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abstract:

The talk will outline recent achievements and challenges in spectral and stochastic
analysis on non-smooth spaces that are very singular, but can be approximated by
graphs or manifolds. In particular, the talk will present two of most interesting
examples that are currently under investigation. One example deals with the
spectral analysis of the Laplacian on the famous basilica Julia set, the Julia set of
the polynomial z2 — 1. This is a joint work with Luke Rogers and several students
at UConn. The other example deals with spectral analysis for the canonical
diffusion on the pattern spaces of an aperiodic Delone set. This is a joint work
with Patricia Alonso-Ruiz, Michael Hinz and Rodrigo Trevino.
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outline:

@ — Introduction and motivation.

o 1. Bohr asymptotics on infinite Sierpinski gasket (with Joe Chen,
Stanislav Molchanov, 2015). Singularly continuous spectrum of
a self-similar Laplacian on the half-line (with Joe Chen, 2016).

@ 2. Spectrum of the Laplacian on the Basilica Julia set
(with Toni Brzoska, Luke Rogers et al. (research in progress)).

@ 3. Canonical diffusions on the pattern spaces of aperiodic Delone
sets (with Patricia Alonso-Ruiz, Michael Hinz, Rodrigo Trevifio
(research in progress)).

This is a part of the broader program to develop
spectral and vector analysis on singular spaces by
carefully building approximations by graphs or manifolds.
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Asymptotic aspects of Schreier graphs and Hanoi Towers groups

Rostislav Grigorchuk !, Zoran Sunik
Department of Mathematics, Tezas AGM University, MS-3368, College Station, TX, 77843-3368, USA
Received 23 January, 2006; accepted after revision +-+-+-+-+
Presented by Ftienne Ghys

Abstract

‘We present relations between growth, growth of diameters and the rate of vanishing of the spectral gap in Schreier
graphs of automaton groups. In particular, we introduce a series of examples, called Hanoi Towers groups since
they model the well known Hanoi Towers Problem, that illustrate some of the possible types of behavior. To cite
this article: R. Grigorchuk, Z. Sunik, C. R. Acad. Sci. Paris, Ser. I 344 (2006).

Figure 1. The automaton generating H*) and the Schreier graph of H®) at level 3 / L’automate engendrant H(*) et le
graphe de Schreier de H®) au niveau 3
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Energy spectrum for a fractal lattice in a magnetic field

Jayanth R. Banavar
Schlumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108

Leo Kadanoff
Department of Physics, University of Chicago, Chicago, Illinois 60637

A. M. M. Pruisken*
Schiumberger-Doll Research, Old Quarry Road, Ridgefield, Connecticut 06877-4108
(Received 10 September 1984)

To simulate a kind of magnetic field in a fractal environment we study the tight-binding
Schrodinger equation on a Sierpinski gasket. The magnetic field is represented by the introduction
of a phase onto each hopping matrix element. The energy levels can then be determined by either
direct diagonalization or recursive methods. The introduction of a phase breaks all the degeneracies
which exist in and dominate the zero-field solution. The spectrum in the field may be viewed as
considerably broader than the spectrum with no field. A novel feature of the recursion relations is
that it leads to a power-law behavior of the escape rate. Green's-function arguments suggest that a
majority of the eigenstates are truly extended despite the finite order of ramification of the fractal
lattice.
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FIG. 1. Fragment of the Sierpinski gasket. The phase of the
hopping matrix is equal to ¢ in the direction of the arrow and
—¢ otherwise.
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BAND SPECTRUM FOR AN ‘ELECTRON ON A SIERPINSKI GASKET IN A MAGNETIC FIELD
., IM; Ghez?
Centre de Physique Thébriquc. CNRS-Lurﬁihy, Case 907, F-13288, Marseille, Cedex 09, France
: S vand,
.+ Yin Yu Wang, R:Rammal* and B. Pannetier
CRTBT.C NRSi BP 166X; ,/Grenoble Cedex, France
. “,,, and
. Bellssard!
Centre de Physigue Théorique, CNRS-Luminy, Case 907, F-13288, Marseille, Cedex 09, France
~ (Received 20 July 1987 by S. Alexander)
We consider a quantum charged particle on a fractal lattice given by a
Sierpinski gasket, submitted:to a uniform magnetic field, in a tight
binding approximation. Its band spectrum is numerically computed
and exhibits a fractal structure. The ‘groundstate energy is also

compared to the superconductor transition curve measured for
Sierpinski lattice of superconducting material.
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choose the gauge in such a way that H depends only
upon o and o' in a periodic way with period one. We
will denote by Hiw, o) this operator from now on.

We also introduce the dilation operator D defined
as:

Delim) = ¢(2m). )
The scaling properties of this system are expressed in
the following Renormalization Group Equation
(RGE) [23];
E{El - H(e, o))'D = G{E* - H(o,*, a¥)}”,
3
where [7, 16];
0 G
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Fig. 2. Spectrum of H(w), computed by 10 iterations
of F. o is the horizontal variable, ranging from 0 to 1.
Eis the vertical variable, ranging from —4 to 4,



These results have been compared with an experi-
ment performed on an array of superconducting A1~
wires shaped like a Sierpinski gasket with six levels of
hierarchy. A description of this pattern generated by
e-beam lithography has been given in [20]. More de”

tails will be published in a separate paper [21]. The.
transition curve in the parameter space (7, B), where.”

Fig. 3. Four enlargements of the upper left corner of
F!& 2, showing the fractal nature of the spectrum,
with the approximate scaling law (7). « is the horizont-
al variable, ranging from 0to 2%, k = 2,4,6,8. Eis
the vertical variable, ranging from E, to 4, £, = 2.4,
3.68, 3.936, 3.9872.

- ODSEIvVes €Xperimentally e perioaiCity in tne para-

meter.a and also the scaling properties predicted by
the RGE (equation 3). The plot in Fig. 4 shows the
comparison between the experimental curve in log-log
scale together with the theoretical results for the edge
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Fig. 4. Comparison between the calculated edge of the
spectrum (left scale) with the experimental result
(right scale) on the critical temperature of a supercon-
ducting gasket: AT,/7, vs o in log-log plot, where
o = ®/d, is the reduced magnetic flux in the elemen-
tary triangle of the gasket: equation 8 has been used to
calculate the theoretical curve using the best fit para-
meters as explained in the text. The two curves have
been shifted for clarity.
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Francois Englert

From Wikipedia, the free encyclopedia

Francois Baron Englert (French: [agleg]; born 6 November
1932) is a Belgian theoretical physicist and 2013 Nobel prize
laureate (shared with Peter Higgs). He is Professor emeritus
at the Université libre de Bruxelles (ULB) where he is
member of the Service de Physique Théorique. He is also a
Sackler Professor by Special Appointment in the School of
Physics and Astronomy at Tel Aviv University and a member
of'the Institute for Quantum Studies at Chapman University in
California. He was awarded the 2010 J. J. Sakurai Prize for
Theoretical Particle Physics (with Gerry Guralnik,

C. R. Hagen, Tom Kibble, Peter Higgs, and Robert Brout),
the Wolf Prize in Physics in 2004 (with Brout and Higgs) and
the High Energy and Particle Prize of the European Physical
Society (with Brout and Higgs) in 1997 for the mechanism
which unifies short and long range interactions by generating
massive gauge vector bosons. He has made contributions in
statistical physics, quantum field theory, cosmology, string

theory and supergravity.[4] He is the recipient of the 2013
Prince of Asturias Award in technical and scientific research,

Francois Englert

Frangois Englert in Israel, 2007
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North-Holland, Amsterdam

METRIC SPACE-TIME AS FIXED POINT
OF THE RENORMALIZATION GROUP EQUATIONS
ON FRACTAL STRUCTURES

F. ENGLERT, J.-M. FRERE! and M. ROOMAN?

Physique Théorique, C.P. 225, Université Libre de Bruxelles, 1050 Brussels, Belgium

Ph. SPINDEL

Faculté des Sciences, Université de 'Etat a Mons, 7000 Mons, Belgium

Received 19 February 1986

We take a model of foamy space-time structure described by self-similar fractals. We study
the propagation of a scalar field on such a background and we show that for almost any initial
conditions the renormalization group equations lead to an effective highly symmetric metric at
large scale.
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Fig. 1. The first two iterations
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Fig. 5. The plane of 2-parameter homogeneous metrics on the Sierpinski gasket. The hyperbole a = — /(B + 1) separates the domain of euclidean

metrics from minkowskian metrics and corresponds — except at the origin - to 1-dimensional metrics. M,, M,, M; denote unstable minkowskian
fixed geometries while E corresponds to the stable euclidean fixed point. The unstable fixed points 0y, 0, and 0, associated to 0-dimensional
geometries are located at the origin and at infinity on the (a, B) coordinates axis. The six straight lines are subsets invariant with respect to the

recursion relation but repulsive in the region where they are dashed. The first points of two sequences of iterations are drawn. Note that for one of

them the 10th point (a = —56.4, B = —52.5) is outside the frame of the figure.
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Fig. 10. A metrical representation of the two first iterations of a 2-dimensional 2-fractal corresponding
to the euclidean fixed point. Vertices are labelled according to fig. 4.
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Figure 6.4. Geometric interpretation of Proposition 6.1.
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The Spectral Dimension of the Universe is Seale Dependent

I, Ambjgm,"** . Jurkiewicz, " and R, Lol

"The Nils Bohr Instne Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark
"Mark Kac Complex Systems Research Centre, Marian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL 30-059 Krakow, Poland
JTnstitute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3384 CE Utrecht, The Netherlands
(Received 13 May 2005; published 20 October 2005)

We measure the spectral dimension of universes emerging from nonperturbative quantum gravity,
defined through state sums of causal triangulated geometries. While four dimensional on large scales, the
quantum universe appears two dimensional at short distances. We conclude that quantum gravity may be
“self-renormalizing” at the Planck scale, by virtue of a mechanism of dynamical dimensional reduction.

DOL 10.1103/PhysRevLett 95.171301 PACS numbers: 04.60.Gw, 04.60Nc, 98.80.Qc

Quantum gravity as an ultraviolet regulator’—A shared  tral dimension, a diffeomorphism-invariant quantity ob-
hope of researchers in otherwise disparate approaches to  tained from studying diffusion on the quantum ensemble
quantum gravity s that the microstructure of space and o geometries. On large scales and within measuring ac-
time may provide a physical regulator for the ultraviolet ~ curacy, it is equal to four, in agreement with earlier mea-
infinities enconntered in nermrhative anantum field thearv.— surements of the laroe-seale dimensionality hased on the



other hand, the ‘“‘short-distance spectral dimension,” ob-
tained by extrapolating Eq. (12) to o — 0 is given by

Ds(o = 0) = 1.80 * 0.25, (15)

and thus is compatible with the integer value two.
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Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig
Institute of Physics, University of Mainz
Staudingerweg 7, D-55099 Mainz, Germany
reuter@thep.physik.uni-mainz.de

saueressig@thep.physik.uni-mainz.de

Abstract

The emergence of fractal features in the microscopic structure of space-time is a common theme in
many approaches to quantum gravity. In this work we carry out a detailed renormalization group
study of the spectral dimension ds and walk dimension d,, associated with the effective space-times
of asymptotically safe Quantum Einstein Gravity (QEG). We discover three scaling regimes where
these generalized dimensions are approximately constant for an extended range of length scales:
a classical regime where ds = d,d,, = 2, a semi-classical regime where dy = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered
by three-dimensional Monte Carlo simulations, the resulting spectral dimension is shown to be
in very good agreement with the data. This comparison also provides a natural explanation
for the apparent puzzle between the short distance behavior of the spectral dimension reported
from Causal Dynamical Triangulations (CDT), Euclidean Dynamical Triangulations (EDT), and

Asymptotic Safety.




Fractal space-times under the microscope:

A Renormalization Group view on Monte Carlo data

Martin Reuter and Frank Saueressig

a classical regime where d; = d,d,, = 2, a semi-classical regime where ds; = 2d/(2 + d),d,, =
2+ d, and the UV-fixed point regime where ds = d/2,d,, = 4. On the length scales covered



A part of an infinite Sierpinski gasket.
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Figure: An illustration to the computation of the spectrum on the infinite
Sierpiniski gasket. The curved lines show the graph of the function 9R(:).

Theorem (Béllissard 1988, T. 1998, Quint 2009)

On the infinite Sierpiniski gasket the spectrum of the Laplacian consists of a dense
set of eigenvalues P937!(X) of infinite multiplicity and a singularly
continuous component of spectral multiplicity one supported on SR~1(JR).
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Half-line example

oo 9o o o o o o o o
1 gqp P9 qp qp P9 Pq 9qp Pq qp
Figure: Transition probabilities in the pg random walk. Here p € (0,1) and
qg=1-—p.
F(0) — (1), ifx=20
(Apf)(x) = F(x) —qf(x —1) — pf(x+1), if37"¥x =1 (mod 3)

f(x) — pf(x — 1) — qf(x + 1), f3~™®x =2 (mod 3)

Theorem (J.P.Chen, T., 2016)

If p # % the Laplacian A, on £2(Z4.) has purely singularly continuous
spectrum.

2(22—32z+4(2+pq))

The spectrum is the Julia set of the polynomial R(z) = oq

a topological Cantor set of Lebesgue measure zero.

, which is
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Bohr asymptotics

For 1D Schodinger operator
Hyp = —¢" + V(x)1, x>0 (1)

if V(x) — 400 as x — +oo then (H. Weyl), the spectrum of H in
L2([0, c0), dx) is discrete and, under some technical conditions,

NOWV) = # ) S A ~ [T VRS VG de ()

This is known as the Bohr's formula. It can be generalized for R”.

Sasha Teplyaev (UConn) Spectral analysis on singular spaces Potsdam 2017 7/16



Theorem (Fractal Bohr's formula (Joe Chen, Stanislav Molchanov, T.,
J. Phys. A: Math. Theor. (2015)))

On infinite Sierpinski-type fractafolds, under mild assumptions,

. N(V,A)
" g(Vy) T o

where

gV ) = [ (A= V()] 6 (108 = V() ) oleb), (4

oo

where G is the Kigami-Lapidus periodic function, obtained via a renewal theorem.

v
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Part 2: Spectral Analysis of the Basilica Graphs (with Toni
Brzoska, Luke Rogers et al.)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.
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The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.
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Brzoska, Luke Rogers et al.)

The question of existence of groups with intermediate growth, i.e.
subexponential but not polynomial, was asked by Milnor in 1968 and
answered in the positive by Grigorchuk in 1984. There are still open questions in
this area, and a complete picture of which orders of growth are possible, and
which are not, is missing.

The Basilica group is a group generated by a finite automation acting on the
binary tree in a self-similar fashion, introduced by R. Grigorchuk and A. Zuk in
2002, does not belong to the closure of the set of groups of subexponential
growth under the operations of group extension and direct limit.

In 2005 L. Bartholdi and B. Virag further showed it to be amenable,
making the Basilica group the 1st example of an amenable but not
subexponentially amenable group (also “Miinchhausen trick” and
amenability of self-similar groups by V.A. Kaimanovich).
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The Basilica fractal is the Julia set of the polynomial z2 — 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and

there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).
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The Basilica fractal is the Julia set of the polynomial z2 — 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and
there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.
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The Basilica fractal is the Julia set of the polynomial z2 — 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and

there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.

In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.
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The Basilica fractal is the Julia set of the polynomial z2 — 1. In 2005, V.
Nekrashevych described the group as the iterated monodromy group, and
there exists a natural way to associate it to the Basilica fractal
(Nekrashevych+T., 2008).

In Schreier graphs of the Basilica group (2010), Nagnibeda et al. classified
up to isomorphism all possible limits of finite Schreier graphs of the Basilica group.
In Laplacians on the Basilica Julia set (2010), L. Rogers+T. constructed
Dirichlet forms and the corresponding Laplacians on the Basilica fractal in two
different ways: by imposing a self-similar harmonic structure and a graph-directed
self-simliar structure on the fractal.

In Laplacians on a Family of Quadratic Julia Sets | (2012), T. Flock and R.
Strichartz provided numerical techniques to approximate eigenvalues and
eigenfunctions on families of Laplacians on the Julia sets of z2 + c.
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Spectral Analysis of the Basilica Graphs

Replacement Rule and the Graphs G,
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Spectral Analysis of the Basilica Graphs

Distribution of Eigenvalues, Level 13 (Rumetic)

Cumulative Distribution of Eigenvalues, Level 13
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Spectral Analysis of the Basilica Graphs

One can define a Dirichlet to Neumann map for the two boundary points
of the graphs G,. One can construct a dynamical system to determine
these maps (which are two by two matrices). The dynamical system allows
us to prove the following.

Theorem

In the Hausdorff metric, limsup o(L(") has a gap that contains the

n—o0
interval (2.5,2.8).

| A

Conjecture

In the Hausdorff metric, limsup o(L(") has infinitely many gaps.
n—o0

o

Proving the conjecture would be interesting. One would be able to apply
the results discovered by R. Strichartz in Laplacians on Fractals with
Spectral Gaps have nicer Fourier Series (2005).



Spectral Analysis of the Basilica Graphs

Infinite Blow-ups of G,

Definition
Let {kn}nen be a strictly increasing subsequence of the natural numbers.
For each n, embed Gy, in some isomorphic subgraph of Gy, ,. The
corresponding infinite blow-up is G 1= Up>0 Gk, .

Assumption
The infinite blow-up G, satisfies:

@ For n > 1, the long path of Gi _, is embedded in a loop v, of G, .

n—1

@ Apart from I, , and r,,_,, no vertex of the long path can be the
3,6,9 or 12 o'clock vertex of 7.

@ The only vertices of Gy, that connect to vertices outside the graph
are the boundary vertices of Gk, .




Spectral Analysis of the Basilica Graphs

0



Spectral Analysis of the Basilica Graphs

(conjectured)

Theorem

(kn) _ (n)
(1) o(L*2, )= o(L§?).

n
(2) The spectrum of L(>) is pure point. The set of eigenvalues of L(>) is

U otg”) = | Mo},

n>0 n>0

where the polynomials ¢, are the characteristic polynomials of Lg"), as
defined in the previous proposition.

(3) Moreover, the set of eigenfunctions of L(>) with finite support is
complete in (2.




Part 3: Canonical diffusions on the pattern spaces of
aperiodic Delone sets (Patricia Alonso-Ruiz, Michael Hinz,
T., Rodrigo Trevifio)

A subset A C RY is a Delone set if it is uniformly discrete:

Je>0:VX,yeEN|X—Yy| >¢

and relatively dense:

IR > 0: AN Bg(X) # oVx € RY.

A Delone set has finite local complexity if VR > 03 finitely many clusters

Py, ..., P, such that for any X € RY there is an i such that the set Bgr(X) N A
is translation-equivalent to P;.

A Delone set A is aperiodic if N — £ = A implies £ = 0. It is repetitive if for any
cluster P C N there exists Rp > 0 such that for any ¥ € R? the cluster

Bg.(X) N A contains a cluster which is translation-equivalent to P.

These sets have applications in crystallography (= 1920), coding theory,
approximation algorithms, and the theory of quasicrystals.
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pattern space of a Delone set

Let Ag C RY be a Delone set. The pattern space (hull) of Mg is the closure of the
set of translates of Ag with respect to the metric g, i.e.

Q/\u = {cp;(/\o) : FE Rd}.

Definition

Let Ag C R9 be a Delone set and denote by @5 (Ag) = Mg — t its translation by
the vector £ € R?. For any two translates A and Ay of Ag define o(A1, A;) =
inf{e >0: 35,€ B.(0): B1(0) N ps(N1) = B1(0) N pz(A2)} A 27172

v

Assumption

The action of R on Q is uniquely ergodic:
Q is a compact metric space with the unique R9-invariant probability measure .
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Theorem

D IfW = Wt >0 is the standard Gaussian Brownian motion on R?, then for
(i) >

any N € Q the process X} := e, (A) =N — W, is a conservative Feller
diffusion on (2, ).

(i) The semigroup Pef(N) = E[f(X]")] is self-adjoint on L?,,

‘ it is Feller but not strong Feller.

Its associated Dirichlet form is regular, strongly local, irreducible, recurrent,
and has Kusuoka-Hino dimension d.

(iii) The semigroup (P¢)¢>0 does not admit heat kernels with respect to p.
It does admit symmetric heat kernels pg: (0,00) X € X Q — R with
respect to the not-o-finite pushforward measure Ag

Pra(t, by (AN2))  if Az € orb(Ay),

otherwise.

pﬂ(t7/\lyl\2) = (5)

(iv) There are no semi-bounded or LP harmonic functions (" Liouville-type”).
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spectral properties

Theorem

The unitary Koopman operators Uy on L?(R, u) defined by Uzf = f o o5
commute with the heat semigroup

U:P, = P,U;

hence commute with the Laplacian A, and all spectral operators, such as the
unitary Schrodinger semigroup.

v

... hence continuous spectrum (no eigenvalues) under natural assumptions
even though p is a probability measure on the compact set 2.

Michael Baake and Daniel Lenz, Spectral notions of aperiodic order, Discrete
Contin. Dyn. Syst. Ser. S 10 (2017).

Michael Baake, Daniel Lenz, and Aernout van Enter, Dynamical versus diffraction
spectrum for structures with finite local complexity, Ergodic Theory Dynam.
Systems 35 (2015).

Johannes Kellendonk, Daniel Lenz, and Jean Savinien, Mathematics of aperiodic
order, vol. 309, Springer, 2015.
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Helmholtz, Hodge and de Rham

Theorem

Assume d = 1. Then the space L?(R, , R?) admits the orthogonal
decomposition

L2(Q, u, RY) = Im V @ R(dx). (6)

In other words, the L2-cohomology is 1-dimensional, which is surprising because
the de Rham cohomology is not one dimensional.

M. Hinz, M. Rockner, +T., Vector analysis for Dirichlet forms and quasilinear
PDE and SPDE on fractals, Stoch. Proc. Appl. (2013).

M. Hinz, +T., Local Dirichlet forms, Hodge theory, and the Navier-Stokes

equation on topologically one-dimensional fractals, Trans. Amer. Math. Soc.
(2015,2017).
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end of the talk :-)

Thank you!
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