by the
work of Chavel/Karp on Riemannian manifolds [CK91]. In particular,
Theorem above is a counterpart to the Theorem in [CK91] while
Theorem is a counterpart to Corollary 1 in [CK91]. The second
result is attributed to a paper of Li [Li86] which contains the statement
for compact manifolds. The argument for compact manifolds, however,
only involves eigenvalues and eigenfunctions of the Laplace—Beltrami
operator. This type of argument was already given for finite graphs
in Section [7] Let us also note that the argument of Chavel/Karp uses
exhaustion by compact sets, hence, their proof only carries over to
operators arising from regular Dirichlet forms.

Subsequently, Simon [Sim93] gave an argument for the result of
Chavel/Karp which only uses the spectral theorem and elliptic reg-
ularity. The proof of Simon was adapted to the discrete setting in
[HKIW12] and [KLVW15] and the proofs of Theorems and
are adapted from the proof of Theorem 8.1 in [HKLW12]. The paper
[KLVW15] covers an even more general setting which only requires a
positivity improving self-adjoint semigroup which has a kernel. This
setting contains both Riemannian manifolds and infinite graphs. For
related results concerning differential operators which are not necessar-
ily self-adjoint, we refer to the review article of Pinchover [Pin13].

The uniqueness of the ground state when it exists, as presented in
Lemma [5.2] is a rather general phenomenon. It is well known in the
manifold case, see, for example, Theorem 2.8 in [Sul87] and can also
be found in textbooks such as [RS78]. For finite-dimensional spaces,
this is sometimes referred to as the Perron—Frobenius theorem, see the
notes to Section [T for the relevant discussion in this case.

The characterization of finite measure found in Theorem [(.8 is an
extension of Theorem 6.1 in [GHK™15]. It is inspired by a result of
Yau which states that all positive harmonic functions on a complete
Riemannian manifold which are in L” are constant, see Theorem 3 in
[Yau76]. Corollary [5.9)is adapted from Corollary 8.2 in [HKLW12],
which in turn was inspired by Corollary 2 in [CK91].






CHAPTER 6

Recurrence

The topic presented in this chapter is recurrence. This concept can
be studied via probability, potential theory and operator theory and
has interpretations in each context. Classically, recurrence has been
studied for graphs b over X, i.e., graphs with ¢ = 0, and is a measure-
independent property. However, the measure independence can also
be formulated by stating that certain properties hold for all measures
of full support on X. Furthermore, some implications also hold in the
case of non-vanishing ¢ in the sense that the properties in question
already imply that ¢ = 0. We will indicate this in the proofs.

We let Q = Q, . denote the energy form. As usual, D denotes the
set of functions of finite energy, i.e.,

D={feCX)|Q(f) <oo}.

Furthermore, we let Dy be the vector space of all f € D such that there
exists a sequence of finitely supported functions (¢,,) with Q(f—¢,) —
0 and ¢,, — f pointwise as n — o0.

For an arbitrary vertex o € X, we introduce the map (-,-),: D X
D — R via

<f> g>o = Q(fv g) + f(O)g(O)

If (b, c) is connected, then this map is easily seen to be an inner product.
This inner product then gives a norm on the space D by

1fllo = (Q(f) + F2(0) 2.

We will show that D is a Hilbert space with respect to this inner prod-
uct and that Dy is the closure of C.(X) with respect to the norm || - ||,,
ie.,
7ol
Do - CC(X) .
By definition, Dy is a subspace of D. We will see that recurrence is
equivalent to these two spaces being equal.
Whenever we consider a measure m of full support, we write

D N
Q%D) = Ql(),c,)m7 Qgi\[) = l(),c,)m’
Ly =L =L £ = L.

m — “bem?

259
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We note that £, is usually denoted by L. At various points where the
measure does not play a role, we drop the subscript and write £ to
denote the operator £,, with m = 1. We recall that

D(QWM) =DnA(X,m)

m

by definition while
D(QS) = Do N (X, m)

by Theorem [1.19, We denote by O'(LsnD )) the spectrum of L'} and by
)\O(L%))) the bottom of the spectrum, i.e.,

Mo (L)Y = inf o (L),

We will need to restrict forms and operators to subsets, as discussed
in Section Specifically, for a finite set K, we denote the operator

associated to the restriction of the form Q,(nD) to C.(K) by Lg(D) and note

that L%D) is a restriction of £,,. Since Lg(D) is a Laplacian with a killing
term which does not vanish at any vertex in K that has a neighbor in
X \ K, the operator L%D) is invertible by Proposition whenever X
is infinite and the graph is connected. As usual, we understand C.(K)
as a subspace of £2(X,m) by extending functions by 0.

We now introduce some new quantities which will play a central
role in our main characterization of recurrence. We first define the
Green’s function G,,, which is given by

Gm(z,y) :/ e tm 1, (z)dt
0

for 2,y € X. Note that this function takes values in [0, 00| as the
semigroup e 'Y is positivity preserving by Corollary and even
positivity improving whenever b is connected by Theorem We
will be interested in the question if the value the Green’s function
takes is infinite or finite in what follows below.

We will show that the Green’s function can also be constructed by
approximating via resolvents either on the level of energy or on the
level of geometry. More specifically, we will show that

Gm(z,y) = lim (L,, + o) '1,(z) = lim (L%j))_lly(x),
a—0t n—00 "

where (K,) is any increasing sequence of finite connected sets with
X =U, K.
Furthermore, for any x € X we let the capacity of x be given by

cap(z) = inf{Q(p) | ¢ € Ce(X), p(x) = 1}.
It is not hard to see that the capacity can also be defined by taking the
infimum over Dy instead of C.(X). We will show that there exists a
unique minimizer u of Q over the set of f € Dy with f(x) = 1 and that
this minimizer satisfies 0 < v < 1 and Q(u) = cap(z). This minimizer
is called the equilibrium potential for x € X.
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Recall that a function u € C'(X) is called harmonic (superharmonic,
respectively) if u € F and

Lu =0 (Lu > 0, respectively)

that is, if u is a-harmonic (a-superharmonic, respectively) for a = 0.
We will be particularly interested in superharmonic functions v with

Lu=1,

for some x € X. Such a function is called a monopole at x € X. It
turns out that the existence of monopoles is a remarkable property for
a graph, whereas the existence of a dipole, i.e., a function u € F with
Lu=1, -1, for x,y € X and L is always true.

We now state our characterization of recurrence. This is followed by
an informal discussion of the contents of the theorem and a description
of how the proof is carried out in the remaining parts of this chapter.

THEOREM 6.1 (Characterization of recurrence). Let b be a con-
nected graph over X. Then, the following statements are equivalent:
(i) D(Qﬁ?)) = D(QYY for all measures m.
(1a) DO =7D.
(i.b) 1 € Dy.
(i.c) There exists a u € Dy and a finite set K C X with
inf u(x) > 0.
zeX\K
(i.d) There exists a sequence of functions (e,) in C.(X) with
0 <e, <1 foralln € N such that e, — 1 pointwise
and Q(e,) — 0 as n — oo.
(i.e) There exists a sequence of functions (ey,) in Ce(X) with e, —
1 pointwise as n — 0o and sup,,cy Q(e,) < 0o.
(ii) DL = {f e D( SN | L f € (X, m)} for all measures m.
(iii) If u € D satisfies Lyu € (1(X,m) and v € D NL>®(X), then

Qu,v) = Z Lu(z)v(z)m(zx)

for some (all) measure(s) m. ( “Green’s formula”)
(ii.a) If u € D satisfies L,u € (1(X,m), then

Z Lyu(z)m(z) =0

for some (all) measure(s) m.
(ili.b) If u € (=°(X) satisfies L,u € (1(X,m), then

Z Lyu(z)m(z) =0

for some (all) measure(s) m.
(iv) All superharmonic functions u > 0 are constant.
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(iv.a) All superharmonic functions u € Dy are constant.
(iv.b) All superharmonic functions u € D are constant.
(iv.c) All superharmonic functions u € {>°(X) are constant.

(v) (Do, Q) is not a Hilbert space.

(v.a) Q is degenerate on Dy.

(v.b) QY2 and |||, are not equivalent norms on C.(X) for some

(all) o € X.
(vi) The point evaluation map

021 (Do, Q) — R, 6,(f) = f(=)

is not continuous for some (all) x € X.
(vii) cap(z) =0 for some (all) x € X.
(vii.a) The equilibrium potential for some (all) x € X is given
by the constant function 1.
(viii) There does not exist a mon-trivial positive function w € C(X)

such that
Qp) 2 Y w(x)p?(x)
zeX
for all p € C.(X). (“Hardy’s inequality”)
(viii.a) There does not ezist a strictly positive function w € C(X)

such that
p) > Zw z)? (z
rzeX

for all p € C.(X).
(viii.b) AO(L%D)) =0 for all measures m on X.
(ix) There ezists a non-trivial harmonic function w € Dy, i.e., L, is
not injective on Dy for some (all) measure(s) m
(x) For some (all) x € X there does not exist a monopole in Dy at x.
(xi) For some (all) x,y € X and some (all) measure(s) m

Gu(z,y) =

(“Green’s function”)
(xi.a) For some (all) z,y € X and some (all) measure(s) m

lim (L, + a) 1, (z) = co.

a—0t
(xi.b) For some (all) x,y € X and some (all) sequence(s) (K,) of
increasing finite sets such that | J,, K, = X and some (all)
measure(s) m
lim (L)1, (z) = oo.

n—o0

DEFINITION 6.2. A connected graph b over X that satisfies any of
the conditions in the theorem above is called recurrent. Otherwise, a
connected graph is called transient.
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REMARK. We note that the order of the first four properties given

above mirrors the order of the properties listed for the equivalence of
QP and Q™) presented in Theorem [3.2]

In the subsequent sections of this chapter, we elaborate on various
aspects of recurrence. Along the way, we will prove the main theorem
above. Before diving into the details, we will pause for a moment to
discuss the intuitive meaning of the above conditions and the connec-
tions between them. At this stage, this discussion must be somewhat
vague. Still, we feel it will provide a valuable perspective on the con-
siderations below which, in some parts, become rather technical. All
points discussed next will be taken up and made precise in later proofs.

The main theme in (i) is that all elements of the space D can be
approximated pointwise and in terms of energy by functions with com-
pact support, i.e., that D = D,. This equality implies, in particular,
that the constant function 1 belongs to Dy. This is quite remarkable
as, intuitively, we might expect some form of decay for functions in
Dy. In fact, it turns out that the absence of this decay is the crucial
ingredient for the equality of D and Dy. More specifically, this equality
is valid if and only if there exists a uniformly positive function in D
which, in turn, holds if and only if the constant function 1 belongs
to Dy. Roughly speaking, these approximation properties mean that
there is nothing happening at infinity that we cannot already see on
finite sets.

A precise version of already being able to see things happening at
infinity on finite sets is provided in the context of boundary terms. In
fact, it is natural to expect that all sorts of boundary terms in partial
integrations vanish when dealing with functions in C.(X). So, the
approximability given in (i) should imply vanishing boundary terms for
functions in D. It turns out that this approximability is even equivalent
to vanishing boundary terms in various settings. This is the content of
(ii) and (iii). Specifically, (ii) characterizes the domain of the generators
for all measures and (iii) can be understood as a version of Green’s
formula.

Another way of understanding the equality of D and D is via su-
perharmonic functions. To make this precise, we consider D equipped
with the inner product (,-), for o € X. Then, the orthogonal comple-
ment of Dy in D is given by functions u € D with

Lu(zx) =0 foraz#o and Lu(o) = —u(o).

This can be used to show that equality of D and Dy is equivalent to
the absence of superharmonic functions v € D with Lu = 1,, i.e., of
monopoles at o € X, which is (x). It turns out that the absence of
such superharmonic functions is equivalent to the absence of positive
superharmonic functions as well as bounded superharmonic functions.
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This extension requires quite some care and attention. This is the
content of (iv).

We give a different aspect of the equality of D and Dy in (v). This
aspect concerns (non-)degeneracy properties of Q. In the setting of
infinite graphs, Q is an inner product on C.(X) but is not an inner
product on D since 1 belongs to D. Given this situation, a natural
question is whether Q is an inner product on Dy. Obviously, Q cannot
be an inner product if Dy = D. It turns out that the converse also
holds, i.e., Q is an inner product if Dy # D. In this case, (Do, Q) is
even a Hilbert space.

We give meaning to the (non-)degeneracy of Q on Dy by pointwise
estimates as follows: If Q is not degenerate, then point evaluation is
continuous. Therefore, for every x € X, there exists a ¢, > 0 with
cof2(z) < Q(f) for all f € Dy. This is the basic connection between
(v), (vii) and (viii). A short argument then shows that the constants
¢, are nothing but the capacities of the vertices x € X. This connects
(vi) and (vii). To actually prove the full equivalence between (v), (vi),
(vii) and (viii) we still have to argue that the ¢, are either all zero
or all non-zero. This is a consequence of the connectedness of the
graph. In this context, we also encounter the equilibrium potential
for x € X, i.e., the unique minimizer of Q on the set of functions
f € Dy with f(z) = 1. It turns out that this equilibrium potential is
given by 1 € Dy if cap(z) = 0 and by a multiple of a monopole at z,
otherwise. This ultimately gives the equivalence of (vii) and (i). We
note in passing that when the inequality which is excluded in (viii) is
valid, it is known under the name of Hardy’s inequality.

In the considerations above we have focused on understanding the
(non-)degeneracy of the form Q. We now turn to operators. Here, the
(non-)degeneracy of Q on Dy is mirrored by the injectivity of £, on
Dy. Indeed, as all constant functions are harmonic in the case of a
connected graph b, the operator L,, is clearly injective on C.(X) and
clearly not injective on D. It turns out that the equivalence between
the invertibility of L£,, and the non-degeneracy of Q on D extends to
Dy. This connects (v) and (ix).

Quite remarkably, we are also able to phrase the degeneracy of
L on Dy as a type of failure of surjectivity, i.e., the non-existence of
monopoles, see (x). The property (x) can then be understood by taking
a closer look at the failure of invertibility of £,,, as discussed in (xi):
We view the Green’s function G as the kernel of the inverse of L,,,
where the value oo arises if and only if £,, is not invertible. The values
of G can therefore be determined by solving the equality £,,u = 1,
for all x € X and by setting the solution to be oo if the equation is
not solvable. Now, there are two further natural ways to compute the
inverse. For one way, we take the limit « — 0% in (L,, + «)~! and, for

the other way, we take the limit n — oo in (L(lgf)_l for an exhaustion
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K, of X via finite sets. It turns out that all three procedures give the
same result. This has nothing to do with recurrence but is generally
true. Recurrence then is the phenomenon that all of these values limits
explode. Of course, this is a strong version of non-invertibility.

We point out that the preceding discussion shows a close connec-
tion between monopoles, equilibrium potentials and the columns of the
Green’s function, i.e., the values when one variable is fixed. Indeed,
the existence of monopoles, the existence of non-trivial equilibrium po-
tentials and the finiteness of the Green’s functions are all equivalent.
Specifically, if valid, then the monopole at x € X, the equilibrium po-
tential for x € X and the column of the Green’s function in x € X all
agree up to a multiple.

We also mention a stochastic perspective on recurrence. While this
is not the core focus of the book, it is nevertheless revealing and we
include a short discussion here as well as in the last section of the
chapter. In the stochastic interpretation, we are concerned with a
particle jumping from the vertices according to rules coming from the
edge weights. Now, there is a basic dichotomy: Either the particle
leaves any compact set for good or it returns to any such set again and
again. The latter property is what is captured by recurrence and is
also responsible for the name. By its definition, the Green’s function
G, can then be seen as a summation or rather integration over all of
the returns. In particular, it describes an equilibrium situation and the
infinite number of returns to any fixed point is then also responsible
for the explosion of G,,(x,y) given in (xi).

The remaining sections of this chapter are organized as follows: We
first present in Section [I| some general preliminaries which are used
throughout this chapter. We then turn to a study of aspects of recur-
rence related to the form Q as a (pseudo) inner product on D and Dy in
Section [2| In Theorem we prove the equivalence between (i), (ii),
(v), (vi), (vii) and (viii) of Theorem [6.1] In the subsequent Section
we then deal with superharmonic functions and provide the equivalence
between (1.b), (iv), (ix), (x) in Theorem [6.25] In Section [4] we deal with
the aspects of recurrence related to the Green’s function and prove the
equivalence between (i.b) and (xi) in Theorem In the following
Section [5f we look at boundary terms and establish the equivalence be-
tween (i.b) and (iii) in Theorem [6.33] Finally, in Section [6] we discuss
the connection to the stochastic perspective on recurrence.

1. General preliminaries

In this section we provide some elementary properties of the norm
Il - ||o on the spaces Dy and D. These results will be used freely in the
remaining parts of this chapter.
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Excavation Exercises [6.1] and [6.2] recall basic facts about the exis-
tence of weakly convergent subsequences and the existence of unique
minimizers in Hilbert spaces which will be used in this section.

We recall that the space D of functions of finite energy is defined
via the form Q. This form is positive, i.e., Q takes non-negative values
on the diagonal but may be degenerate even if (b, ) is connected. This
follows since Q(f) = 0 for f € D only implies that f is constant
whenever b is connected. On the other hand Q(f) = 0 does imply that
f = 0 whenever b is connected and ¢ # 0. Hence, Q on its own does
not necessarily define a norm on D.

Given this situation, a natural notion of convergence of a sequence
(fn) to f € D is that f,, — f pointwise and Q(f — f,) — 0. Indeed,
the subspace Dy C D is defined as the closure of C.(X) with respect
to this convergence, i.e., Dy denotes those functions in D that can be
approximated pointwise and in terms of energy by functions in C.(X).

We will now show that this type of convergence can be phrased
using an inner product. In doing so, we encounter the following issue:
The convergence above is defined without reference to any distinguished
vertex. The inner product we are about to define, on the other hand,
will distinguish a vertex. However, it turns out that the induced notion
of convergence is independent of this vertex whenever the graph is
connected.

More specifically, if (b, c) is a connected graph over X and o € X,
then we define a bilinear map

(e DxD—R
by
(f.9)0 = Q(f,9) + f(0)g(0).

The connectedness of (b, ¢) easily implies that (-, -), is an inner product
for any o € X. The associated norm is then given by

I1£llo = (Q(f) + *(0))

We now collect some basic properties of this norm.

1/2

LEMMA 6.3. Let (b, c) be a connected graph over X.
(a) For all z,y € X and f € D there ezists a C(x,y) > 0 such that

(f(z) = f(y))* < Clz,y)Q(f).

(b) The norms || - ||, and || - || on D are equivalent for all 0,0" € X.
(c) Dy is the closure of C.(X) in D with respect to ||-||o for an arbitrary
o€ X, ie.,

“7wle

DO - CC(X)
(d) (D, (-,)o) and (Dy, (-, ")) are Hilbert spaces.
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(e) The point evaluation maps given by

0o (Ds ] llo) — R, 6a(f) = f(2)
are continuous for every x € X.
PRrROOF. (a) Let z,y € X and let © = 2y ~ ... ~ x, = y be a

path from x to y. We estimate by a telescoping sum argument and the
Cauchy-Schwarz inequality

|f(x)=f (W)
< |f($z) —f($i+1)|

=0

n—1

1
T b(@i, 2i1) 2 f (@) — f (i
D w0 2 S (@) = S (i)

1/2

n—

1 12 .
1=0 b CE“ $l+1)> (zz_; b(x“ l‘z—’—l)(f(xl) N f(xi"‘l))Z)

n—1 . 12
o 1o
: <i0 b<17z'793i+1)> Q (f)

Hence, taking

IN

Cloy)= _ inf yZ e

we conclude the statement.
(b) Let 0,0’ € X. Then, by (a) and s* < 2(s — t)? + 2t2, which
follows from (s — 2t)? > 0 for s,t € R, we get
f*(0) < 2(f(0) — f(0))* +2f*(d) < 2C(0,0)Q(f) + 2f*(0).
Hence,
1£1l5 = f*(0) + Q(f) < (2C(0,0) + Q(f) +2f*(0") < C"|IfIlz
for C" = (2C(0,0') + 1) V 2. The symmetry of the argument above

yields the conclusion.

(c) Clearly Dy C C.(X )H o for an arbitrary o € X by the definition
of Dy. On the other hand, if || f — ¢, |lo — 0 as n — oo for some (¢,,) in
C.(X) and f € D, then gpn(o) — f(o) and Q(f — ¢,) — 0 as n — 0.
Since for arbitrary x € X the norms || - ||, and || - ||, are equivalent,
we obtain that ¢, (z) — f(z) for all z € X and thus f € D,. Hence,

Dy = m\l'ﬂo‘

(d) Clearly, the norm || - ||, is associated with the scalar product

(f,9)o = Q(f.9) + f(0)g(0)
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for f,g € D. The completeness of D with respect to || - ||, follows from
the lower semi-continuity of Q, Proposition (1.3, The completeness of
Dy then follows by part (c).

(e) This follows directly from (b) which gives that convergence in
|| - |lo implies pointwise convergence. 0

REMARK (Resistance metrics). From (a) of the previous lemma we
conclude that

r(z,y) = inf{C >0 [f(z) = f(y)| < CQV*(f) for all f € D}
is finite for all z,y € X. Now, clearly

r(z,y) = sup{f(z) — f(y) | f € D,Q(f) < 1}

and 7 is a metric. In fact, it is possible to show that 2 is also a metric.
Likewise we may define the metric rg by replacing D with Dy (or even
C.(X)) in the above formulae. The metrics r* and r2 are known as
resistance metrics (Exercise .

REMARK (Decomposing D for ¢ = 0). Lemma shows that the
norms || - ||, and || - ||, are equivalent. One way to understand this
for connected graphs b over X is the following: Let o € X and define
D, = {f € D | f(o) = 0}, which should not be confused with Dj.
Then, Q is an inner product on D, and (D,, Q) is a Hilbert space. It
is not hard to see that

D =D, ® Lin{1},
where Lin stands for the linear hull. On the other hand, the map
Do — D/Lln{1}7 f = [f]7

is bijective and isometric if D, is equipped with Q and D/Lin{1} is
equipped with Q([f]) = Q(f). This shows that the inner product on
D, is in a certain sense independent of 0 € X (Exercise [6.10)).

As a consequence of the lemma above we obtain the desired char-
acterization of convergence with respect to | - ||,

COROLLARY 6.4 (Convergence with respect to || - ||,). Let (b,c) be
a connected graph over X and let o € X. Then, for functions f, and
fin D, f. — f with respect to || - ||, if and only if f, — f pointwise
and Q(f — fa) — 0.

It turns out that even the following holds.

LEMMA 6.5. Let (b,c) be a connected graph over X and let o € X.
Let f € D and (f,) be a sequence in D. Then, f, — [ with respect to
Il |lo if and only if f, — f pointwise and

limsup Q(fn) < Q(f)-

n—o0
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PRrROOF. The “only if” direction follows directly from Corollary
above. For the other implication, if (f,) converges pointwise to f
and limsup,,_,.. Q(f,) < Q(f), then (f,) is a bounded sequence in
(D, (-,)o). As (D, (-,+),) is a Hilbert space by Lemma (d), every
ball is weakly compact, so there exists a weakly convergent subsequence
of (f,). By the pointwise convergence of (f,,), we deduce that the limits
of all possible weakly converging subsequences coincide, i.e., there ex-
ists only one accumulation point. Hence, (f,,) converges weakly. Now,

0<|If = fulls = QUf) + Q(fa) + f2(0) + fa(0) = 2(f. fu)o-

Thus, invoking the assumption limsup,,_,., Q(f.) < Q(f) we find that
the right-hand side converges to 0 and this gives ||f — fullo = 0. O

We now show that convergence in || - ||, respects taking maxima
and minima. In particular, we show that we can approximate positive
functions in Dy monotonically from below by functions in C.(X). We
recall that

ur=uV0 and u_-=-uVO0

so that u =uy —u_.

LEMMA 6.6 (Bounded and monotone approximation). Let (b, c) be
a graph over X. Let u € D and (u,) be a sequence in D such that
llu — upllo = 0 as n — oc.
(a) Then, v, = —u_ Vu, Auy also satisfies ||u — vy, = 0 as n — oo.
(b) Furthermore, if u > 0 and (u,,) consists of functions in C.(X), then
there exists a sequence (¢,) consisting of functions in C.(X) which
is monotonically increasing such that 0 < ¢, < u and ||u—pyllo —
0 as n — co. On the set where u > 0, we can even choose @, such
that 0 < ¢, < u.

PrOOF. (a) We let f,, = u — u, and g, = u — v,. First, we note
that f, — 0 pointwise. Thus,
gn = —u_ NV (U — up) A\ uy

also converges to 0 pointwise and |g,| < | f,|.
Next we show

|9n(2) = g ()| < |fu(2) = fu(W)] V [u(z) — uly)]
as follows: First, if |gn(x) — gn(y)| > |u(z) — u(y)]|, then u(x) and u(y)
must have the same sign since |g,| < |ul, so without loss of generality
we may assume u(x) > u(y) > 0.
Now, if gn(x) > gn(y) > 0, then g, (z) — gn(y) > u(x) — u(y) yields

gn(x) > u(z) —u(y) > 0 and g,(y) < u(y). Therefore,

gn(®) = fulz) Aulz) < folz)

gn(y) = OV fuly) Nuly) = fa(y),

which imply [gn(2) — gn(y)| < |fu(z) = fu(y)]-



270 6. RECURRENCE

The remaining case of g,(y) > g¢n(z) similarly leads to g,(z) <
2u(y) — u(z) and g,(y) > u(z) —u(y). These imply g,(z) > f.(z) and
9n(y) < fu(y), resulting in [gn(2) — gn(y)| < |fa(z) — fu(y)], which was
to be shown.

Since u € D, we have

This means that for every € > 0 there exists a finite set £, C X x X
such that

> b y)(ulr) —uly)’ <e.
(z.y)¢Ee

Using [gn(x) — gn(y)] < [fn(2) = fu(®) V |u(z) — u(y)], we can now
easily prove

Z b(x,y)(gn(x) = ga(y))? s% S b, y) (fulr) = faly))? +e

(m y)¢Ee z,yeX

Combining the above statements, we get since |g,| < |f,|

Q(U — Un) = Z b 37 3/ gn ) gn<y))2 + Q(fﬂ) t+e

Now, >, en. b(x,y)(gn(x) — gn(y))? — 0 because E. is finite and
gn — 0 pointwise. Furthermore, Q(f,) — 0 by assumption and since
e > 0 was chosen arbitrarily, we have Q(u —v,) — 0 as n — 0.

(b) Let (v,) be given as in (a), which consists of functions in C,(X)
whenever (u,,) consists of functions in C.(X) and satisfies v,, > 0 as
u > 0. We choose (1,) in C.(X) with supp 7, = supp v,, 0 <1, < v,

on supp 7, with n, — 0in || - ||, as n — oo. For example, 7, can be
chosen as
O Un(2)
n — th 6n — i ]-su U *
Gy Ve (mﬁlﬁgvn 2 ) PP v

Note that 0 < 7, < v, if v, # 0. Then, v, — 7, is such that 0 <
—n, < u with a strict inequality on the set where v > 0 and when

v, # 0 and satisfies v, — 1, — w in || - ||,.
Furthermore, we extract a monotonically increasing subsequence
((pnk) of

—n,) as follows. Let ng = 0. Given ny, let

N1 = min{l > ny | (v, — ) (x) > (v, — M, )(2) for all x € X}.

The minimum exists as v, — 7, < % on SUPpP U, UVp — N —> U &S N —>
oo pointwise and v,, € C.(X). By definition (¢,,) is monotonically
increasing, ¢,, — u and Q(p,, —u) — 0 as n — oo. O
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Next we show that the space Dy is invariant under normal contrac-
tions.

LEMMA 6.7 (Dy is invariant under normal contractions). Let (b, c)
be a graph over X. If f € Dy, then C o f € Dy for every normal
contraction C.

PROOF. Let f € Dy and let m be a measure such that f € (2(X, m).

Then, f € DyN{*(X,m) =D Qg,?)) by Theorem . Since Q4 is
a Dirichlet form by Theorem , we have C'o f € D(Qg,? )) C Dy for
every normal contraction. This proves the statement. U

REMARK. Indeed, we can invoke the proof of Theorem directly
to prove the statement above.

The preceding lemmas allow us to easily prove a Green’s formula
on D. In fact, as usual in measure theory, there are two versions of
Green’s formula. One can be thought of as an ¢! version and the other
is a version for positive functions.

LEMMA 6.8 (Green’s formula on D). Let (b,c) be a graph over X.
Let v € Dy and u € D with either

o Lu>0 or
® > oy |Lu(z)] < oo andv € (°(X).

Then, we have
Qfu,v) = 3 Lulw)u()
zeX
with absolutely converging sum.

PROOF. For v = ¢ € C.(X) this is clear from the Green’s formula
presented in Proposition [I.4. We note that this does not need any as-
sumption on u except for u € D. Under the assumption Lu > 0 we can
split v into v and v_, which are functions in Dy by Lemmal[6.7] Thus,
we can apply Lemma (b) to approximate v, and v_ monotonically
by functions in C.(X). Hence, we obtain

Qu,vy) = Z Lu(x)vy(x),
zeX
where the right-hand sides are finite since the left-hand sides are. Then,
subtracting the terms yields the statement.

Under the assumptions ) . |Lu(z)] < oo and v € (*(X) we
approximate v with functions in C.(X) which are smaller in modulus
than v, which is possible by Lemma (a). Then, the statement
follows from Lebesgue’s dominated convergence theorem. U

As another direct consequence of the Hilbert space methods applied
to (-, ), we give a construction and basic properties of the equilibrium
potential at a vertex. We recall that the capacity is defined as an
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infimum over finitely supported functions. The result below shows
that this infimum is achieved by a function in D).

PRrROPOSITION 6.9 (Existence of equilibrium potentials). Let (b, c)
be a connected graph and let x € X. Then,

cap(z) = inf{Q(f) | f € Do, f(z) =1}

and there exists a unique u € Dy with u(x) = 1 and Q(u) = cap(z).
Furthermore, 0 < u < 1.

ProoFr. We start by showing the equality. By definition, the ca-
pacity of x is given as

nf{Q(p) | ¢ € Ce(X), p(x) = 1}.

On the other hand, if f € Dy with f(z) = 1, then there exists a
sequence (,,) in C.(X) with ¢, — f pointwise and Q(f — ¢,,) — 0 as
n — 0o. We can then assume without loss of generality that ¢, (z) =1
for all n € N. Combining these statements gives the equality.

It remains to show the statement on the minimizer. Consider the
set

A={feDy| f(z) =1}
This is clearly a convex closed set in (Dy, (-,-),). Hence, there is a
unique minimizer of || - ||, on A. Since f(x) = 1 for all f € A, this
is then the unique minimizer of @ on A and the desired statement
follows.

Finally, to show 0 < u < 1 for the minimizer u we note that O
is compatible with normal contractions and Dy is closed under normal
contraction by Lemma . Therefore, (0 V u) A1 is also a minimizer
and we obtain v = (0 V u) A 1 by uniqueness. O

Given the previous proposition we can now provide the following
definition of the equilibrium potential, which was already mentioned in
the introduction to this chapter.

DEFINITION 6.10 (Equilibrium potential). The unique function u €
Do with u(z) = 1 and Q(u) = cap(x) is called the equilibrium potential
for x € X.

2. The form perspective

In this section we start our investigation of recurrence. In partic-
ular, we focus on the form perspective. This means we consider those
properties which can be stated in terms of the space Dy equipped with
semi-inner product @ and the associated semi-norm Q2. Our overall
strategy is to show that certain assertions follow (rather easily) from
1 € Dy and that the opposite assertions follow (again rather easily)
from 1 ¢ Dy. Put together this establishes the desired equivalences for
recurrence.
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Before we deal with the finer properties of the space Dy equipped
with Q, we first address the question whether Dy and D agree. As,
clearly, the constant function 1 belongs to D, a necessary condition for
equality of Dy and D is that 1 belongs to Dy. Quite remarkably the
converse is also true.

PROPOSITION 6.11 (1 € Dy implies D = Dy). Let b be a graph over
X. If1 €Dy, then D = Dy.

PRrOOF. It follows by definition and Lemma [6.6| (a) that if 1 € Dy,
then we can choose a sequence (e,) in C.(X) with e, — 1 pointwise
and Q(1 —e,) — 0 as n — oo such that 0 < e, <1 for n € Nj.

Let f € DN(>(X). Then, e, f € C.(X) and by the simple algebraic
manipulation found in Lemma we get

Qf —enf) = Qf (1 —e,))
<D (1 =ea@)? D bla,y)(f(z) - ()

+D ) bl y)(en() — en(y))
<Y (L—en(@)* D bz, y)(fa) = F())* + 2] fl3Qlen)
— 0,

where we use Lebesgue’s dominated convergence theorem for the first
term, which is applicable since f € D and Q(e,) — 0 as n — oo for
the second term. Therefore, D N ¢>*(X) C Dy.

Now, an arbitrary function f € D can be approximated by the
bounded functions f, = —kV f Ak for £ € N. We show that f, — f
in |-, as k = oo. Clearly fr — f pointwise as k — oco. By Fatou’s
lemma and the fact that Q is compatible with normal contractions, we
have

Q(f) <liminf Q(fy) < limsup Q(fx) < Q(f)-

k—o00

Hence, Lemma implies f, — f in || - |, as & — oo. Thus, by
combining the two convergence arguments given above, we get that
D =1D,. O

The previous result suggests that we have a closer look at the con-

dition 1 € Dy. By the definition of Dy, one rather easily finds the
following characterization.

LEMMA 6.12 (Approximating 1). Let b be a graph over X. Then,
the following assertions are equivalent:
(i) 1 € Dy.
(ii) There ezists a sequence (py,) in Ce(X) with 0 < ¢, <1 forn € N
such that @, — 1 pointwise and Q(p,) — 0 as n — oo.
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(iii) There exists a sequence (@) in C.(X) with ¢, — 1 as n — oo
pointwise and sup,,cy Q(¢n) < 00.

PROOF. (i) = (ii): If 1 belongs to Dy there exists a sequence (¢,)
in C.(X) with ¢,, — 1 as n — oo pointwise which is a Cauchy sequence
with respect to o2, Hence,

Q(wn) = Q<¢n - 1) < li;r_l)irolf Q(q/)n _ ¢k) -0

as n — oo. The function ¢, = (1 A1,) V 0 satisfies 0 < ¢, < 1
for n € N. Moreover, as (1) converges to 1 pointwise, so does (¢y).
Finally, as Q is compatible with normal contractions we find

Qpn) < QW) — 0
as n — oo. This gives (ii).

(ii) = (iii): This is clear.

(i) = (i): Without loss of generality we can assume that the
graph is connected as otherwise we work on each connected component
separately. Fix an arbitrary o € X. By assumption, the sequence
(pn) is bounded in the Hilbert space (D, (,-),). Hence, without loss
of generality, we can assume that it converges weakly to some u € D
as otherwise we could pass to a subsequence. Invoking the Banach—
Saks theorem, we then obtain a sequence 1, in C.(X) consisting of
finite convex combinations of the ¢, with v, — u in the Hilbert space
(D, (-,-)). Note that the functions v, must converge pointwise to 1
as the ¢, have this property. As point evaluation is continuous on the
Hilbert space (D, (:,),) by Lemma (e), we find ¢, () — u(z) for
x € X. This gives u = 1 and finishes the proof. O

Having given a characterization of 1 € Dy, which implies Dy = D,
we now turn to some basic questions concerning the space Dy equipped
with the semi-inner product Q. As it may add a useful perspective to
keep in mind, we first discuss which questions we consider.

A very natural question is whether Q is actually an inner product
and, if so, whether (Dy, Q) is complete, i.e., a Hilbert space. This is
clearly related to the question whether the seminorm QY2 and || - ||,
are equivalent.

Another natural question concerns lower bounds for Q. Here, we
say that w: X — [0,00) is a lower bound for Q, written as Q > w, if

Qp) > > w(z)’(z)

for all ¢ € C.(X). We can extend this inequality to Dy. Indeed, by
approximating an arbitrary f € Dy with respect to Q by ¢, € C.(X)
we obtain from Fatou’s lemma

Q(f) = lim Q(p,) > liminf Y w()gi(z) > Y w(x)f*(x).

zeX zeX
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We note that cap(z)1, is clearly a lower bound for Q as cap(x)p?(z) <
Q(p) for all p € C.(X) and, conversely, whenever w is a lower bound
for @ we must have w(z) < cap(x) for all z € X.

Another very natural question is whether the point evaluation map
02 Dy — R given by

0. (f) = f(x)

is continuous for x € X with respect to Q2. We note that the answer
to this question is given by positivity of the capacity, as we now show.

LEMMA 6.13 (Characterization of positive capacity). Let b be a
graph over X and let x € X. Then, the point evaluation 6, is continu-
ous on Dy with respect to QY if and only if cap(x) > 0. In this case,
102 = cap(x)~"/2.

PRrROOF. Clearly, continuity of §, on Dy with respect to QY2 is
equivalent to continuity of J, on C.(X) with respect to Q'/2 and this
is equivalent to the finiteness of

1621 = sup{|p(2)| | ¢ € Ce(X) with Q(p) < 1}
= sup {Q’f/(z()‘) |0#£p € C’C(X)} :
On the other hand, positivity of the capacity is equivalent to
0 < cap(z) = inf{Q(p) | ¢ € C.(X) with p(x) =1}
[ Qly)
= inf {802(37) | o(x) # O} .

Now, the equivalence follows easily. Il

Having discussed the questions we have in mind, we now gather
some rather simple consequences for these questions if 1 € Dy. As
shown subsequently, each of these consequences is actually a charac-
terization of 1 € D, provided that the graph is connected.

PROPOSITION 6.14 (Consequences of 1 € Dy). Let b be a graph over

X. If 1 € Dy, then the following statements hold:

(a) The point evaluation map d,: Dy — R, §,.(f) = f(x) is not con-
tinuous with respect to QY2 for all x € X.

(b) cap(z) =0 for all z € X.

(c) The norms QY2 and || - ||, are not equivalent on Cu(X).

(d) If @ > w for some w > 0, then w = 0.

(e) (D, Q) is degenerate and, in particular, not a Hilbert space.

PROOF. (a) If 1 € Dy, then the point evaluation map on Dy cannot
be continuous for each x € X since we have 1 = 1(x) whereas 0 = Q(1).
(b) From Lemma we know already that (a) and (b) are equiv-
alent. Alternatively, it is not hard to argue directly as follows: By
1 € Dy, there exists a sequence (¢,) in C.(X) with 0 < ¢, < 1 for
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n € N which converges pointwise to 1 and satisfies Q(p,) — 0 as
n — oo. Assuming that ¢,(x) # 0 for all n € N, it follows that
n = @n/en(x) belongs to C.(X) and satisfies ¢, (x) = 1 for all n € N.
Hence, from the definition of the capacity we obtain

1

as n — 0o, which completes the proof.

Q(‘Pﬂ) — 0

(c) If the norms are equivalent on C.(X), then they have to be
equivalent on Dy as well. This, however, is not true, as can be seen by
considering the function 1.

(d) This follows easily by plugging in 1.
(e) This is clear as Q(1) = 0. O

To show that each of the preceding properties in fact characterizes
that 1 belongs to Dy we need one more ingredient. This is given by the
following lemma, which holds for connected graphs.

LEMMA 6.15 (Consequence of zero capacity). Let b be a connected
graph over X . If there exists an x € X with cap(z) = 0, then 1 € Dy.
In particular, cap(y) =0 for ally € X.

PROOF. By the existence of an equilibrium potential for x, Proposi-
tion[6.9] there exists a unique u € Dy with u(z) = 1 and cap(z) = Q(u).
Thus, u satisfies Q(u) = 0. As b is connected this implies that u is con-
stant and by u(z) = 1 we infer 1 = u € Dy. That cap(y) = 0 for all
y € X follows from Proposition [6.14] (b) directly above. O

REMARK. It is also possible to give a direct proof of the previous
result without the use of equilibrium potentials (Exercise [6.11]).

PROPOSITION 6.16 (Consequences of 1 ¢ Dy). Let b be a connected

graph over X. If 1 ¢ Dy, then the following statements hold:

(a) The point evaluation map 0,: Dy — R, 0,(f) = f(x) is continu-
ous with respect to QY? for all x € X.

(b) cap(z) > 0 for any x € X.

(c) The norms QY2 and || - ||, are equivalent.

(d) There exists a w > 0, w # 0, with @ > w. In fact, there even
exists a w > 0 with O > w.

(e) (Do, Q) is a Hilbert space.

PRrROOF. (a)/(b) By Lemma we know that (a) and (b) are
equivalent. By Lemma 1 ¢ Dy implies (b).

(c) This is clear from the fact that Q%2 < |- ||, and from (b) as
cap(0)|l¢ll5 = cap(0)¢*(0) + cap(0) () < (1 + cap(0)) Q(y)
for all ¢ € C.(X).
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(d) This is also clear from (b). Indeed, cap(x)1, is a possible w and
so is then any sum of the form ) _ a,cap(z)l, with a, > 0 for all
reXand )  ya, =1 as cap(z) >0 for all z € X by Lemmal6.15]

(e) As point evaluation is continuous with respect to Q2 by (a),
Q is non-degenerate, i.e., an inner product on Dy. The completeness of
Dy with respect to QY2 ig clear from the equivalence of the norms Q2
and | - ||, from part (c) and the fact that Dy is complete with respect
to || - ||o established in Lemma [6.3] O

As a consequence of the considerations so far we obtain the follow-
ing list of equivalences, which form part of our main characterization,
Theorem [6.1]

THEOREM 6.17 (Characterization of recurrence — forms). Let b be a
connected graph over X . Then, the following statements are equivalent:

(i) D(QY) = D(QY) for all measures m.

(1a) D(] =D.
(i.b) 1 € Dy.
(i.c) There exists u € Dy and a finite set K C X with
inf w(x) > 0.
zeX\K

(i.d) There exists a sequence of functions (ey) in Ce(X) with 0 <
en < 1 for all n € N such that Qe,) — 0 and e, — 1
pointwise as n — oo.
(i.e) There exists a sequence of functions (ey,) in Co(X) with e, —
1 pointwise as n — 0o and sup,,cy Q(e,) < 00.
(ii) D(LY) = {f € DQW) | Lonf € (3(X,m)} for all measures m.
(v) (Do, Q) is not a Hilbert space.
v.a) Q is degenerate on Dy.
v.b) QY2 and |||, are not equivalent norms on C.(X) for some
(all) o € X.
(vi) The point evaluation map 0,: (Dy, Q) — R given by 0.(f) =
f(z) is not continuous for some (all) x € X.
(vii) cap(xz) =0 for some (all) v € X.
(vii.a) The equilibrium potential for some (all) x € X is given by
the constant function 1.
(viil) There does not exist a non-trivial positive function w € C(X)
such that

o~

Qp) 2 Y wla)p*(z)

rzeX

for all ¢ € C.(X). ( “Hardy’s inequality” )
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(vili.a) There does not exist a strictly positive function w € C(X)
such that

Qp) > Y w(w)¢’(x)
rzeX
for all ¢ € C.(X).
(viii.b) )\O(Lg,?)) =0 for all measures m on X.
PROOF. (i) = (i.b): Let m be a finite measure, i.e., m(X) < oo.
Then, 1 € (*(X,m). Furthermore, 1 € D as ¢ = 0 and, therefore,
applying the definition of D(Q%V )) and Theorem m gives

1e DNA(X,m)=DQWM) =DQP) =Dy *(X,m) C D,.

(i.b) = (i.a): This is shown in Proposition [6.11]
(i.a) = (i): This is clear as
D(QY) =Dy N (X, m) = DN (X, m) = D(Q}")
for all measures m if Dy = D.

(i.b) <= (i.d) <= (i.e): This is shown in Lemma[6.12]

(i.b) = (i.c): This is clear.

(i.c) = (i.b): By (i.c) and as C.(X) C Dy, we infer that v = u+1g
satisfies v € Dy with v(z) > C for all z € X for a suitable C' > 0. Hence
1 = (v/C) A 1 belongs to Dy by Lemma [6.7]

(i) <= (ii): This follows from Theorem [3.2}

The remaining assertions follow easily from Propositions [6.14] and

Proposition

(i.b) <= (vi): This follows from (a) of the mentioned propositions.

(i.b) <= (vii): This follows from (b) of the mentioned propositions.

(i.b) <= (v.b): This follows from (c) of the mentioned propositions.

(i.b) <= (viii)/(viii.a): This follows from (d) of the mentioned
propositions.

(viil.a) <= (viii.b): Failure of (viii.a) is equivalent to the existence
of aw > 0 with @ > w on C.(X). Failure of (viii.b) is equivalent to
existence of a measure m and A > 0 with @ > Am. In this case, we
can assume without loss of generality that A = 1 after replacing m by
Am. Now, the desired equivalence is clear.

(i.b) <= (v)/(v.a): This follows from (e) of the mentioned propo-
sitions. ]

We end this section with a series of remarks that extend the con-
siderations of the theorem above via exercises.

REMARK. We first note that (i) is stated for all measures m. How-
ever, this is also equivalent to the condition on the forms for one finite
measure (Exercise [6.12)).
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REMARK. Conditions (i.d) and (i.e) show that various ways of
approximating the function 1 are equivalent to recurrence. Such se-
quences can be used to show that recurrence implies the existence of
a function of finite energy which goes to infinity (Exercise . Fur-
thermore, with the help the material presented in the Green’s function
section, Sectiond] we can actually show that b is recurrent if and only if
there exists a sequence (e,) in C.(X) such that 0 <e, <1, e,(x) = 1
as n — oo for every x € X and

lim Q(e,, f) =0

n—oo

for every f € Dy (Exercise [6.14]).

REMARK. One useful consequence of the criteria for recurrence
above is that transience is stable under the operation of taking sub-

graphs (Exercise [6.15]).

REMARK. In view of (viii.b) there is yet another characterization
of recurrence. Specifically, the graph b is recurrent and the measure m
is finite if and only if 0 is an eigenvalue of the Dirichlet Laplacian Ly

associated with b over (X, m) (Exercise |6.16]).

3. The superharmonic function perspective

In this section we look at the spaces Dy and D from the perspective
of Hilbert spaces and (super)harmonic functions. Large parts of this
section can be understood as a study of (super)harmonic functions in
Dy and the complement of Dy in D. This question is already of interest
on its own. In the context of the present chapter, we use these results
to prove various parts of our main characterization of recurrence.

Excavation Exercise|6.3, which recalls the invertibility of the Dirich-
let Laplacian on finite sets, and Excavation Exercise 6.4 which estab-
lishes some basic properties of superharmonic functions, will be used
in this section.

We start with a description of harmonic functions in Dy.

LEMMA 6.18 (Harmonic functions in Dy). Let (b,c) be a connected
graph over X. Then any harmonic function in Dy is constant. In

particular, there exists a non-trivial harmonic function in Dy if and
only if 1 € Dy and ¢ = 0.

Proor. Let u € Dy with Lu = 0. Then, by the Green’s formula
given in Lemma [6.8] we find

Qu) = Z Lu(z)u(z) = 0.

As b is connected, we find that © must be constant. Furthermore, ¢ =0
if u # 0. The last statement is then clear. O
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Having dealt with harmonic functions in Dy, we now turn to super-
harmonic functions. As we have already discussed the case of constant
functions in the previous lemma, we focus on non-constant superhar-
monic functions next.

LEMMA 6.19 (Superharmonic functions in Dy). Let (b, ¢) be a con-
nected graph over X. Any non-constant superharmonic function u in
Dy satisfies u > 0.

PROOF. Let u be a non-constant superharmonic function in D.
Then, v = uAO0 is superharmonic by Lemmal[l.9) v € Dy by Lemmal6.7]
and v < 0. It suffices to show v = 0. Assume the contrary. Then, as u
is not constant, v cannot be constant and this implies

0 < 9Q(v).

On the other hand, by the Green’s formula given in Lemma [6.8] we
clearly have
Q(v) = Lv(x)v(z) <0
rzeX
as Lv > 0 and v < 0. This gives a contradiction. O

The previous lemma provides a property of superharmonic functions
in Dy. It does not deal with the existence of such functions. We
now study this existence. It turns out that equilibrium potentials, i.e.,
functions f € Dy with f(z) =1 and Q(f) = cap(x) provide examples
of such functions. In particular, we note that the following result gives
the existence of non-constant superharmonic functions whenever there
exists an x € X with cap(x) > 0 which, by Theorem is equivalent
to 1 ¢ DO.

PROPOSITION 6.20 (Equilibrium potentials are superharmonic func-
tions in Dy). Let (b,c) be a connected graph over X and let z € X.
Then, there exists a unique superharmonic u € Dy with u(z) = 1 and
Lu(y) = 0 for all y € X with y # x. Furthermore, the function u
satisfies
o Lu(x) = cap(z) = Q(u).

e 0 <u<l.

In particular, u is the equilibrium potential for x.
PrRoOOF. We first show uniqueness: Let u and v be two such func-

tions. Consider w = u — v. Then, w belongs to Dy with Lw(y) = 0 for
y # x and w(z) = 0. Hence, we obtain by Green’s formula, Lemma ,

Qw) =Y Lw(y)w(y) =0.

Thus, w must be constant. By w(z) = 0 we find w = 0 and this is the
desired uniqueness statement.
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We now discuss the existence of a function u with all of the stated
properties. We will show that the equilibrium potential from Proposi-
tion is the required function. Recall that the equilibrium potential
for x € X is the unique minimizer u of || - ||, on the convex closed set

{f €Dy f(x) =1}

Furthermore, u satisfies 0 < u < 1.

By the minimizing property of u we see that Q(u + sl,) > Q(u)
for all s € R and y # x and for all s > 0 for y = x. This easily implies
that Lu(y) = 0 for y # = and Lu(x) > 0. Hence, u is superharmonic.

From Proposition we find

cap(z) = Q(u).
Furthermore, by Green’s formula, Lemma [6.8] we then obtain

cap(z) = Qu) = > Lu(y)uly) = Lu(z),

yeX

where we used Lu(y) = 0 for y # = as well as u(xz) = 1 to obtain the
last equality. This completes the proof Il

REMARK. Note that it may well be that the function v appearing in
the previous proposition is a constant function. In fact, u is constant if
and only if cap(z) = 0: Indeed, if cap(z) > 0, then u cannot be constant
as Lu(x) = cap(z) > 0 whereas £1 = 0. Conversely, if cap(xz) = 0,
then Lu = 0 so that u is harmonic and thus constant by Lemma [6.18]

As a consequence of the previous proposition we can set up a com-
plete solution theory for existence of monopoles in Dy, i.e., solutions of
equations of the form

Lu=1,

for x € X and v € Dy. This is contained in the subsequent corollary.
We will come back to it in the next section from a different perspective.
This will show that the solutions in Dy we find here have a minimality
property among all solutions.

COROLLARY 6.21 (Existence of monopoles). Let (b,c) be a con-

nected graph over X and let x € X. Then, the following statements
hold:

(a) If cap(x) > 0, then there ezists a unique function g, € Dy with
Lg, = 1,. This function g, satisfies 0 < g, < 1/cap(x).

(b) If cap(x) = 0, then there does not exist a solution of Lu = 1, in
Dy.

ProoF. Both (a) and (b) follow from the previous proposition and
Green’s formula. We now give the details.

(a) Let u € Dy be the unique solution given by Proposition
above. The function g, = u/cap(z) clearly belongs to Dy and satisfies
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Lg, = 1,. Furthermore, as 0 < u < 1, we get 0 < g, < 1/cap(x). This
shows the existence of such a function.

To show uniqueness we observe that whenever g, € D, satisfies
Ly, = 1., the function g, is non-constant and, hence, satisfies Q(g,) >

0. From Green’s formula, Lemma we find

0< Q(ga:) = gr(x)
Then, u = g,/g.(x) satisfies the statement of Proposition and is,
therefore, unique. Thus, g, is a multiple of u. Clearly, there can be
at most one multiple of u solving the equation in question. This gives
that ¢, is unique.

(b) Assume that there exists a u € Dy with Lu = 1,. Then, u is
not constant and, hence, satisfies Q(u) > 0. From Green’s formula,
Lemma [6.8] we then find

0 < Qu) = u(z).
Hence, we can consider the function v = u/u(z) and this function is
superharmonic and satisfies v(z) = 1 and Lv(y) = 0 for all y # x. So,
by Proposition [6.20], v is the unique superharmonic function with these
properties and .
cap(z) = Lu(z) = (@) > 0.
By contraposition, this completes the proof. Il

REMARK (Alternative proof of the existence of monopoles). We
note that an alternative reasoning for the existence of monopoles can
be given using the Riesz representation theorem (Exercise [6.17)).

So far, we have dealt with superharmonic functions in Dy. We can
also describe the orthogonal complement of Dy in D using superhar-
monic functions.

LEMMA 6.22 (Orthogonal complement of Dy in D). Let (b,c) be a
connected graph over X. Let o € X. Then, u € D satisfies u L Dy
with respect to (-,-), if and only if

Lu(y) =0 forally #o and Lu(o) = —u(o).
In particular, (Lu(o))u is superharmonic whenever u belongs to the

orthogonal complement of Dy in D.

PRrROOF. As C.(X) is dense in D, with respect to || - ||,, we obtain
that u € D is orthogonal to Dy if and only if

<U,, 90>0 = Q(ua ()0) + u(O)(p(O> = 0
for all ¢ € C.(X). As any ¢ € C.(X) can be written as a sum of a

¥ € C.(X) with ¥(0) = 0 and a multiple of 1, we see that u € D is
orthogonal to Dy if and only if both

Qu,v) =0 and Q(u,1,) +u(o) =0
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for all ¢ € C.(X) with ¢(0) = 0. From Green’s formula, Lemma [6.8]
we find that these statements are equivalent to

Qu,¥) = Y Luly)d(y) =0

yex
and
—u(o0) = Q(u, 1,) = Lu(o).
From these equivalences, the desired statements follow. O

So far our results have not made any assumptions on the graph.
We now turn to study the case of 1 € Dy and assume that the graph
is connected.

PROPOSITION 6.23 (Superharmonic functions in D are constant).
Let b be a connected graph over X. If 1 € Dy, then any superharmonic
function in D s constant.

PrRoOOF. We proceed in two steps. As a first step, we show that
any superharmonic function in D must be harmonic. Thus, let u be a
superharmonic function in D. Then, from Green’s formula, Lemmal6.8]
we find

0=0(u1) =) Lu(x).

rzeX
As Lu(z) > 0 for all x € X the desired harmonicity follows.

We now show that any harmonic function in D is constant: Let
u € D be harmonic. Let o € X and consider v = u — u(0)1. Then,
clearly v € D is harmonic and vanishes at o. It suffices to show v = 0.

As v is harmonic, the function — |v| is superharmonic, see Lemmal[l.9]
Hence, —|v| must be harmonic by what we have shown in the first step.
Thus, |v| is harmonic as well. As both |v| and v are harmonic, we con-
clude that both vy = (£v) V0 = (Jv| & v)/2 are harmonic. Clearly,
both v, and v_ are non-negative. By connectedness, each of them must
then either be strictly positive or vanish identically, see Corollary [£.2]
By v(0) = 0 we have v,(0) = 0 = v_(0) and both v, and v_ must
vanish identically. This shows v = 0, which completes the proof. U

REMARK (Approximation free proof of Dy = D for 1 € Dy). As
shown in Proposition [6.11] via approximation, we have D = D, when-
ever 1 € Dy. Thus, it is interesting to note that the preceding two
results give another, approximation free, proof of the equality of Dy
and D under the condition 1 € Dy: Let u € D. Then, considering the
Hilbert space D with inner product (-, ), for o € X, we can decompose
wasu=uv+r with v € Dy and r L Dy. By Lemma [6.22] we can then
conclude that either r or —r is superharmonic. By Proposition [6.23]this
gives that r is constant. Hence, r belongs to Dy as well and, therefore,
has to be 0. Thus, © = v belongs to Dj.
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In the preceding considerations we have dealt with (super)harmonic
functions in D using methods from Hilbert space theory. It is remark-
able that the conclusion of the previous proposition continues to hold
for general superharmonic functions well outside any context of Hilbert
spaces. This is the content of the next proposition.

PROPOSITION 6.24 (Positive superharmonic functions are constant).
Let b be a connected graph. Assume 1 € Dy. Ifu > 0 is superharmonic,
then u is constant.

PRrOOF. If u = 0 there is nothing left to show. Thus, we can
assume that there exists an z € X with u(x) > 0. By Lemma we
then have u > 0. As 1 € Dy, there exists a sequence (e,) in C.(X)
approximating 1 with respect to || - ||,. Hence, by the ground state
transform, Corollary we infer

2
0<5 3 b yulyuly) (2@ - 2m) < Qe

u u
z,yeX

As e, (z) — 1 for each z € X as n — oo and Q(e,) — Q(1) = 0, we
infer from Fatou’s lemma that

025 3 Haputautn) (10 - ;) <0

u u
z,yeX

As b is connected this implies that u is constant. O

Our study of superharmonic functions now easily allows us to prove
the following result which forms part of Theorem

THEOREM 6.25 (Characterization of recurrence — superharmonic
functions). Let b be a connected graph over X. Then, the following
statements are equivalent:

(i.b) 1 € Dy.

(iv) All superharmonic functions u > 0 are constant.
(iv.a) All superharmonic functions u € Dy are constant.
(iv.b) All superharmonic functions u € D are constant.
(iv.c) All superharmonic functions u € £°(X) are constant.

(ix) There exists a non-trivial harmonic function u € Dy, i.e., Ly, is
not injective on Dy for some (all) measure(s) m.

(x) For some (all) x € X there does not exist a monopole in Dy at x.

PROOF. (i.b) = (iv.b): This is shown in Proposition [6.23|
(iv.b) = (iv.a): This is clear as Dy C D.
(iv.a)/(iv) = (i.b): Let x € X. By Proposition there exists a

positive superharmonic function u € Dy with u(z) = 1. By (iv.a)/(iv)
we must then have v = 1 and, hence, 1 belongs to D,.

(i.b) = (iv): This is shown in Proposition [6.24]
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(iv) = (iv.c): Let u € £°(X) be superharmonic. Then, u+ C1 is
a superharmonic positive function for sufficiently large C' > 0. Hence,
u+ C1 is constant by (iv) and thus u is constant as well.

(iv.c) = (iv): This follows easily as superharmonicity is stable
under cutoff. More specifically, whenever u is superharmonic so is
u A k for any number k£ > 0 by Lemma [1.9]

(i.b) <= (ix): This is immediate from Lemma [6.18]

(i.b) <= (x): We already know by Theorem that (i.b) is equiv-
alent to cap(z) = 0 for some (all) z € X. Now, the desired statement
follows directly from Corollary [6.21] O

REMARK. One use of non-trivial positive superharmonic harmonic
functions is to derive a Hardy inequality (Exercise . Now, any
Hardy inequality can always be extended from C.(X) to Dy. In the
recurrent case, one can even extend a Hardy inequality to D (Exer-

cise [6.19)).

4. The Green’s function perspective

In this section we study properties of the Green’s function. We
first show that there are three possible ways of introducing the Green’s
function. More specifically, the Green’s function can be defined via the
semigroup, as the limit of resolvents or as the limit of the inverses of the
Dirichlet Laplacians. We will then show that a graph is recurrent if and
only if the Green’s functions is finite at one (equivalently, all) pair(s) of
vertices. We will also provide alternative approaches to various topics
discussed in preceding sections, including the existence of monopoles as
well as approximating the constant function 1 by a sequence in C.(X).

Excavation Exercises [6.3 and [6.4] will be used in this section.

Let (b,c) be a connected graph over (X, m). We recall that the
Green’s function G = G,,,: X x X — [0, 00] is given by

Gm(z,9) :/ e M1, (x)dt
0

where L,, = L), The theorem below gives some basic properties of
the Green’s function. In particular, we show that the Green’s function
can also be defined via resolvents or via the inverse of the Dirichlet
Laplacians for any exhaustion sequence of the graph. Furthermore, we
show that if the Green’s function is finite at some pair of vertices, then
it is finite for all pairs of vertices.

THEOREM 6.26 (Basic properties of G,,,). Let (b,c) be a connected
graph over (X,m). Then, for all p € C.(X) and x € X, we have

lim (Ly, + o)~ p(x) = / e rp(a)dt = lim (L) (),
0

a—0T n—00
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where (K,) is an arbitrary sequence of increasing finite sets such that
U,, Kn = X. In particular, for all v,y € X,

Gn(,y) = lim (Ly + )1, () = lim (L1, ().

Furthermore,
(a) Gu(z,y)m(z) = Gy, z)m(y) for all z,y € X.
(b) G, > 0.

(¢) If Gp(x,y) = oo for some x,y € X, then Gp,(x,y) = oo for all
z,y € X.

(d) If Gp(x,y) < oo for some x,y € X, then Gp(x,y) < oo for all
z,y € X and, for an arbitrary o € X, the function Gp,(-,0) is
superharmonic with

LnGn(-,0) =1,.
Furthermore, G,,(-,0) is the smallest w € F with u > 0 such that
Lou>1,.
(e) If Gi(z,y) < 0o for some x,y € X and c(0) =0 for some o € X,

then Gp,(+, 0) is not constant. Furthermore, if Gp,,(+,0) is constant,
then G, (-, 0') is not constant for all o' # o.

REMARK. We note that it is possible that Gy, (-, 0) is actually con-
stant for one 0o € X (Exercise [6.20)).

REMARK. There is yet another way to introduce the Green’s func-
tion G,,(-,0) for a connected transient graph. Consider the smallest
solution uy > 0 to (L,, + Aw)uy = 1, for A > 0 and w > 0 non-trivial.
Then, G,,(z,0) = limy o ux(x) (Exercise |6.21]).

PrRoOOF. By decomposing into positive and negative parts, we can
assume that ¢ > 0. The spectral theorem gives

(L + )t = / e e thmay,
0

see Theorem in Appendix [A] Therefore, the first formula follows
by monotone convergence since et for ¢ > 0 is positivity preserving
by Corollary Furthermore, for any K, such that ¢ € C.(K,) we
have by the spectral theorem

1 oo
(ng}) Y= / e tLic, @dt.
0

By decomposing into negative and positive parts and using Lemma/l.21

. —+12) . . . .

it follows that e "xn ¢ 7 e~tlmp pointwise so that the right-hand side
converges to fooo e~ tmpdt by monotone convergence arguments. Hence,
the second equality also holds and the main statement follows.

We now turn to the additional statements.
(a) The symmetry follows directly from the equality

et (yhmly) = (e 1) = (L, e L) = et (a)m(a)



4. THE GREEN’S FUNCTION PERSPECTIVE 287

for all x,y € X.

(b) The strict positivity G, > 0 follows directly from the definition
of G,,, and the fact that the semigroup is positivity improving for t > 0
by Theorem [1.26] as we assume connectedness.

(¢) To show that G, (z,y) = oo for all z,y € X if G,,(x,y) = o0

for some x,y € X let e, = 1,/+/m(x) for x € X. Let z,y,zo € X. We
calculate for t > 1,

e~tbm, (z) = e tme (DI ()

- mzx) (e tme = VEmL, 1)

_ ﬁ ; (e~ DIn] e Ve ln, e,)
> mi@ (™7, €0 ){eTH 1o, €0
= %e‘“‘lwm1y(x0)e_L’”1I(x0).

Since the semigroups are positivity improving on a connected graph
by Theorem we infer that C' = e Lm1,(zo)m(zo)/m(z) > 0.
Then,

Gm(z,y) :/ e 1, (v)dt
0
>/ e thm 1, (z)dt

N

> C’/ et 1, (zo)dt
0

:CGm<$0,y)

By the symmetry shown in (a) and repeating the calculation allows us
to estimate Gy, (o, y) by G (0, yo) for any yo € X. As x,y, xg,y0 € X
were chosen arbitrarily, the statement follows.

(d) That G,,(z,y) < oo for all z,y € X if G,,(z,y) < oo for some
x,y € X follows from part (c) directly shown above.

Now, the function o — (L, + @) '1,() can be seen to be mono-
tonically decreasing by the resolvent identity

(L + 0‘)71 — (Lm + 5)71 = (B —a)(Lm+ O‘)il([’m + 5)71

for a, f > 0 as the resolvents are positivity preserving, Corollary [1.22]
We calculate for z,0 € X,

Lon(Lyy 4+ ) 1,(2) = Lyp(Lyy + @) 11,(2)
= 1o(2) — a(Ly + @) '1o(2).
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Taking the limit @ — 0% we see that the right-hand side converges to
1,(z) from the spectral theorem, see Proposition in Appendix .
Moreover, for the left-hand side, we have lim,_,o+ (L, + @) 11,(2) =
Gm(z,0) < 0o as we assume that G,,(z,y) < oo for some z,y € X.
Since the limit on the right-hand side exists and

lirgl+ Deg(2)(Ly + o) '1,(2) = Deg(z)G (2, 0)
we infer that G,,(-,0) € F and
,Cme(,O)(Z) = 10(2)

by monotone convergence, cf. Lemma [L.§|

We now show that G, (-, 0) is the smallest function v € F such that
u>0and L,,u > 1g. Let 0 € X, let (K,,) be an arbitrary sequence of
increasing finite sets such that | J, K, = X and o € K, for all n € N.
Let g, = (Lg?n )71, and let u > 0 satisfy £,,u > 1,. Then, v, = u—g,
is superharmonic on K,, satisfies v,, > 0 outside of K, and v, A0
assumes its minimum on the finite set K,. Hence, by the minimum
principle, Theorem [1.7, we infer that v, > 0 and, therefore, u > g,.
Since g, converges to Gy, (-, 0), it follows that u > G,,(+,0).

(e) By (d) we have £,,G,,.(+,0) = 1,. So, if ¢(0) = 0, then it is clear
that G,,(-,0) is not constant.

We now prove the remaining statement. Assume that G,,(-,z) are
constant for x = 0,0’ € X. Then, this implies

c
LG x) = me( ,T).

We will show that o = o/. We deduce from (a), the constancy and from
L,Gn(,x) =1, for z = 0,0 that

c(0) Gor(0,0) = c(0) (. 0)

m(o') m(o) "

_ o) 0,0
B m(o)Gm( ,©)
= L,,Gn(+,0)(0)
=1

= LGn(,0)(0)
_ A 0,0
- m(a’)Gm( 0):

We infer c(o) = ¢(0o') # 0 and 1 = ¢(0')G,,(0,0")/m(0’) from this
calculation. Using this, (a) and that G,, (-, 0) is constant we obtain

_ o) 0,0) = (o) o,0) = 5 0)(0) = 1,(d
1—m(OI)Gm(, ) m(O)Gm( ) ) ‘Cme(v )( ) 10( )

Hence, 1,(0') = 1, and, therefore, 0 = 0'. O
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To study further properties of the Green’s function associated to a
graph, we normalize the approximating sequences of Theorem [6.26| at
one vertex. It is clear that, in the case of G,,(x,y) < oo, normalizing
the approximating sequences of G,,(-,0) at a vertex o € X yields a
limiting function g = G,,(+,0)/Gm(0,0). It turns out that even in the
case of G,,(x,y) = 0o, these normalizing sequences yield a finite limit.

Indeed, we have seen this phenomenon before. In Corollary and
Corollary from Chapter 4] we obtained superharmonic functions g
and ¢(P) via pointwise limits of subsequences of the functions

1

n — Lm n _110
9 = T T o) T(o) Lm0

and

(D) _ 1 P11
ST TR A,
where a,, > 0 for n € Ny is a sequence with «,, — 0 as n — oo and (K,,)
is an increasing sequence of finite sets with J, K, = X and 0 € X is
such that o € K,, for n € Nj.
Clearly, in the case G,,(z,y) < oo for all z,y € X, we have
g =g = G(-,0)/Gn(0,0) by Theorem above and the lim-
its are independent of the choice of (a,) and (K,). The next lemma
shows that also in the case that G,,(z,y) = oo for all 2,y € X, these
limits also exist, coincide and are independent of the choice of («,,) and
(K,). Furthermore, we show that this pointwise convergence is even

convergence with respect to || - [|,. As a fundamental consequence, the
limit g = ¢ is in Dy as ¢i°) € C.(X) so that
Gm(', 0) € Do

in the case of G,,,(z,y) < oo for all z,y € X. Furthermore, we compute
Q(g) and we will later show that Q(g) = cap(o). In particular, g is the
equilibrium potential at o as discussed in Propositions and [6.20]

LEMMA 6.27. Let (b,c) be a connected graph over (X, m) and let

o€ X. Let gy, gﬁLD) be given as above. Then, there exists a g € Dy with
gle) — g and g, — g with respect to || - ||, as n — o0o. Moreover,
m(o)
) = Gm(0,0)

Furthermore, we have the following case distinction:

(a) If Gp(x,y) = oo for some (all) z,y € X, then c =0 and g =1 is
harmonic.
(b) If Gin(z,y) < oo for some (all) x,y € X, then the function

g= Gm(? 0)/Gm(07 0)
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is superharmonic and satisfies
Lo
Gm(0,0)

In particular, G, (-, 0) € Dy in this case.

Lng =

As a consequence, the limit g is independent of the choice of the se-
quences (ay,) and (K,).

Proor. By Corollaries and there exist subsequences of the
gn and the g,(lD) that converge pointwise irrespective of the choice of
a, and K,. By the local Harnack inequality, Theorem any such
subsequence is pointwise bounded. Our subsequent considerations will
show that any pointwise convergent subsequence actually converges
with respect to || - ||, and that all possible limits agree. This will
establish the existence of the limit along all sequences a,, — 0 and
increasing finite K, C X with |, K,, = X.

To avoid cumbersome index notation we assume without loss of
generality that

(D) (D)

= lim g,

g = lim g,, g
n—oo n—oo
exist pointwise.
We first show that ¢/?) g € D. Let g}LD) be given as above. Since
9P e C.(X), we obtain by the use of Green’s formula, Proposition ,

and the facts that L%Dn) is a restriction of £,, and gT(LD)(o) =1 that

(D)y — (D) /(D) (YD) (2)m(z) = m(o)
Qi) =3 (L9 (@9 (@)miz) TRy

By lower semi-continuity and Theorem [6.26| we get
m(o)

D) < limi D)y — "\
Qg™ < liminf Qg,™) = 707

which implies that ¢(P) € D.
By a similar argument, as g, € D(L,,) and g¢,(0) = 1, we have

(1o, gn) — anllgnl? m(o)

(L + @) 1,(0) = (L + )" H,(0)
Again, by lower semi-continuity and Theorem [6.26, as «,, — 0 when
n — 00, we get

Q(9n) = (LinGn, Gn) =

Q(g) < liggf A(gn) < Glo.0)’

which implies that g € D.

If G, (0,0) = 0o, the estimates above give that Q(¢P)) = Q(g) = 0.
As ¢'P) g > 0 by Corollaries and it follows that ¢ = 0 in this
case and hence, g and ¢(P) are constant so that g = ¢®) = 1 since
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gn(0) = g,(lD)(o) = 1. Furthermore, the convergence with respect to
Il - || follows as we have pointwise convergence and

Q(g) = lim Q(g,) = lim Q(g”) = Q(¢""”)) = 0.

If G,n(0,0) < 00, we obtain g = ¢?) = G,,.(+,0)/Gp(0,0) directly
from Theorem above. Moreover, by Theorem [6.26] (d) we have

1 1
LG 0) = —2
Gl ) = G o0

Since ¢\ € Co(X) and ¢ € D C F we have by Green’s formula,
Proposition (1.5, and g,(LD)( ) =1 that
Qg — 9'”) = Qlg) —2Q(g,93")) + Q(gff”)

= Q(g) =2 (¢ Lng)(@)ml(z) + (g7 Long'”) (@)m ()

Lng =

rzeX zeX
5 MU0) m(o)
= Q(9) - +
Gm(07 O) ( £L)>_110(0>
_m(o)
<0
= Qly) - Gum(0,0)
as n — oo, where the last inequality follows by the estimate on Q(g)
established above. Hence, ¢i°) — g = ¢'P) with respect to Il |lo and

we deduce that g € Dy. Therefore, as g = Gp(+,0)/G(0,0) in this
case, we get that G,,,(-,0) € Dy as a consequence.

The independence of this construction on the choice of sequences
follows directly from the considerations above. O

The preceding lemma ties in with various further considerations. In
particular, (a) is connected to 1 € Dy, as we will see below, and (b) is
connected to solutions of Lu = 1., i.e., to monopoles.

So, after these discussions it is not hard to connect (xi) with (i.b)
in our main characterization of recurrence, Theorem This is done
next.

THEOREM 6.28 (Characterization of recurrence — Green’s function).
Let b be a connected graph over X. Then, the following statements are
equivalent:

(i.b) 1 € Dy.
(xi) Gu(z,y) = oo for some (all) z,y € X and some (all) measure(s)
m.
(xi.a) lim, o+ (L + @)1, (2) = 0o for some (all) z,y € X and
some (all) measure(s) m
(xi.b) limnﬁoo(L(D)) '1,(z) = oo for some (all) z,y € X and
some (all) sequence(s) (K,) of increasing sets such that
U,, Kn = X and some (all) measure(s) m
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PROOF. By Theorem [6.26] the statements (xi), (xi.a) and (xi.b) are
all equivalent. So, to prove the theorem it suffices to show that (i.b)
is equivalent to (xi). This is carried out next, based on Lemma [6.27
Note that we show that (i.b) implies (xi) for all measures m and that
the validity of (xi) for some measure implies (i.b). This gives that the
validity of (xi) for some measure is equivalent to the validity of (xi) for
all measures.

(i.b) = (xi): Assume G,,(z,y) < oo for some measure m and
some z,y € X. Then, we obtain from (b) of Lemma that there
exists a superharmonic g € Dy with Lg # 0. This, however, implies
1 ¢ Dy, as otherwise we have from Green’s formula, Lemma

0< > Lg(x)=2Q(g,1) =0,
zeX
which is clearly a contradiction.
(xi) = (i.b): From (xi) and (a) of Lemma we immediately
obtain (i.b). O

We end this section by proving three properties of the Green’s func-
tion and show that each of them indeed is a characterization of the
Green’s function. While these are not used in the subsequent consid-
erations they are of interest in their own right.

THEOREM 6.29 (Characterizations of the Green’s function). Let
(b,c) be a connected graph over (X,m). Assume that Gp,(z,y) < oo
for some z,y € X and let 0 € X.

(a) The function G,(-,0) is the unique function u € Dy such that
Lou=1,.

(b) The function Gp,(-,0) is the unique function u € Dy such that for
all f S Do,

Qu, f) = f(o)m(o).
(¢) The function G, (+,0) is the unique minimizer of Q on
{u e Dy | u(o) = G(0,0)}.

PROOF. (a) Existence is a direct consequence of (b) of Lemmal6.27}
Uniqueness is easy to show: Let u, v be two such functions in Dy. Then,
u—v is a harmonic function in Dy and, hence, constant by Lemma |6.18]
By Theorem this constant must be zero.

(b) This follows directly from (a) and Green’s formula, Lemma[6.8|

(c) Recall that for an exhaustion sequence (K,) with o € K,, we
defined
1
(D) _ (D)y-1
gn - (L n) 10
(Lig) (o)
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and in Lemma (b) we have shown that g = lim,,_, g,(ID) satisfies
g = Gun(-,0)/Gn(0,0) in the case that G, (z,y) < co.

Hence, it suffices to show that g is the unique minimizer of Q on
{u € Dy | u(o) = 1}. Note that 9'P) solves the Dirichlet problem

Pu=0 onA=K,\{o}

u=1 on B = {o}.

So, by standard arguments, cf. Theorem M, the function géD) is the

unique minimizer of the restriction Q%i) of @ to {u € C(K,) | u(o) =

2

1}. Furthermore, by the convergence g, ° — ¢ with respect to || - ||o,

we have for all ¢ € C.(X) with ¥(0) = 1,

Q(g) = lim Q(g”) = lim Q) (¢") < lim Qi (v) = Q).
Since C.(X) is dense in Dy, the function ¢ is a minimizer of Q on
{u € Dy | u(o) =1}.

Finally, we show that ¢ is the unique such minimizer. So, let v € Dy
be another minimizer and let v, € C.(X) be such that v, — v with
respect to || - ||, Then, applying Green’s formula gives

Qv —g) = lim Q(v, —g)
~ Q) ~ 2 lim Q(vn,9) + ()

<2Q(g) —2 lim Y Lg(a)va()

zeX

- _,_m(o)
=209(g) 2—Gm<0’0>

<0,

where the last equality follows from Q(g) = m(0)/Gp(0,0) shown in
Lemma As b is connected this shows that v — g is constant. As

v and g agree on o, they must then be equal. U
By statement (c) of the preceding theorem we get an immediate

. L (D) 4. ) i

consequence for the function g = lim,, o gn ’ = lim,, .o g, which ap

pears in the proof of the theorem. More specifically, we obtain that g
is the equilibrium potential for o first constructed in Proposition [6.9]
In particular, this allows us to connect the capacity of points with the
Green’s function.

COROLLARY 6.30 (Green’s function and equilibrium potentials).

Let (b,c) be a connected graph over (X,m) and let o € X. Let g =

lim,, oo g,(qD) = lim,, .o0 gn. Then g is the equilibrium potential for o,

i.e., the unique minimizer of Q on {u € Dy | u(o) = 1} which satisfies
0<g<1and
Q(g) = cap(o).
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Furthermore, cap(o) = 0 if and only if G, (x,y) = oo for some (all)
z,y € X.

PRrROOF. The fact that cap(o) is given by the energy of the mini-
mizer follows from Proposition . Now, if G,,(x,y) < oo, for some
(all) z,y € X, then Q(g) = cap(o) > 0 follows by Lemma [6.27] (b)
and Theorem [6.29] (c) above as g(-) = Gy (+,0)/Gp(0,0) € Dy is su-
perharmonic in this case. If G,,(x,y) = oo, for some (all) z,y € X,
Lemma [6.27] (a) yields ¢ = 0 and g = 1 € Dy. This immediately gives
Q(g) = cap(o) = 0. 0

5. The Green’s formula perspective

In this section we study recurrence from the point of view of Green’s
formulas. In particular, we will see that a variant of Green’s formula
which allows us to pair functions of finite energy whose Laplacian is in
¢! with bounded functions of finite energy is equivalent to recurrence.

In Lemma we have already encountered a Green’s formula in

the form
Qu,v) = Z Lu(z)v(z)
reX

with absolutely converging sum for v € Dy and v € D with either
Lu>0or) v|Lu(x) <ooandwv € £>°(X). Indeed, this formula has
been used in the previous sections in various places. The main message
of this section is that the validity of this formula with v € D N ¢>*(X)
instead of v € Dy is a characterization of recurrence. In fact, it even
suffices to consider v = 1, in which case the formula simplifies to

0= Z Lu(zx).

A basic insight behind the reasoning in this section is that this type
of formula actually excludes the existence of superharmonic functions
which are not harmonic.

We will need certain consequences of the previous sections in order
to provide a proof of the remaining parts of our main theorem. These
are discussed next.

PROPOSITION 6.31. Let b be a connected graph over (X, m). If
Z Lyu(z)m(z) =0

for all bounded v € Dy with u > 0 and L, u € (X(X,m), then 1 € Dy.

PrOOF. By Proposition there exists for any x € X a super-
harmonic function u € Dy with u(z) =1,0 <u <1, Lu(y) = 0 for all
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y # x and Lu(zr) = Q(u). From our assumption we find

0="> Lu(z) = Lu(z) = Qu).

zeX

By connectedness we infer that u is constant. As u(x) = 1, we obtain

From 1 € Dy and the definition of D, we obtain the existence
of a sequence in C.(X) converging to 1 with respect to || - ||, The
considerations on the Green’s functions as the limit of restrictions from
the preceding section actually provide a specific such sequence with
additional features. This is the content of the next proposition.

PROPOSITION 6.32. Let (b,c) be a connected graph over (X, m).
Assume that 1 € Dy and let (K,) be an arbitrary sequence of finite
subsets of X with K,, C K, 41 for alln € N and |, K,, = X. Then,
there ezists a sequence (ey) in Ce(X) with 0 < e, <1 and Ly, > 0
on K, for each n € N and e,, — 1 as n — oo with respect to || - ||, for
any o € Kj.

PROOF. From 1 € Dy and Theorem we obtain G, (z,y) = 0o
for all z,y € X. Consider

1

(D) _ (D)\—1

gn - (L ) 10
(L) 1,00)

for n € N. By G,(x,y) = oo it follows that ¢ = g=1in |- 1lo by

Lemma [6.27) (a). Now define
€n = g1(1D) A 17

which satisfies e,, € C.(X) and 0 < e,, < 1 for n € N. Moreover, e,, — 1
as n — oo with respect to || - ||, for an arbitrary o € X and we have
L..e, > 0on K, for all n € N as the minimum of two superharmonic
functions is superharmonic by Lemma (1.9 U

After these preparations we conclude the proof of the main result,
Theorem [6.1]

THEOREM 6.33 (Characterization of recurrence — Green’s formula).
Let b be a graph over (X, m). Then, the following statements are equiv-
alent:

(i.b) 1 € Dy.
(iii) If u € D satisfies Lyu € (1(X,m) and v € D NL>®(X), then

Qu,v) = Z Lyu(z)v(z)m(zx)

for some (all) measure(s) m. ( “Green’s formula”)
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(iii.a) If u € D satisfies Lyu € 1(X,m), then
Z Lu(x)m(xz) =0
zeX

for some (all) measure(s) m.
(iii.b) If u € £°(X) satisfies Lu € (*(X,m), then

Z Lyu(x)m(x) =0

zeX

for some (all) measure(s) m.

ProOF. The fact that statements (iii), (iii.a), (iii.b) hold for all
measures m if they hold for one measure m is clear from the definition
of L,,.

(i) /(iii.a)/(iii.b) == (i.b): Each of (iii), (iii.a) and (iii.b) clearly
implies

Z Lyu(z)m(xz) =0

for all bounded u € D with u > 0 and £,,u € ¢*(X,m). That 1 € D,
now follows from Proposition [6.31

(i.b) = (iii)/(iii.a): The assumption 1 € Dy implies Dy = D by
Proposition and now (iii) is a direct consequence of the Green’s
formula, Lemma[6.8] Furthermore, (iii.a) clearly follows from (iii).

(i.b) = (iii.b): Let (K,) be a sequence of finite subsets of X with
K, C K,4; for all n € N and |J,, K,, = X. By Proposition there
exists a sequence (e,) in C.(X) such that e, — 1 as n — oo with
respect to || - ||, for arbitrary o € X and L,,e,, > 0 on K, for all n € N.

Let u € (*°(X) with £,,u € ¢*(X,m) and assume, without loss of
generality, that 0 < v < 1. We infer by Green’s formula, Proposi-
tion [1.5| and the third pointwise Leibniz rule in Lemma [2.25| applied
to f =g = e,, that

Zei(x)ﬁmu(x)m(x) = Z Le(z)u(x)m(z)

=2 ealw)Luea(@)ulz)m(z) — Y bz, y)u(z)(en(w) — ealy))

By Lebesgue’s dominated convergence theorem and the fact that
e, < 1 we conclude, for the first term above, that

. 2 o
nh_>r20 Z e, (x)Lpu(z)m(z) = Z Lyu(z)m(x).
zeX zeX
Furthermore, as u < 1, the last term above satisfies

0< > ba,y)u()(en(w) —enly)* < 2Q(en) = 0

z,yeX
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as n — 0o. These consideration together with £,,e, > 0 on K, and
en,u > 0 for n € N give

Z Lyu(z)m(z) = th_g)lo Z en () Loen(x)u(z)m(x) > 0.

The same argument applied to the function 1 — u gives

Z Lyu(x)m(x) <0

rzeX

and, hence, (iii.b) follows. O

REMARK. We note that the equivalence of (iii.a) and degeneracy of
the form Q on Dy, condition (v) in Theorem [6.1] also holds for general
¢ (Exercise 6.22)).

REMARK (Existence of dipoles). In the two previous sections we
have discussed how recurrence is equivalent to the existence of mono-
poles. The material of this section allows us to easily conclude the
existence of dipoles for an arbitrary graph. Indeed, whenever b is a
connected graph over X and z,y € X then there exists a solution of
Lu=1, -1, in D,.

We now prove this statement. To avoid trivialities we only con-
sider the case x # y. If 1 ¢ Dy, then we have cap(z),cap(y) > 0
from Lemma [6.15] and from Corollary we obtain the existence of
monopoles g, and g, for  and y, respectively. Therefore, v = g, — g,
has the desired property.

If 1 € Dy, then we consider the minimizer u of Q on A = {f €
Do | f(z) > 1, f(y) < —1}. As in the proof of Proposition [6.20] we
infer that Lu(z) = 0 for z # x,y as well as Lu(x) > 0 and Lu(y) < 0.
As u(z) > 1 and u(y) < —1 we obtain u(z) # u(y) and thus u is
not constant. As all harmonic functions in D, are constant due to
1 € Dy by Lemma [6.18] we infer that u cannot be harmonic. So, it is
not possible that both Lu(x) = 0 and Lu(y) = 0 hold. Moreover, by
Green’s formula, Lemma [6.8, we have

0=0Q(u1) =) Lu(z)

and this shows Lu(r) = —Lu(y) # 0. Hence, v = u/Lu(x) has the
desired properties.

6. A probabilistic point of view*

In this section we connect recurrence and random walks. For this
purpose, we focus on the normalizing measure in this section.
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Let (b, c¢) be a graph over X. In Section , we introduced a Markov
chain (Y;,) with transition probabilities
b(z,y)
vex 0z, 2) + c(x)
for z,y € X. To these probabilities we associate the transition operator
Pop(x) = plx,y)e(y)
yeX

for ¢ € C.(X) and x € X. The next lemma shows that this operator
extends to a bounded operator on ¢*(X,n), where n is the normalizing
measure n(x) = Y v b(x,y) + c(z) for z € X.

p(x,y) = 5

LEMMA 6.34 (Transition operator). Let (b,c) be a graph over X.
Then, the operator Py extends to a bounded self-adjoint operator P: (*(X,n) —
(*(X, n) with operator norm bounded by 1.

PRrOOF. A direct calculation shows that Fy is symmetric. Further-
more, for ¢, € C.(X),

[(Pog ) = | Y pla,y)e(y)i(x)n(z)
v 1/2 1/2
< (Z wQ(x)n(fv)Zp(%y)) (Z wQ(y)n(y)ZP(yw)>
< [lelllel,

where we used that p(z,y) = p(y,x)n(y)/n(x) in the second line.
Hence, Py is bounded on C.(X) by 1 in ¢*(X, n) and can, therefore, be
extended to a bounded operator P on (*(X,n). O

By virtue of the lemma above, we can define powers of P and let
pr(z,y) = Pkly(x)
for z,y € X and k € Ny. Notice that P*1,(z) is the probability that
the random walker of the Markov chain (Y}) starting at = is at y after
k jumps, i.e.,
P, (Vi =y) = P'1,(2),
where for an event A we define
P.(A) =P(A| Yy = 2).
Furthermore, we denote the conditioned expectation by
E.(A) =E(A|Y, =x).

We now present the connection between the Markov chain and the
notion of recurrence as presented in the preceding sections. Note, in
particular, that recurrence is equivalent to the Markov chain visiting
every vertex infinitely often, regardless of the starting vertex.
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THEOREM 6.35 (Random walk perspective on recurrence). Let (b, c)
be a connected graph over (X,n). Then, for all x,y € X,

Gn(z,y) = /0 e M1, (v)dt = Zpk(x,y).
k=0

Moreover, for ¢ =0, the following statements are equivalent:
(xi) For some (all) x,y € X and some (all) measure(s) m

Gu(z,y) =

(xi.c) For some (all) z,y € X,

E,(#{k € No | Yy = y}) = o0
(xi.d) For some (all) x,y € X,

P.(Yy =y for some k € N) = 1.
(xi.e) For some (all) z,y € X,

P, (Yx =y for infinitely many k € Ny) = 1.
REMARK. For a graph (b, ¢) over (X, m) with the counting measure

m = 1 and associated self-adjoint operator L we have the following
corresponding formula

> —tL
1 §
/0 ¢ o) deg P

for x,y € X which relates the Green’s functlon to the transition matrix

(Exercise [6.23)).

We start by proving the equality for the Green’s function in the
theorem above.

LEMMA 6.36. Let (b,c) be a connected graph over (X,n). For all
z,y € X,

Gn(z,y) = / e 1, (v)dt = Zpk(x, ).
0 k=0

PRrROOF. Let (K;) be an increasing sequence of sets such that X =
U; Kj. Let Pg; be the restriction of P to C.(Kj) which extends to

an operator on EZ(X n) by projecting onto C.(K;) first and extending
by zero after applying Pg,, j > 1. Since p(x, y) > 0 for all matrix
elements of P, we have
k k k
PE1, < PE 1,< P,

forall z € X, j € Ny and k£ € N.
On the other hand, for fixed x,y € X and k € N, there exists a jy
such that for all K; with j > jo,

Pie 12(y) = P*1.(y).
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Namely, one chooses IV such that Ky includes every combinatorial path
of length k starting in x. Hence,

]lg?o Z PK o(z Z PFy(

for all ¢ € C.(X) and z € X by monotone convergence and decompo-
sition of ¢ into positive and negative parts.

Now, the operator L, on £*(X,n) can be written as L, = I — P,
where [ is the identity operator and the same is true for any restriction
of L,. In particular, denoting the Dirichlet restriction of L, to K; by
Lk, , a direct algebraic computation now shows that

Lyt = (Ix, — Px,)” Z P .

Applying this to a function ¢ € C.(X) and evaluating it at some = €
X, the left-hand side converges to [~ e " ¢(z)dt by Theorem .
Furthermore, the right-hand side converges to > .-, P*¢(x) by the
considerations above. This finishes the proof. Il

For the proof of the equivalences in Theorem [6.35] we need some
notation. First we introduce the following stopping times

S:(y) =min{k e Ny | Yy, =4, Y = x}
t;(y) =min{k e N| Y, =y, Y, =z},

where min () = co. Moreover, we define the functions

= P(sa(y) = k) = P, (Vi = y for some k € Ny)

= ZIP’(tx(y) = k) =P, (Y =y for some k € N),
which we relate to the Green’s function and show that g, is superhar-
monic.

LEMMA 6.37. Let (b,c) be a connected graph over (X,n). For all
z,y € X,

Gn(y,y)gy(x) = Gul(z,y).
Furthermore, for all y € X,

Lng, = 1y(gy(y) - uy(y)) > 0.

PrRoOOF. We calculate

(e, y) = Bo(Yi = y) = Y Plsa(y) = DBy (Yis = v).
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Then, we get by the Cauchy product formula

Gnlz,y) = Zpk(iﬁay)
= Z Z P(s:(y) = )P, (Yt = y)

I
Q.
Nk

~

<

=

- I

NS
~_
N
L

=~

o

8

S

I
~_

where we use P(s;(y) = 0) = 0 for x # y in the last step. Analogously,
we get for x =y,

Hence,

Lngy = 1y(9y(y) — uy(y)).
This completes the proof. O

We introduce another function related to the return probability of
the random walk. Let

vy(z) = P, (Y} = y for infinitely many k € Ny).
We relate this function to the function g, introduced above as follows.
LEMMA 6.38. Let (b, c) be a graph over (X,n). For all z,y € X,
vy () = vy(y)gy(2)-

In particular, v, is superharmonic for all y.
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PRrRoOOF. We calculate

vy(z) =P, (Y; =y for infinitely many I € Ny)

= Z]P’(sx(y) = k)P, (Y4 = y for infinitely many | € Ny | Y}, = y)

k=0
=P, (Y, = y for infinitely many [ € Ny) ZP(sx(g/) =k)
k=0
= Uy(y)gy(m)'
The “in particular” now follows from Lemma [6.37] above. U

oF THEOREM [6.35] The first equality follows from Lemma [6.306]
We now prove the remaining equivalences.

(xi) <= (xi.c): By virtue of Lemma [6.36, we have

Gn(z,y) = Zpk(x,y) = pr(Yk =y).
k=0 k=0
On the other hand,

E.(#{k € No | Vi =y}) = ) Pa(Yi = ).

(xi) = (xi.d)/(xi.e): Assume G,(y,y) = oo for some (all) y €
X. Then, all positive superharmonic functions are constant by Theo-
rem . Specifically, g, and v, are constant. We will show that g, = 1,
which is equivalent to (xi.d), and v, = 1, which is equivalent to (xi.e)
as y is chosen arbitrarily.

Obviously,

gy() = gy(y) =P, (Y, =y for some k € Ng) =1

for all z € X, which yields (xi.d).
Moreover, let

v@(jl) (x) = P.(Yy = y for at least [ numbers k € Np).
Then, by definition of w,,

Ug) (y) =Py (Y}, =y for some k € N)
P, (Y =y for at least [ — 1 numbers k € Ny)

=uy(y)oy(y) = .. = uy(y)'vy) (y)

= uy(y)l

since véo) (y) = 1. Hence,

vy(y) = lim v (y) = lim u, (y)',
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which is either 0 or 1. Since v, is constant it is either 0 or 1. Clearly,
uy(y) = Py (Yy =y for some k € N) =1,
which implies v, = 1, which is (xi.e).
(xi.e) <= (xi.d): This is clear.
(xi.d) => (xi): Assume g, = 1 and G,(y,y) < oo. By Lemmal6.37,

this implies that G,,(-,y) is constant. However, this is impossible by
Theorem [6.26] () as ¢ = 0. O
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Exercises

Excavation exercises.

EXERCISE 6.1 (Weakly convergent subsequence). Let H be a Hilbert
space. Show that any bounded sequence (f,,) in H has a weakly con-
vergent subsequence.

EXERCISE 6.2 (Minimizers on closed convex sets). Let H be a
Hilbert space with norm || - || and let U be a closed convex subset.
Show the map U — [0, 00) given by f + || f]| admits a unique mini-
mizer.

EXERCISE 6.3 (Invertibility and positivity of the Dirichlet Lapla-
cian). Let (b, c) be a connected graph over (X, m). Let K C X be a

finite subset of X and let Lg{D) be the associated Dirichlet Laplacian.

Show that L%D) is an invertible operator. Furthermore, show that if
o € K, then (Lg?))*llo >0 on K.

EXERCISE 6.4 (Staying within the set of superharmonic functions).
Let b be a graph over X. Show the following statements:

(a) The pointwise infimum of a set of superharmonic functions is su-
perharmonic whenever it is a finite function.

(b) The sum of two superharmonic functions is superharmonic. More
generally, the limit of any monotonically increasing sequence of
superharmonic functions is superharmonic whenever the limit is
pointwise finite.

(¢) The composition ¢ o u of a monotonically increasing concave func-
tion
@: [0,00) — [0, 00] with a positive superharmonic function u is
a superharmonic function which is non-harmonic whenever ¢ is
strictly concave.

Example exercises.

EXERCISE 6.5 (Bounded degree and finite measure implies recur-
rence). Let b be a graph over (X,m) such that m(X) < oo and
Deg(z) = (1/m(z))_,cx b(z,y) is bounded. Show that the graph
1s recurrent.

(Hint: Look for a sequence of functions e, as needed to show recur-
rence. )



EXERCISES 305

EXERCISE 6.6 (Hardy’s inequality on the natural numbers*). Let
X = N and let b be a graph over N with b(z,y) = 1 if and only if
|z —y| =1 and 0 otherwise. Prove that
S (o) =gl + D 2 -
n=0 n=1 TL
for all ¢: Ny — R with ¢(0) = 0.
(Hint: Show the statement first for corresponding functions in
C.(X) with the help of Exercises and (c). Then, extend to
D via Exercise[6.19])

EXERCISE 6.7 (Hardy’s inequality for trees). Let b be a k-regular
tree with standard weights over X (recall that a tree is a cycle-free
graph which is called k-regular if all vertices have exactly k£ + 1 neigh-
bors). Show that there exist a non-constant function w > (k+1) —2vk
such that @ > w on C.(X).

EXERCISE 6.8 (Pdlya’s theorem*). Let d € N and consider the
graph with standard weights over Z?. That is, the vertex set is given

by {z = (z1,...,2q4) |z; €Z,j=1,...,d} and

b(w,y) = (2 - Z |z — yj\)

for x # y and b(z, x) = 0. Show that this graph is recurrent for d = 1,2
and transient for d > 3.
(Hint: This is hard.)

Extension exercises.

EXERCISE 6.9 (Resistance metrics). Let b be a graph over X with
associated form Q.

(a) Show that
r(z,y) = sup{|f(z) — f(y)| | f € D, Q(f) < 1}

and

ro(x,y) = sup{|f(x) — f(y)| | f € Do, Q(f) <1}

are metrics on X.
(b) Show that r? and r2 are also metrics on X.

EXERCISE 6.10 (Decomposing D). Consider a connected graph b
over X. Let o € X. Define D, = {f € D | f(o) = 0}. Show that the
following statements hold:



306 6. RECURRENCE

(a) The form Q provides an inner product on D, and (D,, Q) is a
Hilbert space with

D =D, ® Lin{1}.
(b) The map
D, — D/Lin{1}, f = [f],
is bijective and isometric where D, is equipped with Q and D/Lin{1}
is equipped with Q([f]) = Q(f).

EXERCISE 6.11 (The capacity dichotomy). Let b be a connected
graph over X and let z € X. Consider a sequence ¢, € C.(X) such
that ¢, (z) = 1 and Q(p,) — 0 as n — co. Use Lemmal6.3](a) to show
that ¢, (y) — 1 for all y € X. Use this to conclude that the capacities
of points in X either all vanish or are all positive.

EXERCISE 6.12 (Recurrence for finite measures). Let b be a con-
nected graph over X. Show that the graph is recurrent if and only if

there exists a finite measure m such that D( 7(7?)) = D(Qq(q]lv))

EXERCISE 6.13 (Recurrence and uniformly unbounded functions of
finite energy). Let b be a connected recurrent graph over X. Show that
there exists a function f € D such that f(x) — oo as & — oo where
X U {oo} is the one point compactification of X.

(Hint: Consider f =" (1—e,) where (e,) is a suitable sequence
of finitely supported functions approximating 1.)

EXERCISE 6.14 (Recurrence in terms of sequences®). Let b be a
connected graph over (X, m). Show that b is recurrent if and only if
there exists a sequence (e,) in C.(X) such that 0 <e, <1, e,(z) = 1
as n — oo for every x € X and

h_}m Qen, f) =0

for every f € Dy. Show, furthermore, that it suffices to consider f € Dy
such that there exists a g > 0 in £*(X, m) such that

f@) = Gmlz,y)g(y)m(y)

for x € X (this is actually a hint).

EXERCISE 6.15 (A transient subgraph implies transience). Show
that a connected graph is transient if and only if it contains a tran-
sient subgraph. In this context, a subgraph of a graph b over X is a
restriction blyyy of b to some subset Y C X.
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EXERCISE 6.16 (0 is an eigenvalue of L(™)). Let (b, ¢) be a connected
graph over (X, m). Show that the following are equivalent:

(i) 0 is an eigenvalue for L(P).
(ii) The graph b is recurrent, ¢ = 0 and m(X) < oc.

EXERCISE 6.17 (Existence of monopoles). Show that cap(z) > 0
implies the existence of a monopole at z in the following way: If
cap(z) > 0, then (Dy, Q) is a Hilbert space and point evaluation is
continuous. Thus, by the Riesz representation theorem, there exists an
element g, € Dy with

Q9o f) = f(x)

for all f € Dy. Now, Green’s formula easily shows that g, must solve
Lg, =1,.

EXERCISE 6.18 (Hardy inequalities for general c). Let (b,c) be a
graph over X. Let u be a non-trivial positive superharmonic function.
Show that there exists a function w > 0 with Q@ > w on C.(X) such
that w is non-trivial whenever v is non-constant.

(Hint: Use the ground state transform.)

EXERCISE 6.19 (Hardy inequalities on D). Let (b,c¢) be a graph
over X such that there exists a w > 0 with @ > w on C,.(X). Assume
that b over X is recurrent. Show that @ > w on D.

EXERCISE 6.20 (Constant Green’s function). Let X = Nj with
b(x,y) = 1 if and only if |z — y| = 1 and 0 otherwise. Let ¢ = 1, and
m = 1. Show that the function G,,(+,0) is constant, where G,, denotes
the associated Green’s function.

(Hint: Show that the function 1 is the unique function w in D which
satisfies L,,u = 1.)

EXERCISE 6.21 (Green’s function for £ + Aw). Let (b, ¢) be a con-
nected graph over (X, m) and let w > 0 be non-trivial. Show that for
all non-trivial ¢ € C.(X), ¢ > 0 and A > 0 there exists a solution
uy: X — (0,00) to

(L + M0)uy = ¢
and that for the smallest of these solutions u,,
lim uy(2) = > Gulz,y)e(y)
yeX
for x € X, where the limit is infinite if the Green’s function G,, is
infinite.
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EXERCISE 6.22 (Green’s formula for general ¢). Let (b, ¢) be a con-
nected graph over (X, m). Show that the form Q is degenerate on Dy
if and only if whenever u € D with £,,u € ¢*(X,m), then

Z Lu(x =0
zeX

for some (all) measure(s) m.

EXERCISE 6.23 (Green’s function and the counting measure). Let
(b, ¢) be a graph over (X, m) with m = 1 and associated operator L.
Denote by pg(z,y) for z,y € X and k € N the matrix elements of
the k-th power of the transition matrix p whose elements are given by
p(z,y) = b(z,y)/ deg(x) where deg(r) = >,y b(z,2) + c(x). Show
that, for all x,y € X,

OO—tL
1
[ ot = iy ot
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Notes

Recurrence is a classical and well-established topic going back at
least to the work of Pélya [P6121]. As such, we do not even attempt to
give an exhaustive nor detailed historical overview of the development
of the subject. We only mention some major summarizing works and
refer the reader to them for further historical background.

For Riemannian manifolds, a list of equivalences for recurrence can
be found in the works of Grigor'yan [Gri99, |Gri09], which also give a
rather extensive historical overview starting with the work of Ahlfors
on Riemannian surfaces [Ahl52]. For random walks on graphs, we
mention the books of Woess [Woe00] as well as Soardi [Soa94] and
Doyle/Snell [DS84], which also provide a connection to electrical net-
works, see also [LP16, [JP]. These works also have a strong proba-
bilistic focus which we only touch upon in Section [0}, which is basically
taken from [Woe00]. Let us mention that the works above for graphs
deal mostly with discrete time. The connection between recurrence for
discrete and continuous time can be found, for instance, in [Sch17b].

Fundamental to our approach is the form perspective on recurrence
based on the idea of the extended Dirichlet space which appears as Dy in
our presentation. This approach goes back to work of Silverstein [Sil74]
and was further developed in the work of Fukushima/Oshima/Takeda
[FOT11] and Chen/Fukushima [CF12].

Let us also mention the approach via potential theory, for which a
historical overview is provided in the book edited by Brelot [Brel0].
Potential theory focuses on the study of the Green’s function in the
context of superharmonic functions. For a classical overview of poten-
tial theory we refer to the book of Helms [Hell4], for the graph case
see the book of Soardi [Soa94] and Anandam |[Anall.

There are a few non-classical characterization of recurrence in The-
orem [6.1] The first involves the Green’s formula (iii), which is devel-
oped in Section . This goes back to the work of Grigor'yan/Masamune
|GM13] for manifolds and Schmidt [Sch17b] for graphs. In the form
presented here, this characterization can be found in [HKL717], where
it is shown for general Dirichlet forms. Moreover, the characterization
in terms of Hardy’s inequality found in (viii) does not seem to appear
in the standard textbooks and originates in the work of Fitzsimmons
[Fit00]. For some more recent characterizations of recurrence in the
graph setting, see Theorem 11.6.15 in [Sch20b].

We also note that our equivalent notions of recurrence also hold
more generally for Schrodinger operators. In this case, this is referred
to as criticality theory, see [Pin88] for elliptic operators on domains in
Euclidean space, [Tak14] for Schrédinger forms and [KPP20] for the
graph setting.






CHAPTER 7

Stochastic Completeness

In this chapter we study a phenomenon called stochastic complete-
ness. At a basic level, this phenomenon concerns the heat equation
on ¢*°(X) and the preservation of heat for a graph b over (X, m). We
will give a variety of perspectives on this property. In particular, we
will show that a Green’s formula, uniqueness of bounded solutions of
the Poisson equation, triviality of a-harmonic bounded functions for
a > 0, a maximum principle and uniqueness of bounded solutions of
the heat equation and stochastic completeness are all equivalent. We
also introduce the more general notion of stochastic completeness at
infinity, which allows us to carry out a similar analysis for the heat
equation on ¢*°(X) for graphs (b, c¢) with a general killing term over
(X,m).

We start by recalling some basic definitions concerning the heat
equation. Let (b,c) be a graph over a discrete measure space (X, m).
A function u: [0, 00) x X — Ris called a solution of the heat equation
with initial condition f € C'(X) if
e ¢ — u;(x) is continuous on [0, 00) and differentiable on (0, co) for all

reX
e u; belongs to F for allt > 0

and u satisfies ug = f as well as
(L+0)u(x) =0

for all x € X and t > 0.

A solution of the heat equation w is said to be bounded if u is a
bounded function, i.e., Sup;c(p o) SUP ey |ut(7)] < 00. The function ug
is called the initial condition for the solution v and (£ + 9;)u = 0 is
called the heat equation. If u instead satisfies

(;C + 8t)u Z 0,

then w is called a supersolution of the heat equation.
We now recall the basics of the £2(X, m) theory for the heat equation

in order to motivate our discussion of the heat equation for bounded
P

b,c,m

functions. Let L = be the Laplacian of the regular Dirichlet form
Q= Qéi)m. As can be seen from the spectral theorem, for f € (2(X,m),

the heat equation admits a solution u; = e~*L'f which is in £2(X, m)
for all ¢ > 0 and has initial condition uy = f. Furthermore, it can be

311
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shown that this is the unique solution in D(L) which has f as the initial
condition. This case is discussed in detail in Appendices [A]and [D] see,
in particular, Theorems and [D.6}

As we are interested in bounded solutions of the heat equation for
bounded initial conditions, we have to extend the above discussion
to the space of bounded functions. Thus, we now recall the neces-
sary basics of the extension theory of the semigroups and resolvents on
(%(X,m) to all £2(X,m) spaces for p € [1, 00|, see Section [1| for further
details. We recall that

CP(X,m) ={f € CX)| Y_|f@)Pm(x) < oo}

zeX

for p € [1,00) and
£(X) = {1 € C(X) | sup(x)] < oo}

As shown in Theorems and , the semigroup et for ¢t > 0 and
the resolvent a(L + «)™! for a > 0 on (X, m) extend to bounded
operators on ¢*(X,m) for all p € [1,00]. The extensions to different
(P(X,m) spaces agree on the intersection of the ¢7( X, m) spaces in ques-
tion. Therefore, with a slight abuse of notation, we do not distinguish
in notation between the semigroup (or resolvent) on ¢?(X,m) and the
semigroup (or resolvent) on ¢?(X,m) in this chapter.

These extended semigroups and resolvents are Markov, i.e., they
map positive functions to positive functions and functions bounded
above by 1 to functions bounded above by 1. Furthermore, the semi-
groups and resolvents are also contractions in the sense that

le™™ <1 and  Ja(L+a)| <1

forall ¢ > 0 and o > 0.

We will use throughout that the semigroup on ¢*(X,m) and the
semigroup on (4(X,m) for 1/p + 1/¢ = 1 are dual to each other.
Specifically, if f € #(X,m) and g € (4(X,m) with 1/p+1/q =1
and (f,g9) = > ,cx f(x)g(x)m(x) denotes the dual pairing between
these spaces, then

(e f.9) = (f,e"g)

for all £ > 0. As they are Markov, the semigroup and resolvent admit a
positive kernel. As a consequence, for a positive function f € #(X,m)
for p € [1,00] the semigroup e X f and the resolvent (L + a)~!f can
be obtained via monotone limits e~*Yp, and (L + a)~typ,, where ¢,
are positive functions in C,(X) such that ¢,  f pointwise.

We now focus on the heat equation and introduce the property of
interest in this chapter. As is the case for £2(X, m), we will show that if
f € £*(X), then u; = e L f is a bounded solution of the heat equation
with initial condition f. This applies, in particular, to the constant
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function 1 which is equal to 1 everywhere on X. Since the semigroup
and the resolvent are Markov on £*°(X), we have

0<e'™1<1 and 0<a(l+a)'t<l1
for t > 0 and o > 0.

DEFINITION 7.1 (Stochastic completeness). A graph (b, ¢) over (X, m)
which satisfies one (equivalently, both) of the following equalities

e 1 =1 and a(L+a) 1 =1

is called stochastically complete or conservative for all t > 0 and o > 0.
Otherwise, (b, c) over (X, m) is called stochastically incomplete.

It is not hard to show that whenever ¢ # 0 neither of the equalities
hold, see the remark after the proof of Theorem below. So, The-
orem characterizes the validity of the equalities in the case ¢ = 0,
that is, in the case of no killing term. Later in this chapter, we will
also address the general case of ¢ > 0 under the name of stochastic
completeness at infinity. If a graph is stochastically complete, then
¢ = 0 and stochastic completeness and stochastic completeness at in-
finity are the same. However, when ¢ # 0, it is possible for a graph
to be stochastically incomplete while being stochastically complete at
infinity. The basic idea for stochastic completeness at infinity is that
we store the heat removed by ¢ and add it to e **1. In order to make
this idea precise, we have to extend the semigroup to general positive
functions.

Let us next give an interpretation of the equation e **1 = 1 in terms
of the preservation of heat. For this discussion, we will assume ¢ = 0
as otherwise e~*#1 = 1 does not hold. Let f € (1(X,m) with f > 0
represent a distribution of heat on X at time ¢t = 0. In other words,
f € (*(X,m) is an initial condition for the heat equation. Then, the
amount of heat at time ¢ > 0 at a vertex z is given by e~ 'L f(x). Using
the dual pairing (-,-) between £>°(X) and ¢*(X,m), the fact that the
heat semigroups on these spaces are dual to one another and e~ *1 < 1,
we calculate

S" et flapmia) = (Le ) = (L) < (1, f) = 3 fam(a).
zeX reX
The left-hand side of the equation is the amount of heat in X at time
t > 0 and the right-hand side of the equation is the amount of heat in
X at time t = 0. Hence, whenever the inequality is strict, there is less
heat in the graph at time ¢ > 0 than at the beginning, in other words,
the system has lost heat.

From another viewpoint, the equality e **1 = 1 can be understood
as a uniqueness condition on bounded solutions of the heat equation.
Specifically, both e *1 and 1 are a bounded solutions of the heat equa-
tion with initial condition 1. Hence, if bounded solutions of the heat
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equation are uniquely determined by initial conditions, then e7*1 = 1
and the graph is stochastically complete. It turns out that the op-
posite implication also holds, that is, stochastic completeness implies
that bounded solutions of the heat equation are uniquely determined
by initial conditions.

Informally, the reason for the possible loss of heat is strong growth
of the geometry of (b, c) which pushes heat to infinity. In fact, if the
graph is connected and if heat is lost at some time, then it is lost at
any other time. Hence, stochastic incompleteness is an instantaneous
phenomenon. From a probabilistic perspective, this means that the
process has a finite lifetime.

Finally, we recall that v € F is called a-harmonic for o € R if
(£ + a)u = 0 and a-subharmonic if (£ + a)u < 0. We will also see
that stochastic completeness is equivalent to the triviality of bounded
positive a-(sub)harmonic functions for a > 0.

After these preparations, we now state the various characterizations
of stochastic completeness.

THEOREM 7.2 (Characterization of stochastic completeness). Let b
be a connected graph over (X, m). Then, the following statements are
equivalent:

(i) For some (all) t > 0 and some (all) x € X,
e 1(r) = 1.
(i.a) For some (all) a > 0 and some (all) x € X,
a(L +a) '(z) =1

(ii) There exists a sequence of functions e, € D(Q) (equivalently, e,, €
Co(X)) with 0 < e, <1 for alln € N such that e,, — 1 pointwise
and

lim Q(e,,v) =0

n—oo

for allve D(Q)N (X, m).

(ii.a) There exists a sequence of functions e, € D(Q) (equiva-
lently, e, € C.(X)) with 0 < e, <1 for alln € N such that
e, — 1 pointwise and

lim Q(e,, (L+a)'v) =0

n—oo

for one v € 2(X,m) N LY (X,m) with v > 0 and some (all)
a > 0.
(iii) If v € DNLYX,m) N (X, m) satisfies Lo € ((X,m), then

Z Ly(xz)m(xz) = 0. ( “Green’s formula™)

zeX
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(ili.a) If v € DNLYX, m) N (X, m) satisfies Lo € (1(X,m) N
(2(X,m), then

Z Lou(x)m(z) = 0.

zeX
(iv) If u € F satisfies supu € (0,00) and B € (0,supu), then

sup Lu > 0,
Xp
where Xg = {z € X | u(z) > supu — B}.
( “Omori—Yau mazimum principle”)

(v) For some (all) o > 0 and every f € (>°(X) there exists a unique
bounded solution u of the Poisson equation

(L+a)u=f. ( “Poisson equation”)

(v.a) For some (all) o > 0 every positive u € (°°(X) which satis-
fies (L4 a)u <0 is trivial.

(v.b) For some (all) a > 0 every u € (X)) which satisfies (L +
a)u = 0 is trivial.

(v.c) For some (all) o > 0 every positive u € £°°(X) which satis-
fies (L4 a)u = 0 is trivial.

(vi) For every f € (°(X) there exists a unique bounded solution u of
the heat equation

(L+0)u=0 with wuy=f. (“Heat equation”)

(vi.a) Every bounded solution u of the heat equation (L + O)u = 0
with ug = 0 s trivial.

REMARK. The characterizations given in (v) and (vi) above should
be understood as uniqueness statements since the existence of bounded
solutions is always guaranteed by means of the extended semigroups
and resolvents.

The proof of Theorem is divided into several theorems which we
prove in the upcoming sections. Indeed, we prove the equivalence of
these statements for the more general notion of stochastic completeness
at infinity, which allows for a non-vanishing killing term c. Below we
give a summary of how the results proven in the upcoming sections
come together.

OF THEOREM [T.2] The equivalences (i) <= (i.a) <= (vi) <
(vi.a) which connect stochastic completeness and uniqueness of bounded
solutions of the heat equation are proven in Theorem in Section [3]

The equivalences (i) <= (v) <= (v.a) <= (v.b) <= (v.c) which
relate stochastic completeness to the Poisson equation as well as a-
(sub)harmonic functions are proven in Theorem in Section [4]
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The equivalences (i.a) <= (ii) <= (ii.a) which characterize sto-
chastic completeness in terms of the constant function 1 being suitably
approximated are proven in Theorem [7.23]in Section [5]

The equivalence (ii) <= (ii.a) <= (iii) <= (iil.a) connecting
Green’s formula and the ability to approximate 1 is proven in The-
orem in Section [6] Combined with the results above, this gives
the Green’s formula perspective on stochastic completeness.

The equivalence (iv) <= (v.a)/(v.c) connecting the Omori-Yau
maximum principle and triviality of bounded positive a-(sub)harmonic
functions for o > 0 is proven in Theorem [7.28|in Section [7} Combined
with the results above, this gives the Omori—Yau maximum perspective
on stochastic completeness. Il

The proofs of the theorems which combine to prove Theorem
are given in the subsequent sections. More specifically, we start by
discussing properties of bounded solutions to the heat equation in Sec-
tion[I} In Section 2] we introduce the concept of stochastic completeness
at infinity. This requires a bit of work as we have to extend the semi-
group and resolvent on bounded functions to general positive functions
by monotone approximation and the use of nets. The reader who is
only interested in stochastic completeness may skip Section [2| as we
point out how to substitute the results needed from this section in sub-
sequent proofs. Sections [3} [ [}, [6] and [7] are dedicated to the proof
of the results mentioned above. Section [§] gives an additional criterion
for stochastic completeness at infinity which is useful in certain situa-
tions such as comparison results. Finally, in Section [0 we discuss the
probabilistic point of view on stochastic completeness and stochastic
completeness at infinity.

REMARK (Stochastic completeness implies ¢ = 0). We have already
discussed stochastic completeness for finite graphs in Section [8] In the
case of finite graphs, a graph is stochastically complete if and only if
¢ =0, see Theorem [0.65] In particular, whenever we take the Dirichlet
restriction of the form @ = gi}m to a finite subset of an infinite
connected graph, the resulting graph is stochastically incomplete as
¢ # 0 in this case. However, for infinite graphs, we will see that a
graph can be stochastically incomplete even if ¢ = 0. On the other

hand, stochastic completeness always implies ¢ = 0 (Exercise .

1. The heat equation on (*

In this section we study the heat equation on the space of bounded
functions. In particular, we show that there always exists a bounded
solution of the heat equation for a given bounded initial condition. We
also show how bounded solutions of the heat equation with zero initial
conditions generate bounded a-harmonic functions for a > 0.
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Excavation Exercise [.1] recalls Dini’s theorem while Excavation
Exercise discusses the convergence of continuously differentiable
functions. These are used in the proof of Theorem [7.3

To show the existence of bounded solutions of the heat equation for
any bounded initial condition, we apply the semigroup e~** originally
defined on %(X,m) and then extended to £*°(X) to a given bounded
function. We will show that such a solution is positive whenever the
initial condition is positive and that the heat semigroup generates the
minimal solution of the heat equation whenever the initial condition
is positive. This extends the corresponding statement for ¢*(X,m) in
Lemma [1.24] and for ¢7(X, m) for p € [1,00) in Theorem [2.14]

We note that for the existence part of the proof in the ¢*(X,m)
case we used the spectral theorem found in Appendix [A] and in the
(X, m) case for p € [1,00) and initial conditions in D(L®) we used
the general theory of strongly continuous semigroups found in Appen-
dix [D] However, the semigroup on > (X) is only weak* continuous and
as such, we cannot use the general theory. Furthermore, we are inter-
ested in solutions to general bounded initial conditions. Thus, we give
full details for the existence proof in this case below.

THEOREM 7.3 (Existence of bounded solutions of the heat equa-
tion). Let (b,c) be a graph over (X, m) and let f € (>(X). If

w(z) = e f(x)
fort >0 and x € X, then u is a bounded solution of the heat equation
with initial condition f.
Furthermore, if additionally f > 0, then u is the smallest positive
supersolution of the heat equation with initial condition greater than or
equal to f.

ProoOF. We start by showing the continuity and boundedness of w.
We denote the dual pairing between ¢! (X, m) and ¢>°(X) by (-,-) and
let n, € (1(X,m) for x € X be given by 1, = 1,/m(z). Since

() = (s, €7 f)
for x € X and ¢t > 0, continuity of the function ¢ — w,(z) for t > 0

and x € X follows from the weak* continuity of the semigroup on
(>°(X) established in Theorem [2.9] Furthermore, as the semigroup on
(*(X,m) is strongly continuous, we have ug = f. Finally, as e~ is
a contraction semigroup on ¢*°(X) by Theorem , it follows that wu,
is bounded by ||f||s for every t > 0. In particular, u, € F for every
t>0.

As an intermediate step, we next show the continuity of

(Z b(z, y)(wi () = wi(y)) + C(w)ut(af)>

t— Lu(z) = méx)
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on [0, 00) for every x € X. Indeed, this is immediate from the continu-
ity of t — wu,(y) for each y € X, the uniform boundedness of u in both
variables, and the summability of b(x,-) for every z € X.

We will now show differentiability and the fact that u satisfies the
heat equation. We will do so by approximating f by functions with
finite support and using that the heat equation holds for functions in
¢*(X, m) and, hence, for functions with finite support.

We note that the preceding considerations hold for any bounded
function f and, in particular, for the elements of the approximating
sequence f, and u\” = etLf, which we introduce below. Hence, the
functions t — u,(z),t — u{(2), t = Lu,(x) and ¢ — Lul™ (z) will be
continuous for all x € X and all n € N.

Let t > 0. By decomposing f into positive and negative parts, we
can assume without loss of generality that f is positive. Let (K,) be
a sequence of finite increasing subsets of X such that X = |, K,.
Furthermore, let f, = flk, and let

u" = e

Since e~** on ¢*°(X) is a bounded Markov semigroup by Theorem [2.9]
e~ admits a positive kernel p. That is,

efth(x) = Zpt(w, y) f(y)m(y),

yeX

where p,(z,y) > 0 for all z,y € X and t > 0. Thus, u\” () 7 w(z) as
n — oo for all x € X and ¢t > 0. Moreover, the convergence is uniform
on compact subintervals of (0,00) by Dini’s theorem as both u™ (x)
and u(x) are continuous functions.

Since f,, € C.(X) C £2(X, m)N¢>(X) and the semigroup on ¢*°(X)
agrees with the semigroup on ¢2(X,m) for all functions in ¢*(X,m) N
(>°(X) by Theorem , it follows that u!" € (*(X,m). Therefore, for
all z € X, t > 0 and n € N, we infer by Lemma [1.24] that

" () = —Lug"™ ()
= —Cuff") (x)

(Z b, y) (ug" (2) — uf™ (y)) + c(a)u” <x>) .

1
m()

Monotone convergence of u."™ (y) to ut(y) for all y € X, and the fact
that uy; € (>°(X) C F, yields the convergence of the right-hand side to

—Lu(x) asn — oo for each x € X and t > 0. Therefore, we obtain the
convergence of atugn)(x) to Luy(x) as n — oo for each x € X and t > 0.
In fact, this convergence is uniform in ¢ on compact subintervals of

(0, 00) as the convergence of the ul™ (y) to u(y) is uniform on compact
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subintervals of (0,00) for each y € X and b(x,-) is summable for each
r e X.
Altogether we have established that the u§”) (x) converge uniformly

on compact subintervals of (0,00) to u;(z) and the Apul™ (x) converge
uniformly on compact subintervals of (0, 00) to —Lu;(z) as n — oo for
each z € X. As discussed above, all involved functions are continu-
ous. Thus, this gives that ¢ — w.(z) is differentiable with the desired
derivative.

It remains to show the last statement of the theorem. That
is positive whenever f is positive follows immediately from the fact
that the semigroup on ¢*°(X) is Markov and, in particular, positivity
preserving by Theorem We now show the minimality statement.
Let w be a supersolution of the heat equation with initial condition
greater than or equal to f. From what we have shown above, u(™
satisfies

(£ +d)ui™ =0

for ¢t > 0 and ué”) = f, for n € N. Furthermore, the u{™ agree with
the solution generated by the semigroup of £2(X, m) as the semigroups
agree on their common domain by Theorem As w is a positive su-
persolution with initial condition greater than or equal to f, we obtain
u™ < w for all n by Lemma . Letting n — oo gives u < w which
completes the proof. O

The argument in the preceding proof deals with compact subinter-
vals of (0,00). We could equally well work with compact subintervals
of [0, 00), as can be seen by carefully going through the argument. This
would yield that the function u; satisfies the heat equation at ¢t = 0
as well, i.e., on the entire interval [0,00). In the next proposition we
provide a more general argument showing this for all bounded solutions
of the heat equation irrespective of whether they have the form e=** f
or not.

PROPOSITION 7.4 (Heat equation at ¢t = 0). Let (b,c) be a graph
over (X, m) and let u be a bounded solution of the heat equation. Then,
the function [0,00) — R,

t — Luy(z),

s continuous for all x € X, the limit

Dy (7)o = hliféﬂ M

exists for all x € X and
(L+0)u(z) =0
forallz € X andt > 0.
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PrOOF. We first show the continuity of ¢ — Lu,(z) on [0,00): As
u is a solution of the heat equation the map ¢ — u,(y) is continuous for
each y € X. As b(x,-) is summable for each x € X and wu is bounded,
we then obtain that

1
Lue) = s (Z b)) — ) + c(x)uto:))
yeX
is continuous at every t € [0,00). Moreover, as u is a solution of the
heat equation, we have

Ovur(z) = —Luy(x)

for all ¢ > 0.

Altogether, for each z € X, the function ¢ — u(x) is a continuous
function on [0, 00) which is differentiable on (0, 00) and ¢t — —Lu(x)
is a continuous function on [0, co) which agrees with the derivative of
t — u(x) on (0,00). This implies that w(x) is differentiable at ¢t = 0
with derivative given by —Lug(z): Indeed, by the mean value theorem,
for every x € X and h > 0, there exists a ((h) € (0, ) such that

up(T) — up(x
@) ZU0T) bl ery = —Lugn ().

h
This implies
lim un(@) = uo() = —Lug(z)
h—0+ h
by continuity. U

REMARK. We observe that the proofs of Theorem and Propo-
sition given above extend to initial conditions f € P(X,m) for
p € [1, 00| whenever the graph is locally finite. Indeed, the actual ar-
gument works as soon as continuity of the function ¢ — wu,(y) for all
y € X implies continuity of ¢t — Lu(z) for all x € X.

REMARK. In the case of a uniformly positive measure, which is
treated in the next chapter, we have *(X,m) C (>(X) for all p €
[1, 00] with continuous inclusions. In this case, the theorem above im-
plies the existence of solutions to the heat equation for initial conditions
fer(X,m) for p € [1,00] as well.

The preceding considerations apply to the heat equation with initial
condition 1. In this case, u; = e **1 is the minimal positive solution
of the heat equation with uy = 1. The constant function 1 is also such
a solution and stochastic completeness is defined as the equivalence of
these two solutions, that is, e **1 = 1. From this discussion, it is clear
that if bounded solutions of the heat equation are uniquely determined
by initial conditions, then a graph is stochastically complete. We will
see later that the converse is true as well.
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We now present an easy consequence of the semigroup and Markov
properties of the heat semigroup on ¢°°(X). This result will be useful
in showing that if the total amount of heat in the graph drops below 1
at some time, then it drops below 1 for all times.

LEMMA 7.5. Let (b,c) be a graph over (X,m). If s >t >0, then
e < et
PROOF. From Theorem 2.9 we get that the heat semigroup is both

positivity preserving and contracting. Let s =t + h with ¢,h > 0. As
the semigroup is contracting we have

e "1 <1,

As the semigroup is positivity preserving, this gives, after we apply
e 'F to both sides,

e_SLl — e_tLe_hLl < 6—tL1
This is the desired statement. O

The next proposition connects bounded solutions of an inhomoge-
neous heat equation with solutions of the Poisson equation.

PROPOSITION 7.6 (Solutions of heat and Poisson equations). Let
(b,c) be a graph over (X,m). Let f,g € {>*(X) and let u: [0,00) X
X — R be a bounded solution of

(E—l—@t)ut:f

with initial condition ug = g. Then, for a > 0 the function
v = / ae oy, dt
0

(L4 a)v=f+ag.
Moreover, if additionally f,qg > 0, then
w = / e e (f 4+ ag)dt
0

is the smallest positive function w € F with (L + «)w > [+ ag. In
particular,

1s bounded and satisfies

/ emetL(f—l—ag)dtg/ e uydt.
0 0

PRrROOF. The boundedness of v follows since we assume that wu is
bounded and since ae™**dt has total measure 1 on [0, 00).
Furthermore, by the boundedness of u and Fubini’s theorem, we

have for all z € X
T

Lo(z) :/ ae " Luy(z)dt = lim e Luy(x)dt.
0

T—o00 0
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Since u satisfies Lu; = —0yuy + f, we infer
T

...= lim ae_ta(—(?tut(:v))dt—l—/ ae " f(x)dt
0

T—o0 0

T—o0

T
= lim (—ae‘taut@)ﬁ—/o aQe_to‘ut(x)dt) + f(x),

where we used integration by parts and the fact that ce™*dt has total
measure 1 on [0,00). Next, we conclude from the boundedness of u
and uy = ¢ that the first term tends to ag and, therefore,

o=ag(r) — a/ooo ae "y (z)dt + f(x)

= ag(r) — av(z) + f(2)

by the definition of v. Therefore, v is bounded and satisfies (£ + «a)v =

f+ag.
If f,g € £°°(X), then

/°° e e (f +ag)dt = (L+a) " (f +ag)
0

by the Laplace transform formula, see Theorem [2.11] Furthermore, if
f and g are positive, Theorem [2.12| gives that (L + o)~ (f 4+ ag) is the
minimal positive function w € F with (£ + a)w > f+ ag. As v is
such a function by what we have shown above, (L + )" (f +ag) <v
follows. U

As a particular consequence of the proposition above, we get that
bounded solutions of the heat equation with vanishing initial condi-
tions give rise to a-harmonic functions, i.e., to solutions of the equation
(L 4+ a)v = 0. In particular, if a bounded solution of the heat equa-
tion is positive and non-trivial, then the arising a-harmonic function
is positive and non-trivial. If a graph is stochastically incomplete, i.e.,
e 1 < 1, we get that u, = 1 — e 7?11 is a positive non-trivial bounded
solution of the heat equation with trivial initial condition. Therefore,
there exists a positive bounded non-trivial a-harmonic function for any
a > 0 in this case. This will be used later in the proof of our charac-
terization of stochastic completeness.

COROLLARY 7.7 (Solutions of the heat equation and a-harmonic
functions). Let (b,c) be a graph over (X,m) and let u be a bounded
solution of the heat equation with ug = 0. Then, for a > 0 the function

o0
v:/ e u,dt
0

(L4 a)v=0.

1s bounded and satisfies
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In particular, if there exists a positive non-trivial bounded solution
of the heat equation with trivial initial conditions, then there exists a
positive non-trivial bounded a-harmonic function for any o > 0.

PRrROOF. This follows immediately from Proposition by letting
f and g be 0. O

2. Stochastic completeness at infinity

In this section we introduce the concept of stochastic completeness
at infinity. This will allow us to discuss the notion of conservation of
heat in the case of a non-vanishing killing term. In order to do so, we
extend the semigroup and the resolvent of a graph to arbitrary positive
functions by means of monotone convergence.

We have already introduced the notion of stochastic completeness
via the equality e 7?1 = 1 for all t > 0. It was discussed in the remark
following Theorem that a non-vanishing killing term instantly re-
moves heat from a space so that e=**1 < 1 for all ¢ > 0 whenever the
graph is connected and ¢ # 0. In particular, all connected graphs with
a non-vanishing killing term are stochastically incomplete.

Therefore, in order to deal with the case of a general killing term,
we need to introduce a new concept. We will use monotone limits to
apply the heat semigroup e~*£, originally defined on ¢*(X,m) and then
extended to ¢°(X), to arbitrary positive functions. In particular, we
apply the heat semigroup to the function ¢/m and define the quantity

M,(z) = e "1(z) + /Ot (e_SL%> (x)ds

for x € X and t > 0. The function M; serves as a replacement of
e *1 in the case of a non-vanishing c. We note that some care has
to be taken since even the finiteness of M is not immediately clear.
However, we will show that 0 < M; < 1 for all t > 0 and that the
function ¢t — M;(x) is continuous and differentiable for all x € X.
Furthermore, we will see that M satisfies a modified heat equation.

Clearly, M, = e7**1 if ¢ = 0. On the other hand, we will see that
M, > e7**1 on any connected component on which ¢ does not vanish
identically since the extended semigroup is positivity improving. The
term e~ "*1 can be interpreted as the amount of heat in the graph at
time ¢ given a constant initial distribution of heat. The integral term
in M; can be interpreted as the amount of heat killed by ¢ in the graph
up to the time ¢. Hence, adding these two terms gives the total amount
of heat that is either in the graph at time t or has been removed from
the graph by ¢ up to time t.

While ¢ directly removes heat from the graph, we will see that heat
can also disappear from the graph by being transported to “infinity”
via the geometry even when no killing term is present. In the case of
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non-vanishing ¢, the function M; can be interpreted as the amount of
heat not transported to “infinity” via the geometry so that 1 — M, is
the amount of heat transported to “infinity” via geometry at time ¢.
In this section we study the question if

Mtzl

for all t > 0, that is, if none of the heat has been transported to
“infinity” via the geometry.

After this discussion, we now work towards proving the statements
above. In order to define M, we have to extend the semigroup to
general positive functions to make sense of the term e **(¢/m). To
this end, we note that for a positive function v € C'(X) the functions
v € C(X) with 0 < ¢ < v form a net with respect to the partial
ordering g < h whenever g < h for g, h € C(X). More specifically, the
set Cp(X) = {p € Ce(X) | 0 < ¢ < v} is both a directed set with
the partial ordering < as well as a topological space with respect to
pointwise convergence. We denote limits along this net by lim,_,.

By Theorems and [2.11], the semigroup and the resolvent are
positivity preserving on C.(X). Therefore, for f € C(X) with f >
0, we can define the functions e *“f: X — [0,00] for t > 0 and
(L+a)™tf: X — [0, 00] for a > 0 via

" f(z) = lme " p(a)
(L+a) ' f(2) = Im(L + @) p(a).

We refer to e 2 f and (L + o)~ Lf for f € C(X) with f > 0 as the
extended semigroup and extended resolvent, respectively. We note that
they may both take the value infinity. We will give some abstract cri-
teria for when they are finite below. Furthermore, since the semigroup
and resolvent are bounded Markov operators on (X, m), they admit
positive kernels. Therefore, the definitions above agree with the semi-
group and the resolvent for functions in #(X,m) for p € [1,00]. For
this reason we do not distinguish between them in notation.

We next collect some basic properties of the extended semigroup
and resolvent. As we define the extended semigroup and resolvent
as limits over finitely supported functions, where all semigroups and
resolvent and their generators agree, we note that we can use properties
of either L = L(P) or L = L) before passing to the limit.

We first note that the extended semigroup et satisfies the semi-
group property, that is,

—(s+t)L _ —sL _—tL

€ e €

for s,t > 0. This can be seen directly by taking monotone limits.
Next, we show that the extended semigroup and resolvent can be
approximated by the restrictions of the Dirichlet Laplacian L to an
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exhaustion. To this end, we recall that for any finite K C X the

operator L%)) is the restriction of £ to functions in (K, mg) which
are considered as functions on X by extending by 0. Thus,

LY f(z) = Lf(x)

forall z € K and f: K — R, where f: K — R satisfies f = f on
K and f = 0, otherwise.

In Section 3, we have shown that the resolvent and semigroup of the
Dirichlet Laplacian of an exhaustion converge in a pointwise monotoni-
cally increasing manner to the resolvent and semigroup of the Laplacian
on the entire space, see Lemma [[.21] We now show that the same is
true for the extended resolvent and semigroup.

LEMMA 7.8 (Convergence of finite approximations). Let (b, c) be a
graph over (X,m). Let f € C(X) with f > 0, let (K,,) be an increasing
sequence of finite subsets of X such that X = J,, K,, and let f, = 1k, f.
Then, for allx € X, t>0 and a > 0

(L) + o) fulz) 2 (L+ )7 f(2)
e u(2) 7 e (@)

as n — oo, where the right-hand sides are allowed to take the value co.

Consequently, both (L + o)~ f and e *L'f are strictly positive on
any connected component of the graph on which f does not vanish. In
particular, if the graph is connected, then the extended resolvent and
semigroup are positivity improving.

PRrROOF. We only show the statement for the resolvent as the state-

ment for the semigroup is proven analogously. Let L(IQL) be the restric-
tion of L to K,, for n € N. As

(L) + o) < (L + )

by domain monotonicity, Proposition |1.20| (¢), and (L%? +a)7tf, con-

verge to (L + a)™' f, as k — oo by Lemma [1.21| we obtain
(L) +a) o < (L+a) o
Combining this with the fact that f, < f we have
(Lic) + ) o S (Lt ) S (Lt )7

for all n € N.
It remains to show the “reverse” inequality. We consider two cases.
Case 1. (L + a)7' f(z) < co: Let € > 0. Then, by the definition of
the extended resolvent, there exists a ¢ € C.(X) such that 0 < ¢ < f
and

(L+a) " fla) —e < (L+a) o).
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Since ¢ € C.(X), the support of ¢ is included in K, for all n large.
Furthermore, as the resolvents (Lg, + o)™t !

converge to (L + «)~" on
¢*(X,m) by Lemma we get

(L+a) T p(z) — e < (L) +a) ()

n

for all n sufficiently large. Together, these two inequalities give for all
n large enough that

(L+a) " f(z) — 26 < (LY +a)Yp(a).

Since the support of ¢ is included in K,, we have 0 < ¢ < f,
as f = f, on K,,. Thus, as (L%Z) + «)~1 is positivity preserving by

Proposition [1.20] (b),
(L4 a) ' f(z) — 26 < (L) + )" fu(2),

which finishes the proof in this case as € > 0 can be chosen arbitrarily
small.

Case 2. (L + a)™'f(z) = co: Let C' > 0. By the definition of the
extended resolvent, there exists a ¢ € C.(X) such that 0 < ¢ < f and

C < (L+a) p().

By similar considerations as in Case 1, we obtain for all € > 0 and all
sufficiently large n

C—e< (L%} +a) (),

which finishes the proof of the convergence statement.

The fact that (L + «)~'f(z) > 0 for all z in a connected com-
ponent of (b, ¢) on which f does not vanish follows from the positivity

improving property of the resolvent on connected graphs shown in The-
orem [1.26l O

In the following lemma we show how the finiteness of the extended
resolvents can be characterized via the existence of minimal superso-
lutions. We note that, in the case of bounded positive functions, the
resolvent always gives the minimal solution by Theorem [2.12] The fol-
lowing result shows that the same is true for general positive functions
whenever the extended resolvent is finite.

LEMMA 7.9 (Characterizing resolvents as supersolutions). Let (b, c)
be a graph over (X, m). Let a« > 0 and let f € C(X) with f > 0. Then,
the following statements are equivalent:

(i) (L4+a) ' f(x) <oo forallz e X.

(ii) There exists a v € F with v > 0 such that (L + a)v > f.
In this case, u = (L +a)~ ' f satisfies (L + a)u = f and is the smallest
function v € F with v > 0 and (L + a)v > f.
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PROOF. (i) = (ii): Let ¢ € C.(X) satisfy 0 < ¢ < f. Since L is
a restriction of £ on C.(X) by Theorem we have
(L+a)(L+a) p=0
Taking monotone limits on both sides of the equation we obtain that
(L+a)'f € F and
(L4+a)(L+a) ' f=Ff

by Lemma . Since ¢ > 0 it follows that (L + a)7lp > 0 as the
resolvent is positivity preserving by Corollary [1.22, Therefore, we have
(L + a)~'f > 0. This shows (ii) for v = (L + o)~ f. Furthermore, this
also shows that u = (L + )~ f solves (L + a)u = f.

(i) = (i): Let v € F with v > 0 satisty (£ + a)v > f. Let (K,)
be an increasing sequence of finite sets such that X = |J, K, and let
fn = flg, for n € N. Let u,, = (ng? + )71 f, and extend u, by zero
outside of K,,. Then, letting w,, = v — u,, we get that w,, satisfies:

o (L+a)w,=(L+a)v—(L+a)u, > f—f,=00n K,

e w, A0 = min{w,,0} attains a minimum on the finite set K,

e w,=v>0o0n X\ K,.

Therefore, by the minimum principle, Theorem (1.7, we infer
W, =v —u, > 0.

Since uy,(z) converges to (L + )~ f(z) as n — oo for every x € X by
Lemma [7.8] we infer
v>(L+ a)’l f

Therefore, (L 4+ )™ f(z) < oo for all z € X. This shows (i).

Furthermore, letting u = (L + «)~! f, we have 0 < v < v and thus
u € F. Since v was an arbitrary solution of (£ + a)v > f, we infer the
minimality of u. Finally, the fact that u solves (£ + a)u = f follows
from (i), as discussed at the end of the proof of (i) = (ii). O

We now apply the considerations above to the strictly positive func-
tion f = al+c¢/m for a > 0. In particular, we show that the resolvent
applied to f is bounded between 0 and 1. It will turn out that this
resolvent being equal to 1 is equivalent to stochastic completeness at
infinity.

LEMMA 7.10. Let (b, c) be a graph over (X, m) and let o« > 0. Then,
0<(L+a)t (041+£> < 1.
m
PROOF. Let f = al + ¢/m. Then, the constant function 1 solves
m+an:(£+aQ:f
m

Hence, Lemma yields that (L + «)~'f is the smallest solution v
to (L + a)v > f. Therefore, (L +a)~'f < 1. Since f > 0 and the



328 7. STOCHASTIC COMPLETENESS

resolvent is positivity preserving, we also get (L + a)~'f > 0. This
completes the proof. O

In the lemma below we show that the connections between the
resolvent and the semigroup also hold for the extended resolvent and
semigroup. In particular, we extend the Laplace transform formula to
all positive functions.

LEMMA 7.11. Let (b,c) be a graph over (X,m) and let f € C(X)
with f > 0.

(a) For every a > 0,

L —1: Oo—toz—tLd‘
(L+a) " f /Oe e " fdt

( “Laplace transform”)
(b) For everyt >0,

PROOF. From the spectral theorem we have the statement for all
p € C.(X), see Theorem [A.35] Thus, the statements follow by taking

monotone limits. O

We recall that the goal of this section is to investigate the properties
of M, = "1 + [ e~*(c/m)ds, where the integrand has now been
defined via monotone limits. In the next lemma we show that the
integral part of M is finite and even bounded by 1.

LEMMA 7.12. Let (b, c) be a graph over (X, m). Then, the function
u: X — [0, 00| defined by

u(z) = /000 (e’tL%> (x)dt

0<u<l1 and Lu=—.
m

PROOF. Let ¢ € C.(X) be such that 0 < ¢ < ¢/m. For a > 0, we
define

satisfies

Upo = / e ety dt >0
0

and

U, = lim uy, o
v a—0t v

where the limit exists since u,, , is monotonically increasing as o — 07
and u, < 1. Then, by the Laplace transform, we have

Upa = (L + oz)_lgo
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so that (L+a)u, . = ¢ as L is a restriction of £. Since ¢ < al+c/m for
all a > 0 and since the resolvent is positivity preserving, we conclude

ucp,a - (L + 04)_180 S (L + Oé)_l (ozl + %) S 17

where the second inequality follows from Lemma [7.10} Therefore, 0 <
lim, o+ Uy o < 1 and thus 0 < wu, < 1.

Using the uniform bound on w,, and taking the limit « — 0% in
the equation

(L+ a)upq =
yields
Lu, = ¢ > 0.

As u = limg,c/m uy, and u, < 1, we obtain the statement by taking

monotone limits and using Lemma [1.§] O

The next lemma shows that the extended semigroup and resolvent
contract any positive superharmonic function.

LEMMA 7.13. Let (b,c¢) be a graph over (X,m) and let f € C(X)
with f > 0. Then, the following statements are equivalent:
(i) et Ef < f for allt > 0.
(i) a(L + )7 f < f for all a > 0.
If, additionally, f € F and Lf > 0, then f satisfies the above condi-
tions.

ProoOF. The implications (i) <= (ii) follow by Lemma [7.11}
Now, any f € F with f > 0 and Lf > 0 satisfies

(L+a)f=zaf
for a > 0. By Lemma [7.9 we infer a(L + a)~'f < f for a > 0 since
a(L + «)~1f is the smallest supersolution. O

The next theorem uses the properties established above to prove
all of the facts we announced in the beginning of the section about
the function M. Analogous properties have already been established
for the heat semigroup acting on bounded functions. In particular,
statement (d) below gives a minimality statement for M which gives
an analogue to Proposition [7.6| concerning the heat semigroup.

THEOREM 7.14 (Properties of M). Let (b, ¢) be a graph over (X, m).
Then, the function M: [0,00) x X — R given by

My (z) = e 1(z) + /Ot (e*SL£> (z)ds

has the following properties:
(a) 0 < My < M, <1 foralls>t>0.
(b) The function t — M (z) is differentiable for all x € X.
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(c) Forallx € X andt >0
(L +0y) My(w) = —(x).

m

Furthermore, M s the smallest positive solution of (L + 0;)u =
c/m with ug = 1.
(d) For allaw>0 and x € X
(L+a)™! <a1 + £> (x) = / ae " M, (x)dt.
m 0

In particular,
w = / ae Y M,dt
0
satisfies (L + a)w = al + ¢/m and is the smallest function v € F

with v > 0 and

(£+oz)v2a1+£.
m

PrRoOOF. We recall from Lemma [7.12] that the function

u(z) = /O h <e_SL%> (x)ds

satisfies 0 < u < 1 and Lu = ¢/m. The key observation for the proof
of the first few properties is shown in the proof of (a) below and states
that

M; = u+e (1 —u).

(a) Positivity of M follows since the extended semigroup is positiv-
ity preserving by definition.

Next, we show M; < 1 for ¢ > 0. By Lemma the function
u= [;°(e**(c/m)) ds is bounded and, therefore, we can calculate

/Ot (e_SL%> (x)ds = u(x) — /too (e_SL%> (r)ds

= u(x) — /000 (e_(ert)L%) (x)ds
= u(x) — e Fu(z),

where the last equality follows by the semigroup property for the ex-
tended semigroup and the fact that u is bounded. Thus,

M, =e "1 +u—eu=u+e (1 —u).

By Lemma [7.12) we have 1 —u > 0 and Lu = ¢/m so that
LA-w)=L1—Lu="—C=o
m m

By Lemma [7.13] we infer for all ¢ > 0,
e (1l —u) <1 —u.
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Therefore,
My=u+e ™ (1-u)<u+l—u=1.
This establishes the desired inequality.

Let s >t > 0. Then, e=¢™E(1 —u) < (1 — u) and, since the
semigroup is positivity preserving, we get by the semigroup property
that
e b1 —u) =TI — ) = e tEem O] — ) < e (1 — w).

Hence, as M; = u + e *L(1 — u), it follows that M, < M;. Putting all
of these properties together, we get

0<M; <M <1

whenever s >t > 0.
(b) As the constant function 1 and u are both bounded, we can
apply Theorem [7.3] with f = 1 — u to conclude that
t My(z) = e (1 —u)(2) + u(x)

is differentiable for ¢ > 0 as e 7*(1 — u) is a bounded solution of the
heat equation. Furthermore, M;(x) is differentiable for ¢ > 0 by Propo-
sition [7.4l

(c) Using M; = u+e *2(1—u), the fact that e=*L(1—u) is a bounded
solution of the heat equation and Lu = ¢/m allows us to calculate, for
allz € X and t > 0,

O, My(x) = e (1 — u) ()
= —Le (1 —u)(z)
= —LM(z) + Lu(z)

c(x)

m(z)

= —LM(x) +

This proves the first statement.

The minimality statement follows by approximating M and using
the minimum principle for the heat equation, Theorem [1.10], as follows:
Let (K,) be an increasing sequence of finite sets whose union equals

X. For the Dirichlet Laplacian L,, = L%? with respect to the finite set
K, we let

t
Mt(n) — o thn 1, +/ e—sLn (ilKn> ds
0 m
on K, for n > 0 and extend it by 0 to X. Then, M™ satisfies
(L + 0,)M™ = - [0,00) x K,
m

Mén) =1k, onX
M™ =0 on [0,00) x X \ K,,.
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For any other positive solution w of (£ + 9;)w = ¢/m with wy = 1, let
™ = — MM,

Then, for any T" > 0,

e (L+0)v™ =0on (0,7) x K,

e v(™ A0 attains a minimum on the compact set [0, 7] x K, since v
is continuous

e v >0o0n ([0,7) x (X\ K,))U ({0} x K,,).

Thus, w — M™ = v™ > 0 by the minimum principle for the heat

equation, Theorem [1.10, By monotone convergence, Lemma [7.8, we

get w > M. This proves the minimality.

(d) By the Laplace transform, Lemma|7.11], applied to f = al+c/m
for a > 0,

(L+a)™ (al + %) (x) = /000 e~ toaeth (al + %) (x)dt.

The function t +— f(f e *E(c/m)ds = M; — e~*'1 is continuously differ-
entiable, so by integration by parts, we have

/000 et (e’tL%) (x)dt
=e /Ot (e’SL%> (v)ds :O + /Ooo ae ' (/Ot eSL%(x)ds> dt

= /OOO ae” " (My(z) — e "1()) dt,

where the first term vanishes due to the boundedness of u. Putting
these two calculations together yields

(L+a)™! <a1 + %) () = /000 e " My (z)dt

for all x € X, which gives the first statement.
The fact that

w:/ ae "M, dt
0

satisfies (£ + a)w = al 4+ ¢/m and is the smallest positive v € F
with (£ + a)v > al + ¢/m follows immediately from Lemma [7.9| since
w=(L+a)(al +c¢/m) and since 0 < w < 1as 0 < M; <1 by part
(a). O

DEFINITION 7.15 (Stochastic completeness at infinity). A graph
(b, ¢) over (X, m) is called stochastically complete at infinity if

M(z) =1

for all z € X and all t > 0. Otherwise, (b,¢) over (X, m) is called
stochastically incomplete at infinity.
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REMARK (A word of caution). We note that by Theorem [7.14] (d)
we have by integrating M, with respect to the probability measure
aet*dt that stochastic completeness at infinity is equivalent to

(L+a)™ (al + %) =1

Let us now stress that the care taken with the monotone convergence
arguments in the proof of the theorem above is quite necessary. For
example, one might think that since (£ + a)(L + «)~'1 = 1, one also
has (L+a) ' (L+a)l = 1. However, by a direct calculation, this would
yield

(L+a)™ (a1 + %) —(L+a) (L+a)l=1,

which would imply that all graphs are stochastically complete at infin-
ity. We will have ample opportunity to see that this is not the case.

Furthermore, in Section [l we show that stochastic completeness at
infinity is equivalent to the function 1 being in the domain of the adjoint
of £ on D(Q™) N (X, m). It turns out that this is equivalent to 1
being in the domain of the generator L., of the semigroup on ¢>(X),
in which case

(L+a) (L+a)l=(L+a) Lo +a)l=1
holds (Exercise [7.6)).

3. The heat equation perspective

In this section we present the heat equation viewpoint on stochastic
completeness at infinity. This states that stochastic completeness at
infinity is equivalent to the uniqueness of bounded solutions of the
heat equation.

In the previous section we introduced stochastic completeness at
infinity of a graph (b, c) over (X, m). Specifically, we first defined the

function
t
M, = e 1 +/ <€75L£> ds
0 m

by using monotone limits to apply the heat semigroup to general pos-
itive functions in order to define the integrand. The function M; is a
replacement for e=**1 in the case of a general killing term. The ques-
tion of stochastic completeness at infinity is the question if M; = 1
for all t > 0. By contrast, the question of stochastic completeness is
if e7¥1 = 1 for all + > 0. As the extended semigroup is positivity
preserving, it is clear that stochastic completeness always implies sto-
chastic completeness at infinity but the converse is not always true. In
fact, stochastic completeness implies ¢ = 0 while graphs with ¢ # 0
may or may not be stochastically complete at infinity.
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In this section, we start to prove our main characterization of sto-
chastic completeness and stochastic completeness at infinity by con-
necting these notions to the uniqueness of bounded solutions of the
heat equation. That is, given a bounded function f we consider the
heat equation with initial condition f, i.e.,

with ug = f. As we have seen, the semigroup e~*L on °°(X) applied
to f generates a bounded solution of the heat equation. It is clear
in the case of ¢ = 0 that if bounded solutions of the heat equation
are uniquely determined by initial data, then e7**1 = 1 since both
e 1 and 1 satisfy the heat equation with initial condition 1. A si-
milar reasoning shows that M; = 1 if bounded solutions are uniquely
determined. In this section, we will show that the converse is also true.
That is, we show that stochastic completeness at infinity is equivalent
to the uniqueness of this solution in the class of bounded solutions.

We note that stochastic completeness at infinity reduces to sto-
chastic completeness whenever ¢ = 0. Hence, the reader who is only
interested in stochastic completeness can substitute e~**1 for M, and
let ¢ = 0 in the statements and proofs below. We give a more detailed
discussion of how the proof of stochastic completeness can be simplified
in a remark before we commence the proof below.

THEOREM 7.16 (Stochastic completeness at infinity and the heat
equation). Let (b,c) be a connected graph over (X,m). Then, the fol-
lowing statements are equivalent:

(") For some (all) t > 0 and some (all) z € X,
M;(x) = 1.
( “Stochastic completeness at infinity”)
(i.a") For some (all) o > 0 and some (all) v € X,

(L+a) (al + %) (x) = 1.

(vi') For every f € >°(X) there exists a unique bounded solution u of
the heat equation

(L4 0)u=0 with wug=f. (“Heat equation”)

(vi.a') Every bounded solution u of the heat equation (L+0;)u =0
with ug = 0 s trivial.

REMARK (What is needed for stochastic completeness). Before start-
ing the proof of Theorem we give a roadmap on what is required
for the reader who is only interested in stochastic completeness, i.e., in
the case ¢ = 0, in the proofs below.



3. THE HEAT EQUATION PERSPECTIVE 335

e The formula for M,,, found in the proof of Lemma can be
replaced by the semigroup property e~ +t9L1 = e=sLle=tl] of the
semigroup on ¢>°(X).

e The positivity improving property of the semigroup on ¢*°(X) for
connected graphs is used in the proof of Lemma|[7.17} This follows by
extending the corresponding property for the semigroup on £2(X, m)
from Theorem [1.26]

e The fact that M, < 1, used in the proof of Lemma can be
replaced by e **1 < 1, which follows from the Markov property of
the semigroup on ¢*°(X) found in Theorem

e The fact that M, < M, for all s > ¢, which is used in the proof of
Lemma [7.17, can be replaced by e~**1 < e **1, which is shown in
Lemma [T.5

e The proof of the equivalence of (i’) and (i.a) relies on the Laplace
transform formula, ic., (L +a)'f = [ e e L fdt for all o > 0
and f € ¢>°(X). This is shown in Theorem

e The fact that e **1 is a bounded solution of the heat equation with
initial condition 1 was shown in Theorem [[.3] This is used in the
proof of (vi.a') = (i').

e The proof of (i) = (vi.a") uses the fact that M is the smallest
positive solution to (£ + 0;)v = ¢/m with vy = 1, which is shown in
Theorem (c). The analogous fact that u; = e7*#1 is the smallest
positive solution of (£L+0;)v = 0 with vy = 1 is found in Theorem [7.3]

We start the proof of Theorem [7.16] by showing the equivalence of
the “for some” and “for all” statements in (i’). For this, the connect-
edness of the graph is essential.

LEMMA 7.17. Let (b, ¢) be a connected graph over (X, m). If My(z) <
1 for some t > 0 and some x € X, then My(x) < 1 for allt > 0 and
allz € X.

PRroOF. Recall that the extended semigroup satisfies the semigroup
property, i.e., e"TOLf = e7sLe L f for all 5,4 > 0 and all f € C(X)
with f > 0. While M does not satisfy such a property, it satisfies a
similar property which will imply the statement of the lemma. More
specifically, a direct calculation using the semigroup property for the
extended semigroup yields, for s,¢ > 0,

s+t s
My =e 0] 4 / et ar + / e LS g
s 0

m m

m m

t c 5 c
=5k (e_ﬂ“l +/ e_TL—dr> +/ e "E—dr
0 m 0 m

S
_ e
= e LM, + et —dr,
0 m

t c 5 c
= e Lt +/ e et Zdr + / et —dr
0 0
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where interchanging the integration fot ...dr and e~*L is justified by
Fubini’s theorem.

We obtain the following two facts from this equality:

Fact 1. If My = 1 for somet > 0, then M,; = M, =1 for alln € N.
Proof. This follows easily by induction.

Fact 2. If My(x) < 1 for some t > 0 and some x € X, then
M, s <1 forall s > 0.

Proof. Since M; < 1 by Theorem (a), we get that 1 — M, > 0.
This function is non-trivial by assumption. As the graph is connected,
the extended semigroup is positivity improving by Lemma and,
therefore, e=L(1 — M) > 0, i.e.

G_SLMt < 6_8L1.

Combined with the equality above we infer

M,y < el +/ et S dr = M, <1,
0 m

where the last inequality follows from Theorem (a).

We now complete the proof. Assume that M,;(z) < 1 for some t > 0
and some xr € X. We note that it follows from Fact 2 that M, < 1 for
all s > t. Therefore, let s < t. We aim to show that M, < 1. Suppose
not. Then, there exists a y € X such that M,(y) = 1. By what we
have already shown, it follows that M, = 1 for all » with 0 < r < s.
Fix any such » > 0. Let n € N be such that nr > ¢. By Fact 1, we get
M, = 1. Thus, M; =1 as nr > t, which yields a contradiction to the
assumption that M;(z) < 1. This completes the proof. O

OF THEOREM [Z.16l The equivalence of the “for some” and “for
all” statements found in (') has already been shown in Lemma [7.17]

(i) <= (i.a"): This follows readily from Theorem (d) and
Lemma This also shows the equivalence of the “for some” and
“for all” statements found in (i.a").

(vi') = (vi.a"): This is clear since if we let f = 0, then v = 0 is the
unique bounded solution of the heat equation with initial condition O.

(vi.a') = (vi’): Given f € (*°(X), the existence of a bounded
solution of the heat equation with initial condition f has been shown in
Theorem [7.3] Hence, we only need to establish uniqueness. Therefore,
let v and v be two bounded solutions of the heat equation with initial
condition f. Then, w = u—wv is a bounded solution of the heat equation
with initial condition wy = 0. By (vi.a’) we get that w = 0, so that
u=uv.

(vi.a') = (i’): We show this by contraposition. If M;(x) < 1 for
some x € X and some t > 0, then M; < 1 for all t > 0 by Lemma [7.17]
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Hence, suppose that M; < 1. By Theorem (a) M is bounded,
My = 1 by the definition of M and M, satisfies

(L+0)M, = <
m

by Theorem [7.14] (c). Furthermore, it is clear that (£ + ;)1 = ¢/m.
Therefore, it follows that

utZI—Mt

is a bounded solution of the heat equation with initial condition 0,
which is non-trivial since M; < 1.

(') = (vi.a'): We show this by contraposition as well. Let u be a
non-zero bounded solution of the heat equation with uy = 0. Without
loss of generality, we may assume that wu;,(xo) > 0 for some ¢, > 0
and some zy € X as otherwise we work with —u. Furthermore, by
rescaling, we may assume |u| < 1.

Let w = 1 —u. Then, w is positive bounded and wy,(z9) < 1.
Furthermore, since ug = 0, we get wy = 1 and since u solves the heat
equation, we get

(L+0)w=—

m
for all t > 0. Since M is the smallest positive function with these prop-
erties by Theorem (¢), we infer My, (zg) < wy, (o) < 1. Therefore,
M,(z) < 1forallt >0 and all z € X by Lemma This completes
the proof. O

4. The Poisson equation perspective

In this section we connect the notion of stochastic completeness at
infinity to the uniqueness of bounded solutions of the Poisson equation.
As a consequence we show that stochastic completeness at infinity im-
plies uniqueness of associated forms.

In this section we investigate the Poisson equation perspective on
stochastic completeness at infinity. In particular, we characterize sto-
chastic completeness at infinity via the uniqueness of bounded solutions
of the Poisson equation

(L+a)u=f
for f € (*°(X) and o > 0. We recall that applying the resolvent
(L + a)™! on £*°(X) to f gives a bounded solution of the Poisson
equation. Hence, the issue here is the uniqueness of this solution.

We will also connect stochastic completeness at infinity to the non-
existence of non-trivial bounded a-harmonic and non-trivial positive
bounded a-subharmonic functions, i.e., functions u € £*°(X) satisfying
(L+a)u=0and (L+a)u <0 for @ > 0. These criteria for stochastic
completeness at infinity are quite useful in practice.
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As previously noted, the reader only interested in stochastic com-
pleteness can substitute e '*1 for M, and let ¢ = 0 in the state-
ments and proofs found below. The additional ingredients which are

needed to carry out the proof are listed in a remark before the proof
of Lemma [Z.T9

THEOREM 7.18 (Stochastic completeness at infinity and the Pois-
son equation). Let (b,c) be a connected graph over (X,m). Then, the
following statements are equivalent:

(') For some (all) t > 0 and some (all) v € X,
( “Stochastic completeness at infinity”)

(V') For some (all) o > 0 and every f € {>°(X) there erists a unique
u € °°(X) satisfying

(L+a)u=f. ( “Poisson equation”)

(v.a') For some (all) oo > 0 every positive u € £>°(X) which satis-
fies (L4 a)u < 0 is trivial.

(v.b') For some (all) a > 0 every u € £>°(X) which satisfies (L +
a)u = 0 is trivial.

(v.c!) For some (all) a > 0 every positive u € (*°(X) which satis-
fies (L + a)u = 0 is trivial.

REMARK. We first discuss some of the informal intuition behind the
equivalences. As we have seen, stochastic completeness and stochastic
completeness at infinity concern the preservation of heat. Now, a non-
vanishing killing term instantly removes heat from the graph. This is
the reason why we add the integral terms to e *1 in the definition of
M;. However, even with the addition of this term, heat can still vanish
for geometric reasons. Geometrically, the way that heat can escape is
due to an intense growth of the geometry which forces heat to infinity
in a finite time. The notion of the growth of geometry will be made
precise in Chapter [14]

A positive a-harmonic function for a > 0 whose value is strictly
positive at some vertex has to have a strictly bigger value at some
neighbor of that vertex, as can be seen from the equation (£L+a)u = 0.
Therefore, such functions must increase and the only way that they can
remain bounded, if the graph does not grow strongly, is that they are
trivial. This gives an informal intuition for the equivalence of stochastic
completeness at infinity and the non-existence of non-trivial positive a-
harmonic functions for o > 0.

REMARK (What is needed for stochastic completeness). Before start-
ing the proof of Theorem [7.18] we give a roadmap of what is required
for the reader who is only interested in stochastic completeness, i.e., in
the case ¢ = 0 in the proof of the lemmas below.
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e The fact that (L4 a)~* (al 4+ ¢/m) = [;° ae*M,dt is the minimal
positive solution of (L+a)v > al+c/m, proven in Theorem|7.14](d),
can be replaced as follows: The Laplace transform formula proven in
Theorem gives a(L 4+ a)'1 = [7 ae~*e~*F1dt. Furthermore,
that a(L+a)~!1 generates the minimal positive function v € F with
(L+a)v > al was shown in Theorem [2.12] This is used in the proof
of Lemma [19

e The fact that 0 < M; < 1 shown in Theorem|[7.14] (a) can be replaced
by 0 < e~*1 < 1, which is the Markov property of the semigroup on
¢>°(X) found in Theorem [2.9] This fact is also used in the proof of
Lemma [7.19]

e The fact that M; < 1 for some ¢t implies that M, < 1 for all s > t can
be replaced by the fact that if e7**1 < 1 for some ¢, then e™*/1 <
e 1 < 1 for all s > ¢, which is shown in Lemma . This is used
in the proof of Lemma [7.20]

The following lemma is the key to proving Theorem [7.18 It con-
nects M; with bounded a-harmonic functions for a > 0.

LEMMA 7.19 (Largest a-subharmonic function). Let (b, ¢) be a graph
over (X, m). For a > 0, the function

Wy = / ae (1 — M)dt =1— (L+a)™! (ozl + £>
0

m

satisfies 0 < w, < 1, solves (L + a)w, = 0 and is the largest function
u € F with 0 <u <1 such that (L + a)u < 0.

ProOF. We note that by Theorem [7.14] (d), for every o > 0 the
function

Vo = / ae " Mdt = (L + a)™? (al + £>
0 m

satisfies (£ 4+ a)v, = al + ¢/m and is the minimal positive v € F
such that (£ + a)v > al + ¢/m. Furthermore, as 0 < M; < 1 by
Theorem m (a), we get 0 < v, < 1. Therefore,

wazl—vazl—(L+a)_1<a1+£>
m

=1 —/ ae " M,dt
0

:/ Ozemdt—/ ae M, dt
0 0
:/ ae (1 — M,)dt,

0

and 0 < w, < 1. Furthermore, as v, satisfies (£ + a)v, = al 4+ ¢/m
and since (£ + o)1 = al + ¢/m by a direct calculation, we get

(L + a)w, =0.
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We now show the maximality of w,. Hence, let u satisfy (£L+a)u <
0 with 0 < u < 1. Then, 1 —u > 0 satisfies (L+a)(1 —u) > al +c¢/m.
As v, is the minimal such positive function by Theorem (d), we
get v, <1 —u. As w, =1 — v,, w, > u follows. This completes the
proof. O

The equivalence of the “for some” and “for all” statements in (iv.a’),
(iv.b’) and (iv.c’) is shown in the next lemma.

LEMMA 7.20. Let (b,c) be a graph over (X,m). If there exists a
bounded non-trivial v > 0 such that (L + a)v < 0 for some a > 0,
then for every a > 0 there exists a bounded non-trivial v > 0 such that

(L4 a)v=0.

PrROOF. Let @ > 0 and let v be a bounded non-trivial positive
function on X satisfying (£ + a)v < 0. By rescaling, we may assume
that 0 < v < 1. By Lemma , we = [, ae™™(1 — My)dt is the
maximal function v € F with 0 < u < 1 such that (£ + a)u <
0. Therefore, v < w,. As v is non-trivial, w, is non-trivial and we
conclude that M; < 1 for some t. Therefore, M; < 1 for all t > 0 by
Theorem Hence, for all 8 > 0, the function wg = fooo Be (1 —
M,)dt is non-trivial. Furthermore, by Lemma we have 0 <wg <1
and (£ + B)wg = 0 for > 0. This completes the proof. O

OF THEOREM [Z.18] The equivalence of the “for some” and “for
all” statements in (v.a’), (v.b') and (v.c’) follows from Lemma [7.20]
The equivalence of the “for some” and “for all” statements in (v') will
follow from the arguments given below.

For the rest of the proof recall that w, = [J° e (1 — M;)dt
solves (£ 4 a)w, = 0 and is the largest function v with 0 <« < 1 and
(L + a)u <0 by Lemma [7.19, Obviously, w, = 0 for some (all) o > 0
if and only if M; = 1 for some (all) ¢ > 0, i.e., if and only if the graph
is stochastically complete at infinity.

We first show (i) = (v.a') = (v.b/) = (v.¢/) = (i’). To this
end let a > 0 be fixed.

(') = (v.a/): Let uw > 0 be a bounded solution of (£ + a)u < 0.
By rescaling, we may assume that u < 1. Then, 0 < u < w,, since w,
is the largest such solution. If M; = 1, then w, = 0 and, therefore,
u = 0.

(v.a’) = (v.b'): This follows immediately from Lemma [1.9] which
states that if u € F is a-harmonic, then |u| is a-subharmonic.

(v.b’) = (v.c/): This is clear.

(v.c') = (I'): If there do not exist non-trivial positive functions
u < 1 such that (£L+a)u = 0, then the largest such function w, satisfies
wq = 0. Therefore, M; = 1 for all t > 0.



5. THE FORM PERSPECTIVE 341

Next, we show the implications (v') = (') = (v.b/) = (v/)
which will complete the proof. In particular, we show the equivalence
of the “for some” and “for all” statements in (v').

(v') = (i’): We show this by contraposition. So, suppose that
M; < 1. Let @ > 0 and let f € £*°(X). Then, u = (L+a)~'f € {~(X)
solves (£ + a)u = f by Theorem 2.12] As we assume that M; < 1,
wy > 0 and, therefore, v = u + w, > u also solves (L + a)v = f since
(L + a)w, = 0. Therefore, there is no uniqueness of solutions to the
Poisson equation for any o > 0.

(') = (v.b/): We have already shown this in the first round of
equivalences above.

(v.b') = (v/): Let f € ¢*°(X) and let @ > 0. The existence of
solutions to the Poisson equation for o > 0 is given by u = (L+«)~ ! f.
So, we have to show uniqueness. Therefore, assume that there exists
f € £>°(X) and two bounded solutions wuy,us such that (£ + a)u; =
f = (L+a)uy. Then, u = uy —uy is bounded and satisfies (L+a)u = 0.
From (v.b’) we infer v = 0 and, therefore, u; = us. O

We end this section with a corollary which connects stochastic com-
pleteness at infinity and the property of form uniqueness found in Chap-
ter . In particular, if QP) = QW) then there is only one form asso-
ciated to a graph (b, c) over (X, m). We next show that this is always
the case when a graph is stochastically complete at infinity.

COROLLARY 7.21 (Stochastic completeness implies QP) = QW)).
If (b,c) is a connected graph over (X, m) which is stochastically com-

plete at infinity, then QP) = QW)

ProoF. If QP) #£ QW) then there is a non-trivial bounded solu-
tion to (£ + a)u = 0 for @ > 0 by Theorem 3.2 By Theorem this
implies the graph is stochastically incomplete at infinity. U

5. The form perspective

In this section we show that a graph is stochastically complete at
infinity if and only if the constant function 1 can be approximated by
functions in the form domain or, equivalently, by compactly supported
functions, in a weak sense. As a consequence we show that recurrence
implies stochastic completeness.

For a connected graph b over (X, m) in Chapter |§| we proved that
recurrence is equivalent to the fact that the constant function 1 can
be approximated by compactly supported functions with respect to
pointwise convergence and convergence in the form sense, see Theo-
rem (i.d). Here, we give an analogous criterion for stochastic com-
pleteness. More specifically, we show that stochastic completeness at
infinity is equivalent to the ability to approximate 1 in a weak sense.
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As a consequence we get that recurrence always implies stochastic com-
pleteness.

As usual, the reader who is only interested in stochastic complete-
ness and not stochastic completeness at infinity can let ¢ = 0 in all of
the statements below. In particular, Lemma will not be needed
for the discussion of stochastic completeness.

We denote by ¢}(X,c) the vector space of all functions f € C(X)
such that ) _ c(z)[f(z)] < co. We note that this is not necessar-
ily a normed space since c is not assumed to be strictly positive. In
the following lemma we show that Y _ ¢(z)(L + «) ! f(z) converges
absolutely for all f € ¢*(X,m) and a > 0.

LEMMA 7.22. Let (b, c) be a graph over (X, m) and let o« > 0. Then,
(L+0) (X, m) € (X, 0)
and for all v € £1(X, m),

> ((E+a)7 ) @o@)mi@) = 3 @) (L +a) v(@),

zeX zeX
where all sums converge absolutely.

PROOF. By Lemma we have 0 < (L + a) *(al 4+ ¢/m) < 1.
In particular, (L + «)~!(c/m) € ¢*°(X). Thus, the sum on the left-
hand side of the asserted equality is equal to ((L + «)~*(¢/m),v) for
v € (1(X,m), where (-,-) denotes the dual pairing between ¢*°(X) and
(*(X,m). Therefore, the sum on the left-hand side converges abso-
lutely.

Let (c,) be a sequence of finitely supported functions such that
¢, /" ¢ pointwise as n — co. Then, by the definition of the extended
resolvent, (L + ) *(c,/m) /(L + «) t(c/m) as n — oco. Let ¢, =
¢n/m. By using the symmetry of the resolvents shown in Theorem
and by decomposing v into positive and negative parts we conclude by
the monotone convergence theorem

> (E+0) ) @o@mi@) = (L+a) )

zeX

= lim ((L+a) ¢, v)

n—oo

= lim (¢n, (L + oz)_lv)

= lim » pu(@)(L +a) v(z)m(z)
rzeX
= Z c(x)(L+ o) 'v(z).
reX
In particular, this shows (L +«a)~'v € £}(X, ¢) for all v € £*(X,m),
which shows the inclusion asserted in the statement of the lemma. This
completes the proof. O
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We now state the characterization of stochastic completeness at
infinity via two approximation schemes for the constant function 1.
We note that this proves the equivalence of (i.a), (ii) and (ii.a) in
Theorem for the characterization of stochastic completeness.

THEOREM 7.23 (Stochastic completeness at infinity and approxi-
mating 1). Let (b,c) be a connected graph over (X,m). The following
statements are equivalent:

(i.a’) For some (all) a > 0 and some (all) v € X,
. c _
(L +a) (al + m) (z) = 1.

(ii") There exists a sequence of functions e, € D(Q) (equivalently,
en € Co(X)) with 0 < e, <1 for alln € N such that e, — 1
pointwise and

Tim Qe v) = 3 el@)ul)
zeX
for allv e D(Q)N (X, m)NIHX,c).
(ii.a’) There exists a sequence of functions e, € D(Q) (equivalently,
en € Co(X)) with 0 < e, <1 for alln € N such that e, — 1
pointwise and

Tim Q(eq, (L+0)"0) = 3 e(a)(L +a) Ho(a)

zeX

for onev € (X, m)N" (X, m) withv > 0 and some (all) o > 0.

We start by showing that we can always pass from a sequence in
D(Q) to a sequence in C.(X) in the approximation schemes in (ii’)
and (ii.a’) above. For this, recall that for a vertex o € X and f € D
we define the norm || f||, = (Q(f) + f2(0))1/2. If a graph is connected,
then the norms for different 0o € X are equivalent and convergence with
respect to any of these norms is equivalent to convergence pointwise
and in Q. See Lemma, for further basic facts about this norm.

LEMMA 7.24. Let (b,c) be a connected graph over (X, m). Let e, €
D(Q) be a sequence with 0 < e, <1, e, — 1 pointwise and Q(e,,v) —
C asn — oo for some v € D and some constant C. Then, there exist
on € Co(X) with 0 < ¢, <1, ¢, = 1 pointwise and

lim Q(pn,v) = C.
n—oo

PROOF. As D(Q) = Co(X)'?, where ||fllo = (Q(f) + |I/]2)"2,

and convergence in £2(X,m) implies pointwise convergence, it follows
that for every e,, there exists a sequence (go,(cn)) in C.(X) such that

ga,(cn) — e,
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pointwise and with respect to @ as k — oo. In particular, |le, —

go,(cn)Ho — 0 as k — oo for all o € X. We note that since 0 < e, <1,
the negative part of e,, is 0 while the positive part of e, is e,. Hence,
by Lemma for every n € N, the sequence

zzz,(j) =0V gpén) A ey,

also converges to ¢, in || - ||, as k — oo. In particular, 1/},(:) € C.(X)
with 0 < wlin) <1, zb,in)(x) — en() for all z € X as k — oo and

: oy
Jim Q(en —47) = 0.

By applying a diagonalization procedure to the family of functions
{w,(g”)}Z?nzl we obtain a subsequence (¢,) in C.(X) with 0 < ¢, <1
and which converges pointwise at all x € X. In particular, from the
properties above, y, — 1 pointwise and lim,,_,, Q(¢,,v) = C. This
completes the proof. O

oF THEOREM [7.23]. In the proof we will make repeated use of the
formula

QUL+ ) f.9) =(f —a(L+a)"f,g)
for f,g € D(Q) and « > 0, which follows by a simple calculation.

(i.a") = (i’): Let (p,) be a sequence in C.(X) such that 0 < ¢,, <
1 and ¢, " 1 pointwise as n — oo. Let 1, = @,(1 4+ ¢/m) so that
tn 1+ ¢/m pointwise and define

en = (L+ 1)’12%

for n € N. Then, as 1, > 0 and (L + 1)~! is positivity preserving, we
infer e,, > 0. Furthermore, since 0 < ¢,, < 1 we get 1, = o, (1+c/m) <
1+ ¢/m. As the resolvent is positivity preserving we get

en < (L+1)71 <1+£) <1,
m

where the last inequality follows from Lemma [7.10, Thus, 0 <e, < 1.
Furthermore, e, € D(L) C D(Q) for all n € N and

en/‘(L—i—l)_l(l—I—%):l

as n — oo where the equality follows by (i.a’). By using the formula
at the start of the proof and the fact that ,, = ¢, + ¢,c/m, we infer
for v € D(Q)N (X, m)N X, c) with v >0

Qlen,v) = Q (L +1)"¢n,v)
= <wn - (L + 1>711/}n7v>

= {pu0) = {(L+ 1), 0) + (9u0)

= {pu0) = {en ) + (Pur0)
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— Z c(x)v(x)
zeX

as n — 0o, where the convergence follows by the monotone convergence
theorem. We note that the first two terms converge to ||v[|; as we
assume that v € ¢*(X, m) and the third term converges to the sum as
we assume that v € ¢*(X c).

For a general v € D(Q) N (X, m) N (X, c), we obtain the con-
vergence by decomposing v into positive and negative parts.

(i) = (ii.a’): This is clear as (L + «)~'v € D(L) N (X, m) N
(Y(X,c) for v € 2(X,m) N LY (X,m) by Lemma [7.22,

(ii.a’) = (i.a’): Let (e,) and v be as assumed in (ii.a’) and let
a > 0. By Lemma and the formula at the start of the proof,

> ((L+0)™ =) @u@)m(@) = Y e(@) (L +a) v(x)

rzeX rzeX
= lim Q(en, (L + ) 'v)
n—0o0

= lim {(e,,v — a(L + o) v)

= lim (o0 — (L + @) en,0)
= Z (1 —a(L+a)™'1) (z)v(z)m(z),

where the convergence follows by the Lebesgue dominated convergence
theorem as we assume that v € £*(X, m). Hence,

3 (1 —a(l+a)1 - (L+ a)’1%> (x)v(z)m(z) = 0.

zeX
Since v > 0, we infer
(L+a)™! (041 + i) =1,
m
which is (i.a"). This finishes the proof. d

We recall that a connected graph b over (X, m) is called recurrent
e

if 1 € Dy, where Dy = C.(X) ™ and [|¢|, = (Q(p) + ¥*(0))"/? for
¢ € C.(X) and an arbitrary vertex o € X. This means that 1 can be
approximated by finitely supported functions via pointwise convergence
and convergence in the form sense, see Theorem [6.1] Comparing with
the result above, we obtain the following immediate corollary.

COROLLARY 7.25 (Recurrence implies stochastic completeness).
Let b be a connected graph over (X,m). If b is recurrent, then b is
stochastically complete.

PrOOF. By Theorem [6.1] (i.d), if b is recurrent, then there exists a
sequence of functions e, € C.(X) with 0 < e, <1, e, — 1 pointwise
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and Q(e,) — 0 as n — oco. Hence, for all v € D(Q) N (X, m) we get
Qen, v) < Q2(e,)Q'(v) = 0

as n — 0o. Therefore, the graph is stochastically complete by Theo-
rem [7.23l as ¢ = 0. U

REMARK. We have seen in Corollaries[7.21] and [7.25] that recurrence
implies stochastic completeness, which implies form uniqueness. As we
will see via examples, the reverse implications do not hold. On the other
hand, if the measure satisfies m(X) < oo, then all three properties are

equivalent (Exercise [7.7)).

6. The Green’s formula perspective

In this section we discuss stochastic completeness from the perspec-
tive of Green’s formula. This formula allows us to move the Laplacian
between functions when summing over the set of vertices. We will show
that stochastic completeness at infinity is equivalent to the validity of
such a formula for a class of functions satisfying several summability
conditions.

As we have seen, Green’s formulas assert the validity of summation
formulas such as

S Lf@grm(n) = 3 fla)Lolx)m(z)

zeX zeX
for functions f and g. For example, if f € FN2(X,m) and ¢ € C.(X)
with Lf, Lo € (?(X,m), then this can be written more simply via the
inner product as

(Lf, )= ([, L),

see Proposition [I.5] In this section we characterize stochastic com-
pleteness at infinity via the validity of the formula

> Lo@)l(z)m(z) = Y v(z)L1(z)m(x)

reX reX
for suitable functions v and the constant function 1. We note that
L1 = ¢/m so that the right-hand side in the equality above vanishes in
the case ¢ = 0. In particular, this is the case when studying stochastic
completeness as opposed to stochastic completeness at infinity.

We will connect a Green’s formula with the possibility to approxi-
mate the constant function 1 as discussed in the previous section. As a
consequence, we get that the validity of a Green’s formula is equivalent
to stochastic completeness at infinity. We recall that

(X 0)={f € C(X)| Y cl)|f(2)] < o0}

and that (L + o) v € *(X,c) for all v € (1(X,m) and all a > 0 by
Lemma [7.22
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THEOREM 7.26 (Approximating 1 and Green’s formula). Let (b, c)
be a connected graph over (X, m). Then, the following statements are
equivalent:

(ii") There ezists a sequence of functions e, € D(Q) (equivalently,
en € Co(X)) with 0 < e, <1 for alln € N such that e, — 1
pointwise and

i Qen,v) = 3 elo)o(o)
rzeX
for allv e D(Q)N (X, m)N (X, c).
(ii.a") There exists a sequence of functions e, € D(Q) (equivalently,
en € Co(X)) with 0 < e, < 1 for alln € N such that e,, — 1
pointwise and

Tim Qen, (L+0)0) = 3 c(x)(L +a) u(x)

for one v € (X, m)N{ (X, m) withv > 0 and some (all) o > 0.
(iii") If v € DNLYX,m)NE(X,m) N (X, c) satisfies Lv € £1(X, m),

then
Z Lu(z)m(x) = Z c(x)v(z).

reX zeX
( “Green’s formula”)
(iii.a') Ifv € DN(X, m) N (X, m)NIY X, c) satisfies Lv € £1(X,m)N
(*(X,m), then

Z Lo(z)m(x) = Z c(x)v(z).

zeX zeX
PROOF. (ii') <= (ii.a/): This was already shown in Theorem [7.23|
ii") = (iit’): At first let v € D(Q) N Y(X,m) N ¢*(X,c) be such
that Du € (1(X,m). As given in (ii’), there exist e, € C.(X) such that
0<e, <1, ¢, —> 1 pointwise and

nhi& Qlen,v) = Z c(x)v(x).

As v € D(Q) € D C F by Green’s formula, Proposition we
compute that

Qen,v) = Z en(x)Lo(x)m(z) — Zﬁv(:p)m x

as n — 0o, where the convergence follows from Lebesgue’s’s dominated
convergence theorem using the assumptions that e, — 1 pointwise and
Lv € (1(X,m). Hence,

Z Lo(x)m(z) = Z c(z)v(z)

rzeX rzeX

for all v € D(Q) N (X, m) N (X, c).
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It remains to extend the equality to all v € DN (X, m)NEZ(X, m)N
M(X,c) with Lv € (X, m). First, by definition, D N *(X,m) =
D(Q™). Moreover, by Corollary stochastic completeness at in-
finity implies D(Q”)) = D(Q™W)), where D(Q) = D(QP)). As we
have shown that stochastic completeness at infinity is equivalent to

(i") in Theorem it follows that
D(Q) = DQ™) = DN A(X,m).
This finishes the proof.

(iii') = (iii.a"): This is obvious.

(iii.a') = (ii.a"): Let v € £*(X, m)N¢*(X,m) satisfy v > 0 and let
w= (L+ a)'v. Then, as v € {(X,m), w € (*(X,c) by Lemma [7.22|
Furthermore, as resolvents preserve (P spaces and map into the operator
domain, which is included in D, we get that w € D N (X, m) N
2(X,m) N (X, c). As L is a restriction of £ by Theorem [1.6| we get

Lw=L(L+a)v=v—all+a)vel(X,m)nNeX,m).
Hence, by (iii.a’) applied to w, we obtain

Z Lw(z)m(x) = Z c(x)w(z).
rzeX rzeX

Now, let e, € C.(X) satisfy 0 < e, < 1 and e, — 1 pointwise.
Then, by Green’s formula, Proposition (1.5, we get

Qlen, (L+a)™'v) = Qen, w)
= Z en(x) Lw(z)m(x)

zeX

as n — 00, where the convergence follows by Lebesgue’s dominated
convergence theorem since Lw € ¢*(X, m). This shows (ii.a") and com-
pletes the proof. O

As we have shown previously, the possibility to approximate 1 as in
(ii’) is equivalent to stochastic completeness at infinity. Hence, we get
an immediate characterization of stochastic completeness at infinity via
the Green’s formula.

COROLLARY 7.27 (Stochastic completeness at infinity and Green’s
formula). Let (b,c) be a connected graph over (X,m). Then, the fol-
lowing statements are equivalent:
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(') For some (all) t > 0 and some (all) v € X,

( “Stochastic completeness at infinity”)
(iii") If v € DNLYX, m)N (X, m)NLY(X, ) satisfies Lo € (1(X,m),
then

Z Lo(z)m(z) = Z c(x)v(x).

zeX reX

( “Green’s formula”)

(iii.a') Ifv e DN(X, m) N (X, m)NIY X, c) satisfies Lv € £1(X,m)N
*(X,m), then

Z Lo(x)m(x) = Z c(x)v(z).
z€X rzeX
PROOF. That (') is equivalent to (L+a) ' (al+c/m) = 1 for some
(all) & > 0 was shown in Theorem [7.16| Hence, the conclusion follows
by combining Theorems and [7.26] O

REMARK (Relation to recurrence). By Theorem (iii.a), for a
graph b over (X, m) recurrence is equivalent to the fact that for every
v € D with Lv € (*(X,m), we have > _y Lo(z)m(z) = 0. Compar-
ing with (iii") above, this gives another proof that recurrence implies
stochastic completeness when ¢ = 0.

REMARK (Abstract version of Green’s formula). The condition (iii’)
can be understood on a more abstract level. For the sake of clarity, we
discuss this here for ¢ = 0. When ¢ = 0, the corresponding statement

in Corollary is

(iii) If v € DN LY (X, m) N *(X, m) satisfies Lv € £1(X,m), then
Z Loy(z)m(z) = 0.
rzeX

To discuss an abstract version of this, recall that the generator of the
semigroup on ¢*(X,m) is denoted by L") and that the dual of L) on
(>°(X) is denoted by L. In Theorem from Section (1| we have
shown that these generators are restrictions of £. Then, (iii) can be
shown to be equivalent to either of the following statements:

(iii.a) For all u € D(L(M)
> LWu(z)m(z) = 0.
zeX
(iii.b) The constant function 1 is in D(L(>)) and L(>1 = 0.
We leave the proof of the equivalence as an exercise (Exercise .
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7. The Omori—Yau maximum principle

In this section we prove the Omori—Yau maximum principle charac-
terization of stochastic completeness at infinity. This maximum princi-
ple that every function bounded above must be close to superharmonic
on the set where the function takes values near its supremum. For
some considerations, this is a more flexible criterion than analyzing
the behavior of a-subharmonic functions on the entire vertex set.

In Theorem [7.18 we have already shown that stochastic incomplete-
ness at infinity is equivalent to the existence of a non-trivial positive
bounded a-(sub)harmonic function defined on the entire vertex set.
Specifically, there exists a non-trivial u € £*°(X) with « > 0 and

(L+a)u<0

for a > 0 if and only if the graph is stochastically incomplete at infinity.

In this section we prove the Omori—Yau maximum principle crite-
rion for stochastic incompleteness at infinity. In particular, the exis-
tence of a bounded function u whose supremum is strictly positive and
which satisfies

Lu < —-C

for some constant C' > 0 and some set of vertices where u is near
its supremum is equivalent to stochastic incompleteness at infinity. A
basic intuition behind the Omori—Yau maximum principle is that the
equation Lu < —C' implies that wu is strictly increasing in some direc-
tion. Hence, if u still has some direction to increase even as we get
near the supremum of v and the graph can accommodate this increase
to allow u to be bounded, then the graph must have large growth and,
hence, be stochastically incomplete at infinity.

We first connect the Omori—Yau maximum principle with the non-
existence of a-(sub)harmonic functions. As usual, the reader who is
only interested in stochastic completeness and not stochastic complete-
ness at infinity can let ¢ = 0 and substitute e~ **1 for M, in the state-
ments below.

THEOREM 7.28 (Omori-Yau maximum principle and a-harmonic
functions). Let (b,c) be a connected graph over (X, m). Then, the fol-
lowing statements are equivalent:

(iv') If u € F satisfies supu € (0,00) and 5 € (0,supu), then

sup Lu > 0,
Xp

where Xg = {x € X | u(z) > supu — B}.
( “Omori—Yau mazimum principle”)

(v.a') For some (all) o > 0 every positive u € £°(X) which satisfies
(L4 a)u <0 is trivial.
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(v.c') For some (all) a > 0 every positive u € (>°(X) which satisfies
(L4 a)u =0 is trivial.

PROOF. (v.a') <= (v.c/): This was shown in Theorem [7.18]

(iv') = (v.c/): We show this by contraposition. Let u be a non-
trivial positive bounded function which satisfies (£L+a)u = 0 for o > 0.
Let 5 = supu/2 > 0, which is strictly positive since u is non-trivial.
Then, for all z € Xg = {y € X | u(y) > supu/2} we get

Lu(z) = —au(x) < 2P g,

Hence, (iv’) fails for this u and for this choice of f.

(v.a’) = (iv'): We also show this by contraposition. Assume that
(iv’) fails. Then, there exists a constant C' > 0, a function u € F with
supu € (0,00) and a 5 € (0,sup u) such that

Lu < —-C
on Xz ={x € X |u(x) >supu — S}. Define

Upg = (U + 6 - supu)+,
where f, = f V0 is the positive part of a function f. We will show
that ug is positive bounded non-trivial and a-subharmonic for a > 0,
which will show that (v.a’) fails.

Since u is bounded, it is clear from the definition that ug is positive
and bounded. If ug were trivial, then u(z) < supu — g for all x € X,
where 8 > 0, which contradicts the definition of the supremum. Hence,
ug is non-trivial.

Let « = C/B > 0, where Lu < —C on Xjz. We will now show that
ug is a-subharmonic, that is,

(L4 a)ug <O0.
If v & Xp, then ug(x) = 0. Therefore,

(£+a)us(a) = —s 3 blapusly) < 0.

For x € X3, we first note that
aug(r) = a(u(zr) + f —supu)y <af =C
by the choice of a. Moreover, since 3 < sup v by assumption, we have
ug(x) = u(z) + B —supu < u(x).

For y € X we obtain

(@) — us(y) = u(z) + § — supu — us(y)
u(z) — u(y) ty € Xp
u(z)+p—supu—0 :y¢& Xz
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as u(y) < supu—f for y ¢ Xg. Thus, combining the three inequalities
above with Lu < —C on Xj yields that, for z € X,

(€ aste) = 1y 3ot se) — o) + (£ a) uste)
< S M (o) — ) + 5 ala) + €
= Lu+ é’

<0.

Therefore, ug is a positive bounded non-trivial function satisfying
(£ 4+ a)ug < 0 for a > 0, which shows that (v.a’) does not hold. This
completes the proof. Il

As we have already shown that the statements above concerning
a-(sub)harmonic functions are equivalent to stochastic completeness
at infinity, we get the following immediate corollary which links the
Omori—Yau maximum principle with stochastic completeness at infin-

ity.
COROLLARY 7.29 (Stochastic completeness at infinity and Omo-

ri-Yau maximum principle). Let (b, ¢) be a connected graph over (X, m).
Then, the following statements are equivalent:

(') For some (all) t > 0 and some (all) v € X,
My(z) = 1.
( “Stochastic completeness at infinity”)
(iv') If u € F satisfies supu € (0,00) and 5 € (0,supu), then

sup Lu > 0,
Xp
where Xg = {z € X | u(z) > supu — B}.
( “Omori—Yau mazimum principle”)

PROOF. The result follows immediately by combining the previ-

ously proven Theorems and [7.28] O

8. A stability criterion and Khasminskii’s criterion

In this section we use the Omori—Yau maximum principle to prove
a stability result for stochastic completeness at infinity. This result
gives that stochastic incompleteness at infinity of a subgraph implies
stochastic incompleteness at infinity of the entire graph under some
additional conditions. Furthermore, we state and prove a Khasminskii
criterion which states that the existence of a positive a-superharmonic
function which goes to infinity implies stochastic completeness at in-
finity.
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We start with some general remarks regarding subgraphs and the
stability question. Whenever Y is a subset of X, the graph (by,cy)
over (Y,my) with by: Y x Y — [0, 00) satisfying by (x,y) = b(x,y),
cy: Y — [0, 00) satisfying cy () = ¢(x) and my: Y — (0, 00) satis-
fying my (x) = m(x) is called a subgraph of (b,c). In other words, we
restrict the functions b, ¢ and m to the subset Y of X.

We note that any graph that has a transient subgraph is also
transient, cf. Exercise [6.15] in the previous chapter. In contrast, a
graph which has a stochastically incomplete subgraph is not, in gen-
eral, stochastically incomplete. In fact, every stochastically incomplete
graph is a subgraph of a graph which is stochastically complete (Ex-
ercise . Intuitively, this can be achieved by diverting heat from
regions of large growth by creating regions with slow growth via addi-
tional edges. Alternatively, by adding a killing term ¢, any stochasti-
cally incomplete graph is a subgraph of a graph which is stochastically
complete at infinity (Exercise . The reason why this works is that
heat is removed via ¢ so that it is not lost at infinity.

However, there are several conditions yielding that stochastic in-
completeness at infinity of a subgraph does imply stochastic incom-
pleteness at infinity of the entire graph. We now present one such
criterion and leave other criteria as exercises. Specifically, we will use
the Omori—Yau maximum principle to show that if the stochastically
incomplete subgraph is not too connected to vertices outside of the
subgraph, then the entire graph is stochastically incomplete.

THEOREM 7.30 (Stability of stochastic incompleteness). Let (b, c)
be a connected graph over (X,m). LetY C X and let (by,cy) over
(Y, my) be a connected subgraph of (b,c). If (by,cy) is stochastically
incomplete at infinity and there exists a constant C' such that

1
— b <
(@) > bx,y)<C
yeX\Y
for all x € Y, then (b,c) is stochastically incomplete at infinity.

PROOF. As (by,cy) is stochastically incomplete at infinity, it fol-
lows from Corollary that there exists a function u € C(Y') with
supy u € (0,00) and B; € (0,supy u) such that

ﬁyu S —Cl

on Ys = {x €Y | u(r) > supy u — p;} for some constant C; > 0.
Here,

Lyu(e) = s 3 b ) () — u(y) + 2 ().

for x € Y, denotes the Laplacian on Y.
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We first note that by letting 5 = 51 A C, we get Y3 C Y, and so

sup Lyu < sup Lyu < —C) < =4,

Yg Y,

yielding that supy, Lyu < —f. We will work with this § in what
follows.

We wish to extend u to the entire space X in such a way that the
resulting function violates the Omori—Yau maximum principle. We let

o(z) = (u(x) — supy u + %)+ ifreY
0 otherwise,

where we choose C' > 1 such that (1/m(z)) >, cy\y b(z,y) < C as
given by assumption. We note that

supv = —,

2C
so that
Xgac ={x € X |v(z) > supv — /2C}
={ze X |v(z)>0}
={zreY |u(x) >supu— p/2C}.
In particular, as C' > 1 so that 3/2C < 3, we get Xg/sc C Yp, where

Ys ={z €Y | u(z) > supy u— B} is the set where Lyu < —f.
Let x € Xﬁ/gc. Then,

v(z) = u(x) — sgpu + % < u(z)

since B € (0,supy v) and C' > 1. If y € X/, then
v(@) —v(y) = u(z) —u(y).
If y € Xgjoc and y € Y, then

B
v(x) —v(y) = u(z) - Sup +55

< u(z) —u(y)

since u(y) < supy u — $/2C in this case. Finally, if y & Xg/oc and
y €Y, then

o(z) - v(y) = vlx)
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Putting these inequalities together and using the fact that Xz/0c C
Y5 mentioned above, we get for x € Xg/9¢,

1

yey
1
+ (@) Z b(z,y)(v(z) —v(y))
ygyY
<
< Lyu(e) + s D M)y
ygyY
s B
< _ Z__Z
<[+ 5 5 < 0
Therefore,
sup Lv < —é,
Xg/2c 2
so that the graph is stochastically incomplete at infinity by Corol-
lary [7.29, Il

REMARK. A similar argument gives that if the degree within Y
is bounded on the set of vertices in Y which have a neighbor outside
of Y, then (b,¢) over (X,m) is stochastically incomplete at infinity

(Exercise [7.10)).

REMARK. If the graph associated to a Dirichlet restriction Qg,D) for
some subset Y C X is stochastically incomplete at infinity, then the
entire graph (b, c) over (X, m) is stochastically incomplete at infinity

(Exercise [7.11]).

We next present the Khasminskii criterion, which is a useful test
for stochastic completeness. It states that the existence of a positive a-
superharmonic function for @ > 0 which grows at infinity implies that
the graph is stochastically complete at infinity. The idea of the proof
is that a growing a-superharmonic function will dominate any positive
bounded a-harmonic function up to an arbitrary scale, which forces
the bounded a-harmonic function to be zero. This result will be used
in our comparison results for weakly spherically symmetric graphs.

We start by making precise the notion of growing at infinity. We
say that f € C(X) satisfies f(x) — 0o as © — oo if for every C € R,
there exists a finite set K C X such that f| x\x = C. Similarly, we
define f(x) — —oo by replacing > with <. In particular, for a function
feC(X)and a € RU{+oo} we have

f(x) > a as x —
if for every sequence of (x,) of distinct elements in X we have

flx,) > a as n— oo
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We note that this can be understood in terms of the one-point com-
pactification X = X U {oco} of X, where oo is an additional point.

THEOREM 7.31 (Khasminskii criterion for stochastic completeness).
Let (b,c) be a connected graph over (X, m). If there exists a positive
function v € F such that v(z) — o0 as x — oo and

(L4 a)v>0
for a >0, then (b, c) is stochastically complete at infinity.

PROOF. Let @ > 0 and let v be a function as assumed in the
statement of the theorem. Let u € £>°(X) be a positive solution of (L +
a)u = 0. We can, by rescaling, assume that v < 1. By Theorem
in order to prove stochastic completeness at infinity, it suffices to show
that u = 0.

For a given C' > 0 let K C X be a finite subset such that v|x\x > C.
The function w = v — C'u then satisfies

e (L+a)w>0on K
e w A0 assumes a minimum on K as K is finite
ew>0onX\K.

By the minimum principle, Theorem [I.7, we infer w > 0. Therefore,
v > Cu. As C' > 0 was chosen arbitrarily, we infer u = 0. Hence, every
bounded positive solution u of (£ + a)u = 0 is trivial, which completes
the proof. O

9. A probabilistic interpretation*®

In this section we give a probabilistic interpretation of stochastic
completeness at infinity. This relies heavily on the Feynman—Kac for-
mula. As such, this section is marked as optional.

Let (b,c) be a graph over (X,m). Let (X;) = (X?) denote the
Markov process with respect to the graph b over (X,m) which was
introduced in Section o} In this context, ¢ denotes the lifetime of the
process (X;) and P, denotes the probability measure conditioned on
Xg=ux for x € X.

Let f € (3(X,m), z € X and t > 0. The Feynman-Kac formula,
Theorem [2.31} gives

e f(@) = Bx (Lpegye” BOMENF(X,) ).

where E, is the expected value of the process conditioned on Xg =
x. This formula obviously extends to all positive functions f > 0 by
monotone convergence. We make this explicit for the constant function
1 below.
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We start with a discussion concerning stochastic completeness, i.e.,
the equality e=**1 = 1. The result below shows that stochastic com-
pleteness is equivalent to the process having infinite lifetime and the
fact that the killing term vanishes.

THEOREM 7.32 (Probabilistic characterization of stochastic com-
pleteness). Let (b,c) be a graph over (X,m). Let (X;) be the process
associated to b with lifetime C. Then,

e H(x) = B, (Lyegge HmEEIE).

Furthermore, the following statements are equivalent:
(i) e7*1 =1 for all t > 0.
(ii)) Po(( =00) =1 forx € X and ¢ =0.

Proor. We first show the stated equality. Let 0 < n, < 1 for
k € N be a sequence of compactly supported functions such that n, 1
pointwise. Then, the Feynman—Kac formula, Theorem [2.31], combined
with monotone convergence yields

e 1(z) = klg& e ()

= lim E, (1{t<<}e— fo(c/m)(Xs)dsnk(Xt))

k—o00

=E, (1{t<C}€_ fot(c/m)(XS)‘“) .

This proves the stated equality. We now show the equivalence.
(i) = (ii): We show this by contraposition. First, by the formula
above and the Cauchy—Schwarz inequality we get

G*tLl(l’> = Em (1{t<§}€7 fot(c/m)(xs)ds>
1/2 _ te/m i 1/2
S Em (1{t<<}) / ]E':E (6 fo( / )(Xs)d )
- ]P)a:(t < C)l/QEw (@_ fot(c/m)(Xs)ds> 1/2 '

If P,(¢ = o00) <1, then P,(t < ¢) < 1 for ¢ large enough. If ¢(z) > 0
for some x € X and we let J; be the first jumping time of the process
which is strictly positive almost surely, then

E, (6— fJ(c/m)(Xs)ds> <E, (e /@) <1

by the Taylor expansion of the exponential function. Therefore, if either
P,(¢ = o0) < 1 or ¢(x) > 0 for some z € X, then e 1(x) < 1 and,
consequently, e7**1 < 1 for all ¢ > 0 by Lemma [7.17]

(ii) = (i): This is immediate from the equality as e *1(z)
E.(1) =1.

0l
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Next, we turn to a probabilistic characterization of stochastic com-
pleteness at infinity, i.e., the equality M; = 1. For two events A and
B, we denote the probability of A conditioned on B by P(A | B).

THEOREM 7.33 (Probabilistic characterization of stochastic com-
pleteness at infinity). Let (b, c¢) be a graph over (X, m). Let (X;) be the
process associated to b with lifetime (. Then,

Mt(ﬂf) =1- E <1{t><}€ fO (¢/m)(Xs)ds ) .

Furthermore, the following statements are equivalent:
(i) My =1 for all t > 0.
(i) P, (C=00) = 1 or P, (fo £ (X,)dt = o0 | ¢ < oo> — 1 forallz €
X.
PROOF. For ease of notation, we denote ¢/m by ¢. By the Feynman—
Kac formula, Theorem [2.31] which extends to arbitrary positive func-
tions by monotone convergence, we compute M, = e t'1 + fot e *lqds

in probabilistic terms. We start with the second term using Fubini’s
theorem in the second step

t ¢
/ e_SLq(x)ds = / E, (1{5«}6_ Is q(X”)drq(Xs)> ds
0 0
¢
=E, (/ Lis<cye™ Jo at%r) d”q(XJdS)
0
tAC .
=E, (/ e o Q(Xr)drq(Xs)ds> .
0

We can now apply the fundamental theorem of calculus to the function
F(s) = —e~ Jo 104" whose derivative is

F'(s) = e~ I a5 x,),

Note that for ¢t < ( the fundamental theorem of calculus applies as the
function to be integrated has only finitely many points of discontinu-
ity. By a limiting procedure the fundamental theorem of calculus then
applies for t = ¢ as well. Thus, we obtain

.:1—Ex( — I %) )

=1-E, <l{t><}e I§ a(r) ) - E,; (1{t<cj}e’ft;£ Q(Xr)d">
=1-E, (1{tz<}€_ Js q(x’”)dr) —e "1 (x),

where the last equality follows by Theorem [7.32] This proves the as-
serted formula. The equivalence (i) <= (ii) is immediate from this
formula. Il
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REMARK. We now present an interpretation of the formula and
equivalence above. Theorem gives

e "1(z) = E, (1{t<C}€ Jo(e/m)(%s)ds ) :

which can be mterpreted as the heat present in the graph at time t.
We can interpret e™ Jo(e/m)(Xo)ds a5 the heat staying in the graph along
the path taken by X, up to time ¢ if ¢ < (, i.e., heat which is not
transferred to the cemetery via c. Earlier we interpreted 1 — M; as the
heat transferred to infinity via the geometry. So, by Theorem [7.33]

1= My(z) =E, (1{tZC}6_ fé(c/m)(xgds) ,

which gives a probabilistic version of this interpretation. By the dis-
cussion above, we think of the term e~ Js (e/m)(%)ds ag the heat not
transferred to the cemetery via c, i.e., the heat remaining in the graph
along the path taken by X, and the function 1>} indicates that this
heat is lost via the geometry.

Moreover, the proof above shows that

t
—sL © _ _ fo (c/m)(Xy)dr
/0 e m(x)ds (1 e > :

Hence, this term can be understood as the expected heat transferred to
the cemetery via ¢ up to time ¢ and one can think of 1—e~Jo*(¢/m)(Xr)dr
as the heat transferred to the cemetary along the path taken by X, up

tot A C.

We finish the section with another probabilistic formula, this time
for the resolvent.

THEOREM 7.34. Let (b,c) be a graph over (X,m). Let (X;) be the
process associated to b with lifetime (. Then,

(Lt )™ (a1 4+ ) () =1~ B, (s fiemiis)
m

PROOF. Let ¢ = ¢/m. Werecall the Laplace transform, Lemma|7.11],
which states

L —1: Oo—toz—tLd
(L+a) " f /Oe e " fdt

for all f € C'(X) with f > 0. We use this to apply the Feynman—Kac
formula to the right-hand side for the functions 1 and ¢. To this end
we approximate the constant function 1 and ¢ by compactly supported
functions from below. Let (7,) in C.(X) such that 7, /1 as n — oo.
Then, we obtain by the Feynman-Kac formula, Theorem [2.31] and
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Fubini’s theorem

/ e~ e, (z)dt = / e (Ea: <l{t<<}€_ Js q(XS)dsnn(Xt)» dat
0 0

C t
=E, (/ e~ Jo Q(Xs)dsnn(Xt)dt) )
0

Hence, by the Laplace transform and by taking monotone limits, we
obtain

C t
(L+a) '1(z) =E, ( / e o q<Xs>det) .
0

Similarly, by the Feynman-Kac formula, Theorem [2.31] and monotone
convergence

C t
(L+a) lq(z) = E, (/ e e ‘“X”dw(mdt)

0
¢
-1 — ]E:c <€_a<_f0< q(Xs)ds> _ Oé]Ex (/ e—ate— fg q(XS)dsdt) 7
0

where we applied partial integration. Together with the calculation
above this yields

(L+a)(al+q)(z)=1-F, (e—ac—fé q(Xs)ds> .
This completes the proof. 0

REMARK (Boundedness and stochastic completeness). We finish
this chapter by noting that stochastic incompleteness and stochastic
incompleteness at infinity are only possible for unbounded operators.
In particular, if the formal Laplacian gives a bounded operator on any
(?(X, m) space, then the graph is stochastically complete at infinity.
We challenge the reader to give as many proofs as possible for this

result (Exercise [7.12)).
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Exercises
Excavation exercises.

EXERCISE 7.1 (Dini’s theorem). Let (f,,) be a sequence of functions
fn: R — R such that f,, is continuous for every n € N and such that
fn 7 f pointwise to a continuous function f: R —> R. Show that
(fn) converges uniformly to f on every compact subset of R.

EXERCISE 7.2 (Uniform convergence of continuously differentiable
functions). Let (f,,) be a sequence of continuously differentiable func-
tions f,: R — R such that the sequence (f,) as well as the sequence
of derivatives (f}) converge uniformly on compact subintervals to con-
tinuous functions f,g: R — R, respectively. Then, ¢ is continuously
differentiable with ¢’ = f.

(Hint: Use the fundamental theorem of calculus.)

Example exercises.

EXERCISE 7.3 (Stochastically complete but not recurrent). Give an
example of a graph b over (X, m) which is stochastically complete but
not recurrent.

EXERCISE 7.4 (Form unique but not stochastically complete at in-
finity). Give an example of a graph (b,¢) over (X, m) which satisfies
QP) = QW) but is not stochastically complete at infinity.

Extension exercises.

EXERCISE 7.5 (Stochastic completeness implies ¢ = 0). Let (b, ¢)
be a connected graph over (X, m). Show that if (b, ¢) is stochastically
complete, then ¢ = 0.

EXERCISE 7.6 (Stochastic completeness and abstract Green’s for-
mula). Let b be a graph over (X,m). Let L) be the generator of the
semigroup e~ on /'(X,m) and denote the dual of L™ on /*(X) by
L) Show that the following statements are equivalent:

(iii) For every v € DN (X, m)N¢*(X, m) such that Lv € (X, m)N
(*(X,m) we have
Z Lou(x)m(z) = 0.

zeX
(iii.a) For all u € D(LW),
> (L) (z)m(x) = 0.
rzeX
(iii.b) The constant function 1 belongs to D(L(>)) and L1 = 0.
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EXERCISE 7.7 (Graphs of finite measure and stochastic complete-
ness). Let b be a connected graph over (X, m). Suppose that m satisfies
m(X) < oo. Show that the following statements are equivalent:

(i) b is recurrent.
(i) b is Stochastlcally complete.

i)
(iii) QP) = QWM.

EXERCISE 7.8 (Every stochastically incomplete graph is a subgraph
of a stochastically complete graph). Let b be a stochastically incomplete
graph over (X, m). Show that there exist X’ with X C X’ ¥ and m/
which extend b and m to X’ such that b’ over (X', m’) is stochastically
complete.

EXERCISE 7.9 (Every stochastically incomplete graph is a subgraph
of a stochastically complete at infinity graph). Let b be a stochastically
incomplete graph over (X,m). Show that there exists a ¢: X —
[0, 00) such that (b, ¢) over (X, m) is stochastically complete at infinity.

EXERCISE 7.10 (Stochastic incompleteness of a subgraph and the
weighted degree). Let (b, ¢) be a graph over (X, m). Let Y C X and
suppose that the associated subgraph (by, cy) over (Y, my) is stochas-
tically incomplete at infinity. Let

Degy (x Zb z,y)

for x € Y. Suppose that Deg, is bounded on the set
{r €Y | there exists ay ~ z,y € Y'}.
Show that (b, c) over (X, m) is stochastically incomplete at infinity.

EXERCISE 7.11 (Stochastic incompleteness of a Dirichlet restriction
implies
stochastic incompleteness of the entire graph). Let (b,¢) be a graph
over (X m) with associated form @ = Q) and let Y C X. Let

(b§, ), Cy ) be the graph associated to the Dirichlet restriction of @ to
Y, ie., to QY Show that if (bY ,c§/ )) is stochastically incomplete at
infinity, then (b, ¢) is stochastically incomplete at infinity.

Show that an analogous statement is true for ¢ = 0 by replacing
stochastically complete at infinity by stochastically complete.

EXERCISE 7.12 (Boundedness and stochastic completeness). Let b
be a graph over (X, m) with associated regular Dirichlet form Q = QP)
and Laplacian L = L”). Assume that L is a bounded operator. How



EXERCISES 363

many proofs can you give that the graph is stochastically complete in
this case?

If (b, ¢) is a graph over (X, m), how many of the proofs carry over to
show that (b, ¢) is stochastically complete at infinity if L is bounded?
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Notes

The study of stochastic completeness has a long history in both the
continuous setting, see, e.g., the survey of Grigor'yan [Gri99|, and the
discrete setting, see, e.g., the early work of Feller [Fel57] and Reuter
[Reub7], often going by the name of conservativeness. In the specific
case of graphs with standard weights and counting measure, parts of
Theorem are worked out in [Woj08]. Stochastic completeness at
infinity for arbitrary regular Dirichlet forms on discrete spaces is then
introduced in [KL12]. The corresponding extensions of some of the
characterizations found in Theorem [7.2] are then also established in
[KL12]. The concept of stochastic completeness at infinity was ex-
tended to the weighted manifold case in [MS20].

We now mention some of the history of specific equivalences found
in Theorem in both the continuous and discrete settings. As men-
tioned above, the extension to stochastic completeness at infinity is,
for the most part, carried out in [KL12|] or presented here for the first
time.

The equivalence between stochastic completeness, uniqueness of
bounded solutions of the heat equation and the triviality of positive
bounded a-harmonic functions goes back to [Fel54] in the case of one-
dimensional diffusions, [Fel57, [Reu57| for discrete Markov chains and
to [Has60] in the case of Euclidean space. For graphs with standard
weights and counting measure it can be found in [Woj08§].

The equivalence between stochastic completeness and the ability to
approximate the function 1 seems to be a part of the standard theory of
stochastic completeness. It can be found, for example, in the textbook
[FOT11].

The Green’s formula characterization of stochastic completeness at
infinity was first shown for weighted manifolds in [GM13| and then
extended to general Dirichlet forms in [HKL™17|. In particular, the
general Dirichlet form setting covers both Riemannian manifolds as
well as graphs.

The Omori—Yau maximum principle for Riemannian manifolds was
introduced in [Omo67, Yau75|. The equivalence of a weak form of
the Omori—Yau principle and stochastic completeness was first shown
in [PRS03| for manifolds and [Huallb] for graphs. Furthermore,
[Huallb] contains several stability results as a consequence of the
Omori—Yau maximum principle, see also [Woj08|, [Woj09, Woji1],
KL12| for further investigations into this question.

The Khasminskii criterion for stochastic completeness can be found
for the Euclidean case in [Has60]. For graphs, it can be found in
[Huallb] as well as [KLW13]. The idea that a stochastically incom-
plete graph can be a subgraph of a stochastically complete graph either
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via the geometry or via the killing term is found in [KL12, Woj11].
For manifolds, this can be found in [MS20].

The probabilistic viewpoint on stochastic completeness is classical.
It can, for instance, be found in [FOT11].






Part 2

Classes of Graphs



Synopsis

In this part we look at three classes of graphs by imposing addi-
tional restrictions on the graph structure. For the first class, found in
Chapter [§] we impose lower bounds on the measure. For the second
class, found in Chapter [0, we impose a very mild spherical symme-
try assumption. For the third class, found in Chapter we impose
sparseness assumptions and relate them to isoperimetric inequalities.
For all three classes, there is a surprising number of consequences of
these assumptions for both the spectral theory and stochastic proper-
ties.



CHAPTER 8

Uniformly Positive Measure

In this chapter we look at consequences of lower bounds on the
measure m for a graph (b, ¢) over a discrete measure space (X, m). We
formulate the lower bound assumptions in two ways. One way does
not take the graph structure into account and one does. We will look
at consequences of these lower bounds for the uniqueness of forms and
operators as well as for spectral properties.

We first present a Liouville theorem in Section [IL This theorem
states that any positive a-subharmonic function for o > 0 which is ad-
ditionally in ¢?(X, m) for p € [1,00) must be zero whenever all infinite
paths have infinite measure. In particular, this shows that there are no
non-trivial harmonic functions in /?(X,m) in this case.

This Liouville theorem has strong consequences for both unique-
ness of the forms and of the operators and allows us to determine the
domains of generators for semigroups and resolvents on ¢*(X,m) for
p € [1,00). These consequences are discussed in Section . Further-
more, our assumptions also naturally lead to spectral inclusions be-
tween the generators on (X, m) and solvability of the heat equation
for initial conditions in ¢7(X,m). This is discussed in Sections 3| and [4]
Finally, we discuss applications to graphs with standard weights in
Section Bl

As should be clear from the discussion above, /P spaces play a sig-
nificant role in this chapter. These spaces were introduced in Section [I}
However, let us mention that we mostly require only the basics of this
theory in this chapter and will introduce these basics as we go along.
The only real place where the material of Section [1|is required is when
we discuss the domains of the generators on (X, m) and their spectral
properties in Sections [2] and [3

We first introduce the assumptions on the measure which will play
a role throughout this chapter. The first type of assumption that we
consider consists of a uniform lower bound on m and does not involve
a graph structure. We denote this assumption by (M). Specifically, we
call a measure m over X uniformly positive if

(M) inf,cx m(z) > 0.
We now recall two prominent examples of measures found in the

literature. These examples were first introduced in Section [If and also
played a prominent role in Section [6]

369
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ExAMPLE 8.1 (Counting measure). The counting measure m = 1
clearly satisfies (M).

ExAMPLE 8.2 (Normalizing measure). Suppose that b is a graph
over X. Then, the the normalizing measure n is given by

n(x) = 3 bla, y).

In particular, if every vertex has at least one neighbor and b is uniformly
bounded below on neighbors, then n satisfies (M).

The second type of assumption that we consider requires a graph
structure. Given a graph b over X, we recall that a path is a sequence of
pairwise distinct vertices (z,,) such that b(x,,, z,+1) > 0 for all n € Ny.
We call a graph connected if for every pair of vertices there exists a
path which includes both vertices. We call a path infinite if the path
consists of infinitely many vertices. With these definitions, we now
introduce condition (M*) as follows:

(M*) Every infinite path has infinite measure, i.e., for every infinite
path (z,) we have ) m(xz,) = co.

Let us emphasize that, unlike (M), (M*) is a condition on both the

graph b and the measure m. Clearly, (M) implies (M*) whenever we

have a graph b over (X, m). In particular, Examples[8.1] and [8.2] discuss

some measures satisfying (M*).

Although less frequently arising in the literature, we will see that
(M*) is the condition that we need to prove our Liouville theorem
in the next section. From this theorem, we can derive quite strong
consequences for both uniqueness of associated forms and essential self-
adjointness. Furthermore, we will be able to explicitly determine the
domains of the generators on all /7( X, m) spaces for measures satisfying
(M*). On the other hand, we will see that (M) plays a role in the
spectral inclusion results.

1. A Liouville theorem

In this section we prove a Liouville theorem for functions in ¢7(X, m).
It states that every positive a-subharmonic function in #(X,m) for
p € [1,00) and o > 0 is identically zero whenever the measure of any
infinite path is infinite.

Let (b,¢) be a graph over (X,m) and let £L = Ly, ,, be the for-
mal Laplacian with domain F. We recall that ©v € F is called a-
subharmonic for o € R if

(L4+a)u<0
and is called a-harmonic if

(L+ a)u=0.
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We also recall that Lemma allows us to reduce the study of a-
harmonic functions to that of positive a-subharmonic functions. More
precisely, Lemma shows that if u is a-harmonic, then u,, u_ and
|u| are all a-subharmonic, where u; = u VvV 0 and u_ = —u V 0 denote
the positive and negative parts of u. Consequently, if all positive a-
subharmonic functions are trivial, then all a-harmonic functions are
trivial as well. This will be used below.

We recall that, for p € [1,00),

P(X,m) ={f € C(X) | Y |f()Pm(z) < oo},

zeX
These are Banach spaces with norm

LFIE = [ f (@) Pm(a

zeX

In particular, when p = 2, we get our usual Hilbert space ¢?(X,m).

We now show that positive a-subharmonic functions in #(X,m)
for any p € [1,00) are zero whenever a > 0 and infinite paths have
infinite measure. We refer to statements concerning the constancy or
triviality of a-harmonic functions as Liouville theorems. The crucial
observation for the proof is that a positive a-subharmonic function for
a > 0 must be strictly increasing in some direction if the function is
not constant. Hence, as we assume that the measure is not summable
along any infinite path, we obtain that such functions cannot be in
(P(X, m) for any p € [1, 00).

THEOREM 8.3 (IP-Liouville theorem). Let (b, c) be a connected graph
over an infinite measure space (X, m) which satisfies (M*). Let a > 0
and v € F with u > 0 satisfy

(L+a)u<0.

If u e t?(X,m) for any p € [1,00), then u = 0.
In particular, if uw € (P(X,m) for any p € [1,00) is a-harmonic for
a >0, then u = 0.

PROOF. If w is constant, then u € ¢*(X,m) for any p € [1,00)
if and only if v = 0 by (M*) and the assumption that the graph is
infinite and connected. So, we assume that « > 0 is a non-constant
a-subharmonic function for o > 0. Then, there exist xy, 1 € X with
xo ~ x1 such that u(zy) > u(xg) > 0. Now, if u(zy) > u(y) for all
Yy ~ x1, then

(€ a)ulen) = i S b g)uten) - ) + (0 +a) ute

m(z1)

> 0,

which gives a contradiction to (L+a)u(x;) < 0. Therefore, there exists
X9 ~ x1 such that u(xy) < u(xq).
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[terating this argument and using induction, we find an infinite
path (x,) such that 0 < u(x,) < u(x,41) for all n € N. We estimate,
for any p € [1,00),

S (@) ) = 3 fu@a) Pz, > fu@)PS m(z,) = oo
reX n=1 n=1
by (M*). Therefore, u ¢ (X, m) for any p € [1,00).

Combing the arguments above, we conclude that if (b, ¢) over (X, m)
satisfies (M*) and w is a positive a-subharmonic function for a« > 0 and
u € (P(X,m), then u must be constant and, hence, zero. This proves
the first statement. The second statement for a-harmonic functions
follows directly from the first statement and Lemma 1.9 O

REMARK. We note that the result above does not hold for finite
graphs for all & > 0 (Exercise [8.5)). Furthermore, the statement is not
true for infinite graphs if we remove the assumption (M*). On the other
hand, the statement is true for all graphs satisfying (M*) when ¢ # 0

or a > 0 (Exercise [8.6)).

REMARK. We note that the proof above works even when the graph
is not connected but has at least one infinite connected component on
which u is non-zero.

REMARK. We have seen the case p = oo and a > 0, i.e., the case of
positive bounded a-subharmonic functions for o« > 0 in Chapter [7} In
particular, Theorem shows that such functions are trivial if and
only if (b, ¢) over (X, m) is stochastically complete at infinity.

2. Uniqueness of the form and essential self-adjointness

In this section we discuss consequences of the /P-Liouville theorem
for uniqueness of forms and operators. In particular, if a graph is con-
nected over a measure space for which the measure of infinite paths is
infinite, then we obtain uniqueness of associated forms as well as essen-
tial self-adjointness. Furthermore, we explicitly determine the domain
of generators on (7.

We recall that a form @ with domain D(Q) is said to be associ-
ated to a graph (b, c) over (X, m) if @ is a closed restriction of Q and
Ce(X) C D(Q), where Q = Q. is the energy form. Equivalently, we
can think of @) as being between QP) and QW) that is, Q is closed
with

D(Q™) € D(Q) € D(Q™)
and Q is a restriction of Q™) to D(Q). Here, Q) is the form with
Dirichlet boundary conditions with domain

D) =X
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and QW) is the form with Neumann boundary conditions with domain
DQ™) =D (X, m),

where D denotes the space of functions of finite energy.

If D(QP)) = D(Q™)), then there is a unique such form associated
to a graph. We presented some equivalent formulations of this property
in Section [I] As a consequence of these equivalences and our Liouville
theorem in the previous section, we get that (M*) implies that there
is a unique associated form. Moreover, we recall that a positive self-
adjoint restriction of L is called a Markov realization of L if the form
associated to the restriction is a Dirichlet form and the domain of the
form contains the finitely supported functions. When there is a unique
such realization, then we say that £ satisfies Markov uniqueness. This
property was introduced and discussed in Section [3]

THEOREM 8.4 ((M*) implies form uniqueness). If (b,c) is a con-
nected graph over (X, m) which satisfies (M*), then

Q(D) — Q(N).

In particular, there exists a unique operator L associated to (b, c) which
1s the unique Markov realization of L and has domain

D(L)={f eDnNF(X,m)| Lf € *(X,m)}.

PROOF. By Theorem 3.2 Q) = Q™) if and only if every a-
harmonic function for o > 0 which is additionally in D(Q™)) is trivial.
Therefore, the first part of the result follows directly from Theorem 8.3
Moreover, in Theorem we have shown that Markov uniqueness is
equivalent to form uniqueness and the domain of L is given in Corol-
lary [3.3] This, gives the “in particular” statement. U

We now discuss the essential self-adjointness of the restriction of £
to C.(X). That is, assuming that LC.(X) C ¢*(X,m), by restricting
L to C.(X) we get a symmetric operator and we can ask when this op-
erator has a unique self-adjoint extension. This property was discussed
in Section

We note that the assumption £C.(X) C ¢*(X,m) is characterized
in Theorem In particular, LC.(X) C ¢3(X, m) holds if we assume
that the measure m satisfies inf,,, m(y) > 0 for all z € X. This clearly
holds if m satisfies (M). On the other hand, it is not always satisfied
by graphs and measure spaces which satisfy (M*).

THEOREM 8.5 ((M*) implies essential self-adjointness). Let (b,c)
be a connected graph over (X, m) which satisfies (M*). Let LC.(X) C
(%(X,m). Then, the restriction of L to C.(X) is essentially self-adjoint
and the unique self-adjoint extension L has domain

D(L)={f € P(X,m)| Lf € *(X,m)}.
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PROOF. By Theorem [3.0]the essential self-adjointness of the restric-
tion of £ to C.(X) is equivalent to the triviality of a-harmonic functions
in 2(X,m) for « > 0. Hence, the conclusion follows by Theorem [8.3|
The statement about the domain of L follows from Theorem 3.6 [

The associated operator L is the generator of the heat semigroup
and resolvent on ¢*(X,m). We extended this semigroup and resolvent
to all 7(X,m) spaces in Section . We denote the generators of these
semigroups and resolvents by L®). The domain of L® is defined via
abstract theory which connects semigroups, resolvents and generators,
as discussed in Section [1} see also Appendix [D]

By Theorem the action of L) coincides with the action of
L on the domain of L. Below we also specify the domain of L®
assuming condition (M*).

THEOREM 8.6 (Domain of L® given (M*)). Let (b, ¢) be a connected
graph over (X, m) which satisfies (M*). Let L) with domain D(L®)
be the generator of the semigroup on (P(X,m) for p € [1,00). Then,

DLW = {f e P(X,m) | Lf € (P(X,m)}.
PROOF. We have D(LW) = {f € #(X,m) | Lf € (X, m)} if

and only if a-harmonic functions for > 0 in (X, m) are trivial by

Theorem [3.8] Therefore, the conclusion follows by Theorem O

REMARK. We note that the results above hold for a slightly more

general condition than (M*) which incorporates both the measure and
the degree function (Exercise [8.7).

3. A spectral inclusion

We now turn to spectral consequences of lower bounds on the mea-
sure. We will see that the assumption that m is uniformly bounded
from below implies that the spectrum of the Laplacian on £*(X, m) is in-
cluded in the spectrum of the generators on ¢*( X, m) for all p € (1, 00).

Excavation Exercise[8.1], which recalls some inclusions between 7(X, m)
spaces under assumption (M), and Excavation Exercise [8.2] which re-
calls some facts about the spectrum of an operator and the adjoint of
the operator in the case of Banach spaces, will be used in this section.

As a direct consequence of assumption (M) we get inclusions be-
tween ¢P(X,m) spaces. More specifically, (M) implies

P(X,m) C (X, m)

for 1 <p<g< o
Furthermore, assumption (M) clearly implies (M*) when we have a
graph (b, ¢) over (X, m). Thus, all of our previous results for (M*) also
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hold when assuming (M). In particular, by Theorem [8.6|it follows that
(M) and connectedness of the graph imply

D(LW) = {f € *(X,m) | L € (*(X,m)},

where L) is the generator of the semigroup on (X, m) for p € [1,00).
Combined with the inclusions among the ¢?(X, m) spaces mentioned
above, we obtain the following statement.

LEMMA 8.7 (Domain inclusions under (M)). Let (b,c) be a con-
nected graph over (X, m) which satisfies (M). Let LP) with domain
D(L™)) be the generator of the semigroup on (P(X,m) for p € [1,00).
Then,

D(L(p)) C D(L(q))
for all1 < p <gq<oo. In particular, L'D is an extension of L),

PROOF. The inclusion of domains is immediate from Theorem [8.6]
which gives D(L®) = {f € *(X,m) | Lf € (*(X,m)} and the fact
that (X, m) C (9(X,m) for 1 < p < ¢ < oo whenever (M) holds.
That L9 is an extension of L® then follows from the fact that both
operators act as £ on their respective domains, see Theorem 2.13 O

We let L = LP) denote the Laplacian on ¢*(X,m) and let o(L)
denote the spectrum of L. We let o(L®) denote the spectrum of
L®) . Let us emphasize that here we only deal with the real Banach
spaces P(X,m) and note that the spectra of the generators L®) on the
corresponding complex Banach spaces are not necessarily subsets of
the real numbers. However, we are only concerned with the inclusion
o(L) C o(L™) in what follows and we have o(L) C [0, c0).

We recall that if p, ¢ € [1, 00| are such that 1/p+1/¢ = 1, then the
operators L® and L@ are dual to each other. This is shown for the
semigroup and resolvent in Theorems 2.9 and 2.11] The statement for
the generators follows directly. In particular, this implies

O'(L(p)) — O'(L(q))
whenever 1/p+1/q = 1.

In order to prove our spectral inclusion, we will look at the resolvent
(LW — X)~! for A & o(L™)). We start by showing that resolvents agree
on the common part of their domains under assumption (M).

LEMMA 8.8 (Consistency of the resolvents). Let (b, ¢) be a connected
graph over (X, m) which satisfies (M). Let 1 < p < g < oco. If X\ ¢
o(LP)U o (L9D), then

(L(p) N7 = (L(Q) —A)7Lf
for all f € P(X,m) =P(X,m)NL(X,m).
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PROOF. As we assume (M) and connectedness of the graph, we
get D(LW) C D(L9) from Lemma . Furthermore, (M) implies
P(X,m) C (X, m) so that ép(X m) =P(X,m)N(X,m).

Let f € °(X,m) and A & o(L®) U a(L?D). Then, (L® —\)71f €
D(LW) C D(L@). Furthermore, as L@ is an extension of L by
Lemma [8.7, we obtain

(L(Q) _ )\)(L(p) — N7 = (L(p) _ A)(L(p) — N7 =

Hence, (L™ — \)~! is a right inverse for (L9 — ) on 7(X,m). Since
right inverses are unique for invertible operators, (L® —\)~! = (L@ —
A)~ton P(X,m). O

We will now combine the considerations above to prove the following
spectral inclusion.

THEOREM 8.9 (Spectral inclusion). Let (b, c) be a connected graph
over (X, m) which satisfies (M). Then,

o(L) C o(LP)
for allp € (1,00).

PROOF. Let A € R be such that A\ € o(L®) for p € (1,00). We
have to show that A & o(L). As A\ € o(L™), by duality it follows that
A& o(L@), where ¢ € (1, 00) satisfies 1/p + 1/q = 1. Without loss of
generality, we may assume that 1 < p <2 < ¢ < 0o as, otherwise, we
merely interchange p and ¢. In particular, Lemma implies

D(LW) € D(L) € D(L?)

and that all operators agree on D(L(p))

By Lemma as A € o(LP)Ua(L9) and p < ¢, (L — \)7!
and (L@ — )\)~1 agree on /P(X,m). By the Riesz—Thorin interpolation
theorem, Theorem [E.21| boundedness of (L@ — \)~! on both 7(X, m)
and ¢7(X,m) and 1/p + 1/q = 1, implies that (L9 — X\)~! is bounded
on £2(X,m). We will show that (L@ — X\)~! is an inverse for (L — \)
on D(L) from which it follows that A\ € o(L).

As L9 is an extension of L, for f € D(L) C D(L@) we have

(L9 = NTHL =N f = (LD = \)HLD =0 f = f.

On the other hand, let f € £*(X,m) and let (f,) be in /P(X,m) C
(*(X,m) such that f, — f in £*(X,m). We note that this is possible
as C,(X) C (P(X,m) is dense in £2(X,m). As (L9 — \)~! is bounded
on (2(X,m) we have

O A e R

in (*(X,m) as n — oo. By Lemma | we also have (L@ — \)7Lf,
L@

(LW —\)='f,, € D(L®) C D(L) for all ne€NasAZo(LP)Uo( ):
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Therefore,
(L — )\)(L(q) _ >\)_1fn — (L(q) _ )\)(L(q) _ A)_lfn = fo= f

as n — oo in £2(X,m).
Since L is a closed operator, we infer (L@ — \)~'f € D(L) and

(L=X(L9D = N"f=f

Hence, (L@ — \)~! is a bounded inverse for (L — )\) and, therefore,
A € o(L). This completes the proof. O

REMARK. The reverse inclusion is true when the measure of the
graph is finite and the weighted degree is bounded (Exercise .

4. The heat equation on /7

In this section we discuss the heat equation on 7(X, m). The gen-
eral theory of strongly continuous semigroups found in Appendix
only gives existence of solutions for initial conditions in the domain of
the generator. However, in the case of uniformly positive measure, we
also have solutions for initial conditions in ¢*(X,m) for all p € [1, co].

We recall that a function u: [0,00) x X — R is said to be a solution
of the heat equation if u(z,-) is continuous on [0,00), continuously
differentiable on (0,00) for every z € X and u(-,t) € F for all ¢t > 0
and

(L+0)u(x) =0

for all x € X and t > 0. The function wuy is called the initial condition
for the solution. We say that u is a solution in 7(X,m) for p € [1, o0
if

sup ||ug]], < oo.
>0

To generate such solutions, we recall that the semigroup e ** of L
originally defined on ¢*(X,m) extends to a contraction Markov semi-
group on (P(X,m) for p € [1,00] by Theorem 2.9 This extended
semigroup is again denoted by e~*~.

The following theorem is a direct consequence of Theorem (7.3 and
the fact that every function in ¢?(X,m) is bounded in the case of uni-
formly positive measure.

THEOREM 8.10 (Existence of solutions of the heat equation on (7).
Let (b, c) be a graph over (X, m) which satisfies (M). For f € (P(X, m)
with p € [1,00] let

w () = e f ()

fort > 0 and x € X. Then, u is a solution of the heat equation in
(P(X, m) with initial condition f. Furthermore, if additionally f > 0,
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then w 1s the smallest positive supersolution of the heat equation with
initial condition greater than or equal to f.

PROOF. Whenever the graph satisfies (M), we have f € ¢>(X) for
any f € (P(X,m) with p € [1,00]. Thus, u; is a solution of the heat
equation by Theorem . Furthermore, since e * extends to a con-
traction Markov semigroup on 7(X, m) for p € [1, 00] by Theorem [2.9,
we have ||ul|, < [|f]|, for all f € ¢?(X,m), which gives that u is a so-
lution on 7(X,m). Finally, the minimality statement is also included
in Theorem [7.3 U

5. Graphs with standard weights

In this section we illustrate our results for graphs with standard
weights. These are the examples most commonly appearing in the
literature on graphs.

We recall that a graph (b, ¢) has standard weights if b takes values
in {0,1} and ¢ = 0. In this case, we denote the set of edges by E, i.e.,

E={(r,y) e X x X |z ~y}.

Furthermore, the energy form Q acts as

o(f)=5 3 (@)~ f)

(z,y)ER

with the space of functions of finite energy D given by

D={feCX)| > (flx) = f(y))* < oo}
(z,y)eE
We note that b(z,y) € {0,1} for all z,y € X implies that b is locally
finite so that F = C'(X). The formal Laplacian in this case is denoted

by A and acts as

yeX,y~x

for f € C(X). The choice of measure will then determine the specific
Hilbert space and Laplacian. The two most prominent examples of
measures in this setting are the counting measure and the normalizing
measure.

Specifically, the counting measure m = 1 gives the number of ver-
tices in a subset of X. In particular, the weighted degree function
becomes deg(z) = #{y | y ~ x}, which is called the combinatorial
vertex degree. We denote the Banach spaces /(X 1) for p il, oo| by

1.

(P(X) and denote the Laplacian Lz(;,?),)1 by A. By Theorem , A acts
on D(A) C *(X) by
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By Corollary A is a bounded operator if and only if deg is a
bounded function on X.

It is clear that m = 1 satisfies (M) and, therefore, (M*). Further-
more, as b is locally finite, we have A(C.(X)) C 2(X) by Theorem m
Hence, as a direct consequence of our results we obtain the following
statement.

COROLLARY 8.11 (Essential self-adjointness of A). Let b be a con-
nected graph with standard weights over (X, m) with m = 1. Then,
there exists a unique form () associated to b, the associated operator
A is the unique self-adjoint extension of the restriction of A to C.(X)
and

D(A) = {f € A(X) | Af € A(X)}.

PROOF. The uniqueness of the form associated to b follows from
Theorem @ Since A(C.(X)) C (2(X) in the locally finite case by
Theorem [1.29] the uniqueness of the self-adjoint extension of the re-
striction of A to C,(X) and the statement about the domain D(A)
follows from Theorem 8.5 O

We denote the generators of the semigroup of A on 7(X) by A®),

By Theorem m, the operators A®) are restrictions of A. We then
obtain the following consequence concerning the domain of A®).

COROLLARY 8.12 (Domains of A®). Let b be a connected graph
with standard weights over (X, m) with m = 1. Then,

D(AW) = {f € "(X) | Af € *(X)}
for all p € [1,00).
PRrOOF. The statement follows immediately from Theorem 8.6 [J
Furthermore, our spectral inclusion result reads as follows.

COROLLARY 8.13 (Spectral inclusion for A). Let b be a connected
graph with standard weights over (X, m) with m = 1. Then,

a(A) C o(AP)
for all p € (1, 00).
PROOF. The statement follows from Theorem [R.9. O

Finally we get the existence of solutions of the heat equation in this
case.

COROLLARY 8.14 (Existence of solutions of the heat equation on
(P). Let b be a connected graph with standard weights over (X, m) with
m =1. For f € (°(X) with p € [1,00] let

u(w) = e f(x)
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fort >0 and x € X. Then, u is a solution of the heat equation in
(P(X) with initial condition f. Furthermore, if additionally f > 0, then
u s the smallest positive supersolution of the heat equation with initial
condition greater than or equal to f.

PRrROOF. The result follows immediately from Theorem 8.10, O

REMARK (Normalizing measure). We note that the other usual
measure in the case of standard weights is the normalizing measure
n(z) = deg(x) = #{y | y ~ x} for x € X. In this case, we denote
the Laplacian Lz(),Do,)n associated to Ql(,g?n by A, and refer to it as the
normalized Laplacian. As A,, is a bounded operator by Corollary [1.33]
in this case the results above are trivially true.
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Exercises

Excavation exercises.

EXERCISE 8.1 (¢ inclusions under (M)). Let (X, m) be a measure
space satisfying (M). Show that

P(X,m) ClY(X,m)

forall 1 <p<q<oo.

EXERCISE 8.2 (Adjoint operators and their spectrum). Let E be a

Banach space and let £* be the dual space of E. For a densely defined
operator A: D(A) — E with D(A) C E, we define the adjoint A*
operator of A with domain D(A*) by

D(A*) ={¢ € E* | there exists a 1) € E* extending ¢ o A}

and
A =1
for ¢ € D(A*).
(a) Let 0(A) and o(A*) denote the spectrum of A and A*, respectively.
Show that
o(A) =o(A").

(b) Let L® and L@ be the generators of the semigroups on (X, m)
and (9(X,m), respectively, where 1/p+ 1/q = 1. Show that

(L(p))* — 1@
Note, in particular, that this shows o(L®) = o(L(9).

(Hint: The material at the end of Appendix @ might be useful for
this exercise.)

Example exercises.

EXERCISE 8.3 (Non-trivial positive a-subharmonic functions). Give
an example of a connected graph (b, c) over an infinite measure space
(X, m) with a non-trivial positive a-subharmonic function in 7(X, m)
for p € [1,00) and a > 0.

EXERCISE 8.4 ((M*) but not LC.(X) C (?(X

,m)). Give an exam-
ple of a graph which satisfies (M*) but not LC,(X)

C 2(X,m).
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Extension exercises.

EXERCISE 8.5 (Finite graphs and subharmonic functions). Show
that there exist a non-trivial function v > 0 in (X, m) satisfying
Lu < 0 when (b,c) is a graph over a finite set X with measure m.
(Classify all such functions.

ExXERCISE 8.6 (Killing or strict positivity of «). Let (b,¢) be a
connected graph over (X, m) satisfying (M*). Let u € F satisfy u > 0
and (£ 4 a)u < 0 for a > 0. Show that if u € #(X,m) for p € [1, 00)
and either ¢ # 0 or a > 0, then u = 0.

EXERCISE 8.7 (More general summability criteria). Let (b,c) be
a connected graph over (X, m). Recall the definition of the weighted

degree as Deg(z) = (1/m(x))(3_,cx b(,y) + c(z)).
(a) Show that if for every infinite path (z,) the graph satisfies

n=0 k=0

then Q) = QW).
Show that if, additionally, LC.(X) C ¢*(X,m), then the re-
striction of £ to C.(X) is essentially self-adjoint.
(b) Let p € [1,00) and let LP) denote the generator of the semigroup
on P(X,m). Show that if for every infinite path (z,) the graph

satisfies
n 1 1 P
m(x, — ] =00,
Snton) [T (1+ i)

D(LW) = {f € °(X,m) | Lf € (°(X, m)}.

then

EXERCISE 8.8 (o(L®) C o(L)). Let (b,c) be a graph over (X, m)
such that m(X) < oo and Deg(z) = (1/m(z))(>_,cx b(x,y) + c(x)) is
bounded. Let p € (1,00). Show that

o(LP) C o(L).
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Notes

The main observation for the proof of the Liouville result, The-
orem [R.3 i.e., that positive non-constant a-harmonic functions for
a > 0 must strictly increase in some direction, goes back to the thesis
[Woj08|. In [Woj08], this is used to show the essential self-adjointness
of the Laplacian on graphs with standard weights and counting mea-
sure, which is presented here as Corollary This result can also be
found in [Web10].

For the general result on essential self-adjointness under the con-
dition that infinite paths have infinite measure, Theorem [8.5] the first
proof is found in [KL12|. Earlier statements which assume local finite-
ness and constant measure were asserted in [Jor08| and later proven
in [JP11] and, independently, in [TH10]. A more general summa-
bility criterion for magnetic Schrédinger operators can be found in
|Gol14, IGKS16] and [Sch20b|. The statement on uniqueness of as-
sociated forms, Theorem [8.4] was shown in [KL10]. For examples
where essential self-adjointness and the uniqueness of associated forms
fail, see [KL10, KL12, HKLW12].

Let us mention that the essential self-adjointness of the Lapla-
cian on graphs with standard weights and counting measure stands
in contrast to the case of the adjacency operator. There, it is known
that the adjacency operator might not be essentially self-adjoint. The
first examples of such graphs were given in [MO85, IMul87]. See
|Gol10), [GS11l, IGS13| for further discussion of this problem and for
some criteria for the essential self-adjointness of the adjacency opera-
tor.

In the case of the generator on (P spaces, the statement charac-
terizing the domain, Theorem [8.6] appears in [KL12]. The spectral
inclusion under uniform lower measure bounds, Theorem [8.9] is shown
in [BHK13].






CHAPTER 9

Weak Spherical Symmetry

In this chapter we discuss a class of graphs whose geometry has a
weak spherical symmetry. We first introduce the notion of spherical
symmetry that we wish to study and give several examples. We also
introduce the idea of comparing an arbitrary graph to a weakly spheri-
cally symmetric graph, which will be a recurring theme in this chapter.
We then characterize this geometric notion of symmetry in terms of the
heat kernel in Section [} Furthermore, we give heat kernel comparisons
which immediately imply comparison results for the Green’s function.

We then turn to spectral estimates in Section [2] and give an esti-
mate for the bottom of the spectrum as well as criteria for the essential
spectrum to be empty. At this point, we use the Agmon—Allegretto—
Piepenbrink characterization of the bottom of the spectrum and essen-
tial spectrum. The final two sections, Sections [3] and [] involve the
study of recurrence and stochastic completeness, respectively. In these
sections we first characterize recurrence and stochastic completeness for
weakly spherically symmetric graphs in terms of geometric quantities,
then give the corresponding comparison results for general graphs.

We let (b, ¢) be a connected graph over (X, m), L = Ly be the
formal graph Laplacian and L = Ll()i)m be the Laplacian associated to

the regular form Qég?m on /2(X,m). We recall that a graph is called
locally finite if the sets {y € X | y ~ x} are finite for all x € X. Many
of the results in this chapter will involve assuming that a graph is locally
finite. Furthermore, we denote by d the combinatorial graph metric,
that is, the least number of edges in a path between two vertices.

Let O be a subset of X and define the distance to O by

d(O,z) = mind(o, z),

oeO

where x € X. For most of our results below we will assume that O is
a finite set.
We denote the distance sphere of radius r € Ny about O by

S.(0) ={x € X |dO,x) =r}.

385
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For convenience, we let S_1(O) = (). Moreover, we denote the distance
ball of radius r € Ny about O by

B.(0) = | $n(0) = {z € X | d(O,z) <r}.

If O is a finite set and (b, ¢) is locally finite, then the sets S,(O) and
B,(O) are finite for all r € Ny. Furthermore, connectedness of the
graph is equivalent to the fact that X =, B,(O). As we will need to
exhaust the graph via balls in various places, we will assume that all
graphs in this chapter are connected.

We call a function f € C(X) spherically symmetric (with respect to
0) if there exists a function g: Ny — R such that f(z) = g(r) for all
x € S,(0) and r € Ny. With a slight abuse of notation, we then write

f(r) = f(x)

for all z € S,(0) and r € Ny. Although all of our notions involving
symmetry depend on O, we will mostly omit this dependence in our
notation and statements.

We next define the functions for which we will assume spherical
symmetry. We let ki denote the outer and inner degrees (with respect
to O), which are functions ky: X — [0, 00) defined via

@) = —— S bay)

m(a:) y€Sr+1(0)

for x € S,(0) and r € Ny. Furthermore, we define the potential
q: X — [0,00) by

for r € X.
With these preparations we can now define the class of graphs which
will be studied in this chapter.

DEFINITION 9.1 (Weakly spherically symmetric graphs). We call a
connected graph (b, c) over (X, m) weakly spherically symmetric with
respect to a set O C X if the outer and inner degrees ki and potential
q are spherically symmetric with respect to O.

REMARK. We call these graphs “weakly” spherically symmetric be-
cause we do not require any symmetry on the graph structure within
the spheres. Stronger notions of spherical symmetry require that there
exists a graph automorphism mapping one vertex to the other (or even
interchanging the vertices) for any two vertices on the same sphere

(Exercise [9.7)).
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REMARK. Whenever O is finite, m is bounded below on S,.(O) for
all r € Ny and the graph is weakly spherically symmetric, then all
S,(O) are finite and the graph is locally finite (Exercise[9.8).

We now introduce two main classes of examples of weakly spheri-
cally symmetric graphs. The first class consists of trees and, in contrast,
the second class of graphs we call anti-trees.

We call a sequence of vertices (z;)}_, withn € Na cycle if x; ~ 2,4
forall  =0,1,...,n—1, z; # xp for j # k with 1 < j,k < n and
ro = x,. A connected graph with no cycles is called a tree.

EXAMPLE 9.2 (Spherically symmetric trees). Let (b,¢) be a con-
nected graph over (X, m) with standard weights and counting measure,
ie,b: X x X — {0,1}, c=0and m = 1. Let O = {0} foro € X
and let S,.(0) = S,.(O). We say that b is a spherically symmetric tree
with branching numbers k if there exists a sequence k: Ny — N such
that, for every vertex = € S,(0) and every r € Ny,

kp(z) =k(r),  k_(2)=1
and blST(O)XST(O) = 0.
We note that these graphs are indeed trees. Furthermore, we note

that removing a single edge between spheres will disconnect any tree.
This contrasts with anti-trees, which we now define.

EXAMPLE 9.3 (Anti-trees). Let (b,¢) be a connected graph over
(X, m) with standard weights and counting measure, i.e., b: X x X —»
{0,1},c=0and m = 1. Let O = {0} for o € X and let S,(0) = S,(0).
Let s: Ng — N be given by s(r) = #5S,(o) for all r € Ny. We then
say that b is an anti-tree with sphere size s if

ki(x) = s(r) for all z € S,41(0) and r € Nj.

See Figure (1| below for an example.

FIGURE 1. An anti-tree with s(r) = 2".

We note that the definition of an anti-tree implies

bls, (0)xSy11(0) = 1.
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In other words, every vertex in S,(0) is connected to all vertices in
Sr11(0) for all r € Ny. Hence, to disconnect such a graph, we must
remove all vertices between spheres. Furthermore, we note that we
impose no restrictions on blg, (0)x$, (o)-

To construct an anti-tree for a given sequence s: Ny — N of nat-
ural numbers with s(0) = 1, we partition the vertex set X into disjoint
subsets U, with #U, = s(r) and let b|y, xp,., = 1 for r € Ny with b = 0
otherwise, m = 1 and ¢ = 0.

We will revisit spherically symmetric trees and anti-trees to illus-
trate our results in this chapter.

The following formulas will play a crucial role in the proofs of several
results below. Hence we gather them together into one statement.

LEMMA 9.4. Let (b, c) be a weakly spherically symmetric graph over
(X, m) with respect to O C X. Then,

ki (r)ym(5:(0)) = k- (r + 1)m(5:41(0))

for allr € Ny, where both sides can be infinite. In particular, m(S,(0)) <
oo for all v € Ny if and only if m(O) < oc.

If f is a spherically symmetric function, then f € F and Lf is
spherically symmetric with

Lf(x) =ke(r)(f(r) = fr+ 1)) +k-(r)(f(r) = fr = 1)) +a(r)f(r)
for all x € S,.(O) and r € Ny.

PRroOOF. The first formula follows by a simple computation using
ky(r) = ky(z) for all x € S,(O), Fubini’s theorem and the symmetry
of b. Specifically, we have

ke (rm(S,(0) = Y ka(x)m(z)

z€Sr(0)

= > Y by

2€5,(0) y€Syr41(0)

= Z Z b(y,x)

yES,41(0) €S- (0)

= > k(ymly)

y€Sr4+1(0)
— b (r 4+ )m(S,11(0)).

The “in particular” statement now follows by the formula and induc-
tion.

A spherically symmetric function f on a weakly spherically sym-
metric graph is clearly a bounded function on the neighbors of any
vertex and, therefore, f € F. The second formula follows immedi-
ately from the definition of £ and the assumption that f is spherically
symmetric. O
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We now present a way to compare a weakly spherically symmetric
graph and a general graph. Whenever we do so, we will use the super-
script sym over the terms involving the spherically symmetric graph.

DEFINITION 9.5 (Stronger and weaker degree and potential growth).
Let (b,c¢) be a connected graph over (X, m) and let O C X. Let k4
denote the outer and inner degrees with respect to O and let ¢ denote
the potential of (b, c).

We say that (b, ¢) has stronger (respectively, weaker) degree growth
than a weakly spherical symmetric graph (bB¥™, ¢¥™) over (X®™ m™™)
with respect to O™ C X¥™ if m(0O) = m»™(O¥™) and, for all z €
S-(0) and r € Ny,

ky(x) > kZ™(r) and k_(z) < k¥™(r)
(respectively, ky(z) <EY™(r) and  k_(z) > kY™ (r)),

where k3™ are the outer and inner degrees of (b™, ¢™) over (X=™, m™)
with respect to O%™.

We say that (b, ¢) has stronger (respectively, weaker) potential growth
than (0™ ™) over (X m¥»™) if m(O) = m™»™(O¥™) and, for all
x € S.(0) and r € Ny,

q(x) > g™ (r)  (respectively, g(z) < ¢¥™(r)),
where ¢®™ is the potential of (6™, ¢¥™) over (X, m¥™™).

In what follows, we will prove a series of results for weakly spher-
ically symmetric graphs and then show the corresponding comparison
results for graphs with a stronger or weaker degree/potential growth
than a weakly spherically symmetric graph.

1. Symmetry of the heat kernel

In this section we are concerned with the symmetry of the heat
kernel. In particular, we will show that the heat kernel yields a spheri-
cally symmetric function for locally finite weakly spherically symmetric
graphs. We then turn to comparison theorems involving the heat ker-
nel.

1.1. Symmetry of the kernel and Green’s function. In this
subsection we establish the symmetry of the heat kernel and Green’s
function on a weakly spherically symmetric graph.

We first recall the definition of the heat kernel. The semigroup e~*F

on (*(X,m) for t > 0 gives rise to a kernel p: [0,00) x X x X — R
via

e f(x) = Zpt(x, y) f(y)m(y)

yeX
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forall f € /2(X,m), x € X and t > 0. By the fact that the semigroup is
positivity preserving, established in Corollary , we have py(x,y) > 0
for all z,y € X and t > 0 as py(z,y) = e F1,(x)/m(y).

For a finite set O C X, we now define

pi(r,0) = —————=(1,,¢7"10)

for x € X and t > 0. Thus, whenever O consists of a single vertex o,
we recover the heat kernel

pi(,0) = pi(x,{0})

for z € X.

The first theorem of this subsection states that the function p;(-, O)
is spherically symmetric whenever the graph is weakly spherically sym-
metric with respect to the subset O.

THEOREM 9.6 (Spherical symmetry of the heat kernel). Let (b, c)
over (X, m) be a locally finite graph. If (b, c) is weakly spherically with
respect to a finite set O C X, then p(-,O) is a spherically symmetric
function.

We prove this theorem by capturing the geometric notion of weak
spherical symmetry analytically. In fact, we will show that weak spher-
ical symmetry of a locally finite graph is equivalent to an even stronger
condition on the heat kernel, specifically, that the semigroup and an
averaging operator introduced below commute. The fact that p,(-, O)
is spherically symmetric is then an immediate consequence.

To start the proof we introduce the averaging operator A: C(X) —
C'(X) on a locally finite graph with respect to a finite set O C X by

1
Af(z) = m(8.(0)) > fymly)

yGST(O)

for x € S,(0). With some additional care we could define A on non-
locally finite graphs by making sure that the sums above converge
absolutely.

We note that a function f € C(X) is spherically symmetric if and
only if Af = f. This will be used repeatedly below. We will denote
the restriction of A to £*(X,m) by A, i.e.,

A - A‘@(X,m)-

We now collect some basic facts about A.
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LEMMA 9.7 (Basic facts about A). Let (b, c) be a locally finite con-
nected graph over (X,m) and let O C X be a finite set. Let A be the
averaging operator with respect to O and let A be the restriction of A
to (*(X,m). Then, A is a bounded self-adjoint operator on (*(X,m).
More specifically, A is an orthogonal projection of (*(X,m) onto the
subspace of spherically symmetric functions in *(X, m).

PROOF. Let f € £2(X,m). We note that X = J, S,(O) from the
assumption that (b, ¢) is connected. To show the boundedness of A, we
use the Cauchy—-Schwarz inequality as follows,

JAFIP =) (Af)*(z)m(x)

zeX

-2 T (amwy L 10w ne

r=0 z€S,(0 yeSr
2

- 1
:;—m(ST(O)) > fymly)

y€S-(0)

<2 o | 2 ™ Z i

= |If1I*

Hence, A is a bounded operator of norm 1 since Af = f for any
spherically symmetric function in ¢2(X, m).

Moreover, A is symmetric, and thus self-adjoint, by a direct cal-
culation. As the range of A is included in the spherically symmetric
functions and A? = A, the operator A is an orthogonal projection onto
the spherically symmetric functions in ¢2(X,m). O

The next lemma shows that weak spherical symmetry is equivalent
to A and A commuting with the Laplacians £ and L on suitable spaces.
We recall that L is a restriction of £ by Theorem and the domain
of L on a locally finite graph includes C.(X) by Theorem m Fur-
thermore, since O C X is assumed to be finite and (b, ¢) locally finite
below, S,.(O) is finite for all » € Ny and A and L both map C.(X) to
C.(X), i.e., C.(X) is invariant under both A and L.

LEMMA 9.8 (Characterization of weak spherical symmetry). Let
(b, ¢) be a connected locally finite graph over (X, m) and let O C X be
finite. Then, the following statements are equivalent:

(i) The graph (b, c) is weakly spherically symmetric.
(ii) The operator A commutes with L on C(X), i.e.,

AL =LA on C(X).
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(iii) The operator A commutes with L on C.(X), i.e.,
AL=LA on Ce(X).
PrOOF. We denote S,.(O) by S, for r € Ny.
(i) = (ii): Obviously, multiplication by the spherically symmetric
function ¢ commutes with A. Hence, we may assume that ¢ = 0.

Since Af is spherically symmetric for f € C(X), by Lemmal9.4] we
get, for x € S,

LAf(x) = ko (r)(Af(r) = Af(r+ 1)) + k_(r)(Af(r) = Af(r = 1)).
On the other hand, by using Lemma again, we get, for x € S,

ALf(x

Z Z b(y, 2)(f(y) — f(2))

yeS7 2€8r_1USr 41

isDIN(OIDS b(w)—ﬁ S e S b, )

yes 2€8,_1USr11 ") 28 1USri1 yeS,

=(/f+(7”) k(r))Af(r)
k;+7“—1 Z f(z Z (2

2€S8r_1 2€Sr4+1

= (k4 (r) + ( ))Af( )

7"+1 Z f

z€S —1 2E€ESr4+1
= k+(T)(Af(T) - Af(?” +1)) + k—(?“)(Af(T) —Af(r—1)).
Thus we see LAf = ALf.
(ii) = (iii): This is clear as A and L are restrictions of A and L.
(iii) = (i): Obviously, Alg,. = 1g, as 1g, is a spherically symmetric
function. Furthermore, for x € S,41, we have
L1s, () = —k(x)
by direct calculations. Thus, for x € S,41, we have
~kel2) = LAL, (2)
= ALlg, ( )

S kel

yESr+1

= —Ak;:F(r +1).

ril

Therefore, ky are spherically symmetric.
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Similarly, for = € S,., we calculate L1g, () = ky(z) + k_(z) + q(x).
Therefore, for z € S, we have
ki (z) + k-(2) + q(2) = Lls,(2)
= LAlST ({L‘)
= ALlST (Q?)

= oy 2 (ke0) + h-) + a))m(y)

YESy

= A(ky + k- +q)(r).

As we have already shown that k. are spherically symmetric, this shows
that the potential ¢ and, thus, the graph is weakly spherically symmet-
ric. ]

We next apply the general theory of reducing subspaces and com-
muting operators developed in Appendix [3] This result allows us to
pass from the commutativity of the restriction of the Laplacian and
the averaging operators to the finitely supported functions to commu-
tativity on the entire domain of the Laplacian. Furthermore, it shows
that this commutativity is equivalent to the averaging operator com-
muting with the semigroup. Specifically, we apply Corollary with
H = (*(X,m) and Dy = C.(X) to obtain the following lemma.

LEMMA 9.9. Let (b, ¢) be a connected locally finite graph over (X, m)
and let O C X be finite. Then, the following statements are equivalent:
(i) AL =LA on C.(X).
(ii) A maps D(L) into D(L) and AL = LA on D(L).
(iii) Ae ' =e A on (X, m) for all t > 0.

With these two lemmas, we can now show the desired symmetry of
the heat kernel.

OF THEOREM [0.6l From Lemmas and [9.9| we see that if (b, c)
is a locally finite and weakly spherically symmetric graph with respect
to a finite set O, then A and e™*f commute. Hence, as p;(z,0) =
e Flo(x)/m(0) for z € X, we get

1
Api(z,0) = m(O)Ae_tLlo(x) = (0 e " Alp(x) = pi(z,0)
for x € X and t > 0. Hence, p;(-, O) is spherically symmetric. O

REMARK. If we denote the distance to O for a vertex z € X by
r, = d(z,0), then combining Lemmas and we obtain that a
locally finite graph is weakly spherically symmetric if and only if

1 1
O 2, ) = s o 3 el
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forall z,y € X and ¢ > 0. This implies p;(+, O) is spherically symmetric
(Exercise[9.9).

From the spherical symmetry of the heat kernel, we derive an im-
mediate statement concerning the Green’s function. We recall that in
Chapter [6] we introduced the Green’s function of a graph b as

Gm(z,y) = /000 e 1, (z)dt = /OOO pe(x, y)m(y)dt.

Furthermore, we call a connected graph b transient if and only if
Gm(z,y) < oo for some (all) z,y € X and some (all) measure m.
See Theorem for various equivalent formulations of transience.

We now extend the definition of the Green’s function by letting

Gm(z,0) = ZG x,0)

whenever O C X is finite and = € X.

COROLLARY 9.10 (Spherical symmetry of the Green’s function).
Let b be a locally finite weakly spherically symmetric graph over (X, m)
with respect to a finite set O C X. Assume that b is transient. Then,
the Green’s function Gp,(-, O) is spherically symmetric.

Proor. We calculate by the definitions above and Fubini’s theorem

Gm(a:,O):m(O ZG x,0)
:m(lo Z/ pi(z, 0)m(o)dt
_/0 Woezopt(x,o)m(o)dt
:/Ooopt(x,O)dt

for € X. By Theorem [0.6] pi(-,O) is spherically symmetric. This
completes the proof. O

1.2. Comparison theorems. We next turn to comparison re-
sults. That is, we will compare the heat kernel on a general graph
to the heat kernel on a weakly spherically symmetric graph. As a
consequence, we get comparisons for the Green’s function.

By Theorem |9.6| we know the heat kernel p™™ (-, O%™) of a locally
finite weakly spherically symmetric graph (6™, ¢¥™) over (X®™ m™)
with respect to a finite set O™ C X®™ is a spherically symmetric
function. Hence, we may write

pi(r) = pi (@, O
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for all z € S,.(O¥™),r € Ny and ¢t > 0.

We will now compare the heat kernel on a weakly spherically sym-
metric graph and the heat kernel on a general graph. For this, we
ultimately restrict to the case ¢ = 0.

THEOREM 9.11 (Heat kernel comparison with weakly spherically
symmetric graphs). Let b be a connected locally finite graph over (X, m)
with heat kernel p and let O C X be a finite set. If b over (X, m) has
stronger (respectively, weaker) degree growth than a locally finite weakly
spherically symmetric graph b>™ over (X¥™ m¥»™) with respect to a
finite set O™ C X™ and heat kernel p™™, then

pe(z,0) < pP™(r) (respectively, pi(z,0) > p>™ (1))
for all x € S.(0O), r € Ny and t > 0.

The proof will require several ingredients. One ingredient is the
minimum principle for the heat equation, which we now recall. Specif-
ically, if U C X is a connected subset containing a vertex which is
connected to a vertex outside of U, "> 0 and u: [0,7] x X — R is
such that ¢ — w.(z) is continuously differentiable on (0,7) for every
zeU,u € F forall t € (0,7] and

e (L+0)u>0o0n (0,T)xU
e u A0 attains a minimum on [0,7] x U
eu>0o0n ((0,7]x X\U)U ({0} x U),

then
u>0 on [0,7]xU.

See Theorem for a proof. We also recall that if f € ¢2(X,m), then
u, = e~ F f is a solution of the heat equation with uy = f. If addition-
ally f € D(L), then the solution extends to t = 0, see Theorem
in Appendix [A] for a proof of the solution statements for ¢ > 0 and
Theorem in Appendix D] for ¢ = 0 in the case of f € D(L).

In order to utilize the minimum principle, we will exhaust the graph
by finite subsets. To utilize the symmetry of the graph, we will exhaust
by balls around O. As we will assume that O is finite and b is locally
finite, it follows that B,.(O) are finite sets for all r € Ny. The minimum
principle will allow us to compare heat kernels locally. We will then
pass from properties on subsets to properties on the entire graph. In
order to do so, we now build upon some ideas from the exhaustion
techniques found in Section [3]

We let (b,¢) be a locally finite graph over (X, m) and let O C X
be finite. We denote Br(O) by Bpg and the Dirichlet Laplacian on
62(337 mR) by

D D
L 1)
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where mg = m]BR for R € Ny. We recall that

(Z b(@,y)(f(x) = f(y)) + (dr(z) + C(flf))f(@)

for all f € 62(BR,mR) and z € Bg, where dg(z) = >_ 5 b(z,y). We

let QE%D) denote the associated form, so that

D) = (LY

L(D)f

for all f € (*(Bgr, mg).
We denote the heat kernel of L%D) on By by p® and refer to p?)

as the Dirichlet restriction of the heat kernel. We can then extend p?)
by zero to all of X. Then, we have

1 (D)
—tLY

m(0)© o(z)

for € BR(O) and pgR)(x, 0) =0 for x € X \ Br(O) and all t > 0.
We now collect some basic properties of the Dirichlet restrictions of
the heat kernel.

Pt (z,0) =

LEMMA 9.12 (Dirichlet restrictions of the heat kernel). Let (b, c)
be a locally finite weakly spherically symmetric graph fwith respect to
a finite set O C X. Let p be the heat kernel and let p'™ denote the

Dirichlet restrictions of the heat kernel to Br(O) for R € Ny. Then,

pgR)(-, O) is spherically symmetric for every R € Ny and t > 0 and

hm pt (x 0O) = pi(x,0)
forallx € X andt > 0.
PROOF. As Bg(O) is finite for all R € Ny, we obtain

}%un Pt (I 0) = pi(z,0)
for all t > 0 and x € X by Lemma [1.21]

To show that pgR)(~, O) is spherically symmetric for every R € Ny
and t > 0 we will show that p® is the heat kernel of a locally finite
weakly spherically symmetric graph. Specifically, we denote Sg(O) by
Sr, Br(O) by Bgr and the restrictions of b and m to Bg x Bg and Bpg
by bz and mpg, respectively. Then, p* is the heat kernel of the graph
(bgr, cr) over (Bg, mg), where

B c(x) if x€ B
cr(z) = c(x) + ZyESR+1 b(xz,y) if z € Sg.

Therefore, as ¢ = ¢/m,

(7) if x€ Bg 1(0)
qr(x) = { (x)ih(}z) if ze Sg(O),
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so that both the outer and inner degrees and the potential of (bg, cg)
over (Bg,mpg) are spherically symmetric. Hence, by Theorem ,
pgR)(-,O) is a spherically symmetric function for every ¢ > 0 and

R € Ny. This completes the proof. O

Having established basic properties of p®) we now turn to another
intuitively clear property, namely, the decay in space of pgR) (+,0) for
every t > 0. For the proof we assume additionally that ¢ = 0.

As we have established that p(®(-, O) is spherically symmetric, we

write pgR)(r) for pﬁR)(:r, O) for all z € S,(0) and t > 0.

LEMMA 9.13 (Heat kernel decay). Let b be a locally finite weakly
spherically symmetric graph over (X, m) with respect to a finite set
O C X. Letp be the heat kernel and let p) be the Dirichlet restriction
of p to Br(O) for R € Ny. Then, for allt >0 and r, R € Ny,

2P > P+ 1)

and thus

pe(r) > pe(r + 1)
fort >0 and r € N.

PROOF. It is clear that pi(r) > pi(r+ 1) for all t > 0 and r € N,

follows from pER) (Ti > pgR) (r+1) and the convergence of the heat kernel

shown in Lemma [9.12, Thus, we focus on proving p!™ (r) > o (r+1)

for all t > 0 and r, R € Ny. We note that pgR) (r) > 0 by positivity of
the heat kernel while p{™(r) = 0 for r > R by definition. Hence, we
may focus on the case 0 < r < R.
We fix R € Ny and introduce the function ¢: [0, 00) — R via
o) = max (o (k) = (7))

0<j<k<R
We note that it suffices to show ¢ < 0. As

1/m(O) if r=0
0 if reN,

R
Py (r) =

we directly obtain ¢(0) < 0.
We now argue by contradiction. Specifically, we show the following
claim:

Claim. If there exists a to > 0 such that ¢(ty) > 0, then there is a
neighborhood around ¢y such that ¢ is strictly monotone decreasing in
this neighborhood.

Proof of the claim. Suppose there exists a ty > 0 such that ¢(ty) >
0. We can then choose an ry < Ry such that pgf) (ro) is a strict lo-
cal minimum for pgf)() and pgf)(Ro) is a strict local maximum for
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pgf)(-), i.e., one of the neighbors is strictly larger/smaller than the

minimum/maximum, and

R R
p(to) = pl(fo '(Ro) —Pgo (ro).
By the strict local maximality and minimality, we have
L%D)pﬁf)(Ro) >0 and L%D)pif)( 0) < 0.
By the heat equation we conclude

@pgR) (R0>’t=to <0 and @pgR) (TO)ltZto >0

and, by the continuity of 8tp§R), we obtain that ¢ is strictly monoton-
ically decreasing in a neighborhood of ty. This proves the claim.

So, assume that there exists a ty > 0 such that p(to) > 0 and let
€ [0,%9] be such that ¢(t;) = maxp,)¢. Then, p(t;) > 0 and,
therefore, ¢ must be strictly monotone decreasing in a neighborhood
of t; by the claim above. This is a contradiction to ¢ taking a strictly
positive maximum at t; and ¢(0) < 0. This completes the proof. [

REMARK. It is not hard to see that the inequalities for p above
are strict for t > 0 (Exercise [9.10).

Having assembled all of the necessary pieces for the proof, we now
establish our heat kernel comparison.

oF THEOREM [Q.11] Let p®™ denote the heat kernel of the weakly
spherically symmetric graph and let p»™ @) be the Dirichlet restriction
of p¥™ to Br(O™™) C X®™ for R € Ny. We define a spherically
symmetric function o9 : [0, 00) x X — R via

R m,(R
o™ (@) = "™ ()

= Dy

forz € S,.(0O) C X and t > 0.

We assume that b has stronger degree growth than 6™. By the heat
kernel decay of weakly spherically symmetric graphs, Lemma [9.13] and
the assumption of stronger degree growth, we get, for x € S,.(O) with
r € Ny,

Lot () = ky(x >< 2 () — (e 1))
k- (2) (g™ (r) — pp™ 0 (r — 1))
> K™ >< ) = 1)
+E (@) (™ () = ™ (e — 1))
= Lm0 ().
Hence,
(L +0)o™ (@) = (L™ + 0)p™ P (r) = 0
forz € X and ¢t > 0.
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We now let p denote the heat kernel of b and let pt) denote the
Dirichlet restriction of p to Br(O) C X. We let

u(z) = o (x) = pi”(x,0)
for x € X and t > 0. From the above, we obtain
(L+ 0)u(z) >0

on [0,7] x Bg(O) for arbitrary 7" > 0. By compactness and continuity,
u /\ 0 attains a minimum on [0, 7] x Bg(O). Furthermore, as otF) () =
p\P(z,0) =0 for 2 € X\ Br(0), we have u = 0 on [0, T] x X \ Br(O).
Finally, as we assume m™™(O%™) = m(O), we obtain, for z € O,

Sym 1 1
00" (@) =5"™0) = e = gy~ P (@0)
and Q(()R)( ) = po (:v 0) =0 for x € X \ O. Therefore, ug(z) = 0 for
all z € X.
Thus, by the minimum principle for the heat equation, Theorem|1.10},
ui(z) > 0 on [0,T] x Br(O). Therefore, for = € S,(0O) with r < R and
t € [0,T] we have

() = ol (x) > piP(z,0).

The statement p;"™(r) > pi(x,0) for x € S,.(0), r € Ny and t > 0
then follows from the convergence of the Dirichlet restrictions given in
Lemma [9.12] This completes the proof in the case of stronger degree
growth. The proof for weaker degree growth follows in an analogous
manner. U

We conclude this subsection with the corresponding comparison
result for the Green’s function. Recall that

Gm(z,0) = ﬁ Z Gm(zx,0)

for z € X. Furthermore, by Corollary Gm(-,0) is spherically
symmetric for weakly spherically symmetric graphs so that we may
write G¥™(r) = G™(z, O) for x € S, (O%¥™) and r € Ny.

THEOREM 9.14 (Green’s function comparison with weakly spheri-
cally symmetric graphs). Let b be a connected locally finite graph over
(X, m) with Green’s function G, and let O C X be finite. If b over
(X, m) has stronger (respectively, weaker) degree growth than a locally
finite weakly spherically symmetric graph b™ over (X=™ m*™) with
respect to a finite set O™ C X™ and Green’s function G™™, then

Gm(z,0) < G¥™(r) (respectively, G, (O, x) > G¥™(r))
for all x € S,.(O) and r € Ny.
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PRrROOF. The statement follows immediately from Theorem [9.11]
the definition of the Green’s function, which gives

Gm(z,0) = ﬁ ZXGm(x,o) = ﬁ ZX/OOO e 1y(x)dt

= / pe(z, O)dt,
0

and the corresponding formula for G¥™(x). O

2. The spectral gap

In this section we study the bottom of the spectrum of the Lapla-
cian. More specifically, we first give a criterion for the bottom of the
spectrum to be strictly positive when the graph is weakly spherically
symmetric. We then give comparison theorems for the bottom of the
spectrum of the Laplacian on general graphs. We also prove a criterion
for the spectrum of the Laplacian to be discrete.

We will use some basic facts about the essential spectrum from
Appendix 2 Moreover, Excavation Exercise recalls a basic trick
involving logarithms and exponentials which will be used in the proof
of Theorem [9.20

We let L = Léi)m denote the Laplacian associated to a graph (b, ¢)
over (X, m), o(L) denote the spectrum of L and

Ao(L) = inf o(L)

denote the bottom of the spectrum of L. As L arises from a positive
form, by the variational characterization of the bottom of the spectrum
we obtain A\g(L) > 0, see Theorem in Appendix [E]

In this section we will give criteria for the bottom of the spectrum
to be strictly positive. In this context, the value Ao(L) is sometimes
referred to as the spectral gap. The discrete spectrum ogisc(L) of L
consists of the isolated eigenvalues of finite multiplicity and the essen-
tial spectrum oess(L) is the complement of ogise(L) in the spectrum,
i.e., Oess(L) = (L) \ 0gisc(L). Furthermore, we say that L has purely
discrete spectrum or the spectrum of L is discrete if o(L) = ogisc(L),
i.e., 0ess(L) = 0, see Appendix [2| for more details.

We introduce the boundary OW of a set W C X as

OW =W x (X\W)U((X\W)xW).

We remark that there are many notions of boundaries when considering
subsets of a graph. Here, we take a notion that is symmetric.

We will be particularly interested in the boundary of balls around a
set and the total edge weight of this boundary. We therefore introduce
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the area of the boundary of a ball B,.(O) for a set O C X as
bOB,(0) =}, by

(z,y)€0B-(0)

for r € Ng. We note that

so if the graph is weakly spherically symmetric, we obtain
b(0B,(0)) = 2k (r)m(5,(0))

for r € Nj.

With these notions, we will prove the following summability crite-
rion for discreteness of the spectrum and positivity of the bottom of
the spectrum for weakly spherically symmetric graphs.

THEOREM 9.15 (Area-volume ratio and spectrum). Let b be a lo-

cally finite weakly spherically symmetric graph over (X, m) with respect
to a finite set O C X. If

_ ~— m(B,(0))
=2 3@B.0) <>

then
No(L) > —
0 ~ 2a
and the spectrum of L is discrete.
The proof uses the Agmon—Allegretto—Piepenbrink theorem for the

spectrum from Chapter [ which we now recall. If u € F and « € R,
then we say that u is a-harmonic if

(L4 a)u=0.

In the case of locally finite graphs, Theorem [4.14] states that there
exists a strictly positive a-harmonic function if and only if

(0% Z —)\0([/)

Hence, to show the strict positivity of the bottom of the spectrum, it
suffices to show the existence of a strictly positive a-harmonic function
for a < 0.

To show this existence, we will use the following recursion formula
for spherically symmetric solutions. This formula will also be used
to prove criteria for recurrence and stochastic completeness presented
later in this chapter, so we state it in a rather general form which
involves a function instead of a constant a. We also recall that the
potential ¢ = ¢/m is a spherically symmetric function when the graph
is spherically symmetric.
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LEMMA 9.16 (Recursion formula for spherically symmetric solu-
tions). Let (b,c) be a locally finite weakly spherically symmetric graph
over (X, m) with respect to a finite set O C X and let f € C(X) be
spherically symmetric. Then, a spherically symmetric function u €

C(X) satisfies (L + f)u = 0 if and only if

w41 = 0lr) = iy Slale) + F)m(S, (Ot

for all r € Ny. In particular, u is uniquely determined by the choice of
u(0). Furthermore, if w(0) > 0 and f > 0, then u(r +1) > u(r) for all
re No.

Proor. We will prove the recursion formula by induction. The
uniqueness and monotonicity statements are then obvious from the
recursion formula.

We will omit O from our notation below, writing B, for B,(O) and
S, for S,(0). We recall that b(0B,) = 2k, (r)m(S,) for r € Ny. For
r =0, from (£ + f)u(0) = 0 we obtain

0 = k1 (0)(u(0) = u(1)) + (¢(0) + £(0))u(0)
b(0By)
= —u(l
(10~ (1) + (a(0) + F(0)u(0)

which yields the formula after rearranging the terms.
Now, we assume that the recursion formula holds for » — 1, where
r € N. From (£ + f)u(r) = 0 we obtain

ki (r)(u(r) —u(r + 1)) + k- (r)(u(r) —u(r = 1)) + (¢(r) + f(r))u(r) = 0.
Therefore, by the induction hypothesis, b(0B,) = 2k;(r)m(S,) and
ky(r—1)m(S,—1) = k_(r)m(S,) proven in Lemma [9.4] we obtain

k_(r) (q(r) + f(r))u(r)

u(r+1) —u(r) = (u(r) —u(r—1))+

ki (r)

=5 o) + n)m(S, Ju(w).

n=0

This proves the recursion formula and thus completes the proof. Il
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We now use the recursion formula above to show that under the
summability assumption found in Theorem [0.15] there exists a strictly
positive a-harmonic function for a < 0. This will prove the spectral
gap via the Agmon—Allegretto—Piepenbrink theorem.

LEMMA 9.17. Let b be a locally finite weakly spherically symmetric
graph over (X, m) with respect to a finite set O C X. If

=, m(B,(O
_ 5 m(B(0)

b(9B,(0)) =

r=0
then there exists a strictly positive monotonically decreasing spherically
symmetric function u which satisfies u(0) = 1 and

1

PrOOF. We will define a spherically symmetric function u with
the required properties. We start by letting u(0) = 1. Then, by
Lemma , u will satisfy (E — %) u = 0 if and only if u satisfies

the recursion formula
u(r 4 1) — ufr) = —m ; (S, (0))u(n)

as we assume ¢ = 0 and, thus, ¢ = 0.

We will show that u is strictly monotonically decreasing and re-
mains positive by using strong induction. More specifically, we will
show that

1 <~ m(B,(0))
0<1—- — L < 1) <
- % b(0B,(0) = u(r+1) <u(r)
for all » € Ny. The first inequality above is clear from the definition
of a. For r = 0, the remaining inequalities follow directly from the
recursion formula and u(0) = 1 as

1 m(O)

u(l) —u(0) = 3 ABAOT b(&BO(O))m(SO(O)) = b(00) <0
gives
1-%:%1) <1 = u(0).

Now, assume that the inequalities hold up to r — 1, that is,

k
1 ¢~ m(Bn(0))
0<1l—- — = <ulk+1) <u(k
a ; b8, (0)) = Uk L) <ulk)
fork=0,1,...,7—1. Therefore, u(k) > 0for k =0,1,...,r and the re-
cursion formula gives u(r—+1)—u(r) < 0. Moreover, as u is then strictly
decreasing up to r, we get u(n) < w(0) = 1 for all n = 1,2,...,r.
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Hence, from the recursion formula and the inductive hypotheses we
obtain

ur+1) = ulr) = — 8; o nzzom(Sn(O))u(n)
m(B,(0))

> ulr) = @B, (0)
L m(Ba(0))  m(B.(0))

1= 02 43B,(0)) ~ a-HOB.(0)

1 m(B,0)
0 2= H(9B,(0))

This completes the proof. U

OoF THEOREM [9.15] By Lemma for
—~ m(B,(0))
=) — <
=2 508,0) <~
there exists a strictly positive function u which satisfies

1

Thus, Ao(L) > 1/2a follows from the Agmon—Allegretto—Piepenbrink
theorem for the spectrum, Theorem [4.14]

For the statement concerning the essential spectrum consider the
graph br = b|x\Br0)xx\Br0) Over (X \ Br(O),mg), where mp =
m|x\spo) for R € N. Let Lp = LS?\)BR(O) be the Dirichlet Laplacian
associated to br over (X \ Br(O),mg). Since the graph is assumed
to be locally finite and O is a finite subset, all balls Bg(O) are finite
and thus the operator Lg is a finite-dimensional, and thus compact,
perturbation of the operator L for every R € N. Therefore, if we let
A5¥(L) denote the bottom of the essential spectrum

NS (L) = inf 0es(L) = inf 0oy (Lg) > inf o(Lg) = Ao(Lg)

for R € N, as follows by either Theorem [4.20] or Theorem [E.7]
In order to estimate A\o(Lg), we let

_ §~ mB(0)

and let L be the formal Laplacian of the graph br. Since by is a
weakly spherically symmetric graph over (X \ B,(O), mg) with respect
to O, there exists a strictly positive function ur which satisfies

1
<LR—E)UR:O
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for every R € N by Lemma [9.17, Hence, by the Agmon—Allegretto—
Piepenbrink theorem for the spectrum, Theorem |4.14], and the inequal-
ities above we get

1
AP (L) > N(Lg) > — — 0

2a R
as R — oo, cf. also Theorem m This shows 0es(L) = 0 and, there-
fore, L has purely discrete spectrum. Il

We next illustrate Theorem for spherically symmetric trees and
anti-trees, i.e., for Examples[9.2]and[9.3] For trees, we get the following
criterion for the spectral gap and discreteness of the spectrum.

EXAMPLE 9.18 (Spherically symmetric trees and spectrum). Let b
be a spherically symmetric tree with branching number k. If

SIS k)
= 2= k0) |
then \o(L) > 1/2a and the spectrum of L is discrete (Exercise [9.3).

For anti-trees we obtain the following criterion. We note, in partic-
ular, that this can be used to construct examples of graphs with strictly
positive bottom of the spectrum and whose distance balls grow poly-
nomially. We will have more to say about the bottom of the spectrum
and volume growth in Chapter

EXAMPLE 9.19 (Anti-trees and spectrum). Let b be an anti-tree
with sphere size s. If

a:iM“‘”

2s(r)s(r+1)
then \g(L) > 1/2a and the spectrum of L is discrete (Exercise [9.4).

We will next prove a comparison result for spectral properties. For
this, we recall that we compare the outer and inner degrees of a general
graph to those of a weakly spherically symmetric graph. We also recall
that we denote the corresponding quantities in the weakly spherically
symmetric graph with a superscript sym.

THEOREM 9.20 (Spectral comparison). Let b be a connected locally
finite graph over (X, m) and let O C X. If b has stronger (respectively,
weaker) degree growth with respect to O than a locally finite weakly
spherically symmetric graph b>™ over (X™ m¥™) with respect to a
finite set O™ C X*™  then

Ao(L) > Xo(L¥™) (respectively, Ao(L) < Ag(L¥™™)).
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Furthermore, if b¥™ over (X™, m¥»™) satisfies

. o) msym<Br<Osym>> “ 0
— bsym(&Br(Osym))

and b over (X, m) has stronger degree growth than b™ over (XY™ m¥»™),
then

1
Ao(L) = %
and the spectrum of L is discrete.

PROOF. Assume that b has stronger degree growth than 0*™. By
the heat kernel comparison, Theorem [9.11], we have

pe(x,0) < p™(r)
for all z € S,.(0) C X, r € Ny and ¢t > 0. By definition

pi(x,0) = %Zm(m,o)m 0
0€0

Therefore we obtain
Zpt r,0)m(0) = pu(w,0) < pP™(r) = p™ (&', )

for all x € ST(O), o € 0¥ 2/ € S.(O"™) and r € Ny, where the
last equality follows by the symmetry of the heat kernel of weakly
spherically symmetric graphs established in Theorem [0.6]

Now, by the Theorem of Li, Theorem [5.6] we have

o1
lim —log py(z,y) = —Ao(L)
t—oo ¢

for all z,y € X as the graph is connected. Hence, for z,y € O and
2,0 € O™ we obtain

o1
—Xo(L) = tli>m —logpt(l",y)

= lim - log Zpt x,0)m

t—oo t

1
< lim - logp"™ (2, 0")

t—oo t

= —Ag(L¥™).

Therefore, Ag(L) > Ao(L™™) in the case of stronger degree growth. The
proof of the statement for weaker degree growth follows analogously.

When b has stronger degree growth than b*™, the estimate \o(L) >
1/2a follows from the first statement and Theorem [9.15] For the state-
ment about the discreteness of the spectrum, consider the Laplacians
Lr and L™ associated to the graphs

br = b|x\Br(0)xX\BR(0)
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over (X \ Br(O), mp), where mgr = m|x\p,0) and

sym __ psym
Y™ = b

X\ B (0%m) X X9\ B (OW™)

over (X¥™\ Br(O™™), m3"™) where m3™ = m™™| xsym\ g, (0svm) for R €
N. Clearly, bg also has stronger degree growth than b3™. Therefore,
by what we have proven above and the proof of Theorem [9.15, we have

sym 1
Mo(Lg) > Mo(LF™) > %an
for
o0 msym(BT(Osym))
h= ) o
r=R+1 b (0B, (0™™))
for all R € N.

Now, since L is a finite-dimensional and thus compact perturba-
tion of L, we infer that the essential spectra and, in particular, the
bottoms of the essential spectra AJ*®(L) and A\§*(Lg) agree, see Corol-

lary or Theorem [E.7] Hence,

1
A (L) = Ag™(LRr) > Mo(LR) > 57— —
ZaR
as R — oo. Thus, the essential spectrum of L is empty and so L has
purely discrete spectrum. This completes the proof. U

3. Recurrence

In this section we present a characterization of recurrence for weakly
spherically symmetric graphs. We then give a comparison result for
general graphs.

We recall that for a graph b over (X, m) with associated Laplacian
L, the Green’s function G: X x X — [0, 00] is defined as

G(z,y) = /000 e 1, (z)dt = /Ooopt(x7y)m(y)dt.

A connected graph b is called recurrent if G(z,y) < oo for some (all)
r,y € X and transient otherwise, see Theorem in Chapter [g] for
various other characterizations of this property. We also note that
whenever b is connected, we have G(z,y) > 0 for all z,y € X as the
heat semigroup is positivity improving by Theorem [1.26]

We note that recurrence is a measure-independent phenomenon in
the sense that if b is recurrent for one measure m, then b is recurrent
for all measures m. Hence, we either do not mention the measure or
assume that m = 1 in the statements below. Furthermore, we recall
that for a finite set O C X, we have defined

G(-0) = @ZGM
oc0
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and have shown in Theorem[9.14]that G(-, O) is a spherically symmetric
function in the case that the graph is weakly spherically symmetric with
respect to O.

We will first give a characterization of recurrence for weakly spher-
ically symmetric graphs. For this, we will use a characterization of
recurrence in terms of superharmonic functions. We recall that a func-
tion u € F is called superharmonic if Lu > 0. Theorem (iv) states
that a connected graph is transient if and only if there exists a positive
non-constant superharmonic function. This will be used to prove the
characterization below.

Finally, we recall that 0B,(0O) denotes the boundary of the ball of
radius r € Ny around O and b(0B,(0)) denotes the total edge weight of
the boundary of the ball, which we refer to as the area of the boundary
of the ball. The following theorem gives a characterization of recurrence
in terms of this quantity.

THEOREM 9.21 (Area ratio and recurrence). Let b be a locally finite
weakly spherically symmetric graph over X with respect to a finite set
O C X. Then, b is recurrent if and only if

> 1
Z b(0B,(0)) ~

PROOF. As noted above, the measure plays no role in recurrence.
Hence, we let m = 1 be the counting measure on X. We also let
a > 0 be a constant. By Lemmal[9.16], the unique spherically symmetric
function u with u(0) = 1 and

(c—mb)u:o

satisfies

) =) = 5 D 5 gy oS Ot
~1
~ a-5(0B,(0))
for all r € Ny. Iterating this and using u(0) = 1, we obtain

1 1
u(r—i—l):l—a%—b(aBk(O))

for r € Ny. We will use this equality with different constants a for both
implications in the proof.

First, if we assume that

> 1
“= 2 3G5,0)) <™

r=0
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then u is a non-constant strictly positive superharmonic function. Thus,
b is transient by Theorem [6.1] (iv).

Conversely, assume that b is transient. Then, by Theorem [6.1] (xi),
the Green’s function is finite, i.e., G(z,y) < oo for all z,y € X. Fur-
thermore, by Theorem [6.2€] (d), G(,0) for o € O satisfies

LG(-,0) = 1,.

Furthermore, G(+, 0) is strictly positive as the graph is connected. By
Corollary the function

1
go(r) = W ; G(z,0)

is spherically symmetric and from the above satisfies

1 1 1
£00 = 35001 25 20 = 01" ot mi0)

where the last equality holds for all o' € O since go is spherically
symmetric. Hence, if we let u = go/go(0) for o' € O, then u is strictly
positive spherically symmetric and satisfies u(0) = 1 with

(ﬁ—mlo>u:0

for a = go(0')/2. Now, by the consideration in the beginning of the
proof, u must also satisfy

1 < 1
u(r—l—l):l—a;m

and hence, then u is positive if

= 1
— < .
Z b(0B,(0) =~
This completes the proof. Il

REMARK. Another viewpoint on Theorem [9.21]is that the Green’s
function for weakly spherically symmetric graphs can be calculated
explicitly as

ad 1
G(w0) =m(0) X T55.0))

for v € S,.(0), r € Nand o € O. In particular,

1

Gz,0)=)
9= 2. 565, 10)

n=r 2

o0

for all x € S,(0), n € N, from which Theorem follows (Exer-

cise [9.11).
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We now illustrate the theorem above for our two main classes of
examples, namely spherically symmetric trees and anti-trees from Ex-
amples and [9.3] For trees the characterization of recurrence reads
as follows.

EXAMPLE 9.22 (Spherically symmetric trees and recurrence). Let
b be a spherically symmetric tree with branching number k. Then b is
recurrent if and only if

= 00
Z Hn 0
(Exercise [9.3).

For anti-trees, rephrasing everything in terms of the sphere growth
gives the following characterization.

EXAMPLE 9.23 (Anti-trees and recurrence). Let b be an anti-tree
with sphere size s. Then, b is recurrent if and only if
1 J—
s(r)s(r+1)

[e.9]

r=0
(Exercise [9.4)).

Next, we give a comparison result for recurrence. We note that,
intuitively speaking, stronger degree growth gives a larger push to in-
finity, which is needed for transience. This is made precise in the
following result.

In order to evoke the definition of stronger and weaker degree
growth, we need the presence of a measure. Hence, we will assume
that the measure is the counting measure for both graphs. As part of
the definition of stronger and weaker degree growth, this gives that the
cardinalities of O and O®™ are the same.

THEOREM 9.24 (Recurrence comparison). Let b be a locally finite
graph over (X, m) with m = 1 and let O C X be a finite set. If b
has stronger (respectively, weaker) degree growth than a locally finite
weakly spherically symmetric graph b™ over (X=™ m¥™) with respect
to a finite set O™ C X¥™  where m™™ = 1 and b¥™ is transient
(respectively, recurrent), then b is transient (respectively, recurrent).

PROOF. The statement follows immediately by Theorem and
the characterization of recurrence in terms of the finiteness of the
Green’s function, Theorem (xi). O

4. Stochastic completeness at infinity

In this section we investigate stochastic completeness at infinity.
We first characterize this property for weakly spherically symmetric
graphs and then give corresponding comparison results.
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For the proof of the characterization we will need an elementary
statement about the equivalence of the convergence of sums and prod-
ucts, which is recalled in Excavation Exercise [9.2]

We recall that a graph (b, ¢) over (X, m) with associated Laplacian
L= Léi)m is called stochastically complete at infinity if

t c
et +/ et ds=1
0 m

for all + > 0. Here, e~*F denotes the heat semigroup originally defined
via the spectral theorem on ¢2(X,m) and then extended to (*°(X) so
that we may apply it to the constant function 1 and the integral term
involves the semigroup extend to positive functions via the use of nets,
see Sections [I] and [2| for details concerning these extensions.

Stochastic completeness at infinity has a number of equivalent for-
mulations. We recall that a function v € F is called a-harmonic for
a e Rif

(L+ a)u=0.

By Theorem [7.18], stochastic completeness at infinity is equivalent to
the fact that every bounded a-harmonic function for o > 0 is trivial.
Furthermore, if u € F satisfies (£ 4+ a)u > 0, then u is called a-
superharmonic. The Khasminskii criterion for stochastic completeness
states that if there exists a positive a-superharmonic function for a > 0
which grows to infinity at infinity, then (b, ¢) is stochastically complete
at infinity, see Theorem [7.31]

We first state a characterization of stochastic completeness at infin-
ity for weakly spherically symmetric graphs. In particular, the criterion
below compares the growth of the total measure and killing term of the
ball to the area of the boundary.

THEOREM 9.25 (Volume-area ratio and stochastic completeness).
Let (b,c) be a locally finite weakly spherically symmetric graph over
(X, m) with respect to a finite set O C X. Then, (b, c) is stochastically
complete at infinity if and only if

2 ¢(B,(0)) +m(B,(0))
2 b(0B,(0))

= 0.

In order to prove the theorem above, we first investigate the bound-
edness of a-harmonic functions for o > 0 by using the recursion formula
for solutions found in Lemma [0.16]

LEMMA 9.26. Let (b, c) be a locally finite weakly spherically sym-
metric graph over (X, m) with respect to a finite set O C X. Then, the
following statements are equivalent:

(i) There exists o > 0 and a non-trivial spherically symmetric o-
harmonic function that is bounded.
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(ii) For all a > 0, all spherically symmetric a-harmonic functions are
bounded.
(i) We have

[e.e]

c(BT(O)) + m(Br(O))
Z WoB.(0)

PRroOOF. First of all, the recursion formula for spherically symmetric
solutions, Lemma [9.16] gives that a spherically symmetric a-harmonic
function u is uniquely determined by its value at 0. Thus, for a given
a > 0, all spherically symmetric a-harmonic functions are bounded if
there exists a non-trivial a-harmonic function that is bounded.

Furthermore, for a > 0, we let

_ = ¢(B,(0)) + am(B,(0))
=2 TG0y

r=0

Obviously, the finiteness of a(a) for some a > 0 is equivalent to the
finiteness of a(«) for all a > 0.

Thus, it remains to show that a(a) < oo is equivalent to the exis-
tence of a non-trivial bounded spherically symmetric a-harmonic func-
tion.

By applying the recursion formula, Lemma [9.16] any spherically
symmetric u with (£ + a)u = 0 satisfies

D (c(5n(0)) + am(S,(0)))u(n)
n=0
for all € Ny, where we used g(n)m(S,(0)) = ¢(S5,(0)), which follows
from the spherical symmetry of q. Now, if «(0) = 0, then w is trivial,
hence, we may assume that u(0) # 0 as we are interested in non-trivial
solutions.

If we assume that u(0) > 0, then the recursion formula implies that
u is monotonically increasing. In particular, u(r) > u(0) for all r € Ny
and, thus,

2
u(r+1) —u(r) = @B.(0))

2 (c(Br(0)) + am(B,(0)))

u(r+1) —u(r) > WOB.(0)) u(0)
for r € Ng. Therefore, if a(a) = oo, then
u(r) = 3 (uln + 1) — u(n))
o= 2(c(B,(0)) + am(B,(0)))
=2 b(0B,(0)) u(0)
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as r — 00. So, u is unbounded in this case. An analogous argument
shows that u(r) — —oo as r — 00 if u(0) < 0 and a(a) = c©.

On the other hand, if u(0) > 0, then w is strictly positive and
monotonicity and iteration yield

u(r+1) < (1+

}(0B,(0))
T 2e(BA(0)) + am(B,(0)))
SHO* b(0B,(0)) )

Now, if a(a) < oo, then

e ¢(B,(0)) + am(B,(0))
IIO* b(05,(0)) ><m

and the estimate above shows that u is bounded. A similar argument
shows that w is strictly negative and bounded below if u(0) < 0 and
a(a) < oco. This shows the equality between (i) and (iii).
Furthermore, since finiteness of a(a) for one o > 0 is equivalent to
finiteness of a(a) for all & > 0, we get that (i) and (ii) are equivalent.
This completes the proof. Il

OoF THEOREM [9.25] If

— <(B,(0)) + m(B,(0))
2 b(0B,(0))

then there exists a non-trivial bounded a-harmonic function for o > 0
by Lemma|9.26] Thus, the graph is stochastically incomplete at infinity
by Theorem [7.18|

On the other hand, if the graph is stochastically incomplete at
infinity, then there exists a positive non-trivial bounded function v

which satisfies (£ +«a)v = 0 for @ > 0 by Theorem We recall that
A denotes the averaging operator defined by

1
Af(z) = m(8.(0)) > flymly)

y€S-(0)

n=0

< 00,
r=0

for z € S,.(0O) and r € Ny. Applying this to v gives that u = Av is a
spherically symmetric function with

(L+a)u=LAv+ aAv = AL+ a)v =0

since £ and A commute by Lemma Therefore, there exists a
non-trivial bounded spherically symmetric function u which satisfies
(L + a)u=0 for o > 0 and, thus,

= ¢(B,(0)) +m(B,(0))
2 b(0B,(0))

by Lemma [9.26, This completes the proof. U

< 0
r=0
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We again illustrate the characterization of stochastic completeness
at infinity for our two main classes of examples, namely, spherically
symmetric trees and anti-trees from Example [9.2] and [9.3]

EXAMPLE 9.27 (Spherically symmetric trees and stochastic com-
pleteness). Let b be a spherically symmetric tree with branching num-
ber k. Then b is stochastically complete at infinity if and only if

1Ly I RG)
L)

(Exercise [9.3).

For anti-trees we obtain the following characterization. We note,
in particular, that we can use this to construct examples of stochasti-
cally incomplete graphs whose balls grow polynomially. We will discuss
stochastic completeness and volume growth further in Chapter (14l

EXAMPLE 9.28 (Anti-trees and stochastic completeness). Let b be
an anti-tree with sphere size s. Then, b is stochastically complete at
infinity if and only if

Z Z
s(r —|— 1
(Exercise [9.4)).

REMARK. We note that the volume growth criterion above does not
hold for general graphs, as can be seen from examples (Exercise |9.5]).

We can also link stochastic completeness and spectral properties for
weakly spherically symmetric graphs. In order to apply our spectral
results, we assume that ¢ = 0. In this case, we speak of a graph as
being stochastically complete if e=**1 = 1 for all t > 0. Given this,
combining Theorem [9.25| with our previous spectral results we obtain
the following connection.

COROLLARY 9.29. Let b be a weakly spherically symmetric locally
finite graph over (X, m) with respect to a finite set O C X. If b is
stochastically incomplete, then

1
>
ML) 2 2a’
where
— m(B,(0))
0=y B0

g b(0B,-(0))

and the spectrum of L is discrete.

PrROOF. The corollary follows directly from Theorem [9.25 com-
bined with Theorem [9.15 O
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REMARK. We note that the conclusion of Corollary does not
hold for general graphs, as can be seen from examples (Exercise .

Finally, we present a comparison result for stochastic completeness
at infinity. Here we note that while a larger degree growth gives a
larger push to infinity, which is required for stochastic incompleteness
at infinity, the potential can remove heat from the graph before it can
be lost at infinity. Hence, in particular, we see that for stochastic
incompleteness at infinity we need both a stronger degree growth and
a weaker potential growth.

THEOREM 9.30 (Stochastic completeness comparison). Let (b, c)
be a locally finite graph over (X,m) and let O C X be a finite set.
Let (D™, ¢™) over (X®™, m™™) be a locally finite weakly spherically
symmetric graph with respect to a finite set O™ C X5™,

(a) Let (b,c) have stronger degree and weaker potential growth with
respect to O than (b™, ™) with respect to O™, If (b™™, ™)
is stochastically incomplete at infinity, then (b, c) is stochastically
incomplete at infinity.

(b) Let (b,c) have weaker degree and stronger potential growth with
respect to O than (O™, ™) with respect to O™ C X¥™ [f
(O™ ™) is stochastically complete at infinity, then (b, ¢) is stochas-
tically complete at infinity.

PRrOOF. Let a > 0 be fixed and let u be the spherically symmetric
function on X*¥™ which satisfies (L™ + a)u = 0 with «(0) = 1, which
is given by the recursion formula, Lemma Note that u is strictly
increasing since > 0. In particular, u is strictly positive. Given this
u, we define a spherically symmetric function v € C(X) for x € S,.(O)
and r € Ny by

v(x) = u(r).

We now prove (a). Thus, assume that (b, ¢) has stronger degree and
weaker potential growth than (6™, ¢¥™) and (6™, ¢Y™) is stochasti-
cally incomplete at infinity. Then, Theorem [9.25 and Lemma [9.26
imply that u, and therefore v, is bounded. Furthermore, since u is
monotonically increasing, by using the assumptions of stronger degree
growth and weaker potential growth, we infer, for 2 € S.(O) C X and
r € Ny,

(L + a)v(x)

= ky(@)(u(r) —u(r + 1)) + k_(z)(u(r) — u(r — 1)) + q(z)u(r)

< KT (r) (u(r) —u(r + 1)) + B2 () (u(r) — u(r — 1)) + ¢ (r)u(r)
= (LY + a)u(r)

= 0.
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Hence, there exists a strictly positive bounded a-superharmonic func-
tion v defined on X. Therefore, (b,c) is stochastically incomplete at
infinity by Theorem [7.18]

To show (b), we assume that (b, c) has weaker degree and stronger
potential growth than (6™, ¢¥™) and (bY™, ¢¥™) is stochastically com-
plete at infinity. By a similar argument to the above, we infer

(L+ a)v(z) > (L+a)u(r) =0
for all x € S,(0) and all r € Np. Furthermore, by Theorem [9.25]
and Lemma [9.26] the function v must be unbounded. Hence, v(z) —
o0 as * — 00, where x — 0o means that x tends to the point oo
in the one point compactification X = X U {oo} of X. Hence, the

graph (b, ¢) is stochastically complete by the Khasminskii criterion,
Theorem [Z.31] O
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Exercises

Excavation exercises.

EXERCISE 9.1 (Log-Sum-Exp formula).
(a) Let s; € R for j =1,2,...,n and let a = max{s;}_,. Show that

log i e =a+ logi e,
j=1 j=1

(b) Show that if f;: R — (0, 00) are functions with

t—o0 t
for all j =1,2,...,n and some constant C', then

1l O
Jim — 1og§; fi(t) =C.
p

EXERCISE 9.2 (Series and product convergence). Let (a,) be a se-
quence of positive numbers. Show that the series ano a, converges if
and only if the product [],-4(1 + a,) converges.

Example exercises.

EXERCISE 9.3 (Spherically symmetric trees). Let b be a spherically
symmetric tree with branching numbers k. Show that

m(S,(0) = [[kG)  and  b@B,(0)) = 2m(Srs1(0))

for all » € N.
(a) Show that if

RS T vl | (i)

then \o(L) > 1/(2a) and the spectrum of L is discrete.
(b) Show that b is recurrent if and only if

< 00,

> 1
; T k()

(c) Show that b is stochastically complete at infinity if and only if

< 14T RG)
2 T.k0)
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Assume now that

k() = 5"
for 7 > 0 and 8 > 0. Determine the threshold for g in (a), (b), (c).
What happens at the threshold?

EXERCISE 9.4 (Anti-trees). Let b be an anti-tree with sphere size
5. Show that

m(S.(0)) = s(r) and b(IB,(0)) = 2s(r)s(r+ 1)
for r > 0.
(a) Show that if

a—Z Tl

then A\o(L) > 1/(2a) and the spectrum of L is discrete.
(b) Show that b is recurrent if and only if
— s(r)s(r+1)
(c) Show that b is stochastically complete at infinity if and only if

Z
Z r—l—l

Assume now that
S(r) = (r + 1)
for » > 0 and § > 0. Determine the threshold for g in (a), (b), (c).
What happens at the threshold?
In particular, show that there exists an anti-tree such that m(B,(0))
grows polynomially and the anti-tree is stochastically incomplete and
has a spectral gap with purely discrete spectrum.

EXERCISE 9.5 (Counterexample for general graphs). Give an exam-
ple of a stochastically incomplete graph b with standard weights and
counting measure such that

< #B,(0) _
Z 0B, (0)

EXERCISE 9.6 (Stochastic incompleteness and spectrum for general
graphs). Give an example of a stochastically incomplete graph such
that the bottom of both the spectrum and the essential spectrum is
ZEro.

(Hint: The stability results for stochastic completeness found in
Subsection [8 may be useful for this.)
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Extension exercises.

EXERCISE 9.7 (Spherically symmetric and strongly spherically sym-
metric graphs). Let (b, ¢) be a graph over (X, m). A graph automor-
phism is a bijective map m: X — X such that

bo(mxm) =", com=c and mom=m.

We say that a graph is spherically symmetric with respect to a set O C
X if for all r € Ng and z,y € S,.(O) there exists a graph automorphism
7 such that m(x) = y and strongly spherically symmetric if there exists
a graph automorphism 7 such that 7(z) = y and 7 (y) = x.

(a) Show that every strongly spherically symmetric graph is spheri-
cally symmetric and every spherically symmetric graph is weakly
spherically symmetric.

(b) Show that every spherically symmetric tree, Example[9.2] is strongly
spherically symmetric.

(¢) Show that every anti-tree, Example[9.3] is weakly spherically sym-
metric. Show, furthermore, that an anti-tree is spherically sym-
metric if and only if blg, (0)xs,(0) 15 a vertex transitive graph (i.e.,
for every two vertices z,y € S,(0) there is a graph automorphism
of bls, (0)xs, (o) Mapping = to y). Give an example of a strongly
spherically anti-tree and an anti-tree that is spherically symmetric
but not strongly spherically symmetric.

EXERCISE 9.8 (Local finiteness and symmetry). Let (b, ¢) be a con-
nected weakly spherically symmetric graph over (X, m) with respect
to a set O C X. Suppose that m(z) > C, > 0 for all x € S,(O) and
r € Ny. Show that the following statements are equivalent:

(i) O is finite.
(ii) S,(O) is finite for some r € Ny.
(iii) S,(O) is finite for all r € Ny.
In particular, show that any of the conditions above imply that the
graph is locally finite.

EXERCISE 9.9 (Weak spherical symmetry and the heat kernel). Let
(b, ¢) be a connected locally finite graph over (X, m) and let O C X be
finite. Let r, = d(z, O) denote the distance to O for z € X. Show that
(b, ¢) is weakly spherically symmetric with respect to O if and only if

1 1
(5 (0)) zeg(o) Py, 2)m(z) = m(5,.(0)) ZES%:(O) pe(z, z)m(z)

for all z,y € X and ¢t > 0. Show that this implies that
1
5 0) = ——— .
0) = iy 3 i om()

is a spherically symmetric function for all ¢ > 0.
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EXERCISE 9.10 (Strict decay of the Dirichlet kernel). Let b be a
locally finite weakly spherically symmetric graph over (X, m) with re-
spect to a finite set O C X. Let p be the heat kernel and let p® be
the Dirichlet restriction to Bg(O) for R € Ny. Show that, for all ¢ > 0
and R > r € N,

p?(r) > P+ 1),

EXERCISE 9.11 (Green’s function and symmetry). Let b be a locally

finite weakly spherically symmetric graph over (X, m) with respect to
a finite set O C X. Show that

ad 2
Glw.0) =m(0) X 355 10))

for x € S,(0) and o € O is the Green’s function, so that

> 2
G0 = 2 355, 0)

for x € S,.(O). Give an alternate proof of Theorem using this.
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Notes

In large part, the material presented in this chapter is based on
[KLW13], where the bulk of the results are presented for the case of
O = {o}. The idea to extend these results to more general O can be
found in [BG15].

Of course, there is a tremendous amount of work for regular trees or,
more generally, spherically symmetric trees with standard weights, see,
e.g., [Bro91l, [Car72, [CKW94, (CY99, FTN91), [Fujo6bl, MS99,
MS00, PP95, PW89, Ura97, Ura99], among many other works.

The first appearance of anti-trees seems to be in the case of lin-
ear sphere growth, i.e., s(r) = r 4+ 1 in the paper of Dodziuk/Karp
[DK8&8]|. In particular, as established there, this anti-tree is transient
and the bottom of the spectrum of the Laplacian is 0. This same anti-
tree appears in [Web10] as an example of a stochastically complete
graph whose vertex degree is unbounded. The study of general anti-
trees is then taken up in [Wojl1], where stochastic completeness is
characterized for spherically symmetric graphs with standard weights
and counting measure. In particular, it is first shown there that anti-
trees give examples of stochastically incomplete graphs of polynomial
volume growth with respect to the combinatorial graph metric. This
result is then used to establish the sharpness of volume growth criteria
for stochastic completeness found in [GHM12].

The spectral theory of anti-trees is analyzed in [BK13|, where it is
shown that the spectrum consists mainly of eigenvalues with compactly
supported eigenfunctions and a further spectral component which can
be singular continuous. Anti-trees are also used as a counterexample
to a conjecture of Golénia/Schumacher from [GS11] concerning the
deficiency indices of the adjacency matrix, see [GS13].

The fact that weak spherical symmetry is equivalent to the semi-
group and averaging operator commuting is Theorem 1 in [KLW13].
The heat kernel comparison, Theorem is Theorem 2 in [KLW13J.
For the case of standard edge weights and counting measure, this result
appears for spherically symmetric trees in [Woj08|, Woj09|. These re-
sults were inspired by corresponding result for Riemannian manifolds
in [CY81]. The Green’s function comparison, Theorem [9.14] is then
an immediate consequence, see [Ura97| for comparisons of the discrete
time Green’s function of a graph with standard weights to a regular
tree. The heat kernel decay, Lemma [9.13 which is a key step in the
proof, goes back to Lemma 3.10 in [Woj09|.

The estimate for the bottom of the spectrum and criterion for dis-
creteness of the spectrum, Theorem [9.15] are Theorem 3 in [KLW13].
In the case of spherically symmetric manifolds, similar estimates for
the bottom of the spectrum can be found in [BPB06].
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The spectral comparison theorem, Theorem [0.20] is Theorem 4
in [KLW13|. Earlier work on graphs includes comparisons on the
bottom of the spectrum with regular trees in the case of standard
graph weights found in [Bro91l, [Ura99, 299]. For Riemannian man-
ifolds, similar comparison theorems involve curvature quantities, see
[CheT5, McKT70].

The characterization of recurrence for weakly spherically symmetric
graphs, Theorem [9.21] can be found as Proposition 5.3 in [Hual4al
for the continuous time Green’s function. For a discrete time Green’s
function, the result can already be found as Theorem 5.9 in the text-
book [Woe09]. The fact that recurrence is independent of the choice
of discrete or continuous time can be found in [Sch17b]. Comparison
results for recurrence in the case of spherically symmetric Riemannian
manifolds can be found in [Ich82al.

The characterization of stochastic completeness at infinity for weakly
spherically symmetric graphs, Theorem [0.25] can be found as Theo-
rem 5 in [KEW13|. For graphs with standard weights and counting
measure, the result goes back to [Woj11] which, in turn, was inspired
by the corresponding criterion for stochastic completeness of spheri-
cally symmetric Riemannian manifolds, see [Gri99]. Counterexamples
for this criterion on general graphs are found in [Huallbl] and for
manifolds in [BB10]. The counterpart to Corollary linking sto-
chastic incompleteness and discreteness of the spectrum, for spherically
symmetric Riemannian manifolds, can be found in [Har09]. Finally,
the comparison theorems for stochastic completeness, Theorem [9.30|
can be found as Theorem 6 in [KLW13| and their counterparts in the
manifold case in [Ich82b].



CHAPTER 10

Sparseness and Isoperimetric Inequalities

In this chapter we investigate what it means for a graph to have
relatively few edges. This leads to the notions of weakly sparse, ap-
proximately sparse and sparse graphs, as well as graphs which satisfy
a strong isoperimetric inequality. These notions are all introduced in
Section [I} In Section 2| we prove the area and co-area formulas which
will be a key tool in this chapter and will also play a role in the inves-
tigation of Cheeger inequalities later. We use these formulas to give
connections between the notion of sparseness and form estimates for
weakly sparse graphs in Section [3] for approximately sparse graphs in
Section [], for sparse graphs in Section [5] and for graphs satisfying a
strong isoperimetric inequality in Section [0l This leads to characteri-
zations of the discreteness of the spectrum of the Dirichlet Laplacian in
terms of a weighted degree at infinity via the use of the min-max prin-
ciple. In the case of purely discrete spectrum, we can also investigate
eigenvalue asymptotics. This is done for the various notions of sparse-
ness in the corresponding sections. Finally, we also give a criterion
for a strong isoperimetric inequality in terms of a mean curvature-type
quantity in Section [6]

1. Notions of sparseness

Loosely speaking, sparse graphs can be understood as graphs with
relatively few edges. We discuss a hierarchy of notions of sparseness,
namely, weakly sparse, approximately sparse and sparse graphs as well
as graphs which satisfy a strong isoperimetric inequality. This hierar-
chy is illustrated in Figure [1] below.

4 N
weakly sparse
4 ")
approximately
sparse strong
isoperimetric
[ sparse ] inequality

. w

., v

FI1GURE 1. The hierarchy of sparse graphs.

423
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Let us be more precise. For a subset W C X, we introduce the
boundary of W as

OW =W xX\W)U(X\W xW).

In the literature, the boundary of a set is often introduced with respect
to a graph and consists of all of the edges emanating from the set. Here,
we let the boundary be all pairs of vertices with one vertex inside W and
the other outside of W. In this sense, 9W consists of all possible edges
emanating from W. Now, given a graph b, summing over 0W with
respect to b singles out the edges of the graph b as b(z,y) = 0 if there
is no edge between = and y. To this end, we let b(A) = Z(Ly)eA b(z,y)
for AC X x X.

DEFINITION 10.1 (Hierarchy of sparseness). Let (b,c) be a graph
over (X, m).

(a) The graph is called sparse or, more specifically, k-sparse for k > 0
if
b(W x W) < km(W)

for all finite sets W C X.
(b) The graph is called approximately sparse if for all € > 0 there exists
a k. > 0 such that

bW x W) <e (%b(@W) + c(W)) + k.m(W)

for all finite sets W C X.
(c) The graph is called weakly sparse or, more specifically, (a, k)-weakly
sparse for a,k > 0 if

bW x W) < a Gb(aW) + c(W)> + km (W)

for all finite sets W C X.

REMARK. Note that (b,c) is k-sparse if and only if (b,c) is (0, k)-
weakly sparse. Furthermore, (b,c) is approximately sparse if for all
e > 0 there exists a k. > 0 such that (b,¢) is (¢, k.)-weakly sparse.

The interpretation of sparseness as stating that the graph has only
few edges becomes clear for graphs with standard weights and counting
measure.

ExAMPLE 10.2 (Standard weights and sparseness). Let b be a graph
with standard weights on X with counting measure, i.e., b(z,y) € {0,1}
for all z,y € X, ¢ = 0 and m = 1. The set of edges of the graph is
given by E = {(z,y) € X x X | b(z,y) = 1}. For a set W C X, the
set of edges in W is denoted by Ey = E N (W x W) and the edge
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boundary of W by 0gW = O0W N E. Then for all finite W C X, a
k-sparse graph satisfies

#Lw < k-#W

while an (a, k)-weakly sparse graph satisfies
#Ewég-#é?EWJrk:-#W.

This shows that sparse graphs have few edges within a set when com-
pared to the cardinality of the set.

We now discuss some specific examples which are left as an exercise.

ExAMPLE 10.3 (Sparse graphs, Exercise [10.2). Let b be a graph
with standard weights on X with the counting measure.

(a) If b is a tree, then b is 2-sparse.

(b) Using Euler’s polyhedron formula one sees that if b is a planar
graph, then b is 6-sparse.

(c) There exist graphs that are weakly sparse but not approximately
sparse and graphs that are approximately sparse but not sparse.

We recall the definition of the normalizing measure n for a graph
(b, c) over X given by n(x) =3  b(z,y) + c(z) for z € X. We note
that for the choice of m as the normalizing measure n, the definition
of sparseness becomes trivial for £ > 1.

ExAaMPLE 10.4 (Normalizing measure). Let (b,c) be a graph over
(X, n), where n is the normalizing measure. Then (b, ¢) is k-sparse for
all £ > 1.

Hence, the normalizing measure is not a suitable choice for the
concept of sparseness for £ > 1. However, for values of k between 0
and 1, this leads to another notion for graphs over X. This notion is
referred to in the literature as a strong isoperimetric inequality. We first
define this concept and show afterwards how it is related to sparseness
and weak sparseness.

DEFINITION 10.5 (Strong isoperimetric inequality). A graph (b, ¢)
over X is said to satisfy a strong isoperimetric inequality with isoperi-
metric constant o > 0 if

an(W) <
for all finite sets W C X.

b(OW) + (W)

DN | —

REMARK. Note that 0 < a < 1 since otherwise the definition can-
not be satisfied. Furthermore, if & = 1, then b = 0.

In contrast to the notions of sparseness above, the concept of a
strong isoperimetric inequality is independent of a measure. Let us
revisit the example of graphs with standard weights.
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ExXAMPLE 10.6 (Standard weights and isoperimetric inequality).
Let b be a graph with standard weights over X. If b satisfies a strong
isoperimetric inequality with isoperimetric constant «, then

adeg(W) < %#aEW

REMARK. There are examples of graphs that are sparse and ei-
ther satisfy or do not satisfy a strong isoperimetric inequality (Exer-

cise [10.3).

REMARK. The maximal isoperimetric constant « is sometimes re-
ferred to as a Cheeger constant. Another version of Cheeger’s constant
is discussed in Chapter [13]

The lemma below clarifies the relation between weak sparseness and
strong isoperimetric inequalities. For this equivalence the choice of the
measure m is irrelevant. On the other hand, we relate k-sparseness
with respect to the normalizing measure with £ € (0,1) and strong
isoperimetric inequalities.

LEMMA 10.7 (Strong isoperimetric inequality and sparseness). The
following statements hold:

(a) A graph (b,c) over (X, m) satisfies a strong isoperimetric inequality
with isoperimetric constant o > 0 if and only if the graph is ((1 —
a)/a,0)-weakly sparse.

(b) A graph (b, c) over (X,n) satisfies a strong isoperimetric inequality
with isoperimetric constant o > 0 if and only if the graph is (1—a)-
sparse.

PROOF. For both (a) and (b) we use the identity
1
n(W) =W x W) + §b(8W) + (W)

for a finite set W C X.
For (a) we note that the identity implies that the inequality

an(W) < %b(@W) ()
is equivalent to
ab(W x W) < (1 —a) (%b(@W) + C(W)) )

which proves the statement.
For (b) we use the identity to get the equivalence of the inequalities

an(IW) < %b(@W) b (W) = n(W) — bW x W)

and
bW x W) < (1 —a)n(W),
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which completes the proof. Il

REMARK. It is also possible to give a relation between (a, k)-weakly
sparse graphs for an arbitrary k and isoperimetric constants under
further restrictions (Exercise [10.5]).

2. Co-area formulae

In this section we present an area and a co-area formula in a general
setting. These formulas will be used to derive spectral consequences.

We will present two formulas which involve the level sets of func-
tions. For a function f € C(X) and t € R, we define the level sets

(f) ={r e X[ fz) > t}.
For w: X x X — [0,00) and U C X x X, we let

wlU) =Y wlz,y),

(z,y)€U

which may take the value co. We may think of w as a graph b, but we
neither need the symmetry nor the summability assumptions.

The first formula relates the differences of a function to an integral
over the boundary of the level sets. We refer to this as a co-area
formula.

LEMMA 10.8 (Co-area formula). Let w: X x X — [0,00) and
feC(X). Then,

oo

S wiz y)lf (@) — 1(y)] = / w(O(f))dt,

z,yeX -
where both sides may take the value oo.

PRrROOF. For vertices x,y € X with © # y we define the interval
I

T,y

Ly =[f(x) A fy), f(x) V f(y)),

and let |I,,| = |f(z) — f(y)| be the length of I,,. Denote by 1,,
the characteristic function of I,,. Then, for ¢ € R the inclusion

{(z,y), (y,2)} € O(f) holds if and only if t € I,,. Therefore,

w(@U(f)) = Y wlz,y)ley ().

z,yeX
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Combining the considerations above, we calculate, using Tonelli’s the-
orem,

/OO w(@Qt(f))dt = /oo Z w(x’y)lxﬂ(t)dt

o0

T ryeX
=Y w(oy) / L, (t)dt
z,yeX -
=) wiz,y)lf(x) - ).
z,yeX
This proves the statement. O

For the next formula, we assume that the function is positive and
that there exists a measure on the space. The formula then relates the
values of the function to the measure of the level sets associated to the
function.

LEMMA 10.9 (Area formula). Let m: X — [0,00) and f: X —
[0,00). Then,

S faymia) = / (@)t

zeX
where both sides may take the value oo.

Proor. We have x € 4 (f) if and only if 1) (f(x)) = 1. We
calculate, using Tonelli’s theorem,

| mieuioyde= [ % mw

This finishes the proof. O

3. Weak sparseness and the form domain

In this section we show that weak sparseness can be characterized
by a functional inequality. In turn, this functional inequality allows
us to explicitly determine the form domain D(Q) for @ = Q) as an
intersection of ¢? spaces. A further consequence is a characterization
of purely discrete spectrum for the Laplacian L = L(P) in terms of the
weighted vertex degree.
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For background material on the spectrum of multiplication opera-
tors, see Appendix[A] for the essential spectrum and min-max principle,
see Section [2] in Appendix [El Furthermore, Excavation Exercise [10.1]
which characterizes discreteness of the spectrum of multiplication op-
erators, will be used in this section.

We now explain some of the notation used below. Let (X, m) be a
discrete measure space. Any function f: X — [0, 00) induces a sym-
metric form g;: (2(X,m) — [0, 00] defined by ¢;(g9) = (g, fg). With
a slight abuse of notation, we will also write f for gs. Furthermore,
for two forms ¢, ¢’ on a Hilbert space that both include a subspace D
in their domain, we write ¢ < ¢’ on Dy whenever ¢(¢) < ¢'(p) for all
p e D().

We recall the notion of the weighted vertex degree for a graph (b, ¢)
over (X, m) given as Deg = n/m. When we speak about Deg as a form
on C,(X) we always consider C.(X) as a subspace of £*(X,m), i.e., if
¢ € C.(X), then

Gpes () = (9, Degphm = Y ¢*(x)Deg(z)m(x)
zeX

= @)n(x) = (@, o)n.

zeX

As gpeg is the quadratic form of the multiplication operator with respect
to Deg on ¢?(X, m), this directly implies that the maximal form domain

D(goes) = {f € (X, m) | Deg'f € (X, m)}
of ({Deg satisfies
D(gpeg) = *(X,n) N £3(X,m) = m”'umg

since the compactly supported functions are dense in every ¢? space.

The theorem below provides a characterization of weakly sparse
graphs in functional analytic terms. In particular, we see that the
domain of the form gpeg being equivalent to the domain of the Dirichlet
form D(Q) characterizes weak sparseness.

THEOREM 10.10 (Characterization of weak sparseness). Let (b, c)
be a graph over (X, m). Then, the following statements are equivalent:

(i) The graph is weakly sparse.
(ii) There exist a € (0,1) and k > 0 such that on C.(X) we have

(1 —a)Deg — k < Q.
(iii) There exist @ € (0,1) and k > 0 such that on Co(X) we have
(1—a)Deg —k < Q < (1+ a)Deg + k.
(iv) D(Q) = *(X,n) N 2(X,m).
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The proof will be given below. The direction (iii) = (ii) is of
course trivial. The direction (ii) = (i) follows directly by applying
the inequality in (ii) to characteristic functions. To carry out a similar
reasoning for the implication (i) = (iii) we have to reduce arbitrary
functions to characteristic functions. This is done by virtue of the area
and co-area formula above.

Before we come to details of the proof, we provide a corollary. This
corollary gives a characterization of discreteness of the spectrum of L
in terms of the weighted vertex degree tending to infinity.

Recall that an operator T" on a Hilbert space is said to have purely
discrete spectrum if the spectrum of T' consists only of discrete eigen-
values of finite multiplicity. We define the weighted vertex degree at
infinity by

Deg, = su inf Deg(x).
Boe KCX Enite zeX\K 8()
This quantity can be understood as minimizing the vertex degree out-
side of larger and larger finite sets and taking the limit.

COROLLARY 10.11 (Discrete spectrum). Let (b, ¢) be a weakly sparse
graph over (X,m). Then, the spectrum of L is purely discrete if and
only if Deg., = o0.

PROOF. Let fy = (1 + a)Deg + k, where @ and k are as in (ii)
and (iii) of Theorem [10.10] By Theorem [10.10] weak sparseness is
equivalent to f- < @ < f, on C.(X). By a consequence of the min-
max principle, see Theorem in Appendix [2.3] discreteness of the
spectrum of L is now equivalent to discreteness of the spectrum of
multiplication by Deg, which is equivalent to Deg_ = oc. U

The proof of Theorem is divided into three lemmas and an ar-
gument which is essentially the closed graph theorem. The first lemma
is the part where the area and co-area formula enter. It will also be
used later in the case of sparse graphs to get sharper estimates.

LEMMA 10.12. Let (b, ¢) be an (a, k)-weakly sparse graph over (X, m)
for a,k > 0. Then, for all p € C.(X),

(¢, (Deg — k)¢) < (14 a)Q"?()(2(p, Degyp) — Q(¢))"/%.

PROOF. Let ¢ € C.(X) and denote the level sets of ¢? by Q; =
{z € X | ¢*(z) >t} for t > 0. Then, Deg = n/m yields

(¢, (Deg — k)p) = > @*(@)n(x) — kY *(x)m(x).

zeX zeX

The area formula, Lemma [10.9] gives

- /0 T () — km(9)) dt.
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Applying the identity n(W) = b(W x W) 4 36(dW) 4 ¢(W) for finite
sets W C X and the (a, k)-weak sparseness, we get

- /0 h (b(Qt <00+ 2HO() + e() — k;m(Qt)) it
<(1+a) /0 h (%b(@(Qt)) + c(Qt)) dt.

Now, employing the co-area formula, Lemma for the first term
and the area formula, Lemma for the second term, we arrive at

_ 1 —2k a Z b(x,y)\g02($) . <p2(y)! + (1 + a) ZC<I)9@2(96)

‘T:yGX 1’€X
1+a
(zmyr@a Sllele) + o) +2 3 clo )
z,yeX zeX

For the next step we add a point o to X, i.e., let X = X U {2} and
define b as b= b on X x X and b(z, 1) = b(xoo, x) = c¢(x). Further-

more, we extend ¢ to X by letting ©(Zoo) = 0. Then we continue using
the Cauchnychwarz inequality, which yields

= S B w)lela) - ely)llel@) + o)

z,yE)}

1/2
1\;@@1/2 ( > bl y)(plr) +o(y)* +2) C(:U)soZ(x))

z,yeX zeX

= (1+a)Q"*(p) (2(, Degy) — Q())"*,

where we use (o(z) +¢(y))* = 2(¢*(z) + ¥*(y)) — (¢(z) — ¢(y))* in
the last equality. This finishes the proof. O

We use the lemma above to show that weak sparseness implies the
form inequality.

LEMMA 10.13 (Weak sparseness implies form inequality). Let (b, c)
be a weakly sparse graph over (X,m). Then, there exist a € [0,1) and
k > 0 such that on C.(X) we have

(1—a)Deg —k < Q < (1+ a)Deg + k.

If the graph is (a, k)-weakly sparse for a,k > 0, then a, k can be chosen
as

a =

Va2 +2a+ (@ nd) ond - (2H(1 ) v (k((%—a)V%))i

1+a 2(1+a)

If the graph satisfies a strong isoperimetric inequality with isoperimetric
constant a > 0, then we can choose a = /1 — «a? and k = 0.
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PROOF. Let ¢ € C.(X). Assume first that (o, (Deg — k)¢) > 0.
Then, the estimate in Lemma [10.12| can be squared and we obtain
(1+a)’Q%(¢) — 2(1 + a)*(, Degp) Q() + (i, (Deg — k)i)* < 0.
Letting
r = (p,Degp)” — (1 +a)~*(p, (Deg — k)ip)”
and resolving the quadratic inequality above for Q(¢), we arrive at
(¢ Degyp) —r'/? < Q(¢) < (¢, Degy) +r'/2.

In the case of a strong isoperimetric inequality, we have that (b, ¢)
is (a, k)-weakly sparse with @ = (1 — @)/a and k = 0 by Lemma [10.7]
In particular, we have r = (1 —a?)(p, Degy)? and, therefore, we obtain
the statement with @ = v/I — a2 and k = 0.

We proceed to estimate r for the weakly sparse case in general.
We let 0 < A < 1 and use the inequality £¢ < (3¢ + 3¢)* with { =

M, (2Deg — k)g) and ¢ = +k(p, ¢) to get

(14 a)*r =(a® + 2a)(p, Degp)” + k{p, @) (¢, (2Deg — k)¢)

<(a® + 2a)(p, Degyp)® + <A<90, Degp) + g G - A) (e, 90>>2

< ((a2 +2a + 22" (ip, Degy) + g (% - A) (0, 90>)2.

Setting A = a A 1/2,

2 2 A 1)\)3 R 1_ 3
C@rr@ad)t o K0 vY)
l+a 2(1+a)

we obtain /2 < a(yp, Degp) + kg, @) with @ < 1. This yields the
desired inequality for ¢ € C.(X) with (¢, (Deg — k)p) > 0.

For the case of ¢ with (g, (Deg — k)p) < 0, we choose a as above
and let k& = 2k(1 — a). The lower bound follows immediately since

(¢, (1 — a)Deg — k)p) = (1 — a){p, (Deg — 2k) ) < 0 < Q(¢p)
as a < 1. For the upper bound we check
(¢, (14 a)Deg + k)) =(p, ((1 + @)Deg + 2k(1 — @)) ¢)
> (3 —a){p, Degy)

> 2(p, Degp)

> Q(p),
where the last inequality follows from ) < 2Deg, which is proven in
Theorem [1.27] This finishes the proof. O

We next show the opposite direction, i.e., that the form inequality
implies weak sparseness.
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LEMMA 10.14 (Lower form inequality implies weak sparseness). Let
(b, c) be a graph over (X,m) and let a € (0,1) and k > 0 be such that
on Ce(X) we have

(1—a)Deg — k < Q.
Then, (b, c) over (X, m) is (a, k)-weakly sparse with

0= — and k= b —.
1—a 1—a
ProoF. Let W C X be finite and let 1y be the characteristic func-
tion of W. We will use the equalities n(W) = b(W x W) +b(0W) /2 +
c(W) and Q(1w) = b(0OW) /2 + ¢(W). The assumed inequality applied
with ¢ = 1y yields

(1—a) (b(W < W)+ %b(@W) + C(W)) ~m(W) < %b(é)W) +e(W).

Rearranging the terms, we infer

b < W) < - (%b(am n c<W>) Lk

which completes the proof. O

We now have all the ingredients to prove Theorem [10.10]

OF THEOREM [10.10l The implication (i) = (iii) follows from Lemma
10.13} The implication (iii) = (iv) follows from the abstract defini-
tion of the form domain. Assume (iv), which is D(Q) = ¢*(X,n) N
(%(X,m) = D(qgpeg). By the closed graph theorem, the canonical em-
bedding of D(Q) into £*(X,n +m) = (*(X,n) N ¢*(X,m) is bounded.
This gives the implication (iv) = (ii). Finally, the implication (ii)
—> (i) follows from Lemma [10.14] O

REMARK. It is also possible to prove the implication (ii) = (iii)

of Theorem [10.10] directly (Exercise [10.6]).

4. Approximate sparseness and first order eigenvalue
asymptotics

In this section we study approximately sparse graphs. Analogous to
the case of weakly sparse graphs in the previous section, we characterize
approximate sparseness via inequalities on the form. We also show
discreteness of the spectrum for the Laplacian L = L") associated to
the form Q = QP when the degree function goes to infinity uniformly.

We recall that approximate sparseness means that for every ¢ > 0
there exists a k. > 0 such that the graph is (e, k. )-weakly sparse. Hence,
the constant € controlling the weight on the edges on the boundary can
be made small at the expense of a larger k., which is the constant con-
trolling the measure of the set. When ¢ tends to zero it is possible that
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k. does not give an upper bound. In this case, the graph is approxi-
mately sparse but not sparse.

For approximately sparse graphs we get analogous inequalities to
Theorem but now for an arbitrary small a at the expense of a
larger k. The proof is a rather immediate consequence of the explicit
estimates on the mutual dependence of a, k and @, k& proven in the
lemmas of the previous section.

THEOREM 10.15 (Characterization of approximate sparseness). Let
(b, ¢) be a graph over (X, m). Then, the following statements are equiv-
alent:

(i) The graph is approxzimately sparse.
(ii) For every & > 0, there exists a k. > 0 such that on C.(X) we have
(1-&)Deg — k. < Q.
(ili) For every € > 0, there exists a ke > 0 such that on Co(X) we have
(1 —&)Deg — k. < Q < (14 £)Deg + k..

PROOF. (i) = (iii): Assume that the graph is (e, k. )-weakly sparse
with e arbitrarily small. By Lemma [10.13| we see that the graph then
satisfies

(1—&)Deg — k. < Q < (1+&)Deg + k.
on C.(X), where
D - k(1-
© and k. = Q
1+e 2e
for € small enough. This gives the statement.

(iii) == (ii): This is trivial.

(ii) = (i): Given € > 0, there exists 0 < & < 1 such that ¢ =
g/(1—¢). If k. is as given by (ii), then the graph is (e, k.)-weakly
sparse with k. = k./(1 — &) by Lemma |10.14} O

£ =

REMARK. The proof above actually shows that £ can be bounded
by v/2¢ and k. can be bounded by k./(2¢).

We now give some spectral consequences. As for the case of weak
sparseness, we show that the spectrum of approximately sparse graphs
is discrete if and only if the degree function goes to infinity uniformly.
Furthermore, in the case of discrete spectrum, we provide asymptotics
of the eigenvalues A, (L) of L which are counted in increasing order
with multiplicity. To this end, when Deg., = co, we enumerate the
vertices (z,) of X so that Deg(z,) < Deg(z,4+1) for n € Ng. We let

for n € Ny and observe that d,, are the eigenvalues of the multiplication
operator by Deg on ¢*(X,m).
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COROLLARY 10.16 (Eigenvalue asymptotics). Let (b,c) be an ap-
proximately sparse graph over (X, m). Then the spectrum of L is dis-
crete if and only if Deg. = oco. In this case,

lim —)\"(L)

n—oo  d,

PROOF. By Theorem [10.15| we have, for all ¢ € C.(X) with ||¢| =
1 and € > 0,

= 1.

f-(Deg(p)) < Q(¢) < fi(Deg(y)),

with continuous and monotonically increasing functions fy: [0,00) —
R given by

fe(t) = A L)t k.,

where k. is chosen according to Theorem [10.15l Thus, the characteri-
zation of discrete spectrum via Deg. = oo follows immediately from a
consequence of the min-max principle, Theorem [E.T1]

Furthermore, for Deg, = oo, Theorem also readily gives

(1= e)dy — ke < A(L) < (1+&)dy + k.

As ¢ > 0 can be chosen arbitrarily small, the statement follows. Il

5. Sparseness and second order eigenvalue asymptotics

In this section we derive spectral consequence for sparse graphs.
First, we show an even stronger non-linear form estimate. This esti-
mate allows us to estimate the spectrum and to prove bounds on the
second order of the eigenvalue asymptotics.

We start with an estimate for the form of a sparse graph. As usual,
we let Q = Q).

THEOREM 10.17 (Sparseness implies form inequality). Let (b, c) be
a k-sparse graph over (X, m) for some k > 0. Then, for all p € C.(X),
we have

(p, (Deg — k) — [k{, ) {p, (2Deg — k)o)['* < Q(p)
< (i, (Deg + k)p) + [k, ) {0, (2Deg — k)p)| /2.
If, additionally, Deg > k, then, for all p € C.(X),
(¢, Degyp)— (k{0 ©){p, (2Deg — k)))'"* < Q(y)
< (i, Degpp) + (k({ip, o) {0, (2Deg — k)p))'/2.

PROOF. Let ¢ € C.(X). We apply the estimate of Lemma [10.12
for k-sparse graphs which are (0, k)-weak sparse. This gives

(0, (Deg — k)p) < Q*()(2(p, Degyp) — Q(p)) /.
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If (¢, (Deg — k)g) > 0, then we obtain

Q*(¢) — 2(p, Degp)Q(p) + (¢, (Deg — k)p)* <0,

which, after resolving the quadratic inequality for Q(¢), results in

(¢, (Deg — k)p)— (k{p, ©) (¢, (2Deg — k)p))'/?
< (¢, Degp)— (k{0, 0) (g, (2Deg — k)))'"* < Q(¢)
< (¢, Degyp) + (k{10, 0) (g, (2Deg — k)¢))'"?
< (g, (Deg + k)p) + (k{p, ©) (¢, (2Deg — k)g))"'*.

This implies the inequality for all ¢ € C.(X) with (¢, (Deg — k)p) > 0.
In particular, this shows the second set of inequalities.

For (p, (Deg — k)y) < 0, the lower bound follows immediately from
Q(¢) > 0 and the upper bound is implied by the fact that @ < 2Deg
from Theorem [1.27] in Section [l O

REMARK. Notably, the theorem above is not stated as an equiva-
lence. However, the inequality in case Deg > k in the theorem above
implies that the graph is approximately sparse (Exercise [10.4]).

We get an immediate spectral estimate for L = L") from the second
set of inequalities in the theorem above. Let d = inf,cx Deg(z) and
assume that D = sup, y Deg(z) is finite.

COROLLARY 10.18 (Sparseness and spectral estimates). Let (b, c)
be a k-sparse graph over (X, m) for some k > 0 such that d > k and
D < oo. Then,

o(L) Cld— k(2D —k),D + k(2D — k)].
PROOF. The conclusion follows from the additional statement in

Theorem [10.17 as Deg > d and o (L) C [inf) =1 Q(¢), supj,j=1 Q(¥)],
see Theorem [E.8| Theorem and the fact that supo(L) = ||L||. O

Since a d-regular tree with standard weights and counting measure
is 2-sparse by Exercise , we obtain that o(A) C [d —2v/d —1,d +
2y/d — 1] from the corollary above. It is well known, in fact, that
equality holds and, therefore, the estimate of the corollary is sharp.

Next, we come to the second order asymptotics of eigenvalues A, (L)
of L in the case where the weighted vertex degree grows to infinity.
Recall that in this case we denote by d,, the eigenvalues of the multi-
plication operator by Deg. The theorem below gives a rigorous form of
the inequality

dy, — \/2kdy, < M(L) < dy + /2kd,,

for large n.
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COROLLARY 10.19 (Second order eigenvalue asymptotics). Let (b, ¢)
be a k-sparse graph over (X, m). Then the spectrum of L is discrete if
and only if Deg = oo. In this case,

(L)
Jim d, L
and

—V2k < liminfM < limsupM < V2k.
00 Vi, n—oo Vi,

PROOF. First of all we notice that if a graph is sparse, then it
is weakly sparse. Hence, the characterization of discreteness of the
spectrum follows from Corollary [I0.11} Moreover, by Theorem [10.17]
we have, for ¢ € C.(X) with ||¢|| =1,

g-(Deg(p)) < Q(¢) < g+(Deg(y)),

with continuous functions g4 : [0,00) — R given by
ge(t) =t + k% |k(2t — k)|V/2.

To apply the consequence of the min-max principle, Theorem [E.11]
we additionally require monotonicity of g_ and g,, which does not
necessarily hold for small . However, there are clearly monotonically
increasing functions f- < ¢g_ and f; > g, which agree with g_ and

g+, respectively, for large enough values.
Thus, we obtain from Theorem [E.11]

f-(dn) < Xn(L) < fi(dn).

Assuming Deg_ = 0o, we can enumerate the eigenvalues of Deg by d,,,
which tend to infinity. As fi = g4 for large arguments, we therefore
obtain for large n

d, — k —|k(2d, — k)['* < X\, (L) < dyp + k + |k(2d, — k)"

Hence, the statements follow. U

6. Isoperimetric inequalities and Weyl asymptotics

In this section we characterize graphs with a strong isoperimetric
inequality in terms of form estimates. In turn, this allows for estimates
on the Weyl asymptotics as a corollary. Afterwards we present a suf-
ficient criteria for a strong isoperimetric inequality in terms of a mean
curvature.

6.1. Main theorem and corollaries. In this subsection we show
that for graphs that satisfy a strong isoperimetric inequality we get a
similar characterization as in the case of weakly sparse graphs and
approximately sparse graphs. This is immediate from previous consid-
erations. We then discuss spectral asymptotics in this case.
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THEOREM 10.20 (Characterization of strong isoperimetric inequal-
ity). Let (b,c) be a graph over (X, m). Then, the following statements
are equivalent:

(i) The graph satisfies a strong isoperimetric inequality with isoperi-
metric constant o > 0.
(ii) There exists an a € (0,1) such that on C.(X) we have

(1 —a)Deg < Q.
(iii) There ezists an a € (0,1) such that on C.(X) we have
(1 —a)Deg < @ < (1+ a)Deg.

Furthermore, the constant a in (ii) and (iii) can be chosen to be a =
V1—a2

PRrROOF. The implication (i) = (iii) follows from Lemma
with a = +/1 — 2. The implication (iii) == (ii) is trivial. Finally,
the implication (ii) = (i) follows by combining Lemma and
Lemma [10.7] with o = 1 — a. 0

Similarly to the case of sparse graphs, we get an immediate spectral
estimate from the theorem above. Let
d = inf Deg(x) and D = sup Deg(z).
zeX zeX
COROLLARY 10.21 (Fujiwara’s theorem). Let (b, c) be a graph over
X satisfying a strong isoperimetric inequality with isoperimetric con-
stant o > 0. Then,

o(L) Cld(l—v1—-0a?),D(1+Vv1-a?),
where the upper bound of the interval is oo if D = oo.

PRrROOF. The statement follows from the theorem above and the
spectral inclusion o (L) C [inf),j=1 Q(¢), sup, =1 @(¢)], see Theorem k.8
Theorem and the fact that supo(L) = ||L]|. O

Again, it is well known that the estimate is sharp for regular trees
with standard weights.

REMARK. In the case of bounded degree one can even characterize
a =0 by info(L) = 0 (Exercise |10.7]).

Next, we come to Weyl asymptotics. For a positive self-adjoint
operator A on a Hilbert space and A < A§®(A), we let Ny(A) be the
number of eigenvalues less than A counted with multiplicity. The next
corollary states that we can characterize purely discrete spectrum for
graphs that satisfy a strong isoperimetric inequality. Furthermore, we
can determine the first order of the Weyl asymptotics, which is the
asymptotics of N)(L) as A tends to infinity in the case of discrete
spectrum.
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COROLLARY 10.22 (Weyl asymptotics). Let (b,c) be a graph over
X that satisfies a strong isoperimetric inequality with isoperimetric
constant o > 0. Then, the spectrum of L is discrete if and only if
Deg., = 00. In this case,

Nyj1+a)(Deg) < Ny(L) < Nyja-a)(Deg),
where a = /1 — a?.

PRrOOF. As graphs which satisfy a strong isoperimetric inequality
are weakly sparse by Lemma [10.7] the characterization of discreteness
of the spectrum follows by the corresponding statement for weakly
sparse graphs, Corollary [10.11] Then, Theorem above and the

consequence of the min-max principle, Theorem [E.11], give
(1—a)d, < (L) < (1+a)d,,

where d,, denote the eigenvalues of Deg in increasing order whenever
Deg., = co. Hence, we have, for all A > 0,

{n|(A+a)d, <A C{n| (L) <A} C{n|(1—-a)d, <}

Since the cardinalities of these sets coincide with Ny((1 + a)Deg), Nx(L)
and Ny((1 — a)Deg), we have

Nyja+a)(Deg) = Na((1 + a)Deg) < Ny(L) < Ni((1 — a)Deg) = Ny/a-q)(Deg).
This finishes the proof. U

REMARK. One can also give criteria for the discreteness of the spec-
trum using a so-called isoperimetric constant at infinity (Exercise|10.8]).

6.2. A mean curvature criterion. In this subsection we present
a sufficient criterion for a strong isoperimetric inequality. This criterion
is given in terms of a mean curvature.

Let (b,c) be a graph over (X, m). For a fixed vertex o € X, let
S, be the sphere of radius r about o with respect to the combinatorial
graph distance d. Define the quantities b.: X — [0, 00) by

bﬂ:(‘r): Z b(l’,y)

yESr+1

for x € S,. These quantities are a measure-independent version of
the quantities ky from Chapter [9] Furthermore, we define a function
K: X — R, which can be seen as a mean curvature, by

- b — b+7
n
where n is the normalizing measure. Here, we suppress the dependence
of K on o in the notation.
With the normalizing measure, the curvature K arises by taking the
Laplacian of the combinatorial distance function d(o, -) from o, which,

by analogy to the Riemannian setting, gives a notion of curvature.
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LEMMA 10.23. Let b be a graph over (X,n) and o € X. The func-
tion d(o,-) is in F and
Ld(o, ) = K.

PROOF. The function d(o, -) is bounded on the combinatorial neigh-
borhood of every vertex. Hence, d(o,-) € F. We calculate for z € S,

Ld(o,x)n(x)
= Y bay)(d(o,z) —d(o.y)) + D blx,y)(d(o,x) — d(o,y))

yESr—1 YESr11
=b_(z)— by (x).
This finishes the proof. U

We now relate lower bounds on the mean curvature to an isoperi-
metric inequality for a graph over a space with the normalizing mea-
sure.

THEOREM 10.24 (Mean curvature and isoperimetric inequality).
Let (b, c) be graph over (X,n). If there exists a C' > 0 such that —K +
c/n > C, then the graph satisfies a strong isoperimetric inequality with
1soperimetric constant at least C.

PROOF. Denote by Ly the formal Laplacian for the graph (b, 0) over
(X,n). Given a finite set W C X, we estimate, using the assumption
—K + ¢/n > C and employing Lemma [10.23]

Cn(W) — (W) < =Y K(z)n(z)

zeW

=— Z Lod (o, x)n(x)

zeW

==Y lw(x)Lod(o,z)n(x).

Since W is finite, 1y € C.(X) and d(o,-) € F, we proceed using
Green’s formula, Proposition [1.5],

= —% Z b(z,y)(d(o,z) — d(o,y))(1w(x) — 1w (y))

z,yeX

% Z b(x,y)|d(o, ) — d(o,y)||1w (z) — 1w (y)]

z,yeX

5> b))~ 1w)

z,yeX

IN

IA

1
= —b(OW).
S(0m)
This yields the statement. U
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Exercises
Excavation exercises.

EXERCISE 10.1 (Multiplication operators and spectrum). Let (b, ¢)
be a graph over (X, m). Show that the multiplication operator defined
by multiplying by Deg on ?(X,m) has purely discrete spectrum if and
only if Deg, = oo, where

Deg., = sup inf Deg(x),
KCX finite 2€X\K
by determining all eigenvalues and eigenfunctions of the multiplication
operator.

Example exercises.

EXERCISE 10.2 (Trees and planar graphs are sparse). Consider
graphs with standard weights and counting measure.

(a) Show that trees are 2-sparse.
(b) Show that planar graphs are 6-sparse.
(Hint: Use Euler’s polyhedron formula.)

(c*) Show that there exist graphs that are weakly sparse but not ap-
proximately sparse and graphs that are approximately sparse but
not sparse.

(Hint: Let (8,) be a sequence of natural numbers. Denote by b
a spherically symmetric tree (for the definition, see Chapter E[)
with standard weights, root called o and vertex degree (3, in the
n-th sphere. Denote by S,, the vertices of the distance sphere of
radius n with respect to the combinatorial graph distance (and
observe that #S, = 0 H;:ll (B; —1)). Now choose a sequence
of natural numbers (,) such that there exists a v,-regular graph
over S,, with standard weights, i.e., every vertex in S,, has exactly
7 neighbors, n € N. We denote these graphs by b,. (Show that
such graphs exist for every n € N whenever ~, 5y H;L:_ll (Bj —1)is

even and 7, < [ H;:ll(ﬁj —1),n>1.) Let

and

L Yn
a = limsup —,
n—oo n
which may take the value co. If a’ > a, then there exists a k > 0
such that the graph b is (d/, k)-weakly sparse. On the other hand,
if the graph b is (d/, k)-weakly sparse for some k > 0, then a’ > a.
Hence, b is approximately sparse if and only if a = 0. In this case,
the graph b is sparse if and only if limsup,,_, . v, < 00.)
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EXERCISE 10.3 (Sparseness and strong isoperimetric inequality).

(a) Present an example of a graph that is sparse and satisfies a strong
isoperimetric inequality.

(b) Present an example of a graph that is sparse but does not satisfy
a strong isoperimetric inequality.

(c) Present an example of a graph that is not sparse but satisfies a
strong isoperimetric inequality.

(Hint: Use Theorem [10.24])

EXERCISE 10.4 (Approximate sparseness and Q). Let (b,c) be a
graph over (X, m). If

Q*(9) — 2(p, Degp)Q() + (¢, (Deg — k)¢)* < 0
for all ¢ € C.(X), show that (b, ¢) is approximately sparse.

Extension exercises.

EXERCISE 10.5 (Weak sparseness and isoperimetric inequality).
Show that an (a, k)-weakly sparse graph (b, c) over (X, m) satisfies an
isoperimetric inequality with isoperimetric constant

_do—k
T Hblta)

with dy = inf,ex(n/m)(z) whenever dy > k.

EXERCISE 10.6 (Form inequalities). Show the implication (ii) =

(iii) of Theorem [10.10| directly.

EXERCISE 10.7 (o« = 0). Let (b,c¢) be a graph over (X, m) with
associated Laplacian L = L(P). Let D = sup,.y Deg(z). Show that if
D < o0, then

(W) + (W)
Wg)%,ril/[/ﬁnite TL(W)
if and only if A\o(L) = 0.

=0

EXERCISE 10.8 (Isoperimetric constant and spectrum). For a con-
nected graph (b, ¢) over X consider the isoperimetric constant defined
via

o g0(OW) + (W)
a = inf
wex n(W)
and the isoperimetric constant at infinity defined via
1
b= sup . 50(OW) + C(W)
KCX finite WEX\K n(W)
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Let m be a uniformly positive measure, i.e., inf,cx m(z) > 0 and

Deg.,, = sup inf Deg(x).
KCX finite 7€X\K (=)
(a) Assume that as > 0. Show that the operator L has purely discrete
spectrum if and only if Deg_ = oo.
(Hint: Show that for all € > 0 there exists a C. > 0 such that the
inequalities

(I1-e)1—-v1—ax)Deg—C. <Q
< (14¢)(1 — V1 — as)Deg + C.

hold.)

(b) Assume that D, = co. Show that o > 0 if and only if a > 0.
(Hint: Consider the operator L, with respect to the graph (b, c)
over (X,n) and show that A\§*(L,) > 0 if and only if a > 0 and
Mo(Ly) =0 if and only if a = 0.)
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Notes

Historically, sparseness and isoperimetric estimates are well-known
concepts that have appeared in rather disjoint contexts. The unified
treatment of the two topics and their connection to spectral estimates
that is presented here goes back to material in [BGK15|] for graphs
with standard weights.

In numerics, sparseness of a matrix classically means that it has
relatively few non-zero entries. This notion found its way into graph
theory in works such as [EGS76l, Lor79], where it translates into
having relatively few edges compared to the number of vertices. We
note that there exists a multitude of different definitions for sparseness,
too many to cover completely here, so we only cite [Bre07, LSO08,
AABL12] to give an idea of the range of notions. The first connection
to spectral graph theory is due to Mohar [Moh13, Moh15], where the
number of large eigenvalues of the adjacency matrix of a finite graph
is related to the sparseness of the graph.

The first explicit relation between isoperimetric inequalities and an
estimate on the bottom of the spectrum of the Laplacian on mani-
folds is found in the work of Cheeger [Che70]. However, the gen-
eral idea of relating isoperimetric estimates and Sobolev inequalities
can be traced back to Federer/Fleming [FF60] and Maz'ja [Maz60].
These results are proven in the continuum setting. The first results for
Laplacians on graphs were independently shown by Dodziuk [Dod84]
and Alon/Milman |[AMS85]. These results were preceded by works
of Fiedler, which include similar ideas for the adjacency matrix of a
finite graph [Fie73]. The specific setting of [Dod84, [AMBS85] are
graphs with standard weights and counting measure. Later, a cor-
responding result was proven for the normalizing measure by Dodz-
iuk/Kendall [DK86]. Since then various versions have been proven,
see e.g. [Ger88, Moh88, Moh91, [Fuj96b, [CGY00, Dod06]. For
finite graphs such results are found in the textbooks [Big93, [Chu97].

The first use of isoperimetric inequalities to show discreteness of the
spectrum can be traced back to the work of Donnelly/Li [DL79] in the
case of manifolds. For graphs with standard weights and normalizing
measure, a result of Fujiwara [Fuj96b] gives conditions under which
the essential spectrum consists of one point. For the counting measure,
discreteness of the spectrum was shown in [Kel10, [Woj08|, Woj09|.
This was generalized for weighted graphs in [KL10] and the estimates
proven there were used by Golénia [Gol14] to derive eigenvalue asymp-
totics in terms of the degree.

The results as they are presented in this chapter are an exten-
sion of [BGK15|] from the setting of standard weights with counting
measure to general graphs. Furthermore, the second term in the eigen-
value asymptotics for sparse graphs in Theorem is an extension
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of [BGK21]. The mean curvature criterion in Subsection [6.2] appeared
in [DK88] for graphs with standard weights and is used in [Woj09] to
show discreteness of the spectrum.

Finally, let us mention that isoperimetric inequalities play an es-
sential role in applications such as parallel computing. Here one is
interested in dividing a large data set into subsets such that the con-
nection between these subsets is minimal. While finding these sets
is computationally hard, spectral computations are easier in numer-
ics. Thus, the applications perspective is somewhat reverse to ours,
see[BHO09), [ST96] and references therein for a first look into these
considerations.
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Geometry and Intrinsic Metrics



Synopsis

The concept of a metric is a most fundamental one in geometry.
In this part of the book we introduce the notion of intrinsic metrics
for a graph in Chapter [11, We then use intrinsic metrics to give a
series of Caccioppoli inequalities which are useful for studying harmonic
functions, form uniqueness, recurrence and the spectrum in Chapter (12|
Next, we use intrinsic metrics to study the bottom of the spectrum in
Chapter[I13] More specifically, we give both a lower bound via a Cheeger
inequality involving an isoperimetric constant and an upper bound via
a Brooks estimate involving volume growth. Finally, we use intrinsic
metrics to establish a uniqueness class result for the heat equation
and to give a volume growth criterion for stochastic completeness in

Chapter [14]



CHAPTER 11

Intrinsic Metrics: Definition and Basic Facts

In this chapter we introduce the notion of an intrinsic metric. Sec-
tion [I]is devoted to definitions and motivations. An important class of
examples are so-called path metrics, which we discuss in Section [2] In
this section we prove a Hopf-Rinow theorem, which characterizes met-
ric completeness. This theory is interesting for its own sake but can be
skipped by the reader who is only interested in specific applications.
Section [3] discusses relevant examples and relates intrinsic metrics to
other metrics on graphs that appear in the literature. Finally, in Sec-
tion [4] we discuss several assumptions on the metric and introduce some
cutoff functions which we will use in the forthcoming chapters.

1. Definition and motivation

In this section we introduce intrinsic metrics and motivate the def-
inition via several facts from the setting of Riemannian manifolds. We
also give a characterization of intrinsic metrics in terms of a Lipschitz

property.

For the theory developed in this chapter we do not need distances
to be non-degenerate. That is, we allow for different vertices to be
distance zero apart. This yields a so-called pseudo metric. Specifically,
a pseudo metric is a symmetric map o: X x X — [0,00) with zero
diagonal that satisfies the triangle inequality.

DEFINITION 11.1 (Intrinsic metric). A pseudo metric ¢ is called an
intrinsic metric for a graph b over (X, m) if

> bla,y)d(z,y) < m(w)

yeX

for all x € X. We call a pseudo metric o an intrinsic metric for a graph
(b, c) over (X, m) if ¢ is intrinsic for b over (X, m).

We stress that we speak of intrinsic metrics although we only as-
sume that the corresponding objects are pseudo metrics. This is com-
mon in the literature and we follow this convention for the sake of
brevity.

Let us discuss the motivation of this definition from the perspec-
tive of Riemannian geometry. The reader familiar with Riemannian
manifolds can fill in the details. Otherwise, the statements below can

449
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be taken as facts to motivate our approach. Let M be a connected
Riemannian manifold and let

A(M) ={f € L,.(M) | f is weakly differentiable and |V, f|* < 1},

where V), is the Riemannian gradient. Then, the Riemannian distance
djs can be recovered via

du(z,y) = sup{f(z) — f(y) | f € A1(M)}
= sup{d(z,y) | § is a metric with (o, ) € A;(M) for all 0 € M}

for x,y € M.
From these equalities, one can deduce dys(o,-) € Ay (M), which is
equivalent to

Lip, (M) = Ay (M),

where Lip, (M) is the set of Lipschitz continuous functions with respect
to djs with Lipschitz constant 1.

To discuss how our definition of intrinsic metrics is related to these
facts for manifolds, we have to introduce the concept of the norm of a
gradient first. Let b be a graph over (X, m) and let f € C(X). Then,
we define the norm of the gradient |V f| = |V f|pm of f as

1/2
IV fl(z ( bey f(y))2>

for r € X.

In order to motivate this definition, we observe that the directional
difference of a function f € C(X) gives rise to a function Vf: X x
X — Rvia

Vi(r,y) = flz)— f(y)

We then take the scalar product of V f times V f over the fiber {z} x X
with respect to b considered as a measure, i.e.,

(VI V(@) = bz, y)(f(x) = f(y),

yeX

which takes values in [0,00]. This gives rise to a function and, by
extending to subsets, a measure (V f, V f), on X.

Now, we consider the Radon-Nikodym derivative of the measure
(Vf, V), with respect to the measure m. Taking the square root of
this Radon—Nikodym derivative yields the notion of the norm of the
gradient, as introduced above. That is, |V f| = |V f|om is given by

1/2
VI ( Zb z,y)( f(y))2>
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for € X. Then, as ¢ = 0, we have, for all f € C(X),
1 1
Qf) =5 > VLV (x) = 5 IV P (@)m(a).

zeX zeX

With these notions we define
AlX)={feCX) ||V <1}

Given A;(X), we can define a metric o on X in analogy to the manifold
case as

o(z,y) =sup{f(z) — f(y) | f € L(X)}.
It is immediate that
Ay(X) € Lipy . (X),

where Lipg 5(X) is the set of Lipschitz continuous functions on X with
respect to a pseudo metric 0 having Lipschitz constant C. We will refer
to such functions as C-Lipschitz for short.

However, in general, we do not have an equality even for finite
graphs. In fact, in general, the space A;(X) will not be the space of
Lipschitz functions for any metric. This is due to the fact that, while
the space of Lipschitz functions is closed under taking suprema, the
space A;(X) may not be. This is illustrated in the following example.

EXAMPLE 11.2 (A;(X) # Lip; 5(X)). Let X = {0,1,2} and let b
be symmetrically given by b(0,1) = b(1,2) =1, b(0,2) = 0 and m = 1.
Then, the functions f and g with f(0) = g(2) = 1 and 0 otherwise are
both in A;(X). However, the function f V ¢ is not in A;(X) since

IV(fVg)l(1) = (f(1) = £(0))* + (9(1) — 9(2))* =2 > 1 = m(1).

On the other hand for any metric 4, it is always the case that fV g €
Lip, 5(X) if f, g € Lip; 5(X). So, we conclude that A;(X) cannot be
equal to Lip; 5 for any metric 9.

The example shows that, in general, the function o(o,-) is not in
Ay (M). Thus, o is not an intrinsic metric in this case, as we will see
below. Indeed, we see that our definition of intrinsic metrics coincides
with the fact that the 1-Lipschitz functions are included in A;(X) or,
equivalently, that the gradient of the pseudo metric with one variable
fixed has norm less than one.

LEMMA 11.3 (Characterization intrinsic metrics). Let b be a graph
over (X, m) and let o be a metric. Then, the following statements are
equivalent:

(i) o is an intrinsic metric.
(i) Lipy ,(X) C Ay(X).
(iii) [Vo(o,")|? <1, i.e., o(o,-) € Ai(X) for allo € X.
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In particular, if n € C(X) is C-Lipschitz with respect to an intrinsic
metric o0 and C' > 0, then

|Vn|* < C2.

PRrOOF. (i) = (ii): Let f € Lip, ,(X), where ¢ is an intrinsic
metric. Then,

ﬁ S b, y)(F(2) — F(9)) <

so that f € A;(X).

(ii) == (iii): Note that o(o,-) € Lip, ,(X) for every o € X since
lo(0,z) — o(0,y)| < o(z,y). As Lip; ,(X) C Ai(X), we conclude
0(o,-) € A (X).

(iii) = (i): Note that since [Vo(o,-)|* <1 for all 0 € X, we get

|Vo(o,0) m(o Zb 0,)( — 0(0,y))?
niOEZbOy <1.
Hence,
> b(0,9)0*(0,9) < m(o)

for all 0 € X, so that p is intrinsic.
The “in particular” statement follows immediately as C-Lipschitz
means that

n(z) —n(y)| < Colz,y)
for z,y € X. U

REMARK. The definition of |V f| also appears in the setting of the

so-called Bakryf]i,]mery calculus. The Bakrnymery calculus starts
with a Laplace operator, which in our case is £, in order to define
the norm of a gradient square via

1
D(f) = =5 (L2 = 2fL).
A direct calculation shows

r(f) = 5IViP
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2. Path metrics and a Hopf—~Rinow theorem

In this section we define path metrics on discrete spaces. The main
goal is a Hopf—Rinow theorem, which states that metric completeness,
geodesic completeness and finiteness of balls are all equivalent for path
metrics on locally finite graphs. Along the way, we show that the
assumptions of discreteness and metric completeness already yield that
any two vertices can be connected by a geodesic.

Let X be a discrete space. We call a symmetric map w: X x X —
0, 0o with

w(z,y) =0 if and only if rT=1y

a weight over X. Weights are a slightly different notion than graphs
as we allow for the value infinity, ask for a non-vanishing off-diagonal
and do not assume a summability condition about the vertices. Never-
theless, we use the same terminology as in the case of graphs to speak
about vertices, neighbors, paths and connectedness.

More specifically, we call the elements of X vertices and say that
x and y are neighbors if w(x,y) < oo, in which case we write = ~ y.
Thus, in contrast to graphs, the lack of a connection between vertices
is indicated by w being infinite. Furthermore, we call a sequence (z,,)
of pairwise different elements of X a path if all subsequent elements are
neighbors. We say that w is connected if every two elements of X can
be connected by a path. We note that every vertex can be connected
to itself by a path which consists of that vertex alone.

We let II,, denote the set of all paths from x to y and call the
sum of the weights along a path the length of a path. That is, if
(k)i € 11, ,, then the length [,,((xy)) of (zy) is

i
L

lo((7r)) = W(Tpy Thy1)-

b
Il

DEFINITION 11.4 (Path metric). Let w be a weight over X. We
define the path (pseudo) metric 6, with respect to w by

5w(l’, y) = inf lw((xk))a
(z1)Elly,y
where we let inf () = oo. Moreover, if a metric 6 can be realized by
a path metric §,, with respect to a weight w, then we say that J is
induced by w. We call any such § a path metric and call (X,d) a path
metric space.

REMARK. A path metric also often gives a weight on the graph.
Furthermore, the path metric induced by this weight is equal to the
original path metric (Exercise [11.4)).
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Similar to the definition of intrinsic metrics, we only assume that &
is a pseudo metric; however, we suppress the term “pseudo” unless it
is relevant for our discussion.

An important example is the combinatorial graph distance. Here,
we start with a graph b over X.

ExaMPLE 11.5 (Combinatorial graph distance). Let b be a graph
over X. Let wy(x,y) = 1if b(z,y) > 0 and oo otherwise. Then, the
path metric with respect to w;, is the combinatorial graph distance
Oy, = d.

Obviously, the combinatorial graph distance is actually a metric
and not only a pseudo metric. The next example shows that a path
metric is not necessarily non-degenerate and that the topology induced
by a path metric is not necessarily Hausdorff.

EXAMPLE 11.6 (A non-Hausdorff space). Let X = Ny U {oo} and
define w by w(0,n) = w(n,0) = w(n,o0) = w(oo,n) = 1/n for n € N
and oo otherwise. Let J,, be the path pseudo metric induced by w.
Then, 0,,(0,00) = 2inf,cn(1/n) = 0.

Analogous to graphs, we now define the notion of local finiteness.

DEFINITION 11.7 (Locally finite weight). We call a weight w over
X locally finite if

#ye X |w(zr,y) < oo} < oo
for all x € X. If the weight that induces a path metric ¢ is locally finite,
then we call (X, 0) a locally finite path metric space.

It turns out that path pseudo metrics for locally finite weights are,
in fact, metrics. Indeed, the statement is even stronger in that such a
metric induces the discrete topology on X.

LEMMA 11.8 (Locally finite implies discrete). Let (X, d) be a locally
finite path metric space. Then, (X,0) is a discrete metric space. In
particular, 0 is a metric and compact sets are finite.

PROOF. Let w be the weight that induces ¢ and let x,y € X with
x # y. Then, any path from x to y must pass through one of the finitely

many neighbors yi,...,yy of y. Let min,—y  yw(y,y;) = wo > 0.
Then,
610(1‘7:1/) = inf lw((xk))