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abstract:

The talk will outline recent achievements and challenges in spectral and stochastic
analysis on non-smooth spaces that are very singular, but can be approximated by
graphs or manifolds. In particular, the talk will present two of most interesting
examples that are currently under investigation. One example deals with the
spectral analysis of the Laplacian on the famous basilica Julia set, the Julia set of
the polynomial z2 − 1. This is a joint work with Luke Rogers and several students
at UConn. The other example deals with spectral analysis for the canonical
diffusion on the pattern spaces of an aperiodic Delone set. This is a joint work
with Patricia Alonso-Ruiz, Michael Hinz and Rodrigo Trevino.
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outline:

– Introduction and motivation.

1. Bohr asymptotics on infinite Sierpinski gasket (with Joe Chen,
Stanislav Molchanov, 2015). Singularly continuous spectrum of
a self-similar Laplacian on the half-line (with Joe Chen, 2016).

2. Spectrum of the Laplacian on the Basilica Julia set
(with Toni Brzoska, Luke Rogers et al. (research in progress)).

3. Canonical diffusions on the pattern spaces of aperiodic Delone
sets (with Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Treviño
(research in progress)).

This is a part of the broader program to develop
spectral and vector analysis on singular spaces by
carefully building approximations by graphs or manifolds.
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Abstract

We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier

graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since

they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite

this article: R. Grigorchuk, Z. Šuniḱ, C. R. Acad. Sci. Paris, Ser. I 344 (2006).
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To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.

I. INTRODUCTION

Hamiltonians defined on fractal surfaces have been the
subject of many papers lately. ' In particular, Domany
et al. ' have given a detailed analysis of the spectrum of
eigehstates of the Schrodinger equation defined on a two-
dimensional (2D) Sierpinski gasket. This calculation is
based upon exact decimination techniques which provide
a powerful semianalytical method of finding detailed
properties of the Hamiltonian.

Problems of fractal lattices are reminiscent of (but very
much simpler than) those which are conventionally stud-
ied for electron localization. For this situation the locali-
zation. can be rather fully understood. One learns, for ex-
ample, that, although there are a few extended states,
most states are very highly localized, on finitely ramified
fractals. Furthermore, almost all the states have a very
high degree of degeneracy. Of course, the observed locali-
zation phenomena on these systems are fundamentally
different from Anderson localization. For one thing,
these lattices give a finite order of ramification. For
another, if one chooses to describe the self-similar struc-
ture by configurational disorder (e.g., by cutting some
bonds) then the resulting "disorder" is highly correlated.
Nonetheless, these systems form interesting test cases
which are worth studying.

In this paper we study magnetic field effects on elec-
tronic motion through a 2D Sierpinski gasket (Fig. 1).
Following Alexander, we describe the motion by giving
an electronic wave function at each mode of the lattice,

The tight-binding Hamiltonian fixes the hopping ma-
trix element between neighboring sites to have a magni-
tude

~ f ~

which is the same for all nearest-neighbor sites
and zero otherwise. A magnetic field is defined by giving
the value of the phase on each bond so that the sum of
phases along a closed path is the magnetic flux enclosed

by the path.
The very simplest model is chosen by taking all bonds

to have exactly the same phase. We make this choice by
allowing all bonds in the direction of the arrows in Fig. 1

to have a matrix element f= foe'~, and all bonds opposite
to the arrows to have f=foe '~, with fo real and posi-
tive. Although this choice gives a natural bond pattern,
the magnetic flux pattern is far less natural. All the ele-
mentary upward-pointing triangles, like those labeled 3 in
the figure, have the very same flux, N+ ——3P. However,
using the same convention for the sign of the flux, the
smallest downward-pointing triangles labeled 8 have flux
@~———3tb, while larger downward-pointing triangles have
larger negative flux, for example, Nc ———6P. Hence, the
magnetic field pattern studied is quite nontrivial.

I C II
FIG. 1. Fragment of the Sierpinski gasket. The phase of the

hopping matrix is equal to P in the direction of the arrow and
—P otherwise.

31 1388 1985 The American Physical Society



PHYSICAL REVIEW B VOLUME 31, NUMBER 3 1 FEBRUARY 1985

Energy spectrum for a fracta1 lattice in a magnetic field

r

Jayanth R. Banavar
Schlumberger Doll-Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Leo Kadanoff
Department of Physics, Uniuersity of Chicago, Chicago, Illinois 60637

A. M. M. Pruisken
Schlumberger Doll -Research, Old Quarry Road, Ridgefield, Connecticut 06877-4I08

(Received 10 September 1984)

To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.

I. INTRODUCTION

Hamiltonians defined on fractal surfaces have been the
subject of many papers lately. ' In particular, Domany
et al. ' have given a detailed analysis of the spectrum of
eigehstates of the Schrodinger equation defined on a two-
dimensional (2D) Sierpinski gasket. This calculation is
based upon exact decimination techniques which provide
a powerful semianalytical method of finding detailed
properties of the Hamiltonian.

Problems of fractal lattices are reminiscent of (but very
much simpler than) those which are conventionally stud-
ied for electron localization. For this situation the locali-
zation. can be rather fully understood. One learns, for ex-
ample, that, although there are a few extended states,
most states are very highly localized, on finitely ramified
fractals. Furthermore, almost all the states have a very
high degree of degeneracy. Of course, the observed locali-
zation phenomena on these systems are fundamentally
different from Anderson localization. For one thing,
these lattices give a finite order of ramification. For
another, if one chooses to describe the self-similar struc-
ture by configurational disorder (e.g., by cutting some
bonds) then the resulting "disorder" is highly correlated.
Nonetheless, these systems form interesting test cases
which are worth studying.

In this paper we study magnetic field effects on elec-
tronic motion through a 2D Sierpinski gasket (Fig. 1).
Following Alexander, we describe the motion by giving
an electronic wave function at each mode of the lattice,

The tight-binding Hamiltonian fixes the hopping ma-
trix element between neighboring sites to have a magni-
tude

~ f ~

which is the same for all nearest-neighbor sites
and zero otherwise. A magnetic field is defined by giving
the value of the phase on each bond so that the sum of
phases along a closed path is the magnetic flux enclosed

by the path.
The very simplest model is chosen by taking all bonds

to have exactly the same phase. We make this choice by
allowing all bonds in the direction of the arrows in Fig. 1

to have a matrix element f= foe'~, and all bonds opposite
to the arrows to have f=foe '~, with fo real and posi-
tive. Although this choice gives a natural bond pattern,
the magnetic flux pattern is far less natural. All the ele-
mentary upward-pointing triangles, like those labeled 3 in
the figure, have the very same flux, N+ ——3P. However,
using the same convention for the sign of the flux, the
smallest downward-pointing triangles labeled 8 have flux
@~———3tb, while larger downward-pointing triangles have
larger negative flux, for example, Nc ———6P. Hence, the
magnetic field pattern studied is quite nontrivial.

I C II
FIG. 1. Fragment of the Sierpinski gasket. The phase of the

hopping matrix is equal to P in the direction of the arrow and
—P otherwise.

31 1388 1985 The American Physical Society









6/14/2014 François Englert - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Fran%C3%A7ois_Englert 1/5

François Englert

François Englert in Israel, 2007

Born 6 November 1932 

Etterbeek, Brussels, Belgium[1]

Nationality Belgian

Fields Theoretical physics

Institutions Université Libre de Bruxelles

Tel Aviv University[2][3]

Alma mater Université Libre de Bruxelles

Notable awards Francqui Prize (1982)

Wolf Prize in Physics (2004)

Sakurai Prize (2010)

Nobel Prize in Physics (2013)

François Englert
From Wikipedia, the free encyclopedia

François Baron Englert (French: [ɑɡ̃lɛʁ]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,
C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,
together with Peter Higgs and the CERN.

Englert was awarded the 2013 Nobel Prize in Physics,
together with Peter Higgs for the discovery of the Higgs

mechanism.[5]
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METRIC SPACE-TIME AS FIXED POINT 

OF THE RENORMALIZATION GROUP EQUATIONS 

ON FRACTAL STRUCTURES 
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We take a model of foamy space-time structure described by self-similar fractals. We study 
the propagation of a scalar field on such a background and we show that for almost any initial 
conditions the renormalization group equations lead to an effective highly symmetric metric at 
large scale. 

1. Introduction 

Quantum gravity presents a potential difficulty which persists in any unification 

program which incorporates gravity in the framework of a local field theory in 

dimensions d > 4. In all such theories a local O ( d - 1 , 1 )  space-time symmetry is 
quite generally assumed at the outset as a "kinematical" symmetry of the classical 

action. Such an extrapolation from relatively large distances, where the symmetry 

0(3 ,1)  is tested to a genuine local property is questionable. Indeed, the unbounded- 
ness of the Einstein curvature term in the analytically continued euclidean action 

signals violent fluctuations near the Planck scale. Hence a "foamy" fractal space-time 
structure is expected [1], from which the average metric below this scale should 
emerge in a dynamical way. There is no obvious reason why a smooth effective 

metric should at all be generated, and even if it were, why it should bear any 
relation to the "bare" symmetrical local metric imposed on the "fundamental" 

1 Chercheur qualifi~ du FNRS. 
2 Chercheur IISN. 

0619-6823/87/$03.50©Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 
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Fig. 1. The first two iterations of a 2-dimensional 3-fractal. 

tive integers v i (i = 1 . . . . .  d)  such that their s u m  Y~./d=lP i is less or equal to n. All 
these points are contained in the hypertetrahedron bounded by the coordinate 
hyperplanes and the E~a=lVi = n hyperplane. We distinguish interior points and 
points belonging to a k-face (k < d), that is points characterized by a set of 
coordinates vj which contains d - k  subsets s such that ~ ,  ~svi = 0 (mod n). Every 
point belongs to the boundary of at least one sub-hypertetrahedron and two points 
are called neighbours if they belong to the same sub-hypertetrahedron. One goes 
from a point to one of its neighbours by one of the elementary translations t i and lij 
defined as: 

_+ ti: v~--+ v~: ,  where v~ = v k if k :~ i, 

v" = v i + 1 ; 

l q : v}--+ vj  , w h e r e  v'k = v k i f  i 4= k --t= j ; 

v" = v i + 1, 

v~ = v j -  1. (2.1) 

In general, an interior point admits d ( d  + 1) neighbours reached by the 2d transla- 
tions ___t i and the d ( d - 1 )  l q  translations. If a point belongs to a k-face of the 
hypertetrahedron, some of these operations reach a point outside the initial hyperte- 
trahedron. Actually, points belonging to a k-face have only d ( k  + 1) neighbours. 
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metrics from minkowskian metrics and corresponds - except at the origin - to 1-dimensional metrics. ML, M 2, Ma denote unstable minkowskian 
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 01, 0 2 and 0 3 associated to 0-dimensional 
geometries are located at the origin and at infinity on the (a, /~) coordinates axis. The six straight lines are subsets invariant with respect to the 
recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of 

them the 10th point (a  = -56 .4 , /3  = -52 .5)  is outside the frame of the figure. 
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding 
to the euclidean fixed point. Vertices are labelled according to fig. 4. 

angles of the cell without its base, that is 57r, minus the sum of the angles not 
belonging to the cell and touching the 3 exterior vertices of the cell, that is 
6~r - ~r = 5~r. We find thus that the curvature of a cell is zero, which is consistent 
with the assumption that the space surrounding the cell is flat. 

Though the exact value of the curvature at each vertex of a cell is subject to some 
arbitrariness, because of the arbitrariness showed in the previous section of the 
normalization of the ?~i9's at successive levels, one easily verifies that, for the 
homogeneous metrics considered here, all the non-zero cancelling curvatures are 
located at the cell boundaries. The vertices belonging to the p and (p  + 1) levels ot 
fractalization have negative curvature, the others have positive curvature. 

Consider now a metric n-fractal, n >> 1, cutoff after the first iteration (or 
equivalently a ( p -  1) triangle in a fractal cutoff at the p th  level). The result is a 
triangular lattice. Because the integrated curvature of any cell is zero, the inside of 
the lattice is correctly described on the average by a locally flat metric. From 
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Figure 6.4. Geometric interpretation of Proposition 6.1.

7. Effective resistance metric, Green’s function
and capacity of points

We first recall from [Ki4] some facts about limits of resistance networks.
Although we state all the results of this section for the Sierpiński gasket,
they can be applied to general pcf fractals with only minor changes.

Let E(f, f) be defined by (1.2) for any function f on V∗, where En is a
compatible sequence of Dirichlet forms on Γn.

Proposition 7.1. Every point of V∗ =
⋃

n≥0 Vn has positive capacity.

Proof. Let x ∈ V∗. Then x ∈ Vn for some n. The capacity of {x} with respect
to E is the same as that with respect to En because of the compatibility of
the sequence of networks. The latter capacity is positive because Vn is a
finite set. �

The effective resistance is defined for any x, y ∈ V∗ by

R(x, y) =
(
minu{E(u, u) : u(x) = 1, u(y) = 0}

)−1
.(7.1)

Here the minimum is taken over all functions on V∗. Note that x, y ∈ Vn
for large enough n and that (7.1) does not change if E is replaced by En,
because of the compatibility condition (see [Ki4], Proposition 2.1.11). By
Theorem 2.1.14 in [Ki4], R(x, y) is a metric on V∗. In what follows we will
write R-continuity, R-closure etc. for continuity, closure etc. with respect to
the effective resistance metric R. It is known that if E(u, u) < ∞ then u is
R-continuous ([Ki4], Theorem 2.2.6(1)). The main ingredient in the proof
of this fact is the inequality

|u(x)− u(y)|2 ≤ R(x, y)E(u, u).(7.2)

Let Ω be the R-completion of V∗. We can conclude from (7.2) that if u
is a function on V∗ such that E(u, u) <∞ then u has a unique continuation
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We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
‘‘self-renormalizing’’ at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOI: 10.1103/PhysRevLett.95.171301 PACS numbers: 04.60.Gw, 04.60.Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator?—A shared
hope of researchers in otherwise disparate approaches to
quantum gravity is that the microstructure of space and
time may provide a physical regulator for the ultraviolet
infinities encountered in perturbative quantum field theory.

tral dimension, a diffeomorphism-invariant quantity ob-
tained from studying diffusion on the quantum ensemble
of geometries. On large scales and within measuring ac-
curacy, it is equal to four, in agreement with earlier mea-
surements of the large-scale dimensionality based on the

PRL 95, 171301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
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�2
d logP���
d log�

� a�
b

�� c
(10)

agrees best with the data. In Fig. 1, the curve

DS��� � 4:02�
119

54� �
(11)

has been superimposed on the data, where the three con-
stants were determined from the entire data range � 2
�40; 400�. Although both b and c individually are slightly
altered when one varies the range of �, their ratio b=c as
well as the constant a remain fairly stable. Integrating
relation (10), we have

P��� �
1

�a=2�1� c=��b=2c
; (12)

implying a behavior

P��� �
�
��a=2 for large �;
���a�b=c�=2 for small �:

(13)

Our interpretation of Eqs. (12) and (13) is that the quantum
geometry generated by CDT does not have a self-similar
structure at all distances, but instead has a scale-dependent
spectral dimension which increases continuously from a�
b=c to a with increasing distance.

Taking into account the variation of a in Eq. (10) when
using various cuts ��min; �max� for the range of �, as well
as different weightings of the errors, we obtain the asymp-
totic value

DS�� � 1� � 4:02 0:1; (14)

which means that the spectral dimension extracted from
the large-� behavior (which probes the long-distance
structure of spacetime) is compatible with four. On the
other hand, the ‘‘short-distance spectral dimension,’’ ob-
tained by extrapolating Eq. (12) to �! 0 is given by

DS�� � 0� � 1:80 0:25; (15)

and thus is compatible with the integer value two.
Discussion.—The continuous change of spectral dimen-

sion described in this Letter constitutes to our knowledge
the first dynamical derivation of a scale-dependent dimen-
sion in full quantum gravity. (In the so-called exact renor-
malization group approach to Euclidean quantum gravity, a
similar reduction has been observed recently in an
Einstein-Hilbert truncation [12].) It is natural to conjecture
it will provide an effective short-distance cutoff by which
the nonperturbative formulation of quantum gravity em-
ployed here, causal dynamical triangulations, evades the
ultraviolet infinities of perturbative quantum gravity.
Contrary to current folklore (see [13] for a review), this
is done without appealing to short-scale discreteness or
abandoning geometric concepts altogether.

Translating our lattice results to a continuum notation
requires a ‘‘dimensional transmutation’’ to dimensionful
quantities, in accordance with the renormalization of the

lattice theory. Because of the perturbative nonrenormaliz-
ability of gravity, this is expected to be quite subtle. CDT
provides a concrete framework for addressing this issue
and we will return to it elsewhere. However, since � from
(1) can be assigned the length dimension two, and since we
expect the short-distance behavior of the theory to be
governed by the continuum gravitational coupling GN , it
is tempting to write the continuum version of (10) as

PV��� �
1

�2

1

1� const:�GN=�
; (16)

where const. is a constant of order one. Using the same
naı̈ve dimensional transmutation, one finds that our ‘‘uni-
verse’’ of 181.000 discrete building blocks has a spacetime
volume of the order of �20lPl�

4 in terms of the Planck
length lPl, and that the diffusion with � � 400 steps cor-
responds to a linear diffusion depth of 20lPl, and is there-
fore of the same magnitude. The relation (16) describes
a universe whose spectral dimension is four on scales
large compared to the Planck scale. Below this scale,
the quantum-gravitational excitations of geometry lead
to a nonperturbative dynamical dimensional reduction
to two, a dimensionality where gravity is known to be
renormalizable.

*Electronic address: ambjorn@nbi.dk
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†Electronic address: jurkiewicz@th.if.uj.edu.pl
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Abstract

The emergence of fractal features in the microscopic structure of space-time is a common theme in

many approaches to quantum gravity. In this work we carry out a detailed renormalization group

study of the spectral dimension ds and walk dimension dw associated with the effective space-times

of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where

these generalized dimensions are approximately constant for an extended range of length scales:

a classical regime where ds = d, dw = 2, a semi-classical regime where ds = 2d/(2 + d), dw =

2 + d, and the UV-fixed point regime where ds = d/2, dw = 4. On the length scales covered

by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be

in very good agreement with the data. This comparison also provides a natural explanation

for the apparent puzzle between the short distance behavior of the spectral dimension reported

from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and

Asymptotic Safety.
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A part of an infinite Sierpiński gasket.

Sasha Teplyaev (UConn) Spectral analysis on singular spaces Potsdam 2017 4 / 16



0

3

5

6

-

6

Figure: An illustration to the computation of the spectrum on the infinite

Sierpiński gasket. The curved lines show the graph of the function R(·).

Theorem (Béllissard 1988, T. 1998, Quint 2009)

On the infinite Sierpiński gasket the spectrum of the Laplacian consists of a dense
set of eigenvalues R−1(Σ0) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on R−1(JR).
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Half-line examplet -t t t t t t t t t
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1 q p p q q p q p p q p q q p p q q p

Figure: Transition probabilities in the pq random walk. Here p ∈ (0, 1) and

q = 1− p.

(∆pf )(x) =





f (0)− f (1), if x = 0

f (x)− qf (x − 1)− pf (x + 1), if 3−m(x)x ≡ 1 (mod 3)

f (x)− pf (x − 1)− qf (x + 1), if 3−m(x)x ≡ 2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p 6= 1
2

, the Laplacian ∆p on `2(Z+) has purely singularly continuous
spectrum.

The spectrum is the Julia set of the polynomial R(z) = z(z2−3z+(2+pq))
pq , which is

a topological Cantor set of Lebesgue measure zero.
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Bohr asymptotics

For 1D Schödinger operator

Hψ = −ψ′′ + V (x)ψ, x ≥ 0 (1)

if V (x)→ +∞ as x → +∞ then (H. Weyl), the spectrum of H in
L2([0,∞), dx) is discrete and, under some technical conditions,

N(λ,V ) := #{λi (H) ≤ λ} ∼
1

π

∫ ∞

0

√
(λ− V (x))+ dx. (2)

This is known as the Bohr’s formula. It can be generalized for Rn.
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Theorem (Fractal Bohr’s formula (Joe Chen, Stanislav Molchanov, T.,
J. Phys. A: Math. Theor. (2015)))

On infinite Sierpinski-type fractafolds, under mild assumptions,

lim
λ→∞

N(V , λ)

g(V , λ)
= 1, (3)

where

g(V , λ) :=

∫

K∞

[
(λ− V (x))+

]ds/2 G
(

1

2
log(λ− V (x))+

)
µ∞(dx), (4)

where G is the Kigami-Lapidus periodic function, obtained via a renewal theorem.
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Part 2: Spectral Analysis of the Basilica Graphs (with Toni
Brzoska, Luke Rogers et al.)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Münchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The Basilica fractal is the Julia set of the polynomial z2 − 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and
there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In Laplacians on a Family of Quadratic Julia Sets I (2012), T. Flock and R.
Strichartz provided numerical techniques to approximate eigenvalues and
eigenfunctions on families of Laplacians on the Julia sets of z2 + c .
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Spectral Analysis of the Basilica Graphs

Basilica Julia Set and the Schreier graph Γ4

pictures taken from paper by Nagnibeda et. al.
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Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs Gn
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs Gn. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, lim sup
n→∞

σ(L(n)) has a gap that contains the

interval (2.5, 2.8).

Conjecture

In the Hausdorff metric, lim sup
n→∞

σ(L(n)) has infinitely many gaps.

Proving the conjecture would be interesting. One would be able to apply
the results discovered by R. Strichartz in Laplacians on Fractals with
Spectral Gaps have nicer Fourier Series (2005).
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Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of Gn

Definition

Let {kn}n∈N be a strictly increasing subsequence of the natural numbers.
For each n, embed Gkn in some isomorphic subgraph of Gkn+1 . The
corresponding infinite blow-up is G∞ := ∪n≥0Gkn .

Assumption

The infinite blow-up G∞ satisfies:

For n ≥ 1, the long path of Gkn−1 is embedded in a loop γn of Gkn .

Apart from lkn−1 and rkn−1 , no vertex of the long path can be the
3, 6, 9 or 12 o’clock vertex of γn.

The only vertices of Gkn that connect to vertices outside the graph
are the boundary vertices of Gkn .
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Spectral Analysis of the Basilica Graphs
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Spectral Analysis of the Basilica Graphs

Theorem

(1) σ(L(kn)|`2
a,kn,γn

) = σ(L
(jn)
0 ).

(2) The spectrum of L(∞) is pure point. The set of eigenvalues of L(∞) is

⋃

n≥0

σ(L
(jn)
0 ) =

⋃

n≥0

c−1
jn
{0},

where the polynomials cn are the characteristic polynomials of L
(n)
0 , as

defined in the previous proposition.
(3) Moreover, the set of eigenfunctions of L(∞) with finite support is
complete in `2.
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Part 3: Canonical diffusions on the pattern spaces of
aperiodic Delone sets (Patricia Alonso-Ruiz, Michael Hinz,
T., Rodrigo Treviño)
A subset Λ ⊂ Rd is a Delone set if it is uniformly discrete:

∃ε > 0 : ∀~x, ~y ∈ Λ |~x − ~y | > ε

and relatively dense:

∃R > 0 : Λ ∩ BR(~x) 6= ∅∀~x ∈ Rd .

A Delone set has finite local complexity if ∀R > 0∃ finitely many clusters
P1, . . . ,PnR

such that for any ~x ∈ Rd there is an i such that the set BR(~x) ∩ Λ
is translation-equivalent to Pi .

A Delone set Λ is aperiodic if Λ− ~t = Λ implies ~t = ~0. It is repetitive if for any
cluster P ⊂ Λ there exists RP > 0 such that for any ~x ∈ Rd the cluster
BRP (~x) ∩ Λ contains a cluster which is translation-equivalent to P.

These sets have applications in crystallography (≈ 1920), coding theory,
approximation algorithms, and the theory of quasicrystals.
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pattern space of a Delone set

Let Λ0 ⊂ Rd be a Delone set. The pattern space (hull) of Λ0 is the closure of the
set of translates of Λ0 with respect to the metric %, i.e.

ΩΛ0 =
{
ϕ~t (Λ0) : ~t ∈ Rd

}
.

Definition

Let Λ0 ⊂ Rd be a Delone set and denote by ϕ~t (Λ0) = Λ0 − ~t its translation by
the vector ~t ∈ Rd . For any two translates Λ1 and Λ2 of Λ0 define %(Λ1,Λ2) =

inf{ε > 0 : ∃ ~s, ~t ∈ Bε(~0) : B 1
ε

(~0) ∩ ϕ~s(Λ1) = B 1
ε

(~0) ∩ ϕ~t(Λ2)} ∧ 2−1/2

Assumption

The action of Rd on Ω is uniquely ergodic:
Ω is a compact metric space with the unique Rd -invariant probability measure µ.
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Theorem

(i) If ~W = ( ~Wt)t≥0 is the standard Gaussian Brownian motion on Rd , then for

any Λ ∈ Ω the process XΛ
t := ϕ ~Wt

(Λ) = Λ− ~Wt is a conservative Feller
diffusion on (Ω, %).

(ii) The semigroup Ptf (Λ) = E[f (XΛ
t )] is self-adjoint on L2

µ,

it is Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d .

(iii) The semigroup (Pt)t>0 does not admit heat kernels with respect to µ.
It does admit symmetric heat kernels pΩ : (0,∞)× Ω× Ω→ R with
respect to the not-σ-finite pushforward measure λd

Ω

pΩ(t,Λ1,Λ2) =





pRd (t, h−1
Λ1

(Λ2)) if Λ2 ∈ orb(Λ1),

0 otherwise.
(5)

(iv) There are no semi-bounded or Lp harmonic functions (”Liouville-type”).
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spectral properties

Theorem

The unitary Koopman operators U~t on L2(Ω, µ) defined by U~t f = f ◦ ϕ~t
commute with the heat semigroup

U~tPt = PtU~t

hence commute with the Laplacian ∆, and all spectral operators, such as the
unitary Schrödinger semigroup.

... hence continuous spectrum (no eigenvalues) under natural assumptions
even though µ is a probability measure on the compact set Ω.

Michael Baake and Daniel Lenz, Spectral notions of aperiodic order, Discrete
Contin. Dyn. Syst. Ser. S 10 (2017).

Michael Baake, Daniel Lenz, and Aernout van Enter, Dynamical versus diffraction
spectrum for structures with finite local complexity, Ergodic Theory Dynam.
Systems 35 (2015).

Johannes Kellendonk, Daniel Lenz, and Jean Savinien, Mathematics of aperiodic
order, vol. 309, Springer, 2015.
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Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L2(Ω, µ,Rd ) admits the orthogonal
decomposition

L2(Ω, µ,Rd ) = Im∇⊕ R(dx). (6)

In other words, the L2-cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.

M. Hinz, M. Röckner, +T., Vector analysis for Dirichlet forms and quasilinear
PDE and SPDE on fractals, Stoch. Proc. Appl. (2013).

M. Hinz, +T., Local Dirichlet forms, Hodge theory, and the Navier-Stokes
equation on topologically one-dimensional fractals, Trans. Amer. Math. Soc.
(2015,2017).
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end of the talk :-)

Thank you!
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